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Bitl (Bcl-2 inhibitor of transcription) is a mitochondrial pro-
tein that induces caspase-independent apoptosis upon its
release into the cytoplasm. Bitl is primarily associated with
anoikis (cell death induced by detachment from the extracellu-
lar matrix), because the apoptotic function of Bit1 is inhibited by
integrin-mediated cell attachment but not by many other anti-
apoptotic treatments. Here, we show that protein kinase D
(PKD) regulates Bitl apoptotic function. Overexpression of
constitutively active PKD or PKD activation by treatment with
phorbol 12-myristate 13-acetate results in phosphorylation of
two serine residues (Ser® and Ser®”) in a form of Bitl that is
confined to the cytoplasm and concomitantly increases the apo-
ptotic activity of cytoplasmic Bit1. Conversely, suppressing PKD
activity with pharmacological inhibitors or small interfering
RNA approaches attenuates apoptosis induced by cytoplasmic
Bitl. Furthermore, PKD regulates induction of cell death by
wild-type Bitl following loss of cell attachment to the extracel-
lular matrix. Activation of PKD enhances Bitl function in
anoikis, whereas inhibiting PKD function with pharmacological
inhibitors or small interfering RNA compromises the ability of
Bitl to induce anoikis. The induction of Bit1-mediated apopto-
sis by PKD is in part attributable to the release of Bitl from
mitochondria to the cytoplasm as a consequence of phosphoryl-
ation of Ser” in the mitochondrial localization sequence of Bit1.
Consistent with the regulatory role of PKD in the anoikis func-
tion of Bit1, we found that cell attachment to fibronectin inhib-
its PKD activity. These studies identify the PKD serine/threo-
nine kinase as one of the signaling molecules through which
integrin-mediated cell attachment controls Bitl activity and
anoikis.

The survival of adherent cells is highly dependent on sub-
strate attachment (anchorage dependence). Loss of attachment
causes cell death through an apoptosis process known as
anoikis (1). Malignant cells tend to be less dependent on attach-
ment to the extracellular matrix and more resistant to anoikis
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than normal cells. This anoikis resistance may enable tumor
cells to survive lack of attachment during invasion and metas-
tasis. The signals that prevent anoikis originate from integrin-
mediated attachment of cells to the extracellular matrix, and
some of the well known integrin signaling molecules, such as
focal adhesion kinase, have been shown to regulate anoikis (2,
3). Although the same signaling molecules are also controlled
by various growth factors, growth factors cannot substitute for
integrin-mediated attachment, suggesting that signaling path-
ways specific for integrins may exist.

Bitl (Bcl2-inhibitor of transcription 1) is a protein that
appears to be part of an integrin-specific signaling pathway (4).
Bitl is a 179-amino acid mitochondrial protein with a known
crystal structure (5). Upon loss of cell attachment, it is released
from the mitochondria into the cytosol and promotes apopto-
sis. Suppression of Bitl expression in tumor cells as well as in
normal cells significantly protects cells from detachment-in-
duced apoptosis, demonstrating a key role of Bitl in anoikis (4,
6, 7). Unlike other apoptotic pathways, Bitl-induced apoptosis
is uniquely controlled by integrin-mediated cell attachment.
Only integrin-mediated cell attachment counteracts apoptosis
induced by cytosolic Bit1, whereas various antiapoptotic signal-
ing molecules, such as Bcl-2, Bcl-xL, phosphatidylinositol 3-ki-
nase, and Akt, fail to do so. Cell attachment mediated by the
a5B1 and avB3 integrins, which are receptors for fibronectin or
vitronectin, is particularly effective in inhibiting the apoptotic
activity of cytoplasmic Bitl. Interestingly, Bitl-induced cell
death is independent of caspase activity but requires the pres-
ence of AES, a member of the Groucho/TLE family of transcrip-
tional regulators (4). We have also recently shown that Bit1 is a
negative regulator of Erk and provided evidence that the target
of Bit1 is an Erk phosphatase (6).

The signaling mechanisms through which integrins block the
apoptotic activity of Bit1 are completely unknown. In the work
reported here, we set out to explore the integrin regulation of
Bitl. We hypothesized that Bitl, like so many other intracellu-
lar molecules, might be regulated by phosphorylation. Indeed,
we found that the atypical protein kinase C, PKC® u or PKD,
phosphorylates Bitl and enhances Bitl apoptotic activity. We
also provide evidence that activation of PKD is regulated by
integrin-mediated cell attachment. These findings place PKD
in a pathway from integrins to Bitl and begin to delineate a
novel signaling pathway that appears to be important in anoikis.

3 The abbreviations used are: PKC, protein kinase C; PKD, protein kinase D;
PMA, phorbol 12-myristate 13-acetate; GFP, green fluorescent protein;
siRNA, small interfering RNA; HUVEC, human umbilical vascular endothe-
lial cell.

