
A l g o r i t h m s  f o r  t h e
S o l u t i o n  o f  t h e  Q u a d r a t i c

P r o g r a m m i n g  P r o b l e m

Martina Vankova

Submitted in partial fulfilment 
of the requirements for the degree of 

MAGISTER SCIENTIAE
in the Faculty of Science at the 

University of Port Elizabeth 

January 2004

Supervisor: Prof. G. de Kock



Acknowledgments

I would like to thank my supervisor Professor Gideon de Kock for his support, the many

hours spent in the reading of this dissertation and the many valuable suggestions for

improvements that were made. 

I would also like to thank the Department of Computer Science and Information Systems

for enabling me to conduct this research.

Further, I wish to thank Professor John Gonsalves for his assistance, encouragement and

guidance for the duration of this dissertation and for his time spent proofreading the

dissertation.  

Finally to Deon Viljoen, I would like to express my gratitude for his assistance with the

implementation of the algorithms and proofreading of the dissertation.

 i



Table of  Contents
SUMMARY........................................................................................................................................v

LIST OF FIGURES...........................................................................................................................vi

LIST OF TABLES............................................................................................................................vii

CHAPTER 1 

Introduction.......................................................................................................................1
1.1 Overview.......................................................................................................................1
1.2 Aims and Objectives.....................................................................................................3
1.3 Layout...........................................................................................................................3

CHAPTER 2 

Optimization......................................................................................................................5
2.1 Introduction...................................................................................................................5
2.2 The General Optimization Problem..............................................................................5
2.3 Unconstrained Optimization ........................................................................................8

2.3.1 Maximum and Minimum for Functions of One Variable.....................................................8

2.3.2 Convexity/Concavity for Functions of One Variable.........................................................12

2.3.3 Maxima and Minima for Functions of n Independent Variables.......................................13

2.3.4 Convex and Non-convex Sets..........................................................................................16

2.3.5 Convexity/Concavity for Functions of n Variables............................................................16

2.4 Solving Unconstrained Optimization Problems..........................................................19
2.5 Constrained Optimization...........................................................................................22

2.5.1 Equality Constraints – Lagrange Multipliers.....................................................................22

2.5.2 Inequality Constraints - Kuhn-Tucker Conditions............................................................24

2.5.3 Convexity and Concavity..................................................................................................26

2.5.4 Non-convex Objective Function.......................................................................................27

2.6 Classification of a Constrained Optimization Problem...............................................28
2.6.1 Linear Programming.........................................................................................................29

2.6.2 Non-Linear Programming.................................................................................................30

2.6.3 Quadratic Programming...................................................................................................30

2.7 Summary....................................................................................................................33

 ii



CHAPTER 3 

Algorithms for the Convex Quadratic Programming Problem...................................34
3.1 Introduction.................................................................................................................34
3.2 Active Set Methods – The Simplex Method................................................................35

3.2.1 Wolfe's Algorithm..............................................................................................................36

3.2.1.1 Dantzig's Algorithm..................................................................................................53

3.2.1.2 Other Simplex Method Variants...............................................................................58

3.2.2 Beale's Algorithm..............................................................................................................58

3.2.3 Theil-Van de Panne Procedure........................................................................................70

3.2.4 Other Active Set Methods................................................................................................77

3.3 Ellipsoid Methods.......................................................................................................77
3.4 Interior Point Methods................................................................................................78

3.4.1 Path Following Algorithm..................................................................................................80

3.5 Summary....................................................................................................................89

CHAPTER 4 

General Quadratic Minimization Algorithms................................................................91
4.1 Introduction.................................................................................................................91
4.2 Fixed Charge Problem................................................................................................92
4.3 Beale's Algorithm........................................................................................................94
4.4 Keller's Algorithm........................................................................................................97
4.5 Interior Point Method................................................................................................104
4.6 Summary..................................................................................................................105

CHAPTER 5 

General Non-linear Programming Algorithms...........................................................107
5.1 Introduction...............................................................................................................107
5.2 Gradient Methods ....................................................................................................108

5.2.1 Zoutendijk's Method of Feasible Directions...................................................................111

5.2.2 Gradient Method Variations...........................................................................................112

5.3 Cutting Plane Methods.............................................................................................113
5.4 Other Methods..........................................................................................................115
5.5 Summary..................................................................................................................116

 iii



CHAPTER 6 

Evaluation.....................................................................................................................118
6.1 Introduction...............................................................................................................118
6.2 Comparison of Algorithms........................................................................................118

6.2.1 Theoretical Comparison of Selected Algorithms............................................................120

6.2.2 Quantitative Evaluation..................................................................................................123

6.3 Available Software....................................................................................................127
6.4 Summary..................................................................................................................128

CHAPTER 7 

Summary and Future Research..................................................................................130
7.1 Introduction...............................................................................................................130
7.2 Summary of Research..............................................................................................130
7.3 Future Research.......................................................................................................135

BIBLIOGRAPHY............................................................................................................137

APPENDIX A  141
A.1 Taylor's Theorem.....................................................................................................141
A.2 Newton's Method......................................................................................................142

APPENDIX B   144
B.1 Simplex Algorithm....................................................................................................144
B.2 Two Phase Simplex Method....................................................................................148
B.3 Perturbation Technique............................................................................................150
B.4 Dantzig's Algorithm – Example 2.............................................................................152
B.5 Basic Theorem.........................................................................................................153
B.6 Theil-Van de Panne - Example 2.............................................................................155

APPENDIX C 158
C.1 Test Examples.........................................................................................................158

 iv



Summary

The purpose of this dissertation was to provide a review of the theory of Optimization, in

particular quadratic programming, and the algorithms suitable for solving both convex and

non-convex quadratic programming problems. Optimization problems arise in a wide

variety of fields and many can be effectively modeled with linear equations. However, there

are problems for which linear models are not sufficient thus creating a need for non-linear

systems. 

This dissertation includes a literature study of the formal theory necessary for

understanding optimization and an investigation of the algorithms available for solving a

special class of the non-linear programming problem, namely the quadratic programming

problem. It was not the intention of this dissertation to discuss all possible algorithms for

solving the quadratic programming problem, therefore certain algorithms for convex and

non-convex quadratic programming problems were selected for a detailed discussion in the

dissertation. Some of the algorithms were selected arbitrarily, because limited information

was available comparing the efficiency of the various algorithms. Algorithms available for

solving general non-linear programming problems were also included and briefly discussed

as they can be used to solve quadratic programming problems. A number of algorithms

were then selected for evaluation, depending on the frequency of use in practice and the

availability of software implementing these algorithms. The evaluation included a

theoretical and quantitative comparison of the algorithms. The quantitative results were

analyzed and discussed and it was shown that the results supported the theoretical

comparison. It was also shown that it is difficult to conclude that one algorithm is better

than another as the efficiency of an algorithm greatly depends on the size of the problem,

the complexity of an algorithm and many other implementation issues.

Optimization problems arise continuously in a wide range of fields and thus create the need

for effective methods of solving them. This dissertation provides the fundamental theory

necessary for the understanding of optimization problems, with particular reference to

quadratic programming problems and the algorithms that solve such problems. 

Keywords: Quadratic Programming, Quadratic Programming Algorithms, Optimization,

Non-linear Programming, Convex, Non-convex.

 v



List of Figures
Figure 2.1 Classification of Optimization............................................................................8
Figure 2.2 Local and global maximum and minimum and an inflection point...................10

Figure 2.3 (a) A minimum point at p (b) A maximum point at p........................................11
Figure 2.4 Convex function relative to secant and tangent lines......................................12
Figure 2.5 (a) and (b) Convex Sets and (c) and (d) Non-convex Sets.............................16
Figure 2.6 Constrained local and global maximum/minimum and an inflection point.......18
Figure 2.7 Convex objective function...............................................................................27
Figure 2.8 Non-convex objective function........................................................................28
Figure 3.1 Contours of a convex objective function of a minimization problem...............34
Figure 3.2 Ellipsoid method..............................................................................................78
Figure 3.3 Central path of the solution for the path following algorithm...........................85
Figure 4.1 Contours of a non-convex objective function..................................................91
Figure 5.1 Non-linear programming problem..................................................................107
Figure 5.2 Linear inequalities containing a non-linear feasible region...........................113

 vi



List of Tables
Table 2.1 Characterization of Local Maxima and Minima for f(x) at p .............................11

Table 2.2 Characteristics of Local Maxima and Minima for f (x1,...,xn) at p......................15
Table 3.1 Initial Simplex Tableau.....................................................................................39
Table 6.1 The comparison of iterations for different methods........................................125

 vii



Chapter 1 

Introduction

1.1 Overview

Throughout human history, man has always strived to master his physical environment by

making the best use of his available resources. These resources are however limited and

the optimal use thereof poses potentially difficult problems. Problems of finding the best or

worst situation arise constantly in daily life in a wide variety of fields that include science,

engineering, economy and management. The theory of optimization attempts to find these

solutions. 

The theory and application of optimization is sometimes referred to as mathematical

programming. Here the term programming does not refer to computer programming, but

rather the allocation or composition of limited resources, although computers are

extensively and in fact usually used to solve these problems. Programming problems deal

with optimal allocation of limited resources such as equipment, raw materials and labor to

the manufacture of one or more products. Therefore the aim is to allocate these resources

in such a way that the products meet their given specifications, while at the same time

maximizing some profit or minimizing cost. 

To understand the concept of optimization problems, consider the case of a farmer who

wants to plant a variety crops. His production is however limited by many factors. Amongst

some of these are the availability of land, labor and water. After the crops have been

harvested, they will be transported to different markets for sale. This give rise to the

following questions: How much of each crop should he grow in order to make a maximum

profit? What is the cheapest way of delivering the goods to a number of destinations?

Another example is to find the shape of a string, which is anchored at its ends along a

given straight line and encloses the most area between itself and the line. This is often

called Dido's problem, originating in the 18th century BC, named after a Phoenician

princess Dido of Tyre, who according to the legend founded the city of Carthage in North

Chapter 1 Introduction 1



Africa. She fled to Africa after her brother murdered her husband and appropriated her

fortune. There she persuaded a local chief to sell her as much land as an ox hide could

contain. She then cut the hide into thin strips and tied them together to make a cord 4km

long. She laid the cord down in a semicircle with the ends touching the coast. This turns out

to enclose the largest possible area and is considered as the original optimization problem.

There are many such problems arising in a wide range of fields. These can vary in size,

from problems similar to the farmers crops involving few decision criteria to very large

problems involving thousands of factors, for example, chemical reactions. Enormous efforts

have been made to describe these complex human and social situations with mathematical

expressions. 

Initially only relatively simple problems, usually expressed using linear equations, were

modeled. The evolution of mathematics and physics allowed for more complex, but also

more accurately formulated problems to be modeled using non-linear equations. This

together with the development of highly efficient algorithms and the vast increase in

computational power [Sas1999] allows for large and complex problems to be solved more

easily than in the past. In addition to solving large scale problems modern computers allow

for the simulation and visualization of these problems. Some specific examples of

optimization include [Win1995]:

 Police patrol officer scheduling in San Francisco (linear programming), saved $11

million per year;

 Reducing fuels costs in the electricity power industry (dynamic programming), saved

over $125 million in costs;

 Petrol blending (non-linear programming), saves $30 million per year;

 Scheduling trucks (dynamic programming), reduced costs by $2.5 million per year;

 Maximize the expected return of several investments while at the same time

minimizing risk (quadratic programming);

 Minimize the power loss in an electrical networks while satisfying the conservation of

flow (quadratic programming); and

 Optimization problems can also be found in modeling of digital circuits, chemical

reactions, power flow, population ecology, heartbeat and nerve impulses, crop

production, food mix problems etc. 

Chapter 1 Introduction 2



1.2 Aims and Objectives

The aims of this dissertation are as follows:

 Provide a concise review of the theory of Optimization with particular reference to

quadratic programming;

 Review the algorithms suitable for solving both the convex and non-convex quadratic

programming problems;

 Collect software applications for solving quadratic programming problems;

 Select a number of the algorithms to compare and discuss their efficiency in solving a

variety of test problems, using the collected software; and

 Show how the fixed charge problem, often associated with integer programming can

be expressed as a non-convex quadratic programming problem.  

The theory of optimization provides a powerful framework for formulating the general

optimization problem. This dissertation is however, concerned with algorithms for solving

quadratic programming problems and comparison of these algorithms, rather than to show

how quadratic programming problems are formulated. 

1.3 Layout

Chapter 2 explores the key concepts which form part of the basic knowledge necessary for

the rest of the dissertation. The general optimization problem and its classification are

presented in mathematical context. The conditions for optimality, the identification of local

and global optimum points, the convexity of the objective function and the Kuhn-Tucker

conditions are described, with particular reference to the quadratic programming problem.

In Chapter 3 a selection of algorithms for solving the quadratic programming problem

specifically concerned with a convex objective function are discussed. Examples are

provided throughout the chapter to aid in the understanding of the algorithms. 

Chapter 4 deals with algorithms for solving non-convex quadratic programming problems. It

will be shown that these algorithms do not necessarily produce a global optimum. As in

Chapter 3 examples are used in the explanation of the algorithms. Chapter 4 will also

Chapter 1 Introduction 3



introduce an important non-convex quadratic programming problem called the fixed charge

problem.

Chapter 5 gives a brief overview of a selection algorithms for solving the general non-linear

programing problem. These algorithms can be used to solve the more restrictive case of

the non-linear problem, more specifically the quadratic programming problem which is the

reason for introducing these algorithms. 

Chapter 6 will provide a comparison of selected algorithms by providing some theoretic

comparisons of algorithms and quantitative comparison using numerical examples to

compare these algorithms for efficiency. In this chapter a brief description of software

available for solving quadratic programming problems will also be provided.

Chapter 7 will present a summary of the research and the conclusions that have arisen

during the research and provide some recommendations for future research.

Chapter 1 Introduction 4



Chapter 2 

Optimization

2.1 Introduction

Optimization is the process whereby we seek to find the best or optimal value of a function,

usually subject to certain constraints or restrictions. The function with it's restrictions is a

mathematical optimization model that represents certain aspects of the physical

environment [Ars2003]. Optimization models are used extensively in many areas of

decision making and are the cornerstone of most optimization studies. There are many

methods available with which optimization problems may be solved. However, not all

optimization problems can be solved efficiently with all the methods. The methods are

appropriate for only certain types of problems, each designed to account for specific

mathematical properties of the model. It is thus important to be able to identify the

characteristics of a problem in order to find the correct solution method.

The next section studies the criteria that facilitate the identification of optimal points and

presents optimization in a mathematical context. It provides the background for

understanding the remainder of this dissertation.

2.2 The General Optimization Problem

In order to provide a framework for discussing optimization problems, this section

introduces the general definition of the problem. In general the optimization problem is

formulated as a function f of n variables x=(x1 , ... , xn ) ' written as

(2.2.1) f ( x)= f (x1 , ... , xn ) .

This function f (x1 , ... , xn ) is referred to as the objective function and the variables

x=(x1 , ... , xn ) ' are called decision variables [Win1995]. To find the optimum of the

objective function means to determine the values of the n variables, such that, the function

f is either minimized or maximized.

Chapter 2 Optimization 5



In order to restrict the scope of a problem, the variables x1 , ... , xn are usually restricted in

some way, for example they may be forced to be non-negative or may not exceed a given

value. These restrictions are represented in the form of equations known as constraint

equations or constraints. They are denoted by g and are functions of the n variables. The

constraint equations can be defined as follows:

g1(x1 , ... , xn ){≤,=,≥} b1

(2.2.2) g2(x1 , ... , xn ){≤,=,≥} b2

 
g p (x1 , ... , xn ){≤,=,≥} bp

where the bi , i=1,2, ... , p are assumed to be known constants. Often the constraints are

simple functions, for example the non-negativity constraints

x j≥0, j=1,... , n .

Optimization problems can be classified as either discrete or continuous. In discrete

optimization problems, some or all of the variables have integral values at the optimal

solution. Continuous optimization requires the functions in the problem to be continuous,

with possibly continuous derivatives. This means that the solution value of each of the n
variables can be any real number [Lue1973]. 

Continuous optimization can further be classified as constrained and unconstrained

optimization. An unconstrained optimization problem is one whose objective is to maximize

or minimize the function f ( x), without regard to any of the constraints (2.2.2). A

constrained optimization problem attempts to minimize or maximize the objective function

f ( x)and requires that the constraints (2.2.2) are satisfied in order to obtain the optimum,

that the objective is to solve the following problem.

(2.2.3)

        Minimize / Maximize f (x1 , ... , xn )
        Subject to g1(x1 , ... , xn ){≤,=,≥} b1

g2(x1 , ... , xn ){≤,=,≥} b2

    
gm (x1 , ... , xn ){≤,=,≥} bm

The constrained problem (2.2.3) is referred to as the Mathematical Programming Problem. 

An important concept associated with mathematical programming is the feasible region,

which is defined as follows:

Chapter 2 Optimization 6



Definition 2.1 Feasible region:
The set of all points, denoted by F, satisfying all the constraints is called the feasible set

or feasible region [Win1995].
F={ x | gi (x){≤,=,≥} bi , i=1,2, ... , p}

Given the above information, an optimal solution for the mathematical programming

problem (2.2.3) is a point in the feasible region with the smallest objective function value for

minimization and the largest objective function value for maximization.

The most commonly used approach for solving constrained problems is formulating (2.2.3)

as a linear programming problem [CS1970]. Here the objective function and all the

constraints are linear functions of the decision variables. A non-linear programming

problem is a generalization of a linear programing problem, where the objective function

and/or any of the constraints are non linear. Linear programming problems are usually

relatively simple to solve, even if they are large. However, finding the solution for many

non-linear problems is still very difficult in spite of the large amount of research being

conducted in this field.

As with linear programming problems, non-linear programming problems require that the

variables must be non-negative, that is, the non-negativity constraints must be included as

part of the constraints in (2.2.3). The mathematical programming problem is then written

with the non-negativity constraints written explicitly (with p=mn) as

(2.2.4)

        Minimize / Maximize f (x1 , ... , xn )
        Subject to g1(x1 , ... , xn ){≤,=,≥} b1

g2(x1 , ... , xn ){≤,=,≥} b2

    
gm (x1 , ... , xn ){≤,=,≥} bm

x j≥0, j=1,... , n .

A particularly well studied non-linear programming problem is Quadratic programming, in

which the objective function is quadratic with all the constraints in terms of linear functions.

In fact the main focus of this dissertation is the study of quadratic programming problems

and the algorithms used for solving such problems. There are other types of constrained

optimization problems that have not been mentioned here, however these will not be

discussed in this dissertation. Figure 2.1 illustrates a graphical representation of the

Chapter 2 Optimization 7



classification of optimization problems with particular focus on linear and quadratic

programming.

Optimization

Discrete
(Integer Programming)Continuous

ConstrainedUnconstrained

Linear
Programming

Quadratic
Programming Other

Figure 2.1 Classification of Optimization

Although this dissertation focuses on the quadratic programming problems, both linear

programming problems as well as unconstrained optimization problems will be discussed

as they provide a basis for the methods to be discussed in the later chapters. The next

section will discuss some basic mathematical concepts that are required in order to solve

such problems and serves as a reference to the rest of the dissertation.

2.3 Unconstrained Optimization 

This section characterizes the conditions that must be satisfied in order to find a solution to

the unconstrained optimization problem and introduces the important concepts of

convex/concave functions, which are necessary for the development of the optimization

theory. 

2.3.1 Maximum and Minimum for Functions of One Variable

One can distinguish between two kinds of extreme points, namely local and global optimal

point [Lue1973].

Chapter 2 Optimization 8



Definition 2.2 Local Minimum (Relative Minimum):
Let f be a real-valued function, then f has a local minimum at the point p∈ if there

exists a δ>0 such that f (x)≥ f ( p) for all x∈ such that |x p|<δ  . 

Similarly p is local maximum if f (x)≤ f ( p) for all x sufficiently near p . 

For differentiable functions in  the following result is obtained 

Theorem 2.1
If f is differentiable at p and is defined on  containing the point p and if f ( p) is either

a local minimum or a local maximum of f , then f ' ( p)=0  [BF1993].

Thus the equation f ' ( p)=0 is a necessary condition for f ( p) to be a local minimum or

maximum, provided that f is differentiable. This is however not a sufficient condition as it is

possible for f ' ( p)=0 at a point which is neither a local minimum nor a local maximum.

Such a point is called a point of inflection or a saddle point and is illustrated in Figure 2.2 as

the point x5. The points p for which f ' ( p)=0 are called stationary points, that is, local and

global minimum and maximum points and points of inflection are stationary points.

Definition 2.3 Global Minimum (Absolute Minimum): 
Let f be a real-valued function with domain D, then f ( p) is called a global or absolute

minimum value of f over D, provided that f ( p)≤ f (x) for all x∈D. Thus f ( p) is the

smallest value  of f on D [Mil2000].

The following theorem states that the global minimum and maximum values of a

continuous function f is at some stationary point of f .

Theorem 2.2 Extreme Value Theorem 
Suppose that f ( p) is the global minimum (or global maximum) value of the continuous

function f , then p is a stationary point of f  [BF1993].

To understand these ideas consider the Figure 2.2.

Chapter 2 Optimization 9



x1 x2 x3 x4 x5 x6 x7 x8

Figure 2.2 Local and global maximum/minimum and an inflection point

The function has a local minimum, a maximum or an inflection point at a point where the

tangent to the function at that point is parallel to x-axis, which means that the derivative

there is zero. Since the derivative is zero at xi (i = 1,2,3,4,5,6,7,8 in Figure 2.2), all these

points are stationary points. A zero-valued derivative is a necessary condition for a

maximum or a minimum point in the range - ∞  to + ∞.

Figure 2.2 represents a function with more than one stationary point. Assuming it has no

stationary points other than shown in the figure, then the function has a local maximum at

x1, x3, x6 and x8. There is a local minimum at x2, x4 and x7. The point x5 represents a point of

inflection.

Three methods can be used to distinguish maxima, minima and points of inflection.

Consider two points p+= p and p-= p for any small >0 , that is, points that are

slightly to the right and to the left of p respectively, as shown in Figure 2.3.

Chapter 2 Optimization 10



p p+p- p p+p-

(a) (b)

Figure 2.3 (a) A minimum point at p (b) A maximum point at p

By making reference to Figure 2.3 the three methods of distinguishing minimum, maximum

and inflection points are:

1. Determine f ( p+) and f ( p-). If f ( p)≤ f ( p) and f ( p)≤ f ( p-) , then p represents

a local minimum point. If f ( p)≥ f ( p+) and f ( p)≥ f ( p-) , then p represents a local

maximum point. Otherwise it is a point of inflection.

2. Determine f' ( p+) and f' ( p-) . If f' ( p+)>0 and f' ( p-)<0 then p is a local minimum

(or maximum if the signs are reversed). If the signs are both the same then p is an

inflection point.

3. A third approach of determining a stationary point requires the evaluation of the

second derivative. Determine f'' ( p+) and f'' ( p-) . If f'' ( p+)>0 and f'' ( p-)>0 then p
represents a local minimum. If f'' ( p+)<0 and f'' ( p-)<0 then p represents a local

maximum. If the signs are different for f'' ( p+) and f'' ( p-) , then p is an inflection

point.

This result can be derived from Taylor's Theorem [Mil2000] and is provided in Appendix

A.1. Table 2.1 summarizes the necessary and the sufficient conditions for maxima and

minima for f (x) . The next section will introduce the concepts of convex and non-convex

sets.

Table 2.1 Characterization of Local Maxima and Minima for f(x) at p 

Local Maximum Local Minimum
First order necessary condition f'(p) = 0 f'(p) = 0

Second order necessary condition f''(p) ≤ 0 f''(p) ≥ 0

Sufficient condition f'(p) = 0 and  f''(p) < 0 f'(p) = 0 and  f''(p) > 0

Chapter 2 Optimization 11



2.3.2 Convexity/Concavity for Functions of One Variable

Convexity/concavity of f (x) is a description of its shape. The knowledge of the

convexity/concavity of functions is essential in solving many of the non-linear programming

problems. The convexity/concavity of a function can be identified using secant or tangent

lines. Consider the function f (x) to be a function of one variable as shown in Figure 2.4.

The function is convex if it lies below any secant line or above any tangent line as is the

case with Figure 2.4. Conversely a function is concave if it lies above any secant line or

below any tangent line [Mil2000].

Tangent line

Secant line

f(x)

f(x1)
f(x2)

a bx1 x2

[αx2 + (1 - α)x1]

A
B

Y

X

Figure 2.4 Convex function relative to secant and tangent lines

Figure 2.4 shows a convex function over the interval [a, b] (the interval [a, b] does not

represent any restrictions on f (x)). Clearly the function lies above the tangent line in the

interval [a, b] and is therefore convex. At the points x1 and x2 the function takes on the

values f (x1) and f (x2) respectively. The secant to the function between x1 and x2 is the

line α f (x2)(1α) f (x1) for all α in [0,1]. As shown in the Figure A= f (α x2(1α) x1)

and B=α f (x2)(1α) f (x1) . Clearly the function f (x) is convex on the interval [x1 , x2]

and on [a, b] if A≤B for any x1 , x2∈[a , b].

Definition 2.4 Convex set:
A set of points S is a convex set if the line segment joining any pair of points in S is

wholly contained in S  [Win1995].

Chapter 2 Optimization 12



Definition 2.5 Convex function:
A function f (x), defined on a convex set S, is said to be convex if for every α such that

0≤α≤1 and for every pair of points x1 , x2∈S
f (α x2(1α) x1)≤α f (x2)(1α) f (x1) [Mil2000].

The definition of concavity follows similarly with the inequality reversed. 

The second order derivative can also be used to determine if a function is convex/concave.

The following theorem gives the second order sufficient condition for convexity/concavity.

Theorem 2.3 Test for convexity/concavity of a function f (x): [Win1995]
Suppose that the function f (x) is twice differentiable for all x in a convex set S, then

(a) If f '' (x)>0 on S , the function f (x) is convex over S.

(b) If f '' (x)<0 on S , the function f (x) is concave over S.

The following theorem states the importance of convex/concave functions.

Theorem 2.4 
If f (x) is a convex function over a convex set S , then any local minimum of f (x) in S is

also the global minimum of f (x) over S [CS1970].

Similarly it follows that if f (x) is a concave function then any local maximum of f (x) is also

the global maximum of f (x) over S.

2.3.3 Maxima and Minima for Functions of n Independent Variables

The previous results can now be generalized for a real-valued function of n variables on the

domain U⊆n . In future we shall use the standard notation where bold, lower case letter

(e.g. x) refers to a vector of n variables, a bold, uppercase letter (e.g. A) refers to a matrix

and the transpose of a matrix is indicated by prime (e.g. A' ).

Definition 2.6 
Let f: U⊆n →, then p∈U is a local minimum of f in U, if there is a neighborhood

V (ε)={x:|x p|<ε , ε>0, x∈U } of p such that f ( x)≥ f ( p) for all points x∈V (ε) for a

sufficiently small ε  [Mil2000].

Similarly p is a local maximum if f ( x)≤ f ( p) for all points x∈V (ε) . The following theorem

can be used to identify the stationary points.

Chapter 2 Optimization 13



Theorem 2.5 

Let f: U⊆n → be differentiable. If p∈U is a local minimum, then
∂ f
∂x j

( p)=0,

j=1, ... , n , (that is, p is a stationary point of f ) [Mil2000].

Once again this theorem has only identified necessary conditions for extreme points, but as

these conditions are also satisfied by inflection or saddle points we refer to these points as

stationary points. 

Consider now the second order derivative for a function of n variables. 

Definition 2.7 Hessian Matrix [Mil2000]
The Hessian (H )  of f ( x) is the n x n  matrix

H=[ ∂2 f
∂xi∂x j].

A concept that plays an important role in the theory of optimization is the quadratic form,

more specifically the sign of the form. It plays an important role in distinguishing maxima

from minima using classical derivative based techniques. 

A quadratic form in the n scalar variables x1 , x2 , ... , xn is an expression of the form:

(2.3.1)

f (x1 , ... , xn )=q11 x1
22 q1 2 x1 x22 q1 3 x1 x3...2 q1 n x1 xn ...

                  ...q2 2 x2
22 q2 3 x2 x3...2 q2 n x2 xn ...

                  ...q3 3 x3
22 q3 4 x3 x4...2 q3 n x3 xn ...

                  ......qn n xn
2

This expression can be made symmetric by setting qi j=q j i for i> j so that

(2.3.2)

f (x1 , ... , xn )=(q11 x1q1 2 x2...q1 n xn ) x1

                   (q21 x1q2 2 x2...q2 n xn ) x2

                    
                   (qn 1 x1qn 2 x2...qn n xn ) xn

Defining a symmetric n x n matrix Q=(qi j) then the equation (2.3.2) can be expressed in

matrix form as

(2.3.3) f ( x)=x ' Q x=∑
i=1

n

∑
j=1

n

qi j xi x j .

The following definitions are associated with quadratic forms [KKO1966]

Definition 2.8 Positive Definite:

If x ' Q x>0 for all non-zero vectors x in n, then the matrix Q is called positive definite.

Chapter 2 Optimization 14



Definition 2.9 Negative Definite:

If x ' Q x<0 for all non-zero vectors x in n, then the matrix Q is called negative

definite.

Definition 2.10 Positive Semi-definite: 

If x ' Q x≥0 for all vectors x in n, then the matrix Q is called positive semi-definite.

Definition 2.11 Negative Semi-definite: 

If x ' Q x≤0 for all vectors x in n, then the matrix Q is called negative semi-definite.

If the matrix Q cannot be classified as either definite or semi-definite it is called

indefinite [Mil2000].

The next theorem establishes the sufficiency conditions for p to be an extreme point.

Theorem 2.6 [Tah1997]
A sufficient condition for a stationary point p to be a local extremum is for the Hessian

matrix H, evaluated at p, to be

(i) positive definite when p is a local minimum point

(ii) negative definite when p is a local maximum point

The rules for stationary points of a function on n variables are summarized in Table 2.2 with

the following notation ∇ f=( ∂ f
∂x j), j=1, ... , n.

Table 2.2 Characteristics of Local Maxima and Minima for f (x1,...,xn) at p

Local Maximum Local Minimum

First order necessary condition ∇ f ( p)=0 ∇ f ( p)=0
Second order necessary condition H be negative semi-definite H be positive semi-definite

Sufficient condition ∇ f ( p)=0  and

H be negative definite

∇ f ( p)=0  and

H be positive definite

Chapter 2 Optimization 15



2.3.4 Convex and Non-convex Sets

Definition 2.12 Convex Set:

The set S⊆n is said to be convex if and only if for all x1 , x2∈S
α x1(1α) x2∈S

and α∈[0,1] [Mil2000].

In other words, a set of points is a convex set if the line segment joining any pair of points

in the set, is completely contained in the set. For example, nand {x : A x≤b} are convex

sets with A a n-element row vector. Figure 2.5 illustrates some examples of convex and

non-convex sets of two variables.

x1 x2 x1 x2

x1 x2

x1 x2

(a) (b)

(d)(c)

Figure 2.5 (a) and (b) Convex Sets and (c) and (d) Non-convex Sets

2.3.5 Convexity/Concavity for Functions of n Variables

The concept of convexity/concavity of a function of one variable f (x) as described in

Section 2.3.2 can be extended for a function f (x) of n variables. Instead of secant lines

and tangent lines the terminology of secant hyperplanes and tangent hyperplanes is used.

A definition of convex function f (x) now follows as

Definition 2.13 Convex function: 

A function f ( x) is a convex on a convex set S of points x=(x1 , ... , xn ) if for every α in

[0,1] and every pair of points x1 , x2∈S

f (α x2(1α) x1)≤α f ( x2)(1α) f ( x1) [Mil2000].

The definition of a concave function follows similarly with the inequality reversed.

Chapter 2 Optimization 16



It can be shown [BSS1993] that the Hessian matrix can be used to determine whether the

function f (x) is convex or concave. The following definitions are useful and are taken from

Winston [Win1995]:

Definition 2.14 
An i th principal minor of an n x n matrix is the determinant of any i x i matrix obtained by

deleting ni rows and the corresponding ni columns of the matrix.

Definition 2.15 
An k th leading principal minor of an n x n matrix is the determinant of the k x k matrix

obtained by deleting the last nk rows and columns of the matrix.

The following theorem now shows that the Hessian matrix can be used to determine

whether f (x) is convex or concave.

Theorem 2.7 
 (i)Suppose that f (x) has continuous second order partial derivatives for each point

x=(x1 , ... , xn )∈S . Then f ( x) is a convex function on S if and only if for each x∈S ,

all principal minors of H are non-negative.

(ii) The function f (x) is concave on S if and only if for each x∈S and k=1,2, ... , n , all

non-zero principal minors have the same sign as (1)k .

The following paragraphs extend some of the definitions and theorems that were

introduced earlier when discussing unconstrained optimization problems for constrained

problems. Denote by S the set of all points x satisfying the constraints of problem (2.2.3),

that is, points that lie in the feasible region F .

Definition 2.16 Local Minimum (Relative Minimum):
The function f ( x) is said to have a local minimum over a closed set S at the point p , if

p∈S and there exists an ε>0 such that for every x≠ p in an ε neighborhood of p for

which x∈S , f ( x)≥ f ( p)  [Lue1973].

Chapter 2 Optimization 17



Definition 2.17 Global Minimum (Absolute Minimum):

The function f ( x) is said to take on a global minimum over a closed set S⊆n , at the

point p∈S if for all x∈S , f ( x)≥ f ( p)  [Lue1973].

Both of these definitions can be stated similarly for maximization with the inequality

reversed, that is, f ( x)≤ f ( p).

Figure 2.6 extends Figure 2.2 over the closed interval.

Figure 2.6 Constrained local and global maximum and minimum and an inflection point

In Figure 2.6 the function has a local maximum at x1 and x2, a local minimum at x3 and the

points x4 and x5 represent a point of inflection. If the interval is a closed interval, then the

endpoints of the interval also represent local optimum points. However, the derivative of f
at the endpoints is not necessarily zero [Mil2000].

Earlier the concept of convex/concave sets and functions was introduced. The following

theorem illustrates the importance of these concepts.

Chapter 2 Optimization 18



Theorem 2.8
Consider the non-linear programming problem (2.2.3) expressed as a function of the

decision variables x=(x1 , x2 , ... , xn ) ' . Suppose that the feasible region F is a convex

set. If f ( x) is convex on F , then any local minimum is an optimal solution to the non-

linear programming problem [Win1995].

A similar conclusion can be stated about a maximization problem with a concave objective

function f (x).

The next section will briefly introduce some techniques necessary for solving the

unconstrained optimization problems.

