
Department of Computer Science & Information Systems
Nelson Mandela Metropolitan University

Assessing Program Code
through Static Structural Similarity

Kevin Alexander Naudé

January 2007

Supervisor: Prof. Jean Greyling
Co-supervisor: Mr. Dieter Vogts

Submitted in partial fulfilment
of the requirements for the degree

Magister Scientiae
in the Faculty of Science at the

Nelson Mandela Metropolitan University

©2007 Kevin Alexander Naudé

Abstract

Learning to write software requires much practice and frequent assessment. Conse-
quently, the use of computers to assist in the assessment of computer programs has
been important in supporting large classes at universities. The main approaches to the
problem are dynamic analysis (testing student programs for expected output) and static
analysis (direct analysis of the program code). The former is very sensitive to all kinds
of errors in student programs, while the latter has traditionally only been used to assess
quality, and not correctness.

This research focusses on the application of static analysis, particularly structural
similarity, to marking student programs. Existing traditional measures of similarity are
limiting in that they are usually only effective on tree structures. In this regard they do
not easily support dependencies in program code. Contemporary measures of structural
similarity, such as similarity flooding, usually rely on an internal normalisation of
scores. The effect is that the scores only have relative meaning, and cannot be
interpreted in isolation, ie. they are not meaningful for assessment. The SimRank
measure is shown to have the same problem, but not because of normalisation. The
problem with the SimRank measure arises from the fact that its scores depend on all
possible mappings between the children of vertices being compared.

The main contribution of this research is a novel graph similarity measure, the
Weighted Assignment Similarity measure. It is related to SimRank, but derives
propagation scores from only the locally optimal mapping between child vertices.
The resulting similarity scores may be regarded as the percentage of mutual coverage
between graphs. The measure is proven to converge for all directed acyclic graphs, and
an efficient implementation is outlined for this case.

Attributes on graph vertices and edges are often used to capture domain specific
information which is not structural in nature. It has been suggested that these should
influence the similarity propagation, but no clear method for doing this has been
reported. The second important contribution of this research is a general method for
incorporating these local attribute similarities into the larger similarity propagation
method.

An example of attributes in program graphs are identifier names. The choice of
identifiers in programs is arbitrary as they are purely symbolic. A problem facing any
comparison between programs is that they are unlikely to use the same set of identifiers.
This problem indicates that a mapping between the identifier sets is required. The third
contribution of this research is a method for applying the structural similarity measure
in a two step process to find an optimal identifier mapping. This approach is both novel
and valuable as it cleverly reuses the similarity measure as an existing resource.

i

In general, programming assignments allow a large variety of solutions. Assessing
student programs through structural similarity is only feasible if the diversity in the
solution space can be addressed. This study narrows program diversity through a set of
semantic preserving program transformations that convert programs into a normal form.

The application of the Weighted Assignment Similarity measure to marking student
programs is investigated, and strong correlations are found with the human marker. It is
shown that the most accurate assessment requires that programs not only be compared
with a set of good solutions, but rather a mixed set of programs of varying levels of
correctness.

This research represents the first documented successful application of structural
similarity to the marking of student programs.

ii

Acknowledgements

I would like to express special thanks to:
Professor Jean Greyling, and Dieter Vogts for supervising my research. They

provided a great deal of valuable advice and constructive criticism and this work is
much better for their efforts.

Professor André Calitz who volunteered to advise me over a period during which
neither Jean nor Dieter was going to be available. His advice was very valuable, both
for its thoroughness and for the new perspective.

The NRF Thuthuka Research Program for financial support of this research.
All my friends and colleagues who have often shown keen interest in my work. In

this regard, special thanks are extended to Doctor Charmain Cilliers, Professor Gideon
de Kock, M.C. du Plessis, and Peter Dobson.

My family, who have always possessed an inexhaustible faith in my abilities, and
kept many of the mundane matters of life from interfering with my work. Without their
efforts and encouragement, this work would still be ongoing.

And finally, God, who showed me an enormous number of small mercies throughout
my work.

iii

Table of Contents

Abstract i

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Overview of Computer Aided Assessment 4

1.2.1 Dynamic Analysis . 4
1.2.2 Static Analysis . 5

1.3 Objectives & Research Questions . 6
1.4 Research Contributions . 7
1.5 Method, Limitations and Delimitation 8
1.6 Organisation of this Dissertation . 8

2 Computer Aided Assessment 10
2.1 Generations of CAA . 11

2.1.1 First Generation CAA Systems 12
2.1.2 Second Generation CAA Systems 14
2.1.3 Third Generation CAA Systems 15
2.1.4 Unique Systems . 19

2.2 CAA Measures . 19
2.2.1 Dynamic Analysis . 20
2.2.2 Static Analysis . 25
2.2.3 Uncommon Techniques . 30

2.3 Important Issues . 31
2.3.1 Precision of Assignment Specifications 31
2.3.2 Sensitivity to Errors . 32
2.3.3 Meaningful Assessment . 33

2.4 Summary . 34

3 Structural Similarity 36
3.1 Traditional Similarity Measures . 39

3.1.1 Edit Distance Similarity . 40
3.1.2 Maximum Common Isomorphic Subgraph 43
3.1.3 Tag and Path-Oriented Similarity 45

3.2 Contemporary Similarity Measures . 47
3.2.1 The Product Graph . 48
3.2.2 Similarity Flooding . 50
3.2.3 Related Similarity Propagation Measures 54

3.3 Conclusion . 57

4 A Novel Program Similarity Measure 60
4.1 Weighted Assignment Similarity . 62

4.1.1 Basic Mathematical Form . 64
4.1.2 Choosing Weights . 65
4.1.3 Convergence over DAGs . 67
4.1.4 Supporting Label Similarity 69
4.1.5 Mapping Identifiers . 73

4.2 Conclusion . 75

5 Case Study: Object Pascal Assessment 76
5.1 Program Diversity . 77

5.1.1 Sources of Diversity . 77
5.1.2 Normalising Programs . 80
5.1.3 Program Transformation Example 85

5.2 Scoring of Programs . 88
5.2.1 Using Graph Attributes . 88
5.2.2 Converting Scores to Marks 90
5.2.3 Effect of Poor Programming Practices 92

5.3 Experiments . 93
5.3.1 Data Preparation . 95
5.3.2 Method . 96
5.3.3 Results . 98

5.4 Conclusion . 102

6 Conclusion 104
6.1 Research Objectives . 104
6.2 Research Contributions . 105
6.3 Limitations of Research . 106
6.4 Suggestions for Future Research . 107
6.5 Conclusion . 108

Bibliography 109

List of Figures

1.1 Program representations as seen by CAA systems 5

2.1 An example of a solution plan used in PASS 16
2.2 Scheme-robo feature discovery pattern 27
2.3 Converting metric scores into quality scores 29
2.4 Identifying vowel characters . 34

3.1 The primary edit operations used in finding a tree edit distance 40
3.2 Coincidental structural similarity between program fragments 43
3.3 The maximum common isomorphic subgraph between two ASTs 44
3.4 The unreliability of the maximum isomorphic subgraph measure 44
3.5 Example of the application of the product graph 49
3.6 The induced propagation graph for the running example 51
3.7 SimRank averages the similarity between all possible pairs of children . 59

4.1 Neighbour assignments for comparing 9 + x2 with x2 + y + 9 62
4.2 The example of comparing 9 + x2 with x2 + y + 9 continued 63
4.3 Expression graphs with labelled vertices and edges 70
4.4 Augmented product graph of GA and GB 71
4.5 Vertex inserted to support edge label comparison 71
4.6 Graphs for a pair of similar program fragments 74
4.7 Characteristic graph for the use of identifiers in GA and GB 74

5.1 Equivalent decision constructs for a binary search 80
5.2 An example rewrite rule for obtaining canonical programs 81
5.3 First phase of transforming if -statement decision ladders 82
5.4 Detailed transformation of binary search decision 84
5.5 Two ways to calculate a sphere’s volume

(
4πr3

3

)
. 85

5.6 Print the square-root of a number . 85
5.7 Symbolic expressions for Figure 5.6 86
5.8 Graph for Figure 5.6 . 87
5.9 Integer similarity: 2−

|x−y|
λ for different values of λ 89

5.10 Sum absolutes of numbers entered until limit reached or zero entered . . 93
5.11 Poorer variations of Figure 5.10 (changes highlighted) 94
5.12 Program to calculate an Olympic ice-skater’s score 95
5.13 Scatter plots for synthetic standard, using C{1,3,5} 100

vi

5.14 Scatter plots for historic standard, using C{1,3,5} 101
5.15 Deviations from human marks . 102
5.16 Scatter plot after applying SimRank to the synthetic mixed standard set . 103

vii

List of Tables

2.1 Systems generations and assessment granularity 12
2.2 Properties of assessment measures . 20
2.3 Systems and the assessment measures they employ 20

3.1 Forms of iteration formulae studied by Melnik et al. (2002) 53
3.2 First six iterations of the basic iteration formula (Melnik et al., 2002) . . 54

5.1 Similarity of poor programs to ideal solution 93
5.2 The 18-point rubric used for marking the assignment 96
5.3 Correlations of similarity derived marks to human assigned marks . . . 99
5.4 Result of regression analysis . 102
5.5 Correlations of SimRank scores to human assigned marks 102

viii

Chapter 1

Introduction

This research concerns the use of computers for the automated assessment of computer
programs – particularly those developed by novice programmers in academic environ-
ments. The problem is a difficult one because any given programming assignment
is expected to have a very large solution space. In most cases, there are an infinite
number of solutions. However, the number of representative or important solutions is
not necessarily so large.

This chapter serves to introduce the problems associated with the assessment of student
programs. It also serves to give an overview of the current research, including research
questions, the method of research, and important contributions made.

1.1 Background

Programming classes in Computer Science departments are often large. This remains
the case globally in spite of some recent decline in enrolment figures that have been
observed (Higgins et al., 2005). For example, Lass et al. (2003) describe having
programming classes of several hundred students each. Learning to program requires
a great deal of practice, and large classes generate an enormous number of program
assignments that must be marked.

To cope with the workload, Lass et al. (2003) describe that 1 teaching assistant is
employed for every 25 students. Preston & Shackelford (1999) discuss a similar

1

scenario with over 100 teaching assistants employed. These assistants mark over 4000
programming assignments per week. While it would be most beneficial if professors
and lecturers could mark the assignments of their students, the shear volume makes this
impossible.

At the author’s own institution, the Nelson Mandela Metropolitan University (NMMU),
the situation is similar. The Computer Science & Information Systems (CS&IS)
department offers a traditional Computer Science curriculum, with about 140 students
participating in the first undergraduate programming module each year. Over the first
semester of programming, students typically complete 30 different programming tasks.
This results in between 300 and 600 programs being submitted per week. Assistants are
employed to check the assignments and give feedback. While the assistants are more
experienced than the students, their experience does vary. This means that the feedback
students receive regarding their programs is limited (and occasionally unreliable).

Dividing the assessment responsibility between a large number of assistants causes
additional problems. Preston (1997) discuss some of the consistency problems that
result, with similar programs receiving widely different reviews and scores from
different assistants. Not being able to trust the evaluation process undermines the value
of the learning activity. Thus there are at least four substantial problems in assessing
student programs in large classes.

i. Time
Providing a careful and meaningful assessment of student programs takes a great
deal of time. Usually this is more than an educator can spare. Even if the educator
can afford to take on the work, the turnaround time is expected to be substantial.

ii. Staffing
The turnaround time can be reduced, and the educator’s time spared, by taking
on a large workforce – as is commonplace. However, this staffing can be costly,
and a substantial pool of ideal candidates for teaching assistant positions may not
be available. Appointing masters students into teaching assistant positions may
create secondary problems, such as slowing their graduation rate.

2

iii. Consistency
Consistency is a two-fold problem. When marking work is divided between
several assessors, it is almost impossible for each to apply the same standard.
Unfortunately, the consistency problems can occur even if there is only one
marker as self-consistency is not guaranteed for each assessor. In particular, the
standard applied at the beginning of a marking session may not survive until the
end.

iv. Quality of Feedback
As with marking consistency, quality of feedback is expected to vary between
markers, and over time for the same marker. Discipline is required to write
substantial and useful feedback for each submitted program.

Programs written by students are not always marked by hand. Many Computer Science
departments of universities and colleges throughout the world already use some form of
computer aided assessment (CAA). Carter et al. (2003) report on a recent international
survey of academics1, finding that 41% of respondents used a CAA system some of the
time, with a further 21% using CAA extensively. The remaining 38% marked program
assignments exclusively by hand.

CAA has the potential to address all of the problems associated with human marking –
although some of the problems are easier to address than others. Since computer time
is cheap, CAA systems address time and staffing problems very effectively. It is widely
held that one of the most compelling features of CAA is the fast turnaround time of
assessments. This is perhaps the most valuable feature to both students and educators –
in spite of some doubt over the quality of feedback received (Carter et al., 2003). Quality

of feedback remains a concern in CAA systems in that the provision of good feedback
is an exception, not the rule.

An important consideration is that CAA systems are very consistent in how they assign
marks. Using CAA as an unbiased judge of student work is perhaps the second most
valuable feature of CAA systems. While CAA systems are consistent, it is important to
observe that they are not necessarily objective. Objectivity and subjectivity are terms
that cannot be attributed to CAA systems, as they lack any ability to reason about
student programs. Consider the simple example of a student program that meets all
stated requirements. A CAA system should assign it a 100% score. If a small syntactic

1 Respondents were predominantly from the UK, Finland, Australia, and the USA.

3

error is then introduced, the CAA system may not be able to reach any conclusion, and
so assigns a 0% score. In contrast, an objective human marker would rate the program
differently. Fortunately, having a basic idea of how a given CAA system performs
assessment, may allow students to avoid such obvious problems. Furthermore, this kind
of problem is not indicative of all CAA systems.

CAA systems can offer additional advantages. Distance education students have special
needs, such as being able to do assignments when it suits their schedules. CAA systems
make distance education more feasible because students can get instant feedback over
the Internet, even after normal working hours. The advantage over staffing problems
also becomes more important in this case.

1.2 Overview of Computer Aided Assessment

A wide variety of CAA measures have been developed over the years, and this is
discussed in depth in chapter 2. Nevertheless, the broad kinds of automated assessment
are also described here. A distinguishing characteristic of CAA measures is how they
view the student program. Figures 1.1a, b and c show how a program that calculates the
area of a circle may be viewed by CAA systems. This program will facilitate discussion
of the different CAA techniques.

With the black box model (Figure 1.1a) the CAA system has no understanding of how
the program is constructed. In the example, it may only know that if it executes the
program with the input 10.0, it should expect a number near 314.159 as output. The
process of executing a program to observe its behaviour and output is called dynamic

analysis. Other CAA measures treat programs as unstructured text (Figure 1.1b), or
as graphs of structured data (Figure 1.1c). Because these techniques operate on static
representation of the program, they are forms of static analysis.

1.2.1 Dynamic Analysis

Dynamic analysis, or program testing, is by far the most popular and prevalent of CAA
techniques. The typical scenario is that the lecturer or teaching assistant will specify a
variety of test cases (with input and output) that correct programs will satisfy. A batch

4

(a) Black box model

Program AreaOfCircle;

Var

 Radius: Real;

Begin

 ReadLn(Radius);

 WriteLn(PI * (Radius * Radius));

End.

(b) Textual program representation

(c) Graphical program representation

Figure 1.1: Program representations as seen by CAA systems

process can then execute the student programs against each test case. Students obtain a
score based on the number of tests their programs pass.

The main problem with this method is that it is particularly vulnerable to program errors.
The student program cannot be tested if it contains any syntax errors. In addition,
the program cannot contain any contextual errors. Programs with logic errors may be
testable, but if a logic error causes excessive memory allocation, or an endless loop, the
testing of the program must be abandoned.

1.2.2 Static Analysis

Static analysis CAA measures have traditionally emphasised measuring program
quality, rather than correctness. In this regard, measures that operate on a textual
representation of a program determine important program characteristics by counting
surface features. For example, a CAA measure may calculate the function density, or
degree of decomposition, by finding the average number of lines of code per function.

Structural analysis is another form of static analysis which holds potential for program
assessment. This technique involves the study of the structural relationships in the

5

program, so it requires a structured graph representation. Some work has been done
in this area, with recent efforts by Saikkonen et al. (2001) and Truong et al. (2004), but
much more research is needed.

Structural analysis is of particular interest in this research. The main objective is to
determine whether a structural similarity measure can be used effectively in assessing
student programs. Given a candidate program and an ideal solution program, a structural
similarity measure should find the degree of similarity between them, which may be
interpreted as the awarded mark.

The advantages of structural techniques is that they can assess a more diverse set of
submitted programs. In general, structural analysis can still operate even if the programs
contain errors. Neither contextual errors, nor endless loops work against the assessment
technique. In addition, if the program contains syntax errors, but good parser error
recovery is implemented, the technique can possibly still be of use.

1.3 Objectives & Research Questions

In recent research, several promising graph similarity measures have been developed,
for example the Similarity Flooding measure due to Melnik et al. (2002), and the
SimRank measure due to Jeh & Widom (2002). The primary objective of this research
is to investigate the use of graph similarity as the basis for a new structural similarity
assessment measure.

Objectives may be summarised as follows:

1. To investigate the different techniques employed in computer aided assessment of
programs.

2. To investigate traditional and contemporary measures of similarity between
graphs.

3. To investigate the use of graph similarity as the basis for a new structural similarity
assessment measure.

6

Clear primary and secondary research questions arise from these objectives:

1. To what extent can the structural similarity between candidate programs and ideal
solutions be used in program code assessment?

(a) What similarity measures available may be applied to program code assess-
ment?

(b) How may available similarity measures be adapted to better suit the problem
of assessing student programs?

1.4 Research Contributions

This research identifies the problems that existing graph similarity measures have when
applied to assessment. The most important of these is that the similarity scores produced
are only significant relative to one another. This is critical for assessment as it disallows
the interpretation of the scores as percentages. However, the SimRank measure (Jeh &
Widom, 2002) is found to be amenable to adaption to the problem domain.