JOURNAL OF BIOLOGICAL CHEMISTRY 28029

0202 ‘9T AInc uo 1senb Aq /B1o0q [ mmwy/:dny wiouy papeojumod


http://www.jbc.org/
http://www.jbc.org/
http://www.jbc.org/

PKD Regulates Bit1

A pHE pH11 B _ C the phosphorylated Ser® residue.
+ =, Fibronectin Collagen R 3 . pe . .
50 T _ — e Phophospecific antibodies were
o Tbronectin I anti-myc i 1
37 J -=IE\: anti-phosphaserine . purlfled from crude rabbit serum by
P . IB: anti-myc i d ; sequential negative and positive
1 50— . . e . .
154 affinity purification with nonphos-
22 1 Somen G phorylated and phosphorylated
o8 _ 0= A L —Bitt peptide, respectively. Antibody
2 specificity was confirmed using pre-
L immune sera and blocking experi-
ments with the phosphorylated
Vector + - peptlde
i - +
e Cell Culture and Transfection
D E .. Assays—The experiments were
S5 PKD S87 PKD - ES carried out using HEK 293T cells,
H— ] unless otherwise stated. These
-— = 50 cells and HeLa and CHO cells were
557 Casein Kinage 1 Kl . , o
£ w] cultured in Dulbecco’s modified
N c g« Eagle’s medium with glutamine
TR PTHZ doimiain 20 _ - containing 10% fetal bovine
signal 1 . ﬂ D ’_‘ serum, penicillin, and streptomy-
] T T

Vector

FIGURE 1. Bit1 phosphorylation. A, HEK 293T cells plated onto dishes coated with either fibronectin or type |
collagen were transfected with N-terminally Myc-tagged Bit1, which is localized in the cytoplasm. Cell lysates
prepared 24 h after the transfection were separated on two-dimensional gels and immunoblotted with an
anti-Myc antibody. Bit1 from collagen-plated cells included a negatively charged species, indicating possible
partial phosphorylation. B, anti-Myc immunoprecipitates of lysates from cells plated on collagen show more
reactivity with anti-phosphoserine antibodies than lysates from cells plated on fibronectin. C, autoradiography
of N-terminally Myc-tagged Bit1 immunoprecipitated from transfected cells that were labeled with
[*2PJorthophosphate shows phosphorylation of Bit1. D, the Scansite 1.0 Motif Scan program (10) revealed four
potential phosphorylation sites in Bit1, whereas a more recent version of the program (Scansite 2.0) (14) yields
slightly different results. E, Bit1 amino acids 5, 48, 57, and 87 were each individually mutated to aspartic or
glutamic acid in the N-terminally Myc-tagged cytoplasmic version of Bit1, and the apoptotic activity of the
mutant proteins was assessed by annexin V staining and fluorescence-activated cell sorting analysis. IP, immu-

noprecipitation; /B, immunoblot.

EXPERIMENTAL PROCEDURES

Chemical Reagents, Antibodies, and Plasmids—Phorbol
12-myristate 13-acetate (PMA) and the mouse monoclonal
anti-green fluorescent protein (GFP) antibody (clone GFP-20)
were obtained from Sigma. The kinase inhibitors Go6976 and
Go06983 were purchased from Calbiochem. The anti-PKD poly-
clonal antibody was from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA). The anti-phospho-PKD (Ser”**7*® and Ser”*®) anti-
bodies were from Cell Signaling Technology (Beverly, MA).
Both antibodies have been used to monitor PKD activation (8,
9). The mouse anti-Myc and the rabbit anti-phosphoserine
antibodies were from Zymed Laboratories Inc. (South San
Francisco, CA). Dr. Franz-Josef Johannes (The Fraunhofer
Institute for Interfacial Engineering) provided mammalian
expression vectors encoding various GFP-tagged PKD iso-
forms, and GST-tagged PKD vectors were obtained from Dr.
Vivek Malhotra (Division of Biology, University of California
San Diego). Generation of N- and C-terminally Myc-tagged
Bitl constructs was described previously (4).

Generation of Bitl Phosphospecific Antibodies—Cocalico
Biological, Inc. (Reamstown, PA) generated antibodies against
the human Bitl serine 5 or serine 87-phosphorylated motifs
according to our specifications. Rabbits were immunized with
keyhole limpet hemocyanin-conjugated peptides with the
sequence CKVAAQCpSHAAVSAY containing the phospho-
rylated Ser®” residue and MPSKpSLVMEYLAHPSC containing
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cin. Human umbilical vascular
endothelial cells (HUVECs) were
purchased from Lonza (Walkers-
ville, MD) and maintained using the
EGM-2 bullet kit (Lonza). In some
experiments, cells were plated onto
non-tissue culture-treated plates
precoated with 10 wg/ml fibronec-
tin (Calbiochem) or type I collagen
(Sigma) in serum-free Dulbecco’s
modified Eagle’s medium. Suspen-
sion cultures were prepared by plat-
ing cells on dishes coated with polyHEMA (Sigma) and cultur-
ing in serum-containing medium. Transfections were carried
out with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s protocol 18 h after plating the cells. The total
amount of plasmid used per transfection was kept constant by
using empty vector DNA when necessary. For apoptotic and
cell viability assays, cells were harvested 48 h after transfection.