2.4 Solving Unconstrained Optimization Problems

An unconstrained problem is a problem of the form (2.2.1) which is maximized or

minimized without any constraints imposed on the variables x. Unconstrained problems

seldom arise in practical applications, however they do provide a good introduction towards

the understanding of constrained problems for two reasons. Firstly, the scope of a

constrained problem may be widened so that the constraints imposed on the problem may

vanish, thus making it an unconstrained problem. Secondly, constrained problems can in

some cases be easily converted to unconstrained problems [Lue1973]. The underlying

theory of unconstrained problems also provides the basis for devising many non-linear

programming algorithms.

For a function of one variable the first order condition f ' (x) can be used to identify

optimum points as f ' (x)=0 identifies local optimum points. For a linear function of more

than one variable the first order condition requires the solution of a system of equations

∇ f ( x) .

In general however, these equations will not be linear. In this case second order conditions

can be used to distinguish minimum points, maximum points or points of inflection. There

are other methods for finding minima and maxima of functions, that may or may not use the

Chapter 2 Optimization 19



first and second order conditions. These methods are called iterative methods also known

as search methods [Mil2000].

The iterative methods determine the solution through a series of estimates where each

successive estimate is usually but not always better than the previous one. The iterative

methods consist of three components:

1. A set of initial estimates for the unknown variables x0 .

2. An algorithm for finding the next value, xk1 from the current value xk , where

k=0,1, ... , n .

3. A rule for deciding when the current estimate xk is close enough to the exact

(unknown) solution.  

Some examples of iterative methods for finding the optimum for functions of a single

variable include [Mil2000]:

 Simultaneous methods: The first step is to select an interval over which to search,

for example [a , b] . This interval is then subdivided into smaller intervals, which could

either be equally spaced or randomly selected depending on the technique used. The

value of the function is evaluated at each of the intermediate points, which then

provides information about the shape of the function. On the basis of the information

a new interval is selected and again subdivided into smaller intervals or the

procedure stops;

 Sequential methods: In these methods the choice of the evaluation points is made

sequentially. Each new choice for a variable is based on the information provided

from the previous step;

 Curve Fitting algorithms: These methods approximate the function by a series of

increasingly accurate curves like parabolas, cubic or higher order polynomials; and

 Combined Techniques: Often the best approach to find an optimum is to use a

combination of the techniques introduced above. For example, begin with sequential

method and then, at some point when the search interval is small, switch to a curve

fitting method, when it can be safely assumed that a function has a particular shape.

Chapter 2 Optimization 20



Some of the methods for finding the optimum for a function of multiple variables are as

follows:

 Gradient methods: The general idea is to generate successive points, starting from

a given initial point, in the direction of the greatest decrease (minimization) of the

function. Start with some initial point x0. Define ∇ f (xk ) as the gradient of f at the

point xk and r k defines the step size which is determined such that xk1 results in the

largest improvement. The result is achieved by computing successive points

xk1=xkr k ∇ f (xk ). The procedure is stopped when ∇ f (xk )=0 [CS1970]. This

is however only a necessary condition unless it is known that the function is convex;

 Newton's method: The method starts with some initial approximation x0 . The next

approximation xn is the x-intercept of the tangent line to the function f at the point

where xn1 and the function f intersect. The procedure is terminated with xp as the

solution when xpxp1 [BF1993];

 Conjugate Gradient Methods: The idea of the method is to obtain successive

direction vectors by evaluating the current negative gradient vector and adding it to

the linear combination of the previous direction vectors to obtain a new conjugate

direction along which to move. Begin with some initial point x0
0=(x1

0 , ... , xn
0 ) ' and an

initial set of directions given by D0={D1
0 , ... , Dn

0 }={I 1 , ... , I n }. Find the minimum along

I 1 direction to the next minimum point labeled x1
0 . Then using the new value of x1

0

and the old values of x2
0 , ... , xn

0 find the minimum in the I 2 direction and call the new

point x2
0. Continue this way along each I i direction until the point xn

0 is located.

Calculate the direction [I iI 0] then a search is done along this direction to get the

next starting location at x0
1 for the next set of n line minimizations. Construct the new

search direction D1 to calculate the next set of points. Continue in this way to

construct direction Dk with new set of points x0
k . The procedure continues until the

gradient at some point becomes sufficiently small [Mil2000];

 Sequential Univariate Search: In these methods the arguments for which f ( x) is

evaluated cannot be known in advance. Instead the sequence of argument values

depends on the previously observed values of f ( x). The idea is to change one

variable at a time so that the function is minimized in each direction. Begin by

choosing an initial point x0=(x1
0 , ... , xn

0 ) '. The next point x1 is obtained by performing

minimization with respect to x1
0, that is, x1=x0α1 e1 where e1=(1,0, ... ,0) ' and α1 is

a scalar such that f ( x0α1 e1) is minimized. The general step to find the point xk1

Chapter 2 Optimization 21



is completed by performing a minimization with respect to the variable xk
0, that is,

xk1=xkαk1 ek1 for k=0,1, ... , n1 such that f (xkαk1 ek1) is minimized.

The procedure continues in this alternating sequence until a point xp is found such

that xpxp1 [Mil2000].

The unconstrained optimization problem will not be discussed further, however some of the

algorithms that will be discussed in Chapter 5 may also be used to solve unconstrained

problems.

2.5 Constrained Optimization

This section deals with mathematical programming problems of the form (2.2.3). These

problems are called constrained optimization problems because the objective is to find the

optimum for f ( x) while satisfying the constraints (2.2.2). This is an important class of

problems as most real world optimization problems are, in fact, constrained

problems [CS1970]. The conditions for optimality for constrained problems will now be

presented in some detail. It is important to note that for this section and the remainder of

this dissertation only minimization problems will be considered. It is a simple procedure to

convert a minimization problem to a maximization problem and vice versa. Simply multiply

the objective function of a minimization problem by -1 converts it into a maximization

problem and vice versa.

In this section the necessary conditions are derived, which x must satisfy if f (x) takes on a

local minimum at x subject to g (x)≤b and x≥0.

2.5.1 Equality Constraints – Lagrange Multipliers

Lagrangian multipliers can be used to solve non-linear programming in which all the

constraints are equality constraints. Equality constraints are equations of the form
gi (x1 , ... , xn )=bi , i=1, ... , p .

The concept of Lagrangian multipliers is introduced here as it is used in numerous sections

of this dissertation [Win1995]. 

Chapter 2 Optimization 22



Consider the problem

(2.5.1)
                             Minimize f ( x)

Subject to gi (x)=bi i=1, ... , m

The method of Lagrange multipliers gives a set of necessary conditions to identify optimal

points of equality constrained optimization problems. To solve (2.5.1) multipliers λi are

associated with the ith constraint in (2.5.1) and form the Lagrangian function

(2.5.2) L(x1 , ... , xn ,λ1 , ... ,λm)= f (x1 , ... , xn )∑
i=1

m

λi (bigi (x1 , ... , xn )) .

We now attempt to find a point ( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m) that minimizes L(x1 , ... , xn ,λ1 , ... ,λm) .

Since (2.5.1) is a minimization problem, if ( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m ) minimizes L ( x ,λ) then at

the point ( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m)
∂L
∂λi

=bigi ( x̃)=0

this shows that x̃=( x̃1 , ... , x̃n ) will satisfy the constraints in (2.5.1). To show that ( x̃1 , ... , x̃n )

solves (2.5.1), let ( x̂1 , ... , x̂n ) be any point that is in the feasible region of (2.5.1). Since (

x̃1 , ... , x̃n , λ̃1 , ... , λ̃m) minimizes L ( x ,λ) for any numbers (λ̂1 , ... , λ̂n )

(2.5.3) L( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m)≤L( x̂1 , ... , x̂n , λ̂1 , ... , λ̂n ) .

Since ( x̃1 , ... , x̃n ) and ( x̂1 , ... , x̂n ) are both feasible in (2.5.1), the terms in (2.5.2) involving

λ ' s are all zero and (2.5.3) becomes L( x̃1 , ... , x̃n )≤L( x̂1 , ... , x̂n ). Thus, ( x̃1 , ... , x̃n )

solves (2.5.1). If( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m)  solves the unconstrained minimization problem
(2.5.4) Minimize L ( x ,λ)

then ( x̃1 , ... , x̃n ) solves (2.5.1). For ( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m) to solve (2.5.4) it is necessary that

at ( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m) ,

(2.5.5)
∂L
∂x1

=...= ∂L
∂xn

=0 and
∂L
∂λ1

=...= ∂L
∂λm

=0.

Thus if f ( x) is a convex function and each gi (x) is a linear function, then any point

( x̃1 , ... , x̃n , λ̃1 , ... , λ̃m) that satisfies (2.5.5) will give an optimal solution ( x̃1 , ... , x̃n ) to (2.5.1).

Using the Lagrange multipliers allows systems of equations to be solved without having to

rewrite some variables in terms of others and it is unnecessary to take account of the fact

that the variables may not all be independent.

Chapter 2 Optimization 23



2.5.2 Inequality Constraints - Kuhn-Tucker Conditions

In this section Kuhn-Tucker conditions also known as the Karush-Kuhn-Tucker conditions

will be investigated. The Kuhn-Tucker conditions, is a set of necessary and sufficient

conditions for identifying stationary points of a non-linear programming problem subject to

inequality constraints [CS1970]. The development of the Kuhn-Tucker conditions is based

on the Lagrange multiplier method [Tah1997] described earlier. 

Consider the minimization problem of the form

(2.5.6)

                            Minimize   f (x)
Subject to gi (x)≤bi i=1,... , m  

                                               x j≥0 j=1,... , n

Any inequalities can be converted to equalities by the addition of either non-negative slack

or surplus variables as follows. The inequalities
gi (x)≤bi for i = 1 , ... , q

can be written as 
gi ( x)xni=bi xni≥0 for i = 1 , ... , q

where xni is referred to as a slack variable. Similarly the inequalities
gi (x)≥bi for i = q+1 , ... , r

can be written as
gi ( x)xni=bi xni≥0 for i = q+1 , ... , r

where xni is called a surplus variable [CS1970]. The addition of the slack or surplus

variables does not in any way change the set of possible solutions to the original problem.

To obtain the Kuhn-Tucker conditions the inequality constraints in (2.5.6) are first converted

to equalities by adding the slack variables si
2 (≥0) and t j

2 (≥0) as follows

(2.5.7)

                         Minimize  f ( x)
Subject to gi (x)si

2=bi i=1, ... , m  
                                                x jt j

2=0 j=1, ... , n.

Let s=(s1 , s2 , ... , sm) ' and t=( t1 , t2 , ... , tn ) '. Associating multipliers µ=(µ1 , ... ,µn ) ' with the

non-negativity constraints the Lagrangian function becomes

Chapter 2 Optimization 24



(2.5.8) L( x ,λ , s ,µ , t)= f ( x)∑
i=1

m

λi (bigi ( x)si
2)∑

j=1

n

µ j (x jt j
2) .

The first order conditions require ∇ L ( x ,λ , s ,µ , t)=0 . Taking the partial derivative of L
with respect to x ,λ , s ,µ and t, the Kuhn-Tucker conditions necessary for x ,λ and µ to be

a stationary point of the minimization problem can be summarized as follows.

(2.5.9) ∂L
∂ x

=
∂ f (x)
∂x j

∑
i=1

m

λi
∂gi (x)
∂x j

µ j=0 j=1, ... , n

(2.5.10)
∂L
∂λ

=(bigi (x)si
2)=0 i=1,2, ... , m

(2.5.11)
∂L
∂ s

=2λi s i=0 i=1,2, ... , m

(2.5.12)
∂L
∂µ

=(x jt j
2)=0 j=1,2, ... , n

(2.5.13)
∂L
∂ t

=2µ j t j=0 j=1,2, ... , n

From equation (2.5.11) λi s i=0, that is either λi=0 or si=0 or both. From equation (2.5.10)

if λi>0 then si=0 and it follows that gi (x)=bi. If λi=0 then |si|≥0 and it follows that

gi (x)≤bi. Therefore from (2.5.10) and (2.5.11) λi (bigi (x))=0 and gi (x)≤bi.

From equation (2.5.13) µ j t j=0, that is either µ j=0 or t j=0 or both. From equation (2.5.12)

if µ j>0 then t j=0 and it follows that x j=0. If µ j=0 then |t j|≥0 and it follows that x j≥0.

Therefore from (2.5.12) and (2.5.13) µ j x j=0 and x j≥0.

For a minimization problem the Kuhn-Tucker conditions can now be summarized as

follows.

(2.5.14)

∂ f ( x)
∂ x j

∑
i=1

m

λi
∂gi ( x)
∂ x j

µ j=0 j=1, ... , n

                                       λi [bigi (x)]=0 i=1, ... , m
                                                   gi (x)≤bi

                                                     µ j x j=0  
                                                  x ,λ ,µ≥0.

For a maximization problem the equation ∂ f ( x)
∂ x j

∑
i=1

m

λi
∂gi ( x)
∂ x j

µ j=0 becomes:

∂ f ( x)
∂ x j

∑
i=1

m

λi
∂gi ( x)
∂ x j

µ j=0

Chapter 2 Optimization 25



The following is an example of The Kuhn-Tucker conditions applied to a quadratic

minimization problem.

Minimize f ( x) = x1
2x2

2x3
2

Subject to g1 ( x) = 2 x1x2≤5
                    g2 ( x) = x1x3≤2
                    g3 ( x) =x1≤1
                    g4 ( x) =x2≤2
                    g5( x) =x3≤0
                     x≥0

Applying the Kuhn-Tucker conditions.
2 x12λ1λ2λ3µ1=0

2 x2λ1λ4µ2=0
       2 x3λ2λ5µ3=0

λ1 (5(2 x1x2))=0
λ2 (2(x1x3))=0

λ3 (1x1)=0
λ4(2x2)=0

                               λ5 (x3)=0
 2 x1x2≤5

x1x3≤2
µ1 x1=0
µ2 x2=0
µ3 x3=0

x1 , x2 , x3≥0  

µ1 ,µ2 ,µ3≥0
λ1 ,λ2 ,λ3 ,λ4 ,λ5≥0 [Tah1997].

2.5.3 Convexity and Concavity

As explained earlier (Sections 2.3.2 and 2.3.5) knowing if the function is convex/concave

establishes the fact that there is only one global minimum/maximum point. For a

constrained problem it needs to be determined whether the objective function is convex

and if the set of constraints defines a convex set.

Chapter 2 Optimization 26



Figure 2.7 illustrates the concept of convexity for a minimization problem with linear

constraints and a non-linear convex objective function. The objective function is

represented using contour lines. The minimum of the objective function is at the point x0 .

At the point xF the problem has a local minimum point while satisfying the constraints. It is

obvious from the figure that xF is also the global minimum point.

1 2 3 4 5 6

1

2

3

4

7

x0

Feasible Region

xF

increasing
value of f(x)

x2

x1

Figure 2.7 Convex objective function

Chapter 3 will discuss in detail some algorithms available for solving a convex optimization

problem.

2.5.4 Non-convex Objective Function

In a problem which has a non-convex objective function the solution to the optimization

problem may result in local optimal solutions which have a different value than the global

optimal solution [BR2001]. In Figure 2.8, the points x0 and x1 are both unconstrained local

minimum points of the objective function. Each local minimal solution has a different

objective function value. The points xF 1 and xF 2 are both local minimum points that satisfy

the constraints. It is now possible that either xF 1 or xF 2 or both of these points are global

minimum points. In the figure xF 1 represents the global minimum point.

Chapter 2 Optimization 27



1 2 3 4 5 6

1

2

3

4

7

x0

Feasible Region

xF1

increasing
value of f(x)5

x1

xF2

increasing
value of f(x)

x1

x2

Figure 2.8 Non-convex objective function

Clearly minimization/maximization problems with a convex/concave objective function are

considerably easier to solve than problems for which it is not known if the function is

convex/concave. 

Non-convex problems are difficult to solve and often a global minimum cannot be found,

which makes convex problems much more desirable. Algorithm attempting to find the

global minimum for non-convex problems must have the ability to distinguish between

points which satisfy the minimality conditions, but are local minimum points are points

which are the global minimal solutions [BR2001]. Often the algorithms can only obtain the

local minimum point, however any improvement is usually better than none at all.

2.6 Classification of a Constrained Optimization Problem

The general mathematical programming problem has been discussed in Section 2.2.

Various programming problems have been classified according to the type of the objective

function and constraints. This section introduces a selection of optimization problems

required in the discussion of the algorithms considered in the following chapters.

Chapter 2 Optimization 28



2.6.1 Linear Programming

A Linear Programming Problem is one where both the objective function and the

constraints are linear functions of the decision variables. Linear programming is the most

common way of formulating a vast number of mathematical programming problems. It was

introduced during the 1940s in the United States in response to problems arising during

World War II. In 1947 George Dantzig developed an efficient method for solving linear

programming problems now known as the Simplex Method, which initiated widespread

research into the development of new and more sophisticated algorithms. Due to the

growth of more accurate and efficient algorithms, linear programming has proved valuable

for modeling many and diverse types of problems in planning, routing, assignment, and

design. Industries that make use of linear programming and its extensions include

transportation, telecommunications, and manufacturing of many kinds [Fou2001].

Many real world problems can be represented very efficiently using linear programming.

Formulating a problem using a linear model is often much easier than a non-linear model.

Even if the objective function is not entirely linear, it is often possible to approximate it by a

linear function. Thus, due to its simplicity linear programming if often selected above more

complex forms. Mathematically a linear programming problem is represented by

Minimize f ( x)=c1 x1c2 x2...cn xn=c ' x
Subject to  a11 x1a12 x2...a1n xn=b1

a21 x1a22 x2...a2n xn=b2

 = 
am1 x1am2 x2...amn xn=bm

                     x1 , x2 , ... , xn≥0

and can be written using matrix notation as
Minimize f ( x)=c ' x

                                    Subject to A x=b
               x≥0 .

where A is an m x n matrix, b an m element column vector and c and x being n element

column vectors. 

There are however, still many situations for which linear models are inadequate. Problems

like these are modeled using non-linear equations as will be described in the Section 2.6.2

and 2.6.3.

Chapter 2 Optimization 29



2.6.2 Non-Linear Programming

A non-linear programming problem is one in which the objective function and/or its

constraints are non-linear functions of the decision variables. Some examples of systems

that cannot be described by linear models are as follows:

 Systems with multiple operating points like chemical reactions and buckling beams;

 Systems with periodic variations like a digital clock circuit and heart and nerve

impulses;

 Systems sensitive to initial conditions like the dynamics of population, climatic models

and fluid flow models referred to as chaotic or complex dynamics [Sas1999];

 Fixed charge problems, etc.

A particularly well studied non-linear programming problem is one where all the constraint

equations are linear and the objective function is quadratic. This problem is called the

quadratic programming (QP) problem. It is the quadratic programming problem and the

algorithms for its solution that form the focus of this dissertation and will now be discussed

in detail.

2.6.3 Quadratic Programming

A quadratic programming problem can be thought of as a generalization of a linear

programming problem, or as a restricted case of a nonlinear problem. It is a problem in

which all of the constraints of (2.2.3) are linear and therefore form a convex set, but the

objective function is non-linear. In particular the objective function is a polynomial of the

second degree.

The quadratic programming problem is formulated as follows:

(2.6.1)
Minimize f (x)=c ' xx ' Q x

                              Subject to A x≤b
 x≥0

where c is a n element column vector, b is a m element column vector and A is a m x n
matrix [Zan1969]. The expression x ' Q x is called the quadratic form and was discussed in

Section 2.3.3. It was also shown, that Q is a symmetric n x n matrix in equation (2.3.2) in

Section 2.3.3. The objective function is a sum of a linear term c ' x and a quadratic form

Chapter 2 Optimization 30



x ' Q x . This problem is also referred to as the primal problem. The minimization problem

is sometimes also written in the form

Minimize f ( x)=c ' x1
2 x ' Q x

where the factor 1
2 has simply been factored out of the matrix Q . The constraints remain

unchanged. Any maximization problem can also be written as a minimization problem by

multiplying the objective function by -1.

As already mentioned convexity plays an important role in determining the minimum point

for convex problems as they are considerably easier to solve than non-convex problems.

The following theorem states the condition under which the objective function for a

quadratic programming problem is convex. The concepts of positive definiteness and semi-

definiteness needed for this theorem are given in Section 2.3.3.

Theorem 2.9 
The function f (x)=c ' xx ' Q x is convex if and only if Q is positive semi-definite

[CS1970].

Clearly for a concave function the matrix Q must be negative semi-definite or negative

definite. It is also important to note, that since the set of constraints are linear the set of

constraints form a convex set [Mil2000].

Consider now the Kuhn-Tucker conditions applied to a quadratic programming problem

(2.6.1). From (2.5.14) the new system of equations is as follows
2Q xA ' λµ=c

λ ' (bA x)=0
A x≤b
µ ' x=0

x≥0 , µ≥0 and λ≥0 .

Adding the slack variables y to the inequality A x≤b yields the following system

(2.6.2)

2Q xA ' λµ=c
A x y=b

µ ' x=0 and λ ' y=0
x , y ,µ≥0 and λ≥0 .

The above system can be written as

Chapter 2 Optimization 31



(2.6.3) [2Q 0n x m A' I n

A I m 0m x m 0m x n] [ x
y
λ
µ] = [c

b ]
with µ ' x=0 , λ ' y=0 , x , y ,µ≥0 and λ≥0  [CS1970].

The Kuhn-Tucker conditions provide only a set of necessary conditions for a minimum.

However, if f ( x) is a convex function and the constraints form a convex set, then any point

x* satisfying the conditions as defined in (2.6.3) is a global minimum solution [Win1995].

The Kuhn-Tucker conditions also provide another important result. Applying the conditions

to the quadratic programming problem, reformulates the non-linear problem into a problem

with the first two equations of (2.6.2) linear and non-linear equations µ ' x=0 and λ ' y=0 .

This suggests the possibility of using algorithms for solving linear programming to solve the

quadratic programming problem. Usually only minor modifications are necessary. Due to

these results the the Kuhn-Tucker conditions are important for solving quadratic

programming problems and are the basis for most of the algorithms that will be shown in

Chapter 3 and 4.

Associated with each programming problem there is a corresponding dual

problem [Mil2000]. Both of these problems are constructed from the same costs and

coefficients but in such a way that if one of the problems is a minimization problem the

other one is a maximization problem. Also the number of variables in the primal problem is

equal to the number of constraints in the dual. When taking the dual of a programming

problem, the original problem is referred to as a primal problem. The associated dual

problem is defined as follows with u as unknown variables and φ as the objective function

of the dual problem in terms of x and u .

Maximize φ(x , u)=b ' ux ' Q x
                            Subject to A ' uQ x≥c
                                                     u , x≥0 .

Calculating the solution to the dual problem may improve our understanding of some of the

algorithms and can provide some computational advantage. However, due to the lack of

symmetry, dual problems are not as important in quadratic programming as in linear

programming [KKO1966] therefore, only the primal problem will be considered in the

explanation of the algorithms. 

Chapter 2 Optimization 32



2.7 Summary

This chapter introduced some of the basic mathematical concepts necessary for the

remainder of this dissertation. The concept of identifying the maxima and minima of

unconstrained and constrained problems was described. An important result was

established with regard to convex and concave functions. If it is known that a function is

convex/concave then any local minimum/maximum point obtained is the global

minimum/maximum point. However, if it cannot be said that a function is convex or concave

then the global optimum point may never be established.  

Another important concept discussed in this chapter, were the Kuhn-Tucker conditions.

These conditions provide a set of necessary conditions for optimality and sufficient

conditions for optimality provided that the objective function is convex. These conditions

also provide the basis for many of the algorithms to be discussed in the following chapters.

The latter is due to the fact that by applying the Kuhn-Tucker conditions to the quadratic

programming problem, produces a problem with a set of linear equations and the non-

linear equations µ ' x=0 and λ ' y=0 . This allows quadratic programming problems to be

solved by making use of modified linear programming algorithms.

This chapter also defined the general optimization problem and has classified the

optimization problem according to the type of its objective function and constraints. Special

cases have been identified for further discussion namely linear programming and non-

linear programming. A further special case of the non-linear programming problems called

quadratic programming problem, was discussed, which forms the focus of this dissertation.

In the following three chapters, an overview of selected algorithms for solving the quadratic

programming problem under varying circumstances will be given. In Chapter 3 the

algorithms for convex quadratic programming problems will be given. In Chapter 4

algorithms for the non-convex case will be discussed. Chapter 5 will give a brief overview

of some algorithms for solving the general non-linear programming problems. 

Chapter 2 Optimization 33



Chapter 3 

Algorithms for the Convex Quadratic
Programming Problem

3.1 Introduction

As discussed in Section 2.3.2, if a local minimum is found for a convex problem then it is

also the global minimum. The same can be said of a maximization problem with a concave

objective function. An example of a convex problem is illustrated in Figure 3.1. Figure 3.1

represents the function z=0.2(3 x23 y2) .

Figure 3.1 Contours of a convex objective function of a minimization problem.

Knowing that the function is convex or concave makes quadratic programming problems

considerably easier to solve, as compared to problems for which the convexity of objective

function is not known. In this chapter a selection of algorithms for solving quadratic

programming problems with a convex objective function will be introduced. The factors that

determined the selection of algorithms were its prevalence and the availability of research

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 34



material. These algorithms will be discussed in detail and an illustrative example will be

presented in order to aid in their understanding. The same numerical example will be used

throughout this chapter in order for the algorithms to be easily compared with one another.

Quadratic programming algorithms can be classified into three categories namely Active

Set Methods, Ellipsoid Methods and Interior Point Methods, each of which will be described

in more detail in this chapter.

 Active Set methods keeps track of those constraints which are active, that is,

constraints for which strict equality holds at a local minimum point. The idea of the

method is to add active constraints to an active set provided certain conditions hold. If

the conditions are not satisfied the corresponding constraint is dropped form the set.

The simplex method mentioned in Section 2.6.1 can also be thought of as an active

set method. It keeps track of active and inactive variables. The active set method

searches for the solution on the boundary of the feasible region;

 The Ellipsoid methods construct a sequence of ellipses and then checks if the center

point is feasible. If it is not, a smaller ellipse is constructed. This process is repeated

until an optimal solution has been found; and

 Interior-point methods move through the interior of the feasible region towards the

optimum rather than along the boundary as is the case with active set methods.

The following definitions will now be introduced and used throughout the remainder of the

dissertation. A basis is a set of linearly independent variables. The variables that are in the

basis are called basic variables and variables that are not in the basis are called non-basic

variables. For a problem with m equations and n unknowns, a basic solution is obtained by

setting nm variables equal to zero and solving for the remaining m variables. This will

generally be only possible if the m equations are linearly independent. 

3.2 Active Set Methods – The Simplex Method

The Simplex Method is a systematic procedure for solving mainly linear programming

problems. The method moves from one extreme point to another, with a smaller (or at least

not worse) value for the objective function f ( x) . At each iteration, some of the inequality

constraints are forced to be temporarily binding, which means that the left-hand side of the

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 35



constraint is equal to the right-hand side of the constraint. The indices of these constraints

are referred to as the active set. To obtain the solution for a problem, the first step of the

algorithm is to obtain an initial feasible solution and an active set containing the constraints

satisfying that feasible solution. The feasible solution is then checked for optimality. If the

feasible solution is not the optimal solution (in this case minimum), then an optimal solution

can still be reached, or it can be shown that the objective function can be made arbitrarily

small, by changing the constraints in the active set one at a time. The active set is changed

by removing one of the constraints and selecting another constraint to come into the active

set provided that the constraint will become binding [Had1962]. Since each change of a

constraint in an active set decreases the value of the objective function, no active set can

be repeated. If an active set should repeat, then the objective function would not decrease,

which results in a contradiction. As no active set can ever be repeated, the solution will be

obtained in a finite number of steps [BR2001]. 

It has been shown that the simplex method is an exponential time algorithm. An n -

dimensional feasible region has 2n vertices. In the worst case of the simplex method, all the

vertices will be visited and thus the optimum will be found in exponential time [Win1995].

Although the simplex method was initially developed to solve linear programming problems,

there are now many quadratic programming algorithms that make use of the simplex

method. For reference purposes the simplex method is provided in Appendix B.1. The

following sections introduce a selection of algorithms for solving quadratic programming

problems that make use of the simplex method. 

3.2.1 Wolfe's Algorithm

Although it is not the first method that was developed for solving quadratic programming

problems, it is one of the most widely used methods and was developed by P. Wolfe in

1959 [Wol1959]. Wolfe's algorithm can be directly applied to solve any quadratic

programming problem of the form
Minimize f (x)=c ' xx ' Q x

(3.2.1)                              Subject to A x≤b
                                                x≥0.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 36



where Q is a n x n symmetric matrix, A a mx n matrix, c a n-vector and b a m-vector. If

the objective function is convex, then any point satisfying the Kuhn-Tucker conditions

(Section 2.6.3 on page 30) 

(3.2.2)

2Q xA ' λµ=c
A x y=b

x≥0,µ≥0, y≥0, λ≥0

and
(3.2.3) µ ' x=0 and λ ' y=0

will solve the problem (3.2.1). 

To find a point satisfying the Kuhn-Tucker conditions Wolfe's algorithm proposes a

modified version of Phase One of the Two-phase simplex method, applied to the linear

equations and the non-negativity constraints (3.2.2) (See Appendix B.2 for details

regarding the Two-phase simplex method). Essentially the method adds artificial variables

to all the constraints and then attempts to minimize the sum of the artificial variables. To

ensure that the final solution also satisfies (3.2.3). Wolfe's method modifies the simplex

method as follows:

 No pivot is performed that would make µp and xp both basic variables; and

 No pivot is performed that would make λp and y p both basic variables.

A number of implementations of these ideas have been presented by various authors

([KKO1966] [Sim1975] [Win1995]). The implementation proposed by Künzi et

al. [KKO1966] will be discussed here. Their approach begins with the Kuhn-Tucker

conditions (3.2.2) and (3.2.3). It is also assumed without loss of any generality that bi≥0 for

all i . If any of the bi 's should be negative then those equations can be written such that all

bi≥0 , by multiplying the appropriate equations by -1, as shown in Appendix B.1. In order

to determine an initial feasible solution, artificial variables are added to the system and then

the simplex method is used to remove these variables subject to the conditions (3.2.3).

Two forms of Wolfe's algorithm are presented, namely a short form and a long form. While

the long form works without any restrictions the short form requires that either c=0 or that

the matrix Q is positive definite [Wol1959]. This restriction will be discussed at a later stage

in this section. 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 37



Short Form

In order to obtain an initial basic feasible solution, m2 n artificial variables
s=(s1 , ... , sm) '

w1=(w1
1 , ... , wn

1 ) '

w2=(w1
2 , ... , wn

2 ) '

are added to the linear system (3.2.2) and the system (3.2.2) is expanded to

(3.2.4)
2Q xA ' λµw1w2=c

A x ys=b
x≥0,µ≥0,λ≥0, y≥0, s≥0, w1≥0, w2≥0.

Written in matrix notation

(3.2.5) [2Q (n x n ) 0(n x m ) A ' (n x m ) I n I n I n 0(n x m )

A(m x n ) I (m x m ) 0(m x m ) 0(m x n ) 0(n x n ) 0(n x n ) I m ][
x
y
λ
µ
w1

w2

s
]=[c

b ]

x ,λ ,µ , y , w1 , w2 , s≥0.

A basic feasible solution for problem (3.2.5) that satisfies (3.2.3) and contains at most

mn possibly non-zero variable values can be given immediately by setting
x=0,λ=0,µ=0, y=0

and for each j at least one of the two variables w j
1 or w j

2 is zero. Then the first basis

contains the variables si=bi , i=1,... , m and for each j, only one of the variables w j
1 or w j

2 is

selected as follows

  w j
1=c j   if c j<0  and then w j

2=0  or

                          w j
2=c j     if c j≥0  and then w j

1=0.

If c j=0 then any one of w j
1 or w j

2 can be taken into the basis. As in Phase One of the

simplex method (see Appendix B.1) the basic solution is represented in a tableau. The

initial tableau is represented in Table 3.1 as follows: 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 38



Table 3.1 Initial Simplex Tableau

α1 . . . . . . . . α j . . . . . . . αN

Coeff.
B.V.

Basic
Variables xB x1 ... xn y1 ... ym λ1 ... λm µ1 ... µn w1

t ... wn
t s1 ... sm

c̃B 1 w1
t xB 1 α11 . . . . . . . . α1 j . . (1)t1 0 0 0 . 0=α1 N

   . . 0  0   0

 wn
t  . . 0 0 (1)t1 0 . 0

c̃B i s1  αi 1 . . . . . . . . αi j . . . . . 1 0 0=αi N

   . . 0  0

c̃B M sm xB M αM 1 . . . . . . . . αM j . . . . . 0 0 1=αM N

z z1ĉ1 . . . . . . . . zjĉj . . . . . . . z NĉN



In the tableau M=nm and N=3 n3 m . The first column of the tableau gives the

coefficients of the basic variables (Coeff. B.V.) corresponding to the variables in the basis

(these are either 0 or 1 as explained in Appendix B.2). The second column gives the

variables currently in the basis. The third column xB gives the current value of the variables

in the basis. The columns α j , j=1,... ,(2 n2 m) are vectors listing all real variables. The

columns α j , j=(2 n2 m1) , ... , N , list the artificial variables, where t∈{1,2}. The entries

αi j are the coefficients of the variables in the left hand side of the linear equations

in (3.2.4). The z in the bottom row of column three is calculated by z=∑
i= 1

M

( c̃B i) '∗xB i and for

each column α j , z jĉ j=∑
i=1

M

( c̃B i) '∗αi jĉ j , j=1, ... , N , where ĉ j=1 for the artificial

variables and  zero for the remaining variables.

                      

The artificial variables will now be removed from the basis which will transform (3.2.5) back

to (3.2.2). A new tableau is constructed at each iteration. This is achieved in two phases

(not to be confused with the phases of the Two-phase simplex method). In the first phase

(of the short form) the simplex method is used to minimize the objective function

f (s)=∑
i=1

m

c̃B i si where c̃B i=1 for i=1, ... , m

subject to the constraints (3.2.4) with λ=0 and µ=0 , that is, λi and µ j stay out of the

basis ( c̃B i=1 for the artificial variables si in the basis and 0 for all other variables). It is

assumed that there is no degeneracy, since if this is not the case the procedure continues

until no si appear in the basis, even if ∑
i=1

m

si has a zero value. mmmmmmmmm mmmmmm

mmm mmmmm 

The following table gives the modifications in the steps of the simplex method using the

above tableau.

Step 1 Determine if there exists a z jĉ j>0 in the simplex tableau. If all the z jĉ j≤0

then the current solution is minimal.
Step 2 If one or more z jĉ j>0 , then the solution is not minimal. Determine if every

z jĉ j has a positive number in its column α j . If all αi j≤0 for those columns

considered in a particular phase, then there is an unbounded solution.
Step 3 Select any p such that z pĉp=max( z jĉ j) ,∃iαi j>0 . Thus the variable in

column αp can now enter the basis.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 40



Step 4 In column αp determine the row r of the smallest θ-ratio, such that

xB r

αr p
=min{xB i

αi p
,αi p>0}.