The main contribution of this research is to replace the summation procedure within the
SimRank measure with one that considers only the locally optimal assignment between
neighbour vertices. This gives rise to a novel graph similarity measure called Weighted

Assignment Similarity. This change is valuable as it is shown to produce scores which
have intrinsic meaning analogous to percentages.

Another important contribution is the first formal mechanism for including domain
specific attribute similarity into the broader structural similarity measure. This allows
the similarity measure to be directly influenced by domain specific relationships
captured in the attributes of vertices and edges. For example, in program assessment
vertices may contain operator labels and constant values that, being compared, may
guide the similarity measure.

The third contribution is an effective and general method for mapping identifiers
between two similar programs. A holistic similarity measure between programs is
achieved by using the Weighted Assignment Similarity measure twice: once on derived
graphs to find the similarity between identifier pairs, and a second time on the original
graphs with the aid of the new information.

7

1.5 Method, Limitations and Delimitation

The method followed in the case study of this research is to apply the new Weighted

Assignment Similarity measure, as well as the SimRank measure to the programs written
by 1st-year students as a practical assignment.

The correlation between the human marker and the scores derived from the Weighted

Assignment Similarity measure are of particular interest. In addition, the correlation
between the human marker and the SimRank scores are determined for comparison.
Furthermore, the deviations between the human marker scores and those of new measure
are studied.

An important limitation of the research is that we assume the human marker marked
consistently and accurately. Essentially it is assumed that the human marker assigned
perfectly chosen scores to each submitted program.

An important delimitation of this study is that the existing conditions under which
practical assignments are done were not altered. As students had a week of unsupervised
activity to complete the assignment, the possibility of plagiarism was very real. This was
addressed by eliminating duplicate programs, ignoring comments and whitespace.

A delimitation to narrow the scope of the research is to exclude from study the effects
of parser recovery. Student programs may contain errors, but these are ignored as long
as the parser is able to make a reasonable recovery. The significance of possibly losing
information this way is not studied. In addition, the effect of different error recovery
strategies on the utility of the similarity measure is not investigated.

1.6 Organisation of this Dissertation

Chapter 2 explores the literature relating to computer aided assessment. Both static and
dynamic techniques are reported on, as well as more unusual strategies. The relative
strengths and weaknesses of the different methods are considered, and the opportunities
for further research relating to structural analysis are observed.

Chapter 3 investigates some of the many traditional measures of similarity between
structured data. Following this, the contemporary similarity propagation measures are

8

considered in detail. All of these measures are discussed in relation to the current
problem domain. It is observed that the existing techniques are not directly appropriate,
but may be adapted to support use in assessment.

Chapter 4 describes the Weighted Assignment Similarity measure, which is a novel
similarity measure between graphs. It is the first published similarity propagation
measure that directly supports vertex and edge attributes with domain specific similarity.
A proof of convergence is presented for directed acyclic graphs, and an efficient
implementation strategy is described.

Chapter 5 describes the experiment of applying the new measure in the assessment of
student programs. The chapter first identifies all important sources of program diversity,
which cause problems for assessment. Many of these sources of diversity are addressed
by transformations which convert the programs into a normal form. The chapter
continues to describe the experiments in applying the structural similarity measure to
assessing the programs. The results show that strong correlations with human marks are
possible.

Chapter 6 summarises the contributions made, and concludes the research.

9

Chapter 2

Computer Aided Assessment

Computer Aided Assessment (CAA) has seen a substantial amount of research effort.
The earliest CAA system used in teaching programming is the system presented by
Hollingsworth (1960), and new developments continue to be made in the field.

The three primary components of any CAA system are: submission, assessment, and
feedback. Although not considered in the current research, many newer CAA systems
provide more features. For example, it is not uncommon for modern CAA systems
to provide plagiarism detection, assignment specification management and delivery,
course and grade administration, as well as the provision of additional materials for
students. In the this research, the assessment mechanisms in CAA systems are of
particular interest.

Considering the wealth of literature on computer aided assessment, a reader may
quickly observe that there is one very pervasive technique for program assessment –
dynamic whole program testing. Each program under evaluation is executed against
a batch of test cases for which correct outputs are known (once for each test case).
This mainstream technique features in a very significant number of CAA systems.
Since students must submit a complete program before assessment, this assessment is
summative in nature (Ala-Mutka, 2005). It may gain an aspect of formative assessment

if resubmissions are permitted after feedback is given. CAA systems that are strictly
formative assessment tools engage the student in a learning activity during or just before
the assessment.

10

This chapter does not consider CAA systems based on multiple choice questions.
The difficulty in multiple choice assessments is not in the grading, but rather in the
formulation of high quality questions. The interested reader may consider the work by
Traynor et al. (2006), which discusses the automatic generation of good multiple choice
questions for a first programming course. Also not considered here are CAA systems
for assessing student essays, such as the work by Rosé et al. (2003).

The primary goal of this chapter is to present a review of CAA for teaching Computer
Science, and to situate the current research within that context. There are a variety of
aspects through which such systems may be considered, and this review is organised
accordingly. First, CAA systems are considered in terms of three generations adapted
from Douce et al. (2005). This will serve well as a base-line for subsequent discussion.
There are a wide variety of techniques that can be used for assessment purposes, and
characteristics of programs that may be measured. These are discussed in the section
that follows, along with related pedagogic issues. Finally, some pertinent concerns are
discussed in Section 2.3: Important Issues.

2.1 Generations of CAA

The development of CAA systems is considered by Douce et al. (2005) as three distinct
generations. This dissertation interprets the initial work in much the same way. The first
generation is largely characterised by very low-level operation, while second generation
systems are typically command-line oriented and far more general. It is interesting
to note that the transition from first to second generation systems seems to coincide
somewhat with the rise of the Unix operating system beginning in 1969. This is
significant as many of the hurdles in first generation systems fell away with rapid
hardware and operating system improvements.

Douce et al. (2005) describe third generation systems as being web-based in nature.
Under this definition, the beginning of the third generation does not actually conclude
the second generation, since both lines of development continue concurrently. There are
a few systems that rely on the web to provide a new kind of assessment system, such as
the anonymous web-based peer evaluation (Sitthiworachart & Joy, 2004). Barring such
exceptions, the application of the third generation moniker is largely a matter of how
the CAA technology is packaged for use.

11

It is noted that several second generation systems can be, and have been, promoted
to third generation merely by acquiring a web front-end. Other systems, like OCETJ
(Tremblay & Labonté, 2003), use the web to deliver feedback but not for file submission.
Also, several earlier systems such as ASSYST are distributed in that they allow email
program submission (Jackson & Usher, 1997). Similary, Kassandra allows submission
over the Internet via sockets (Von Matt, 1994), but is not considered third generation.

H
ol

lin
gs

w
or

th

A
SS

Y
ST

B
O

SS

K
as

sa
nd

ra
TR

Y

C
ou

rs
eM

as
te

r
EL

P

H
oG

G

PA
SS

Sc
he

m
e-

ro
bo

Generation I II II II II III III III III III

Whole Program X X X X X X X
Function X X X

Statement / Expression X X X

Table 2.1: Systems generations and assessment granularity

It may be argued that a more useful definition of third generation CAA systems would
reflect properties of the assessment mechanism. For these reasons, an alternative is
proposed. The majority of CAA systems employ whole program assessment – that is
to say they evaluate the overall behaviour of programs. This dissertation defines third
generation CAA systems as those systems capable of assessment at a finer granularity
than whole program assessment. For example, such a system may be capable of
assessing individual functions or features of a submitted program, such as Scheme-robo
(Saikkonen et al., 2001) which is able to assess individual Scheme functions. It is hoped
that this will prove a more useful characterisation. Further, it is recognised that some
systems employ uncommon assessment techniques and resist classification in this way.
For interest, Table 2.1 shows the generation and assessment granularity of several CAA
systems discussed in this section.

2.1.1 First Generation CAA Systems

The era of first generation CAA systems coincides with the era of machine language
programs recorded on punched cards. In the earliest known CAA system, due to
Hollingsworth (1960), students prepared their programs on punched cards and handed

12

them to their lecturer at the end of class. Every day cards were collated and processed by
a computer operator. The grader program would execute the student programs against
test data, and either punch a failure card indicating the first error case, or a success

card. These cards would then be returned to students on the following day. The
system operated on machine code programs only, and required the memory locations
of variables to be specified with each program. Although the original paper does not
explain how program results were determined, it was likely that the grader program
simply accessed these memory locations directly to check outputs.

Forsythe & Wirth (1965) soon produced a CAA system for grading ALGOL programs.
Their system consisted of a reusable library and a special grader program developed
for each programming assignment. Students follow a specified convention in their
programs, which allows all compilable submissions to later be integrated directly into
the grader program for assessment.

The effect was much the same as that of Hollingsworth (1960) in that the student
programs also became incorporated directly into the grader program. The earlier
grader was vulnerable because self-modifying code could overwrite part of the grader
program. The latter was vulnerable because students could introduce code into the
grader program, since their code is copied into the source code of the grader.

Hollingsworth (1960) mentions that overflow and similar runtime errors in student
programs could stop the entire process – necessitating human intervention. Forsythe
& Wirth (1965) imply that their system is invulnerable to these problems, but do not
explain how this is the case. The code necessary to trap these conditions may have
been generated by their ALGOL compiler. Both systems were still vulnerable to endless
loops, requiring a human being to monitor the grading process.

Hext & Winings (1969) saw the primary problem with these systems. The grader
program and the student program needed to be separated. The problem to be overcome
was in supplying test data to the student program, and extracting the results computed.
They required operating system changes in the program loader in order to supply test
data to student programs. Their solution further required the modification of compilers
to ensure that they persisted the results that student programs generated. This had the
desired effect and their grader was a totally independent program, but modifying both
operating system and compilers required substantial work.

13

The same problems were effectively eliminated with the popularisation of the Unix
operating system, and piped IO streams – which may be conjectured to be the missing
ingredient and catalyst for the many second generation CAA systems that followed.

One should not like to choose a precise date in the transition between first and
second generation CAA systems. In the 1970’s, research efforts were redirected
towards understanding the characteristics of good student programs. This included the
development of McCabe’s complexity measure (McCabe, 1976), which estimates the
overall complexity of student programs. Simultaneously, the PLUM system recorded
all programs submitted to the PL/1 compiler at the University of Maryland (Zelkowitz,
1976). Within the space of about a year, this system collected over 25000 student
programs for careful analysis.

Later Rees (1982) identified several attributes of Pascal programs that can be used for
assessing programs stylistically. His measures are extended by Berry & Meekings
(1985) for assessing the style of C programs. The work by these researchers mark a
renewed research interest in the development of CAA systems in computer science.

2.1.2 Second Generation CAA Systems

Second generation CAA systems are characterised by their splitting of aspects of the
grader into separate command-line tools, often feeding information along a tool chain
through redirectable piped IO streams (Douce et al., 2005). A good example of an early
system from this time would be TRY (Reek, 1989). The system consists of several shell
scripts which handle such tasks as interacting with the compiler, building the students’
programs and testing them. Something that was really novel at the time was that the
grader system is invoked by students, and not their instructor. This provided immediate

feedback to students for the first time, but introduced new security problems. Students
could create incorrect programs to probe at the testing engine to determine its test cases.
This was discouraged by penalising students for each resubmission after a chosen limit.
Simultaneously, this encouraged design over trial-and-error programming.

There were other security problems that had to be managed. When students invoked
TRY, their code could be run under the instructor’s account. The system improved
security by creating a sandbox environment within which the student programs would
execute. This sandbox also guards against problems with endless loops in student
programs.

14

In order to determine correctness, the TRY system employed the typical character-
by-character equivalence test with respect of expected outputs. The TRY system can,
however, be configured to ignore whitespace to improve the quality of testing results.

Jackson & Usher (1997) describe ASSYST, a well known CAA system, and one of the
earliest to have a graphical user interface. ASSYST separates submission and grading
into distinct tasks. Its emphasis is in assisting tutors who grade student submissions
from a computer terminal. ASSYST informs tutors of test cases which were passed or
failed, but also generates a quality score based of the cyclomatic complexity measure
due to McCabe (1976), and program style metrics derived from the work by Berry
& Meekings (1985). In addition, testing programs with ASSYST can be made more
accurate by using a formal grammar1 for expected output – a significant improvement
over character-by-character comparison.

ASSYST added pedagogic value by requiring students to submit their own test data. A
final automated evaluation was used to determine the effectiveness of the student’s own
tests. This introduced students to the concept of code coverage – requiring them to think
carefully about their code and its vulnerability in corner cases.

A system (submit & progtst) that is both recent and very representative of a command-
line tool chain, and that executes under Linux is reported by Archer Harris et al. (2004).
CourseMaster is an example of a system that provides a very flexible assessment system,
where various kinds of assessments can be employed to obtain a composite assessment
(Higgins et al., 2002). Numerous other systems have been developed such as BOSS
(Joy & Luck, 1998), RoboProf (Daly, 1999), and others. Extensive discussion of these
is omitted as their assessment mechanisms largely share characteristics with the systems
already described.

2.1.3 Third Generation CAA Systems

The current research does not follow Douce et al. (2005) in regarding all CAA systems
with web front-ends as third generation. Rather the requirement is that the system be
capable of finer grained assessment than the whole program assessment used by second
generation CAA systems.

1 The formal grammar is provided and a pair of Lex and Yacc grammars.

15

Thorburn & Rowe (1997) argue that a student program should not be considered perfect
if it merely renders the desired behaviour. For example, a single spaghetti code C
function constructed with internal labels and goto statements can produce the same
output as a program with several carefully isolated functions. Instructors are likely to
have a strong opinion as to which is better. In general, instructors often want students to
solve a problem in certain ways – and not in others. The form of the candidate program
should not be disregarded.

The solution proposed by Thorburn & Rowe (1997) is something they call a solution

plan. This is a diagram which is essentially the static call graph of an ideal solution
program. An example of a solution plan is shown in Figure 2.1. In this example,
the relationship between the solution plan and the static call graph is easy to see.
The top level of the solution plan is simply the main function. The next level
contains all functions that can be statically determined as directly invoked by the main
function. Similarly, the subsequent levels contains the functions that are invoked by the
immediately preceding level, while not already being present in the graph.

 Function Abstract Description

Main Function Display the cubes of integers 0 to 9

Initialise_Array Initialise a 10 element array to zeros

Store_Cubes Store cubes of 0 to 9 in array

Print_Array Print the contents of the array to the screen

Cube Return the cube of the numeric argument

Top-Level Level-1 Level-2

Main Function Initialise_Array

Store_Cubes

Print_Array

Cube

Figure 2.1: An example of a solution plan used in PASS

16

Their system, called PASS, proceeds to test individual C functions in the student
program, and maps them to the functions in the solution plan. The function outputs have
to correspond exactly, or it is not considered to map into the solution plan. However,
since raw function results can be compared, the system is resistant to the text formatting
problems that most other systems face. The student’s score is then based on the number
of functions identified to correspond with functions in the solution plan.

Systems capable of finer grained assessment have an advantage over their counterparts.
They may still assign marks for local correctness even if the larger program exhibits
incorrect behaviour. This would go unnoticed if the assessment granularity were the
whole program.

The main problem with this approach is that functions are not always independent, but
rely on shared state. The example discussed in their original paper consists of four
void functions that communicate through a global variable by means of side-effects.
The effect of these functions are impossible to consider without regard for shared
global variables, so it seems that this approach is more suited to the assessment of pure
functional language which do not exhibit these problems.

It should be observed that what PASS measures is different from both dynamic
correctness (through whole program testing) and static quality assessment (through
suitable metrics). In fact, what is most significant about the work by Thorburn & Rowe
is that it represents the first significant attempt at measuring static correctness, as the
solution plan is a static feature.

Similar ideas have been used in Scheme-robo (Saikkonen et al., 2001). This system
is also capable of testing individual functions. It is observed that Scheme is a
functional language, and so function-level testing makes more sense. In fact, if students
are prohibited from using the set!, set-car! and set-cdr! functions then referential
transparency is preserved – essentially, all the problems with side effects fall away.

Another property of Scheme that makes it well suited to computer aided assessment
is that Scheme programs are internally represented as lists, which is also the primary
data structure manipulated by Scheme programs. This makes Scheme a homoiconic
language, allowing Scheme-robo to readily access and process student programs as data.
Saikkonen et al. (2001) use this to evaluate the overall structure of a student program to
determine if the supplied skeleton files have been used correctly.

17

If the programming language being taught does not maintain referential transparency,
other means must be found to test at function-level granularity. Two systems that do
this, but do it differently, are HoGG (Morris, 2003) and OCETJ2 (Tremblay & Labonté,
2003).

In the HoGG system, student submissions constitute a Java class containing instance
methods. The methods expected in the solution are first identified by method signature
(rather than by name) through Java’s reflection mechanism. For each method that must
be tested, the system creates a subclass of the student’s class which overrides every
identified method with a known correct implementation – apart from the method that
is to be tested. This allows each method to be tested without faults in one method
causing other methods to fail. However, to support this subclassing, private member
fields must be shunned in favour of protected ones – and naturally these fields must be
made explicit to students. Morris recommends avoiding dependencies between methods
for this reason.

Clearly, the HoGG system is very sensitive to the design of the solution. This means
that particular care (more than usual) must be taken in formulating the assignment
specification.

OCETJ places similar constraints on the design of the solution. It relies on JUnit, an
open source Java unit testing framework, to thoroughly test each submitted class. It
places greater restrictions on the form of the solution than does HoGG, since names
of classes and methods must be precise. An advantage of OCETJ is that it uses an
existing testing engine which is capable of constructing detailed reports. Another is
that JUnit allows each unit test to construct the external state that a method will receive
before it is called for testing. This must be carefully done, but reduces the problem of
unforseen method side-effects. It should be noted that the problem is not eliminated if
one method in an assignment specification depends on the correct operation of another
– if the second method fails, both unit tests will fail.

2 It may interest French speaking readers to know that OCETJ is an acronym for “Outil de Correction et
d’Évaluation de Travaux Java”. For the benefit of other readers, this can be rendered as “Tool for the
marking and evaluation of Java assignments”.