SiRNA Transfection for Knockdown of PKD—The PKD siRNA
SMARTpool, which consists of four individual siRNA, was used
to effectively knock down PKD, whereas the siControl nontar-
geting siRNA pool was used as a control. Both the PKD siRNA
SMARTpool and nontargeting siRNA pool were obtained from
Dharmacon (Lafayette, CO). For transient transfection experi-
ments, 293T or HUVECs (2 X 10°) were transfected with 100
pmol of each siRNA pool by using the Lipofectamine 2000
transfection reagent (Invitrogen). In HUVECsS, transfection
mixtures were left on the cells for 4 h and then replaced with
regular (EBM-2) medium. To express Bitl in cells with down-
regulated PKD, 1 day after control or PDK siRNA transfection,
the cells were further transfected with 2 ug of N- or C-termi-
nally Myc-tagged Bitl vector or empty vector as a control. The
cells were harvested 24 h later and analyzed by immunoblotting
and apoptosis assay.

Subcellular Fractionation—Subcellular fractionation was
performed as described previously (4). Briefly, HEK 293T cells
were washed twice in PBS, resuspended in isotonic mitochon-
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FIGURE 2. PKD knockdown attenuates Bit1 apoptotic activity. HEK 293T cells were transfected with control siRNA or with a mixture of PKD siRNAs and, 24 h
later, with N-terminally Myc-tagged Bit1 or the empty vector. Twenty-four hours after the second transfection, cells were harvested and subjected to immu-
noblotting with antibodies to PKD and Myc to confirm down-regulation of PKD and overexpression of Bit1 (A) or assayed for apoptosis using a cell death
enzyme-linked immunosorbent assay kit (B). The histogram shows means = S.E. from three independent experiments. C, Hela cells were pretreated with
various doses of PKC inhibitor Go6983 or Go6976 for 6 h and then transfected with either N-terminally Myc-tagged Bit1 or empty vector. At 24 h postransfec-
tion, apoptotic cells were quantified by cell death enzyme-linked immunosorbent assay. Three independent experiments were performed in triplicate, and the

data are expressed as means * S.E.; *, p < 0.05 versus untreated cells.

drial buffer (250 mm mannitol, 70 mm sucrose, 1 mm EDTA, 10
mMm HEPES, pH 7.5, containing protease inhibitors), and
homogenized in a Dounce homogenizer. The lysates were ini-
tially centrifuged at 500 X g for 10 min to remove nuclei and
unbroken cells. The resulting supernatant was further centri-
fuged at 10,000 X g for 30 min at 4 °C to isolate the mitochon-
drial enriched pellet, which was resuspended in isotonic mito-
chondrial buffer. Both the cytosolic supernatant and
mitochondrial fraction were subjected to SDS-PAGE electro-
phoresis and immunoblotting.

Analysis of Cell Viability and Apoptosis—Cell viability was
measured by trypan blue exclusion. Apoptosis was assessed by
determining the level of cytosolic nucleosomal fragments with
the cell death detection enzyme-linked immunosorbent assay kit
(Roche Applied Science), according to the manufacturer’s instruc-
tions. To measure cell death by anoikis, cells were plated in poly-
HEMA-coated 96-well plates in complete growth medium con-
taining 0.5% methylcellulose at a density of 1.0 X 10* cells/well for
48 h. The apoptotic activity of Bitl mutants was assessed by trans-
fecting each mutant in CHO cells and measuring apoptosis 24 h
later by annexin V staining and flow cytometry.

Protein Preparation, Immunoblotting, and Coimmunopre-
cipitation Assays—Protein preparation and immunoblotting
were performed as described previously (4). Briefly, cells were
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harvested 24— 48 h after transfection with various plasmids or
siRNAs by adding ice-cold Nonidet P-40 lysis buffer (1% Non-
idet P-40, 20 mm Tris-HCl, pH 7.4, 150 mm NaCl, 10% glycerol,
2 mm sodium vanadate, 1 mMm phenylmethylsulfonyl fluoride, 10
pg/ml leupeptin, and 5 ug/ml aprotinin) followed by a 20-min
incubation at 4 °C. For immunoblot analysis, equal amounts of
proteins were resolved on Tris-glycine gels (Invitrogen) and
electrophoretically transferred to nitrocellulose membrane.
The membranes were incubated with primary antibodies over-
night at 4 °C followed by secondary antibodies conjugated to
horseradish peroxidase. Membranes were developed using the
ECL detection system (Amersham Biosciences).

For coimmunoprecipiation assays, GFP-tagged PKD and
Myc-tagged Bitl expression plasmids were cotransfected into
293T cells. Twenty-four hours after transfection, the cells were
harvested in ice-cold Nonidet P-40 lysis buffer, and cell debris
was removed by centrifugation. Myc-tagged Bitl was immuno-
precipitated with anti-Myc-agarose conjugate (Abcam) and
thoroughly washed with lysis buffer. Bound proteins were
resolved by SDS-PAGE, and Western blotting was performed
using anti-Myc or anti-GFP antibodies.

