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Abstract

We study symmetrybreaking effects in local D-brane models that arise as a result of
compactification, focusing on models constructed on C3/Z3. Zero-modes of the Lichnerow-
icz operator in cone-like geometries have a power law behaviour; thus the leading symmetry
breaking effects are captured by the modes with the lowest scaling dimension which trans-
form non-trivially under the isometry group. Combining this with the fact that global
symmetries in local models are gauged upon compactification we determine the strength
and form of the leading operators responsible for the symmetry breaking.
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1 Introduction

The bottom-up approach [1–10] is a promising direction for string phenomenology. In this

approach the Standard Model degrees of freedom arise from a D-brane construction which is

localised in the extra dimensions. Various properties of the Standard Model sector such as

matter content, gauge couplings and Yukawa couplings can be computed in the local setting,

without knowledge of the global aspects of the compactification. A modular approach is

possible. After having constructed a realistic Standard Model sector in a local geometry

one can then attempt to embed the model in a compactifiction. At the later stage one has

to consider global aspects such as tadpole cancellation, moduli stabilisation, supersymmetry

breaking and cosmology.

Isometries in the geometry imply global symmetries in the local model. Such symmetries

can have phenomenologically interesting implications. For instance, it was shown in [11] that

for the models constructed in [4,5] isometries of the local geometry imply that fermions in the

lightest generation are massless at tree-level.

The fate of such symmetries once the local model is embedded in a compactification was

discussed in [12]. The effect of compactification is to couple the model to gravity; theories of

quantum gravity cannot possess exact continuous global symmetries [13–15]. It was argued

in [12] that once compactification effects are taken into account global symmetries in local

models are gauged and the associated gauge field is a closed string (bulk) mode. Furthermore,

compact Calabi Yaus with SU(3) holonomy do not have any isometries. This implies that

the gauge symmetry is spontaneously broken by the bulk. These effects are communicated

to the open string sector via their interactions with the bulk modes. Once the bulk modes

are integrated out one is left with an open string sector which has an approximate global

symmetry, with the closed string sector providing the “flavon” vevs which parametrise the

symmetry breaking. The strength of symmetry breaking necessarily scales as an inverse power

of the compactification volume; as in the infinite volume limit Newton’s constant vanishes and

the global symmetry is restored. Couplings in the Standard Model sector which vanish in the

non-compact analysis due to the presence of the global symmetry can take on values which

scale as inverse powers of the volume; if the volume of the compactification is large one can

1



generate parametrically small couplings in the Standard Model sector.

The C3/Z3 geometry provides an attractive starting point [1] for local model building.

Models on complex cones over the lower del Pezzo surfaces [4–6] are closely related, in order

to obtain the Standard Model gauge groups at low energies one has to Higgs these models to

C3/Z3. The geometry has a SU(3) × U(1) isometry. In this paper we shall focus on C3/Z3

(either singular or resolved); and compute the volume dependence and form of the leading

operators that break the SU(3) × U(1) symmetry as a result of compactification. We shall

do so by determining the leading deviations in the metric which break the isometries once the

geometry is glued on to a bulk to form a compact space. These can be obtained by carrying

out a small fluctuation analysis in the local geometry, along the lines of [16–18]. For simplicity,

we will model the effect of compactification on the local geometry via a deformation which

preserves the Ricci flatness condition. However, general supersymmetry-breaking deformations

will not preserve Ricci flatness, and a systematic study of supersymmetry-breaking effects

requires the analysis of other modes such as the fluxes and their backreaction on the metric.

We hope to return to these issues in the future.