18

2.1.4 Unique Systems

It should be observed that a few systems, typically those that do not employ mainstream
strategies, are not easy to categorise as above. For example, Sitthiworachart & Joy
(2004) describe anonymous web-based peer assessment of programming assignments.
This clearly does not follow the traditional CAA strategy for assessing programs
automatically. Yet it is automatic in the sense that the whole process is managed
electronically, and has similar benefits for academic resources. Peer assessment
is significant because it provides a controlled environment for students to critically
evaluate one another’s work. Evaluation is at the highest cognitive level in Bloom’s
Taxonomy on Educational Objectives (Bloom, 1956), and is not as easily assessed by
mainstream techniques.

An important system which takes a different approach is the Environment for Learning

to Program (ELP) (Truong et al., 2004). It performs extensive static analysis of student
programs and provides immediate descriptive feedback, although it does not produce or
record any scores. The distance between this and any similar system that might produce
scores seems sufficiently small to still consider it a computer aided assessment system.

A similar argument might be made for the Code Analyzer for Pascal (CAP) (Schorsch,
1995). CAP performs extensive static analysis of student programs, and generates very
accessible feedback. Unfortunately, no reasonable way to turn their analyses into scores
is obvious, neither has any been reported.

2.2 CAA Measures

There are a variety of assessment measures that have been used in CAA systems. Most
assessment measures may be described as either problem-aware or unaware, obtained
through static or dynamic analysis, and being applied at either coarse (whole program)
or fine granularity. In this regard, Table 2.2 lists the most important categories of
assessment measures, along with the properties of each. Similarly, Table 2.3 shows
some of the systems already described and the assessment measures they employ.

19

St
at

ic
D

yn
am

ic
Pr

ob
le

m
-A

w
ar

e

Efficiency X
Functionality X X

Test Coverage X X X
Structural Features X X
Programming Style X

Complexity X
Software Metrics X

Table 2.2: Properties of assessment measures

H
ol

lin
gs

w
or

th

A
SS

Y
ST

B
O

SS

K
as

sa
nd

ra
TR

Y

C
ou

rs
eM

as
te

r
EL

P

H
oG

G

PA
SS

Sc
he

m
e-

ro
bo

Efficiency X X
Functionality X X X X X X X X X

Test Coverage X
Structural Features X X X
Programming Style X

Complexity X X
Software Metrics X

Table 2.3: Systems and the assessment measures they employ

The following sections first consider the most important dynamic analysis measures,
and then treat static analysis measures in similar detail. The issue of problem-aware

assessment is relevant in each of these kinds of analysis, so it is addressed where
appropriate in both sections.

2.2.1 Dynamic Analysis

Dynamic analysis is any analysis that requires the execution of the program being
analysed. The main aspects of programs that are valuable to measure dynamically are
execution efficiency, and valid functionality.

Test coverage analysis can be considered to be both static and dynamic. The reason

20

is that determining test coverage requires the ability to track the statements reached
during the execution of test cases, in addition to the executing of test cases themselves.
Tracking statements requires either a high quality profiler, or instrumentation of the
program code. The latter requires static analysis. However, dynamic analysis can be
augmented with one of several third party tools which handle test coverage. Example
for the Java language are NoUnit (2006), Cobertura (2006), and jcoverage (2006) (sic).
As a result it seems most reasonable to group test coverage and other test adequacy
evaluation with dynamic analysis measures.

Efficiency

The measuring of the efficiency of student programs is supported by one of the
earliest CAA systems (Forsythe & Wirth, 1965). However, they report that the
efficiency measure was not as useful as testing student programs for reliable behaviour.
Researchers seeking a more holistic assessment have not been deterred. ASSYST
provides two methods of assessing efficiency (Jackson, 1996; Jackson & Usher, 1997).
The first is the simple measurement of execution time. A student program is considered
adequately efficient if it executes within a specified margin of the execution time of the
instructor’s solution.

This has had two problems. In many cases simple programs complete so quickly that
the granularity of the system clock is too coarse for measuring the execution time. Many
modern processors have hardware to track instruction counts, but access to this was not
readily available at the time.

The second problem is that in longer running programs, the overall execution time may
be dominated by IO operations performed at the start and end of execution. The primary
benefit of this approach, when feasible, is that its implementation is quite simple.

The other approach offered in ASSYST is statement counting. A global variable
is incremented as each high-level statement is executed. This requires program
instrumentation, necessitating at least some static analysis. However, this technique
is not sensitive to the problems mentioned previously, and Forsythe & Wirth (1965)
report meaningful results using the same strategy.

Scheme-robo also implements a form of statement counting3. In their case this is easily

3 When Saikkonen et al. (2001) refer to complexity they mean runtime complexity, implying time

21

achieved since their Scheme implementation is interpreted through a small metacircular

evaluator (Saikkonen et al., 2001). Consequently, the interpreter is well placed to count
statements, and instrumenting the code is not necessary.

Regardless of the measurement technique, what is always required is a standard against
which to compare. Jackson & Usher (1997) compares the performance of student
programs against the performance of an ideal program, while Saikkonen et al. (2001)
report using the dynamic statement count to estimate the order (Big-O) of computation.
A limit is set under which the computation is assumed to be linear. More limits are set
for other orders of computation.

It may be argued that it would be better to assess the execution time of each student
program against itself, with increasingly large datasets4. For example, three runs of
a sort program with datasets of 1000, 2000, and 3000 elements, respectively, should
be sufficient to discern between linear O(n) behaviour and quadratic O(n2) behaviour.
More runs may be necessary to detect finer differences, such as distinguishing O(n)

from O(n log n), since the constant multipliers have a stronger effect on the running
time.

Considering the literature, the measuring of efficiency in CAA systems has focused
exclusively on the time dimension. The analysis of the dynamic memory footprint of
student programs appears to have been overlooked.

The pedagogical value of measuring time efficiency is uncertain. In most assignments it
is unlikely to be important at all, particularly so in first programming courses. The
programs need only complete within an acceptable time limit – a necessary evil to
protect against endless loops. However, in the context of data structures and algorithms
course, the ability to recognise the order of execution may become more relevant. It may
be especially relevant in a numerical analysis course, since the order of convergence
of numerical methods is very important it that field. It is suggested that for the
same courses, the analysis of the shape of the memory footprint would also be more
meaningful.

efficiency.
4 This approach is not followed by any of the CAA systems considered.

22

Functionality

The functionality of computer programs is probably the most visible criterion upon
which they may be judged. In general, the problem of determining if a given program
functions correctly is known to be undecidable.

The ability to assess functionality depends on the observer’s ability to recognise

behaviour and discriminate between correct and incorrect behaviour. Fortunately, it
turns out that many programming assignments can be formulated in such a way that
key aspects of behaviour can be recognised and assessed by computational processes.
As such, evaluating functionality has become the most popular automatic means of
assessing student programs.

Doing this depends critically upon two things: the means to provide test data to
the running program, and the means to capture and evaluate the accuracy of the
resulting outputs – both without human involvement. As noted in Section 2.1.1, the
former requirement presented difficulty for early systems (Forsythe & Wirth, 1965;
Hext & Winings, 1969), while more recent systems utilise redirected IO streams for
communication with the program. The most modern CAA systems are able to use
features such as Java reflection to invoke methods and access raw result values. For
example, Quiver (Ellsworth et al., 2004) is able to access Java method results directly.
Scheme-robo is able to do the same due to the custom metacircular evaluator (Saikkonen
et al., 2001).

It is important that while the raw results may be boolean values, real numbers, or
complex data structures, most CAA systems can only assess these if they are rendered as
text on the output stream. This usually introduces unnecessary variation in formatting.
In order to counter the formatting problem, reasonable solutions have been proposed
such as filtering spaces and using regular expressions or formal grammars to describe
program output (Jackson & Usher, 1997; Morris, 2003).

Test Coverage

Performing test coverage analysis requires that students not only submit their solution
programs, but also a set of formalised test cases. This has clear pedagogical advantages.
It provides an opportunity for introducing the current industry practice of applying unit

23

tests. Perhaps more importantly, it requires students to consider the behaviour of their
software under a variety of input data.

The adequacy of unit tests is commonly assessed by means of test coverage. This is
usually a percentage of program statements actually reached during execution of the
tests. ASSYST measures test coverage of each student’s test cases with respect of their
own program (Jackson & Usher, 1997).

This has two problems. Firstly, a student may get a 100% score for test coverage even
if his or her test cases only cover the portion of the problem actually solved by the
program. Secondly, a student with a perfect set of tests, and a solution that passes every
test, may still receive less than 100% for test coverage. This would happen if his or her
solution contained some unreachable code, as these statements would never be covered
by the test cases5. For these reasons, more consistent results are expected if test coverage
is measured against the instructor’s solution. Related to this, Edwards (2003) describes
using the instructor’s solution to automatically validate student test cases.

If assessment is made possible at function level, a decision must be taken regarding unit
tests associated with arbitrarily deep functional decomposition. Student functions that
cannot be directly related to a function in the instructor’s solution also cannot have their
unit tests applied in the context of the instructor’s solution. However, these functions
are automatically tested in that they must serve a higher goal which is also supported
by the instructor’s program. In other words, they are tested by virtue of being used in a
larger part of the program – which is tested. If unit tests are specified for such functions,
the tests should still be invoked, but should serve primarily in feedback to the student,
rather than influencing her score.

Requiring students to submit test cases has another important advantage. Feedback
can be returned in terms of the student’s own test cases, rather than in terms of
the instructor’s test cases which are used to assess functionality. This prevents the
submission mechanism from being abused to extract the instructor’s test cases.

A general problem with requiring students to submit thorough test cases is that they do
not appreciate the important role this has in developing reliable software. Goldwasser
(2002) proposes an interesting solution to motivate students to take this seriously. In his
approach, students score points if their test cases expose flaws in the programs of their
peers.

5 This is true unless an additional static analysis phase is first used to remove all the unreachable code.

24

2.2.2 Static Analysis

Static analysis (as opposed to dynamic analysis) is the discovery of the properties of
a computer program without actually running it. In the context of computer aided
assessment, static analysis methods are seldom problem-aware. Assessments that are
not problem-aware are valuable because they are immediately applicable – they do not
even require a problem specification. However, sometimes a grading specification is
used to qualify the broad static characteristics that are reasonable for a given problem.

The only notable forms of problem-aware static analysis in CAA involve structural
similarity and feature discovery. This sub-section begins with a discussion of structural
analysis, and continues to consider the use of program style and software metrics in
assessment.

Structural Analysis

Limited work is reported to have used structural features in computer aided assessment
of student programs – the most significant of which is probably Saikkonen et al. (2001)
and Truong et al. (2004). It seems that common terminology between existing work
has not yet been established. In this text, structural analysis is considered to be any
analysis that operates on a structured representation of the student program – with the
notable examples being here called stuctural similarity and feature discovery. Structural
similarity is a holistic study of whether the structure of a given program conforms to
what is expected in a correct solution program. Feature discovery is considered to be the
search for a structural feature pattern within a subset of the structure of a program. This
is similar to cliché recognition described by Rich & Wills (1990). As a natural result of
these definitions, any analysis of program structure requires a non-linear representation
of the computer program – the typical choices being parse trees, abstract syntax trees
(ASTs), or similar data structures.

Chanon (1966) presents the earliest application of structural information in CAA. The
author describes the intention to compare programs structurally, but doing so directly
was found to be too computationally intensive for the equipment available. Chanon also
wanted to use structural similarity to link plagiarised programs, necessitating O(N2)

comparisons, without which the original idea may perhaps have been feasible. The
compromise found was to compute a structural coefficient for each program’s syntax

25

tree. This coefficient is computed through a carefully designed hash function over the
program’s structural representation.

Although program structure has been used by some CAA systems, it is typically
incorporated into feedback instead of being used in deriving a submission score. The
Feature Tool found in CourseMaster is almost an exception. It searches programs for
features specific to the given exercise (Higgins et al., 2002). The example offered is the
detection of a while loop where a for loop is required by the assignment specification.
This tool does contribute marks to a final score, but it accomplishes its search by means
of regular expressions rather than by considering structural information. For this reason
it is not truly a structural analysis technique.

A feature discovery technique which does operate structurally is offered by Saikkonen
et al. (2001). Their solution uses a pattern language created in Scheme. These patterns
provide a declarative specification for the problem specific structural relationships
required in students programs. Figure 2.2 shows an example (adapted from the
Saikkonen et al. paper) of a declarative feature discovery pattern that searches for a
cube-root function, which itself must have a nested function.

In the pattern language, the ?? operator matches any single atomic value or
parenthesised combination. Similarly, the ??* operator matches any sequences of
values. All other symbols in the pattern must match exactly. In this way, the function
definition keyword define and the identifier cube-root are treated as literals –
they must be present in the student program in exactly the same form as the pattern.
Further, the pattern (define (?? ??*) ??*) matches any function definition,
regardless of name, parameters, or function body. The important criterion of the
Figure 2.2 is that such a function must occur nested within a larger function, named
cube-root. Scenarios where instructors require students to solve a problem using
a specified strategy are common in teaching but is impossible to verify with standard
functionality testing.

The Scheme-robo system is perhaps the most well placed system for structural analysis,
because the student program is already available in a structured form. However,
Scheme-robo currently only uses Feature Discovery, and then only to reject submissions
which do not follow the overall strategy required in the assignment specification.

The only known CAA system that employs structured similarity is ELP (Truong et al.,
2004). It compares the structural organisation of the statements in a student program

26

(if (structure ; Attempt to match the

 ; following pattern within

 ; the program data structure:

 (??* ; zero-or-more unmatched forms

 (define (cube-root ??) ; The student’s function takes

 ; one argument with any name.

 ??*

 (define (?? ??*) ??*) ; Does this cube-root function

 ; have a nested function?

 ??*

)

 ??* ; zero-or-more unmatched forms

)

 (1) ; Successful match!

 (fail “Nested function definition not found”)
 ; Reject the submission!

)

)

The Pattern

Cube-Root Function Pattern

Nested Function Pattern

Figure 2.2: Scheme-robo feature discovery pattern

with that of a model answer. For example, it may report that a loop and a function call
were found, where two loops and an if statement were expected. In this way, ELP offers
a formative evaluation which could lead the student towards discovering the correct
solution. The structural similarity does not contribute to the student’s score. In terms of
their algorithm, the authors do not disclose any detail, but they report that their technique
is only effective for small introductory-level assignments.

Both feature discovery and structural similarity show promise for further work in
computer aided assessment. In particular, a means to score programs based on structural
similarity has not yet been developed.

Style & Software Metrics

Style and software metrics are typically surface features of a program’s source code
that can be easily measured. The foundational work on assessing programs stylistically
is due to Rees (1982), who identified ten simple metrics through which the quality of
Pascal programs could be judged. The particular metrics Rees measured are described

27

in the list below. The first five metrics govern program formatting, while the last five
are concerned with identifiers and the construction of the program.

i. Line Length
The average number of characters per line, after removing leading and trailing
whitespace. Long lines reduce readability. The same is true for short lines, but
only in the extreme case.

ii. Comment Density
The proportion of program lines containing comment text, also counting lines
with partial comments. Programs with comments are considered to be more
maintainable and easier to read than those without, but too many comments makes
following the flow between statements more difficult.

iii. Indentation
The ratio of the number of leading whitespace characters to the total number
of characters. Indentation is frequently used in programming to communicate
the relationships between nested constructs. This metric estimates the quality of
indentation, but is crude in that it only considers identation directly, and disregards
relative indentation. This is significant as changes in indentation communicates
better than indentation itself.

iv. Blank Lines
The percentage of lines that contain nothing more than whitespace. Blank lines
should be used to separate different parts of the program and serve to draw the
eye to discrete starting points.

v. Embedded Space
The average amount of whitespace per line, excluding leading and trailing
whitespace. Internal whitespace serves the same role between expressions as
blank lines between groups of related program statements.

vi. Program Decomposition
The average number of program lines per function or procedure in the program.
Lower scores are generally associated with better decomposition.

vii. Reserved Words
The total number of distinct keywords used. A larger score may indicate that the
programming language is being used more effectively, as more constructs from
the language are being employed.

28

viii. Identifier Length
The average length of defined identifiers. Longer variable names imply that the
names are carefully chosen to convey meaning.

ix. Variety of Identifiers
The total number of different identifiers occurring in the program. Rees (1982)
argues that a program with a small number of distinct identifiers is easier to read
than a similar program with many identifiers.

x. Labels and Gotos
The sum of the number of labels and the number of goto statements in the
program. Unstructured control flow is widely believed to be hard to read,
understand and maintain, so this score should be low in most well constructed
programs.

Most of these metrics are ratios for which there is an ideal value. Having done so,
each metric score must be converted into a quality score. The method suggested by
Rees (1982) (see Figure 2.3) involves using two score intervals which surround the
ideal metric score – inner and outer regions. Programs within the inner region receive
100%, while those outside the outer region receive a 0% quality score for the metric
considered. The intervals (u0, u1) and (v0, v1) are the interesting parts of the domain.
Here quality scores are obtain from the linear growth and decay functions, x−u0

u1−u0
and

1− x−v0

v1−v0
, respectively.

100%

Q
u
a
lit

y

Ideal Metric Value

Metric Value

Inner Region

Outer Region

Linear Decay

U1 V0U0 V1

Figure 2.3: Converting metric scores into quality scores

The style metrics proposed by Rees are useful across a wide variety of programming
languages – although the ideal metric scores vary with each language. For example,
Berry & Meekings (1985) adapt the Rees metrics for C programs, with modest changes.

29

Software metrics may also be useful in assessment, but few have found their way
into CAA sofware. Ala-Mutka (2005) notes that software metrics are relevant in the
educational setting. However, software metrics themselves are only numeric measures.
What is lacking is the means to interpret them valuably in a teaching context. One
software metric that has proved useful in teaching environments is the Cyclomatic
Complexity measure (McCabe, 1976), which estimates the complexity of a program
control flow. This measure is employed in both ASSYST (Jackson & Usher, 1997)
and ELP (Truong et al., 2004). ELP also finds use for other software metrics, such as
reporting switch-case statements that are not terminated with a break statement, and the
detection of shadowed variables.