In Vitro Kinase Assays—HEK 293T cells were transfected
with Myc-tagged cytoplasmic Bit1 construct or with empty vec-
tor as a control, and Myc-Bitl was isolated by immunoprecipi-
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FIGURE 3. PKD kinase activity augments Bit1-induced apoptosis in 293T cells. A, cells were cotransfected with expression vectors encoding N-terminally
Myc-tagged Bit1 and GFP-tagged versions of wild type (wt), constitutively active (APH), or catalytically inactive (KD) PKD. The extent of apoptosis was
determined 24 h later. B, constitutively active PKD-APH and various mutant forms of N-terminally Myc-tagged Bit1 (wild type, S5A/S87A, and S5E/S87E) were
cotransfected into cells, and apoptosis was measured 24 h later. C, cells were cultured with or without 10 ng/ml PMA, and activation of PKD was assessed at
various time points by immunoblotting with a phosphospecific antibody recognizing the phosphorylated serine 916 motif in the activation loop. The same
membrane was reprobed separately with an antibody against total PKD and B-actin. D, cells transfected with N-terminally Myc-tagged Bit1 or empty vector
were left untreated or treated with 10 ng/ml PMA for 20 h before measuring apoptosis. E, cells cotransfected with N-terminally Myc-tagged Bit1, and various
forms of PKD were left untreated or treated with 10 ng/ml PMA for 20 h before measuring apoptosis. F, cells were transfected with control or mixed PKD siRNAs
and, 24 h later, with N-terminally Myc-tagged Bit1 or empty vector. The cells were then incubated with or without 10 ng/ml PMA for 24 h.In A, B, D, E, and F,
experiments were performed in triplicate, and the histograms show means = S.E.

tation 24 h later. The immunoprecipitates were subjected to in
vitro kinase reactions in the presence or in the absence of
recombinant active PKD (Calbiochem) and kinase buffer con-
taining 0.1 mm ATP and 50 uCi of [y->*P]ATP for 30 min at
30 °C. An equal volume of 2X SDS-PAGE loading buffer was
added, and phosphorylated Bitl was resolved by SDS-PAGE
and visualized by autoradiography.

In Vivo *’P Labeling—HEK 293T cells were transiently trans-
fected with Myc-tagged Bitl, and 18 h later, the cells were
labeled with 5 mCi of [**P]orthophosphate and incubated at
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37 °C for 4 h. Following incubation, the cells were washed with
phosphate-buffered saline and then lysed in lysis buffer as
described above. Myc-Bit]l was immunoprecipitated with anti-
Myc-agarose conjugate, and immunoprecipitates were sub-
jected to SDS-PAGE. Incorporation of **P was visualized by
autoradiography.

Statistical Analysis—Data are presented as means = S.E. All
immunoblotting, in vitro kinase activity, and apoptosis assays
were performed at least twice with duplicate or triplicate sam-
ples in each experiment. Densitometric analysis was performed
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FIGURE 4. PKD associates with and phosphorylates Bit1. A, cells were cotransfected with expression vectors
encoding N-terminally Myc-tagged Bit1 and GFP-tagged PKD variants. Cell lysates were prepared 24 h later and
immunoprecipitated with anti-Myc or control rabbit IgG, and the immunoprecipitates were immunoblotted
with anti-GFP and anti-Myc antibodies. The input panels show the levels of the transfected proteins in the
original lysates. B, cells were transfected as in A, but immunoprecipitates were with anti-GFP antibodies and
immunoblots with anti-Myc antibodies. C, N-terminally Myc-tagged wild type Bit1 or Bit1S5A/S87A expressed
in HEK 293T cells were immunoprecipitated with an anti-Myc antibody. The immunoprecipitates were sub-
jected to an in vitro kinase assay in the presence or absence of recombinant active PKD, followed by SDS-PAGE
and autoradiography (top two panels) or immunoblotting with anti-Myc antibody (bottom panel). Constitu-
tively active PKD phosphorylates both itself (top panel) and wild type Bit1 (middle panel) but not Bit1S5A/S87A.
D, HEK 293T cells cotransfected with N-terminally c-Myc-tagged Bit1 and GFP-tagged PKD variants were
treated with 10 ng/ml PMA for 30 min or left untreated. Kinase assays (top panel) show that Myc-Bit1 immuno-
precipitated from the lysates is phosphorylated by wild type and constitutively active, but not kinase-dead,
PKD and that the activity of wild type PKD is PMA-dependent. Total Bit1 and PKD were detected by immuno-
blotting with anti-Myc and anti-GFP (bottom two panels). E, a phosphospecific antibody against the Ser®”-phos-
phorylated motif recognizes wild type Bit1, but not the Bit1S5A/S87A mutant, in HEK 293T cells cotransfected
with the Bit1 variants and constitutively active PKD. /P, immunoprecipitation; /B, immunoblot.

PKD Regulates Bit1

in cells plated on fibronectin (4). We
reasoned that if phosphorylation
was important for Bitl activity, Bitl
phosphorylation  should  differ
under these two conditions. Two-
dimensional gel analysis revealed a
Bitl component with lower isoelec-
tric point in cells plated on collagen
but not in cells plated on fibronec-
tin, suggesting that a portion of Bit1
was phosphorylated in cells plated
on collagen (Fig. 14). Consistent
with this result, we found that a
greater fraction of Bitl was reactive
with an anti-phosphoserine anti-
body when Bitl was immunopre-
cipitated from HEK 293T cells
plated on collagen than from cells
plated on fibronectin (Fig. 1B).
Moreover, Bitl isolated from cells
that had been transfected with cyto-
solic Bitl and labeled with 3P pro-
duced a radioactive band by autora-
diography (Fig. 1C). Collectively,
these findings indicate that Bitl can
be phosphorylated in cells and that
the degree of phosphorylation cor-
relates with its apoptotic activity.
We next searched for possible
phosphorylation sites in Bitl by
employing the Scansite 1.0 Motif
Scan program to predict phospho-
rylation sites for various kinases
(10). As shown in Fig. 1D, Bitl con-
tains three serine residues and one
threonine residue that are predicted
phosphorylation sites. The serine
residues at positions 5 and 87 are
putative PKD phosphorylation sites,
whereas serine 57 is a potential
phosphorylation site for casein
kinase 1, and threonine 48 is a
potential site for PKCe. To address
the importance of these phospho-
rylation sites in the apoptotic func-
tion of Bitl, we mutated each of

using Image J software. Data were analyzed for statistical signif-
icance using a paired Student’s ¢ test. A p value of <0.05 was
considered significant.

