BERITA BIOLOGI 3 (6) Des. 1986

SPATIAL DISTRIBUTION OF DICOTYLEDONOUS WEED ARCHITECTURES IN A SHRUB VEGETATION OF MENGGALA, CENTRAL JAVA

B. SUNARNO * & F. HALLE **

Faculty of Biology, Jenderal Soedirman University, Purwokerto Now *} Balitbang Botani Puslitbang Biologi JJPI, Bogor and **) Laboratoire de Botanique, Institut de Botanique Montpellier, France

ABSTRACT

B. SUNARNO & F. HALLE. 1986. Distiibusi spasial model arsitektur gulma dikotil di daerah vegetasi semak, Menggala, Jawa Tengah. Berita Biologi 3(6): 253 - 260. Ketapatan dan frekuensi kehadiran model-model arsitektur gulma dikotil di daerah vegetasi semak Menggala, Jawa Tengah telah dipelajari. Model CHAMPAGNAT yang diwakili oleh Mimosa invisa dan Rubus chrysophyllus merupakan model yang nilai kerapatannya paling tinggi (17,97%) dan merupakan pola pertumbuhan vang umum dijumpai di setiap stratum. Semakin tinggi tingkat stratumnya semakin rendah jumlah model dan jumlah individunya. Perbandingan antara gulma masa mendatang dengan gulma masa kini di daerah semak ini, adalah 3 : 2, menunjukkan a,danya proses suksesi yang sedang berjalaa

INTRODUCTION

Much of our knowledge of the-distribution of weed species is concerned with their roles on the early successions in the forest establishment. No attempt has been made to study the distribution of weed architectural models in relation to early successions, although many architectural weed model have been analyzed (Ha'le et al. 1978; Jeannoda-Robinson, 1977). Boojh & Ramakhrishnan (1982) states that the pattern of growth and architectural development of early and late succesional species are well suited to their strategies of niche occupancy in the forest ecosystem. But those species are obviously trees of humid montane, evergreen forest. The present study, is aimed at investigating the distribution of weed models in the field and providing information that an architectural model distribution may be correlated with succession.

STUDY AREA AND METHODS

Observation were taken in a 65 ha of shrub vegetation in Menggala, Central Java, located in the

Western slope of Mt. Slamet on $109^{\circ} - 110^{\circ}$ E and $7^{\circ} - 8^{\circ}$ S, and 777 m above the sea level. The climate is of B type with the mean annual rainfall being 4246 mm, the Q value of 21,9% (Schmidt & Ferguson, 1951). The soil in the area is brown andosol, associated with brown regosol, the structure is crumbled, and the texture is dusty to sandy loam, pH 6.00 — 7.00 (Supraptohardjo, 1960).

The transect method (Oldeman, 1979) was used. A main transect of about 600 m was established, using a plastic rope, from a randomized starting point around the centre of the area. Six (75 x 3 m) blocks were laid down perpendicular to the main transect. Each block was further divided into 25 plots of 3 x 3 m. Thus, 150 plots with a total area of 1350 m² or less than 0.2% of the whole area were established (Figure 1).

The frequency and density values of the weed models were calculated. Height variation performed by the individual weed growth lead to a stratification. Strata A, B, C and D represent layers of weeds above 150 cm, 100 - 150 cm, 50 - 100 cm, and below 50 cm, respectively. The relationship between the model distribution in the vegetation as a whole and within strata were determined by frequency analysis of models, using G-test of association (Sokal & Rholf, 1973) with f Ln f date transformation (f represents the absolute density of any model). As regards to the formation of the present vegetation which may involve the process of early secondary succession, the set of weeds and the occurence of chablis (in general terms) in the area were accounted according to Halle et al. (1978), Weed identification was based on Backer & Bakhuizenv.d. Brink Jr. (1963,1965,1968).