2.2.3 Uncommon Techniques

In this sub-section, several uncommon techniques that may be employed in CAA sys-
tems are considered. For example, with the rise in popularity of the Java programming
language, many programming courses teach the creation of graphical user interfaces
(GUIs) in Java. These programs are particularly difficult to assess via traditional CAA
techniques. To remedy this, English (2004) describes JEWL – a library for creating
GUIs that support automatic evaluation. JEWL is simpler than the Java AWT, but
not sufficiently dissimilar to discourage its use in an early Java course. The system
allows events to be introduced into the event queue by a test harness program. The test
harness can also access and update the controls in the user interface. In this way, it is
able to perform functionality testing in a similar way to functionality testing based on
command-line IO.

The study of computer aided assessment of computer programs has not exlusively
focussed on assessing program code. Some researchers have considered the possibility
of grading design diagrams. In this regard, CourseMaster offers a tool to assess students’
flowcharts (Higgins et al., 2002), while Thomas et al. (2005) describe their initial work
in automatic grading of ER diagrams.

All of these kinds of deliverables can be assessed through guided peer assessment.
While this approach has problems of its own, Sitthiworachart & Joy (2004) motivate that
their anonymous peer assessment system has the benefits of the automated assessment
offered by many CAA systems, without much of the complexity. They also observe new
pedagogical advantages in that students can learn by evaluating other student’s code.

30

Finally, in a sense the compiler itself is a CAA system in that it may aid a human
evaluator in identifying both syntactic and contextual errors in student programs.
Compilers vary in terms of the quality of feedback they provide, and usually do not
look for the kinds of logic errors typically made by novice programmers.

A system (CAP) that analyses Pascal programs for logic errors, in addition to syntactic
and contextual errors, is described by Schorsch (1995). His system is pedagogically
important because the feedback explains each error in a way that is appropriate for a
first programming course.

2.3 Important Issues

Having carefully surveyed the literature for the computer aided assessment of student
programs, some important issues remain to be addressed. One such issue, which has
received some debate in literature, is the precision with which assignment tasks should
be specified. This is addressed first.

The second issue concerns the effect of program errors on the viability of using
particular CAA measures, as different techniques are sensitive to program errors in
different ways. The third issue is a related problem and deals with the fact that
functionality testing – the most popular CAA measure – can occassionally yield
meaningless scores which go undetected as such.

2.3.1 Precision of Assignment Specifications

Jackson (2000) considers the question of whether an assignment specification should
be so precisely stated as to leave no room for interpretation. If the objective is to
calculate π, should the grader accept “PI = 3.14159”, but still reject “PI: 3.14159” due
to formatting? Jackson argues that if the assignment is too tightly specified, it leaves the
student no opportunity for innovation.

While innovation is important, the present author considers that the pedagogical value
lies in having students think about their programs. Much of this opportunity for thought
is removed in a truly unambiguous assignment specification. Beaty (2001) presents

31

a similar argument saying that at least some parts of the assignment should only be
specified informally to require students to invest thought into their solutions.

In contrast, Archer Harris et al. (2004) argue that the assignment specification should
be absolutely unambiguous, down to the individual characters expected in output –
especially for a first programming course. They make a compelling argument that
any latitude offered by the specification will enable students to substitute code they
are able to produce for code they should be able to produce. They further argue that
since computers are literal and exact in their operation, assignment specifications should
mirror this – ensuring that students become familiar with the notion that computers do
not think and require precise commands.

It seems most of the benefits for a particularly tight assignment specification are
achieved in the first few weeks of assignments. Longer use of this strategy will
result in diminishing returns. As students gain experience in programming, having
them think more about the behaviour of their programs becomes increasingly valuable,
pedagogically. It would also be better if the students are encouraged to think about
progressively deeper semantic detail, rather than the shallower aspects of output
formatting. When students’ reach this level, unnecessarily strict output formatting may
just be an annoyance.

2.3.2 Sensitivity to Errors

Programming errors are broadly considered to be either syntactic, contextual, or
semantic. For example, if functionality testing is applied to the whole program,
the assessment is necessarily critically sensitive to syntactic and contextual errors, as
programs containing these cannot be run. The purpose of functionality testing is to
expose semantic errors, but here also it is over-sensitive. The effects of a small semantic
error are not localised by the assessment process, but can cause every test case to fail.
For this reason, functionality testing at program granularity is highly sensitive to all
error kinds.

Consider, however, that if testing is done at function granularity, the effects of semantic
errors may be localised to the specific function, as seen in HoGG (Morris, 2003).
So sensitivity to semantic errors is reduced. The degree to which it may be reduced
depends upon the technique’s ability to manage functional dependencies, because these
determine how semantic errors may propagate through a program.

32

When testing at function granularity, it is possible to localise the effect of contextual
errors as well. This is because testing an individual function requires that dependent
functions are replaced with correct versions anyway. The same is true for any syntax
errors that may be localised to a given function. This will improve the quality of
assessment as it minimises the interdependency of measurable artefacts. As Ala-Mutka
(2005) observes: “although many approaches emphasize the possibility for iteration,
they still expect the students to submit a complete version of the program already on the
first submission”. This is unfortunate, since clearly this is not an inherent requirement
of all assessment techniques.

It should be noted that structural analysis is largely immune to semantic errors in the
submitted programs, since it does not perform assessment by executing the program. In
the same way, it is almost entirely immune to contextual errors6. With a parsing error
recovery strategy that localises the effect of syntax errors, structural analysis can be
made to work on any program submission, regardless of the degree of completion. It is
the only problem specific CAA method with this property. As a result, for educational
environments the technique may support iterative programming in a more effective way
than dynamic analysis.

Lastly, many style metrics are also immune to all error kinds because they only count
surface features of the program. However, existing CAA systems that make extensive
use of style metrics, such as ASSYST, still reject program submissions which do not
compile.

2.3.3 Meaningful Assessment

As observed in Section 2.3.2, testing of functionality is sensitive to semantic errors.
Occasionally, a small error may cause dynamic analysis to give a program a meaningless
score. As an example, consider the program extract shown in Figure 2.4.

6 A possible exception would be abstract interpretation, which cannot operate in the presence of contextual
errors. However, abstract interpretation has not received attention in literature relating to assessment.

33

Function IsVowel(ch: Char): Boolean;

Var

 TheChar: Char;

Begin

 Case TheChar Of

 'a', 'e', 'i', 'o', 'u':

 Result := True;

 Else

 Result := False;

 End;

End;

Figure 2.4: Identifying vowel characters

The function in Figure 2.4 accepts a character parameter, and is supposed to return true

only when the character is a vowel. The error in the program is that the decision operates
on a local variable, rather than the incoming parameter. This means that the function will
return the incorrect result much of the time. The result depends on what happens to be at
the memory location held by the uninitialised local variable7. If the function consistently
returns false, it will pass 21 of 26 test cases (81%). If the function consistently returns
true, the balance is awarded (19%) – neither of which are meaningful. In contrast,
structural similarity should fair well in this case as the overall structure of the program
is largely intact.

2.4 Summary

This chapter discussed the origins of modern CAA systems for computer science
education. With respect of the classification of CAA systems (Douce et al., 2005),
third generation systems were redefined – bringing to fore the pedagogical advantages
of fine grained assessment strategies.

In addition, a large variety of assessment techniques were discussed. While many
aspects to automated assessment of computer programs have stagnated, structural
similarity shows potential for further work as it has not yet been used to assign scores
to student programs – the focus of this research.

7 The result also depends on compiler behaviour. When compiled with the Delphi 7 compiler, this program
exhibits different behaviour depending on whether optimizations are enabled or not.

34

A main difficulty in doing this is in obtaining a numeric relationship for program
structure between the student submissions, and programs known to be correct. A
pragmatic difficulty also exists. How do we extract a valid approximation to the program
structure in the presence of syntactic errors? Existing parsing error recovery methods
may not be appropriate since they tend to focus on producing valid error messages
without spurious reports, and may skip over an unnecessarily large portions of the
student program. The following chapter will deal with these subjects in greater depth.

35

Chapter 3

Structural Similarity

In the problem domain of this research, candidate student programs and ideal solutions
are both represented as graphs. The intention is to use a structural similarity measure
to obtain a similarity score between candidate and ideal programs. An important
question as outlined in Section 1.2.2 is whether this similarity score can be used as a
reasonably accurate percentage mark for the submitted work. If this is the case, it is
feasible that a structural similarity measure could replace a human marking strategy.
Similarity measures which accumulate scores at each structural sub-component have
further utility. They would allow drilling down into the program’s subgraphs, which
in contrast with simply receiving a global score, may be useful in understanding where
the student’s marks were accumulated. Since student programs can be related to the
structure of known solutions, the same procedure may also be useful in understanding
which strategies are being employed by students for particular problems.

A fundamental problem exists in measuring the similarity of any pair of things. One
might ask the question: What is similarity? Similarity is a much harder concept to define
than equivalence. However, a definition is required if similarity is to be measured. A
practical view may be that similarity is defined by the algorithm that measures it – a
view which is unfortunately self-referential.

This definition introduces a range of philosophical problems. For example, as
two distinct similarity measures cannot provide independent definitions of similarity,
how should these measures be compared? If many similarity measures have been
investigated for a given problem domain, one may have gained sufficient academic
favour to be considered the baseline against which other similarity measures should

36

be compared. In this way, tree edit distance similarity has become the basis for a
practical definition of similarity over hierarchical tree-structured data (Yang et al.,
2005), particularly so for ordered trees.

Philosophical matters aside, it is evident that measuring similarity of structured data
requires:

1. a representation which captures important structural information.

2. an algorithm that produces useful similarity scores.

For similarity scores to be useful they must be symmetric – so it is required that
sim(DataA, DataB) = sim(DataB, DataA). For assessment there is the additional requirement
that score be in the interval [0, 1].

Several representations of structured data exist, including XML and LISP-style symbolic
expressions. Graphs are also a good tool for representing structured data, because the
graph is a mathematical abstraction designed for describing and reasoning about the
formal relationships between connected entities. Fortunately, it suffices to consider only
graph representations, as other representations can easily be mapped to graphs.

The algorithms available for measuring structural similarity can be divided into those
that depend upon the exact equivalence of subgraphs1, and those that introduce a fuzzy
notion of matched subgraphs. The issue of using exact equivalence is important because
graph equivalence and isomorphism is costly to compute (Garey & Johnson, 1990),
whereas fuzzy heuristics are cheap. However, when representations are restricted
to ordered trees, the associated algorithms frequently become considerably simpler.
Consequently, several researchers have focused on tree representations with strict
ordering relationships between sibling vertices.

The contemporary alternative approach is more flexible but may sacrifice some pre-
cision. The main idea is that in relaxing the notion of equivalence, a more effective
measure of similarity may be obtained, since similarity is not exact anyway. The
common approach is to have similarity scores propagate through a graph, updating
the scores held at each vertex, until the scores stabilise. This kind of algorithm is
described as Similarity Flooding by Melnik et al. (2002). The current research will

1 The subgraphs to which equivalence is applied may be of a specific kind, such as in all path oriented
techniques.

37

use the term Similarity Propagation to encompass both Similarity Flooding and several
related algorithms2.

In the discussion of this chapter, some matrix operators feature which are not usually
common. Before continuing, some of the most important notation is first introduced.
The remainder of the chapter consists of three main sections. The first presents the
most important of the traditional structural similarity measures, all of which are among
the algorithms based on the exact equality of subgraphs. The second section focusses
on the more recent similarity measures based on similarity propagation. Finally some
conclusions are drawn with regard to applying the similarity measures in assessment.

Important Notation

GA and GB the graphs being compared
TA and TB the graphs being compared if known to be trees
A and B the adjacency matrices of GA and GB, respectively
nA and nB the number of vertices in GA and GB, respectively
hA and hB the height of TA and TB, respectively
V (G) the set of vertices in graph G

Mi the ith row of the matrix M

Mij the jth entry of the ith row of matrix M

A ◦B the Hadamard matrix product (element-wise product)
A⊗B the Kronecker matrix product (matrix direct product)
‖M‖p the entrywise p−norm of matrix M

2 The author does not wish to create confusion by overloading the term Similarity Flooding, already
described by Melnik et al. (2002).

38

The matrix norms that are important in this chapter bare special mention as the definition
of the entrywise p−norm differs from the common p−norm. The form used here is given
in Equation 3.1.

‖M‖p =

(∑
i

∑
j

Mij
p

) 1
p

(3.1)

Among the most important cases are ‖M‖1 which computes the sum of the matrix
entries, and ‖M‖∞ which determines the largest entry. Another important case is ‖M‖2

which, as defined here, is exactly equivalent to the Frobenius matrix norm, and computes
the square root of the sum of the squares of the entries. This is similar to the Euclidean
vector norm.

The Hadamard and Kronecker products are defined in Equations 3.2 and 3.3, respec-
tively. The Kronecker matrix is shown as a block matrix, because it is otherwise very
large.

Let K and L be m× n matrices

Let M be a p× q matrix

(K ◦ L)ij = Kij × Lij (3.2)

(K ⊗M)ij =

K11M K12 · · · K1nM

K21M K22 · · · K2nM
...

...
Km1M Km2 · · · KmnM

 (3.3)

3.1 Traditional Similarity Measures

This section reviews structured similarity measures based on the exact equivalence of
subgraphs. These include tree edit distance similarity, maximum common isomorphic
subgraph methods, tag-oriented similarity, and path-oriented methods.

39

3.1.1 Edit Distance Similarity

Given the two trees, TA and TB, there are in general many sequences of edit operations
that could transform TA into TB. If each kind of edit operation has an associated cost,
then the cost of each edit sequence is the cumulative cost of each edit operation it
contains. Further, the edit distant between TA and TB is the lowest total cost among
all edit sequences that transform TA into TB. The basic edit operations described by
Tai (1979) are Insert Vertex and Delete Vertex (Figure 3.1a), and Relabel Vertex (Figure

3.1b). These usually have the same unit cost.

(a) Insertion and deletion

(b) Relabelling

Figure 3.1: The primary edit operations used in finding a tree edit distance

All of the important algorithms for determining the minimum tree edit distance are
bottom-up algorithms based on dynamic programming. This usually involves a post-
order traversal of the tree during which the problem is first solved for the smallest
subtrees. These results are stored in a memo table to eliminate repeating work when
considering progressively larger subtrees.

In one of the earliest algorithms, only leaf insertions and deletions are permitted,
with O(nAnB) performance (Selkow, 1977). This restriction was lifted by Tai (1979)
by allowing insertions and deletions to take place anywhere within the tree. These
unrestricted edit operations are those demonstrated in Figure 3.1a, and have become the
accepted minimum set of edit operations.

The difficulty in allowing single-vertex deletion in the middle of a tree can be seen by
considering what should be done with the target node’s children. As the figure shows,

40

when a vertex with children is deleted, the parent vertex must adopt the children of the
deleted node. The only condition is that vertex deletions cannot take place at the root
unless the root contains only one child, in which case, that child becomes the new root.
Insertions are handled in a similar way.

The performance cost of these algorithms can be seen intuitively. Consider that if a
vertex of an unordered tree has n children, there are 2n − 1 subsets of the children
which could be adopted by a newly inserted vertex. The case for ordered trees is not
as dire, since there are only O(n2) viable subsets of the children. In consequence, most
of the published work is restricted to considering ordered trees, since the same problem
for general trees is NP-Hard3 (Zhang et al., 1992).

Tai’s algorithm is limited to ordered trees. It’s main problem is still its poor performance
as the algorithm completes in O (nAnBh2

Ah2
B) time. Working to better this, Shasha &

Zhang (1989) present an algorithm which exhibits O (nAnB ·min(hA, hB)) behaviour.

Chawathe et al. (1996) focus on constructing a “minimum-cost edit script”. This script
allows a more meaningful study of the changes between two trees, as other algorithms
compute only the edit distance and not the edit sequence. Their algorithm operates on
unordered trees, but to counter the NP-Hardness, may yield sub-optimal edit scripts.
Further advancements are made by allowing the additional edit operations: Subtree

Move, Subtree Prune and Subtree Graft (Chawathe & Garcia-Molina, 1997).

A more recent contribution is due to Nierman & Jagadish (2002). They allow the three
standard edit operations in addition to Delete Subtree and Insert Subtree, which are
similar to the prune and graft operations of Chawathe & Garcia-Molina (1997). Once
again, they consider only ordered trees. In spite of the additional edit operations, they
obtain performance similar to that of Shasha & Zhang (1989). Further, if a constant
limit is placed on the number of children any given node may have, then their algorithm
exhibits O(nAnB) behaviour.

Application to Program Similarity

Regardless of how the edit distance is computed, it is still a distance metric and not a
similarity score. Fortunately, there is a simple way to obtain a similarity score from the
edit distance. Considering that in the worst case of converting TA into TB, every vertex

3 NP-Hard problems are at least NP-Complete, but possibly harder.

41

of TA would have to be replaced with a vertex from TB, with the surplus either deleted
or inserted, depending on which tree is larger. This means that at most max(nA, nB)

edit operations are required. This yields the standard expression for similarity based on
tree edit distance, given in Equation 3.4 (Buttler, 2004).

SimTreeEdit(TA
, T

B
) = 1−

distTreeEdit(TA
, T

B
)

max(n
A
, n

B
)

(3.4)

An important observation can be made if this measure is to be applied for the automated
assessment of student programs: the contribution of an edit operation to the final
similarity score is dependent on the sizes of both trees. Suppose two students submit
independent candidate solution programs of different size. Suppose also that when these
are respectively compared with an ideal solution, the same edit operation is required.
Although the same change is applied to both submissions, the impact is larger for
the smaller program. This can be ameliorated by using assignments with large ideal
solutions, as the effect diminishes as the size of the ideal solution increases.