Step 5 Pivot the tableau at the entry αr p selected in the previous step. Thus column p

replaces column r in the basis and the following transformation is performed: 

α̂i j=αi j
αr j αi p

αr p
, i=1, ... , I , j=1, ... , J , i≠r

α̂r j=
αr j

αr p

and the xB can be similarly recalculated as

x̂B i=xB i
αi p xB r

αr p
, i=1, ... , I , j=1, ... , J , i≠r

x̂B r=
xB r

αr p

Step 6 When performing the transformation and one of the xB i=si is replaced then c̃B i

becomes zero. Then recalculate the values of z jĉ j and go to Step 1.

At the end of the first phase a basic solution has been reached, such that ∑
i= 1

n

s i=0 . The

basic solution contains mn of the variables x j , yiand w j
t in the basis, that is, either w j

1 or

w j
2 , for each i=1, ... , m and j=1, ... , n . 

At this point the columns corresponding to si and to those w j
t not in the basis can be

removed from the tableau. Now an n-vector w=(w1 , ... , wn ) ' is constructed from the

remaining w j
1 and w j

2 , where w j is either w j
1 or w j

2 depending on which of the two is left in

the basis at the end of the first phase. Now let E denote the coefficient matrix of the vector

w. E is a diagonal matrix with elements +1 or -1 depending on whether w j=w j
1 or

w j=w j
2 . Thus, at the end of fist phase we have a basic feasible solution to the tableau

associated with the system
2Q xA ' λµE w=c

(3.2.6) A x y=b
x≥0,µ≥0, w≥0 with λ=0 ,µ=0

satisfying the conditions (3.2.3). 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 41



In the second phase of the short form the simplex method (outlined in the above table) is

used to minimize the objective function

f (w)=∑
j=1

n

c̃B j w j where c̃B j=1 for j=1, ... , n

subject to the constraints (3.2.6) and satisfying (3.2.3), that is, the following rules must be

satisfied:

 If the variable xp is in the basis then in the transition to the next basic solution the

corresponding µp cannot enter the basis. If the variable µp is already in the basis,

then the corresponding xp may not enter the basis (that is, xpµp=0). However, if xp is

in the basis at zero level, µp may enter the basis only if xp remains at zero level; and

 If the variable λp should enter the basis then in the transition to the next basic

solution the corresponding y p cannot enter the basis. If the variable y p should enter

the basis, then the corresponding λp may not enter the basis (that is, λp y p=0).

However, if y p is in the basis at zero level, λp may enter the basis only if y p remains

at zero level.

If at the end of the second phase the minimum is found such that ∑
j= 1

n

w j=0 , then a solution

of (3.2.6) with w=0 has been found and therefore the solution for (3.2.2)-(3.2.3) and for the

original problem (3.2.1) has been obtained.

It is possible that if no additional assumptions are made about Q and c then it may happen

due to the condition (3.2.3), that no further iteration step can be made even though

∑
j= 1

n

w j>0 . Further investigation into this situation showed that a solution would only be

possible if either c=0 or the matrix Q is positive definite. The argument is based on the

following theorem [KKO1966]. 

Let xB denote the variables in the basis, the solution obtained at the end of the second

phase with xN corresponding to the zero components, that is x=(xB , xN ) where xN=0 .

Further, let µB denote the components of µ which are equal to zero and µN denote those

components of µ which could be positive, that is µ=(µB ,µN ) and

x ' µ=xB ' µBxN ' µN=0. Let k be a n-vector, q and d both n-vectors having constant

components and R an n x n matrix. All other symbols have the same meaning as before.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 42



Theorem 3.1 [Wol1959]
Let k̂ represent the solution of the following linear problem:
                                           Minimize q ' k
subject to the constraints

2Q xA ' λµR k=d
A x=b

x≥0,µ≥0, k≥0,µB=0, xN=0.
Then there exists an n-vector r such that

Q r=0 , A r=0 and q ' k̂=d ' r .

To apply Theorem 3.1 to the short form at the end of the second phase we set
k=w

q '=(1,1, ... ,1)
R=E , d=c .

The solution at the end of the second phase satisfies the hypothesis of Theorem 3.1 since

due to the first rule xN and µB cannot be in the basis of the next simplex step and remain

zero. Since no further decrease in ∑ w j is possible, the final solution at the end of the

second phase is also a solution of the linear programming problem formulated in Theorem

3.1. This implies that there exist an n-vector r with
Q r=0

and min∑ w j=c ' r .

If Q is positive definite then

Q r=0  r=0  min∑ w j=0.

If c=0 then it follows that

min∑ w j=0.

Thus in this special cases the short from will definitely lead to a solution of the original

problem.

Long Form

The long form consists of three phases, the first two corresponding to the two phases of the

short form. Thus the long form starts with the application of the short form with c being

replaced by the zero vector, that is, the equation

2Q xA ' λµw1w2=c

is replaced by

2Q xA ' λµw1w2=0 .

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 43



Now the first and second phases are computed as before in the short form. At the end of

the second phase the variable w will have been removed (in the case of degeneracy

continue until all wi are deleted). Thus we have a basic solution to the system
2Q xA ' λµ=0

A x y=b
x ,λ ,µ , y≥0.

which satisfies (3.2.3). This is equivalent to the system
2Q xA ' λµv c=0

(3.2.7) A x y=b
x ,λ ,µ , y , v≥0.

with v=0 . For the actual computation the new variable v is introduced in the first phase so

that at the end of the second phase all the values necessary for the third phase are in the

tableau. For this reason the equation

2Q xA ' λµw1w2=c

is replaced by

2Q xA ' λµw1w2v c=0 ,

with the additional rule that the variable v may never enter the basis during the first two

phases, that is, v=0 . This amounts to c being 0 . Therefore at the end of the second

phase, we have a solution to (3.2.7) with v=0 satisfying (3.2.3).

In order to obtain the solution for (3.2.2), v must equal to 1 and (3.2.3) must hold. To

obtain this, the third phase of the long form proceeds by applying the simplex method to

minimize the objective function
Minimize v

subject to the constraints (3.2.7) and the conditions (3.2.3).

Two cases may now arise:

1. v is unbounded from below.

2. The process ends with a finite value for v .

If case (2) occurs, Theorem 3.1 can be applied to the long form. w=0 and is maintained at

zero during the third phase, the third phase minimizes v . Theorem 3.1 is applied and

since n=1 all vectors and matrices k , q , d and R employed in the theorem are scalar

quantities
k=v , q=1

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 44



q' k=v , R=c , d=0
and it can be concluded that

min(v)=q' k=d ' r=0.
Therefore if v cannot be reduced to ∞ in the second phase then no steps of the simplex

method can be carried out such that the conditions (3.2.3) are satisfied. In this case the

objective functions f ( x) is not bounded from below and the problem has no solution.

In case (1) since only a finite number of basis are available, a finite sequence of basic

solutions (x j ,µ j ,λ j , v j) for j=1,2, ... , g is obtained in the third phase. The solution

(x1 ,µ1 ,λ1 , v1) is obtained from the first tableau at the beginning of the third phase with

v1=0 , x1=(x1 , ... , xn ) where for all xi in the basis the corresponding value is taken from

the tableau and the remaining xi are zero. This also applies for the variables µ1 and λ1 .

The solution (x2 ,µ2 ,λ2 , v2) is taken from the second tableau in the third phase and so on.

Assuming that the system is not degenerate suppose that the sequence of the v -values is

0=v0<v1<v2<…<vg with the x -parts x0 , x1 , ... , xg of their associated basic solutions, with

g= j when v=1 .

The solution with v=1 is obtained as a linear combination of two solutions. Two cases are

possible to force v to 1:

Case 1: For vg≥1
Choose an index j with 1≤ j≤g1 such that v j<1≤v j1 . Then

(3.2.8) ( x̂ ,µ̂ , λ̂ , v̂)= v j11
v j1v j (x j ,µ j ,λ j , v j) 1v j

v j1v j (x j1 ,µ j1 ,λ j1 , v j1)

is the solution to the problem (3.2.2) since v̂=1 .

Case 2: For vg<1

(3.2.9) ( x̂ , µ̂ , λ̂ , v̂)=( xg ,µg ,λg , vg ) 1vg

vg1vg ( xg1 ,µg1 ,λg1 , vg1) .

Since v̂=1, x̂ solves the problem (3.2.2) [KTZ1971].

Apart from using the Long Form, there is another technique of dealing with the case of the

matrix Q being semi-definite. This simple modification of the procedure was suggested by

E. M. L. Beale [Wol1959]. This modification is done by adding some small value ε to the

diagonal elements of the matrix Q (that is, Qε I), which makes the positive semi-definite

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 45



matrix into a positive definite matrix. This technique is called the perturbation technique.

Applying this technique to a problem with a semi-definite matrix allows for the problem to

be solved using the short form of Wolfe's algorithm, which makes it more desirable to use

as the short form of the algorithm is more efficient. A more detailed discussion on the

perturbation technique is provided in Appendix B.3.

An example is now given, which illustrates the algorithm. The example given here is

explained using the long form of Wolfe's algorithm as it can be used for both positive

definite and semi-definite case. The example is also solved using the short form with the

perturbation technique.

Example 1

Consider the following problem

Minimize  f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

Subject to x12 x24 x3≤12
                2 x1x23 x3≤9
                x1 , x2 , x3≥0  

By introducing the slack variables y1 and y2 and the artificial variables s1 and s2 , the

constraints become x12 x24 x3 y1s1=12 , 2 x1x23 x3 y2s2=9 and x1 , x2 , x3≥0,
y1 , y2≥0 and s1 , s2≥0.  Then for this problem

c=[1
2
1]  , 2Q=[1 0 0

0 2 2
0 2 4]  , A=[1 2 4

2 1 3]  and b=[12
9 ] .

Here the matrix Q is positive definite. Adding the artificial variables s , w1 and w2 the

problem is written as

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 46



[
1 0 0 0 0 1 2 1 0 0 1 0 0 1 0 0 0 0 1
0 2 2 0 0 2 1 0 1 0 0 1 0 0 1 0 0 0 2
0 2 4 0 0 4 3 0 0 1 0 0 1 0 0 1 0 0 1
1 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

]

x1

x2

x3

y1

y2

λ1

λ2

µ1

µ2

µ3

w1
1

w2
1

w3
1

w1
2

w2
2

w3
2

s1

s2

v

=[
0
0
0

12
9
].

The pivot elements will be indicated by a shaded cell and the abbreviation B.V. is used for

basic variable due to the lack of space. The initial tableau then has the form
Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 w1

1 0 1 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0 -1

0 w2
1 0 0 2 -2 0 0 2 1 0 -1 0 0 -1 0 0 0 -2

0 w3
1 0 0 -2 4 0 0 4 3 0 0 -1 0 0 -1 0 0 -1

1 s1 12 1 2 4 1 0 0 0 0 0 0 0 0 0 1 0 0

1 s2 9 2 1 3 0 1 0 0 0 0 0 0 0 0 0 1 0

z j 12 3 3 7 1 1

In the first phase all si are eliminated from the basis. In this case s1 and s2 . From the first

tableau it is clear that x3 will enter the basis as its z j is the largest positive. The variable w3
1

will leave the basis as can be seen from the calculation after Step 4. During the first phase

µ ,λ and v do not enter the basis. After performing the transformations the next tableaus is

as follows.

 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 47



Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 w1

1 0 1 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0 -1

0 w2
1 0 0 1 0 0 0 4 2 2/5 0 -1 -1/2 0 -1 -1/2 0 0 -2 1/2

0 x3 0 0 -1/2 1 0 0 1 3/4 0 0 -1/4 0 0 -1/4 0 0 -1/4

1 s1 12 1 4 0 1 0 -4 -3 0 0 1 0 0 1 1 0 1

1 s2 9 2 2 2/5 0 0 1 -3 -2 1/4 0 0 3/4 0 0 3/4 0 1 3/4

z j 12 3 6 1/2 1 1 1 3/4

After the first iteration s1 nor s2 has not been removed from the basis. Again the largest

positive is selected corresponding to the row z j . In this case x2 will enter the basis and w2
1

will leave the basis.
Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 w1

1 0 1 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0 -1

0 x2 0 0 1 0 0 0 4 2 1/2 0 -1 -1/2 0 -1 -1/2 0 0 -2 1/2

0 x3 0 0 0 1 0 0 3 2 0 -1/2 -1/4 0 -1/2 -1/4 0 0 -1 1/2

1 s1 12 1 0 0 1 0 -20 -13 0 4 3 0 4 3 1 0 11

1 s2 9 2 0 0 0 1 -13 -8 1/2 0 2 1/2 2 0 2 1/2 2 0 1 7

z j 12 3 1 1 6 1/2 5

At this stage the variable w2
2 will enter the basis and s1 will be removed from the basis

resulting in the following tableau.
Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 w1

1 0 1 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0 -1

0 x2 3 1/4 1 0 1/4 0 -1 -3/4 0 0 1/4 0 0 1/4 1/4 0 1/4

0 x3 1 1/2 1/8 0 1 1/8 0 1/2 3/8 0 0 -1/8 0 0 -1/8 1/8 0 -1/8

0 w2
2 3 1/4 0 0 1/4 0 -5 -3 1/4 0 1 3/4 0 1 3/4 1/4 0 2 3/4

1 s2 1 1/2 1 3/8 0 0 -5/8 1 -1/2 -3/8 0 0 1/8 0 0 1/8 -5/8 1 1/8

z j 0 1 3/8 1/8

At this point x1 enters the basis and w1
1 is removed from the basis.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 48



Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 x1 0 1 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0 -1

0 x2 3 0 1 0 1/4 0 -1 1/4 -1 1/4 1/4 0 1/4 1/4 0 1/4 1/4 0 1/2

0 x3 1 1/2 0 0 1 1/8 0 3/8 1/8 1/8 0 -1/8 1/8 0 -1/8 1/8 0 0

0 w2
2 3 0 0 0 1/4 0 -5 1/4 -3 3/4 1/4 1 3/4 1/4 1 3/4 1/4 0 3

1 s2 1 1/2 0 0 0 -5/8 1 -1 7/8 -3 1/8 1 3/8 0 1/8 1 3/8 0 1/8 -5/8 1 1 1/2

z j 0 1 3/8

At this point w1
2 enters the basis and replaces s2 .

Coeff
. B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2 v
0 x1 1 1 0 0 -4/9 5/7 -1/3 -2/7 0 0 0 0 0 0 -4/9 5/7 0

0 x2 2 3/4 0 1 0 1/3 -1/5 -1 -2/3 0 0 2/9 0 0 2/9 1/3 -1/5 2/9

0 x3 1 3/8 0 0 1 1/5 0 1/2 2/5 0 0 -1/7 0 0 -1/7 1/5 0 -1/7

0 w2
2 2 3/4 0 0 0 1/3 -1/5 -5 -3 1/6 0 1 5/7 0 1 5/7 1/3 -1/5 2 3/4

0 w1
2 1 0 0 0 -4/9 5/7 -1 1/3 -2 2/7 1 0 0 1 0 0 -4/9 5/7 1

z j 0

Since all the si have been removed from the basis the first phase is finished. To proceed

with the second phase the columns corresponding to wi
1 and wi

2 not in the basis can be

removed from the tableau. An n-vector w=(w1 , ... , wn ) ' is constructed from the remaining

wi
1 and wi

2 , where wi is either wi
1 or wi

2 depending on which of the two is left in the basis at

the end of the first phase. The new tableau then looks as follows.
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2 v

0 x1 1 1 0 0 -4/9 5/7 -1/3 -2/7 0 0 0 -4/9 5/7 0

0 x2 2 3/4 0 1 0 1/3 -1/5 -1 -2/3 0 0 2/9 1/3 -1/5 2/9

0 x3 1 3/8 0 0 1 1/5 0 1/2 2/5 0 0 -1/7 1/5 0 -1/7

1 w1 2 3/4 0 0 0 1/3 -1/5 -5 -3 1/6 0 1 5/7 1/3 -1/5 2 3/4

1 w2 1 0 0 0 -4/9 5/7 -1 1/3 -2 2/7 1 0 0 -4/9 5/7 1

z j 0 1/2 1 1 5/7

In the second phase the procedure for eliminating variables from the basis and entering

variables into the basis follows as in the first phase, however in the second phase ∑ wi is

to be minimized, that is, all wi are eliminated from the basis while satisfying the condition

x ' µ=0 . From this tableau µ3 is next to enter the basis, however x3 is already in the basis

and therefore in order to satisfy the condition x ' µ=0 , µ3 cannot enter the basis.

Therefore y2 is the next variable to enter the basis and w2 is removed from the basis.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 49



Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2 v

0 x1 0 1 0 0 0 0 1 2 -1 0 0 1/3 -1/5 -1

0 x2 3 0 1 0 1/4 0 -1 1/4 -1 1/4 1/4 0 1/4 1/5 0 1/2

0 x3 0 0 0 1 0 0 3 2 0 -1/2 -1/2 3/5 -1/2 -1 1/2

1 w1 3 0 0 0 1/4 0 -5 1/4 -3 3/4 1/4 1 3/4 -4/9 5/7 3

0 y2 1 1/2 0 0 0 -5/8 1 -1 7/8 -3 1/8 1 3/8 0 1/8 0 0 1 1/2

z j 3 1/4 1/4 1

Neither µ1 or µ2 can enter the basis since x1 and x2 are already in the basis, therefore y1

enters that basis.
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2 v

0 x1 0 1 0 0 0 0 1 2 -1 0 0 1/3 -1/5 -1

0 x2 0 0 1 0 0 0 4 2 1/2 0 -1 -1/2 2/3 -5/6 -2 1/2

0 x3 0 0 0 1 0 0 3 2 0 -1/2 -1/2 3/5 -1/2 -1 1/2

0 y1 12 0 0 0 1 0 -21 -15 1 4 3 -1 4/5 3 12

0 y2 9 0 0 0 0 1 -15 -12 1/2 2 2  1/2 2 -1 1/7 1 5/6 9

z j 0

Since all wi have been removed from the basis, the second phase is completed. In the third

phase, the simplex method is applied to the basic solution obtained at the end of the

second phase to minimize v . Again the simplex method is applied, in which case v will

enter the basis and y1 is removed from the basis.
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2 v

0 x1 1 1 0 0 0 0 -3/4 3/4 -1 1/3 1/4 1/5 0 0

0 x2 2 1/2 0 1 0 1/5 0 -3/8 -5/8 1/5 -1/6 1/8 1/4 -1/5 0

0 x3 1 1/2 0 0 1 1/8 0 3/8 1/8 1/8 0 -1/8 1/3 -1/6 0

1 v 1 0 0 0 0 0 -1 3/4 -1 1/4 0 1/3 1/4 -1/7 1/4 1

0 y2 9 0 -18 0 -3/4 1 3/4 -1 1/4 1 1/4 -1/2 -1/4 2/9 -1/3 0

z j

The previous tableau is the first tableau of the third phase. At this point the value of v=0 ,

x1=(0,0,0,12,9) ' , µ1=(0,0,0,0,0) ' and λ1=(0,0) . After the first transformation the

above tableau results in v2=1≥1, x2=(1,2 1
2 ,1 1

2 ,0 ,0) ', µ2=(0,0,0,0,0) ' and λ2=(0) . At

this point vg=v2≥1 and v j<1≤v j1 , that is, v j=0=v1<1≤v2=1=v j1 . 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 50



( x̂ , µ̂ , λ̂ , v̂)=v21
v2v1 (x1 ,µ1 ,λ1 , v1)1v1

v2v1 (x2 ,µ2 ,λ2 , v2)

                =0(0,0,0,12,9,0,0 ,0 ,0 ,0 ,0)1(1,2 1
2 ,1 1

2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1)
                =(1,2 1

2 ,1 1
2 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1)

The corresponding linear combination of x1 and x2 solves the problem since

0 v11 v2=1=v with x̂=(1,2 1
2 ,1 1

2 ,0) '. Therefore the solution point is x1=1, x2=2 1
2 and

x3=1 1
2 . Since this point satisfies the Kuhn-Tucker conditions it is the solution for the

original quadratic programming problem (3.2.1). Substituting the solution to the objective

function of (3.2.1) the final answer is

f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)=3 3
4 .

Example 2

The same example is now solved by using the perturbation technique.

Minimize  f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

Subject to x12 x24 x3≤12
                2 x1x23 x3≤9
                x1 , x2 , x3≥0  

As mentioned earlier, the perturbation technique involves adding a small value to the

diagonal elements of Q . For this problem the value ε=0.001 will be added and the new

matrix Q is as follows

2Q=[1.001 0 0
0 2.001 2
0 2 4.001].

To solve this problem the long form is not necessary as the problem can be solved using

the short form of the algorithm. Applying the Kuhn-Tucker conditions and adding the

artificial variables si , wi
1 and wi

2 the initial tableau is given as follows:
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2

0 w1
1 1 1.001 0 0 0 0 1 2 -1 0 0 -1 0 0 0 0

0 w2
1 2 0 2.001 -2 0 0 2 1 0 -1 0 0 -1 0 0 0

0 w3
1 1 0 -2 4.001 0 0 4 3 0 0 -1 0 0 -1 0 0

1 s1 12 1 2 4 1 0 0 0 0 0 0 0 0 0 1 0

1 s2 9 2 1 3 0 1 0 0 0 0 0 0 0 0 0 1

z j 12 3 3 7 1 1

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 51



The first step is to execute the first phase of the algorithm. As in the previous example si

now needs to be eliminated from the tableau. After performing a series of iterations, in this

case 5, the tableau looks as follows:
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 w1

2 w2
2 w3

2 s1 s2

0 x1 1 1 0 0 -0.45 0.73 -0.36 -0.27 0 0 0.09 0 0 0.09 -0.45 0.73

0 x2 2.5 0 1 0 0.36 -0.18 -0.91 -0.68 0 0 0.23 0 0 0.23 0.36 -0.18

0 x3 1.5 0 0 1 0.18 -0.09 0.55 0.41 0 0 -0.14 0 0 -0.14 0.18 -0.09

0 w2
2 0.004 0 0 0 0.36 -0.18 -4.91 -3.18 0 1 0.73 0 1 0.73 0.36 -0.18

0 w1
2 0.001 0 0 0 -0.45 0.73 -1.36 -2.27 1 0 0.09 1 0 0.09 -0.45 0.73

z j

All si have been removed from the basis which ends the first phase. At the beginning of the

second phase all wi
1 and wi

2 not in the basis can be removed from the tableau. A new

vector wi is constructed from the remaining wi
1 and wi

2 . The tableau at the beginning of the

second phase is as follows:
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2

0 x1 1 1 0 0 -0.45 0.73 -0.36 -0.27 0 0 0.09 -0.45 0.73

0 x2 2.5 0 1 0 0.36 -0.18 -0.91 -0.68 0 0 0.23 0.36 -0.18

0 x3 1.5 0 0 1 0.18 -0.09 0.55 0.41 0 0 -0.14 0.18 -0.09

1 w1 0.004 0 0 0 0.36 -0.18 -4.91 -3.18 0 1 0.73 0.36 -0.18

1 w2 0.001 0 0 0 -0.45 0.73 -1.36 -2.27 1 0 0.09 -0.45 0.73

z j

In the second phase all wi are eliminated from the basis. The procedure is the same as in

Example 1 and after 2 iterations the tableau is given as follows:
Coeff.
B.V. B.V. xB x1 x2 x3 y1 y2 λ1 λ2 µ1 µ2 µ3 s1 s2

0 x1 0.999 1 0 0 0 0 0.999 1.998 -0.999 0 0 0 0

0 x2 2.497 0 1 0 0 0 3.995 2.497 0 -0.999 -0.499 0 0

0 x3 1.498 0 0 1 0 0 2.997 1.998 0 -0.499 -0.499 0 0

0 y1 0.015 0 0 0 1 0 -20.97 -14.98 0.999 3.995 2.997 1 0

0 y2 0.011 0 0 0 0 1 -14.98 -12.49 1.998 2.496 1.998 0 1

z j

Since all wi have been eliminated from the basis, the second phase is finished and the

solution has been found. The final solution given in the final tableau rounding to one

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 52



decimal place is x1=1, x2=2 1
2 and x3=1 1

2 , which is the same as using the long form to

solve the problem. Substituting into the original problem, the final answer is

f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)=3 3
4 .

Although it is relatively easy to determine if a matrix is definite or semi-definite, this

operation needs a large amount of computational power and time when dealing with real

world problems in which the matrices become considerably larger than in the problem

above. Therefore it is not necessary to do this operation and instead simply use the long

form of the algorithm regardless of the matrix being definite or semi-definite or alternatively

always perturb the diagonal elements and then the short form can be used.

3.2.1.1 Dantzig's Algorithm

The next variation of the Simplex Method was introduced by G. B. Dantzig in

1961 [Boo1964]. This procedure was also found by Van de Panne and Winston in

1964 [VW1964], however independently from Dantzig. The reason for selecting to explain

Dantzig's algorithm above the other variations of Wolfe's method is attributed to the fact

that it was Dantzig who first introduced the simplex method for linear programming. This

algorithm is not restricted to problems where Q is positive definite, that is, it can be used to

solve quadratic programming problems for which the matrix Q is semi-definite.

Consider the following minimization problem:
Minimize  f ( x)=c ' xx ' Q x

(3.2.10)                              Subject to A x≤b
                                                x≥0.

It is assumed that an initial basic feasible solution for (3.2.10) exists. This can be obtained

by Phase One of the Two-phase simplex method if necessary.

The Kuhn-Tucker conditions for (3.2.10) are give as

(3.2.11)

2Q xA ' λµ=c
A x y=b

µ ' x=0 , λ ' y=0
 x≥0,µ≥0, y≥0, λ≥0.

The system (3.2.11) can be written as

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 53



(3.2.12)

2Q xA ' λµ=c
A x y=b

µ ' x=0 , λ ' y=0
 x≥0,µ≥0, y≥0, λ≥0.

This procedure is similar to the simplex method in that it also uses a tableau to obtain a set

of feasible solutions to obtain the minimum. The tableau is based on the Kuhn-Tucker

conditions (3.2.12) and is given as follows:

Basic
Variable xB x y µ λ

µ c 2Q 0 I A
y b A I 0 0

The solution corresponding to the tableau is µ=c and y=b for the basic variables and

x=0, y=0, λ=0 for the non-basic variables. If b≥0, the solution y=b and x=0 is a

feasible solution to the constraint of the quadratic programming problem. For convenience,

during the computational procedure the tableau is written using the following substitution:

ξ j=x j , j=1,... , n ; ξni= yi , i=1, ... , m ; ω j=µ j , j=1,... , n and ωni=λi , i=1, ... , m .

Two types of basic feasible solutions are possible:

1. A basic feasible solution is in standard form if of each pair (ξp ,ωp) exactly one

element is non-basic, for p= ji where j=1, ... , n and i=1, ... , m .

2. The basic feasible solution is in non-standard form if of each pair (ξp ,ωp) there is

exactly one pair which is basic and therefore exactly one pair which is non-basic.

Denote by u=( x ' y ' ) '≥0 and v=(µ ' λ ' ) '≥0 . From the Kunh-Tucker conditions it can be

stated that u is a solution to (3.2.11) if v ' u=0 . From the Kuhn-Tucker conditions if a basic

feasible solution in standard form satisfies v≥0 then the optimal solution has been found.

This is the aim of the procedure.

 

The basic elements of u must be non-negative, however, there is no such restriction on the

elements of v , although the vector v will be non-negative in the optimal solution. The next

step is to determine the rules for selecting which variable will enter the basis and which

variable is removed from the basis. Once the variables that leave the basis and that enter

the basis have been determined, the transformation continues as in the simplex method.

The pivot element is in the column associated with the non-basic variable which becomes

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 54



basic and the row associated with the basic variable which becomes non-basic. Let ρi be

the values taken by the basic variables (these are the variables corresponding to the

second column of the tableau). The rules are given in the following table. 

Step 1 If tableau is in standard form and all basic variables v≥0, a minimal solution

has been found and the procedure stop. Otherwise go to Step 2.
Step 2 (a) If the tableau is in standard form then the non-basic u -variables ξh should

enter the basis, whose ωh has the largest negative ρh (e.g. in absolute

values -2.5 is larger than -2), since it follows from equation (2.5.9)

∂L⁄∂ξh=µh that it is profitable to make ξh basic. Go to Step 3.

(b) If the tableau is non-standard, that is one pair (ξh ,ωh ) is basic and one

pair (ξk ,ωk ) non-basic, then for the non-basic pair (ξk ,ωk ) , ωk should

enter the basis, that is, the Lagrangian of the non-basic pair. This can be

done since Increasing ωk will never increase the value of L (where L is the

Lagrangian equation (2.5.8)). Go to Step 4.
Step 3 Let τi denote the values in the column of the variable that is to enter the basis,

determined in Step 2 (a), that is, ξh . As in the Simplex Method (Appendix B.1),

determine the ratio ρi ⁄τi for all basic u-variables and for ωh . Delete from the

basis the variable corresponding to the smallest positive ratio. Go to Step 5.
Step 4 Let τi denote the values of the column of the variable that is to enter the basis

determined in Step 2 (b), that is, ωk . As in the Simplex Method (Appendix B.1),

determine the ratio ρi ⁄τi for all basic u -variables and ωk . Delete the variable

corresponding to the smallest positive ratio. This rule is the same as for the

standard case and changes the tableau from non-standard form back to

standard form. Go to Step 5.
Step 5 Once the variable to enter the basis and to leave the basis has been

determined the transformations for each row are executed as in

equations (B.1.8) and (B.1.9) of Step 5 of the simplex method given in

Appendix B.1. Then go to Step 1. 

After determining the variable that will enter the basis in Step 2 (a) it has to be determined

by how much the value of ξh will increase. The value of ωh changes with the increasing

value of ξh , thus ωh might become zero at a point where further additions to ξh are still

feasible. Further increases however, do no improve the value of the objective function. It is

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 55



therefore important to establish how far should the variable that is to become basic

increase. As long as ωh remains negative, the ξh is increased. When ωh becomes zero any

increases in ξh increase the value of L . If during the increase from zero to a positive value,

∂L⁄∂ξh=µh becomes zero while all basic u-variables are still negative, then ωh is deleted

from the basis. There are now two possibilities. First, the value of the objective function has

decreased, ξh replaces ωh as a basic variable and the new solution is in standard form. Or

the second, while increasing ξh some basic variable ξk becomes zero before ωh becomes

zero. Any further increase in ξh will cause the solution to become infeasible, therefore ξr

has to become non-basic. This will lead to a non-standard tableau containing one pair

(ξh ,ωh ) of basic variables and one pair (ξk ,ωk ) of non-basic variables.

It is possible for a non-standard tableau (in Step 2 (b)) that while ωk increases, some basic

u-variable ξl becomes zero. Then ωk replaces ξl . In this case the pair (ξh ,ωh ) is still

basic and the pair (ξl ,ωl) is non-basic and the solution is still non-standard. At this point

ωl enters the basis. It is also possible that ωh is deleted as ωk is increased before any

basic u-variable becomes zero. At this point the tableau is in standard form and the

procedure continues as in the table outlined above.

The value of the objective function increases monotonically, therefore no solution can be

repeated and the solution is obtained in a finite number of steps. Once all basic variables

v≥0, the minimal solution has been found. The values for ξ j=x j , j=1,... , n obtained in the

final tableau are substituted into the original objective function of problem (3.2.10) to obtain

the minimal solution for the problem.

The following example (used in Wolfe's algorithm) is used to illustrate the procedure

outlined above. In this example the matrix Q is positive definite.

Example

Minimize  f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

Subject to x12 x24 x3≤12
                2 x1x23 x3≤9
                x1 , x2 , x3≥0  

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 56



The initial tableau is give as follows.

Basic
Variabl

e
xB ξ1 ξ2 ξ3 ξ4 ξ5 ω1 ω2 ω3 ω4 ω5

ω1 -1 -1 0 0 0 0 1 0 0 -1 -2

ω2 -2 0 -2 2 0 0 0 1 0 -2 -1

ω3 -1 0 2 -4 0 0 0 0 1 -4 -3

ξ4 12 1 2 4 1 0 0 0 0 0 0

ξ5 9 2 1 3 0 1 0 0 0 0 0

This tableau is standard and the objective value of the function is zero. As ω2 is the most

negative ξ2 is added to the basis and ω2 leaves the basis since 2
2<{12

2 , 9
1} . The next

tableau thus looks as follows.

Basic
Variabl

e
xB ξ1 ξ2 ξ3 ξ4 ξ5 ω1 ω2 ω3 ω4 ω5

ω1 -1 -1 0 0 0 0 1 0 0 -1 -2

ξ2 1 0 1 -1 0 0 0 -1/2 0 1 1/2

ω3 -3 0 0 -2 0 0 0 1 1 -6 -4

ξ4 10 1 0 6 1 0 0 1 0 -2 -1

ξ5 8 2 0 4 0 1 0 1/2 0 -1 -1/2

The tableau is standard form. Since ω3 is the most negative ξ3 enters the basis.

Calculating the ratios ω3 leaves the basis.

Basic
Variabl

e
xB ξ1 ξ2 ξ3 ξ4 ξ5 ω1 ω2 ω3 ω4 ω5

ω1 -1 -1 0 0 0 0 1 0 0 -1 -2

ξ2 2 1/2 0 1 0 0 0 0 -1 -1/2 4 2 1/2

ξ3 1 1/2 0 0 1 0 0 0 -1/2 -1/2 3 2

ξ4 5 1/2 1 0 0 1 0 0 4 3 -20 -13

ξ5 2 2 0 0 0 1 0 2 1/2 2 -13 -8 1/2

Again the tableau is standard. Since ω1 is the most negative ξ1 enters the basis. 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 57



Basic
Variabl

e
xB ξ1 ξ2 ξ3 ξ4 ξ5 ω1 ω2 ω3 ω4 ω5

ξ1 1 1 0 0 0 0 -1 0 0 1 2

ξ2 2 1/2 0 1 0 0 0 0 -1 -1/2 4 2 1/2

ξ3 1 1/2 0 0 1 0 0 0 -1/2 -1/2 3 2

ξ4 0 0 0 0 1 0 1 4 3 -21 -15

ξ5 0 0 0 0 0 1 2 2 1/2 2 -15 -12 1/2

Since all the xB are positive the final solution has been found. The solution is ξ1=x1=1 ,

ξ2=x2=2 1
2 and ξ3=x3=1 1

2 and the final solution of the objective function is f (x)=3 3
4 .

For the purpose of consistency the example used in Wolfe's algorithm was also used for

Dantzig's algorithm. However, this example does not fully show all the aspects of the

algorithm – in particular a non-standard basis – therefore a more complex example is

provided in Appendix B.4.