In the region where the deformation is small compared to the background metric, a Ricci flat

deformation can be written as a series in zero-modes of the Lichnerowicz operator constructed

from the local geometry. For cone-like geometries zero-modes of the Lichnerowicz operator

have angular dependence given by symmetric tensor harmonics on the base space and a power

law radial behaviour. Thus,

δgij =
∑
I

cIY
I
ij(ψ)r∆I (1.1)

where Y I
ij are harmonics on the base, ∆I the radial scaling associated with the harmonic Y I

ij

and cI Fourier coefficients. Modes with positive ∆I grow in the asymptotic end of the cone

and fall off in the tip region: these are induced as a result of compactification 1. In the bulk

of the compactification the isometries are badly broken, the deformed non-compact metric

smoothly connects onto this “generic” metric; we therefore will assume that in the asymptotic

region of the cone all terms in the sum (1.1) are of equal magnitude. Given this, the power law

behaviour in the radial direction implies that the perturbation in the vicinity of the tip of the

1Modes with negative ∆I have profiles that vanish in the asymptotic region and are to be associated with
blow-up modes.
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cone is well approximated by the modes with the smallest positive values of ∆I . Thus in order

to obtain the leading effects that break a certain isometry one has to isolate the harmonic Y I
ij

in the expansion (1.1) with the smallest positive value of ∆I which is not a singlet under the

action of the isometry group.

Once we have isolated the relevant harmonics we shall construct the lowest dimension

operators that involve both the Standard Model sector and the symmetry breaking harmonics

(flavons). These operators have to be gauge invariant under the action of the isometry group;

this will allow us to enumerate the form of the symmetry breaking operators that arise in the

open string sector.

2 Perturbations and Breaking of Isometries on C3/Z3

The space C3/Z3 is obtained from C3 by making the identification zi ≡ e2πi/3zi. The space

inherits the Kähler potential of C3, K = ziz̄ī = r2. The identification breaks the SO(6)

isometry of C3 to U(3) ∼= SU(3)× U(1). Under the action of the isometry group the complex

coordinates zi transform in the fundamental, zi → U ijz
j .

The origin is a fixed point of the orbifold action and is singular. The singularity can be

resolved [19] by modifying the Kähler potential to

r2K ′(r2) = (r6 + r6
0)1/3. (2.1)

The metric on the space then becomes

gmn̄ =
(r6 + r6

0)1/3

r2
δmn̄ −

r6
0

r4(r6 + r6
0)2/3

zmzn̄, (2.2)

the locus r = 0 now corresponds a finite size P2 with the canonical Fubini Study metric of

radius r0.

Perturbation Analysis

In order to discuss perturbations it is useful to consider C3/Z3 as a cone with base S5/Z3.

Static perturbations of general CY cones

ds2
6 = gmndy

mdyn = dr2 + r2ds2
B5 = dr2 + r2g̃ijdΨidΨj (2.3)
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were discussed in [18], the results of which we now review. For metric perturbations, δgmn =

hmn, linearized Einstein equations are given by ∆Khmn = 0, where ∆K is the Lichnerowicz

operator constructed from the metric gmn. Working in transverse gauge with respect to the

base, ∇̃ihij = ∇̃ihir = 0; Einstein equations imply hri = hrr = 0. The angular components of

the metric are required to take the form

hij =
∑
It

φIt(r)Y It
ij (Ψ), (2.4)

with the index It running over the symmetric traceless two tensor harmonics on the base B5.

These are eigenfunctions of the Lichnerowicz operator constructed from the base metric g̃ij .

The functions φIt(r) are solutions of the differential equation(
∂2
r −

4

r
∂r +

4− λIt
r2

)
φIt = 0, (2.5)

where λIt is the eigenvalue of the harmonic Y It
ij . The general solution of which is

φIt(r) = aIt+r
+∆ + aIt−r

−∆ (2.6)

with

∆ =
√
λIt − 4 (2.7)

where aIt± are integration constants, fixed by the boundary conditions.