RESULTS AND DISCUSSION

There were 40 dicotyledonous weeds in the area conforming to 12 architectural models

253

(Table 1). TOMLINSON'S. STONE'S. SCAR-RONE'S. ATTIMS', and CHAMPAGNAT'S models had a high relative frequencies (9,67%), indicating tbat Ihose occurred in almost all plots. The relative density values of CHAMPAGNAT'S, STONE'S, and LEEUWENBERG'S models were 17.97%. 17,32%, and 15,91%, respectively. CHAMPAG-NATS model having the highest frequency and density values is considered important in the relationship between model distribution and vegetation formation in the area. This is guite different with Boojh and Ramakhrishnan (1982) finding that RAUffS and ATTIMS' models play an important role in developing forest communities in 'humid, subtropical montane ecosystem. It is possibly due to the difference of plant community type* between the two area involving geographical, latitudinal, and altitudinal factors.

The CHAMPAGNATS model in this study is represented by *Mimosa invisa* (Figure 2 A) and *Rubus chrysophyllus* (Figure 2 B). These species had seedlings with orthotropic and continuous growth. The axes are characterized by phyllotaxy of radial symmetry and those gradually became pendulous after the plant height developed over 0.5 m. The equivalent and identical branches mostly arise on the upper surface on the initial curve of the pendulous axis. The stems and branches of these weeds are provided with densely sharp spines, and infloresences lateral.

In a pure alang-alang (Imperata cylindrical field, the seedlings of M. invisa can not maintain the underground competition as their root systems are shallow and unable to penetrate over the rhizomatous layer of the former species. However, the establishment of competitif prolific woody weeds, which have big main roots or big tap roots going down through the alang-alang rhizome layer such as Chromolaena odorata (STONE'S model), Ctibadium surinamense (LEEUWENBERG'S model), Lantana camara (ATTIMS model), Melastoma affine (SCARRONE'S model) can supress the growth of alang-alang by shading, and create a favourable circumstance to support M. invisa seedlings to grow up without interference of alangafang (Eussen & Wirjahardja, 1973).

Table 2 shows that strata C and D were the layers which contained all of the observed growth patterns in the field (12 models). The absent of 3 models (TOMLINSON, HOLTTUM, and CHAM-

BERLAIN) in a strata A and B is due to the maximum growth of there presented weeds, i.e., Centella asiatica and Eryngium foetidum (TOM-LINSON'S model), Crepis japonica (HOLTTUM'S model), and Drosera indica (CHAMBERLAIN'S model) can not grow over the limit of the strata. McCLURE'S model which presents in stratum A but absents in stratum B is an exception. This model is represented by Polygonum caespitosum and P. chinense. Some individuals of the latter species can grow beyond 5 m in height. Therefore, they are belonging to stratum A. Frequency analysis of the distribution of weed models within strata with G - test of association indicates that the architectural model distribution is significantly associated with stratification (Table 3), G value = 4601.940 at p < 0.005. The higher the weed stratum level, the lower the number of models and their individual members therein, as shown in table 3. This condition is owing to the individual weed conforming to the models remain under growing process, which is convenient to the community growing process in the area.

Table 4 shows that there were 89 chablis covering approximately 59.33% of the observed plots. In this context, chablis refers to the spaces that occurred in the area due to the destruction of prolific woody weeds by a strong wind during January 1982, as seen from the broken stems or branches with detached leaves. After the area had been destroyed, a favourable condition with sufficient light intensity was created and, therefore, stimulated the seeds of M. invisa and other weeds to grow in the absent of alang-alang interference. Chablish without alang-alang will be densely crowded with seedlings, especially M. invisa as shown in figure 3. Consequently the above condition results in a higher density of weeds of the future than weeds of the present (Table 4). The ratio between those weeds was 3 : 2, implying that the process of early secondary successsion occurred in the observed area.

It may be concluded that in any case the distribution of dicotyledonous weed architectural models may vary from area to another, depending upon the formation of the community. The sets of weeds may function as indicators of ongoing succession in the field. The architectural models can be used as modified systems of life form analysis in weed community.