Allali & Sagot (2005), who report on using tree edit distances in RNA4 comparison,
describe a problem they call the “scattering effect”. The problem occurs when two
structurally similar subtrees are incorrectly associated. They observe cases where
(through information innaccesible to the edit distance algorithm) it is known that the
two trees are not actually related. To illustrate this problem in the context of comparing
programs, consider Figure 3.2. If for the moment the choice of identifier names is
ignored, the two fragments shown are very similar – requiring only two edit operations
to reduce one into the other. It is unlikely that a human marker would associate the two
fragments because the choice of variable names carries significance. The human can
use this to tell that the functions do not serve the same intention.

The problem is avoided if identifier names are required to be strictly equivalent.
However, this approach implies assignment specifications that are so precise as to leave
little room for problem solving. Otherwise this requirement is unreasonable as it is very
unlikely that student submissions and the ideal solution would agree on variable names.
The tree edit distance measure does not make this an easy issue. What is needed is a
bijection between the names used in the two programs to evaluate their similarity. This
applies to all user defined names, including variable and function names. Unfortunately,

4 Ribonucleic acid (RNA) is a complex polymer synthesised from DNA by emzymes. RNA is important
for the construction of proteins in the body.

42

Figure 3.2: Coincidental structural similarity between program fragments

a similarity measure is precisely what is needed to evaluate the viability of a chosen
name mapping.

To address the problem of name mapping, Sager et al. (2006) simply avoid comparing
names at all. The same authors suggest the possibility of using a text-based similarity
measure between names to decide if they can be mapped. Such a strategy may be
feasible in domains with strong naming conventions.

3.1.2 Maximum Common Isomorphic Subgraph

A pair of graphs are considered isomorphic if they are equivalent, subject to some
relabelling of vertices if the labels are not themselves significant. If two graphs have
large subgraphs which are isomorphic, they could be considered similar. An example of
maximum common isomorphic subgraphs between programs is shown in Figure 3.3.

The problem of finding the largest common isomorphic subgraph is a well known NP-
Complete problem (Garey & Johnson, 1990). This usually necessitates the use of greedy
algorithms to find approximate solutions. To obtain a numeric measure of similarity
based on this technique, suppose that the graphs GA and GB are being compared. Let the
size of the maximum common isomorphic subgraph be ncommon. The similarity between
GA and GB is then given in Equation 3.5 (Sager et al., 2006), which determines the
average proportion common to either graph. Since ncommon ≤ min(nA, nB), this score
is in the [0, 1] interval, as required.

43

Figure 3.3: The maximum common isomorphic subgraph between two ASTs

SimMaxCommon(GA
, G

B
) = 2

ncommon

n
A

+ n
B

(3.5)

This expression makes a certain amount of sense, but it does not lead to a reliable
measure. Let us suppose that for GA and GB the expression yields an accurate similarity
score. In order to be reliable, a change in GA should result in a proportional change in
the similarity score – and, by extension, a proportional change in the common subgraph.
This is not a reasonable expectation.

(a) The maximum common
isomorphic subgraph of two
program graphs, GA and GB

(b) The effect of a small
change in the program text

Figure 3.4: The unreliability of the maximum isomorphic subgraph measure

The technique is vulnerable to even small changes in the graphs. Firstly, a change may
occur in an unrelated part of GA and not affect the similarity score very much at all.
Secondly, a small change at a critical location of the common region, say the root of a

44

tree, can split the common subgraph into multiple pieces. This scenario is demonstrated
in Figure 3.4. The maximum common isomorphic subgraph of the example is shown
in Figure 3.4a, containing three large subgraphs, P , Q and R. Suppose that one of the
original graphs is edited to change the way P , Q and R are combined to form the larger
graph. In Figure 3.4b this is done by introducing an if statement. When this happens,
the connection between the three subgraphs is no longer subsumed by the maximum
common isomorph. The new maximum common isomorphic subgraph becomes the
largest of P , Q or R – all three of which are large. Thus the new isomorphic subgraph
is expected to be substantially smaller than the original, even though the change is itself
small. The significant reduction of the maximum common isomorphic subgraph leads
to a significant change in similarity score, making the technique unreliable. In evidence
of this argument, Sager et al. (2006) have found the tree edit distance similarity to be
substantially more robust than methods based on common isomorphic subgraphs.

One interesting aspect of this technique is that it is not biased towards particular regions
of the graph. In the case of trees, for example, it is not biased towards leaf vertices, since
the maximum common subgraph could contain any connected subset of the available
vertices. There may be a large common region near the roots of the trees, indicating
that the overall design of the two programs is similar, but the fine detail near the leaves
is different. This is in contrast to the edit distance measure in which no vertex can be
considered in isolation from its children.

3.1.3 Tag and Path-Oriented Similarity

This sub-section discusses a sample of the large variety similarity measures developed
for comparing XML documents. The measures discussed here are based on shared tags,
or similar nesting of tags. However, the same methods are applicable in a more general
context, since XML tags in XML documents are largely equatable with labels on the
vertices of tree graphs.

Tag Similarity

Tag similarity is remarkably simple to compute and is based on finding the set of tags
(labels) that are shared between two documents (trees). Suppose the technique is applied
to two trees TA and TB, with label sets LA and LB, respectively. There are several ways

45

to obtain a similarity score based on the label sets. A suggested method is the Jaccard

Coefficient (Ganesan et al., 2003), which yields the following equation:

SimTags(TA
, T

B
) =

|L
A
∩ L

B
|

|L
A
∪ L

B
|

(3.6)

Tag similarity can be very effective in structured domains with an unbounded set of
possible tags. Conversely, it is ineffective if a relatively small set of tags are available,
as most documents will utilise all of them as a matter of course. In the context of
program comparison, the labels on vertices are likely to relate to the constructs and
operators supplied by the programming language. Since there is a modest finite set of
these, the measure is expected to perform poorly for program comparison.

Weighted Tag Similarity

The weighted tag similarity method, as described by Buttler (2004), is an adaption of
the previous measure to counter its stated problem. This is achieved by counting the
number of occurrences of each tag, and then dividing the total number of shared tags by
the average number of tags occurring in the documents.

In terms of the trees of the previous example, suppose that n distinct labels occur over
the vertices of TA and TB, and that wA,i and wB,i represent the weight (number of
occurrences) in each tree, respectively, of the ith label. Then the weighted tag similarity
should be computed by:

SimWeightedTags(TA
, T

B
) = 2

∑n

k=1
min(w

A,k
, w

B,k
)∑n

k=1
(w

A,k
+ w

B,k
)

(3.7)

The weighted tag similarity is still a simple heuristic, but can be somewhat effective
despite being cheap to compute. Buttler (2004) suggests that the measure is most
effective in comparing documents governed by a strict schema that limits structural
variation. Consider that under this measure two programs containing the same number
of assignments, loops and decision constructs, but organised in totally unrelated ways,
would still obtain the highest possible similarity score. For this reason, it is expected
that the method would yield inflated scores if used for automated assessment.

46

Path Similarity

The weakness of tag-oriented similarity methods is that they consider tags in isolation,
and disregard the relationships and relative positioning of tags. Path similarity measures
can be thought of as a generalisation of tag similarity. Instead of comparing the set
of tags occurring in each graph, path similarity is concerned with finding the set of
common paths. The method is a little harder to formulate since the set of paths occurring
in a graph may be infinite if the graph contains cycles. Even if the graph does not contain
cycles, enumerating all paths is usually not feasible.

One way of thinking about path similarity is that it should estimate the probability of
any randomly selected path of length k from the first graph, being found represented
in the second. Determining this probability is potentially expensive, but a variety of
approximations are possible.

An interesting approach is the application of document shingles to the set of paths
present in each graph (Buttler, 2004). What this entails is selecting a fixed size random
subset of the available paths and computing a hash value for each of these paths. This
results in two sets of integers, one set for each graph, say HA and HB. The similarity
between graphs GA and GB can now be approximated by the set resemblance between
HA and HB, given by:

SimPathShingles(GA
, G

B
) =

|H
A
∩H

B
|

|H
A
∪H

B
|

(3.8)

The similarity score is a reasonable approximation for the probability of a randomly
selected path being common to both graphs, but only if the paths from which they are
derived are randomly chosen, and the sets HA and HB are large enough. Care must
be taken in selecting random paths. It is convenient to develop random paths from the
root of each graph, but this over-values vertices near the root, and tends to de-emphasise
leaves.

3.2 Contemporary Similarity Measures

Several similarity measures, based on the propagation of scores through a propagation
graph, have recently been developed – with important contributions by Melnik et al.

47

(2002), Jeh & Widom (2002), and Blondel & Van Dooren (2004). These measures
are important because they can be applied to more general graphs than simply ordered
trees. Thus these measures are described to measure the similarity between graphs GA

and GB, with adjacency matrices A and B, respectively. Algorithms concerned with
self-similarity specifically, can be treated as comparing GA with itself.

The measures presented here share some general characteristics. They each construct
either a matrix or a vector describing pairwise vertex similarity scores. The issue of
obtaining a composite graph similarity score from the individual vertex similarity scores
has not received significant attention in literature. In this regard, Melnik et al. (2002)
use the Euclidean length of the score vector as the overall similarity.

Similarity propagation algorithms are similar in many respects, and the product graph
(GA × GB) is an important concept relevant to each algorithm – so it is introduced
in Section 3.2.1 before the individual algorithms are discussed in detail. Section

3.2.2 discusses Similarity Flooding in detail, paving the way for further discussion
of similar algorithms, which are explained in relation to Similarity Flooding. The
SimRank measure could have been chosen as the measure against which to relate the
other algorithms, since it was developed independently at the same time as Similarity

Flooding. However, the Similarity Flooding is the better choice for this purpose because
it allows bidirectional propagation of similarity information. As such it is more useful
in comparison with a larger variety of algorithms.

3.2.1 The Product Graph

In similarity propagation, the intent is usually that a pair of vertices are considered
similar if their neighbours have been found to be respectively similar. This is made
explicit through the product graph (GA × GB). In the product graph every node
represents a pair of vertices, one from each of GA and GB. The initial similarity scores
of each vertex-pair propagate through the product graph, making updates at each step
until convergence.

The construction of the product graph is relatively simple. Figure 3.5 presents an
example used in this section. The figure is based on the very abstract example offered in
Melnik et al. (2002), but has been adapted to a practical real life scenario which models
two social networks between small children (Figures 3.5a and 3.5b).

48

(a) GA (b) GB

(c) Product Graph of interactions between children

Figure 3.5: Example of the application of the product graph

In Figure 3.5c it can be seen that GA × GB has a vertex for every vertex-pair from the
source graphs. The most important aspect of the figure that requires explanation is the
placement of edges. Supposing that p, q ∈ V (GA), and r, s ∈ V (GB), formally if an
p → q edge exists in GA, and an r → s edge exists in GB, then an 〈p, r〉 → 〈q, s〉 edge is
placed in the product graph. In the example, since Jack likes Jane and Anne likes Bobby,
the product graph must have a directed edge from 〈Jack, Anne〉 to 〈Jane, Bobby〉. The
edge labels are normally not significant in the product graph, but have been retained in
Figure 3.5c to emphasise the relationship to the original graphs.

Looking again at the figure, it is seen that Jack likes Jane and Anne tells Mark, so
the product graph has the directed edge 〈Jack, Anne〉 → 〈Jane, Mark〉. This case is
interesting because the original edge labels do not match. To maintain this distinction,
all such product graph edges have been rendered as dashed lines in Figure 3.5c.

The use of product graphs in measuring similarity is important as reasoning in terms of
a product graph helps understanding. However, it is not necessary that implementations
construct the graph in order to operate. Mathematically, the computations used in

49

similarity propagation can be formulated with matrix operations, whether in terms
of the product graph or the original graphs. Some authors prefer to use the product
graph as a thinking tool rather than an implementation tool. For example, the SimRank

measure operates directly on the original graphs (Jeh & Widom, 2002). Other academics
prefer working with the matrix formulation as it facilitates reasoning about convergence
characteristics (Blondel et al., 2004 and 2005).

Useful definitions

When expressed in terms of the original graphs, the solution is a matrix Sk with entry
[Sk]ij being the similarity between vertex ui of GA and vj of the compared graph.
Alternatively, when using a product graph matrix formulation, the solution vector Sk

is a column vector of similarity scores for each of the vertices in the product graph.
While different symbols are used for Sk and Sk, this reflects little more than variation in
the approaches to the problem. The number of elements in these matrices is the same,
and Sk can be obtained from Sk by stringing together its columns to form a single vector.

3.2.2 Similarity Flooding

The similarity measure introduced by Melnik et al. (2002) is called Similarity Flooding.
They use a special variety of the product graph, which they call the induced propagation

graph. This graph is obtained from the product graph after three additional steps.
Firstly, each directed edge in the product graph for which the underlying edges have
mismatched labels is removed from the graph. In the example of Figure 3.5, this means
that all dashed-line edges are removed. The effect is to filter out improper vertex
mappings, and their propagation paths. This action also removes any possibility of
considering the similarity between edge labels, should they differ.

The second step is to update the propagation graph as follows: for every directed edge,
an edge in the reverse direction is added. This allows similarity information to propagate
in both directions. Melnik et al. (2002) are not specific about what happens if the reverse
directed edge already exists. If the edge is duplicated, the graph is changed into a multi-
graph. This is problematic for a variety of reasons – the most important is that not all
current matrix formulations of similarity propagation work for multi-graphs.

50

The third and final step applied is to attach a weight to every directed edge. These
weights are called propagation coefficients, and give the proportion of contribution
between adjacent vertices. These coefficients may be determined in a variety of ways.
One suggested method is: for every vertex m of the product graph, all the directed
edges leaving m receive the same weight, which is given by 1

Degreeout(m)
. This approach,

called the inverse-product formula, divides the similarity contribution evenly between
all of the vertices immediately reachable from v. It is called the inverse-product because
Degreeout(m) is equal to Degreeout(u)×Degreeout(v), where m corresponds to 〈u, v〉,
u ∈ V (GA), v ∈ V (GB), and the graphs are not edge-labelled.

A similar procedure can be applied to edge-labelled graphs, where instead the similarity
contributions are divided equally on a per label basis. This is the case in the example
being discussed, and the cumulative effect of the three steps is shown in Figure 3.6.
Here vertex 4 has two reversed edges leaving it, both with weight 1.0. This is because
these reversed edges have different labels in the original graphs, likes from vertex 1 and
tells from vertex 3, so the propagation contribution is not shared between them.

Figure 3.6: The induced propagation graph for the running example

Melnik et al. (2002) do not merely treat the propagation graph as an abstraction but use
it directly in the computation. In particular they do not offer a detailed mathematical
expression for the whole update operation across the entire graph. However, an
expression for the propagation at each vertex is offered, though temporarily ignoring
normalisation. Equation 3.9 expresses the propagation update at the 〈u, v〉 vertex-pair
after k iterations. It is observed that the first double summation corresponds to backward
propagation of scores, while the second can be attributed to forward score propagation.

51

Propagateuv (S
k
) =

∑
v→q ∈ G

B

∑
u→p ∈ G

A

w〈u,v〉→〈p,q〉 [Sk
]pq

+
∑

s→v ∈ G
B

∑
r→u ∈ G

A

w〈r,s〉→〈u,v〉 [Sk
]rs (3.9)

Propagatem (S
k
) =

∑
m→n ∈ Gprop

wm→n [S
k
]n = [W

edges
◦ P]mS

k
(3.10)

A corresponding expression is possible in terms of the mth vertex of the propagation
graph (see Equation 3.10). In the equation Wedges is the matrix of edge weights. Similar
algorithms often have the adjacency matrix (P) of the propagation graph in the position
of Wedges, so it is retained for comparison.

Continuing by dropping the m subscript in Equation 3.10 a formula is obtained that
determines the propagation scores for each vertex simultaneously (Equation 3.11).
Since this new equation covers all vertices, Melnik et al. (2002) introduce normalisation
to ensure that scores remain in the [0, 1] interval (regardless of how the weight matrix
is determined), giving Equation 3.12. Now the fixed-point solution of this equation
represents the final S score vector after the progagation of scores stabilises.

Propagate (Sk) = (Wedges ◦ P)Sk (3.11)

S =
(Wedges ◦ P)S

‖(Wedges ◦ P)S‖∞
(3.12)

The natural choice to find the fixed point of Equation 3.12 is to use the iterative formula
Sk+1 =

(Wedges◦P)Sk

‖(Wedges◦P)Sk‖∞
. However, according to Blondel & Van Dooren (2004), this

strategy may not converge. An important contribution by Melnik et al. (2002) is the
empirical study of the convergence behaviour for several alternative forms of iteration
formulae. The formulae studied are shown in Table 3.1, and were measured for a variety
of graphs.

It is now known that if the initial similarity scores are positive (S0 > 0), convergence

52

can be ensured for certain iteration formulae (Blondel et al., 2005). This was applied in
obtaining Table 3.1 by using a minimum initial similarity score of 0.001, and stopping
the iteration after ‖Sk − Sk−1‖2 ≤ 0.05. The table summarises the average number of
iterations required for convergence with each of the formulae.

Formula Avg. Iterations

basic Sk+1 = Sk+Propagate(Sk)
‖Sk+Propagate(Sk)‖∞ not reported

variation A Sk+1 = S0+Propagate(Sk)
‖S0+Propagate(Sk)‖∞ 206

variation B Sk+1 = Propagate(S0+Sk)
‖Propagate(S0+Sk)‖∞ 49

variation C Sk+1 = S0+Sk+Propagate(S0+Sk)
‖S0+Sk+Propagate(S0+Sk)‖∞ 8

Table 3.1: Forms of iteration formulae studied by Melnik et al. (2002)

In the formulae presented in Table 3.1, a Sk term has a dampening effect on the update
and is valuable in encouraging convergence. A S0 term may be used for the same
purpose. An important observation is that adding a S0 term can change the fixed point
value that is found on convergence. However, if each entry in S0 is small, the effect is
likely to be negligible. Either way, adding a Sk term is the safer choice as this has no
effect on the fixed point found.

Each of these formulae are easy to apply iteratively to find a fixed point. For example,
Table 3.2 shows the first six iterations of propagation through the largest connected
component of Figure 3.6, using the basic iteration formula. From these results it
can be seen that Jack and Anne are most similar, closely followed by Emma and
Bobby. Looking at the original graphs, these relationships are not surprising, although
intuitively one might have expected Emma and Bobby to be most similar since they are
both liked and told, whereas Jack and Anne only have one common relationship – both
liking others.