Tensor Harmonics on S5/Z3

The tensor harmonics on S5/Z3 can be obtained from those on S5 by carrying out an orbifold

projection. We begin by discussing some basic properties of tensor harmonics on d-spheres (see

for e.g. [20]). Tensor harmonics on the d-sphere can be constructed by considering functions

of the form

Y l
ij = C lA1.....Al;B1B2

ΩA1 ....ΩA2D̂iΩ
B1D̂jΩ

B2 , l ≥ 2

A1, ....., Al, B1, B2 = 1...d+ 1 (2.8)

where ΩA are homogeneous coordinates on the d-sphere ΩA.ΩA = 1 and D̂ denotes the co-

variant derivative compatible with the d-sphere. C lA1.....Al;B1B2
is a constant tensor which is
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Table 1: Tensor Harmonics on S5/Z3 for l ≤ 4.

l SU(3) Representations
and U(1) charge

2 (0, 0)0, (1, 1)0, (2, 2)0

3 (1, 1)−3, (3, 0)−3, (2, 2)−3

(1, 1)+3, (0, 3)+3, (2, 2)+3

4 (1, 1)0, (3, 0)0, (0, 3)0,
(2, 2)0, (1, 4)0, (4, 1)0,
(3, 3)0, (1, 2)−6, (2, 1)+6

symmetric and traceless with respect to the indices Ai and Bj and satisfies C l B
(A1.....Al; Al+1) =

C
l B
(A1.....Al;Al+1) = 0. For a fixed value of l the harmonics transform as an irreducible represen-

tation of SO(d+ 1). For the five sphere the associated highest weight state has Dynkin label

(l − 2, 2, 2). The eigenvalue for the Lichnerowicz operator is

λIt = l(l + 4) + 8 . (2.9)

Equation (2.7) then gives

∆ = l + 2 . (2.10)

In order to obtain the harmonics on S5/Z3 we decompose the SO(6) representations as-

sociated with the harmonics of S5 under the maximal subgroup SU(3)× U(1) and project to

states that have vanishing U(1) charge 2 modulo 3. Table 1 lists the SU(3) representation and

U(1) charge of the harmonics for l ≤ 4. Details of the decomposition are given in the appendix.

Strength of Isometry Breaking Effects

As discussed in the introduction, in the vicinity of the tip of the cone the leading isometry

breaking effects are captured by the harmonics which have the lowest (positive) scaling di-

mension and transform non-trivially under the action of the isometry group 3. In associating

2We normalise the U(1) charge so that the vector of SO(6) decomposes into the fundamental and anti-
fundamental of SU(3) with charge +1 and −1.

3The singlet at l = 2 with ∆ = −4 is related to the resolution (2.1). The associated mode with a vanishing
profile in the asymptotic end has a fall off r−4, i.e. is suppressed by r−6 relative to the background metric. This
is in keeping with the small r0 expansion of (2.1).
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the effects of compactification only with modes with positive scaling, we are assuming that

there are no compactification effects that grow in the small r region. In general such effects

can be present - the analogue of relevant deformations in AdS/CFT examples. The presence

of such modes indicates that the small r geometry is unstable to certain deformations of the

bulk. One would then like to find symmetry reasons to prevent these unstable modes to be

turned; so that the geometry in small r (location of the brane set up) is stable. For the SU(3)

generators, Table 1 shows that these harmonics are at l = 2 (∆ = 4) with SU(3) Dynkin label

(1,1) and (2,2). The background metric (2.3) has angular components which scale as r2; thus

in the vicinity of the tip of the cone ∆ = 4 deformations are suppressed by a factor (r/rasym)2

relative to the background (where rasym is the value of the radial coordinate at which the cone

is glued on to the bulk). For an open string sector which is localised on a P2 resolving the

singularity at r = 0, the relevant scale at small r is the resolution radius r0. In the absence

of any anisotropies in the compactification rasym is of the same scale as the compactification

radius. Thus compactification effects that break the SU(3) symmetry are of magnitude

ε ∼
(

r0

rasym

)2

∼
(
τs
τb

)1/2

. (2.11)

Where τs and τb are the Kähler moduli associated with the blow-up mode and the volume

modulus. For models on the singular locus the relevant scale at small r is the string scale, thus

ε ∼ 1

V1/3
. (2.12)

Where V is the volume of the compactification in string units.