BERITA BIOLOGI 3 (6) Des. 1986

Species .	Family	Model
Ageratum conyzoides L.	Asteraceae	STONE'S
A. houstonianum Mill.	- » -	_ " _
Blutnea lacera (Burm. f.) DC.	1. A	_ " _ &
Bidens pilosa L.	- " -	SCARRONE'S
B. biternata (Lour.) Sheri.	"	_ " _
Centetta asiatica (L.) Uib.	Apiaceae	TOMLINSON'S ?
Crepis japonica Bth.	Asteiaceae	HOLTTUM'S
Clidemia hirta (L.) D. Don.	Melastomaceae	LEEUWENBERG'S
Drosera incUca L.	Dioseraceae	CHAMBERLAIN'S
Desmodium heterophyllum DC.	Papilionaceae	ATTIMS'
D. triquetrum DC.		STONES'S
Emilia sonchifolia (L.) Wight.	Asteraceae	_ "
Eupatorium inulifolium H.B.K.	_ **	_ " _
Eryngium foetidum L.	Apiaceae	TOMLINSON'S
Chromolaena odorata (L.) R.M. King & Rob.	Asteraceae	STONE'S
Hedyotis auricularia L.	Rubiaceae	ATTIMS'
Hyptis rhomboidea Mart. & Gal.	Lamiaceae	- »»-
Impatiens platypetala Lindl.	Balsaminaceae	
Lantana/camara L.	Verbenaceae	_"_
Melastoma affine D. Don.	Melastomaceae	SCARRONE'S
Mimosa invisa Mart.	Mimosaceae	CHAMPAGNAT'S
M. pudica L.	- " -	TROLL'S
Phyllanthus urinaria L.	Euphorbia ceae	COOK'S
Piper aduncum L.	Piperaceae	PETIT'S
Poly gala paniculata L.	Polygalaceae	LEEUWENBERG'S
P. glomerata Lour.	_ " _	ATTIMS'
Polygonum chinense L.	Polygonaceae	MCCLURE'S
». caespitosum Bl.	_ " _	" - 🖘
Pueraria phaseoloides Bth.	Papilionaceae	ATTIMS'
RosteUulariapbtusa Nees.	Acanthaceae	LEEUWENBERG'S
Ru&us Chrysophyllus Miq.	Rosa ceae	CHAMPAGNAT'S
Sdaacutah.	Malvaceae	TROLL'S
5. retusa L.	_ " _	- "
E rhombifolia L.	- " -	- " -
Solarium torvum L.	Solanaceae	LEEUWENBERG'S
Clibadium surinamense L.	Asteraceae	LEEUWENBERG'S
Stachytarpheta jamaicensis (L.) VahL	Verbenaceae	_ **
Triumfetta rndica (L.) Back.	Tiliaceae	ATTIMS'
ffrena lobata L.	Malvaceae	_"
Vernonia cinerea (L.) Less.	Asteraceae	STONE'S

Table 1. Dicotyledonous weeds found in the obseived area and their aichitectuial models

ACKNOWLEDGEMENT

One of the authors, B.S., would like to express **his** gratitude to Dr, Mien A. Rifai, Herbarium Bogoriense, Bogor, for his encouragements and suggestions of the study. He also much indebted to Dr. Kuswata Kartawinata, and Dr. K.L. Mehra, F.A.O. forage collector in Indonesia for reading and correcting the english through the manuscript.

BIBLIOGRAPHY

- BACKER, C.A. & BAKHUIZEN VAN DE BRINK JR., R.C. 1963. Flora of Java I. NVP Noordhoff, Groningen, The Netherlands, 648 p.

SL. 1968. *Flora of Java III*. NVP Noordhoff, Groningen, the Netherlands, 660 p.

BOOJHj R. & RAMAKHRISHNAN, P.S. 1982. Growth strategy of trees related to successional status; I. Architecture and extension growth. *Forest Ecology and Management* 4 : 359-374.

- EUSSEN, J.H.H. & WIRJAHARDJA, S. 1973. Studies of an alang-alang vegetation (*Imperata cyttndrica* (L.). Beauv.). *Biotrop Bulletin* 6 : 1-28.
- HALLE, F. OLDEMAN, R.A.A. & TOMLINSON, P.B. 1978. *Tropical trees and Forest; an architectural analysis*. Springier verlag, Berlin, Heidelberg, New York, 441 p.
- JEANNODA-ROBINSON, V. 1977. *Contribution etude de L' architecture des Herbes*. These de Specialite, Montpellier (Unpublished).
- OLDEMAN, R.A.A. 1979. Field guide for research group; scale drawing and architectural analysis of vegetations. Institute of Ecology Padjadjaran University, Bandung, 51 p.
- SOKAL, R.H. & RHOLF, F.J. 1973. Introduction to Biostatistics. W.H. Freeman & Co., San Francisco, 368 p.
- SUPRAPTOHARDJO, R. 1960. *Peta tanah eksplorasi Djawa — Madura*. Lembaga Penelitian Tanah.dan Pemupukan, Bogor.
- SCHMIDT, F.H. & FERGUSON, J.H.H. 1951. Rainfall types based on wet and dry period ratios for Indonesia with Western New Guinea. Djawatan Meteorologi dan Geofisika, Djakarta, *VerhandeUngen* no. 42.