RESULTS

Regulation of Bitl Function by Phosphorylation—To begin
testing the hypothesis that Bitl might be subject to phospho-
rylation and that phosphorylation might regulate its apoptotic
potency, we made use of an earlier observation that Bit1 local-
ized in the cytoplasm (due to an N-terminal tag that interferes
with the mitochondrial localization signal of Bitl) exhibits a
more potent apoptotic activity in cells plated on collagen than

OCTOBER 17, 2008 +VOLUME 283 +NUMBER 42

them to negatively charged phosphomimetic amino acids
(aspartic acid or glutamic acid) and determined the effect on
Bitl activity (Fig. 1E). Introducing a negatively charged amino
acid at positions Ser® and Ser®” greatly increased the apoptotic
activity of Bitl, whereas mutating these two putative PKD
phosphorylation sites to a neutrally charged alanine did not
alter Bitl apoptotic function. Furthermore, mutation of serine
57 to aspartic acid or threonine 48 to glutamic acid also did not
change Bitl apoptotic activity. These results suggest that the
serine residues at positions 5 and 87 are functional phosphoryl-
ation sites in Bitl and that PKD may be the kinase that phos-
phorylates these sites.
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PKD Knockdown Attenuates and
PKD Activation Enhances Bitl
Apoptotic Activity—We knocked
down PKD expression in HEK 293T
cells by transfecting a mixture of
siRNAs (Fig. 24). Down-regulation
of PKD expression significantly
decreased Bitl-induced apoptosis
(Fig. 2B). Consistent with this result,
the PKC inhibitor Go6976, which
has a preferential inhibitory activity
against PKD, significantly attenu-
atedBit1l-inducedapoptosisinadose-
dependent manner in HelLa cells
(Fig. 2C). The more general PKC
inhibitor Go06983, which lacks
direct PKD inhibitory function,
failed to significantly alter Bit apo-
ptosis. These data indicate that PKD
potentiates Bitl apoptotic activity.
Indeed, transient cotransfection of
cells with the cytosolic form of Bitl
together with constitutively active
PKD greatly enhanced Bitl apopto-
tic activity compared with empty
vector control (p < 0.01). Wild type
and catalytically inactive PKD did
not significantly alter Bit1 apoptotic
function (Fig. 3A4). The effect of con-
stitutively active PKD on Bitl
appeared to require the presence of
Bitl serine residue 5 and/or 87,
since mutating both of these resi-
dues to alanine reduced the effect of
cotransfected, constitutively active
PKD (Fig. 3B). Furthermore, the
high apoptotic activity of Bitl con-
taining glutamic acid at positions 5
and 87 was not further enhanced by
active PKD. These results indicate
that PKD kinase activity is required
in order to regulate Bitl apoptotic
function and that serine residue 5
and/or 87 are targets for phospho-
rylation by PKD.

As an alternative approach to
activate PKD, we treated cells with
the PKC activator PMA (8, 11) and
monitored PKD activation by meas-
uring autophosphorylation at serine
916 (9). PMA induced a marked
increase in PKD activation (Fig. 3C)
and augmented Bitl-induced apop-
tosis (Fig. 3D). To determine
whether the PMA-mediated induc-
tion of Bitl apoptotic activity was
indeed mediated by PKD, cells were
cotransfected with cytosolic Bitl
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and various versions of PKD and subsequently treated with
PMA. PMA caused a significant increase in Bitl apoptotic
activity in the presence of transfected wild type PKD but had
much less effect on cells transfected with the constitutively
active or catalytically inactive variants (Fig. 3E). Thus, PMA-
mediated enhancement of Bitl-induced apoptosis is mostly
dependent on PKD catalytic activity. Indeed, down-regulat-
ing PKD with siRNAs significantly reduced PMA stimulation
of Bitl-dependent apoptosis (Fig. 3F). Taken together, these
results suggest a role for PKD in PMA-induced Bitl apopto-
sis and further indicate that PKD kinase activity is critical for
the ability of this kinase to regulate apoptosis induced by
Bitl.

PKD Interacts with and Phosphorylates Bitl—To further
explore the potential involvement of PKD in Bitl phosphoryl-
ation, we examined whether PKD associates with Bitl in cells.
Cytoplasmic Bitl was cotransfected with wild type, constitu-
tively active, or kinase-inactive PKD into HEK 293T cells, and
the association of PKD with Bitl was determined by co-immu-
noprecipitation. All three PKD variants were detected in Bitl
immunoprecipitates, with constitutively active PKD showing
the strongest association (Fig. 44). The preferential binding of
constitutively active PKD to Bitl was confirmed by the recipro-
cal immunoprecipitation of PKD, followed by immunoblotting
for Bit1 (Fig. 4B). The binding of kinase-inactive PKD to a PKD
substrate (histone deacetylase 5) has been observed before (12).