The U(1) symmetry is unbroken at l = 2; it is broken by l = 3 modes with charge ±3. The

associated suppression factor is

δ ∼ 1

V1/2
. (2.13)

Thus at large volume the SU(3) and U(1) symmetry breaking parameters are hierarchically

separated.

3 Symmetry Breaking Operators for D3-branes at C3/Z3

In this section we shall consider D3-branes at a C3/Z3 singularity and determine the form

of the symmetry breaking operators in the open string sector that are induced as a result of
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Figure 1: Quiver diagram for D3-branes probing a C3/Z3 singularity.

compactification. Our guiding principle will be gauge invariance under the flavon (isometry)

group.

The massless spectrum of D3-branes probing a C3/Z3 singularity is summarised in Figure 1

by a quiver diagram; gauge groups are indicated by nodes and bifundamental chiral multiplets

are indicated by arrows between the nodes. Each chiral multiplet has a threefold degeneracy.

This provides the generation index for the models in [1,4,5]. As shown in the figure, the chiral

multiplets are identified with the left-handed quarks (QiL), the right-handed up quarks (U iR)

and the up Higgs (H i
u). They interact via a Yukawa interaction

εijkH
i
uQ

j
LU

k
R (3.1)

invariant under the isometry group SU(3) × U(1) with H i
U , QiL and U iR transforming in the

fundamental.

In order to obtain the form of the leading operators which break the symmetry in the

Yukawa interactions, recall that the product of three fundamentals (H i
U , Q

i
L, U

i
R) decomposes

into irreducibles as

(1, 0)× (1, 0)× (1, 0)→ (0, 0)⊕ (1, 1)⊕ (1, 1)⊕ (3, 0) (3.2)

In section 2 we found that the metric fluctuations with the smallest scaling dimension which

break the SU(3) symmetry (flavons vevs) transform as (1, 1) and (2, 2). The operators which
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break the symmetry in the open string sector are gauge singlets that can be formed from the

product of the flavon vevs with the irreducible representations that appear in the decomposition

(3.2). Such singlets arise from the product 4

(1, 1)× (1, 1)→ (0, 0)⊕ (1, 1)⊕ (1, 1)⊕ (2, 2)⊕ (3, 0) (3.3)

Thus once the bulk modes are integrated out the leading symmetry breaking operators that

can arise in the open string sector are given by the (1,1)s in (3.2). These are

λ i
j = εjmnH

(i
UQ

m)
L UnR,

β i
j = εjmnH

m
U Q

n
LU

i
R −

1

3
δ i
j εmnpH

m
U Q

n
LU

p
R. (3.4)

The volume dependence of the strength of these operators is given by that of the flavon vev

(2.12), i.e. V−1/3. It will be interesting to perform the complimentary analysis of a CFT com-

putation involving three open string states and a bulk KK mode in the T 6/Z3 toriodal orbifold

and infer the pattern of symmetry breaking in the open string sector from the amplitude.

4 Discussion

Central to our analysis has been the assumption that at the asymptotic end of the cone all

terms in the expansion (1.1) are of equal magnitude. This assumption can be checked by

exploiting the progress in computing numerical metrics on Calabi-Yau manifolds [21, 22]. A

one parameter family of Ricci flat metrics on K3 was obtained in [21] by starting from the

orbifold T4/Z2, and resolving the singular points to a finite size two sphere. In the large

volume limit the local geometry near the resolutions is given by the Eguchi-Hanson geometry

with corrections associated with finite volume effects. The numerical metric provides a setting

in which one has explicit knowledge of the Fourier coefficients cI , can be used to check the

reliability of the assumptions on the size of the Fourier coefficients.