Table 2-	Distribution of Dicotyledonous weed models within strata (Absolute density values). In brac-
	kets; individual model occurrence in each stratum (%). Total area 1350 m ²

Stratum	A (Above 150 cm) (indi- (%) vidual)		B (100-150 cm) (indi- (%) vidual)		C (50-100 cm) (indi- (%) vidual)		D (below 50 cm)	- Total (Mean) (indi- (%) vidual)		
Model							(indi- (%) vidual)			
TOMLINSON'S	-	_	_ 4	_	29	(1.06)	2713	(98.94)	2742	(5.66)
HOLTTUM'S		-	-	-	35	(22.29)	122	(77.71)	157	(0.32)
CHAMBERLAIN'S	—	-	-	-	104	(17.56)	593	(82.46)	697	(1-44)
LEEUWENBERG'S	874	(11.34)	1147	(14.89)	2182	(28.32)	3501	(45.44)	7704	(15.91)
MCCLURE'S	7	(1.28)	-	-	142	(26.05)	396	(72.66)	545	(1-13)
PE TIT'S	507	(14.87)	625	(18.33)	975	(28.60)	1302	(38.19)	3409	(7-04)
COOK'S	243	(6.17)	327	(8.30)	720	(18.28)	2648	(67.24)	3938	(8.13)
SCARRONE'S	764	(15.70)	804	(16.53)	1317	(27.08)	1979	(40.69)	4864	(10.05)
STONE'S	1313	(15.65)	1893	(22.57)	2198	(26.21)	2983	(35.57)	8387	(17.32)
ATOMS'	963	(15.52)	1062	(17.14)	1436	(23.15)	2741	(44.19)	6202	(12.81)
CHAMPAGNAT'S	1278	(14.69)	1668	(18.18)	2208	(25.38)	3544	(44.19)	8698	(17.97)
TROLL'S	195	(14.69)	151	(14.09)	274	(25.56)	452	(42.16)	1072	(2.21)
Total (Mean)	6144	(12.69)	7677	(15.85)	11620	(24.00)	22974	(47.45)	48415	(99.99)

BERITA BIOLOGI 3 (6) Des. 1986

STRATA	59660		1.1	•'" • vf	
	A above 150 cm	B 100 - 150 cm	C 100 - 50 cm'	D below 50 cm	Total
MODELS		100 - 150 cm	100 - 50 cm	below 50 cm	NA.
TOMLINSON			97.652	21421.786	21773.630
HOLTTUM	4		124.437	586.091	793.831
CHAMBERLAIN	11-25-15	ud -	483.017	3786.420	4563.109
LEEUWENBERG	5919.672	8072.525	16757.886	28561.870	68801.193
McCLURE	13.621		.703.727	2368.640	3433.928
PETIT	3157.855	4023.595	6710.377	9321.170	27738.586
COOK	1334.814	1893.317	4737.061	20870.524	32619.064
SCARRONE	5071.866	5378.438	9402.916	14943.032	41302.801
STONE	9427.395	13885.274	16844.764	23839.088	75702.064
ATTIMS	6615.861	7384.006	10389.588	21689.094	54140.380'
CHAMPAGNAT	9076.693	12307.216	16931.700	28928.514	78918.510
TROLL	1028.235	757.609	1537.997	2763.384	7479.611
TOTAL	53595.448	68678.303	108769.010	230641.480	522103.120

 Table 3.
 Data transformation of architectural model distribution for frequency analysis using G-test of association according to Sokal & Rholf (1973).*)

G=46Q1.94O.

p 0.005 at Df 33 = 57.649 ($p = critical value of X^2$)

Thus, distribution of the models in the area significantly associated with stratification.

*) The transformed data are derived from the absolute density value of the models (see table 2).

Table 4. Weeds of the present, the past and the future in the observed area (individual number).