3.2.1.2 Other Simplex Method Variants

Although Wolfe's algorithm is not the first adaptation of the simplex method for quadratic

programming, it is the most widely used, which is the reason the method was selected

rather than other methods. Earlier variants of the simplex method are the Frank-Wolfe

algorithm introduced by M. Frank and P. Wolfe in 1956 [FW1956], Hildreth's method

developed by C. G. Hildreth in 1957 and the Barankin-Dorfman algorithm formulated by

Barankin E. W. and R. Dorfman in 1958 [Boo1964]. Another variant of the simplex method

is Lemke's algorithm introduced in 1962 [Sim1975].

All of these algorithms make use of the Kuhn-Tucker conditions and the row

transformations of the simplex method as in Wolfe's algorithm. The difference is only in the

selection criteria, for which variable is to enter the basis and which basic variable is to

become non-basic.

3.2.2 Beale's Algorithm

Before describing this algorithm consider the following linear programming problem.
Minimize  f ( x)=c ' x

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 58



(3.2.13)                                    Subject to A x=b
                                                      x≥0

If there should be any inequalities in the original problem, these can be converted to

equalities by adding appropriate slack variables as described in Appendix B.1.

Suppose that there exists an initial basic feasible solution x≡(xB , xR) with xB=B1 b and

xR=0 ( xB is the basic variable and xR the non-basic variable). It is possible to partition A
such that A=[B | R] where B is an m x m matrix and R a m x (nm) matrix. Now

b=A x=B xBR xR

so that

(3.2.14) xB=B1 bB1 R xR .

Further since
f ( x) =c ' x

=cB ' xBcR ' xR

=cB ' (B1 bB1 R xR)cR ' xR

=cB ' B1 b(cB ' B1 RcR ' ) xR

(3.2.15) =z0∑
j∈P

( z jc j)x j

using the fact that B1 R xR=∑
j∈P

B1 a j x j where P is the current set of indices of the non-

basic variables.

Equations (3.2.14) and (3.2.15) express the basic variables and the objective function in

terms of the non-basic variables. The simplex method considers equation (3.2.15) to

determine which of the non-basic variables will provide the largest decrease in the value of

the objective function. If z jc j≤0 for all j∈P , then the current solution is optimal. Once

the particular non-basic variable has been identified, equation (3.2.14) will be used to

determine the largest possible value to which the non-basic variable can increase without

violating the non-negativity restrictions.

In 1955, E. M. Beale [Bea1959] used these ideas in solving quadratic programming

problems of the form
Minimize  f ( x)=c ' xx ' Q x

(3.2.16)                              Subject to A x=b
                                                x≥0

where A is a m x n matrix, b an m-vector and x a n-vector. Without loss of any generality it

is again assumed that b≥0 and an initial basic feasible solution exists (this can be obtained

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 59



by Phase One of the simplex method if necessary). As before, if there should be any

inequalities in the original problem, these can be converted to equalities by adding

appropriate slack variables.

By reordering the columns of A , the elements of c and the rows and columns of Q , the

vector x can be partitioned as before into two parts x≡(xB , xR) , where xR is an (nm)

vector containing variables not in the basis and xB is a vector containing basic variables.

The matrix A can be partitioned into [B R ] , where the matrix B contains the variables xB

associated with the columns of A and R is the m x (nm) matrix containing the columns of

A not in B associated with xR . Therefore the constraint A x=b can be rewritten as

(3.2.17) B xBR xR=b .

As the equation (3.2.14) in the linear program above (3.2.17) can then be written as

(3.2.18) xB=B1 bB1 R xR ,

where the initial basic solution xB=B1 b is obtained by setting xR=0 . The initial basic

solution will be feasible if B1 b≥0 . Finally c is partitioned as c '≡[c ' B , c ' R] and Q as

Q=[QBB QBR

QRB QRR]
where QBB is a m x m matrix containing the rows and columns of Q associated with the

basic variables xB . QBR is a m x (nm) matrix containing the rows of Q associated with

xB and the columns of Q associated with xR . Similarly QRB is a (nm) x m matrix such that

QRB=QBR ' . QRR is a (nm) x (nm) matrix. Since the objective function is quadratic, the

equation (3.2.15) becomes

     z=c ' B xBc ' R xR[ x ' B x ' R][QBB QBR

QRB QRR][ xB

xR]
(3.2.19)

z={(c ' B(B1 b) ' QBB)B1 b}
{2(B1 b) ' QBR2(B1 b) ' QBB B1 Rc ' Rc ' B B1 R } xR

x ' R {QRR2QRB B1 R(B1 R) ' QBB B1 R } xR

after substituting (3.2.18) into the partitioned objective function. The expressions in the

braces by in equation (3.2.19) are denoted by

(3.2.20)
z0={(c ' B(B1 b) ' QBB)B1 b}
p={2(B1 b) ' QBR2(B1 b) ' QBB B1 Rc ' Rc ' B B1 R }
D={QRR2QRB B1 R(B1 R) ' QBB B1 R }

where D if necessary is adjusted to make it a symmetric matrix without changing the

quadratic form. The equation (3.2.15) for quadratic problems then becomes

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 60



(3.2.21) z=z0 p xRx ' R D xR  .

Once again both the basic feasible solution and the objective function are expressed in

terms of the non-basic variables. Also note that no restrictions have been placed on the

quadratic form, that is, Beale's algorithm is applicable to any quadratic programming

problem without the objective function having to be convex (or concave in the case of

maximization).

The function z is a function of the variables xR≡(xR1
, ... , xRnm

). For the initial solution xR=0
and therefore z=z0. Consider now the effects on z when changing the value of each of the

non-basic variables in xR . The first partial derivative of (3.2.21) with respect to the non-

basic variables xR j
is

(3.2.22)
∂ z
∂ xR j

= p j2 ∑
k=1

nm

d j k xRk
, j=1, ... , nm .

Initially every non-basic variable is equal to zero therefore

∂ z
∂xR j

= p j , j=1, ... , nm .

The objective function can be decreased by increasing any one of the non-basic variables

xR j
for which p j is negative. As with the simplex method, the aim is to obtain the optimal

solution as fast as possible, therefore we bring into the basis the variable xRh
, for which

ph=min
j
( p j).

As xRh
begins to increase, the values of the variables xB1

, ... , xBm
change in accordance

with (3.2.18). In the case of the simplex method xRh
is increased until one of the basic

variables reaches zero, thereby completing the pivot. However, with a quadratic objective

function it is possible that the partial derivative ∂ z ⁄∂ xRh
becomes zero during the pivot

while all the basic variables xBi
are still positive. In this case any further increase in xRh

would worsen the value of the objective function rather that improve it. Now if ∂ z ⁄∂ xRh
>0

then any increase in xRh
will not reduce the value of the objective function z . If ∂ z ⁄∂ xRh

<0

an increase in xRh
will reduce z . Therefore the value of xRh

cannot increase indefinitely, thus

it is profitable to increase the variable xRh
until either:

1. One has to stop to avoid making some basic variable negative, that is one of the

basic variables becomes zero; or

2. ∂ z ⁄∂ xRh
becomes zero and is about to become positive.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 61



Once the variable which is to become basic has been determined, the values of xRh
at

which conditions 1 and 2 occur are computed. These values are called critical values. 

Before computing the critical values it is useful to represent the basic and non-basic

variables in a tableau similar to the simplex tableau.

Basic
Variable xB x1 … xn

xB1
= y11  y1 n

     
xBm

= ym 1  ym n

The column xB denotes the value of the basic variables and yi j for i=1, ... , m and

j=1, ... , n denotes the coefficients of the variables for the constraints.

The critical values are now computed as follows. In condition 1 the value of xRh
(denoted by

xRh

(1 ) ) at which xBr
becomes zero is determined by the usual simplex condition as in (B.1.7),

namely

xRh

(1)=xRh
=

xBr

yr h
=min

i ( xBi

yi h
, yi h>0),

in order to reduce z . Here h denotes the column of the entering variable and r denotes the

row of the smallest ratio.

In condition 2 because all the other non-basic variables xR j
, j≠h remain zero, the equation

(3.2.22) reduces to

∂ z
∂ xRh

= ph2 dh h xR k .

Since ph<0 , case 2 can only arise when dh h>0 , in which case the partial derivative

becomes zero when xRh
(denoted by xRh

(2 ) for case 2) reaches the value

xRh

(2)=xRh
=
ph

2 dh h
 .

Thus xRh
will increase to min(xRh

(1 ), xRh

(2)) where xRh

(1 )=∞ if all yi h≤0 , and xRh

(2 )=∞ if dh h≤0 . If

xRh
can be increased indefinitely, that is xRh

(1 )=∞ and xRh

(2)=∞ , without causing either of the

two cases to occur, then the problem has an unbound solution. 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 62



Suppose that case 1 occurs, that is xRh
increases until xRh

=xRh

(1 ) , then the θ-ratio is

computed from the column yh and the standard simplex pivot procedure is followed with

xRh
entering the basis and xBr

leaving the basis. After the transformation has been

completed the values of xB and yi j have been updated. However, z jc j can no longer be

calculated as in linear programming. Instead x , c , A and Q are repartitioned according to

the basic and non-basic variables and the new values of z0 , p and D are recomputed. At

this point the computational procedure is repeated. 

Suppose that case 2 occurs, that is, the value of xRh

(2 )<xRh

(1 ) , then xRh
=xRh

(2 ) . At this point there

are m1 variables positive, xB1
, ... , xBm

and xRh
. Clearly a basic solution to the constraints

A x=b does not exist since the basis contains more then m variables. However

∂ z ⁄∂ xRh
=0, so the m1 variables can be considered as a basic solution to the m1

constraints
A x=b

and

(3.2.23) ug≡
∂ z
∂ xRh

= ph2 ∑
k =1

nm

dh k xRk
.

The new variable ug is introduced only for computational purposes and it is not required to

be non-negative. For this reason it is called a free variable. The subscript g indicates the

number of free variables introduced so far. The new constraint (3.2.23) can be rewritten in

standard form as

(3.2.24) ug2 ∑
k=1

nm

dh k xRk
= ph .

The addition of this constraint means that an extra row is added to the tableau and it is

added prior to the pivoting process. Thus with the introduction of ug along with the variables

xBi
already in the basis, represents a basic feasible solution to the m1 constraints

A x=b and ∂ z ⁄∂ xRh
=0 .

This new constraint ug=∂ z ⁄∂ x̃Rh
is introduced to the tableau as follows. 

Basic
Variable xB x1 … xn ug

xB1
= y11  y1 n 0

      0
xBm

= ym 1  ym n 0

ug= ph y (m1)1  y (m1)n 1

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 63



Before the transformation begins, ug has the negative value ph and is therefore the m1 th

basic variable. The entries y (m1)1 to y (m1)n are the coefficients of xRk
in equation (3.2.24).

Because none of the current basic variables appear in the new constraint, the new basis

matrix B denoted by B̂ takes the form

B̂=[B 0
0 1].

The matrix Q is then also adjusted accordingly. The new value of the basic variables are 

x̂B=B̂1 b̂=[ B1 0
0 1][ b

ph]
therefore the constraint (3.2.24) can be added to the tableau without altering any of the

values already present and without needing to do any calculations. 

The non-basic variable xRh
can now be brought into the basis. Because xRh

(2 )<xRh

(1 ) the

variable selected by the simplex exit criteria must be the free variable ug, that is, xRh
will

replace ug in the basis. Pivoting now continues in the usual manner. After the

transformation xB1
, ... , xBm

, xRh
are the basic variables and the next iteration begins. It is

possible that at a later stage ug may be brought back into the basis if ∂ z ⁄∂ug is large

enough in magnitude, either positive or negative. At this point the ph=max
j
(|p j|) excluding

those p j>0 for which xR j
is one of the variables x1 , ... , xn or a slack variable. In cases where

∂ z ⁄∂ug is positive ug will be increased from its non-basic value of zero to a positive level

thereby causing z to decrease as desired. If ug enters the basis, either negative or positive,

it can be deleted together with its associated row from the tableau. This follows from the

fact that it is a free variable and as such will never be selected to leave the basis or will in

any way figure in the selection of the exiting variable because there is no need to prevent it

from becoming positive.

The pivoting continues as described above with the size of the basis increasing or

decreasing until a point is reached from which it is impossible to improve the value of the

objective function. Therefore, the swapping of variables into and out of the basis continues

until the following condition is satisfied. 

∂ z
∂ xR j

{ ≥0 if xR j
is one of the variables x1 , ... xn ,or a slack variable,

=0 if xR j
is a free variable.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 64



Beale proved that this method leads to the desired solution in finitely many steps provided

that the following additional rule is used.

Supplementary Rule: If there are any non-basic free variables u for which ∂ z ⁄∂ug≠0 , then

the free variable must be removed from the non-basic set, that is the free variable is

introduced into the basis at the next pivot. Only if the derivative of z with respect to all free

variables is zero and hence if in this way a decrease in f is not possible, shall one of the

original variables be introduced into the basis.

Degeneracy in Beale's algorithm

In case 1, when computing the value of xRh

(1 ) it is possible that two or more critical values

may be the same. Thus the introduction of the variable xRh
into the basis will cause two or

more of the basic variables to become zero and therefore give rise to degeneracy. Then,

when some new variable xRk
is chosen to enter the basis at the next iteration, it might

happen that xRk

(1 )=0 . In this case it would not be possible to increase xRk
at all. This could

repeat over the next iterations and could occur through an endlessly repeating sequence of

degenerate bases, which means the procedure will no longer be finite. This situation is

however remote and can be disregarded in practice [Sim1975]. The technique of

perturbation is discussed in detail in Appendix B.3 and can be used here to solve the

problem of degeneracy [KTZ1971].

Example

Consider again the example as used in Wolfe's algorithm.

Minimize   f ( x)=x12 x2x3( 1
2 x1

2x2
22 x3

22 x2 x3)

Subject to x12 x24 x3≤12

                 2 x1x23 x3≤9
                 x1 , x2 , x3≥0

Adding an additional slack variable the constraint becomes
Subject to x12 x24 x3x4=12

                 2 x1x23 x3x5=9
                 x1 , x2 , x3 , x4 , x5≥0

The initial basis solution is xB=(x4 , x5)=(12,9) and can be represented in a tableau. The

initial value of the objective function is zero.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 65



x1 x2 x3 x4 x5

xB1
=x4=12 1 2 4 1 0

xB2
=x5=9 2 1 3 0 1

The problem is now partitioned according to the variables belonging to the basis and

variables not in the basis.
x=( xB , xR)=(x4 , x5 | x1 , x2 , x3)=(12,9 |0 ,0 ,0)
c '=[c ' B | c ' R]=[0 0|121]

A=[B | R ]=[1 0  1 2 4
0 1  2 1 3]

Q=[QBB QBR

QRB QRR]=[
0 0 
0 0 
  

0 0 0
0 0 0
  

0 0 
0 0 
0 0 

1
2 0 0
0 1 1
0 1 2

]
This can now be substituted into (3.2.20) to compute the values of z0 , p and D

z0=0  , p=[1 2 1]  and D=[
1
2 0 0
0 1 1
0 1 2] .

The matrix D is already symmetric so it does not need to be adjusted. Substituting the

above results into (3.2.21)
z= z0 p xRx ' R D xR

=x12 x2x3( 1
2 x1

2x2
22 x3

22 x2 x3) .

To determine the entering variable the values of p j are computed.
∂ z
∂ xR1

= ∂ z
∂ x1

= p1=1x1=1 ,
∂ z
∂ xR2

= ∂ z
∂ x2

= p2=22 x22 x3=2

and
∂ z
∂ xR3

= ∂ z
∂ x3

= p3=14 x32 x2=1

Select ph=min( p j) to enter the basis. In this case h=2 , that is, x2 is selected to become

basic. The two critical points are now computed. The first critical point is given by 

xR2

(1)=min{x B i

yi 2
, yi 2<0}=min{12

2 , 9
1}=6.

However, the second critical value is

xR2

(2)=
 p2

2 d22
= 2

2(1)=1

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 66



therefore x2 will be increased to only 1 and neither of the current basic variables will be

driven to zero. Since xRh

(2 )<xRh

(1 ) a new free variable u1 is introduced to the problem.

u1=
∂ z
∂ xR2

=22 x22 x3 which can be written as u12 x22 x3=2.

Before x2 is increased u1 must be added to the basis, where u1=2 as x2=0 and x3=0 .

The current tableau now looks as follows:

x1 x2 x3 x4 x5 u1

xB1
=x4=12 1 2 4 1 0 0

xB2
=x5=9 2 1 3 0 1 0

xB3
=u1=2 0 -2 2 0 0 1

Since the new free variable u1 was introduced it must leave the basis and therefore x2

replaces u1 in the basis and the new tableau becomes:

x1 x2 x3 x4 x5 u1

xB1
=x4=10 1 0 6 1 0 1

xB2
=x5=8 2 0 4 0 1 1/2

xB3
=x2=1 0 1 -1 0 0 -1/2

The new basic solution has been generated. The problem is again repartitioned.
x=( xB , xR)=(x4 , x5 , x2 | x1 , x3 , u1)=(10,8 ,1 |0 ,0 ,0)
c '=[c ' B | c ' R]=[0 0 2| 1 1 0]

A=[B | R ]=[1 0 2  1 4 0
0 1 1  2 3 0
0 0 2  0 2 1]

Q=[QBB QBR

QRB QRR]=[
0 0 0 
0 0 0 
0 0 1 
   

0 0 0
0 0 0
0 1 0

  
0 0 0 
0 0 1 
0 0 0 

1
2 0 0
0 2 0
0 0 0

]
The values of z0 , p and D are now computed for the second iteration to give

z0=1  , p=[1 3 0]  and D=[
1
2 0 0
0 1 

1
2

0 1
2

1
4
] .

As D is not symmetric it must be adjusted to

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 67



D=[
1
2 0 0
0 1 0
0 0 1

4
].

The objective function is expressed as a function of non-basic variables
z=z0 p xRx ' R D xR

=1x13 x3
1
2 x1

2x3
2 1

4 u1
2 .

To determine the entering variable the values of p j are calculated

∂ z
∂ xR1

= ∂ z
∂ x1

= p1=1x1=1 and
∂ z
∂ xR2

= ∂ z
∂ x3

= p2=32 x3=3.

Chose x3 to enter the basis as it is the max{ p j }. The critical points are

xR2

(1)=min{x B i

yi 2
, yi 2>0}=min{10

6 , 8
4}= 5

3

and

xR2

(2)=
 p2

2q22
= 3

2(1)=
3
2 .

Therefore x3 can be increased up to 3
2 . Since xR2

(2 )<xR2

(1 ) a new free variable u2 is introduced.

u2=
∂ z
∂ xR2

= ∂ z
∂ x3

=32 x3 which can be rewritten as u22 x3=3.

Before x3 is increased u2 must be added to the basis, where u2=3 as x3=0 .

x1 x2 x3 x4 x5 u1 u2

xB1
=x4=10 1 0 6 1 0 1 0

xB2
=x5=8 2 0 4 0 1 1/2 0

xB3
=x2=1 0 1 -1 0 0 -1/2 0

xB4
=u2=3 0 0 -2 0 0 0 1

The free variable u2 must leave the basis therefore bringing x3 into the basis the new

tableau becomes

x1 x2 x3 x4 x5 u1 u2

xB1
=x4=1 1 0 0 1 0 1 3

xB2
=x5=2 2 0 0 0 1 1/2 2

xB3
=x2=

5
2 0 1 0 0 0 -1/2 -1/2

xB4
=x3=

3
2 0 0 1 0 0 0 -1/2

Repartitioning the problem again

x=(xB , xR)=(x4 , x5 , x2 , x3 | x1 , u1 , u2)=(1,2, 5
2 , 3

2 |0,0,0)

c '=[c ' B | c ' R]=[0 0 2 1|1 0 0]

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 68



A=[B | R ]=[
1 0 0 6  1 0 0
0 1 0 4  2 1

2 0
0 0 1 1  0 

1
2

0
0 0 0 2  0 0 1

]
Q=[QBB QBR

QRB QRR]=
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 2

 0 0 0
 0 0 0
 0 0 0
 0 0 0

   
0 0 0 0
0 0 0 0
0 0 0 0

   
 1

2 0 0
 0 0 0
 0 0 0

.

Which after substitution gives

z0=
9
4  , p=[1 0 0]  and D=[

1
2 0 0

0 1
4 0

0 0 1
4
] .

As p1 is negative the current solution is still not optimal and the objective function becomes

        
z=z0 p xRx ' R D xR

=9
4x1

1
2 x1

21
4 u1

21
4 u2

2 .

Again determining p j

∂ z
∂ xR1

= ∂ z
∂ x1

= p1=1x1=1.

Clearly x1 will enter the basis as p1 is the only negative value negative. Calculating the

critical points

xR1

(1)=min{x B i

yi 1
, yi 1>0}=min{1

1 , 2
2}=1

and

xR1

(2)=
 p1

2q11
= 1

2( 1
2)
=1.

Bring x1 into the basis

x1 x2 x3 x4 x5 u1 u2

xB1
=x1=1 1 0 0 1 0 1 3

xB2
=x5=0 0 0 0 -2 1 -1 1/2 -4

xB3
=x2=

5
2 0 1 0 0 0 -1/2 -1/2

xB4
=x3=

3
2 0 0 1 0 0 0 -1/2

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 69



Again repartition the problem into

x=(xB , xR)=(x1 , x5 , x2 , x3 | x4 , u1 , u2)=(1,0, 5
2 , 3

2 |0,0,0)

c '=[c ' B | c ' R]=[1 0 2 1|0 0 0]

A=[B | R ]=[
1 0 0 0  1 1 3
2 1 0 0  0 1

2 2
0 0 1 0  0 

1
2


1
2

0 0 0 1  0 0 
1
2
]

Q=[QBB QBR

QRB QRR]=

1
2 0 0 0
0 0 0 0
0 0 1 1
0 0 1 2

 0 0 0
 0 0 0
 0 0 0
 0 0 0

   
0 0 0 0
0 0 0 0
0 0 0 0

   
 0 0 0
 0 0 0
 0 0 0

.

which gives the values

z0=3 3
4  , p=[0 0 0]  and D=[

1
2

1
2

3
2

1
2

3
4

3
2

3
2

3
2

19
4
] .

Examining the components of p and the termination criteria of Beale's algorithm has been

satisfied since
∂ z
∂ xR1

= ∂ z
∂ x4

= p1=0 , 
∂ z
∂ xR2

= ∂ z
∂u1

= p2=0 and 
∂ z
∂ xR3

= ∂ z
∂u2

= p2=0 .

Therefore the optimal solution has been found at x1=1, x2=2 1
2 , x3=1 1

2 and the value of the

objective function is z= f (x)=3 3
4 .

3.2.3 Theil-Van de Panne Procedure

This procedure was first introduced by H. Theil and C. Van de Panne in 1960 [TV1960].

The procedure deals with strictly convex (for minimization) and concave (for maximization)

quadratic programming problems, where the matrices c,Q, A and b are given and Q is a

positive definite symmetric matrix, that is

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 70



(3.2.25)
Minimize f ( x)=c ' x1

2 x ' Q x
                             Subject to A x≤b
                                                x≥0

In this algorithm the non-negativity constraints are considered to be part of the constraints

and therefore the problem can be reformulated in the following form.

(3.2.26) Minimize f ( x)=c ' x1
2 x ' Q x

(3.2.27)  Subject to Â x=[ A
I]x≤[b

0]=b̂

The idea of this procedure is to minimize (3.2.26) without taking into account any of the

constraints and then using the result as a basis for further computation. In order to compute

the vector that minimizes (3.2.26) without regard to any constraints, differentiate

f ( x)=c ' x1
2 x ' Q x with respect to x and set the result equal to zero. This yields

(3.2.28)
∂ f ( x)
∂ x

=cQ x=0.

Since Q is positive definite, its inverse exists, thus

x=x∅=Q1 c .
Let S⊆{1, ... , m} and let xS be a solution to the following reduced problem

Minimize  f ( x)=c ' x1
2 x ' Q x

                           Subject to ÂS x=b̂S

Consider the Lagrangian function L( x,λ)= f ( x)(λ) ' g ( x) and g (x)=ÂS xb̂S , then

(3.2.29) L( x ,λ)=c ' x1
2

x ' Q x(λS ) ' ( ÂS xb̂S ) .

Differentiate with respect to x and with respect to λ and equate to zero to get

(3.2.30) cQ xSÂ ' S λ
S=0 and 

(3.2.31) ÂS xS=b̂S .

From (3.2.30) we get

(3.2.32) xS=Q1 cQ1 Â ' S λ
S=x∅Q1 Â ' S λ

S .

To find λS multiply (3.2.32) by ÂS , which gives using (3.2.31)

(3.2.33) b̂S=ÂS xS=ÂS x∅ÂS Q1 Â ' S λ
S .

The matrix ÂS Q1 Â ' S appears often in the later expressions and therefore the following

notation is adopted

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 71



(3.2.34) PS=ÂS Q1 Â ' S .

If ÂS has a full row rank, then the matrix PS is a symmetric and positive definite matrix, and

therefore has an inverse. By this it is meant that the number of independent rows of PS is k
if PS is an k x k matrix. From (3.2.33)

(3.2.35) λS=PS
1( ÂS Q1 cb̂S )=PS

1( ÂS x∅b̂S ) .

By substituting (3.2.35) into (3.2.32) an expression for xS is obtained in terms of

c,Q, ÂS, and b̂S ,

(3.2.36) xS=x∅Q1 Â ' S (PS
1)( ÂS x∅b̂S ) .

The computational procedure now proceeds as follows. First, begin by considering an

empty set ∅ in which case the set S=∅, and the vector x∅=Q1 c , which is a vector

that minimizes (3.2.26) without regard to any constraints. If at this point x∅ does not violate

any of the constraints, the optimal solution has been found. Usually however, the problem

arises that x∅ is not feasible, that is Â x∅=ÂQ1 ch b̂ .

                                                                                                                                                 

Consider all one-element sets S consisting of constraints violated by x∅. Say for example

constraint h is violated by x∅, then the set S has one element, that is S={ h}. Now use the

equation (3.2.36) to calculate the value for xS. Suppose that none of the resulting vectors

xS are feasible, then consider xS for which the set S contains two elements say for

example S={ h, i}. Then constraint h is violated by x∅ and constraint i is violated by xh

where xh=xS for S={ h}. If none of the resulting vectors are feasible, consider the vector

xS for which the set S has three elements say for example S={ h, i, j} where j is a

constraint violated by xh i where xh i=xS for S={ h, i}. Proceed in this way until a feasible

vector has been found. This means that for the particular xS none of the constraints are

violated.

Now suppose that the set S has been found, for which the vector xS does not violate any

constraints, that is, it is feasible, thus it remains to show if the vector xS solves the

problem (3.2.26)-(3.2.27) or not. The feasible vector xS is the solution vector if and only if

for all h∈S the vector xSh violates the constraint h (where the notation Sh indicates a

set S with the hth constraint removed). This result follows from Theorem 3.2. If the vector

xSh does not violate the constraint h , this solution point is not the solution vector. This

means that there exist another feasible point which may be the solution point. In this case

the sets S for the two points will be different.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 72



Theorem 3.2
Let Ŝ be a set of indices of the constraints that x̂ satisfies as equalities, that is

      A x̂=b j for j∈ Ŝ
and A x̂<b j for j∉ Ŝ

then x̂=xŜ

If x̂=xŜ and Ŝ≠∅ , then for all proper subsets S⊂Ŝ including S=∅ we have h as one

of the constraints violated by xS for at least one h∈( ŜS ) [KKO1966].

There is another way to check if a solution has been found at each iteration. The criteria on

which the decision is based is not whether the constraints are violated or not, but rather

consists of considering the signs of the Lagrangians associated with the binding constraints

[Boo1964]. This procedure has computational advantages as we do not need to check for

violated constraints at each iteration and will now be briefly discussed.

Write Z for the subset of constraints complementary to S . Consider the set S of constraints

that are satisfied exactly. Add a constraint r from Z to this set to get the set Sr with xSr

as the associated minimizing vector, λSr as the Lagrangian vector and λr
Sr as the

Lagrangian associated with the rth constraint. Conversely, consider the set S and delete a

constraint t from this set. Thus we get a new set St , with xSt as the associated

minimizing vector and λSt as the Lagrangian vector. The constraints r and t are written as

Âr x{<,=,>} b̂r and Ât x{<,=,>} b̂t , depending whether the constraints are sufficiently

satisfied by x , exactly satisfied or violated by x . The following theorem shows the

connection between the signs of the Lagrangians and the violation of constraints.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 73



Theorem 3.3 [Boo1964]
Consider complementary sets S and Z of constraints, a constraint r∈Z , and a

constraint t∈S , such that ( Â ' S, Â ' r) ' has a full row rank. Then
(1) Âr xS>b̂r if and only if λr

Sr>0
(2) Âr xS=b̂r if and only if λr

Sr=0
(3) Âr xS<b̂r if and only if λr

Sr<0
and

(1') λt
S>0 if and only if Ât xSt>b̂t

(2') λt
S=0 if and only if Ât xSt=b̂t

(3')  λt
S<0 if and only if Ât xSt<b̂t .

The statements above can be explained as follows. For example, statement (1) reads: If

the vector xS violates the rth constraint, then the Lagrangian associated with the rth

constraint is positive and vice versa. Statement (3') reads: If the Lagrangian attached to

constraint t is negative, then it can be deleted from S , to get xSt , which will then

sufficiently satisfy the deleted constraint and vice versa. The proof of the statements is

given in Appendix B.5.

The following results are used to calculate the values of the Lagrangians and are obtained

from the proof of the Theorem 3.3 [Boo1964] given in Appending B.5.

(3.2.37) λr
Sr= 1

γ p ' PS
1 p

( Âr xSb̂r)

where p '= Âr Q1 Â ' S , PS=ÂS Q1 Â ' S and γ= Âr Q1 Â ' r

(3.2.38) Âr xS= Âr x∅ Âr Q1 Â ' S λ
S= Âr x∅ p ' λS

and

(3.2.39) λt
S=δ( Ât xStb̂t)

where δ is the last diagonal element of PS
1 .

Thus to compute the solution using the signs of the Lagrangians, the procedure begins with

calculating x∅ . If at this point none of the constraints are violated, the optimal solution has

been found. If some constraint is violated, say for example constraint h then the value of

the Lagrangian λh
h is calculated. If the Lagrangian is positive the optimal solution has been

found. If not, assume the constraint i has been violated. Calculate the Lagrangians λh
h , i and

λi
h , i . If both Lagrangians are positive the solution has been found, otherwise calculate the

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 74



Lagrangians for the next violated constraint. Thus at every solution point found the

Lagrangians are computed. Quite generally, if any vector obtained is feasible and has all

associated Lagrangians positive we have a solution to the problem.

Theil-Van de Panne in absence of degeneracy

Degeneracy occurs when the solution to a programming problem is the same, whether

some specific equality constraint is imposed or not. In the absence of degeneracy, the

cases (2) and (2') will not occur in the solution. Let the solution vector x̂ minimizing

f (x)=c ' x1
2 x ' Q x subject to Â x≤b̂ be found by minimizing f ( x) subject to certain

subset Ŝ⊆{1, ... , m} of constraints. The theorems on which the Theil-Van de Panne

procedure is based on are

Theorem 3.4 Sufficiency Theorem:

If xS is feasible and λS>0 then xS= x̂  [Boo1964].

and

Theorem 3.5 Necessity Theorem:

If xS is feasible but λt
S<0 for some t∈S then xS≠ x̂  [Boo1964].

Both of these theorems are valid only in the absence of degeneracy and will not be proved

in the text. See [Boo1964] for details and the proof of the theorems. These theorems

together prove that xS= x̂ , and S=Ŝ , if and only if the set S is such that xS is feasible and

λS>0 . The set S is generated using the procedure explained earlier in calculating the

solution points and then finding the violated constraints at each solution point.

Theil-Van de Panne with degeneracy

Degeneracy occurs when a constraint r∈Z happens to be exactly satisfied Âr xS=b̂r or

an element λt
S of λS happens to be zero. These are cases (2) and (2'). In the case of

degeneracy the following theorem holds

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 75



Theorem 3.6 Degeneracy Theorem: [Boo1964]
Consider complementary sets S and Z of constraints, as defined before, with a

constraint r∈Z and a constraint t∈S such that ( Â ' S Â ' r) ' has full row rank. Then
           i) if Âr xS=b̂r then xS=xSr

          ii) if λt
S=0 then xS=xSt .

In the case of degeneracy the procedure of finding the solution point is the same as

explained earlier. That is, calculate a solution point and determine any violated constraints

until for some set S , say Ŝ a feasible vector xŜ with all Lagrangians λŜ positive has been

found. In the case of degeneracy, xŜ will bind not only all the constraints belonging to Ŝ ,

but some other constraints as well. The degeneracy will not be noticed because an element

of λŜ is zero. If and element λh
Ŝ=0 then xŜ=xŜh , where the notation Ŝh indicates a set

Ŝ with the hth constraint removed. Since the set Ŝ goes from a smaller set to a larger set

we would have come across xŜh before getting to xŜ . Thus by Theorem 3.6 all the

constraints for which the associated Lagrangians equal zero can be deleted from Ŝ and

then the smallest set is unique. 

The perturbation technique mentioned in the previous algorithms and proved in Appendix

B.3, can also be used to deal with problems in which degeneracy occurs. 

Example

(3.2.40) Minimize  f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

Subject to x12 x24 x3≤12 (1)
                2 x1x23 x3≤9 (2)

                              x1≤0 (3)
                              x2≤0 (4)
                              x3≤0 (5)

For the problem (3.2.40)

c=[1
2
1] , Q=[1 0 0

0 2 2
0 2 4] and Q1=[1 0 0

0 1 1
2

0 1
2

1
2
].

The first step is to calculate x∅ .

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 76



(3.2.41) x∅=Q1 c=[
1
5
2
3
2
]

Using the result of (3.2.41) the vector x∅ does not violate any of the constraints, thus the

optimal solution has been found in the first iteration. This solution corresponds with the

solutions obtained in the previous algorithms for the same example. Thus the optimal

solution is f ( x)=3 3
4 . It is purely coincidental that the solution was reached in the initial

step. For a more detailed and illustrative example of the Theil-Van de Panne procedure

refer to Appendix B.6.

3.2.4 Other Active Set Methods

There are many more active set algorithms for solving the quadratic programming problem.

It is not possible to describe all the algorithms available and thus only some of the

algorithms have been selected for a detailed explanation. Some of the other algorithms

include amongst others: Houthakker's algorithm introduced by H. S. Houthakker in

1960 [Hou1960], Fletcher's algorithm proposed in 1971 [BSS1993]; Goldfab's algorithm in

1983 [Mil2000]; The Weighted Gram-Schmidt method proposed in 1984 by P.E. Gill, N. I.

