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The precise measurement of ground reaction forces and moments (GRF/M) usually 
requires stationary equipment and is, therefore, only partly feasible for field measurements. 
In this work we propose a method to derive GRF/M time series from motion capture marker 
trajectories for cutting maneuvers (CM) using a long short-term memory (LSTM) neural 
network. We used a dataset containing 637 CM motion files from 70 participants and 
trained two-layer LSTM neural networks to predict the GRF/M signals of two force 
platforms. A five-fold cross-validation resulted in correlation coefficients ranging from 0.870 
to 0.977 and normalized root mean square errors from 3.51 to 9.99% between predicted 
and measured GRF/M. In future, this method can be used not only to simplify lab 
measurements but also to allow for determining biomechanical parameters during real-
world situations.  
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INTRODUCTION: Sports biomechanics studies investigating kinematic and kinetic aspects of 
specific motions such as maximum effort changes of direction are usually conducted in 
controlled laboratory environments. Differences in motion patterns can be very subtle between 
and within subjects (David et al., 2018; Sheu et al., 2015). Therefore, high precision laboratory 
measurement equipment is necessary to reveal these differences. A widely applied standard 
method for biomechanical analyses is a stationary setup of a set of infrared cameras and one 
or more force platforms embedded in the ground (David et al., 2018; Johnson et al., 2018).  
However, the external validity of sports biomechanical studies like those of field sports 
conducted under controlled lab conditions is usually inferior compared to those conducted in 
the field (Knudson, 2009) albeit neglecting opponents, noise, tactics, fatigue, etc. Therefore, 
there is an ongoing trend to make precise biomechanical analyses in the field possible 
(Johnson, Mian, et al., 2019; Verheul et al., 2020) overcoming the aforementioned limitations. 
For investigations in field sports, which take place in complex multivariate environments, the 
shift from the lab to the field could allow for studies closer to real match scenarios. This will 
enable researchers to gain new insights, especially on possible causes for injuries, which in 
turn can lead to new implications for sport practitioners.  
To promote the ongoing trend to shift biomechanical measurements from the lab to the field, 
fully-connected feedforward artificial neural networks have been successfully applied to predict 
biomechanical parameters which cannot be measured directly (Ancillao et al., 2018; Mundt et 
al., 2019a; Wouda et al., 2018). These networks have the disadvantage that they need time 
normalized data and the entire time sequence needs to be unrolled, which results in large 
networks (Mundt et al., 2019a).  
Johnson et al. successfully used a simple partial least squares (PLS) algorithm (2018) and 
convolutional neural networks (2019) to predict the ground reaction forces and moments 
(GRF/M) during fast cutting maneuvers based on marker trajectories with an accuracy of r > 
0.9. Additionally, long short-term memory (LSTM) networks have been investigated in 
biomechanical applications recently (Choi et al., 2019; Hu et al., 2018; Mundt et al., 2020b). 
Since LSTM networks retain the time sequence, the networks can be held small, which saves 
system resources, requires less computational power and, thereby, can be beneficial for 
certain applications. Both Mundt et al. (2020b) and Choi et al. (2019), time normalized the data 
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used as inputs to the LSTM network, hence, information contained in the time domain was 
reduced. Both studies compared the performance of an LSTM and a fully-connected network 
with different results: while Choi et al. (2019) achieved a higher accuracy using LSTMs, Mundt 
et al. (2020b) achieved lower accuracy.  
To further investigate the performance of LSTMs in biomechanics, the purpose of the present 
work was to predict the GRF/M of 90° cutting maneuvers based on marker trajectories using 
an LSTM network and to directly add the predicted parameters to the c3d files. This enables 
the use of the predicted parameters for inverse dynamics simulations.  
 
METHODS: A previously published dataset consisting of 637 90-degree cutting maneuver 
trials of 70 healthy participants containing both execution and depart contact was used for this 
study. It encompassed a heterogeneous population of participants (David et al., 2017, 2018). 
During pre-processing, force plate and marker signals were down sampled to a common 
frequency of 200Hz. Four different approach- and depart-direction combinations were present. 
Therefore, marker trajectories and force plate signals were transformed to be uniform. 
Complete trials lasting from 20 frames before the approach contact to the end of the depart 
contact were used as input data to the neural network without any time normalization.  
Subsequently, the dataset was randomly and subject-wise split into training, validation and test 
subsets. From the 70 participants, 10% have been held back for testing. The data of the 
remaining participants were, in a first step, used to determine the model architecture. Other 
studies which have utilized LSTM-based neural networks for biomechanical data reported 
architectures consisting of two hidden LSTM layers with 64-512 nodes per layer (Choi et al., 
2019; Hu et al., 2018). A grid search was performed over two stacked layers on the remaining 
90% (75% training, 15% validation) of the subject data over 100 epochs. It revealed an 
optimum layer size to be 200 each for our data set. The other hyperparameters, i.e. learning 
rate, batch size and keep probability for the drop-out have been determined exploratorily. After 
choosing the optimum model architecture, a five-fold cross-validation has been conducted on 
90% of the subject data to evaluate the model performance. Each model was trained over 
1000 epochs, whereby overfitting has been prevented by stopping the training process if the 
loss of the validation began to increase. We used three-dimensional coordinates of 28 markers 
of the lower body as input features. In previous work it could be shown that adding markers of 
the upper body does not improve prediction accuracy (Mundt et al., 2019a). Output features 
were the three-dimensional forces and moments of the two force plates. This resulted in 28x3 
= 84 input features and 2x6 = 12 output features.   