		Set of weeds					
Sub - transect	Present	Future	Past*)	Total	Chablis		
1	2944	3177	_ 1	6121	11		
2	3019	4190		7209	V 16		
3	3743	6394		10137	. 15		
4	4012	6326	-	10338	19		
5	3481	5265		8746	15		
6	2516	3345	-	5864	13		
Total	19718	28697	-	48415	89		

*) not determined

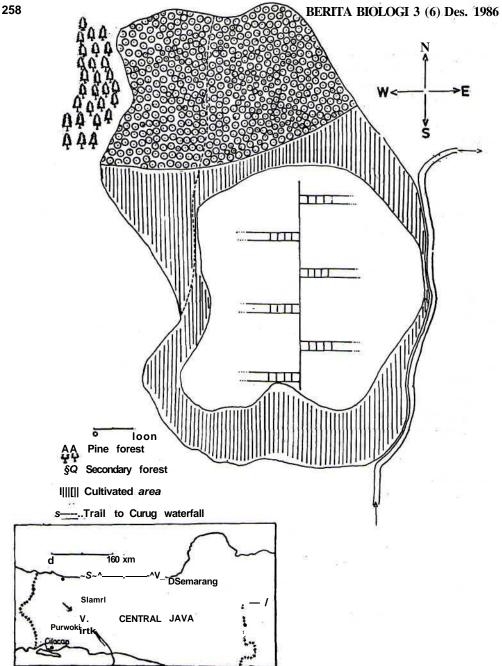


Figure 1. Sampling pattern of the transect method used in the study and the location map of the shrub vegetation in Menggala, Central Java.

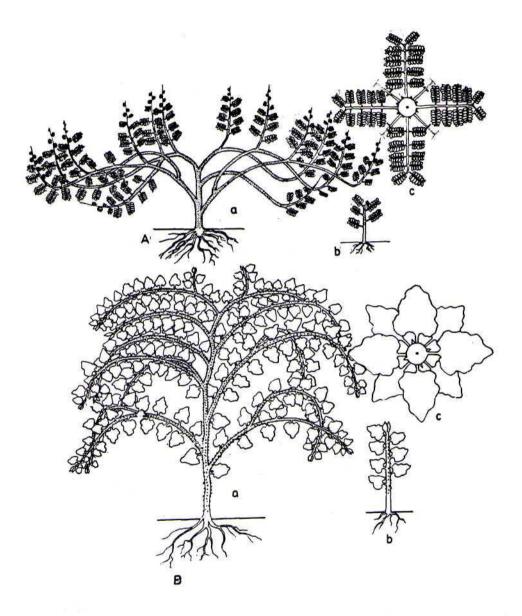


Figure 2. CHAMPAGNATS model (A. Mimosa invisa Mart; B. PMbusxhrysdphyllus Miq.) showing a mixed orthotropic axes; ¹ a. Architecture of the mature plants

- b. Seedlings
 - c. Radial symmetry of the phyllotaxies which characterize the orthotiopic axes.

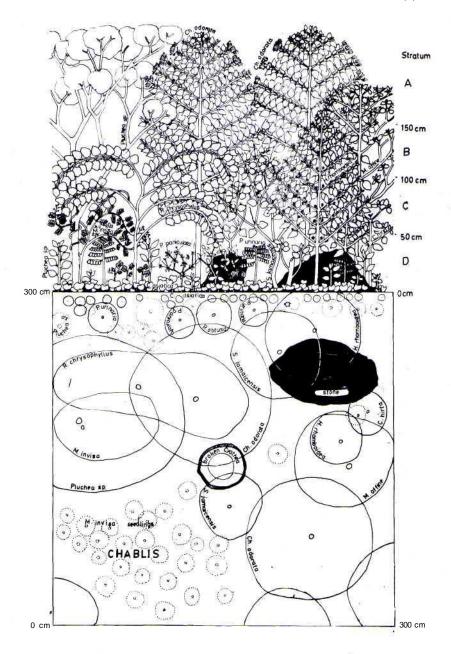


Figure 3. Profile diagram of an observed plot (3 x 3 m) in shrub vegetation of Menggala. Only dicotyledonous weeds were drawn. Outline represent weeds of the present, stripples represent weeds of the future. Further explanation in the text