M. Gould, W. Murray, M. A. Saunders and M. H. Wright [GGM+1984];    

3.3 Ellipsoid Methods

This method was proposed in 1972 by A.S. Nemirovsky, D. B. Yudin and N. Z.

Shor [VBW2002]. The ellipsoid method was the first known method that could solve linear

programming problems in polynomial time. However it was shown that it is much slower

than the simplex method [VB1994] [CR1999].

The idea of the ellipsoid method is to start with some ellipsoid E0 large enough to contain

the feasible region F . At each iteration of the algorithm and new ellipsoid Ek is created that

is smaller than the previous but still contains the feasible region. For each iteration k of the

algorithm

 Determine ck which is the center of Ek ;

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 77



 The method checks if the center ck of the current ellipsoid is feasible. If this is the

case the procedure stops with ck as the solution. If not, then at least one of the

constraints is violated;

 Determine ak , the constraint most violated by ck ;

 Use the ak hyperplane to split Ek into two regions R1 and R2 . One of the regions, say

R1 contains ck and the other, R2 contains the feasible region; and

 A new ellipsoid Ek1 with a minimum volume is constructed such that is contains all

the points in Ek∩R2 but that is smaller that Ek .

Figure 3.2 illustrates these steps

F

Ek

Ek+1

ck

ck+1

ak

R1

R2

Figure 3.2 Ellipsoid method

It has been proved that the ellipsoid methods are slower than simplex methods and do not

work very well in practice [Gou2002] and will therefore not be discussed further in this

dissertation. 

3.4 Interior Point Methods

The simplex method is based on the observation that an optimal solution occurs at one or

more corners of the feasibility region of an n-dimensional solution space, where n is the

number of decision variables. The interior point method gets its name from the fact that the

solution points move through the interior of the feasible region towards the optimum rather

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 78



than along the boundary, as in the simplex method [And1998]. The first interior point like

method was developed by I. Dikini in 1967, when he introduced a method called the affine

scaling method for solving linear programming problems. This method however, did not

receive much attention and it is no longer used for practical implementations [Van2001].

The first interior point method to receive interest was introduced in 1984 by N. K.

Karmarkar [Kar1984]. Karmarkar's paper motivated many researchers to develop better

interior point methods for linear programming. It was reported by D. den Hertog [Her1994]

that there was about 2,000 papers dealing with interior point methods 8 years after

Karmarkar's initial publication in 1984 [Mil2000]. 

As mentioned in Section 3.2, the simplex method is an exponential time algorithm. The

ellipsoid method was the first polynomial time algorithm introduced, however, this proved

not to be the case in practice. The interior point method attempts to overcome the potential

weakness of the simplex method and it has been shown that the interior point methods can

be solved in polynomial time [Mil2000]. This implies that if a problem of n variables is

solved using the interior point method, there exist positive numbers a and b such that for

any n , the problem can be solved in a time of at most a nb .

The interior point methods can be classified as either affine scaling methods or path

following methods. The affine scaling method rescales the components of the solution

vector at each iteration and then moves in the appropriate direction towards the optimum

point. The affine scaling algorithms are believed not to be polynomial, however this has not

been proved conclusively [Gor1999]. The path following method falls under the category of

the so called barrier methods, which incorporate the constraints into the objective function

as logarithmic terms to remove the inequalities from the problem. The resulting function

becomes a function of a so called barrier parameter. This parameter is decreased at each

iteration. The solution points form a so called central path through the interior of the region

towards the optimum point. Both the affine scaling methods and path following methods

result in a "path" from the initial point to the optimal solution and therefore virtually all

approaches using the interior point method could be called path following methods and

therefore path following methods will be discussed in detail [Mil2000].

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 79



3.4.1 Path Following Algorithm

This section describes a path following interior point method [Van1994] [BJR+1997]

[Van2001] [GW2001]. Consider the quadratic programming problem.

Minimize f ( x)=c ' x1
2 x ' Q x

                            Subject to A x≤b
                                               x≥0

The inequality constraints are changed to equality constraints by adding slack variables y
to A x≤b . The problem now becomes

(3.4.1) Minimize f ( x)=c ' x1
2 x ' Q x

(3.4.2)                             Subject to A x y=b
(3.4.3)                                                  x , y≥0.
To solve the quadratic programming problem, the constrained problem is transformed into

a sequence of unconstrained problems by incorporating the constraints (3.4.2) and (3.4.3)

as logarithmic terms. 

The concept of the barrier approach is to start from a point x in the strict interior of the

inequalities, that is, x>0 and y>0 . Assuming such a point has been found that satisfies

the constraints, to solve (3.4.1)-(3.4.3), a new point is obtained that hopefully decreases

the objective function value while ensuring that the boundary x j=0 and yi=0 of the

feasible region is never crossed. One technique to prevent an optimization algorithm from

crossing the boundary is to assign a penalty to approaching it. The most popular method is

to augment the objective function by a logarithmic barrier term. 

Subtracting the terms log (x j) from the objective function, will cause the objective to

increase without bound as x j →0 , that is, log ( x)→∞ as x→0 . This creates the problem

that if the constrained optimal solution is on the boundary, that is one or more x j
*=0 , then

the barrier will prevent us from reaching it. To get around this difficulty, a barrier parameter

µ≥0 is introduced to control the magnitude of the barrier term. As the solution to the

problem is likely to lie on the boundary of the feasible region, the barrier must be removed

gradually by decreasing µ toward zero. How this parameter is calculated will be discussed

at a later stage. Because the function log ( x)=∞ when x<0 , it is required that x>0 . As

long as x remains positive the optimal solution to the barrier problems will be in the interior

of the non-negativity constraint x>0 . The barrier terms are introduced as follows

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 80



(3.4.4)
Minimize f ( x , y)=c ' x1

2 x ' Q xµ∑
j

log x jµ∑
i

log yi

      Subject to A x y=b .

The new objective function is called a barrier function or a logarithmic barrier function.

The new formulation (3.4.4) has a nonlinear objective function with linear equality

constraints, and can therefore be solved using the Lagrange multipliers, resulting in the

following objective function

(3.4.5)
Minimize f ( x , y ,λ)=c ' x1

2 x ' Q xµ∑
j=1

n

log x jµ∑
i=1

m

log yi

λ ' (bA x y) .

Differentiating (3.4.5) with respect to x , y and λ and setting it to zero, yields the following

set of equations.

(3.4.6)

cQ xA ' λµ x1=0
                µ y1λ=0
                bA x y=0
                      x , y ,λ≥0

where x1=(x1
1 , ... , xn

1) ' and y1=( y1
1 , ... , yn

1) ' .

We now introduce the following non-standard notation. This notation, has been extensively

used in explaining the interior point method and therefore will also be used in this

dissertation. 

Given a vector x=(x1 , ... , xn ) ' , then capital X will denote the diagonal matrix with x on the

main diagonal, that is

x=[ x1

x2


xn
]  X=[x1 0  0

0 x2  
   0
0  0 xn

],

with X1 and Y1 the inverses of X and Y respectively. Further let e=(1,1, ... ,1) ' , then

using this notation, the set of equations (3.4.6) can be written as

(3.4.7) cQ xA ' λµ X1 e=0
(3.4.8) µY1 eλ=0
(3.4.9) bA x y=0

x , y ,λ≥0.

Let

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 81



(3.4.10) w=µ X1 e with w≥0 .

Substituting (3.4.10) into (3.4.7) and multiplying equations (3.4.8) and (3.4.10) by Y and X
respectively, the system (3.4.7)-(3.4.9) is rewritten as 

(3.4.11)
Q xA ' λw=c

A x y=b
(3.4.12)     ΛY e=µ e
(3.4.13)    X W e=µ e .
It can be seen that equations (3.4.12) and (3.4.13) are similar to the non-linear equations

produced by applying the Kuhn-Tucker conditions to the quadratic programming problem.

In general the path following method proceeds as follows. The method begins by identifying

an initial solution (x0 , y0 ,λ0 , w0) that satisfies the equations (3.4.11) and the non-negativity

constraints strictly, that is, (x , y ,λ , w)>0 . However, it does not necessarily satisfy

equations (3.4.12) and (3.4.13). The method then iteratively updates the values of x , y , λ

and w , such that, the new solution satisfies the same conditions and gets progressively

closer to satisfying conditions (3.4.12) and (3.4.13). This is done as follows:

1. Estimate the appropriate value of µ .

2. Compute the step direction (∆ x ,∆ y ,∆λ ,∆ w) , that is, the direction along which to

move to the next point.

3. Calculate the distance or step length parameter by which to move to the next point.

4. Replace the current solution (xk , yk ,λk , wk ) with the new solution ( xk1 , yk1 ,
λk1 , wk1 ) where k defines the kth iteration.

The computations required for calculating the step direction will now be discussed. To

compute the direction for the next step, (x , y ,λ , w) in equations (3.4.11)-(3.4.13) is

replaced with ( x∆ x , y∆ y , λ∆λ , w∆ w ) , where ∆ x=xk1xk . Similarly for

∆ y ,∆λ and ∆w . 

(3.4.14)

Q ( x∆ x)A ' (λ∆λ)(w∆ x)=c

A( x∆ x)( y∆ y)=b
    (Λ∆Λ)(Y∆Y ) e=µ e
  (X∆ X )(W∆W ) e=µ e

The system (3.4.14) can now be rewritten with all the terms containing ∆ on the left hand

side of the equal sign and the remaining terms on the right hand side of the equal sign to

obtain the following non-linear system

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 82



(3.4.15) A ' ∆λ∆ wQ∆ x=cA ' λwQ x
(3.4.16)                                    A∆ x∆ y=bA x y
(3.4.17)              Y ∆λΛ∆ y∆Λ∆Y e=µ eΛY e
(3.4.18)            W ∆ xX ∆ w∆ X ∆W e=µ eX W e .

Denote by σ and ρ the right hand side of equation (3.4.15) and (3.4.16) respectively. In

order to obtain a linear system of equations the non-linear terms are dropped, which gives

the following linear system of 2n2m equations in 2n2m unknowns. 
(3.4.19) A ' ∆λ∆ wQ∆ x=σ

(3.4.20)                                                A∆ x∆ y=ρ

(3.4.21)                                             Y ∆λΛ∆ y=µ eΛY e
(3.4.22)                                           W ∆ xX ∆ w=µ eX W e

Provided that A has a full row rank, the above system is nonsingular and has a unique

solution that defines the step directions for the path following method [Van2001]. Dropping

the non-linear term from equations (3.4.17) and (3.4.18) is a common approach of solving

non-linear system of equations.

From equations (3.4.21) and (3.4.22), we solve for ∆ y and ∆ w
(3.4.23) ∆ y=Λ1(µ eΛY eY ∆λ)

(3.4.24)     ∆ w=X1(µ eX W eW ∆ x) .

Substituting (3.4.23) and (3.4.24) into (3.4.19) and (3.4.20) to eliminate ∆ y and ∆ w gives

the reduced system of equations

(3.4.25)
A ' ∆λ(X1 WQ)∆ x=σµ X1 ew
           A∆ xΛ1 Y ∆λ=ρµΛ1 e y .

Replacing σ and ρ with the terms on the right hand side of (3.4.15) and (3.4.16), (3.4.25) in

matrix notation is written as

(3.4.26) [(X1 WQ) A '
A Λ1 Y][∆ x

∆λ]=[cA ' λµ X1 eQ x
bA xµΛ1 e ] .

To progress to the next iteration the system of equations (3.4.26) must be solved for ∆ x

and ∆λ . The values obtained for ∆ x and ∆λ are substituted into (3.4.23) and (3.4.24) to

calculate ∆ y and ∆ w . At this point we have obtained the necessary values for the step

direction.

The next step is to compute the step length parameter, denoted by ϑ . The step direction

was calculated under the assumption that ϑ=1 , that is, xk1=xk∆ xk . This however

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 83



may cause the new solution to violate the non-negativity constraints. In order to avoid this

violation we want to find ϑ∈( 0 ,1] such that

x jϑ∆x j>0 for j=1,... , n .

Multiplying this by 1⁄x j ϑ

1
ϑ

∆x j

x j
> 0 for j=1,... , n ,

          1
ϑ
>

∆x j

x j
for j=1,... , n .

Similarly this inequality must also apply for y ,λ and w . Therefore the upper limit of 1⁄ϑ is

given by

max
i j {∆ x j

x j
,

∆ yi

yi
,

∆λi

λi
,

∆w j

w j }.

This choice of ϑ will however not guarantee strict inequality and a step size factor r is

introduced in order prevent the next point from touching the boundary as follows

(3.4.27) ϑ=min{r(max
i j {∆x j

x j
,

∆ yi

yi
,

∆λi

λi
,

∆w j

w j })
1

,1}.

The factor r is selected to be less than but very close to one. Clearly the value of ϑ will be

between zero and one. 

We now look at the formulation of µ . As mentioned earlier a central path is a trajectory in

the relative interior of the feasible region

F0={( x , y ,λ , w |Q xA ' λw=c , A x y=b ; x , y ,λ , w>0)}.

The algorithm begins in the interior of this feasible region and at each iteration estimates a

value of µ representing a point on the central path that is hopefully closer to the optimal

solution than the current point. The algorithm then attempts to step towards this point,

making sure that the new point remains strictly in the interior of the region. The parameter

µ serves as a measure of optimality for feasible points, as µ→0 , the central path

converges to the optimal solution of (3.4.11)-(3.4.13) and therefore also to the solution of

the original problem. However, we cannot just set µ to zero as that would destroy the

convergence properties of the algorithm [JB2003]. Figure 3.3 illustrates an example of a

central path. The different values of µ are illustrated as µ approaches zero.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 84



µ = 0.01

µ = 1

µ = 8

Central path

f(x)

F0

Figure 3.3 Central path of the solution for the path following algorithm.

To calculate the value of the barrier parameter µ the following must be considered. If the

value of µ is too large, the sequence of solution could converge to the center of the feasible

set, which is obviously not desired. If the value is too small, the sequence could stray too

far from the central path and the algorithm could run into the boundary of the feasible set at

a point that is not optimal. Therefore, the aim is to find a reasonable compromise between

the two extremes. The following formulae is used to estimate the value of the barrier

parameter. From equation (3.4.10) w=µ X1 e . Now it can be shown that
w=µ X1 e         

                           w=µ e ' x1 e multiplying by x
x ' w=µn                since e has n elements.

Similarly it follows that λ ' y=µm . Thus the value of µ is taken as the average of these two

values to give

(3.4.28) µ=
w ' xλ ' y

nm
.

This formula gives the value of µ whenever it is known that (x , y ,λ , w) lies on the central

path. We want to use the formula (3.4.28) to produce an estimate for µ even when the

current point is not on the central path. Since we want to step from the current point

towards a point on the central path with a better approximation to the optimal solution, the

value of µ is reduced by a certain fraction. Let δ denote this fraction value, where δ is a

number between zero and one. Thus the value of the barrier parameter is given by

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 85



(3.4.29) µ=δ
w ' xλ ' y

nm
.

It has been shown that setting δ= 1
10 works well in practice [Van2001].

At this point all the necessary values have been calculated, that is, the next step direction,

the step length parameter and µ . The last step is to replace the current solution with the

new solution point as follows

(3.4.30)
xk1← xkϑ∆ xk , wk1←wkϑ∆ wk ,

λk1←λkϑ∆λk , yk1← ykϑ∆ yk .

The process of replacing the current solution with the next continues until some stopping

criteria is reached. Let ε>0 be a small positive tolerance. There are a number of stopping

rules that can be used:

1. The relative change in the value of the objective function from one iteration to the

next

| f ( xk1)|| f ( xk )|<ε .

2. The relative change in the vector x is such that

∥xk1xk∥<ε .

3. When µ is small enough, that is, (nm)µ≤ε , that is, when the difference

w ' xλ ' y is sufficiently small.

Before the algorithm begins the variables x , y ,λ and w have to be initialized. The algorithm

begins at any point in the interior of the feasible region F0 . Usually it is convenient to set all

variables to one, provided that the constraints are satisfied. However, if this is not the case,

to obtain an initial solution that satisfies at least some of the equations can be done by

finding a solution to the following system: 

[(QI ) A '
A I ][ x

λ]=[c
b]

and then setting the remaining variables to 1.

The steps of the interior point method can now be summarized in the follow table. 

Step 1 Initialize the variables x0 , y0 ,λ0 , w0 . 
Step 2 Calculate the value of the barrier parameter µ using equation (3.4.29).

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 86



Step 3 Calculate the step directions (∆ x ,∆ y ,∆λ ,∆ w) using (3.4.23), (3.4.24)

and (3.4.26).
Step 4 Compute a step length parameter ϑ such that the new point has strictly positive

components.
Step 5 Replace the old solution with the new solution such that

xk1← xkϑ∆ xk , wk1←wkϑ∆ wk ,

λk1←λkϑ∆λk , yk1← ykϑ∆ yk .
Test the stopping criteria. If the criteria is satisfied then the solution is optimal or

it is found to be unbounded, otherwise go to Step 2 and continue this process

until the optimal solution has been reached.

An example is now presented in order to illustrate the procedure.

Example

Minimize f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

Subject to x12 x24 x3≤12

                 2 x1x23 x3≤9
                        x1 , x2 , x3≥0

As before

c=[1
2
1]  , Q=[1 0 0

0 2 2
0 2 4]  , A=[1 2 4

2 1 3]  and b=[12
9 ] .

Initializing the variables x , y ,λ and w to

x=[1
1
1]  , X=[1 0 0

0 1 0
0 0 1]  , w=[1

1
1]  , λ=[1

1]  and y=[1
1] .

Since n=3, m=2 and δ= 1
10 , substituting into (3.4.29) gives

µ= 1
10

.

Substituting into (3.4.26) gives the following set of equations

x=[[2 0 0
0 3 2
0 2 5] [

1 2
2 1
4 3]

[ 1 2 4
2 1 3] [1 0

0 1]][
∆ x1

∆ x2

∆ x3

∆λ1

∆λ2

]=[1.1
5.1
6.1

5.1
3.1
].

Solving this system of equations yields the following set of values

∆ x1
0=1.024

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 87



∆ x2
0=1.589

∆ x3
0=0.795

∆λ1
0=0.233

∆λ2
0=1.457.

Calculating ∆ y and ∆w by substituting into (3.4.23) and (3.4.24) yields

∆ y1
0=0.667

∆ y2
0=0.557

∆w1
0=0.124

∆w2
0=2.489

∆w3
0=1.695.

Now calculating the value of ϑ by using the equation (3.4.27)

max{1.024
1

;1.589
1

;0.795
1

; 0.667
1

;0.557
1

: 0.233
1

: 1.457
1

;0.124
1

; 2.489
1

; 1.695
1 }.

Clearly the largest value is w2 and selecting r=0.9<1 therefore

ϑ=0.9( 1
2.489)=0.3616.

The next solution point is calculated using the equations (3.4.30) as follows

x1
1=x1

0ϑ∆ x1
0=10.3616(1.024)=0.630

x2
1=x2

0ϑ∆ x2
0=10.3616(1.589)=1.575

x3
1=x3

0ϑ∆ x3
0=10.3616(0.795)=1.287

λ1
1=λ1

0ϑ∆λ1
0=10.3616(0.233)=0.916

λ2
1=λ2

0ϑ∆λ2
0=10.3616(1.475)=0.473.

The values for w and y are computed similarly. At this point the value of the objective

function is computed for the points x0 and x1 and tested for optimality. 

f ( x0)=2.5

f ( x1)=3.13

Let ε=0.0001 . At this point the solution is not optimal since | f (x1)|| f (x0)|=0.63 is not

less then or equal to ε , therefore the procedure continues to find the next solution point.

The following table shows the solution of x at each iteration.

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 88



Iteration x1 x2 x3

1 0.630 1.575 1.287
2 0.862 2.099 1.290
3 0.912 2.328 1.367
4 0.986 2.438 1.452
5 0.989 2.477 1.482
6 0.996 2.492 1.494
7 0.998 2.497 1.498
8 0.9998 2.4993 1.4995
9 0.9999 2.4997 1.4998

After nine iterations the approximate solution is obtained. Rounding the approximate

solution gives the results x1=1, x2=2 1
2 and x3=1 1

2 . Thus the value of the objective function

is f (x)=3 3
4 , which is the optimal solution as seen before.

Like the simplex method, many variations of the interior point method have been and still

are being presented. The basic concept remains the same, however each variation

attempts to improve the method in terms of efficiency, accuracy an the speed to find the

optimal solution.

3.5 Summary

This chapter gave an overview of the algorithms available for solving convex quadratic

programming problems. The quadratic problems have been classified into active set

methods, ellipsoid methods and interior point methods. One of the most widely used active

set methods, the Wolfe's algorithm was described in detail. This method is based on the

simplex method for solving linear programming problems, which aids in the understanding

of the method provided the reader is familiar with linear programming. There are many

other methods based on the simplex method some of which have been introduced in this

chapter. 

Other active set methods that are not variations of the simplex method have also been

described. These were, Beale's algorithm and Theil-Van de Panne procedure. Beale's

algorithm is similar to Wolfe's method as it also uses simplex transformation, however, it

does not begin with the Kuhn-Tucker conditions. The procedure of Theil-Van de Panne

solves the problem by first solving the objective function without regarding any of the

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 89



constraints and then progressively incorporates the violated constraints into the next

solution point.

The next type of method discussed in this chapter are the Ellipsoid methods. These

methods however are not widely used and do not work very well in practice, therefore

these methods are not discussed in detail in this dissertation and are left for future

research.

Another type of method that has received much attention are the interior point methods first

proposed by N. K. Karmarkar [Mil2000]. Many papers are available explaining the interior

point method. These methods search for the optimum on the interior of the feasible region

rather than the exterior as do the simplex methods. Virtually all approaches using the

interior method are the so called path following methods and therefore the path following

method was discussed in detail. 

In the next chapter algorithms for solving quadratic problems with a non-convex objective

function will be discussed. 

Chapter 3 Algorithms for the Convex Quadratic Programming Problem 90



Chapter 4 

General Quadratic Minimization
Algorithms

4.1 Introduction

General quadratic programming problems with no convexity assumptions, that is, problems

where Q cannot be classified as either definite of semi-definite. This chapter introduces a

selection of algorithms for finding the local minimizing points for general quadratic

minimization problems. Figure 4.1 illustrates a problem with a non-convex objective

function and represents the function z=2 x2 y2 x22 y2 .

Figure 4.1 Contours of a non-convex objective function.

As discussed in the previous chapter, if it is not known if a function is convex or concave,

the global minimum may never be found. In fact, it is possible that an algorithm finds a

stationary point that is not even a local minimum. However, in many cases a local optimum

is an improvement on the currently available solution or no solution at all.

Chapter 4 General Quadratic Minimization Algorithms 91



The algorithms that will be discussed in the chapter enable one to find the local optimum

points provided certain conditions are satisfied or to conclude that the problem has no finite

optimal solution. An example is also provided to aid in the understanding of these

algorithms. 

4.2 Fixed Charge Problem

A fixed charge problems arises frequently in optimization. It is a problem in which there is a

cost associated with performing an activity at a non-zero level. This cost however, does not

depend on the level of the activity. For example, a manufacturer needs to rent a machine to

produce tables. Regardless of how many tables are manufactured (1 or 1000) the cost or

the fixed charge of the rent must be paid.

It has been shown by G. de Kock [DK1975] that a fixed charge problem can be formulated

as a non-convex quadratic programming problem. This will allow these types of problems

to be solved by using some of the algorithms discussed in the dissertation. Consider the

following integer programming problem 
Minimize f ( x)=c ' xα ' h( x)

                                           x∈D
                                 where D={x: A x=b ,0≤x≤d }

where A is a m x n matrix, c , x and d∈En , b∈Em and h: En →{0,1} n is a vector function

such that 

h(x)=(h (x j)) where h (x j) { 0 if x j=0
1 if x j>0 .

where En is a n dimensional Euclidean space. If α≥0 then according to Hirsch and Dantzig

[HD1968] the above problem is equivalent to

(4.2.1)

Minimize  f (x , h)=c ' xα ' h
                            Subject to A x=d ,
                                            0≤x j≤h j d j≤d j and

         ∑
j=1

n

x j (1h j)=0 .

The problem (4.2.1) is linear, except for one of the quadratic functions in the constraints. By

taking this quadratic function in to the objective function, we obtain the following

Chapter 4 General Quadratic Minimization Algorithms 92



(4.2.2)
Minimize  f ( x , h)=c ' xα ' hδ∑

j=1

n

x j (1h j)

                Subject to A x=d
                                0≤x j≤h j d j≤d j with 0≤h j≤1.

According to De Kock (4.2.2) is equivalent to (4.2.1) if δ>0 is chosen sufficiently large. De

Kock further proves that the objective functions of (4.2.2) is neither convex nor concave by

the following theorem. 

Theorem 4.1
The objective function of (4.2.2), namely

f ( x , h)=c ' xα ' hδ∑
j=1

n

x j (1h j)

is neither convex nor concave.

Proof:
The quadratic function f ( x , h)  can be written as follows

g ( y)=a ' y y ' Q y
where y=( x , h) ' , a '=(c 'δ e ' ,α ' ) with e '=(1,1, ... ,1) and

Q=δ[ 0 I n

I n 0 ].

g ( y) is convex if and only if the eigenvalues of Q are positive, that is, Q is positive

semi-definite. Conversely Q is concave if it is negative semi-definite. Therefore it is only

necessary to prove that Q has both positive and negative eigenvalues. Consider now

the quadratic function of Q , namely

zn (λ)=|λ I 2 nQ|=|λ I n δ I n

δ I n λ I n|.
If n=1 it follows that z1(λ)=(λ2δ2) . Suppose that

zn (λ)=(λ2δ2)n=(λδ)n (λδ)n

Let the above be true for n=k . Then by moving the (n1)th row and column of the

determinant representation of zn (λ) to the second row and column, it follows directly

that

zn (λ)=|λ δ
δ λ| f n1(λ) .

Therefore the statement holds for n=k1 , Q therefore has eigenvalues δ and δ ,

both with multiplicity n . This proves the theorem [DK1975].

Chapter 4 General Quadratic Minimization Algorithms 93



4.3 Beale's Algorithm

Beale's algorithm has been discussed in great detail in Section 3.2.2, for solving convex

quadratic programming problems. This algorithm can be used for problems for which the

convexity of the objective function is not known, like for example, the fixed charge problem

discussed above. However, as already mentioned it may not produce a global minimum nor

a local minimum. 

Beale's algorithm expresses the basic variables and the objective function in terms of the

non-basic variables. It then determines which of the non-basic variables will provide the

largest decrease in the value of the objective function. Once the particular non-basic

variable has been identified, the largest possible value is determined to which the non-

basic variable can increase without violating the non-negativity restrictions. At this point the

non-basic variable becomes basic and the solution is tested for optimality. If the solution is

not optimal the process is repeated.

There are two additional rules that improve the chances for the algorithm to obtain local

minimum points for non-convex problems [Bea1959]:

1. A free variable should be removed from the non-basic set if z in (3.2.19) contains any

off-diagonal terms in this variable, even if the linear terms are zero.

2. A free variable should be removed from the non-basic set if z in (3.2.19) contains no

off-diagonal terms in this variable, but the diagonal terms are non-positive. In this

case the variable may be either increased or decreased until some basic variable

(not a free variable) becomes equal to zero.

Provided these two rules are applied, the algorithm will produce a local minimum point

unless there is a restricted variable in the linear term in the final expression z which

happens to vanish. In this case, that point can be made a local minimum by an arbitrarily

small change in the coefficients of the objective function.

Apart from these two additional rules, Beale's algorithm proceeds in the same manner as in

Section 3.2.2. 

Chapter 4 General Quadratic Minimization Algorithms 94



Example

Consider the following quadratic maximization problem, which was taken from lecture notes

on quadratic programming written by N. Gould [Gou2000]. Note that this quadratic problem

is a non-convex problem.

Minimize f ( x)=x12 x22 x1
22 x2

2

Subject to x1x2≤1
              3 x1x2≤1.5
                  x1 , x2≥0

The two constraints need to be rewritten as equalities by adding slack variables x3 and x4

such that
                 x1x2x3=1 and
               3 x1x2x4=1.5.

An initial feasible solution is immediately obvious as xB=(x3 , x4)=(1,1.5) . The initial

tableau is now as follows:

x1 x2 x3 x4

xB1
=x3=1 1 1 1 0

xB2
=x4=1.5 3 1 0 1

The problem is now partitioned according to the variables that belong to the basis and

variables which are not in the basis.
x=( xB , xR)=(x3 , x4 | x1 , x2)=(1,1.5 |0 ,0)
c '=[c ' B | c ' R]=[0 0|1 2]

A=[B | R ]=[1 0  1 1
0 1  3 1]

Q=[QB B QB R

QR B QR R]=[
0 0
0 0

 0 0
 0 0

 
0 0
0 0

  
 2 0
 0 2

]
This can now be substituted into (3.2.20) to compute the values of z0 , p and D

z0=0  , p=[1 2]  and D=[2 0
0 2] .

The matrix D is already symmetric so it does not need to be adjusted. Substituting the

above results into (3.2.21)
z=z0 p xRx ' R D xR

=x12 x22 x1
22 x2

2 .

Chapter 4 General Quadratic Minimization Algorithms 95



To determine the entering variable the values of p j are computed.
∂ z
∂ xR1

= ∂ z
∂ x1

= p1=14 x1=1  , 
∂ z
∂ xR2

= ∂ z
∂ x2

= p2=24 x2=2 .

Select min( p j) where p j is negative, to enter the basis. In this case x2 will enter the basis.

Finding the critical points

xR2

(1 )=min{x B i

yi 2
, yi 2>0}={1

1 , 3
2}=1.

However, the next critical value is

xR2

(2)=
 p2

2 d22
= 2

2(2)=
1
2 ,

therefore x2 will be increased to only 1
2 . Since xR2

(2 )<xR2

(1 ) a new free variable u1 is introduced

to the problem such that

u1=
∂ z
∂ xR2

=24 x2  which can be rewritten as u14 x2=2 .

Before x2 is increased u1 must be added to the basis, where u1=2 as x2=0 and x3=0 .

The current tableau is now as follows:

x1 x2 x3 x4 u1

xB1
=x3=1 1 1 1 0 0

xB2
=x4=1.5 3 1 0 1 0

xB3
=u1=2 0 -4 0 0 1

Bringing x2 into the basis, the variable that leaves the basis needs to be calculated. The

free variable u1 must leave the basis and is replaced by x2 . The new tableau becomes

x1 x2 x3 x4 u1

xB1
=x3=0.5 1 0 1 0 1/4

xB2
=x4=1 3 0 0 1 1/4

xB3
=x2=0.5 0 1 0 0 -1/4

The new basic solution has been generated. The problem is again repartitioned.
x=( xB , xR)=(x3 , x4 , x2 | x1 , u1)

c '=[c ' B | c ' R]=[0 0 2|1 0]

A=[B | R ]=[1 0 1  1 0
0 1 1  3 0
0 0 4  0 1]

Chapter 4 General Quadratic Minimization Algorithms 96



Q=[QB B QB R

QR B QR R]=[
0 0 0
0 0 0
0 0 2

 0 0
 0 0
 0 0

  
0 0 0
0 0 0

  
 2 0
 0 0

]
which gives the values

z0=
1
2  , p=[1 0]  and D=[2 0

0 1
8] .

Substituting the above results into (3.2.21)

        
z= z0 p xRx ' R D xR

=1
2x1 u12 x1

21
8 u1

2 .       

To determine the entering variable the values of p j are computed.
∂ z
∂ xR1

= ∂ z
∂ x1

= p1=14 x1=1, ∂ z
∂ xR2

= ∂ z
∂u1

= p2=1 1
4 u1=0.

Since the partial derivative with respect to the actual variable is positive and with respect to

the free variable is zero, the local minimum has been found at x1=0 and x2=
1
2 . Thus the

final value if the objective function is f (x)=1
2 . This solution may however, not be the

global minimum.

4.4 Keller's Algorithm

This algorithm was developed by E. L. Keller in 1972 [Kel1973] and it is a generalization of

the algorithm developed by Dantzig. It allows for finding local minimum points for general

quadratic minimization problems and allows for finding the optimal solution for convex

quadratic programming problems [CC1978].

Consider the quadratic minimization problem

(4.4.1)
Minimize f ( x)=c ' x1

2 x ' Q x
                             Subject to A x≤b
                                                x≥0.

The Kuhn-Tucker conditions are necessary conditions for the solution of problem (4.4.1).

Applying the Kuhn-Tucker conditions to (4.4.1) as in Section 2.6.3, the problem is

reformulated as follows

Chapter 4 General Quadratic Minimization Algorithms 97



(4.4.2)

Q xA ' λc=µ
                                              A xb= y

x≥0,λ≥0,µ≥0, y≥0
and x ' µ=0  and λ ' y=0 .

Now let 

[A ' Q
0 A]=M =[M ' I J M J J

M I I M I J ] and [c
b]=q=[q J

q I] ,

where I={1, ... , m}, J={ m1, ... , mn} . Also let

uI = y , uJ=x , vI =λ and vJ =µ ,

then (4.4.1) becomes

(4.4.3)
Minimize f (uJ )=qJ ' uJ

1
2 uJ ' M JJ uJ

                        Subject to M I J uJ≤q I

 uJ ≥0 .

The system (4.4.2) now becomes
M J J uJ M ' I J vI qJ =vJ

(4.4.4)                                              M I J uJq I =uI

u≥0, v≥0
and u ' v=0

where u '=[u ' I , u ' J ] and v '=[v ' I , v ' J ] . If (u , v) satisfies the first two equations of (4.4.4)

then

f (uJ )=
1
2 (q ' I vI q ' J uJ u ' v) .