The question of why Emma and Bobby are not the most similar should be addressed. The
reason is that the similarity score is not really between the vertices, but rather between
their reachable subgraphs. In the example, the Jack and Anne vertices are roots of
their respective graphs, making them strong candidates for the highest overall similarity

53

score. If GA and GB are rooted acyclic graphs, this suggests taking the similarity
between the roots as the overall graph similarity score.

Similarity Scores
(Jack-Anne) (Jane-Bobby) (Jane-Mark) (Emma-Bobby)

k Vertex 1 Vertex 2 Vertex 3 Vertex 4 ‖Sk − Sk−1‖2

0 0.50 0.50 0.50 0.50
1 1.00 0.50 0.67 0.83 0.624
2 1.00 0.43 0.64 0.86 0.079
3 1.00 0.41 0.66 0.88 0.032
4 1.00 0.40 0.67 0.89 0.023
5 1.00 0.39 0.68 0.90 0.016
6 1.00 0.39 0.69 0.91 0.011

Table 3.2: First six iterations of the basic iteration formula (Melnik et al., 2002)

3.2.3 Related Similarity Propagation Measures

Two related similarity propagation measures are now considered. The first is the
SimRank measure (Jeh & Widom, 2002) which is significant as it is the only published
alternative that does not require normalisation. The second is the measure studies in
Blondel & Van Dooren (2004). This last measure is interesting in that Blondel &
Van Dooren forgo the possibility of edge and vertex weights to better reason about
the methods convergence properties.

The Jeh & Widom (2002) Measure: SimRank

Initially the SimRank measure introduced by Jeh & Widom (2002) seems to have several
differences to Similarity Flooding. It is described for finding self-similarity, rather than
similarity between a pair of graphs. In this way, the method can be thought to operate on
the product graph. However, nothing in the method prevents finding similarity between
disconnected subgraphs on GA, so by extension the method could be adapted to compare
distinct graphs.

Jeh & Widom (2002) use the unmodified product graph, rather than the induced
propagation graph of Melnik et al. (2002). The effect is that propagation proceeds in
only one direction between any pair of adjacent vertices. This usually means that the

54

algorithm allows only forward propagation, but backward propagation can just as easily
be achieved.

In terms of the relationships between linked web sites, backward propagation can be
thought of as computing hub scores, while forward propagation computes authorities
(Blondel & Van Dooren, 2004). Clearly, the most appropriate choice between forward,
backward or bi-directional propagation depends on the data representation and the
problem domain.

The propagation update for backward SimRank propagation is presented in Equations

3.13 and 3.14. In these equations, C is a free parameter chosen to encourage
convergence. A typical choice might be C = 0.8. Since the factor C is accumulated
through each propagation step, contributions across multiple edges decay with the
sequence {0.8, 0.64, 0.51.2, 0.4096, . . .}, which correspond to increasing powers of
C. The effect is that the similarity contributions from distant vertex-pairs in the
product graph are damped out. The parameter C can therefore be tuned to guarantee
convergence, but reducing the value conteracts the main idea of propagating of scores.

Propagateuv (S
k
) =

C

Degreeout(u)×Degreeout(v)

∑
v→q ∈ G

A

∑
u→p ∈ G

A

[S
k
]pq (3.13)

or...

P ropagatem (S
k
) =

C

Degreeout(m)

∑
m→n ∈ G

A
×G

A

[S
k
]
n

=
C

Degreeout(m)
PmS

k
(3.14)

In the same way as before, an equation for the propagation over all vertices is easily
obtained (Equation 3.15). Here the weight matrix Wvertices is carefully chosen to ensure
that similarity scores remain in the [0, 1] interval. Since for vertex m, at most a score of
1.0 could be propagated from each adjacent vertex in the product graph, the cumulative
propagation it receives cannot exceed Degreeout(m). The weight matrix is arranged
to divide each cumulative score by the relevant vertex’s out-degree, ensuring that the
required score interval is maintained. This is important because normalisation is no
longer needed.

55

Propagate (S
k
) = W

vertices
◦ PS

k
(3.15)

where...

W
vertices

=

...
C

Degreeout (m)

...

 (3.16)

The Blondel & Van Dooren (2004) Measure

The similarity measure by Blondel & Van Dooren (2004) is developed along similar
lines to both Similarity Flooding and SimRank. The update equation they devise
(Equation 3.17) is expressed in terms of the original graphs GA and GB, not the product
graph.

S
k+1

=
BT S

k
A + BS

k
AT

‖BT S
k
A + BS

k
AT‖

2

(3.17)

An important contribution is that they formalise the relationship between this expres-
sion, and a similar one in terms of the product graph. Suppose that vec(M) is an
operator which constructs a single vector from the columns of the matrix M . Then
it is known that using the Kronecker product, the operator supports the property that
vec(CSD) = (DT ⊗ C)vec(S). Allowing that Sk = vec(Sk), this enables the
transformation of Equation 3.17 into Equation 3.19 (see Equations 3.18a-e).

let M
k

= BT S
k
A + BS

k
AT (3.18a)

then vec(M
k
) = vec(BT S

k
A) + vec(BS

k
AT) (3.18b)

= (AT ⊗BT)vec(S
k
) + (A⊗B)vec(S

k
) (3.18c)

= (AT ⊗BT + A⊗B)vec(S
k
) (3.18d)

= (AT ⊗BT + A⊗B)S
k

(3.18e)

56

S
k+1

=
M

k
S

k

‖M
k
S

k
‖2

=

(
AT ⊗BT + A⊗B

)
S

k

‖(AT ⊗BT + A⊗B) S
k
‖2

(3.19)

Having obtained Equation 3.19, the connection to Similarity Flooding is clear. The term
A⊗ B gives the adjacency matrix of the product graph GA × GB. Similarly AT ⊗ BT

is the adjacency matrix for the same graph, but with the direction of all edges reversed.
If GA and GB have no edge-labels, the sum of these matrices is exactly the adjacency
matrix of the induced propagation graph used by Melnik et al. (2002). The Blondel &
Van Dooren method is still unique in that it applies no edge or vertex weights.

The relationship with the SimRank measure can be seen in a similar way. If only the
backward propagation part of Equation 3.17 is considered, and the vec(CSD) property
is applied, then an expression much like the SimRank propagation function Equation

3.15 is obtained. The difference once again being the absence of the weight matrix. In
consequence, the most distinguishing characteristic between the similarity propagation
algorithms considered is in how each assign vertex and edge weights in the propagation
graph.

Further work focused on the conditions for convergence. The initial result offered is
that while Equation 3.19 is unlikely to converge, the sequences of odd and even terms
do converge independently. The suggestion is that the vector to which the even term
sequence converges be taken as the final similarity vector. Subsequent work has revealed
other ways to achieve convergence (Blondel et al., 2005).

3.3 Conclusion

This chapter first introduced the philosophical and practical problem in defining
structural similarity, or comparing two structural similarity measures. This is a problem
with no simple solutions. In practice, any similarity measure must be carefully evaluated
in a given domain to determine if its results are useful.

Such problems notwithstanding, a variety of traditional structural similarity measures
were considered. While the tree edit distance provides a respected similarity measure,
practically speaking it is limited to ordered trees. Unfortunately, due to the nature of
program source code diversity, it is unlikely that ordered trees will be an effective

57

data structure to support the comparing of programs. This is because an ordered tree
representation is over-specified as ordering is not essential in every program construct.

Techniques based on subgraph isomorphism as well as tag-oriented measures were
also considered, but these are argued to have problems in producing reliable scores
– at least in the current domain. The problems with tag-oriented methods can be
overcome by considering tag nesting, so path-oriented similarity measures may be a
viable solution. Nevertheless, path-oriented algorithms reveal nothing about the locus
of similarity within the programs compared – an important requirement if the score must
be understood in the context of the programs.

The prospect of determining pairwise similarity between constructs in candidate and
ideal programs is appealing. As constructs will find representation in vertices, the
similarity propagation algorithms make this possible. However, in assessment it is
required that the resulting scores have intrinsic meaning5. This presents difficulty as
Blondel & Van Dooren (2004), for example, require only that scores can be compared
for an ordering relationship. The presence of a normalisation step in the iterative
computation makes it impossible for scores to have independent meaning.

Consider, for example, that the ‖·‖∞ norm used by Melnik et al. (2002) guarantees that
at least one pair of vertices will be considered completely similar (1.0). This will be
true even if the vertices do not serve exactly equivalent roles in the respective graphs.
The Jack and Anne vertices of Figure 3.5 make a good example.

The Frobenius norm (‖·‖2) used by Blondel & Van Dooren (2004) exhibits a different
problem. It ensures that the length of the score vector is always exactly 1.0. This means
that at most one pair of vertices are completely similar, but even this case is exceedingly
unlikely because it requires all other vertex pairs to be completely dissimilar (0.0). A
distribution of low scores should rather be expected, even if the graphs being compared
are identical. This is a significant problem if the final similarity is to be interpreted as a
percentage mark.

The SimRank measure is promising in that it does not require the use of normalisation.
It is not without problems, although they are not as severe. Consider the pair of vertices
u and v, with children u1, u2, . . . ur and v1, v2, . . . vn respectively (Figure 3.7a and
related Figure 3.7b). The SimRank measure sums the similarity contribution from every
possible pairing of the vertex children. This is then divided by the number of pairings. In

5 Ideally the score could be interpreted as a percentage.

58

(a) Portions of Graphs GA and GB (b) Related portion of
Product Graph GA × GB

Figure 3.7: SimRank averages the similarity between all possible pairs of children

other words, the similarity between u and v is related to the average similarity between
all possible assignments between their respective vertices. In domains where an optimal
mapping between the children of u and v is expected, the averaging (which does not
respect the ideal assignment between children) will yield pessimistic scores. None of
the existing similarity propagation measures address this problem.

To illustrate the same issue in a more concrete way, consider what would happen if a
program were compared with itself. At every vertex-pair there is a perfect mapping
between their children (since they are identical), but the SimRank measure will still
average this perfect mapping with the scores from all poorer mappings. The effect is
that a program is never considered exactly similar to itself.

In the following chapter, this particular problem is addressed. A novel adaption of
the SimRank measure is introduced to yield a new similarity measure called Weighted

Assignment Similarity. This new algorithm is expected to be more appropriate for
assessing program code by similarity, because the scores it produces may reasonably
be regarded as percentages.

59

Chapter 4

A Novel Program Similarity Measure

In the previous chapter, it was observed that the SimRank measure averages the
propagation scores of all contributing neighbour pairs. The result has a strong
relationship to averaging the cumulative propagation score over all possible assignments
between the neighbour sets. This is innappropriate as the similarity between a pair of
vertices should be governed by a mapping between their parts, rather than all possible
such mappings.

This chapter introduces a novel similarity measure called the Weighted Assignment

Similarity measure, which does not exhibit this problem. Based on a single local
mapping between the sets of child vertices, it supports a more natural idea of similarity
and its score may be regarded as a percentage of mutual coverage.

Before the new measure is introduced the exact argument regarding the SimRank

measure should be formalised. To facilitate this, Definition 4.1 defines the important
concept of a neighbour assignment.

Definition 4.1 (Neighbour Assignment).
Given two vertices, u and v, with reachable neighbours u1, u2, . . . ur and

v1, v2, . . . vn, respectively; a neighbour assignment between u and v is a set
H of vertex pairs, 〈ui, vj〉, with i ∈ [1, r] and j ∈ [1, n], such that each ui and
vj occur in H at most once. Furthermore, it is required that the cardinality of
H be min(r, n), such that H cannot be any larger. The similarity score of a
neighbour assignment is considered to be the average similarity of its pairs.

60

The argument regarding the SimRank measure can now be formalised in Lemma 4.1.

Lemma 4.1 (Reinterpreting SimRank scores).
Given two vertices, u and v, with reachable neighbours u1, u2, . . . ur and

v1, v2, . . . vn, respectively; the SimRank similarity between u and v is exactly
equal to the average similarity score derived from all possible neighbour
assignments between u and v.

Proof. Without loss of generality, it is assumed that r ≤ n.

Thus the total number of neighbour assignments between u and v is given by

T = nCrr! = nPr

since r of vertex v’s n neighbours must be selected for pairing with the
neighbours of u, and the pairing can be done in r! distinct ways.

Let Hi be the ith neighbour assignment between u and v.
Let N = {〈ui, vj〉 | i ∈ [1, r], j ∈ [1, n]}.

Then the average SimRank score propagated across all neighbour assignments
is

T∑
i=1

C

r

∑
〈p,q〉 ∈ Hi

[Sk]pq

T

Since each vertex pair occurs in the same number of assignments, in particular,
T
n

of them, the expression can be rewritten as

T

n
×

C

r

∑
〈p,q〉 ∈ N

[Sk]pq

T

=
C

rn

r∑
i=1

n∑
j=1

[Sk]ij

which corresponds with SimRank propagation (Equation 3.13). �

61

The significance of this proof is best seen in an example. Figure 4.1a-f shows
all possible neighbour assignments when comparing structured representations of the
expressions 9 + x2 and x2 + y + 9. There are six such assignments, but Figure 4.1b

is clearly the appropriate mapping. The remaining five assignments only reduce the
effectiveness of any similarity measure that considers them all. Since the number
of neighbour assignments is combinatoric, the difficulty is in selecting the ideal
assignment. This leads to a new similarity measure introduced in the next section.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Neighbour assignments for comparing 9 + x2 with x2 + y + 9

4.1 Weighted Assignment Similarity

The Weighted Assignment Similarity measure is based on finding the ideal neighbour
assignment between each pair of vertices considered. The ideal assignment is consid-
ered to be the neighbour assignment with the largest average pairwise similarity. This
assignment can only be found if the similarity between vertices is already known. Here
this is not the case, as finding the similarity is itself the broader objective.

The approach taken in the Weighted Assignment Similarity measure is to approximate
the ideal neighbour assignments using the vertex similarity scores resulting from the
preceding iteration. The premise is that as similarity scores become more accurate with
successive iterations, the chosen neighbour assignments begin to reflect the set of ideal
assignments.

62

Finding an optimal neighbour assignment is not difficult, given reasonable approxima-
tions for similarity scores. If the degree of the vertices is known to be small, then a
brute-force search over all assignments is easy to implement and will probably be fast
enough. If the graph representations of the problem domain allow each vertex to have
an arbitrarily large number of neighbours, then the combinatoric explosion necessitates
a better algorithm. Fortunately this is a well studied problem.

Consider the previous example. Figure 4.2a shows that the similarity information
between neighbours at any given iteration can be represented as a bipartite graph.
Using vertex pair similarity scores as edge weights, the problem of finding an optimal
neighbour assignment is now equivalent to that of finding a maximum score maximal

matching in the bipartite graph. Saip & Lucchesi (1993) offer a review of several good
algorithms for this problem.

(a) Neighbour similarity as a complete bipartite graph

[
1.0 0.4 0.2
0.2 0.5 1.0

]
(b) Similarity Score Matrix

[
0.0 0.6 0.8
0.8 0.5 0.0

]
(c) Dissimilarity Matrix

[
1 0 0
0 0 1

]
(d) Munkres Solution

Figure 4.2: The example of comparing 9 + x2 with x2 + y + 9 continued

In this research the well known algorithm due to Munkres (1957) has been selected1,
as it is reasonably efficient and is not as complex as some alternatives. The MUNKRES

algorithm operates on the weight matrix, as in Figure 4.2b. The rows and columns of
the matrix correspond to the vertices of Figure 4.2a (see the diamond tags). It is noted
however, that the MUNKRES algorithm can only directly be used to find a minimum

cost maximal matching. By using costu,v = 1.0 − simu,v, the dissimilarity matrix is
obtained (Figure 4.2c), for which the minimisation problem is equivalent to the original
maximisation problem. The MUNKRES algorithm proceeds to construct a mask matrix

1 The MUNKRES algorithm is a reformulation of the pen-and-paper Hungarian Method, for electronic
implementation.

63

(Figure 4.2d) which represents the chosen optimal assignment – optimal subject to the
accuracy of the current similarity scores.

4.1.1 Basic Mathematical Form

The means to establish the locally optimal neighbour assignments are necessarily
algorithmic, and do not have an analytic form. To incorporate them into a mathematical
expression for the Weighted Assignment Similarity measure, some definitions are first
required.

Assign(Sk, 〈u, v〉)
a function that determines the optimal neighbour
assignment set between vertices u and v, subject to
similarity scores Sk

ak,〈u,v〉→〈p,q〉 =

1 if 〈p, q〉 ∈ Assign(Sk, 〈u, v〉)

0 otherwise

w〈u,v〉→〈p,q〉 = weight of the 〈u, v〉 → 〈p, q〉 product graph edge

Ak,〈u,v〉 = the row vector with columns ak,〈u,v〉→〈p,q〉 ∀ 〈p, q〉

Ak = the square matrix with rows Ak,〈u,v〉 ∀ 〈u, v〉

W = weight matrix with w〈u,v〉→〈p,q〉 ∀ 〈u, v〉, ∀ 〈p, q〉

Now the new Weighted Assignment Similarity measure can be defined by the propa-
gation function shown in Equation 4.1. (The matrix form is given by Equation 4.2).
This is the most basic form of the measure’s propagation function. Incidentally, the
name Weighted Assignment Similarity is taken from the three factors that occur in
this function. It should be noted that this equation concerns non-leaf vertices only.
Leaf vertices receive no propagation scores in backward propagation similarity. In the
absence of a measure of similarity between the labels of leaves, all leaf vertices must
be considered indistinguishable. A later section addresses support for vertex and edge

64

label similarity, obtaining a unified formulation.