We have confined our attention to breaking of isometries as result of metric perturbations.

A compactification with moduli stabilisation is going to have other fields such as fluxes and a

non-trivial warp factor which can also lead to symmetry breaking. In the analysis of realistic

4The are no singlets in the tensor products (1, 1) × (3, 0), (2, 2) × (1, 1) and (2, 2) × (3, 0).
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models one has to include these effects. Each mode would have an associated SU(3) repre-

sentation. For instance the warp factor satisfies the scalar Laplacian equation in the extra

dimensions and transforms with SO(6) Dynkin label (l,0,0) . Furthermore, as was emphasised

in the context of brane inflation in [17], the leading physical effect can arise in second-order

perturbation theory. Reference [23] provides the back-reacted geometry of C3/Z3 with the

blow-up mode stabilised by gaugino condensation on D7-branes. The geometry has a SU(3)

isometry.

5 Conclusions

In this paper we have studied the symmetry breaking effects that arise as a result of compact-

ification in local models on C3/Z3. The “power-law filtering” of modes in cone-like geometries

combined with the requirement of gauge invariance under the flavon group allowed us to obtain

the strength and form of the leading operators responsible for the symmetry breaking. At large

volume we found a hierarchical separation in the breaking parameters for the SU(3) and U(1)

symmetries.

Although our focus has been on models on C3/Z3, the approach is quite general and should

be useful in understanding how symmetry breaking effects in the bulk are communicated to

the open string sector in local models. It will be interesting to carry out a similar analysis for

models on complex cones over del Pezzo surfaces 5 [3–6] and F-theory models [8, 9] and study

implications for flavour structure.
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Appendix

Decomposition of tensor harmonics on S5 under SU(3)×U(1)

As discussed in section 2 tensor harmonics on the the five sphere are labelled by a single

quantum number l(≥ 2), with the highest weight state having SO(6) Dynkin label (l− 2, 2, 2).

In this appendix we decompose the l = 2, 3 and 4 representations under SU(3)× U(1).

• l = 2

(0, 2, 2)→ (2, 0)−4 ⊕ (1, 0)−2 ⊕ (2, 1)−2⊕
(0, 0)0 ⊕ (1, 1)0 ⊕ (2, 2)0⊕
(1, 2)+2 ⊕ (0, 1)+2 ⊕ (0, 2)+4

• l = 3

(1, 2, 2)→ (2, 1)−5 ⊕ (1, 1)−3 ⊕ (3, 0)−3 ⊕ (2, 2)−3⊕
(0, 1)−1 ⊕ (2, 0)−1 ⊕ (1, 2)−1 ⊕ (3, 1)−1 ⊕ (2, 3)−1⊕
(3, 2)+1 ⊕ (1, 3)+1 ⊕ (2, 1)+1 ⊕ (0, 2)+1 ⊕ (1, 0)+1⊕
(2, 2)+3 ⊕ (0, 3)+3 ⊕ (1, 1)+3 ⊕ (1, 2)+5

• l = 4

(2, 2, 2)→ (2, 2)−6 ⊕ (1, 2)−4 ⊕ (3, 1)−4 ⊕ (2, 3)−4⊕
(0, 2)−2 ⊕ (2, 1)−2 ⊕ (1, 3)−2 ⊕ (4, 0)−2 ⊕ (3, 2)−2 ⊕ (2, 4)−2⊕
(0, 3)0 ⊕ (4, 1)0 ⊕ (1, 1)0 ⊕ (2, 2)0 ⊕ (3, 3)0 ⊕ (1, 4)0 ⊕ (3, 0)0⊕
(4, 2)+2 ⊕ (2, 3)+2 ⊕ (0, 4)+2 ⊕ (3, 1)+2 ⊕ (1, 2)+2 ⊕ (2, 0)+2⊕
(3, 2)4 ⊕ (1, 3)4 ⊕ (2, 1)4 ⊕ (2, 2)6
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