Let

F (u , v)=q ' I vI q ' J uJ u ' v ,

then the system (4.4.4) can be represented by the schema

v ' I u ' J 1
M ' I J M J J qJ =vJ

0 M I J q I =uI

q ' I q ' J 0 =ϑ

where ϑ=F (u , v)u ' v . If q I ≥0 and qJ≥0 , it is clear that uI =q I , uJ=0, vI =0 and

vJ=qJ is the solution to (4.4.4). If however, there exists a component of q that is negative,

a new schema can be constructed from which it is possible to obtain a solution or to

conclude that the problem is unbounded. The new schema is constructed using pivoting,

that is, permuting rows and then applying the same permutation to all the other rows. There

Chapter 4 General Quadratic Minimization Algorithms 98



are three types of pivots carried out in the schema, which will now be represented in

tabular form. Consider a more general schema for the pivots.
v ' I u ' J 1

(4.4.5)
M ' I J M J J qJ =vJ

M I I M I J q I =uI

q ' I q ' J 0 =ϑ

E. Keller shows that in this schema M I I and M J J are symmetrical [Kel1973]. In the initial

schema M I I was the zero matrix. The variables on the right hand side of schema (4.4.5)

are called basic variables and the variables along the top of the schema are called non-

basic variables. The variables also require to hold the property that for each i , one

member of the pair 〈ui , vi〉 is basic and one non-basic. Thus the transformations are as

follows:

i) A 1x1 pivot on t by which non-basic ut and basic vt are interchanged.

vi ut u j

mi t mt t mt j qt =vt

mi j mt j m j j q j =v j

mi i mi t mi j qi =ui

qi qt q j 0 =ϑ

(4.4.6) ↓  pivot on t

vi vt u j

mi jmi t mt j ⁄mt t mt j ⁄mt t m j jmt j
2 ⁄mt t q jqt mt j ⁄mt t =v j

mi imi t
2 ⁄mt t mi t ⁄mt t mi jmi t mt j ⁄mt t qiqt mi t ⁄mt t =ui

mi t ⁄mt t 1⁄mt t mt j ⁄mt t qt ⁄mt t =ut

qimi t qt ⁄mt t qt ⁄mt t q jmt j qt ⁄mt t qt
2⁄mt t =ϑ

ii) A 1x1 pivot on s by which non-basic vs and basic us are interchanged.

vi vs ut

mi t ms t mt t qt =vt

mi i mi s mi t qi =ui

mi s ms s ms t qs =us

qi qs qt 0 =ϑ

Chapter 4 General Quadratic Minimization Algorithms 99



(4.4.7) ↓  pivot on s

vi us ut

mi s⁄ms s 1⁄ms s ms t ⁄ms s qs⁄ms s =vs

mi tmi s ms t ⁄ms s ms t ⁄ms s mt tms t
2 ⁄ms s qtqs ms t ⁄ms s =vt

mi imi s
2 ⁄ms s mi s⁄ms s mi tmi s ms t ⁄ms s qiqs mi s⁄ms s =ui

qimi s qs⁄ms s qs⁄ms s qtms t qs⁄ms s qs
2⁄ms s =ϑ

iii) A 2x2 pivot on 〈 s , t 〉 by which basic us and non-basic ut are interchanged and basic vt

and non-basic vs are interchanged.

vs vi ut u j

ms t mi t mt t m j t qt =vt

ms j mi j m j t m j j q j =v j

0 0 ms t ms j qs =us

0 mi i mi t mi j qi =ui

qs qi qt q j 0 =ϑ

(4.4.8) ↓  pivot on 〈 s , t 〉

vt vi us u j

1
ms t

mi t

ms t

mt t

ms t
2

(ms t m j tms j mt t)

ms t
2

(qt ms tqs mt t)

ms t
2 =vs

ms j

ms t

mi jmi t ms j

ms t

(ms t m j tms j mt t)

ms t
2 ζ ξ =v j

0 0  1
ms t

ms j

ms t

qs

ms t
=ut

0 mi i 
mi t

ms t


mi jmi t ms j

ms t

qiqs mi t

ms t
=ui

qs

ms t

qiqs mi t

ms t

(qt ms tqs mt t)

ms t
2 ξ

(2 qs qt ms tmt t qs
2)

ms t
2 =ϑ

where ξ=q j
(qs ms t m j tqt ms j ms tqs mt t ms j)

ms t
2  and ζ=m j j

(2 ms t ms j m j tms j
2 mt t)

ms t
2 .

The following theorem states that, given a schema arising from a general quadratic

programing problem, a sequence of pivots can be generated which terminates in a schema

Chapter 4 General Quadratic Minimization Algorithms 100



from which it can be said that either the local optimum has been found, or for a convex

problem the global optimum has been found or that the objective function is unbounded.

Theorem 4.2 [Kel1973]

Let (4.4.5) be the schema, where M I I and M J J are symmetric. Then, by a finite

sequence of transformations and pivots of types (i), (ii) and (iii), it is possible to obtain a

schema in one of the following forms (where ⊕ symbolizes a non-negative entry, + a

positive entry,  a non-positive entry, - a negative entry and ± an entry of arbitrary

sign):
v ' I u ' J

Case (a)
⊕ =vJ

⊕ =uI

 ⊕

This schema shows the solution to the Kuhn-Tucker conditions.

v ' I . ut .

Case (b)

.
0 0 - - .  .      - =vt

. .
0    ⊕
0    ⊕
+    ±
+    ±

=uI

±± -

This schema shows an unbound solution. In this case there is a t∈J such that qt<0 ,

mt t≤0 . Also, mi t≥0 for all i∈I . If mi t=0(i∈I ) , then qi≥0 ; if mi t>0(i∈I ) , then qi

can have an arbitrary sign.

. vs . uJ

Case (c)

⊕
⊕      =vJ

⊕ .
0

0 0 0  -

0
=us

+

This schema shows infeasibility. In this case there is an s∈I such that qs<0 , ms j≤0 for

all j∈J and ms i=0 for all i∈I .

In all the cases M I I for the last schema, is positive semi definite.

Chapter 4 General Quadratic Minimization Algorithms 101



Considering the problem as given by (4.4.3) and the Kuhn-Tucker conditions given

by (4.4.4), according to Theorem 4.2, a finite sequence of transformations will lead to a

schema in one of the three terminal cases (a), (b) or (c). 

In case (a), q is non-negative. If we take uI =q I , uJ=0, vI =0 and vJ =qJ , then

conditions (4.4.4) are satisfied and uJ is a solution point for the problem. If f is convex, then

uJ is also a global minimum point. However, for a general quadratic minimization problem

this need not be the case, but we can conclude that uJ is a local minimum point. By

Theorem 4.2 M I I is positive semi-definite and thus v ' I M I I vI ≥0 for all vI . Also if j∈J
any small increase in u j will increase the value of F if q j>0 . Thus qJ>0 is a sufficient

condition for a point to be a local minimum point.

In case (b), ui=qimi t ut for i∈I ; v j=q jm j t ut for j∈J and F (u , v)=ut vtqt ut . Since

vt=qtmt t ut , the value of F can be expressed in terms of ut as F (u , v)=2 qt utmt t ut
2 .

Since qt<0 and mt t≤0, F (u , v)→∞ as ut →∞ . If mi t>0, i∈I then ui →∞ as ut →∞ . If

mi t=0, i∈I then ui=qi is negative and will remain constant as ut increases. It can then be

concluded that F is unbound from below over the feasibility region.

In case (c), it is impossible to find a non-negative solution to the s th row equation

us=qs∑
j∈J

ms j u j and it can be concluded that the feasible region is empty. The proof of

the theorem will not be provided in the dissertation and can be found in [Kel1973].

Using the transformations (4.4.6)-(4.4.8) the steps of the algorithm can now be summarized

in the following table. It is assumed, that at this point the initial schema has already been

constructed.

Step 1 If qJ≥0 the procedure stops as uI =q I , uJ=0, vI =0 and vJ=qJ is a solution

to (4.4.4) (Case (a)). Otherwise, go to step 2.
Step 2 Choose t∈J such that qt<0 . Go to step 3.
Step 3 If mt t≤0 , go to step 4. If mt t>0 , find s  such that

qs⁄ms t=max{qi ⁄mi t , mi t<0, i∈ I} .
(a) If qt ⁄mt t≥qs⁄ms t or if {mi t<0, i∈ I}=∅ make a 1x1 pivot on t and return to step

1. 
(b) If qt ⁄mt t<qs⁄ms t and if ms s≠0 , make a 1x1 pivot on s  and return to step 3.

Chapter 4 General Quadratic Minimization Algorithms 102



(c) If qt ⁄mt t<qs⁄ms t and if ms s=0 , make a 2x2 pivot on 〈 s , t 〉 and return to step 1.
Step 4 If mt t≤0 , find s such that

qs⁄ms t=max{qi ⁄mi t , mi t<0, i∈ I}.
(a) If {mi t<0, i∈ I}=∅ the procedure stops as the terminal case occurs (Case (b)).
(b) If ms s≠0 , make a 1x1 pivot on s and return to step 3.
(c) If ms s=0 , make a 2x2 pivot on 〈 s , t 〉 and return to step 1.

Example

Consider the following example as in the previous section.

Minimize f ( x)=x12 x2
1
2 (4 x1

24 x2
2)

Subject to x1x2≤1
               3 x1x2≤1.5
                   x1 , x2≥0

Thus from this it can be said that

Q=[4 0
0 4], A=[1 1

3 1]b=[ 1
1.5] and c=[ 1

2] .

The first schema of Keller's algorithms is thus as follows: 

vi vi u j ut

v3 v4 u1 u2

1 3 -4 0 1 =v1 v j

1 1 0 4 -2 =v2 vt

0 0 -1 -1 1 =u3 ui

0 0 -3 -1 3/2 =u4 ui

-1 -3/2 1 -2 0 =ϑ

It is clear that u2 will be the variable exchanged by v2 as it is the only one for which qt<0 .

Also mt t>0 and qt ⁄mt t≥qs⁄ms t therefore a 1x1 pivot on t is executed. The next schema

thus gives the following results.

v3 v4 u1 v2

1 3 -4 0 1 =v1

1/4 1/4 0 1/4 1/2 =u2

1/4 1/4 -1 -1/4 3/2 =u3

1/4 1/4 -3 -1/4 2 =u4

-3/2 -2 1 -1/2 -1 =ϑ

Chapter 4 General Quadratic Minimization Algorithms 103



Going back to Step 1 there are no values for which qJ≤0 . Therefore a terminal case has

been reached and the procedure stops. Thus the result is u1=0 and u2=
1
2 and the value of

the objective function is f (x)=
1
2 .

4.5 Interior Point Method

The interior point method has been discussed in detail in Section 3.4 of the previous

chapter, for solving convex quadratic programming problems. The interior point method is

one of the most commonly used algorithms for solving quadratic programming problems

and has been extended for solving non-convex quadratic programming problems [VS1991].

Denote the matrix (X1WQ) in (3.4.26) by H=(X1WQ) . Let

N=HA ' Λ1Y A .

R. J. Vanderbei and D. F. Shanno [VS1991] showed that N is positive definite for a convex

quadratic programming problem. However, for non-convex problems the matrix N may fail

to be positive semi-definite. If N is indefinite, the algorithm may converge, but it may not

converge to even a local minimum.

In order to solve this problem the diagonal elements of H are perturbed as follows:

Ĥ=Hη I , η≥0,

with the value of η chosen such that N is positive definite. To compute the value of η , the

system

[H A '
A Λ1 Y]

is factored into L D L ' notation, also called Cholesky factorization. In the L D L '
factorization factors a matrix such that L is a lower triangular with the elements on the

diagonal equal to one, D is a diagonal matrix with the elements on the diagonal being the

elements of the input matrix and L ' is the transpose of L . Only the diagonal and the lower

triangular matrices are used for computation [Mat2004]. If H is positive definite, then after

factoring, all diagonal elements of D associated with an original diagonal element of H
must be positive and every element associated with an original diagonal element of

Λ1Y must be negative. Thus after factoring, the diagonal elements of D are checked if

the sign of the diagonal elements associated with H are positive and those associated with

Chapter 4 General Quadratic Minimization Algorithms 104



the diagonal element of Λ1Y are negative. If this is the case, H is positive definite and

no perturbation is required. Otherwise, let η0 denote the value of the element of D with the

largest magnitude, then an initial perturbation is applied with η=1.2η0 . For an 1x1 matrix,

one perturbation will produce a positive definite matrix, however for a larger matrix this may

not be the case. If the matrix is not positive definite after one perturbation, the perturbed

matrix is factored again as before and perturbed again. If the perturbation proves to be

insufficient the matrix is perturbed again until a positive definite matrix is found.

This perturbation does not guarantees that the algorithm converges to a local minimum

although it has been shown to work well in practice [VS1991]. The algorithm then continues

as discussed in Section 3.4.

4.6 Summary

This chapter discussed algorithms for solving quadratic programming problems for which

the objective function is not necessarily convex, although it is probable that only a local

minimum point will be found. 

One of the algorithms discussed was Beale's algorithms which was introduced in Section

3.2.2, in the discussion of convex case algorithms. This algorithm can be used to obtain

local minimum points for non-convex quadratic programming problems however cannot

guarantee a global minimum point unless the objective function is known to be convex. The

algorithm was not discussed again in detail, however the necessary rules that improve this

algorithm for non-convex quadratic programming problems were described.

Another algorithm discussed in this chapter was Keller's algorithm. This algorithm is a

generalization of the algorithm introduced by Dantzig and later by Van de Panne and

Winston. It is based on the Kuhn-Tucker conditions like many of the convex case

algorithms. It constructs a schema, similar to the simplex tableau for which there is a set of

transformations.

The Interior Point method is a commonly used approach for solving optimization problems.

It has been discussed in detail in Chapter 3. In this chapter, modifications of the interior

Chapter 4 General Quadratic Minimization Algorithms 105



point method have been described that improve the algorithm when solving non-convex

quadratic programming problems. 

This chapter also briefly discussed the fixed charge problem, which can be formulated as a

non-convex quadratic programming problem, which enables this problem to be solved by

the algorithms discussed in the dissertation.

The next chapter will briefly introduce a selection of algorithms for solving non-linear

programming problems as these algorithms can be used to solve the quadratic

programming problems, which itself is a special case of the non-linear programming

problem. 

Chapter 4 General Quadratic Minimization Algorithms 106



Chapter 5 

General Non-linear Programming
Algorithms

5.1 Introduction

The general non-linear programming problem is a problem for which the objective function

and/or the constraints are non-linear. The algorithms discussed in the previous two section

were specifically designed to solve quadratic programming problems. There are however,

many general non-linear programming algorithms which can be used to solve quadratic

programming problems. Figure 5.1 illustrates a simple two-dimensional example of a

general non-linear programming problem.

increasing
value of f(x)

Figure 5.1 Non-linear programming problem

In this chapter a selection of algorithms for solving the general non-linear programming

problem will be briefly introduced. The methods that will be discussed will not be described

in as much detail as has been done in Chapter 3 and 4 as they do not form the primary

focus of the dissertation. The methods will be briefly introduce outlining the basic concept

of the algorithm. 

Chapter 5 General Non-linear Programming Algorithms 107



Some of the methods for solving the general non-linear programming problem include the

gradient-like methods, linear approximation methods, non-linear but unconstrained

approximation methods. The gradient methods and the linear approximation method called

the cutting plane method will now be introduced in some more detail.

5.2 Gradient Methods 

Some of the most widely used computational techniques for solving non-linear

programming problems are the gradient methods [Mil2000]. The gradient methods are well

known for being used to solve unconstrained optimization problems. The idea of gradient

methods has been used to attempt to find local optimum point for constrained optimization

problem. Only if the convexity or concavity properties are known the gradient methods will

converge to the global optimum. 

The idea of these methods is to move toward the optimum along the best possible direction

until a constraint forces a change in this direction. In general the gradient-based method

can be outlined as follows:

1. Begin with an initial feasible solution x0 .

2. Move along the direction of the negative gradient, ∇ f ( x0) , for a minimization

problem ( ∇ f (x0)for a maximization problem) with a step size α0 , to a feasible point

x1 for which f (x1)< f (x0) . In general for a feasible point xk1 , f ( xk1)< f ( xk ) .

3. The procedure stops when f ( xk1)≈ f ( xk ) .

As a more detailed example, consider the following gradient method. Consider the non-

linear programming problem of the form

                                        Minimize   f ( x)
Subject to A x≤b

                                                         x≥0
Assume that an initial feasible solution x0 exist. This can be obtained by Phase One of the

simplex method if necessary. Then compute the initial direction d 0 '=∇ f (x0) , where the

vector d 0 is a tangent to the function at the point x0 . An iterative procedure is now

developed that will generate a sequence of solutions xk such that f ( xk1)< f ( xk ) . The

next solution is then obtain by

Chapter 5 General Non-linear Programming Algorithms 108



xk1=xkαd k .
Two cases are possible with reference to the initial solution x0 :

1. An ε>0 exists such that x1=x0αd 0 , d 0 '=∇ f (x0) is a feasible solution for all α

where 0≤α≤ε . 

2. There exists no α>0 such that x1=x0αd 0 is a feasible solution.

Case 1 will be discussed first. Moving from x0 in the direction ∇ f ( x0) produces the

maximum rate of decrease in f ( x) . It will now be shown that there exists a α>0 , such

that if

x1=x0αd 0 , d 0 '=∇ f (x0) ,

then x1 is a feasible solution, and f (x1)< f (x0) . This can be shown by Taylor's theorem.

For any α

f ( x0α d 0)= f ( x0)α(∇ f (ξ))d 0 ,

ξ=x0ϑαd 0 , 0≤ϑ≤1.

But, each ∂ f ⁄∂x j is a continuous function of x , therefore ∇ f (x)d 0 is a continuous

function of x . Since d 0 ' d 0>0 , there exists a δ>0 such that ∇ f (x)d 0<0 for all x ,

|xx0<δ| , therefore for any α , 0<α<min(ε ,δ) it follows that x=x0αd 0 is a feasible

solution and f ( x)< f ( x0).

The next step is to determine the value of α such that a new feasible solution x is obtained

which produces the greatest possible decrease in f ( x). We first determine the largest

value of α for which x=x0αd 0 is feasible. To do this it must be true that

(5.2.1) A(x0αd 0)≤b

(5.2.2) x0αd 0≥0.

Denote by M the subset of constraints (5.2.1) which are active at x0 and N the subset of

constraints (5.2.2) for which x0=0 . Since it was assumed that a move in the direction d 0 of

finite distance can be made without violating the constraints, it must be true for any α>0

that

(5.2.3) a r (x0αd 0)≤br , r∈M

(5.2.4) xp
0αd p

0≥0, p∈N ,

where ar denotes the rows of the matrix A for which the corresponding constraints are

active at x0 , that is, ar x0=br .

Chapter 5 General Non-linear Programming Algorithms 109



The value of α is limited by the fact that when α is made sufficiently large, some constraints

that are not active at x0 usually become active or some components xp , p∈N of x which

were positive at x0 become zero. To determined the largest value of α for which

x=x0αd 0 is feasible, the following values are computed:

ρ={ min
p [xp

0

d p
0 ], d p

0<0, p=1,2, ... , n , p∉N

∞   if no  d p
0<0, p=1,2, ... , n , p∉N ;

and

γ={ min
r [ bra r x0

a r d 0 ], a r d 0>0, r=1,2, ... , m , r∉M ,

∞   if no  a r d 0>0, r=1,2, ... , m , r∉M .

If ρ is finite, then some components of x will be negative when α>ρ and if γ is finite then

some constraints will be violated when α>γ .

Let ε=min(ρ ,γ) . Then α must satisfy 0<α≤ε in order to satisfy the feasibility of x .

However, α cannot just be set to ε because ∇ f (x) changes with x . Thus even though

f (x0αd 0)< f (x0) if α is small enough, this may not be the case if α is too large, since

∇ f (ξ)d 0 may become negative. Thus the value of α has to be selected such that

0<α≤ε which minimizes f (x0α d 0) . This can be achieved in a number of ways:

1. Set d f
d α=0 and solve for α . This can however only be done in simple cases.

2. Usually this kind of problem is solved using a computer and the value of α is obtained

by using some numerical search procedure, for example, a simultaneous method

mentioned. Here the interval 0≤λ≤ε is subdivided by a number of equally spaced

points αv=v∆α and f (x0αv d 0) is evaluated for each v . Then the αv yielding the

smallest value of f (x0αv d 0) is selected for α .

At this point the new direction and the step length have been calculated, therefore the new

solution is computed by x1=x0αd 0 . Once the value of x1 has been found, the new

solution point is obtained and the procedure is applied again as described above. The

value x0 is replaced by x1 and the values of d 1 ' ,ε and α are determined. The new solution

point x2 can then be computed. The procedure continues in this manner from a feasible

solution xk to a new feasible solution xk1 such that f ( xk 1)< f ( xk ) until a termination

criteria is reached.

Chapter 5 General Non-linear Programming Algorithms 110



The iterative procedure stops either when a feasible solution xk= x̂ has the property that

∇ f ( x̂) d̂≥0 , or a feasible solution xk is reached for which x=xkαd k is feasible for any

α>0 and f ( xkα d k )< f ( xk ) for all α>0 . At this point it is desirable to increase α to

infinity, so that |x|→∞ . This means that the solution of the problem is unbounded. It is

possible that neither of these two termination cases will be reached in a finite number of

steps [Had1964].

Consider now case 2 where it is possible that there exists no α>0 such that

xk 1=xkα d k is a feasible solution. If this happens then the current feasible solution is on

the boundary of the set of feasible solution and either one or more constraints and/or the

non-negativity restrictions will be violated if a move is made in the direction of the gradient

vector. In this case the principle for selecting the direction in which to move is modified so

that no constraint or non-negativity restriction is violated. The modification of the principle

will not be discussed here.

5.2.1 Zoutendijk's Method of Feasible Directions

This is another method that uses the gradient approach and was introduced by G.

Zoutendijk in 1960 [KKO1966] [BSS1993]. This method is used to solve non-linear

programming problems with linear constraints.

Consider the non-linear programming problem of the form

                                        Minimize   f ( x)
Subject to A x≤b

                                                             x≥0 .
The procedure starts from an initial feasible solution x0 such that A x0≤b and attempts to

find a new solution that gives a better value of f ( x) . To obtain the best possible direction

to the next solution, the method solves small linear or non-linear subprograms, for

example, by the simplex method. 

Given a feasible point xk , let M be the set of indices that represent the active constraints,

that is, a ' r xk=br for r∈M . The direction vector d k is determined by the solution to the

linear programming problem

                                 Minimize ∇ f (xk )d

Chapter 5 General Non-linear Programming Algorithms 111



Subject to a ' r d≤0 r∈M

                                                 ∑
r=1

n

|dr|=1

where d=(d1 , ... , dn ) . The equation ∑
r= 1

n

|dr|=1 is a normalizing equation that ensures a

bounded solution. The other constraints assure that the vector of the form xkαd k is

feasible for a sufficiently small α>0 . Subject to these conditions d is chosen to line up as

closely as possible with the negative gradient of f .

The overall procedure progresses by generating feasible directions and moving along them

to decrease the objective function. The transition from the kth iteration point xk to xk1 is

given by xk1=xkα d k . The step length is determined by computing the following line

search problem

Minimize   f (xkαd k )
Subject to  0≤α≤αmax ,

where the value of αmax is determined by

αmax ={ minimum{b̂i ⁄ d̂ i : d̂ i>0} if d̂ h0
∞ if d̂≤0

                      b̂=brAr xk , r∉M
                      d̂=Ar d k , r∉M .

At this point the new direction and the value of α have been obtained and therefore the

new point can be computed according to xk1=xkα d k . The process continues again

until ∇ f (xk )d=0 .

5.2.2 Gradient Method Variations

Many variations of the gradient based method have been developed. Very much like in the

variations of the simplex method, the basic idea of all gradient methods remains the same

with small variation on different selection criteria of the best direction in which to move from

the current feasible solution, or the calculation of the step length. These variations will not

be discussed here. Some of the variations of the gradient based method are: the

Lagrangian gradient method, Rosen's gradient projection method introduced in 1960 by J.

B. Rosen [KKO1966] and the method of feasible directions of Topkis and Veinott

introduced in 1967 [BSS1993].

Chapter 5 General Non-linear Programming Algorithms 112



5.3 Cutting Plane Methods

Another class of algorithms for solving non-linear programming problems use linear

approximation to find the solution. One of these methods is known as the Cutting Plane

method. These methods solve the non-linear programming problem by approximating the

non-linear function and the constraints with straight line segments. The linear problem is

then solved by using linear programming algorithms, for example, the simplex method. The

solutions to the linear problems should then converge to the solution of the original problem

[Lue1973]. Figure 5.2 illustrates a minimization problem of two variables with a non-linear

objective function and one non-linear constraint. 

Non-linear
objective function

c1

c2

c3

c4

S

L

Figure 5.2 Linear inequalities containing a non-linear feasible region

The lines c1 , c2 , c3 and c4 represent four artificially created boundaries (cutting lines). The

point S represents a true optimum and L represents the optimum to the linear problem with

the same objective function and the four linear constraints c1 to c4 . The idea is to create a

sequence of cutting planes, one at a time, so that L approaches S. The solution to the

problem is an approximation and will in most cases not be exact thus the procedure

terminates when L lies close to the optimal solution, that is, let L k be the kth solution then

the process terminates when L k -L k1≤ε . The value of ε is determined by a small positive

number that is specified before the start if the procedure. 

Chapter 5 General Non-linear Programming Algorithms 113



The Cutting Plane methods are only applicable to convex problems and are not very

efficient. Usually however, they are easy to implement. The cutting plane procedure will

now be introduced in more detail.

Consider a non-linear programming problem of the form

(5.3.1)
                                       Minimize   f ( x)

Subject to g ( x)≤0
                      x≥0

Provided that the objective function is non-linear, the non-linear problem must be converted

to a problem with a linear objective function and non-linear constraints. In order to do this

conversion a new variable xn1 is defined so that xn1≤ f (x) , that is  f (x)xn1≤0 .

This new constraint is then added to the set of constraints and the objective function is

replaced with xn1 . Thus we have the same problem with a linear objective function and

m1 non-linear constraints as follows

(5.3.2)

                                       Minimize   xn1

Subject to g ( x)≤0
                              f (x)xn1≤0

           x≥0

Provided that the objective function was already linear, this conversion is omitted. It can be

shown that the objective function and the Kuhn-Tucker conditions to the two

problems (5.3.1) and (5.3.2) are the same and therefore points that satisfy (5.3.1) are the

same as those that satisfy (5.3.2). Therefore the two problems have the same optimal

solution. The proof of this statement will not be given here [Mil2000].

The next step of this method is to construct the cutting planes. This is done by linearization

of the constraints expressed by using the first order Taylor's series approximation at the

current point. To illustrate this concept, consider one constraint g ( x)≤0 that depends on n
variables. Now consider a feasible point xk . Drop this point down to the surface of the

feasible region below the x1 , x2 , ... , xn plane and construct a plane that is tangent to the

surface at that point. This tangent plane is the first order Taylor's series linearization of

g (x) at the point xk . The constraint function g (xk ) is approximated for x in the

neighborhood of xk by

g (x)=g (xk )[∇ g (xk )] ' (xxk )

and therefore the linearization of the inequality constraint around xk is

Chapter 5 General Non-linear Programming Algorithms 114



g (xk )[∇ g (xk )] ' (xxk )≤0.

The cutting plane method now proceeds as follows:

Step 1 The first step is to find some initial point x0 . This point does not need to be

feasible. 
Step 2 Solve the linear problem in which each constraint is replaced by it's first order

Taylor series approximation. 
                Minimize   f ( x)

Subject to gi (x0)[∇ gi (x0)] ' (xx0)≤0 for i=1, ... , m
                                 x≥0
This can be done by using the simplex method. Denote this solution by x1 .

Step 3 The constraint that is most violated by x1 is now selected. This constraint is then

linearized around x1 and added to the set of linear constraints used in Step 2.

The resulting linear program is solved and the solution is denoted by x2 .
Step 4 Suppose that a sequence of solutions x0 , x1 , ... , xk has been found. Then the

procedure stops if gi (xk )≤ε , where ε is some small positive number that has

been predetermined before the start of the procedure. If however, there is a

constraint violated at xk , then the constraint is linearized and added to the

linear problem whose solution gave xk . The optimum is then found of this new

linear problem and denoted by xk1 . This process continues until the stopping

criteria has been reached.

This procedure will obtain the global minimum for the problem only if the objective function

and the constraints are convex functions of x .

5.4 Other Methods

Other methods which use approximation are, separable programming and the sequential

unconstrained technique. In separable programming the non-linear function is again

represented as a sum of several linear functions of a single variable each. The problem is

now linear and can be solved using linear techniques, for example the simplex method.

The solution is only an approximation to the original problem and its accuracy depends on

how well the approximating linear program represents the original non-linear problem. The

Chapter 5 General Non-linear Programming Algorithms 115



sequential unconstrained technique uses a different idea. Instead of approximating the

problem with linear problems it uses a series of unconstrained non-linear maximization or

minimization problems. This technique is also the approach that is used in many of the path

following interior point methods as it also uses a barrier function. 

The interior point method has become increasingly popular as it seems to work rather well

for most problems. This method was discussed in detail in Chapter 3 and Chapter 4 for

solving specifically the quadratic programming problem. Due to its popularity the method

has been modified to solve nonlinear programming problems [BSV2002].

Another class of problems that can be used for solving optimization problems are the

Genetic algorithms. Genetic algorithms are a class of search techniques that use  simplified

forms of the biological processes of selection. The basic idea of these algorithms is to

begin with a randomly selected initial population and evaluate the fitness of the members

and the fittest members are selected. The selected members are then used to produce a

new population. The old population is then replaced with the new population and again

tested for fitness. This process continues until the population is deemed fit enough. Genetic

algorithms itself is a large research area and a detailed explanation thereof does not fit

within the scope of this dissertation [Cha2002].  

5.5 Summary

This chapter briefly discussed a selection of algorithms for solving non-linear programming

problems. Since the quadratic programming problem is a non-linear programming problem

the algorithms used for solving non-linear programming can be used for solving quadratic

problems. This is also the reason for introducing these algorithms. The approach these

methods use to solve unconstrained problems, has been used to attempt to solve or at

least to find a local optimum for constrained optimization problems. The global optimum

can only be guaranteed if the problem is linear or if the objective function and the

constraints are convex functions.

One of the well know techniques for solving unconstrained optimization problems are the

gradient based methods. These methods are iterative procedures that attempts to find the

Chapter 5 General Non-linear Programming Algorithms 116



solution by moving towards the optimum from one solution point to another, which hopefully

improves the objective function value. This is done by calculating the direction (gradient)

and the step length in which to move towards the next feasible point. Many gradient

method variations have been developed one of which has been briefly introduced here, in

particular Zoutednijk's method of feasible direction. These variations differ in the

calculation of the direction and the step length.

Another technique for solving the non-linear programming problem is to approximate the

problem either with linear functions or a set of unconstrained problems. Cutting plane

methods and separable programming are techniques that use linear approximations and

the sequential unconstrained technique replaces the original problem with an

unconstrained but still non-linear problem.

Amongst other methods that can be used to solve non-linear programming problems is the

interior point method which falls into the class of barrier methods. This method, first

introduced in Chapter 3, is one of the most widely used methods for solving optimization

problems. Another technique for solving optimization problems are the genetic algorithms,

which itself is a wide research area.

Chapter 3 to 5 introduced a selection of algorithms for solving quadratic and general non-

linear programming problems. In the next chapter some of these algorithms will be selected

in order to compare the efficiency of some of these algorithms by using a selection of test

examples.

Chapter 5 General Non-linear Programming Algorithms 117



Chapter 6 

Evaluation

6.1 Introduction

In the previous chapters several algorithms for solving the quadratic optimization problem

were discussed. In this chapter a selection of these algorithms and their efficiency will be

compared.

The efficiency of an algorithm, depends on a number of factors. The first is the complexity

of the problem. This depends on the size of the programming problem, measured in terms

of the number of unknown variables and the number of constraints [Lue1973]. The size of

programming problems can be classified into three different types:

 Small scale problems, which have five or less variables and constraints;

 Intermediate scale problems, which have from five to a hundred variables and

constraints; and

 Large scale problems, for which the number of variables and constraints range from

a hundred to thousands and more.

Another factor is the level of complexity of the algorithm. This is determined by the difficulty

of the mathematical computations and the time required to compute the calculations at

each iteration. This factor also effects the amount of resources needed for the calculations.

These factors effect the efficiency of the algorithm in terms of the number of iterations and

the time it takes to obtain the optimal solution. In the following section a selection of

algorithms will be compared in terms of the complexity and the number of iterations it has

taken to obtain the solution.

6.2 Comparison of Algorithms

The efficiency of algorithms can be compared theoretically, by considering all computations

necessary for each iteration. The complexity of the computations can provide an indication

Chapter 6 Evaluation 118



of the efficiency of one algorithm compared with another. The theory, may provide an upper

bound or a worst case scenario, on the number of iterations an algorithm will need to obtain

the optimal solution. However, in many cases the solution is obtained in fewer iterations,

therefore the upper bound cannot conclusively be used to determine whether one algorithm

is better than another. Another way to compare the algorithms is to compare the number of

iterations required to solve the same set of problems. 

However, it is possible for an algorithm to obtain a solution in more iterations than another,

but in a shorter period of time. Therefore iterations alone are not necessarily an indicator of

efficiency and the amount of time taken to solve the given problem is also required.

From experience, it is known that the efficiency of an algorithm may vary from one problem

to another even if the size of the problem remains the same. For example, algorithm 1 can

solve a problem more efficiently than algorithm 2. It is possible that by changing some of

the constraints, without changing the size of the problem that algorithm 2 will be more

efficient than algorithm 1.

To further complicate matters, problems are usually solved using computers, therefore the

efficiency of an algorithm also depends on how well the algorithm was implemented and

other factors, such as the memory management of the operating system. Therefore it

cannot be said with certainty, that an algorithm will always be better than another, it is only

possible to generalize and state that one algorithm will usually be better than another.

The following sections will contain a theoretical comparison of some of the algorithms

discussed in the dissertation and a quantitative evaluation in terms of the number of

iterations. Two factors determined the selection of algorithms to be compared. First, is the

frequency of use of the algorithms in practice and second, the availability of software for

testing. As already mentioned Wolfe's method, the interior point method and the gradient

method are the most commonly used and implemented methods for solving quadratic

programming problems. Due to this popularity and the availability of software, these

algorithms were selected for comparison. There was no software available for any of the

remaining algorithms. Beale's algorithm and Theil-Van de Panne method were selected

because they are not variations of either the simplex method, the interior point method nor

Chapter 6 Evaluation 119



the gradient method and their comparison may provide information as to why these

methods are not widely used in practice. Beale's algorithm was selected for implementation

as it can solve a wider range of problems than Theil-Van de Panne and Dantzig's

algorithms, which will only be compared theoretically. 

6.2.1 Theoretical Comparison of Selected Algorithms

Wolfe's method

One of the most commonly used algorithms for solving quadratic programing problems is

Wolfe's algorithm. This algorithm modifies the simplex method for linear programming for

solving quadratic programming problems. It has been shown that the simplex method is an

exponential time algorithm. An n -dimensional feasible region has 2n vertices. In the worst

case of the simplex method, all the vertices will be visited and thus the optimum will be

found in exponential time [Win1995]. Many variations of the simplex method have been

implemented. These differ in the selection criteria for variables that will leave and enter the

basis or in the manner in which they solve the linear system produced by the Kuhn-Tucker

conditions [Boo1964]. It has been shown by M. J. Best [Bes1984] that many variations in

the simplex method are equivalent in the sense that they construct identical sequences of

iterates when applied to a common problem.