Propagateuv(Sk
) =

∑
u→p ∈ G

A

∑
v→q ∈ G

B

w〈u,v〉→〈p,q〉 a
k,〈u,v〉→〈p,q〉 [S

k
]〈p,q〉 (4.1)

Propagate(S
k
) = (W ◦A

k
)S

k
(4.2)

4.1.2 Choosing Weights

There are two important criteria that govern how edge weights are chosen:

1. The score propagated to each vertex pair must be in the interval [0, 1].

2. The weights must be chosen to promote meaningful convergence.

To address these issues the edge weight matrix is composed of two distinct column
matrices by the Kronecker product. These additional matrices represent two different
kinds of vertex weights, and are called the source and sink weights. The means of
combining them is expressed in Equation 4.3. The choice of these weights is further
governed by a vertex significance function (Sig), as shown in Equations 4.4 and 4.5.

W = Wsource ⊗Wsink
T (4.3)

[W
sinks

]
〈u,v〉

= Sig(u) + Sig(v) (4.4)

[Wsources]〈u,v〉
=

1

Du,v

(4.5)

with

Du,v =
∑

u→p ∈ G
A

Sig(p) +
∑

v→q ∈ G
B

Sig(q) (4.6)

It is useful to consider how this affects the form of the propagation function. By
substitution into either Equation 4.1 or Equation 4.2 the new form in Equation 4.7 can
be obtained.

65

Propagateuv(Sk
) = [Wsource]〈u,v〉

∑
u→p ∈ G

A

∑
v→q ∈ G

B

[Wsink]〈p,q〉 a
k,〈u,v〉→〈p,q〉 [S

k
]〈p,q〉 (4.7)

Propagateuv(Sk
)

≤
∑

〈p,q〉 ∈ Assign(S
k

,〈u,v〉)

[
Wsink

]
〈p,q〉

(4.8)

≤
∑

u→p ∈ G
A

Sig(p) +
∑

v→q ∈ G
B

Sig(q) = Du,v (4.9)

Two useful properties are observed in Relations 4.8 and 4.9. Firstly, the relations
guarantee that the divisor in each source weight (Du,v) is at least as large as the
accumulation of sink weights for any given assignment. This means that every
propagation score is certain to be in the interval [0, 1].

The second observation is just as important. If a perfect neighbour assignment exists
with each pair being perfectly similar, then the accumulation of source and sink weights
neutralises one another. Thus equivalent vertices are guaranteed a propagation score of
exactly 1. This may seem self-evident, but it is important because it is a property not
guaranteed by any previous similarity propagation measure.

The remaining influence on the weights is the choice of the significance function. Three
alternatives are considered:

1. Uniform: Siguniform(ν) = 1

2. Reachability-assigned: Sigreach(ν) =
∣∣∣Subgraphreachable(ν)

∣∣∣
3. Height-assigned: Sigdepth(ν) =

∣∣∣Pathslongest-acyclic

(
Subgraphreachable(ν)

)∣∣∣
Uniformly chosen vertex significance simply takes advantage of the properties of source

and sink weights that have already been established. The first alternative is based on
the size of the subgraph that is reachable from the vertex considered. Consider the
following simple example. Suppose a neighbour assignment (H) of two vertex pairs
is chosen, with H = {〈p, q〉, 〈r, s〉}. Suppose also that the corresponding similarity

66

scores are 0.0 and 0.5, but that p and q are leaf vertices, while r and s are the roots
of sizeable subgraphs. It makes sense that r and s should have a larger influence over
the similarity than the leaf vertices. The reachability-assigned significance function
attempts to capture this logic by biasing the propagation summation to the neighbours
that gather similarity information from a larger portion of each graph.

Height-assigned significance is similar, but is less susceptible to domain specific
normalisation procedures. For example, converting logic expression graphs into
disjunctive normal before comparison may change the size of the graphs substantially.
In such cases, height is more stable than size, so it makes a good measure of similarity
significance.

4.1.3 Convergence over DAGs

The convergence behaviour of the Weighted Assignment Similarity measure is in general
hard to determine. In particular, the finding of neighbour assignments cannot be easily
reasoned about mathematically. Whether the measure converges for all general graphs
is not known. However, it is still valuable to consider the convergence behaviour over
restricted graphs. Directed acyclic graphs (DAGs) are a useful class of graphs. While
they do not allow cycles, they are still considerably more general than ordered trees, and
are especially useful for describing program structure. This sub-section offers a proof
in Theorem 4.3 that the Weighted Assignment Similarity measure converges over DAGs.
However, a small lemma is first introduced here to simplify the main proof.

Lemma 4.2 (A lemma to assist in the proof of convergence).
For a fixed value M and an initial value S0, the iteration formula Sk+1 = Sk+M

2

converges to M .

Proof. The iteration produces the sequence

S0,
1

2
S0 +

1

2
M,

1

4
S0 +

3

4
M,

1

8
S0 +

7

8
M, . . .

67

So the nth term in the sequence is

Sn =
1

2n
S0 +

2n − 1

2n
M = 2−nS0 + (1− 2−n)M

S∞ = lim
n→∞

(
2−nS0 +

(
1− 2−n

)
M
)

= lim
n→∞

2−nS0 + lim
n→∞

(
1− 2−n

)
M

=
(

lim
n→∞

2−n
)

S0 +
(

lim
n→∞

(
1− 2−n

))
M

= 0× S0 + 1×M = M

�

Theorem 4.3 (DAG convergence of Weighted Assignment Similarity).
Given a pair of graphs, GA and GB, such that the product graph GA × GB

is a directed acyclic graph; the Weighted Assignment Similarity measure over
GA and GB, with iteration formula Sk+1 = Sk+Propagate(Sk)

2
, will converge to a

solution.

Proof. The proof offered is a proof by mathematical induction for backward
propagation. The base case of which is assured: convergence is certain for any
DAG with only one vertex.

Let Gj be a DAG with j vertices for which the similarity measure converges.

Suppose a new DAG, Gj+1, is constructed by adding a vertex r to Gj . Let Gj+1

contain n ≤ j directed edges of the form r → vi, vi ∈ V (Gj), such that r is a
root vertex of Gj+1.

It is observed that scores do not propagate from r to any other vertex under
backward propagation. Thus the propagation of scores for the remaining
vertices must occur within Gj+1 − r which is simply Gj .

It is already accepted that the similarity measure converges over Gj , so in
applying the iterative procedure over Gj+1 all vertices that also occur in Gj

will converge to the same values as they did in Gj .

Let k be the number of iterations after which this convergence occurs.

68

Now the propagation score at r may be determined as the measure requires:

Propagater(Sk
) = [Wsource]r

∑
r→v ∈ G

A
×G

B

[
Wsink

]
v

a
k,r→v

[S
k
]
v

(4.10)

Since the calculation of the score at r has been determined from stable scores,
none of which depend upon r, Lemma 4.2 ensures that the iteration formula
also converges for r.

Thus by mathematical induction, and the fact that the construction of Gj+1

for sufficiently large j subsumes the construction of any given directed
acyclic graph, the similarity measure converges for all directed acyclic graphs,
including GA ×GB. �

An interesting feature of this proof is that it suggests a very efficient implementation
strategy, if the measure is only going to be applied to DAGs. The measure may be
applied in a bottom-up procedure from leaves to roots. This ordering of vertices is
essentially a reversed topological order. Each step is concerned with only one new
vertex. The measure would have already converged for the connected subgraph it
derives. In addition, the final score for each new vertex can be determined in a single
step.

4.1.4 Supporting Label Similarity

Almost all practical applications of graphs require the meaningful use of vertex and edge
labels. When representing programs as graphs, vertex labels describe which constructs
are being represented. Edge labels may be used to create distinction between sibling
vertices. This makes it particularly important to have a strategy for dealing with these
domain specific vertex and edge attributes.

In this regard, little has been reported in prior work. Jeh & Widom (2002) suggest that
domain specific information could be incorporated with their SimRank measure, but do
not describe a mechanism by which this may be achieved. The measure introduced by
Melnik et al. (2002) takes advantage of any domain specific information captured on
edge labels. This occurs as a by product of their extended product graph construction
process, and only supports exact equivalence of edge labels. For example, they do not

69

(a) GA: X × 1.2 (b) GB : X ÷ 1.02

Figure 4.3: Expression graphs with labelled vertices and edges

support using a text similarity measure on similar edge labels. It is significant that it is
not sufficient to simply apply a label similarity measure to initialise the S0 matrix. For
example, Blondel et al. (2005) have shown that the similarity propagation formulation
that they have studied converges to a unique solution. As a result, when it converges, it
converges to the same result regardless of which positive values populate S0.

In this section, the Weighted Assignment Similarity measure is further extended to
support local domain specific similarity measures between arbitrary vertex and edge
attributes. This work represents the first formally specified method of integrating local
domain specific similarity measures into a similarity propagation measure.

The strategy followed here is to adapt the product graph for dealing with attribute
similarities. In this way, the existing similarity propagation mechanism can support
propagating the attributes’ similarities in the same way as structural similarities. This
is best discussed in the context of a small example. Figure 4.3 shows two small
expression graphs. The operators are vertex labels with significance in the problem
domain, and should influence the overall similarity. In addition, numbers that are close
to one another should be considered more similar than others. Edge labels are also
significant. In this case, these labels provide a local ordering relationship for operands.
While not important for multiplication, it is critical for division since the operator is not
commutative.

A solution to the problem of vertex labels is presented in Figure 4.4. After constructing
the product graph, every vertex pair for which a domain specific label similarity
measure is available, is given an additional pseudo vertex (the purple diamonds). These
additional vertices are all leaves, and serve only to calculate the label similarity and
propagate that score like any other vertex pair in the neighbour assignment.

The same technique can be extended to support edge label similarity. First each labelled
edge is split into two edges with the label being attributed to an intermediate pseudo

70

Figure 4.4: Augmented product graph of GA and GB

Figure 4.5: Vertex inserted to support edge label comparison

71

vertex. This is demonstrated in Figure 4.5 for the RR edge of the example. The new
vertex receives the exact same treatment as normal labelled vertices described above. In
so doing, the comparison of edge labels is indirectly supported.

In the discussion of these techniques, the newly introduced vertices were called
pseudo vertices. The reason for this is that these effects can be achieved without
actually constructing the product graph or modifying it. Once again, this requires the
introduction of additional notation.

Vsim,〈u,v〉
the domain specific local similarity between the
labelled attributes of vertices u and v

Esim,〈u,v〉→〈p,q〉
the domain specific local similarity between the
labelled attributes of edges u → p and v → q

Vsig,〈u,v〉
the significance of any local vertex similarity found
between u and v (usually 0 or 1)

Esig,〈u,v〉→〈p,q〉
the significance of any local edge similarity found
between edges u → p and v → q (usually 0 or 1)

Consider the edge-vertex-edge combination that results when a labelled edge is split. It
is useful to construct an equation for the two step propagation across both new edges,
since the propagation over the original edge occurs in a single step. The expression for
this very special case is offered in Equation 4.11. An important observation should be
made about this equation. If the relevant Esig value is zero, the equation yields the score
that would normally be propagated over the original labelled edge.

ξ〈u,v〉→〈p,q〉(Sk
) =

[Wsink]〈p,q〉Sk,〈p,q〉 + Esig,〈u,v〉→〈p,q〉
Esim,〈u,v〉→〈p,q〉

[Wsink]〈p,q〉 + Esig,〈u,v〉→〈p,q〉

(4.11)

To obtain the final and most general form of the propagation function, the vertex labelled
similarity needs to be addressed. Recall that vertex label similarity is treated as though
there were an additional neighbour in the neighbour assignment. The simplest solution
is to incorporate this new neighbour directly into the propagation function, yielding
Equation 4.12. This equation is admittedly complex in appearance. It is nevertheless
understandable when one observes that it reduces to the earlier form when Vsig and Esig

values are zero.

72

Propagateu,v(Sk
) =

∑
u→p ∈ G

A

∑
v→q ∈ G

B

[Wsink]〈p,q〉ak,〈u,v〉→〈p,q〉ξ〈u,v〉→〈p,q〉(Sk
) + Vsig,〈u,v〉

Vsim,〈u,v〉

Du,v + Vsig,〈u,v〉
(4.12)

4.1.5 Mapping Identifiers

An important problem in the domain of the current research is that different programs,
even if similar, use different sets of variable names. If programs are to be compared for
similarity, this problem must be addressed. As yet, good generally applicable solutions
have not seen any significant representation in literature. The nature of the problem is
such that establishing a mapping between identifiers is easy, but there are many possible
mappings, and obtaining a good selection is hard. A good variable mapping should
improve the accuracy of the overall measured similarity between the two programs. This
suggests that there is a co-dependence between finding a good variable name mapping,
and measuring the similarity of programs. A good mapping is required to accurately
measure similarity, and a good similarity measure is required to assess the quality of a
chosen mapping.

While this situation does seem bleak, it also suggests a solution. Since identifiers
typically occur as leaves in program graphs, they are characterised by the paths that must
be travelled through the graph to reach them. Stated another way, two variables should
be considered similar if they occur in similar structural context of use. Furthermore, the
paths that lead to identifiers are unlikely to contain identifiers themselves, as internal
vertices consist mostly of operators and constructs. This suggests that a characteristic
graph can be constructed which describes the use of the identifiers in the program,
without itself relying on arbitrary identifiers. The Weighted Assignment Similarity

measure may then be applied between the characteristic graphs to find the optimal
mapping between the identifier sets, as well as their relative similarity.

The idea is illustrated in the following example. Consider the two graphs for program
fragments, Figures 4.6a and 4.6b. These fragments each have two variables. The
characteristic graphs describing the use of their variables is offered in Figures 4.7a and
4.7b. In these graphs, the original id vertices are retained for ease of construction, but
hold only structural significance.

73

(a) GA (b) GB

Figure 4.6: Graphs for a pair of similar program fragments

(a) Characteristic
graph for GA

(b) Characteristic
graph for GB

Figure 4.7: Characteristic graph for the use of identifiers in GA and GB

Applying the Weighted Assignment Similarity measure to the characteristic graphs
yields a matrix of similarity scores comparing each vertex pair between these two
graphs. Usually the similarity between root vertices would be of most interest. In
this case, it is the similarity between the immediate neighbours of the roots that hold
the similarity between identifiers. The result is that vertices X and V are strongly
similar, and so are Y and U . This information can be used to construct a variable name
mapping. Alternatively, the resulting pairwise similarity scores may be used exactly
as they are, and utilised as a domain specific label similarity function. Either way, the
Weighted Assignment Similarity measure is reapplied between the original graphs with
an effective general way to relate the identifier sets.

74

4.2 Conclusion

This chapter introduced a novel similarity propagation measure. It is notionally similar
to prior work, in particular the SimRank measure, but introduces a sufficiently large
number of innovations to be considered a new measure in its own right.

Several critical problems in comparing programs for similarity are directly and in-
directly addressed by the Weighted Assignment Similarity measure. The first is that
it is imperative that similarity scores are both independently meaningful and can be
interpreted as a percentage score. For the reasons described in chapter 3, none of the
previous similarity propagation measures have this property, even though they produce
scores in the [0, 1] interval. The novel feature of the new measure is that similarity
only propagates across the locally optimal neighbour assignment, rather than across
all possible neighbour assignments. The distinction may seem small, but has not been
considered in any prior work. Furthermore, it is a critical feature in allowing similarity
scores to be thought of as percentages.

The second important feature of the similarity measure is that it directly supports the
use of attributes on vertices and edges, as well as domain specific similarity measures
over these attributes. Prior work has suggested that this is possible, but the method
in the Weighted Assignment Similarity measure is the first formally published general
technique by which this may be done.

The third major contribution is that the similarity measure can be applied in a two step
process to address the problem of distinct variable names in compared programs. This
approach is elegant and makes efficient use of the similarity measure as an existing
resource.

Finally it is observed that convergence over directed acyclic graphs not only guaranteed,
but very efficient implementations thereof are possible. In this case, careful implemen-
tations need to work proportional to the number of vertices in the product graph without
necessarily constructing the graph, although finding optimal neighbour assignments is
still governed by the degree of the vertices.

These properties make the Weighted Assignment Similarity measure a strong candidate
for measuring the similarity between programs. The following chapter considers its
application in the case study of assessing student programs developed in Object Pascal.

75

Chapter 5

Case Study:
Object Pascal Assessment

The previous chapter described the novel Weighted Assignment Similarity measure,
which is similar to the SimRank measure. SimRank scores are taken as the average
propagation from all neighbour assignments (both good and bad) and there are generally
more poorly matched neighbour assignments than well-matched ones. In contrast, the
Weighted Assignment Similarity measure uses a locally optimal neighbour assignment.
Although the same approach has not been taken in other published works, it is proposed
that this is a critical requirement for a graph similarity measure to be used in assessment.

This chapter is concerned with evaluating the use of the new measure by way of a case
study assessing novice Object Pascal programs. Object Pascal is currently still a popular
programming language, although not as popular as Java or C#. Nevertheless, Object
Pascal remains a reasonable choice for this case study as similar results are expected
over all programming languages that use a largely imperative programming style within
sub-routines, such as Java and C#.

Section 5.1 is concerned with the diversity of the solution space for any given
programming assignment. Program diversity is an important problem as there are
usually an unbounded number of possible solutions to each assignment. The section
enumerates the most important sources of program diversity and explains how these are
addressed in this study. The second section discusses some finer points regarding the
accumulation of similarity scores and their conversion to marks on the scale set for the
assignment. The final section discusses the experiments that were conducted to evaluate

76

the application of the similarity measure in this case study.

5.1 Program Diversity

The amount of variation in solutions that any programming assignment admits is
inextricably linked to the tightness of the assignment specification. Program diversity in
turn negatively affects all forms of automated assessment. The simplest way to address
this problem is to make the assignment specification more precise, however, this is a
point of contention among academics (see Section 2.3.1).

The diversity that may be present in the solution space is manifested in two forms:
essential and spurious diversity. These are analogous to essential and spurious

ambiguity in languages, as described by Grune & Jacobs (1990). Essential diversity

occurs when program phrases are expressed differently and have different semantics.
For example, while and repeat-until loops are expressed differently and have subtly
different semantics. Unless a concession is made, occurrences of the two constructs
must be treated as essential diversity. Spurious diversity covers those cases where
phrases are expressed differently, but are semantically equivalent. For example,
incrementing a variable through assignment is semantically equivalent to an appropriate
call to the Inc procedure. Spurious diversity complicates assessment as it gives rise to
a multitude of variations that differ only in semantically insignificant local detail.