To determine whether PKD can directly phosphorylate Bit1,
in vitro kinase assays were performed with Bitl isolated from
transfected cells in the presence of recombinant active PKD.
Constitutively active PKD caused phosphorylation of wild type
Bitl but not of Bit1 in which serine residues 5 and 87 had been
mutated to alanine (Fig. 4C). Wild type and catalytically inac-
tive PKD showed little activity toward wild type Bitl (Fig. 4D),
but treating the cells with PMA enhanced Bit1 phosphorylation
by wild type PKD. PMA treatment further enhanced Bit1 phos-
phorylation by constitutively activated PKD, possibly due to the
presence of endogenous PKD in the immune complexes. In
contrast, catalytically inactive PKD failed to phosphorylate Bit1
even in the presence of PMA. We also assessed the ability of
PKD to phosphorylate Bitl by using antibodies that specifically
recognize Bitl phosphorylated at serine 5 or 87. The antibodies
against the Ser®” site, but not those against the Ser” site, recog-
nized Bitl that had been coexpressed with constitutively active
PKD (Fig. 4E) (data not shown). The N-terminal tag on Bitl

PKD Regulates Bit1

may have prevented Ser® phosphorylation or recognition of
Ser®-phosphorylated Bitl by the anti-phospho-Ser® antibody,
since this antibody did recognize C-terminally tagged Bit1 (see
Fig. 5J). Neither antibody recognized Bitl S5A/S87A. Collec-
tively, these data show that PKD is capable of phosphorylating
Bitl in vitro as well as in the cellular environment and that at
least Ser®” is a PKD phosphorylation site.

PKD Enhances the Cytosolic Localization and Anoikis Func-
tion of Bit1—W e also examined whether PKD may regulate Bit1
activity in anoikis. HEK 293T cells were transfected with C-ter-
minally Myc-tagged Bitl (Bit-Myc), which has a functional
mitochondrial localization signal and can therefore associate
with mitochondria (4), and placed it onto polyHEMA-coated
plates to induce anoikis. The PKC inhibitors Go6976 and
Go6983 both significantly inhibited anoikis in Bit1-transfected
as well as control-transfected HEK 293T cells (Fig. 5A). Fur-
thermore, PKD siRNAs impaired and constitutively active PKD
enhanced Bitl-dependent anoikis, whereas catalytically
inactive PKD had no effect (Fig. 5, B and C). One might have
expected inactive PKD to have a dominant negative effect on
anoikis, which was not the case. It may be that the amount of
Bit1 available to phosphorylation by PKD was not a limiting
factor, since Bitl was overexpressed. Alternatively or in
addition, the results shown in Fig. 4 suggest that inactive
PKD binds Bitl less avidly than activated PKD and thus may
be a poor competitor for endogenous active PKD. These
findings indicate that PKD regulates Bitl function in anoikis
through phosphorylation.

Negative charges in a mitochondrial localization signal can
reduce mitochondrial import efficiency (13). We speculated
that phosphorylation at the Ser” residue, which is within the
Bit1l mitochondrial localization signal, may enhance the release
of Bit1 into the cytosol and subsequent anoikis function of Bit1.
To address the potential role of the Ser” residue in Bit1 local-
ization, we mutated the Ser® residue of C-terminally GFP-
tagged Bitl (Bitl-GFP) to the negatively charged phosphomi-
metic aspartic acid or glutamic acid (Bit1S5D-GFP and
Bit1S5E-GFP) or to alanine (Bit1S5A-GFP). When transfected
into HEK 293T cells, both wild type Bit1-GFP and Bit1S5A-
GEFP were significantly enriched in the mitochondrial fraction
and barely detectable in the cytosolic fraction (Fig. 5D). In con-
trast, Bit1S5D-GFP and Bit1S5E-GFP were increased in the
cytosolic fraction, whereas their mitochondrial levels were
decreased. Consistent with their increased cytosolic localiza-

FIGURE 5. PKD regulates Bit1 anoikis function and the release of Bit1 into the cytosol 293T cells. A, cells transfected with C-terminally Myc-tagged Bit1
(Bit-Myc, which can localize to mitochondria) or with empty vector, were placed 24 h later onto polyHEMA-coated wells with or without the indicated PKC
inhibitors. Live cells were quantified 48 h later. B, cells were dually transfected with a mixture of PKD siRNAs or with control siRNA and 24 h later with
C-terminally Myc-tagged Bit1 or empty vector. The cells were then placed on polyHEMA 48 h later, and the extent of anoikis was determined another 48 h later.
G, cells were cotransfected with expression vectors encoding C-terminally Myc-tagged Bit1 and GFP-tagged PKD mutants. The cells were replated 24 h later
onto tissue culture plates (attached) or polyHEMA-coated plates to induce anoikis (detached), and cell death was measured 48 h later. D, HEK 293T cells were
transfected with various forms of C-terminally GFP-tagged Bit1 (Bit1-GFP). Cells were harvested 24 h later and subjected to subcellular fractionation, and the
resulting cytosolic and mitochondrial fractions were probed by immunoblotting with an anti-GFP antibody. The mitochondrial protein HSP 70 (mtHsp70) and
B-actin were used as mitochondrial and cytosolic marker, respectively. E, cells transfected with various forms of C-terminally GFP-tagged Bit1 were cultured on
polyHEMA-coated plates for 48 h, and cell death was quantified. *, p < 0.05, compared with cells transfected with wild type Bit1-GFP. F and G, HUVECs were
transfected with control or PKD siRNAs, and 24 h later, the cells were placed on polyHema, incubated for 12 h, and subjected to either subcellular fractionation
(F) or cell death enzyme-linked immunosorbent assay (G). In F, the mitochondrial, cytosolic, and total cell lysate fractions were separated by SDS-PAGE and
probed by immunoblotting against the indicated proteins. H, cells cotransfected with C-terminally Myc-tagged Bit1- and GFP-tagged PKD mutants were
cultured and analyzed as in D. | and J, the cytosolic fraction derived from H was subjected to immunoprecipitation with anti-Myc antibody followed by
immunoblotting with anti-Myc, anti-GFP, or phosphospecific antibodies to the Bit1 Ser>- or Ser®”-phosphorylated motifs (p-S5 and p-587). All experiments were
performed at least three times in triplicate, and the histograms show means = S.E. IP, immunoprecipitation; /B, immunoblot.
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We have previously identified
Bitl as a mitochondrial protein that