Wolfe's method and Dantzig's Method

One of the variations of the simplex method discussed in the dissertation is Dantzig's

algorithm. Both the Wolfe's algorithm and Dantzig's algorithm begin with the Kuhn-Tucker

conditions. Computationally, Dantzig's algorithm may have an advantage as it can solve

problems for which the matrix Q is positive semi-definite without any further modifications

unlike in Wolfe's algorithm, which uses the long form for solving such problems [VW1964].

In terms of iterations however, these algorithms are similar in the fact that, they use the

same simplex transformation to go from one tableau to the next. These algorithms differ in

the selection criteria for the variables that are to enter the basis and to leave the

basis [Boo1964]. Dantzig's algorithm may have an advantage over Wolfe's algorithm

provided that an initial basic feasible solution is immediately evident. However, if the initial

basic feasible solution is not available, another method, for example phase one of the

simplex method can be used to obtain this solution. Wolfe's method however, always uses

phase one of the simplex method to obtain an initial basic feasible solution. Both of these

Chapter 6 Evaluation 120



algorithms can be easily implemented as very few modifications of the simplex method for

linear programming are needed to turn the code into code for quadratic programming.

Wolfe's method and Beale's method

Beale's algorithm is similar to Wolfe's method, even though Wolfe's method uses Kuhn-

Tucker conditions and Beale's method does not. Both of these methods use simplex

transformation to compute the next solution. The main advantage of Wolfe's algorithm is

the ease of implementation as stated in the above paragraph. This is not the case with

Beale's method as it requires the calculation of matrix inverse and partial derivatives at

each iteration. Due to these reasons, the computations of Beale's method at each iteration

are more complex than Wolfe's method. The advantage of Beale's method is that

extensions of the algorithms are more easily developed and Beale's method can solve a

wider range of problems, specifically the non-convex case problems [Bea1959]. Wolfe's

method may however, be more efficient in terms of the number of iterations. Wolfe's

method requires m iterations at the beginning to eliminate the s-variables from the basis,

which corresponds in Beales' method of expressing Q as a function of non-basic variables

only. Then Wolfe's method requires at least nm further iterations to make all the wi non-

basic. Some of these iterations may not be needed in Beale's method provided that the first

trial solution is good. Beale's method however, may introduce free variables and therefore

a final solution cannot be obtained until all the free variables have been

removed [Bea1959]. Therefore, in terms of efficiency, Beale's algorithm and Wolfe's

algorithm will produce the same number of iterations provided that no free variables need

to be introduced during the computational procedure of Beale's method [DK1968].  

Theil-Van de Panne algorithm

The efficiency of Theil-Van de Panne algorithm depends largely on the size of the problem.

This method seems to work well as long as the constrained minimum satisfies few

constraints exactly [TV1960]. This is due to the fact that every constraint that is violated is

incorporated into the computation at the next iteration. At each iteration it must be verified

whether all constraints are satisfied or not. Provided that the number of constraints is small

this computation will not take much time, however, for large scale problems this procedure

could be inefficient. A large number of constraints causes another problem. The

calculations at each of the iterations require computing of the inverse of matrices, therefore

Chapter 6 Evaluation 121



the more constraints that are violated the larger the matrices become and the calculation of

the inverse becomes computationally expensive [TV1960]. It is possible that the initial

solution can satisfy all the constraints, at which point the optimal solution would be reached

in the first iteration, however, if this is not the case the procedure will only work well for

small scale problems or problems for which few constraints are violated. As soon as the

problems start to increase in size the likelihood of constraints being violated increases and

the efficiency of the algorithm drops.   

Wolfe's method and the interior point method

The most frequently used algorithms for implementation of commercially and freely

available software packages are the simplex method and the interior point method. This is

due to the fact that they work well in practice for solving a variety of problems. These

methods are also the most commonly compared methods for solving linear and quadratic

programming problems. It has been shown that the interior point methods may work better

for large scale problems with more than 100 000 constraints and variables, however for

smaller problems the simplex method works as well or better [Van2001]. In the worst case

the simplex method has exponential complexity, while the interior point method has

polynomial complexity. In practice however, the simplex method also has polynomial

complexity and therefore the theoretical difference does not have much

significance [Mil2000]. As discussed earlier (Section 3.2 and Section 3.4) the simplex

method finds the solution on the exterior of the feasible region while the interior point

method are in the interior. Provided that there is a unique solution both methods will find

the same solution however, for non-convex problems this may not be the case. Each

iteration of the interior point method is computationally more expensive then in the simplex

method as it requires the computation of an inverse. Much research has been done to find

a way of finding the inverse efficiently, so that the matrices are no longer inverted explicitly.

The inverse is calculated by solving a series of related triangular linear systems, which

involves finding lower triangular matrix. These methods can be implemented very efficiently

when dealing with sparse matrices [JB2003].

Simplex methods tend to hinder the efficiency of the algorithm when solving large,

degenerate problems. Such problems typically arise in transportation and scheduling

applications. The accompanying formulations are often very sparse thus making them

Chapter 6 Evaluation 122



prime candidates for interior point methods. When the formulations are dense, or in some

cases when only a few columns of the A matrix are dense, interior point methods are not

likely to perform well. Such problems nullify the efficiencies associated with solving

triangular systems. Dense problems, however, are not in general degenerate so simplex-

type methods are the better choice [JB2003].

As with simplex methods, there are many variations of the interior point method. Each of

these variations is been designed to improve the efficiency and speed of the currently

available implementations. Many articles are available comparing the efficiency of different

interior point methods, [VS1991], [UU2000], [Gor1999]. For example in an article on interior

point algorithms by R. J. Vanderbei and D. Shanno [VS1991], they compare two different

implementations of the interior point method with their implementation and show that their

methods outperforms the other implementations for both convex and non-convex problems.

The gradient methods

The gradient method is one of the oldest and simplest methods used for solving

optimization problems. The rate of convergence of the gradient methods depends on the

selection of the starting point and the size of the step length. If the size of the step length is

chosen too small the convergence rate will be slow, if the size of the step length is chosen

too large the iteration may overstep the optimum point. This could then happen repeatedly

and the method may not converge to a solution [Lue1973]. The convergence rate also

depends on the ratio of the lengths of the axes of the elliptical contours of f , that is, on the

eccentricity of the ellipsoid. This means that as the contours of f become more eccentric,

the convergence rate becomes slower [Lue1973]. An iteration of the gradient method is

computationally less expensive that an iteration for the other algorithms as it does not

require the calculation of the inverse of matrices or any other matrix operations like the

other methods. 

6.2.2 Quantitative Evaluation

As mentioned previously, it is not the purpose of this dissertation to formulate the quadratic

programming problem but rather to solve it, therefore random problems were generated by

the author, in order to obtain the quantitative data needed to compare the efficiency of the

algorithms. All the problems generated for evaluation are small scale, convex quadratic

Chapter 6 Evaluation 123



programming problems. The problems are small scale due to the fact that the software

available for testing did not allow for a uniform input of data, and the problems had to be

entered manually which would make entering problems with hundreds of variables an

extremely time consuming and error prone process. All the problems generated are given

in the form
Minimize f ( x)=c ' xx ' Q x

                              Subject to A x≤b
                                                  x≥0

and can be seen in Appendix C.1. It is also assumed that b≥0 .

One of the deliverables of this dissertation is to collect software, freely available in the

public domain, that can be used for solving quadratic programming problems. A trial

version of Xpress Solver developed by Frontline Systems [Fro2002] was used to evaluate

Wolfe's method and the gradient method. The gradient method to be compared is the

conjugate gradient method. A student version of Xpress IVE developed by Dash

Optimization [Das2002] was used to evaluate the interior point method. As mentioned

earlier, Beale's algorithm was selected for implementation and was implemented using the

Visual Basic programming language.

Since the problems generated for evaluating the algorithms are small scale problems they

can be solved in a very short period of time, typically in less than 0.2 seconds. Additionally,

it would be unrealistic to compare the time taken to solve the problem by commercial

applications with those implemented by the author as the time depends on how well an

algorithm was implemented. By comparing the time, the efficiency of the implementation

will also be compared rather than only the efficiency of the algorithm, which is not desired

result. For these two reasons, the evaluation will focus on the number of iterations and not

the time required to obtain the solution. In fact, even by comparing the number of iterations,

it cannot be concluded that one algorithm is more efficient than another. For example, an

iteration for algorithm 1 is less complex than for algorithm 2, however, algorithm 1 solves a

problem in say twice as many iterations as algorithm 2. Therefore, although algorithm 1

computed the solution in more iterations, the overall computations required may be the

same for both algorithm. As stated earlier, the gradient methods is a method for which one

iteration is less computationally complex than an iteration for the other methods. Table 6.1

shows the number of iterations observed in solving each of the problems. 

Chapter 6 Evaluation 124



   

Table 6.1 The comparison of iterations for different methods.

Number of Iterations

n m Wolfe's
Method

Beale's
Algorithm

Interior
Point

Method

Conjugate
Gradient
Method

Problem 1 3 3 5 3 5 10
Problem 2 4 3 6 4 6 14
Problem 3 4 4 5 5 6 10
Problem 4 5 2 6 5 6 11
Problem 5 5 4 4 6 4 7
Problem 6 6 5 6 10 6 11
Problem 7 7 4 8 8 8 16
Problem 8 8 5 5 5 5 10
Problem 9 9 6 6 6 6 16
Problem 10 10 7 9 12 9 16

Wolfe's algorithm, the interior point method and the gradient method produced the same

objective function values for all problems in Table 6.1. In Beale's algorithm some of the

solutions differed slightly in one or two decision variables, due to small rounding errors. 

As stated before, the approach used by Wolfe's algorithm and Beales' algorithm are similar.

Both methods use simplex transformations, however, Beale's algorithm requires the

computation of an inverse, several other matrix operations and the calculation of partial

derivatives at each iteration and thus making it more complex. The size of the matrices in

Beale's method is determined by the size of the problem, therefore for large scale problems

it is clear that Beale's method will have a much larger computational overhead compared to

Wolfe's method and the gradient method. From Table 6.1 it can be seen that Beale's

method and Wolfe's method required roughly the same number of iterations for most of the

problems. As stated previously, if Wolfe's method and Beale's method have the same

number of iterations it can be said that no free variables entered the basis of Beale's

method. However, this is not always the case, as it is possible that some of the variables

were equal to zero and therefore did not have to enter the basis as was the case with some

of the problems. 

The interior point method, similarly to Beale also requires the matrix inverse and other

matrix operations in every iteration. There are many articles available comparing Wofle's

Chapter 6 Evaluation 125



algorithm and the interior point method [Mil2000] [Van2001] [JB2003]. These articles show

that both of these methods work well in practice for most types of problems. As can be

seen in Table 6.1, both methods solve the problems in less than ten iterations, in fact

Wolfe's method and the interior point method solved all problems but one, in the same

number of iterations. As every iteration in the interior point method requires more

computations than Wolfe's method, it could be said that Wolfe's method will be more

efficient if the problem is solved with the same or less number of iterations than the interior

point method. However, as shown by R. J. Vanderbei [Van2001] the interior point method

seems to work better in practice for large scale problems.

From Table 6.1 it can be seen that the gradient method takes almost twice as many

iterations to obtain the solution as Wolfe's method and the interior point method. However,

one iteration of the gradient method requires fewer computations than an iteration of the

other methods, therefore this method is not necessarily less efficient. Also as mentioned

earlier, the rate of convergence of the gradient method depends on the initial starting point

and the size of the step length. A number of tests were run on the problems, by changing

the starting point for the algorithm and the results showed that if the starting point was

closer to the actual solution the convergence rate was faster. Similarly the further away the

starting point was from the actual solution the slower the convergence rate. Another test

that was run, was changing the size of the step length. The number of iterations in Table

6.1 were obtained with a step length of 0.0001. The set of problems was then run by

changing the size of the step length to 0.001 and 0.01. It was observed that the

convergence rate improved for some of the problems by 1 or 2 iterations. It is possible to

significantly improve the convergence rate of the gradient method by changing both the

initial starting point along with the step size. This however, could prove to be a time

consuming process as these values would have to be estimated individually for each of the

problems. Although the gradient method may have a slower convergence rate than Wolfe's

and the interior point methods, it remains a popular method due to its ease of

implementation and is often used as a reference to other techniques [Lue1973].

In conclusion, it has become clear why Wolfe's method, the interior point method and the

gradient method are used frequently in practice. Beales' method however, has not proven

to be very popular, due to its computational overhead. From the theoretical discussion and

Chapter 6 Evaluation 126



the results obtained in Table 6.1, it is difficult to conclude that one algorithm is better than

another, as the complexity of the iterations plays a mayor role in the efficiency of the

algorithm.

6.3 Available Software

There are many commercially available software packages for solving optimization

problems. These packages have been designed to handle large scale problems and

provide a wide range of features. Most of these packages however, are usually expensive.

Free packages are available for solving optimization problems, that can be downloaded

from the Internet. However, these packages are usually limited in their functionality and can

only solve specific types of problems. Most of the free packages have been designed for

teaching purposes and educational use.

Most of the available packages implement variations of the simplex method and the interior

point method to solve optimization problems as these methods have proved to work well in

practice. Some of the software packages available are given as follows:

 The Xpress IVE software developed by Dash Optimization [Das2002] has a selection

of algorithm that enables solving large scale linear and non-linear programming

problems. The software provides its own programming language with which a

problem can be specified. A free student version is available for download at the

Dash Optimization web site.

 Solver for Microsoft Excel is a package available from Frontline Systems [Fro2002].

The package provides add-ins for MS Excel, which provide a selection of algorithms

and other criteria to be selected for solving optimization problems. The advantage of

this package is that problems are specified using spreadsheets and wizards,

therefore no coding is required. This makes the package considerably easier to use.

 LANCELOT [Lan2002] is a free package written in Fortran for solving large scale

linear and non-linear programming problems.

 LOQO [Van2002] is a package written in C, implementing the interior point method,

for solving linear and non-linear programming problems. 

 GOAL [Mar2003] is a free optimization tool based on genetic algorithms. It allows

complex problems to be specified in Visual Basic Script.

Chapter 6 Evaluation 127



There are many other commercially available packages available for solving optimization

problems. A listing of many other software packages can be found on the following web site

plato.la.asu.edu/guide.html. 

6.4 Summary

The aim of this chapter was to provide a better understanding of the performance of

algorithms and how they are evaluated in practice. The algorithms were compared

theoretically and quantitatively by solving a number of convex quadratic programming

problems. 

The efficiency of algorithms can be determined by comparing various algorithms with

respect to each other in terms of the complexity of iterations, the number of iterations and

the time taken to obtain the solution. These characteristics are dependent on the algorithm

and the problem and therefore the efficiency of the algorithms will vary for different

problems. For this reason it difficult to conclude that one algorithm is better than another. In

general, it can only be said that one algorithm is more efficient than another for a specific

sample of practical problems.

In the theoretical evaluation the algorithms were compared by discussing the complexity of

the computations at each iteration and the convergence rate of the algorithm. From the

quantitative evaluation it was shown that Wolfe's method, Beale's method and the interior

point method work well for most of the test problems. It was shown, that although the

number of iterations for the gradient method was larger than for Wolfe's method and the

interior point method, this method may not necessarily be less efficient as an iteration for

the gradient method is less complex. It was also shown how the choice of the initial starting

point and the size of the step length influences the speed of the convergence rate of the

gradient method.

In addition to the evaluation of the algorithms, this chapter provided a brief survey of the

software available for solving quadratic programming problems. There are many free and

commercial software packages available capable of solving large scale optimization

Chapter 6 Evaluation 128



problems of various types. Most of the packages implement a variation of the simplex and

the interior point methods as these have proved to work well in practice.

Chapter 6 Evaluation 129



Chapter 7 

Summary and Future Research

7.1 Introduction

The goal of this dissertation was to provide a survey of quadratic programming algorithms.

A further goal was to select some of the algorithms and evaluate them for efficiency. The

primary motivation behind initiating this project was the importance of non-linear

optimization. Although linear programming is powerful for representation of many real world

situations, there are still many problems for which linear models are not sufficient, for

example, the fixed charge problem. This creates the need for non-linear models and for

algorithms capable of solving them. In order to restrict the scope of the dissertation, a

special case of non-linear programming, namely quadratic programming was selected as

the focus of the dissertation.

This chapter concludes the dissertation by reviewing the research conducted in this

dissertation and discussing areas for future research.

7.2 Summary of Research

Optimization is the process whereby we seek to find the best or optimal value of a function,

usually subject to certain constraints or restrictions. The function with it's restrictions is a

mathematical optimization model that represents certain aspects of the physical

environment [Ars2003]. Optimization problems arise in a wide variety of fields that include

science, engineering, economy and management. The theory of optimization attempts to

find solutions for these problems. This dissertation provides an overview of a selection of

algorithms for solving a particular type of optimization problem, the quadratic programming

problems. 

Chapter 2 provided an overview of the basic mathematical concepts necessary for

understanding the algorithms that were discussed in the further chapters. This chapter

Chapter 7 Summary and Future Research 130



discussed the criteria that are used to identify local and global minima and maxima and

points of inflection for a function of one and many variables for unconstrained and

constrained problems. An important result was established regarding convex and concave

functions, which plays a mayor role in obtaining the solution for optimization problems. It

has been established that if it is known that a function is convex or concave, then any local

minimum or maximum point obtained is the global minimum or maximum point. However, if

a function is neither convex nor concave, than the global optimum, nor in fact the local

optimum may never be established.  

Another important concept discussed in this chapter, was the Kuhn-Tucker conditions.

These conditions provide a set of necessary and sufficient conditions for optimality for

constrained problems and also provide the basis for many of the algorithms discussed in

the dissertation. The Kuhn-Tucker conditions reformulate a non-linear programming

problem to a set of linear equations with two non-linear equations. Provided that a solution

is found for the linear system of equations, that satisfies the two non-linear equations, the

solution for the original problem is obtained. The result suggests the possibility of solving

quadratic programming problems by making use of modified linear programming

algorithms.

In this chapter the general optimization problem was defined and specific cases of

optimization problems have been identified according to their type of the objective function

and constraints. These were: linear programming, quadratic programming and non-linear

programming. The quadratic programming problem has a quadratic objective function and

linear constraints and forms the focus of the dissertation.

Having established an understanding of the basic mathematical concepts, the next step

was to discuss the algorithms for solving quadratic programming problems. Chapter 3 gave

an overview of a selection of algorithms available for solving convex quadratic

programming problems. The selection of the algorithms was based on the popularity of an

algorithm and the availability of material. The algorithms were classified into three

categories, namely the active set methods, the ellipsoid methods and the interior point

methods. 

Chapter 7 Summary and Future Research 131



The active set methods search for the optimum on the exterior of the feasible region. The

idea of these methods is to add constraints for which a given criteria holds to an active set.

The constraints are added to and removed from the active set depending on whether they

satisfy the given criteria or not. One of the most widely used active set methods is Wolfe's

algorithm which was described in detail in Chapter 3. This method is based on Phase One

of the Two Phase simplex method for solving linear programming problems. It has been

developed in two forms: a short form and a long form.

There are many variations of this method available and most software packages that solve

quadratic programming problems implement a variation of Wolfe's algorithm. One of the

variations of Wolfe's algorithm, namely Dantzig's algorithm was discussed in the

dissertation. It was concluded that the primary distinction between the variations of Wolfe's

algorithm is in the selection criteria for choosing the variables that enter and leave the basis

and in the way the linear system obtained by the Kuhn-Tucker conditions is solved. 

Other active set methods discussed in the dissertation were Beale's method and the Theil-

Van de Panne procedure. Both Beale's method and Theil-Van de Panne algorithm do not

begin with the Kuhn-Tucker conditions. Beale's method uses similar criteria for selecting

the variables that enter and leave the basis as the simplex method and the same simplex

transformation rules for computing the new tableau. The procedure of Theil-Van de Panne

begins by obtaining a solution to the objective function without regard to any of the

constraints. The solution obtained is then used to check if any of the constraints have been

violated. If there are any violated a new solution point is obtained by incorporating each of

the constraints in the next iteration. 

Another type of method are the ellipsoid methods. These methods are not widely used and

it has been shown that they do not work well in practice. For this reason these methods

were not discussed in detail in this dissertation and are left for future research. 

The third type of method that has received much attention is the interior point method, first

proposed by N. K. Karmarkar [Mil2000] for solving linear programming problems. These

methods differ greatly from the active set methods as they search through the interior of the

feasible region rather than the exterior. These methods can be classified into two types:

Chapter 7 Summary and Future Research 132



affine scaling methods and path following methods. The affine scaling methods are no

longer the method of choice as they are believed not to be polynomial time

algorithms [Van2001] therefore the path following method was discussed in the

dissertation. The interior point methods have become very popular and like the simplex

method are implemented in most software packages.

Chapter 4 discussed a selection of algorithms for solving quadratic programming problems

for which the objective function is not necessarily convex nor concave. For this type of

problem the algorithms may not find the global optimum point, nor in fact, the local optimum

point, however, often any improvement in the objective function value is preferred above no

improvement at all. 

Beale's algorithm and the interior point method have been discussed in detail in Chapter 3

for solving convex quadratic programming problems. Both of these methods can be used to

obtain local minimum points for non-convex quadratic programming problems. Some

modifications to these algorithms was discussed in Chapter 4 that improves the chance of

obtaining the solution when solving non-convex quadratic programming problems.

Another algorithm that can be used to obtain local optimum points for non-convex quadratic

programming problems discussed in Chapter 4, is Keller's algorithm. This algorithm is a

generalization of the algorithm introduced by Dantzig and later by Van de Panne and

Winston. It begins with the Kuhn-Tucker conditions like many of the convex case

algorithms and then constructs a schema, similar to the simplex tableau. Keller's algorithm

then selects from three possible types of transformations to construct a new schema. The

choice of transformation depends on the characteristics of the current schema. A new

schema is constructed until a stopping criteria is reached.

Chapter 4 also briefly discussed a problem that frequently arises in optimization problems,

called the fixed charge problem. It was shown that the fixed charge problem (an integer

programming problem) can be converted to a non-convex quadratic programming problem,

which can be solved by the algorithms discussed in the dissertation. 

Chapter 7 Summary and Future Research 133



Chapter 5 briefly discussed a selection of algorithms for solving general non-linear

programming problems. These algorithms can be used to solve the quadratic programming

problem as it is a restricted case of non-linear programming problems. The approach used

by some algorithms for solving unconstrained problems has been used for algorithms for

solving non-linear programing problems. One such method is the gradient method, widely

used for solving unconstrained optimization problems.

The gradient method is an iterative procedure and searches for the minimum point by

moving in the direction of the largest negative gradient and calculates the length of the step

by which to move towards the next solution point. Many methods that use the gradient

approach have been developed. One of these, Zoutednijk's method of feasible direction

was briefly introduced in Chapter 5. The variations of the gradient methods differ in the

calculation of the direction and the step length in which to move to the next feasible point.

Another technique for solving the non-linear programming problem is to approximate the

problem with linear functions or a set of unconstrained problems. Cutting plane methods

and separable programming are methods that use such techniques. The cutting plane

method, discussed in Chapter 5, solves the non-linear programming problem by

approximating the non-linear function and the constraints with straight line segments, called

cutting planes. The linear problem that is constructed is then solved by using linear

programming algorithms, for example, the simplex method. The idea therefore, is to create

a sequence of cutting planes, one at a time, until the optimal solution is reached.

Other methods that can be used to solve non-linear programming problems are the interior

point method discussed in Chapter 3 and 4 and genetic algorithms. The genetic algorithms

were briefly mentioned in Chapter 5 as a solution method for solving non-linear

programming problems. Genetic algorithms themselves are a wide research area and

therefore do not fall within the scope of this dissertation.

Chapter 6 provided a theoretic and quantitative comparison of the efficiency of the

quadratic programming algorithms. The theoretical evaluation compared the algorithms by

discussing the complexity of the computations at each iteration and the maximum number

of iterations needed to obtain the solution. In the quantitative evaluation a number of

Chapter 7 Summary and Future Research 134



problems were compared in terms of the number of iterations needed to obtain the solution.

It was shown that Wolfe's method, Beale's method and the interior point method work well

for most of the test problems, however Beale's algorithm may not be a popular choice for

implementation due to its computational overhead. Although the number of iterations for

the gradient method was larger than for Wolfe's method and the interior point method, the

computations required at each iteration are considerably less than for the other methods,

therefore the gradient method is not necessarily less efficient. It was also shown how the

choice of the initial starting point and the size of the step length can improve or worsen the

convergence rate of the gradient method. From the theoretical discussion and the

quantitative results it can be seen that the efficiency of algorithms depends on the

characteristics of an algorithm and the problem and therefore the efficiency of the

algorithms will vary from one problem to another. For this reason it difficult to conclude that

one algorithm is better than another. In general, it can only be said that one algorithm is

more efficient than another for a specific sample of practical problems.

In addition to the evaluation of the algorithms, this chapter provided a brief survey of the

software available for solving quadratic programming problems. Many free and commercial

software packages are available capable of solving large scale optimization problems of

various types. Most of the packages implement a variation of the simplex and the interior

point methods as these methods have proved to work well in practice.

7.3 Future Research

Some of the possible projects for future research include the following:

 The ellipsoid methods have only been mentioned in this dissertation. The dissertation

could be extended with a detailed discussion on ellipsoid methods, providing

algorithms and discussions on why these methods do not work as well as the other

methods.

 Conduct a study on the genetic algorithms for solving quadratic programming

problems. Compare the efficiency of these algorithms with respect to the algorithms

mentioned in this dissertation, for solving quadratic programming problems and other

algorithms for solving general non-linear programming problems. Comparing the

efficiency of these algorithms to other algorithms that may or may not have been

Chapter 7 Summary and Future Research 135



mentioned in the dissertation, for solving non-convex quadratic programming

problems.

 There are many more methods that have not been discussed in this dissertation and

therefore it could be extended to incorporate other algorithms available for quadratic

programming.

 The execution of an algorithms could be represented graphically by using a diagram

similar to a flow chart diagram. Each computational step and the sequence of

execution could be represented in the diagram. This diagram can aid in the

understanding of how an algorithm works. By assigning some cost value to each

execution step in the diagram and recording the number of times each step was

executed in solving the problem, it would be possible to visualize the "performance"

of the algorithm. Further, the diagrams could be used to compare various algorithms

and the performance of a single algorithm across several problems.

Chapter 7 Summary and Future Research 136



Bibliography
[And1998] E. D. Andersen, Linear Optimization: Theory, Methods and Extentions,

Department of Management, Odense University, 1998.

[Ars2003] H. Arsham, Deterministic Modeling: Linear Optimization with Applications,
ubmail.ubalt.edu/~harsham/opre640a/partVIII.htm, Retrieved June 2003.

[Bea1959] E. M. Beale, On Quadratic Programming, Naval Research Logistics
Quarterly, Vol.6, 1959, pp.227-243.

[Bes1984] M. J. Best, Equivalence of Some Quadratic Programming Algorithms,
Mathematical Programming, Vol.30, 1984.

[BF1993] R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishing
Company, 1993.

[BJR+1997] A. B. Berkelaar, B. Jansen, K. Roos, and T. Terlaky, An Interioir-Point
Approach to Parametric Convex Quadratic Prgramming, 1997.

[Boo1964] C. G. Boot, Quadratic Programming: Algorithms, Anomalies, Applications,
North-Holland Publishing Company, 1964.

[BR2001] M. J. Best and K. Ritter, Quadratic Programming Active Set Analysis and
Computer Programs, 2001, Unpublished.

[Bri1989] L.  Brickman, Mathematical Introduction to Linear Programming and Game
Theory, Springer-Verlag New York Inc., 1989.

[BSS1993] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, John Wiley and Sons Inc., 1993.

[BSV2002] H.Y. Benson, D.F. Shanno, and R.J. Vanderbei, Interior Point Methods for
Nonconvex Nonlinear Programming: Complementarity Constraints,
Department of Combinatorics and Optimization, University of Waterloo,
2002.

[CC1978] Y. Y. Chang and R. W. Cottle, Least-Index Resolution of Degeneracy in
Quadratic Programming, Mathematical Programming, Department of
Operations Research, Stanford University, Vol.18, 1978, pp.127-137.

[Cha2002] P. Charbonneau, An Introduction to Genetic Algorithms for Numerical
Optimization, National Center for Atmospheric Research, 2002.

[CR1999] V. Chandru and M. R. Rao, 175 Years of Linear Programming, Resonance:
The Journal of Science Education, 1999.

Bibliography 137



[CS1970] L. Cooper and D. Steinberg, Introduction to Methods of Optimization on
Acoustics, Speech, and Signal Processing, W. B. Saunders Company,
1970.

[Das2002] Dash Optimization, XPRESS IVE, www.dashoptimization.com, Retrieved
February 2002.

[DK1968] H. C. De Kock, Sommige Metodes en Toepassings van Kwadratiese
Programmering (Some Methods and Applications of Quadratic
Programming), 1968.

[DK1975] G. de V. De Kock, The Fixed Charge Problem, 1975, Unpublished.

[Fou2001] R. Fourer, Nonlinear Programming Frequently Asked Question, www-
unix.mcs.anl.gov/oto/Guide/faq/nonlinear-programming-faq.html,
Optimization Technology Center Northwestern University, Retrieved
November 2001.

[Fro2002] Frontline Systems Inc., XPRESS Solver, www.solver.com, Retrieved
February 2002.

[FW1956] M. Frank and P. Wolfe, An Algorithm for Quadratic Programming, Naval
Research Logistics Quarterly, Princeton University, Vol.3, 1956, pp.95-
110.

[GGM+1984] P. E. Gill, N. I. M. Gould, W. Murray, M. A. Saunders, and M. H. Wright, A
Weighted Gram-Schmidt Method for Convex Quadratic Programming,
Mathematical Programming, Vol.30, 1984, pp.176-196.

[Gor1999] I. F. Gorodnitsky, An Extension of an Interior Point Mathod for Entropy
Minimization, Cognitive Science Department, UC of San Diego, Vol.3,
1999.

[Gou2000] N. Gould, Quadratic Programming Theory and Methods, Rutherford
Appleton Laboratory , Retrieved November 2000.

[Gou2002] N. Gould, Personal Communication, Rutherford Appleton Laboratory,
2002.

[GW2001] M. Gertz and S. Wright, Object-Orientated Software for Quadratic
Programming, Argonne National Laboratory, 2001.

[Had1962] G. Hadley, Linear Programming, Addison-Wesley Publishing Company
Inc., 1962.

[Had1964] G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley
Publishing Company Inc., 1964.

Bibliography 138



[HD1968] W. M. Hirsch and G. B. Dantzig, The Fixed Charge Problem, Naval
Research Logistics Quarterly, Vol.15, 1968, pp.413-424.

[Her1994] D. den Hertog, Interior Point Approach to Linear, Quadratic and Convex
Programming. Algorithms and Complexity, Kluwer Academic Publishers,
1994.

[Hou1960] H. S. Houthakker, The Capacity Method of Quadratic Programming,
Econometrica, Vol.28, 1960, pp.62-87.

[JB2003] P. A. Jensen and J. F. Bard, Interior Point Methods,
www.me.utexas.edu/~jensen/ORMM/supplements/methods/lpmethod/S4_i
nterior.pdf, Retriever May 2003.

[Kar1984] N. K. Karmarkar, A New Polynomial Time Algorithm for Linear
Programming, Combinatorica, Vol. 4, 1984, pp.373-395.

[Kel1973] E. L. Keller, The General Quadratic Optimization Problem, Mathematical
Programming, California State University, 1973.

[KKO1966] H. P. Kunzi, W. Krelle, and W. Oettli, Nonlinear Programming, Blaisdell
Publishing Company, 1966.

[KTZ1971] H. P. Kunzi, H. G. Tzschach, and C. A. Zehnder, Numerical Methods of
Mathematical Optimization, Academic Press, 1971.

[Lan2002] LANCELOT, CCLRC Daresbury Laboratory, www.dl.ac.uk/home.html,
Retrieved February 2002.

[Lue1973] D. G. Luenberg, Introduction to Linear and Nonlinear Programming,
Addison-Wesley Publishing Company Inc., 1973.

[Mar2003] A. Martin, GOAL, www.geocities.com/geneticoptimization/, Retrieved
November 2003.

[Mat2004] The MathWorks, Inc., LDL Factorization,
www.mathworks.com/access/helpdesk/help/toolbox/dspblks/ldlfactorization
.shtml, Retrieved January 2004.

[Mil2000] R. E. Miller, Optimization: Foundations and Applications, John Wiley and
Sons Inc., 2000.

[Sas1999] S.  Sastry, Nonlinear systems: Analysis, Stability and Control, Springer,
1999.

[Sim1975] D. M. Simmons, Nonlinear Programming for Operations Research,
Prentice Hall, Inc., 1975.

Bibliography 139



[Tah1997] H.  A. Taha, Operations Research An Introduction, Prentice-Hall, Inc.,
1997.

[TV1960] H. Theil and C. Van de Panne, Quadratic Programming as an Extention of
Conventional Quadratic Maximization, Management Science, Vol.7, 1960,
pp.1-20.

[UU2000] M. Ulbrich and S. Ulbrich, Superlinear Convergence of Affine-Scaling
Interior-Point Newton Methods for Infinite-Dimensional Nonlinear Problems
with Pointwise Bounds, SIAM Journal Control Optimization, Vol.38, 2000,
pp.1938-1984.

[Van1994] R. J. Vanderbei, LOQO: An Interior Point Code for Quadratic
Programming, Department of Operations Research, Princeton University,
1994.

[Van2001] R. J. Vanderbei, Linear Programming: Foundations and Extentions,
Department of Operations Research, Princeton University, 2001.

[Van2002] R. J. Vanderbei, LOQO, www.orfe.princeton.edu/~loqo/, Retrieved
February 2002.

[VB1994] L. Vandenberghe and S. Boyd, Semidefinite Programming, Information
Systems Laboratory, Stanford University, 1994.

[VBW2002] L. Vandenberghe, S. Boyd, and S. Wu, Determinant Maximization with
Linear Matrix Inequality Constraints, Information Systems Laboratory
Stanford University, Retrieved November 2002.

[VS1991] R. J. Vanderbei and D. F. Shanno, An Interior Point Algorithm for
Nonconvex Nonlinear Programming, Computational Optimization and
Applications, Statistics and Operations Research, Princeton University,
1991.

[VW1964] C. Van De Panne and A. Whinston, The Simplex and the Dual Method for
Quadratic Programming, Operations Research Quarterly, Vol.15, 1964,
pp.355-388.

[Win1995] W. L. Winston, Introduction to mathematical Programming, Duxbury Press,
1995.

[Wol1959] P. Wolfe, The Simplex Method for Quadratic Programming, Econometrica,
Vol.27, 1959, pp.382-398.

[Zan1969] W. I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-Hall
Inc., 1969.