We calculated the normalized root mean square error (nRMSE) relative to the feature’s range 
as well as the correlation coefficients for each fold. Both metrics were calculated for the 
approach and depart contact separately. After predicting the GRF/M, the data is added to 
the .c3d file containing the marker data for further processing, e.g. inverse dynamics 
simulations. The outline of the workflow is displayed in Figure 1. 
 
RESULTS: For all trials, the approach contact was performed on the first force plate (FP1). 
The mean correlation coefficients of predicted and measured ground reaction forces over the 
five folds were 0.907, 0.887 and 0.904 for the anterior-posterior (AP), medio-lateral (ML) and 
vertical (V) axis respectively. The nRMSE was 9.99%, 8.41% and 9.91%. The predictions of 

Figure 1: Schematic of the workflow 
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the ground reaction moments around these axes achieved a correlation coefficient of 0.934, 
0.888 and 0.870 and an average nRMSE of 4.88%, 5.57% and 6.90%.  
The depart contact was performed on the second force plate (FP2). Over the five models, the 
mean correlation coefficients and nRMSE values between predictions and measurements 
were 0.916, 0.883 and 0.943 as well as 8.66%, 7.44%, and 8.20% respectively for the GRF. 
The comparison of the model’s predictions and the measured GRM resulted in correlation 
coefficients of 0.977, 0.945 and 0.942, and nRMSE of 3.51%, 5.52% and 4.59%.  
The mean and standard deviation of the measured and predicted values for the execution and 
depart contact are displayed in Figure 2.  
 
DISCUSSION: The aim of this study was to predict the GRF/M of a complete 90° change of 
direction using an LSTM network. The approach contact is mainly characterized by braking 
and rotation towards the depart direction while the depart contact is mainly characterized by 
propulsion and only little rotation. Overall, very good agreement (r > 0.870) between the 
measured and predicted values could be achieved, although both contacts evaluated show 
very different motion patterns. The predictions of the values of the depart contact (r = 0.934) 
resulted in higher accuracies than those of the execution contact (r = 0.898). There are different 
possible reasons for that: the GRF/M of the depart contact show less variance in the motion 
between subjects, which might make this task easier predictable. This hypothesis is supported 
by the higher accuracy found in those motion directions showing less variance. Another 
possible explanation can be found in the LSTM cells. The first frames of each sample contain 
the approach contact, while the last frames contain the depart contact. Hence, the LSTM has 
much more previous information present for the depart than for the approach contact.  
Johnson et al. (2019; 2018) evaluated the prediction of the GRF/M using different machine 
learning algorithms for the approach contact. They achieved higher accuracies than in this 
study using a convolutional neural network and a comparable accuracy using an PLS 
algorithm. However, they did not investigate the combination of the approach and depart 
contact. We found that the combination of both contacts reduced the prediction performance 
for a fully-connected feedforward network compared with the accuracy when using specific 
networks for each task (Mundt et al., 2020b). In this study we also achieved higher accuracies 
for the prediction of the GRF only than in the present study. In this work, we aimed to explore 
the potential of a generic approach, i.e. predicting the whole time series of GRF/Ms. However, 
a more task-specific approach, e.g. training on peak values only, could possibly result in higher 
accuracy. The approach proposed here is the first one without performing any time 

Figure 2: Test-Set output of cross-validation #3. green: ground truth, red: predicted values of 
n=64 trials. Lines are mean, shaded areas are mean ± one standard deviation 
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normalization on the data and reduction to the stance phase before training. Additionally, steps 
executed with the right and left leg were analyzed. Thereby, the applicability of this approach 
for the user can be considered higher compared with previous methods.  
At the moment, the proposed method is still limited to a camera-based setup. However, we 
could show that the use of (simulated) inertial sensor data can be successfully used to predict 
the joint angles and joint moments during gait and cutting maneuvers (Mundt et al. 2019b; 
2020a; 2020b). This indicates that similar results to those presented can potentially be 
achieved with a more mobile measurement setup. Wouda et al. (2018) investigated the use of 
inertial sensors for the determination of the sagittal knee joint angles and the vertical GRF 
during straight running. They could achieve very good correlations. For this reason, it can be 
expected that the findings of these previous studies and those of the proposed study can be 
combined to further improve in-field motion analysis.  
In future work, the use of inertial data as inputs should be investigated to further improve the 
feasibility of this approach for in-field analyses. Thereby, the understanding of biomechanical 
parameters during real world situations can be strongly improved.  
 
CONCLUSION: The proposed method showed its feasibility in predicting the GRF/M during 
maximum effort cutting maneuvers without extensive pre-processing of the data. No division 
of the complete trial into approach and execution task is necessary as well as time 
normalization could be avoided. With this approach, laboratory-based setups can be simplified 
by avoiding the use of force plates that restrict the athlete’s execution of the task.  
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