FN PH is released into the cytosol during

15

FIGURE 6. HEK 293 cells in suspension have enhanced PKD kinase activity. A, cells were aIIowed to remain
attached to fibronectin (FN) or resuspended and placed on polyHEMA (PH). PKD activation was determined by
immunoblotting with antibodies recognizing PKD phosphorylated at Ser®'® (pPKD) (A) and Ser”**7#8 (C). Total
PKD (tPKD) was determined from immunoblots of cell lysates, and the phospho-PKD/total PKD ratios were then
quantified by densitometry analysis of immunoblots (B and D). Data are expressed as means * S.E. from three

independent experiments.

tion, both Bit1S5D-GFP and Bit1S5E-GFP were more effective
at promoting anoikis than wild type Bit1-GFP or Bit1S5A-GFP
(Fig. 5E).

We also studied the effect of PKD on the accumulation of
cytosolic Bitl following loss of cell attachment. We used
HUVECSs in this experiment, because normal cells are more
sensitive to anoikis than tumor cells (1), and knockdown of Bit1
expression in HUVECs significantly protected cells from
anoikis (data not shown), as previously demonstrated in other
normal cell lines (4, 6, 7). Down-regulating PKD expression by
siRNA greatly reduced cytosolic concentration of endogenous
Bitl (Fig. 5F) and significantly increased resistance to anoikis
(Fig. 5G). No cytosolic Bitl was detected in attached HUVECs
(result not shown).

Cotransfecting catalytically active PKD with wild type Bit1-
GEFP increased the cytosolic levels of Bitl in HEK 293 cells (Fig.
5H). Furthermore, cytosolic Bitl and active PKD immunopre-
cipitated as a complex (Fig. 5I). In contrast, Bitl remained pri-
marily in the mitochondrial fraction following cotransfection
with vector or inactive PKD (Fig. 5H), and a complex of Bitl
with constitutively active PKD was not detected in the mito-
chondrial fraction (data not shown). Bitl in the cytosolic Bit1-
PKD complex was recognized by phosphospecific antibodies
against the phosphorylated Ser® and Ser®” sites (Fig. 5/). These
findings indicate that Bit1 phosphorylation at serine 5 and 87 by
PKD can lead to increased cytosolic sequestration and
enhanced activity of Bitl in anoikis. Phosphorylation of Ser®
may play a role in the release of Bitl into the cytosol.

Cell Attachment to Fibronectin Suppresses PKD Activation—
Cell attachment, particularly to fibronectin or vitronectin, sup-
presses Bitl-induced apoptosis (4). To investigate the role of
PKD in this regulatory event, we examined the level of PKD
Ser®'® and Ser”**7*® phosphorylation (activation) in HEK 293
cells plated on various substrates. Endogenous PKD in cells
adhering to fibronectin remained unphosphorylated. In con-
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M anoikis and that is uniquely regu-
lated by integrin-mediated attach-
ment (4). Unlike other known
anoikis effectors, Bitl induces a
form of caspase-independent apop-
totic cell death that is uniquely
counteracted by integrin-mediated
cell attachment. We have recently shown that one of the down-
stream effectors of Bitl is the Erk mitogen-activated protein
kinase pathway. Mouse embryo fibroblasts from Bitl knock-
out mice and cultured cells in which Bitl had been down-reg-
ulated by siRNA interference exhibited enhanced Erk activa-
tion. These findings indicate that Bitl negatively regulates the
Erk mitogen-activated protein kinase survival pathway (6).
Intriguingly, the Scansite 2.0 Motif Scan program (14) identifies
an Erk binding site in Bit1. Although the increased resistance to
anoikis observed in mouse embryo fibroblasts lacking Bit1l and
in Bitl knockdown cells has been in part attributed to increased
Erk activation (6), the upstream regulators of Bitl apoptotic
function have not been identified.