Bibliography 140



Appendix A  
A.1 Taylor's Theorem

Taylor's Theorem for f(x)

Taylor's series for f (x) says that an approximation to the value of the function in a small

neighborhood of a particular point, x0 , can be found to any degree of accuracy, provided

the value of f (x) and its derivatives are known at x0 [Mil2000]. Denote by x0 a point near

x then Taylor's Theorem then can be used to express f (x) as

(A.1.1) f (x)= f (x0) f ' (x0)(xx0)
f '' (x0)

2!
(xx0)

2
f (n )(x0)

n!
(xx0)

nRn

where Rn is the remainder. As x→ x0 , Rn will become negligible as n becomes higher.

Subtracting f (x0) from both sides, the second order approximation is generated by

eliminating derivatives higher than two, giving

(A.1.2) f (x) f (x0) f ' (x0)(xx0)
f '' (x0)

2
(xx0)

2 .

A local minimum point has been identified at p when f (x) f ( p)≥0 . Let p=x0 .

Using (A.1.2) get the following

(A.1.3) f ' ( p)(x p) f '' ( p)
2

(x p)2≥0.

Since there are x's on either side of p , the sign of (x p) is positive when x> p and

negative when x< p . Therefore the term f ' ( p)(x p) must drop out, and this is only

possible if f ' ( p)=0 . The following term then remains

(A.1.4) f (x) f ( p)( 1
2) f '' ( p)(x p)2≥0.

1
2 (x p)2 is positive, so that f (x) f ( p)≥0 if and only if f '' ( p)≥0, which is the second

order necessary condition. The same kind of argument can be used for maximization.

Taylor's Theorem for f(x)

Taylor's series for a function f ( x) of n variables is given as follows. The first order

approximation is given as

(A.1.5) f ( x) f ( x0)=[∇ f ( x0)] ' ( xx0) .

Assume that the second partial derivatives of f ( x) exist and are continuous. Then the

second order approximation to f (x) f (x0) results from eliminating all differentials

above the second

Appendix A 141



(A.1.6) f ( x) f ( x0)[∇ f ( x0)] ' ( xx0)
1
2
( xx0) ' H ( x0)( xx0) .

A local minimum of f ( x) at p is defined by f ( x)≥ f ( p) for all x in some neighborhood

of p . In terms of the second order approximation in (A.1.6) the minimum condition can

be expressed as

(A.1.7) [∇ f ( p)] ' ( x p)1
2
( x p) ' H ( p)( x p)≥0.

with p=x0 . Now x p can be either positive or negative, therefore to achieve non-

negativity ∇ f ( p) must be zero. This means then in (A.1.7)

(A.1.8)
1
2
(x p) ' H ( p)(x p)≥0.

The left hand side is the quadratic form in ( x p) and so to satisfy the inequality H ( p)
must be positive semi-definite.

A.2 Newton's Method

This is an iterative approach for finding a solution for a non-linear system of equations

where each iteration consists of a solution of a linear system. at each iteration a new

estimate of the solution is obtained by improving the previous estimate. Consider first the

one dimensional case, that is, a function of one variable.

For a given function f (x) we want to find x such that f (x)=0 . It is not possible to find a

step direction of the optimal solution for a non-linear system, therefore it is approximated

by the first two terms of the Taylor's series expansion (see Appendix A.1). The Taylor

expansion of f (x) around some point x0 is given by

f (x) f (x0) f ' (x0)(xx0)
f '' (x0)

2
(xx0)

2 .

To get the minimum of the function we take the derivative and set it to zero, which gives

a linear system of equations which can be solved to give the step direction
0= f ' (x0) f '' (x0)(xx0)

                                x=x0
f ' (x0)
f '' (x0)

 .

Suppose that a sequence xk of estimates can be generated with the initial approximation

x0 , that is

Appendix A 142



(A.2.1) xk=xk1
f ' (xk1)
f '' (xk1)

 .

A new point xk is determined from xk1 until f (xk )≈0 .

Extending this idea in multiple dimensions. Consider the function f ( x) , then by

differentiating (A.1.6) we get

x=x0(H ( x0))
1∇ f ( x0) '

Generating the sequence in multiple dimensions 

(A.2.2) xk=xk1(H ( xk1))
1∇ f ( xk1) ' .

The current solution x is updated until the current solution f ( x)≈0 .

Appendix A 143



Appendix B   
B.1 Simplex Algorithm

The simplex algorithm is a pivoting algorithm for solving linear programming problems of

certain type. This procedure was invented by George Dantzig in 1947 and has since

become extremely useful [Bri1989] and has been adapted to solve certain class of

quadratic programming problems. It is therefore introduced here for reference

purposes [Had1964].

Before discussing the simplex method some concepts are first introduced that will serve

as a basis for understanding of the simplex method. Consider the linear programming

problem.
Minimize f ( x)=c ' x

(B.1.1)                                    Subject to A x≤b
            x≥0

In order to obtain the solution, the problem has to be written in standard form. A problem

is in standard form when all the constraints are equations except for the non-negativity

constraints, the right hand side element of each constraint equation is non-negative, all

the variables are non-negative and the objective function is either minimization or

maximization. 

At this stage the system (B.1.1) is not in standard form. It is possible that bi≤0 for some

i ,say i=q1, ... , m . The right hand side of these inequalities can then be made positive

by multiplying those inequalities by -1. The obtain the system in standard form, the

inequalities are then changed to equations by adding the appropriate slack or surplus

variables as follows: the inequality 

(B.1.2)                            ai j x j≤bi i=1,... , q , j=1,... , n

is changed to standard form by adding slack variables yi , i=1,... , q such that

(B.1.3)                            ai j x j yi=bi i=1, ... , q , j=1, ... , n ,

and the inequality

(B.1.4)                            ai j x j≥bi i=q1,... , m , j=1, ... , n

is changed by adding surplus variables yi , i=q1,... , m to obtain

(B.1.5)                            ai j x j yi=bi i=q1, ... , m , j=1, ... , n .

Appendix B 144



The standard form of the problem (B.1.1) is
              Minimize  f ( x)=c ' x  

Subject to ai j x j yi=bi i=1, ... , q , j=1, ... , n ,
                        ai j x j yi=bi i=q1, ... , m , j=1, ... , n .

                              x j≥0 j=1, ... , n.

Rewriting the standard form in matrix notation
Minimize f ( x)=c ' x

(B.1.6)                                    Subject to Â xD y=b̂
     x≥0

In problem (B.1.6) the matrix Â contains the same values as A for the first q rows and

negative values of A for the rows q1 to m . The matrix D is a diagonal matrix with q
entries +1 and q1 to m entries -1. The column vector b̂ has all entries positive. It will

therefore be assumed from this point onward that b̂i≥0 for all i , for if b̂i≤0 for some i
then the expression can always be written such that the right hand side is positive.

Once the problem has been written in standard form the simplex procedure now consists

of two parts. In the first part an initial extreme point is found. In the second part, a finite

sequence of extreme points is generated such that the objective function decreases or at

least remains constant with each new point generated. 

The initial feasible solution can be obtained in a number of ways. If the matrix D is the

identity matrix then the initial basic feasible solution can be obtained by setting

D y=xB=b̂ . Alternatively if m linearly independent column vectors of Â can be

identified, then these can be used as the initial basic feasible solution. Let for example,

B be a matrix whose columns are any m linearly independent columns from Â . The

initial basic solution is then given by xB=B1 b̂ . However, searching the matrix Â for

linearly independent vectors is a time consuming process. One of the simplest ways of

obtaining an initial feasible solution that is commonly used in practice, is to introduce m
variables s=(s1 , ... , sm) to all the constraints with the coefficient of 1. At this point the

initial feasible solution is such that s=b̂≥0 . These variables have no relevance or

meaning to the original problem and are merely added so that we can have a feasible

solution to start the simplex method. Therefore these variables are called artificial

variables. The artificial variables are then added to the constraints as follows:
Minimize f ( x)=c ' x

Appendix B 145



                                   Subject to Â xD ys=b̂
                                      x , s≥0

Although the artificial variables do not have to be added to the constraints for which the

b̂i s in (B.1.1) are positive, these problems are usually solved using computers,

therefore the artificial variables are added to all the constraints for simplicity. However, if

the artificial variables have been introduced, the problem is no longer the same as the

original problem and therefore the artificial variables have to be removed. This can be

done by the Two-Phase simplex method which will be introduced in Appendix B.2.

Consider now the problem for which there is no need to introduce artificial variables, that

is b̂≥0 . The initial basic solution is then given by xB=B1 b̂ . The second part of the

simplex method can now start. In order to begin the problem is arranged in a so called

simplex tableau, which is constructed as follows. 

ĉ1 ĉ2  ĉ j  ĉn

cB
Basic

Variable xB a1 a2 … a j … an

cB 1 b̂1 xB 1= y1 0 y11 y12  y1 j  y1 n

        
cB m b̂m xB m= ym 0 ym 1 ym 2  ym j  ym n

z z1ĉ1 z2ĉ2  z jĉ j  znĉn

The first column cB gives the coefficients of the variables in the basis. The second

column gives the variables that are in the basis. The third column xB gives the current

value of the variables in the basis. The rest of the columns a j list the values for all

variables Â as well as any artificial variables that have been added. The last row of

column xB is z=∑
i= 1

m

(cB i∗xB i) and the entries z jĉ j=∑
i= 1

m

(cB i∗yi j)ĉ j , j=1,... , n . mmm

mmmmm mmm

Once the initial tableau has been constructed the procedure continues as follows. 
Step 1 If all z jĉ j≤0 then the current basic feasible solution is optimal since any

increase of an independent variable could not decrease the value of the

objective function because of the non-negative z jĉ j [Mil2000] [KKO1966]. If

there are any z jĉ j>0 in the simplex tableau then proceed to Step 2.

Appendix B 146



Step 2 Consider now that there is at least one z jĉ j>0 , then the solution is not

minimal. Determine if every z jĉ j has a positive number in its column. If

yi j≤0 for all i and j , then the solution is unbounded. This means that the

problem has no finite minimum value of f ( x) , that is, f ( x) can be arbitrarily

decreased without violating the constraint x≥0 and the computational

procedure is complete. 
Step 3 Consider that there is at least one yi j>0 . Select the column with the largest

positive z jĉ j , that is, the column with the largest positive value as this will

produce the largest decrease. Call this column p . That is, select

z pĉp=max( z jĉ j) ,∃i yi p>0 . If there should be a tie, any one of the

columns can be selected, though it is a common practice to select the one

with the lower subscript [Had1962]. The variable in column a p is then selected

to enter the basis.
Step 4 The next step is to determine which variable is to be removed from the basis.

In the column a p determine r , such that

(B.1.7)
xB r

yr p
=min

i {xB i

yi p
, yi p>0},

that is, r denotes the row of the smallest ratio. This ration is called θ-ratio

[Bri1989]. If there is more than one θ-ratio the same then any one can be

selected (but as mentioned in Step 3, the one with the smallest subscript is

usually selected). Column r of the basis is then removed. This means that the

variable in the r th row of the column "basic variable" is removed and

replaced by a p . The entry yr p is referred to as a pivot.

Appendix B 147



Step 5 The next step is to compute the new solution and to construct a new tableau.

The transformation is done as follows. Pivot the tableau at the entry yr p

selected in the previous step. Thus column p replaces column r in the basis

and the following transformation is performed:

(B.1.8) ŷ i j= yi j yi p
yr j

yr p
j=0, ... , n, i=1, ... , m1, i≠r

(B.1.9) ŷr j=
yr j

yr p

Every row in the tableau can be transformed by using (B.1.8) except for row

r, where the subscript i refers to a row in the tableau. Row r is transformed

by using equation (B.1.9).
Step 6 The final step in the computation of the new tableau consists of changing the

cB and "basic variable" column. Only the r th entry of each of these columns

is changed. The number cB r is replaced by cp and the variable in the r th

position under "basic variable" is replaced by a p .

Once the new tableau is obtained, a check is done to see if the solution is optimal. If it is

not, the procedure in the above table is repeated again until the optimal solution is found

or the solution is found to be unbounded. Once the final tableau is obtained it contains all

the necessary information about the optimal solution. Under the column "basic variable"

are the variables in the optimal feasible solution. Under the column with the heading xB

are the values of the variables in the optimal feasible solution. The last entry of column

xB labeled z , is the value of the objective function of the problem (B.1.1).

B.2 Two Phase Simplex Method

As has been shown in Appendix B.1 it is frequently necessary to add artificial variables

s=(s1 , ... , sm) to easily find the initial basic feasible solution. In order to solve the original

problem all the artificial variables must be removed from the basis. This can be achieved

by assigning a large positive value (M) to each artificial variable, thus making it

unprofitable to have such variables in the basis. This procedure is called the big M

method however will not be discussed in any further detail.

Appendix B 148



Another method of treating artificial variables has been developed by Dantzig, Orden and

others at the RAND Corporation. They developed a method called the Two-Phase

method [Had1962].

The general idea of the two phase method is to in Phase One use the simplex method to

remove all the artificial variables from the basis. Phase Two of the method is to minimize

the objective function of the original problem starting from a basic feasible solution which

either contains no artificial variables or some artificial variables at a zero level. 

In Phase One the coefficient value cB assigned to the artificial variables is 1 and for all

the remaining variables 0. In Phase One all the artificial variables s must be eliminated

from the basis, that is, ∑ s=0 . This is done with the usual simplex method described in

Appendix B.1 above. At the end of Phase One three cases are possible.

Case 1 If ∑ s>0 then the original linear programming problem has no feasible

solution as one of the artificial variables appears in the basis at a positive

level.
Case 2 If ∑ s=0 and there are no artificial variables in the optimal Phase One basis

then all the columns corresponding to the artificial variables can be removed

from the tableau. The original objective function is now combined with the

constraints in the Phase One tableau which yields Phase Two.
Case 3 If ∑ s=0 and there is at least one artificial variable in the Phase One basis

the optimal solution to the original problem can be found if at the end of

Phase One all non-basic artificial variables are removed from the tableau and

any variable from the original problem that has a negative coefficient in Row 0

is also removed. 

When Phase One results in Case 2 or 3 we go to Phase Two. In Phase Two the actual

values ĉ j are assigned to each legitimate variable and 0 to each artificial variable that

may appear in the basis at zero level. The function to be optimized in Phase Two is the

actual objective function f ( x) . The first tableau of Phase Two is the last tableau of

Phase One with the only difference that the last row z jĉ j must be altered to take

account of the change of the values ĉ j .

If Phase One ends in Case 2 then the usual procedure follows to find the variable to

enter and to leave the basis. If Phase One ends in Case 3 then if yi j=0 for all j and for

Appendix B 149



i corresponding to the column containing the artificial variable, the row can be deleted

from the tableau. The procedure from Appendix B.1 is then followed to determine which

variables leave the basis. 

If yi p>0 for at least one i then instead of removing some legitimate variable, one of the

artificial variables is removed. This will ensure that the artificial variables will never

become negative. If Phase Two requires no pivots then the optimal solution has been

found.

B.3 Perturbation Technique

Consider the maximization problem

(B.3.1) Minimize f ( x)=c ' x1
2 x ' Q x

                          Subject to A x≤b
                                             x≥0.

The matrix Q may be semi-definite. Assume that this problem has a solution. If the

solution is not unique, consider the solution with the smallest norm (length). This solution

will be unique because the solution space is convex. Let x̂ be a vector of minimal length

solving (B.3.1). Thus
f ( x̂)≥ f ( x) for all { x | A x≤b }

and if y is a vector such that f ( y)= f ( x̂) and A x≤b ,
x̂ ' x̂< y ' y .

Consider the perturbation problem of maximizing

(B.3.2)
   f ε( x)=c ' x1

2 x ' (Qε I ) x
              Subject to A x≤b
                                 x≥0

where ε>0,ε→0 . Whenever the solution to (B.3.2) exists, it will be unique. Denote x̂ε

for this solution. The aim is to prove that

(B.3.3) lim
ε→ 0

x̂ε= x̂ .

That is, the solution of the slightly perturbed definite problem is arbitrarily close to the

solution with the smallest norm of the semi-definite problem. First it must be shown that

(B.3.4) lim
ε→ 0

f ε( x̂ε)= f ( x̂)

that is, the maximum value of the objective function of the two problems is, in the limit,

the same. First observe that for all vectors x

Appendix B 150



(B.3.5) f ε ( x)= f ( x)1
2 ε x ' x ,

as follows from (B.3.2). Hence

f ε( x̂ε)= f ( x̂ε)
1
2 ε x̂ε ' xε≤ f ( x̂)1

2 ε x̂ε ' xε≤ f ( x̂)

and

f ε( x̂ε)≥ f ε( x̂)= f ( x̂)1
2 ε x̂ ' x .

The desired conclusion (B.3.4) follows by letting ε approach zero. Next it will be shown

that the points x̂ε form a bounded set for ε>0 , by proving that ( x̂ε x̂) ' ( x̂ε x̂)≤2 x̂ ' x̂ .

Let x̂∈F and x̄∈F , where F={ x| A x≤b } . Then for any 0≤λ≤1

xλ=(1λ) x̂λ x̄∈F

for A xλ=(1λ) A x̂λ A x̄≤(1λ)bλb=b . Furthermore, for all xλ

f ( xλ)=(1λ) f ( x̂)λ f ( x̄)1
2 (λλ2)( x̂ x̄) ' Q ( x̂ x̄) .

Using this result with λ=1
2 gives

f ε(
1
2 x̂ε

1
2 x̂)=1

2 f ε( x̂ε)
1
2 f ε( x̂)1

8 ( x̂ε x̂) ' (Qε I )( x̂ε x̂)≤ f ε ( x̂ε) .

Using the result and (B.3.5) yields
1
8 ( x̂ε x̂) ' (Qε I )( x̂ε x̂)≤ f ε( x̂ε)

1
2 f ε( x̂ε)

1
2 f ( x̂) 1

4 ε x̂ ' x̂

=1
2 [ f ε( x̂ε) f ( x̂)] 1

4 ε x̂ ' x̂≤ 1
4 ε x̂ ' x̂ .

Because ( x̂ε x̂) ' Q ( x̂ε x̂)≥0 , we have
1
8 ε( x̂ε x̂) ' ( x̂ε x̂)≤ 1

4 ε x̂ ' x̂

or 
( x̂ε x̂) ' ( x̂ε x̂)≤2 x̂ ' x̂ .

To conclude the argument (B.3.3) will be proved. Suppose that (B.3.3) does not hold.

Then there is a convergent sequence x̂ε1
, x̂ε2

, ... , with ε1>ε2 ...→0 and such that

lim
n →∞

x̂εn
= y≠ x̂ .

Since f ε(x) is a continuous function in x and ε it follows

lim
n →∞

f εn
( x̂εn

)=lim
ε→ 0

f ε( x̂ε)= f ( y) .

From (B.3.4) it is known that

lim
ε→ 0

f ε( x̂ε)= f ( x̂)

hence f ( x̂)= f ( y) . Because y satisfies A x≤b it can be concluded that y≠ x̂ is a

solution to (B.3.1). By our choice of x̂ we have y ' y> x̂ ' x̂ . A number N can then be

Appendix B 151



picked so large that for all n>N we have x̂εn
' x̂εn

> x̂ ' x̂ . This leads to the following

contradiction

f εn
( x̂εn

)= f ( x̂εn
)1

2 εn x̂εn
' x̂εn

< f ( x̂)1
2 εn x̂ ' x̂= f εn

( x̂)≤ f εn
( x̂εn

) .

Thus the result (B.3.3) has been established.

B.4 Dantzig's Algorithm – Example 2

In the following example, the matrix Q is positive semi-definite.

Minimize   f ( x)=3 x14 x2x3
1
2 (x12 x2x3)

2

Subject to x12 x2x3≤4
                 x1 , x2 , x3≥0

The initial tableau is given as:

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω1 -3 -1 -2 1 0 1 0 0 -1

ω2 -4 -2 -4 2 0 0 1 0 -2

ω3 -1 1 2 -1 0 0 0 1 -1

ξ4 4 1 2 1 1 0 0 0 0

This tableau is a standard tableau. Since ω2 is the most negative, ξ2 enters the basis

and ω2 leaves the basis since 4
4<

3
2 and 4

4<
4
2 . 

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω1 -1 0 0 0 0 1 -1/2 0 0

ξ2 1 1/2 1 -1/2 0 0 -1/4 0 1/2

ω3 -3 0 0 0 0 0 1/2 1 -2

ξ4 2 0 0 2 1 0 1/2 0 -1

This tableau is again in standard form. Here ξ3 enters the basis and ξ4 leaves the basis.

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω1 -1 0 0 0 0 1 -1/2 0 1

ξ2 1 1/2 1/2 1 0 1/4 0 -1/8 0 1/4

ω3 -3 0 0 0 0 0 1/2 1 -2

ξ3 1 0 0 1 1/2 0 1/4 0 -1/2

Appendix B 152



At this point the tableau is non-standard since ξ4 and ω4 are both non-basic. In this case

ω4 must enter the basis. The ratio is computed and clearly ω3 leaves the basis to give

the following tableau.

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω1 -1 0 0 0 0 1 -1/2 0 0

ξ2 1 1/8 1/2 1 0 1/4 0 -1/16 1/8 0

ω4 1 1/2 0 0 0 0 0 -1/4 -1/2 1

ξ3 1 3/4 0 0 1 1/2 0 1/8 -1/4 0

The tableau is standard again. ξ1 enters the basis and ξ2 leaves the basis.

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω1 -1 0 0 0 0 1 -1/2 0 0

ξ1 2 1/4 1 2 0 1/2 0 -1/8 1/4 0

ω4 1 1/2 0 0 0 0 0 -1/4 -1/2 1

ξ3 1 3/4 0 0 1 1/2 0 1/8 -1/4 0

Here again the tableau is non-standard since both ξ2 and ω2 are non-basic. ω2 must

enter the basis and ω1 leaves the basis.

Basic
Variable xB ξ1 ξ2 ξ3 ξ4 ω1 ω2 ω3 ω4

ω2 2 0 0 0 0 -2 1 0 0

ξ1 2 1/2 1 2 0 1/2 -1/4 0 1/4 0

ω4 2    0 0 0 0 -1/2 0 -1/2 1

ξ3 1 1/2 0 0 1 1/2 1/4 0 -1/4 0

Since all the xB are positive the final solution has been reached at ξ1=x1=2 1
2 , ξ2=x2=0

and ξ3=x3=1 1
2 . The final value of f (x) decreases from each tableau as follows: 0; -2;

-5; 6 1
2 ; -8; 8 1

2 .

B.5 Basic Theorem

Suppose that r is added to the set of binding constraints ( S becomes Sr ) then λS as

given in (3.2.4) becomes

(B.5.1) λSr=PSr
1 ( ÂSr x∅b̂Sr)

where

Appendix B 153



(B.5.2) PSr= ÂSr Q1 Â ' Sr=[ ÂS

Âr]Q1[ Â ' S Â ' r]=[PS p
p ' γ]

so that PS=ÂS Q1 Â ' S , p '=Âr Q1 Â ' S and γ=Âr Q1 Â ' r . To compute λSr we must

first compute PSr
1 , hence

(B.5.3) PSr
1 =[PS

1
PS

1 p p ' PS
1

γ p ' PS
1 p


PS

1 p
γ p ' PS

1 p


p ' PS

1

γ p ' PS
1 p

1
γ p ' PS

1 p
].

As we are interested in the signs of λSr , the Lagrangians associated with the newly

created constraint  which is the last element of (B.5.1). Therefore using (B.5.3)

(B.5.4) λr
Sr=[ p ' PS

1

γ p ' PS
1 p

1
γ p ' PS

1 p][ ÂS x∅b̂S

Âr x∅b̂r
].

Now using (3.2.4) the expression can be worked out

(B.5.5)

λr
Sr= 1

γ p ' PS
1 p

[ p ' λS( Âr x∅b̂r)]

                           = 1
γ p ' PS

1 p
( Âr xSb̂r)

Clearly the scalar 
1

γ p ' PS
1 p in (B.5.5)is positive as it is a diagonal element of the

inverse of a positive definite matrix. From (B.5.5) the sign of λr
Sr depends on the sign of

Âr xSb̂r , such that whenever Âr xS>b̂r then λr
Sr>0 ; whenever Âr xS=b̂r then

λr
Sr=0 and whenever Âr xS<b̂r then λr

Sr<0 and vice versa. This proves statements

(1), (2) and  (3).

To prove (1'), (2') and (3') the argument can be reversed. Start with a set S, t∈S where t

is the last element in S . Let the vector λS and λt
S be known, which means that PS

1 is

known as well. Deleting t from S we can compute λSt and xSt . This requires the

knowledge of PSt
1 which can be worked out similarly as (B.5.3). Carrying out the

computations the following result is obtained

(B.5.6) λt
S=δ( Ât xStb̂t)

where δ is the last diagonal element of PS
1 . Because PS

1 is positive definite δ is
positive. We can therefore conclude that λt

S {<,=,>}0 , which implies
Ât xSt {<,=,>} b̂t . This completes the proof.

Appendix B 154



B.6 Theil-Van de Panne - Example 2

This example is given here to show how the Theil-Van de Panne procedure works in

more detail. 

(B.6.1) Minimize f ( x)=x12 x2x3
1
2 (x1

22 x2
24 x3

24 x2 x3)

          Subject to x1 + x2 + x3 ≤ 10 (1)
                       2 x1 + 3 x3 ≤ 11        (2)
                 2 x1 + 2 x2  5 x3 ≤13    (3)

                                      x1≤0  (4)
                                      x2≤0 (5)
                                      x3≤0 (6)

For the problem (B.6.1)

c=[ 1
2
1] , Q=[1 0 0

0 2 2
0 2 4] and Q1=[1 0 0

0 1 1
2

0 1
2

1
2
]

The first step is to calculate x∅ .

(B.6.2) x∅=Q1 c=[
1

5
2
3
2
]

Using the result of (B.6.2) the vector x∅ violates constraints (3) and (4). Next calculate all

one element sets S={3}and { 4}  , that is x3 and x4 .  

x3=x∅Q1 Â ' 3(A3Q1 Â ' 3)
1( Â3 x∅b̂3)

=[
29
21
65
21
69
21
]

with the associated Lagrangian

λ3
3= 25

21
.

The vector x3 violates constraint (2).

Appendix B 155



x4=x∅Q1 Â ' 4( Â4Q1 Â ' 4)
1( Â4 x∅b̂4)

=[
0
5
2
3
2
]

with the associated Lagrangian

λ4
4=1 .

The vector x4 violates constraint (3). Next evaluate all the two element sets x3, 2 and x4, 3

.

x3, 2=x∅Q1 Â ' 3, 2( Â3, 2Q1 Â ' 3, 2)
1( Â3, 2 x∅b̂3, 2)

=[1
2
3]

with the associated Lagrangians

λ2
3, 2= 527

525  and λ3
3, 2= 62

25 .

The vector x3, 2 is feasible since none of the constraints are violated. At this point the

vector x3, 2 is also the optimal solution since both the Lagrangians are positive. Also as

stated previously the feasible vector xS is optimal in and only if for all h∈S the vector

xSh violates constraint h . Therefore in the above example x3, 2 is the solution, because

x3, 23=x2 violates constraint (3) as well as x3, 22=x3 violates constraint (2). There is

now no need to go any further as the optimal solution has been found.

It is possible that a solution vector is found that is not optimal before the optimal vector is

found. This is not the case here since the optimal solution has already been found, but in

order to show this we must continue the procedure. Thus the next vector is calculated.

x4, 3=x∅Q1 Â ' 4, 3( Â4, 3Q1 Â ' 4, 3)
1( Â4, 3 x∅b̂4, 3)

=[
0

331
100
392
100
]

with associated Lagrangians

λ3
4, 3= 21

20  and λ4
4, 3= 87

420 .

Appendix B 156



The vector x4, 3 violates constraint (2) therefore the vector x4, 3, 2 - a three element set –

has to be evaluated.

x4, 3, 2=x∅Q1 Ā ' 4, 3, 2( Ā4, 3, 2Q1 Ā ' 4, 3, 2)
1( Ā4, 3, 2 x∅b̄4, 3, 2)

=[
0

267
100
367
100
]

with the associated Lagrangians

λ2
4, 3, 2= 342

25 , λ3
4, 3, 2= 3591

1250  and λ4
4, 3, 2=18

25 .

As can be seen the vector x4, 3, 2 is also feasible but since has one of the associated

Lagrangians negative it is not an optimal solution. It can also be shown that x4, 3, 2 is not a

solution, because x4, 3, 24=x3, 2 does not violate constraint (4).

Appendix B 157



Appendix C 
C.1 Test Examples

All the problems below are convex quadratic programming problems and are written in

the following form:
Minimize f ( x)=c ' xx ' Q x

                            Subject to A x≤b
                                                x≥0.

Problem 1

Minimize f ( x)=3 x12 x25 x3(6 x1
23 x2

23 x3
24 x1 x2x2 x3)

Subject to 5 x18 x24 x3≤26
2 x12 x23 x3≤14
x24 x3≤12
x1 , x2 , x3≥0

Problem 2

Minimize f ( x)=0.2 x11.4 x20.5 x30.8 x4( 2 x1
20.5 x2

2x3
21.2 x4

2

x1 x20.9 x1 x40.4 x2 x31.2 x3 x4 )

Subject to x10.5 x20.2 x30.6 x4≤6
0.1 x10.25 x20.4 x3≤1.5
0.7 x10.55 x20.4 x4≤3
x1 , x2 , x3 , x4≥0

Problem 3

Minimize f ( x)=20 x114 x20.5 x38 x4( 8 x1
212 x2

26 x3
211 x4

2

3 x1 x26 x1 x32 x1 x44 x2 x34 x2 x41 x3 x4 )

Subject to x12 x2x32 x4≤12
5 x15 x22 x37 x4≤30
x16 x24 x4≤7
3 x17 x4≤13
x1 , x2 , x3 , x4≥0

Appendix C 158



Problem 4

Minimize f ( x)=10 x17.5 x28.2 x34 x45 x5( 4.4 x1
26 x2

26 x3
23 x4

2

5.5 x5
24.8 x1 x26 x1 x33.8 x1 x42 x1 x52.4 x2 x36.7 x2 x4

4 x2 x5x3 x42.9 x4 x5 )

Subject to x10.2 x21.7 x30.4 x40.1 x5≤8.8
1.6 x12 x41.4 x5≤15
x1 , x2 , x3 , x4 , x5≥0

Problem 5

Minimize f ( x)=2.25 x11.75 x21.25 x30.85 x42.45 x5( 2.45 x1
21.25 x2

2

0.95 x3
21.15 x4

21.15 x5
22.75 x1 x33.05 x1 x50.05 x2 x4

2.25 x2 x51.65 x3 x40.15 x3 x51.95 x4 x5 )

Subject to 11 x112 x2x38 x5≤57
5 x27 x39 x45 x4≤39
17 x121 x315 x5≤184
13 x17 x420 x5≤92
x1 , x2 , x3 , x4 , x5≥0

Problem 6

Minimize f ( x)=0.125 x10.55 x22.224 x31.372 x40.933 x51.151 x6

( 1.1 x1
21.12 x2

20.5 x3
21.21 x4

21.62 x5
20.4 x6

2x1 x2

8 x1 x32 x1 x50.23 x2 x33.47 x2 x50.7 x2 x64 x3 x4

9 x4 x56.4 x4 x6x5 x6 )

Subject to x12 x22 x34 x4≤31
2 x24 x36.5 x42 x53 x6≤24
3 x10.5 x22 x32 x42.5 x54 x6≤12
0.5 x1x22 x34 x42 x52 x6≤21
5 x12 x2x56 x6≤9
x1 , x2 , x3 , x4 , x5 , x6≥0

Appendix C 159



Problem 7

Minimize f ( x)=6 x1x22 x3x44 x5x63 x7( 2 x1
2x2

22 x3
2x4

2

4 x5
23 x6

2x7
22 x1 x3x2 x73 x3 x52 x5 x72 x6 x7 )

Subject to 12 x15 x22 x313 x42 x62 x7≤350
14 x2x34 x45 x523 x7≤280
4 x12 x3x45 x55 x6≤400
2 x23 x49 x511 x63 x7≤235
x1 , x2 , x3 , x4 , x5 , x6 , x7≥0

Problem 8

Minimize f ( x)=8 x122 x213 x318 x428 x514 x67 x7x8( 7 x1
2

6 x2
23 x3

25 x4
28 x5

24 x6
24 x7

27 x8
212 x1 x220 x1 x4

16 x1 x512 x1 x614 x2 x318 x2 x525 x2 x635 x2 x7

32 x3 x48 x3 x616 x3 x812 x4 x512 x4 x63 x5 x88 x7 x8 )

Subject to 0.5 x10.8 x20.4 x40.8 x5≤20
0.8 x10.2 x21.2 x30.8 x41.8 x51.3 x70.8 x8≤40
0.2 x11.2 x20.6 x30.2 x40.7 x50.4 x61.2 x7≤25
0.2 x30.2 x40.8 x71.2 x8≤30
0.6 x12.1 x20.2 x31.2 x6≤15
x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8≥0

Problem 9

Minimize f ( x)=x12 x21.2 x30.5 x41.5 x52.5 x63 x7x82 x9( 2 x1
2

x2
24 x3

23 x4
2x5

22 x6
2x7

2x8
2x9

24 x1 x35 x1 x42 x1 x7

4 x1 x98 x2 x4x2 x63 x2 x8x3 x60.5 x3 x82.5 x4 x5

4 x4 x7x4 x90.5 x5 x62 x5 x74 x6 x7x6 x86 x8 x9 )

Subject to 5 x16 x3x414 x52 x6x73 x8x9≤85
4 x1x22 x42 x64 x8≤87
8 x2x44 x52 x72 x8≤149
x13 x22 x53 x7x9≤53
2 x15 x24 x36 x5x65 x73 x82 x9≤68
5 x33 x42 x63 x7x9≤72
x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9≥0

Appendix C 160



Problem 10

Minimize f ( x)=0.25 x12 x20.5 x30.2 x47 x5x6x7x82 x90.05 x10

( x1
2x2

2x3
2x4

2x5
2x6

2x7
2x8

2x9
2x10

2 2 x1 x26 x1 x3

x1 x41.99 x1 x63 x1 x10x2 x56 x2 x75.1 x2 x8x2 x9

1.11 x2 x100.045 x3 x43.5 x3 x71.5 x3 x92.5 x4 x9

1.5 x4 x10x5 x6x5 x70.98 x6 x81.12 x7 x90.9 x7 x10

x9 x10 )

Subject to 1.5 x14.5 x33 x59 x72 x9≤23
2 x21.5 x40.2 x60.4 x8x10≤9
3 x213 x57.7 x61.4 x9≤35
6 x13.8 x54.9 x10≤48
x20.5 x33 x42 x7≤19
x316 x44.1 x62.2 x84.4 x95 x10≤77
27 x125 x433 x516 x716 x9≤225
x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10≥0

Appendix C 161



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