In this study, we show that the serine/threonine kinase PKD
acts as an upstream activating kinase that regulates the function
of Bitl in anoikis by phosphorylating the Ser® and Ser®” resi-
dues. Consistent with PKD acting upstream of Bitl, we found
that overexpression of constitutively active PKD promotes Bit1
phosphorylation and enhances Bitl apoptotic function,
whereas Bitl lacking the Ser® and Ser®” phosphorylation sites
(Bit1S5A/S87A) is unresponsive to the stimulatory effect of
active PKD. Furthermore, inhibition of PKD with pharmaco-
logical inhibitors or by siRNA interference attenuated the apo-
ptotic activity of Bitl. Taken together, our findings indicate a
critical role for PKD in regulating Bit1 apoptotic function.

Based on our current data, PKD may enhance Bit1 apoptotic
function via two mechanisms. First, phosphorylation of Bitl
following its release from mitochondria upon loss of substrate
attachment may increase the apoptotic function of Bitl. This
mechanism is supported by our findings demonstrating that
active PKD phosphorylates N-terminally tagged Bit1l (which is
exclusively cytosolic) and enhances its apoptotic function. Sec-
ond, PKD may also enhance Bitl anoikis activity by reducing
the mitochondrial localization of Bitl and increasing its release
into the cytosol. Indeed, knocking down PKD in detached
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HUVEC:s decreased cytosolic Bitl concentration and increased
resistance to cell death.

One of the two PKD phosphorylation sites in Bit1 is the Ser®
residue, which is located within the mitochondrial localization
sequence. Consistent with the notion that negative charges in a
mitochondrial localization signal impair mitochondrial associ-
ation, mutating the Ser® residue to phosphomimetic amino
acids enhanced the cytosolic localization and apoptotic poten-
tial of Bitl. Furthermore, coexpression of active PKD with
C-terminally tagged Bitl (whose mitochondrial localization is
normally regulated) resulted in enhanced cytosolic localization
of Bitl. Both of these mechanisms may contribute to the PKD-
mediated induction of Bitl apoptotic function.

In various in vitro systems, PKD has been shown to be acti-
vated through PKC-dependent phosphorylation of its activa-
tion loop (8, 9). Here, we report that stimulation of PKC signal-
ing by treatment of cells with PMA, a general PKC activator,
results in an increased phosphorylation of PKD that coincides
with robust Bitl apoptotic activity. The PMA-stimulated Bit1l
activity is in part mediated through PKD, as shown by overex-
pressing as well as inhibiting PKD. These data indicate that
PKC-dependent regulation of PKD activation results in Bitl
phosphorylation and induction of apoptosis. Consistent with
a possible role of PKC upstream of PKD, PKCa activation has
been previously shown to play a critical role in promoting
anoikis in gastric cancer cells, and inhibition of PKCa by in-
tegrin-dependent pathways may be critical in suppressing
anoikis (15). It is also noteworthy that the phosphorylation sta-
tus of PKCs, including the novel PKC 6 and €, has been shown to
be regulated by integrins (16).

Interestingly, Bitl function was dramatically inhibited by the
direct PKD inhibitor Go6976 but was not significantly attenu-
ated by the general PKC inhibitor Go6983. This suggests that
PKC-independent pathways may also contribute to PKD acti-
vation upstream of Bitl. Indeed, PKD can be activated by direct
binding of the B7 subunits of heterotrimeric G proteins to its
pleckstrin homology domain (17). Furthermore, tyrosine phos-
phorylation of the pleckstrin homology domain of PKD by the
Abl kinase precedes PKD phosphorylation by PKCé in response
to oxidative stress (18). PKD activation in cellular processes,
such as endothelin-induced HDACS5 nuclear export (12) and
osteoblastic cell differentiation (19), has also been attributed to
PKC-independent mechanisms.

A unique characteristic of Bitl is that attachment of cells to
fibronectin or vitronectin through the a581 and avf3 inte-
grins, but not many other potent antiapoptotic factors, can
effectively counteract apoptosis induced by cytoplasmic Bitl
(4). The data presented here indicate that attachment to
fibronectin may inhibit Bit1 apoptotic function at least in part
by attenuating PKD activation. We found that cells attached to
fibronectin exhibit low basal PKD phosphorylation and are less
responsive to PMA-induced PKD phosphorylation (data not
shown). Moreover, loss of attachment to fibronectin leads to
enhanced PKD phosphorylation. The suppression of PKD acti-
vation by cell attachment to fibronectin raises the possibility
that integrin-mediated signals may confer anchorage-depend-
ent survival at least in part by inhibiting PKD activation.
Although the precise mechanisms used by integrins to regulate
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PKD activation are not known, it is conceivable that integrin-
mediated attachment may activate a phosphatase, contributing
to the accumulation of dephosphorylated PKD species. Indeed,
cell matrix regulation of the phosphorylation status of PKCe
has been attributed in part to a dephosphorylation process (20).

Anoikis is a form of apoptosis induced in epithelial cells fol-
lowing disruption of cellular interaction with extracellular
matrix proteins. Integrin-mediated attachment abrogates
anoikis primarily by generating antiapoptotic signals in host
cells. In particular, integrin-mediated signals may lead to acti-
vation of focal adhesion kinase (2) and phosphatidylinositol
3-kinase (21), both of which confer survival signals from the
extracellular matrix. In the present study, we show that loss of
anchorage increases PKD activation and that activated PKD
phosphorylates Bitl and potentiates Bitl apoptotic function.
These findings reveal a novel function of PKD as a modulator of
anoikis.
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