Little can be done with regard to essential diversity besides enlarging the set of standard
solutions against which the programs are assessed. On the other hand, spurious diversity

should be identified and addressed wherever possible, as this makes the assessment
strategy more effective without burdening the educator. This section first describes
several sources of diversity in program source code, and then discusses the method
employed in this case study to limit its effect.

5.1.1 Sources of Diversity

Most programming languages have the property that any single objective can be
achieved through a variety of different programs. The case study conducted is
essentially concerned with programs written in an imperative style, which is certainly

77

among the programming paradigms that permit a large amount of variation in the
solution space. The most important sources of this diversity are described here.

i. Algorithm Selection
When multiple algorithms to solve a problem are available, they necessarily
represent essential diversity.

ii. Choice of Identifiers
The particular names chosen for variables, constants, functions and user-defined
data types is open to the programmer. The probability of two independently
written programs having the same selection of names is very low for all but the
smallest programs.

iii. Output Presentation
String constants used in the presentation of output will vary between programs.
The amount of variation depends on the wording of the assignment specification.
If students are given an example of the desired output format, differences may
largely be in the form of capitalisation and spacing. A related (and perhaps more
significant) problem is that the string constants may be broken into portions, with
the rendering of these portions and computed values finely interspersed.

iv. Arbitrary Ordering
Independent programming statements and definitions can usually be supplied in
any order. Graph similarity measures ignore any ordering in their children, so
as long as the independence of phrases can be easily established, their relative
order need not be a problem. Statements are more problematic because inter-
dependence between a sequence of statements must be assumed unless it can be
proven that the statements are independent. Such proofs are in general difficult as
they require complex global analysis to detect statements that have hidden side-
effects. Another problem with ordering is that user-defined sub-routines introduce
an arbitrary parameter ordering that must be respected throughout the program.

v. Program Decomposition
All forms of program decomposition introduce problems for structural similarity
analyses as they directly concern restructuring the program. The three important
forms of decomposition are: functional decomposition, statement decomposition

and expression decomposition. Students of a first programming course do not
often apply functional decomposition. Statement decomposition does occur

78

occassionally. For example, a pair of Write calls are equivalent to a single
Write call with two parameters.

In novice programs, the most important form of decomposition is probably
expression decomposition, as sub-expressions may easily be extracted out into
temporary variables. This practice is commonplace when expressions are
otherwise large.

vi. Operator Identities
As mathematical expressions can take different (but equivalent) forms, the same
is true when they are implemented in computer programs. Without considering
associativity and commutativity laws, two mathematically equivalent expressions
would be regarded as distinct in computer programs (typical in compilers). An
exception here is floating-point arithmetic for which these laws do not always
apply. However, novice programmers are unlikely to write programs in which
this fact is significant, so this case should also be treated as spurious diversity.

vii. Language Specific Idioms and Synonyms
Most programming languages offer phrases which are idiomatic synonyms for
other phrases. Examples from C++ include the pre- and post-increment operators,
as well as the for loop which is semantically equivalent to an initialised while loop.
Object Pascal offers the Inc procedure which is equivalent to an incrementing
assignment. Such synonyms are strictly spurious.

viii. Loop Variation
C++ offers three loop constructs (for, while and do-while), however, the for loop
is not semantically different from an initialised while loop. Object Pascal has
four looping constructs: the repeat-until loop, the while loop, an incrementing

for loop and a decrementing for loop. The incrementing for loop is semantically
similar to an initialised while loop. Unlike C++ it is not strictly equivalent as the
Object Pascal for loop is internally organised to prevent an endless loop in the
event of the loop variable overflowing. This semantic detail is rather subtle, so it
may be worthwhile making a concession in treating this as spurious rather than
essential diversity.

79

ix. Decision Variation
Object Pascal’s case-statement1 is interesting in that it does not introduce
much diversity. However, the case-statement is semantically equivalent to an
appropriately constructed if -ladder, which is a significant source of spurious

diversity. Consider, for example, an if -ladder which selects one of n conclusions.
There are n! ways to order the available conclusions. For each of these orderings,
the conditions required to discriminate between the conclusions can be arranged
to construct a new if -ladder with the same semantics as the original, in spite of
structural changes in the selection predicates.

For example, the main loop of a binary search contains a decision construct that
selects one of three conclusions, as in Figure 5.1a. This important if -ladder can be
arranged in 3! = 6 different ways. For comparison, if the order of the conclusions
is reversed, the new if -ladder is arranged as shown in Figure 5.1b.

begin

 Mid := (First + Last) div 2;

 if (Data[Mid] < Goal) then

 First := Mid + 1

 else

 if (Data[Mid] > Goal) then

 Last := Mid - 1

 else

 Found := True;

end

(a)

begin

 Mid := (First + Last) div 2;

 if (Data[Mid] = Goal) then

 Found := True

 else

 if (Data[Mid] > Goal) then

 Last := Mid - 1

 else

 First := Mid + 1;

end

(b)

Figure 5.1: Equivalent decision constructs for a binary search

The following sub-section discusses how these sources of diversity may be managed.

5.1.2 Normalising Programs

This case study follows the strategy of bringing programs into a normal form before
comparison, to manage program diversity. This eliminates much of the spurious

diversity available in the solution space. The approach is a two-step process. First
the program’s parse tree is converted into a LISP-like symbolic expression2 for easier
manipulation. The symbolic expression is then brought into normal form through a tree

1 In C++ and several other languages, this statement is called a switch-statement.
2 LISP is a language similar to Scheme. In fact, Scheme is a stricter form of Lisp.

80

rewriting strategy, yielding another symbolic expression. The final symbolic expression
is later converted into the program graphs used for similarity comparison.

The tree rewriting strategy is aided by a simple LISP-like pattern matching mini-
language. Saikkonen et al. (2001) use a similar support language in Scheme-robo (see
Section 2.2.2), although they only use their pattern matching to exclude programs that
do not follow a specified program strategy.

Instead of rejecting programs that follow diverse strategies, a large collection of rewrite
rules (specified in this mini-language) are used for transforming the programs into
a normal form. If the rewrite rules are carefully chosen and sufficiently plentiful,
the solution space can be drastically reduced. As an example, the programming task
described in Section 5.3 has hundreds of solutions with small variations between them.
By transforming programs into normal form, only 18 distinct solutions were required to
adequately cover 96 student programs3.

To further illustrate the utility of this approach, consider that incrementing integer
variables occurs frequently in programming. It has already been observed that this can
be achieved through either assignment, or the Inc procedure – two local alternatives.
Consider a programming task for which an ideal solution contains n such variable
updates. It is immediately clear that without conversion to normal form, there are
2n variations of the ideal solution – each associated with a different combination of
assignments and Inc calls. The simple rewrite rule in Figure 5.2 solves the problem. In
this case, the first pattern matches calls to the Inc procedure, while the second pattern
indicates that the matched expression should be rewritten as an assignment.

(:

 (call Inc (args x?)) � The Pattern

::

 (assign x? (+ x? 1)) � The Rewrite

:)

Figure 5.2: An example rewrite rule for obtaining canonical programs

Most of the rewrite rules operate in concert to achieve a collective effect. By using
the tree pattern rewriting approach, new groups of rules can easily be introduced.
The method was found to be efficient enough for most of the program normalisation
processes.

3 While manageable, this is still a large number of solutions for a relatively simple case, and more research
is required to further address the problem.

81

While developing the program normalisation, one important transformation that was
found to perform poorly was the special normalisation of decision constructs – so this
transformation was carefully written as a recursive tree manipulating function, rather
than as a set of rewrite rules. The first phase of the general form of this transformation is
shown in Figure 5.3. Each conclusion is made disjoint of all related decisions, creating
conditions that are more complex. The second phase applies algebraic simplification to
each if -statement, and almost always reduces them to a simple readable form.

 if X1 then
 Y1

else

if X2 then

 Y2

else

...

else

if Xn then

 Yn

else

 Yn+1;

if X1 then

 Y1;

if not (X1) and X2 then

 Y2;

...

if not (X1 or X2 ... or Xn-1) and Xn then

 Yn;

If not (X1 or X2 ... or Xn-1 or Xn) then

 Yn+1;

Figure 5.3: First phase of transforming if -statement decision ladders

The transformation of decisions may be best described through a more detailed concrete
example. The main decision of a binary search is used again in Figure 5.4. This figure
shows how the initial if -ladder is easily broken into three disjoint if -statements. The
resulting conditions are quite complex compared with the original. Fortunately, each of
these simplifies to the simple recognisable cases that are expected in any solution.

Figure 5.4 shows the detail at three points during this simplification process. That is
to say, after logical negation is applied, relations are combined into simpler forms, and
relations are transformed into their mirrored normal form. This latter transformation
is simply the conversion of a > b to b < a, further reducing the number of distinct
operators that occur in normal form. It proved less useful to transform a ≤ b into
(a < b)∨ (a = b) as this replaces one operator with three, and the amount of work done
by the simplifier is related to the number of operators it must consider.

What is important about the transformation is that all six variations of the decision
construct have the same normal form, subject to ordering the three disjoint if -statements
that result. Such ordering is not significant as the three if -statements are known to be
independent (assuming no side-effects occur within the conditions4). Consequently, the
if -statements are arranged in the program graph to take advantage of its disregarding of

4 If the conditions contain side-effects, this transformation cannot be safely applied.

82

order between children. In the general case where an if -ladder has n! variations, a very
good logic simplifier may still manage to reduce all variations to a single normal form.

A number of transformations are applied in addition to those already described. Most
of these concern language idioms, or deal with less important details such as treating all
varieties of floating point data types, as Real. Similar treatment is provided for integer
data types. The transformations applied in this study are briefly summarised in the list
that follows.

i. Choice of Identifiers
Identifiers may be arbitrarily chosen. The means for supporting this is the two
step identifier mapping process described in Section 4.1.5.

ii. Output Presentation
Several small transformations simplify the use of Write and WriteLn proce-
dures. If these contain multiple arguments, they are first decomposed. The next
step is the removal of any empty Write or WriteLn calls that may be found,
leaving no line-feeds as these are not considered important in the study. The
writing of string constants may also be eliminated at this point. Following this,
the remaining adjacent calls to Write are recombined. The cumulative effect is
that only pertinent output rendering is retained in each program.

iii. Operator Identities
Most of the common mathematical identities are addressed in the rewrite rules.
Particular care is taken with addition and multiplication so that a variety of similar
arithmetic expressions have the same normal form. For example, Figure 5.5

shows two different ways to express the calculation of a sphere’s volume,
(

4πr3

3

)
.

While the assignments are organised in different ways, after transformation they
have the same normal form.

iv. Language Specific Idioms and Synonyms
Calls to the Inc and Dec procedures are replaced with equivalent assignments.
In addition, data types such as Single, Real48 and Extended are simply
treated as Real.

83

if Data[Mid] < Goal then

 First := Mid + 1

else

if Data[Mid] > Goal then

 Last := Mid - 1

else

 Found := True;

if Data[Mid] < Goal then

 First := Mid + 1;

if not (Data[Mid] < Goal) and (Data[Mid] > Goal) then

 Last := Mid - 1;

if not ((Data[Mid] < Goal) or (Data[Mid] > Goal)) then

 Found := True;

if Data[Mid] < Goal then

 First := Mid + 1;

if (Data[Mid] >= Goal) and (Data[Mid] > Goal) then

 Last := Mid - 1;

if (Data[Mid] >= Goal) and (Data[Mid] <= Goal) then

 Found := True;

if Data[Mid] < Goal then

 First := Mid + 1;

if Data[Mid] > Goal then

 Last := Mid - 1;

if Data[Mid] = Goal then

 Found := True;

if Data[Mid] < Goal then

 First := Mid + 1;

if Goal < Data[Mid] then

 Last := Mid - 1;

if Data[Mid] = Goal then

 Found := True;

Make Conclusions Disjoint

Apply Negation

Simplify Relations

Substitute Mirrored Relations

Figure 5.4: Detailed transformation of binary search decision

84

Volume := 4.0 * PI * r * r * r / 3.0;

Volume := (4.0 / 3.0) * PI * (r * r * r);

Figure 5.5: Two ways to calculate a sphere’s volume
(

4πr3

3

)

v. Loop Variation
Although in Object Pascal for loops encompass subtly different semantics to while

loops, the difference is very seldom evident. So in the interests of reducing
diversity, both incrementing for loops and decrementing for loops are transformed
into initialised while loops. Repeat-until loops are left intact.

vi. Decision Variation
The transformations of if -ladders has been carefully described above. Case-
statements are simply transformed into an equivalent if -ladder and leverage the
transformations already designed for them.

5.1.3 Program Transformation Example

This section briefly discusses the application of the described processes to a whole
program. The program discussed must obtain a number from the console and display
its square-root. If the number is negative, however, it displays the message “undefined”.
Since this string literal may be directed to the output, Write calls with string constants
as arguments are not eliminated for this program5. A program that solves this problem
is shown in Figure 5.6.

program PrintSqrt;

uses

 SysUtils, Math;

var

 x: Integer;

begin

 ReadLn(x);

 if (x < 0) then

 WriteLn('undefined')

 else

 WriteLn(Sqrt(x));

end.

Figure 5.6: Print the square-root of a number

Processing this program requires the construction of the symbolic expression that
captures its meaning. This symbolic expression is then converted to normal form.

5 This particular transformation is simply not applied for such assignments.

85

Figure 5.7a shows the initial symbolic expression, while Figure 5.7b shows the
modifications made through normalisation. Because the program is small, only a
small number of the rewrite rules are applicable. The most obvious change is the
transformation of the decision, as described before. However, careful inspection also
reveals that the line-feed of the Write call has been discarded.

(program

 (use sysutils math)

 (decls

 (var x integer)

)

 (body

 (call

 readln

 (args x)

)

 (if

 (< x 0)

 (call

 writeln

 (args "undefined")

)

 (call

 writeln

 (args

 (call

 sqrt

 (args x)

)

)

)

)

)

)

(a) Before transforms

(if-group

 (if

 (< x 0)

 (call

 write

 (args "undefined")

)

)

 (if

 (<= 0 x)

 (call

 write

 (args

 (call

 sqrt

 (args x)

)

)

)

)

)

(b) After transforms

Figure 5.7: Symbolic expressions for Figure 5.6

The final step before the graph similarity measure may be applied is the conversion
of the normalised symbolic expression to a graph representation. This graph is shown
rendered in Figure 5.8. In the graph, statement ordering is implicit through dependency
edges (rendered grey). The two disjoint if -statements introduced during normalisation
do not have a dependency edge between them. This is important in that it means there
is intentionally no inherent ordering of these two decisions. The two if -statements have
a mutual dependency on the ReadLn call by means of an intermediate if-group vertex.
The green dependency edges are not essential, but serve to retain more detail in the
characteristic graph used in the identifier mapping.

86

Fi
gu

re
5.

8:
G

ra
ph

fo
r

Fi
gu

re
5.

6

87

5.2 Scoring of Programs

The Weighted Assignment Similarity measure derives similarity scores that are primarily
obtained from structural information. The measure has no innate way to understand the
content of two structures. Most significantly, two graphs may have the same structural
form, but different meaning. Such a case is precisely the cause of the “scattering
effect” observed by Allali & Sagot (2005) with the tree-edit distance. The Weighted

Assignment Similarity measure may, however, be influenced by non-structural detail by
means of local graph attribute similarity, allowing the larger similarity measure to yield
more meaningful scores. This section discusses how attributes on program graphs can
influence the similarity, and also explores the conversion of similarity scores into marks.

5.2.1 Using Graph Attributes

Attributes in the program graph can occur on either vertices or edges. Vertices may
contain labels denoting structural groupings, such as a section of declarations. Other
possibilities include labels denoting operators, identifiers, and literal values. Edge labels
may serve to create a distinction between sibling vertices. For example, the condition,
then and else parts of an if -statement may use edge labels for exactly this purpose, as
there is no other ordering relationship between siblings. In another example, arguments
to a function call could be distinguished by numerically labelled edges.

The Weighted Assignment Similarity measure allows for the comparison of attributes
to influence the overall similarity. It has already been shown that the same measure
may be used in a two step process to determine a similarity mapping between variables.
What has not been addressed is the handling of undefined identifiers. In this regard
it seems most prudent, when trying to map variables, to treat undefined variables as
though they are defined at the current scope level – global for the main program and
local for functions. It is believed that this approach is likely to match the intent of the
programmer frequently, since the use of global variables are discouraged when local
variables may be used. After the similarity measure is applied to the characteristic
graphs (showing identifier use), the direct variable similarity scores are available and
may be immediately re-employed as a local attribute similarity measure.

Literal values may also occur in attributes. The view taken in this study is that
literals of different data types are not comparable and receive a 0 local similarity score.

88

Furthermore, literals of the same type should receive a non-zero local similarity even if
different, as being of the same type is enough for two values to be considered somewhat
similar. As an example, consider the local similarity between two integer literals, x and
y. It turns out that defining the similarity between two arbitrary integers, is surprisingly
difficult – each measure chosen is tuned to a particular distribution of values. It seems
best that such a local similarity measure have some free parameters so that it may easily
be modified for the task at hand. The model of integer similarity used in this study is the
half-life exponential decay function given by Equation 5.1. In the equation, λ is a free
parameter called the half-life and indicates the distance between x and y over which
their similarity is halved.

Simintegers(x, y) = 2−
|x−y|

λ (5.1)

This model has the desirable property that the similarity score is 1, if x and y are equal.
Otherwise the score decays according to the distance between the numbers, but never
reaches 0. Figure 5.9 shows the shape of this similarity measure for various half-life
values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

|x - y|

In
te

g
e

r
S

im
il
a

ri
ty

Half-life: 1 Half-life: 2 Half-life: 3

Figure 5.9: Integer similarity: 2−
|x−y|

λ for different values of λ

The difficulty that remains is in choosing a suitable half-life. It is observed that
student programs frequently deal with small constants, such as the numbers of beverages
purchased. For this reason, the integer similarity measure should be reasonably effective
at discriminating small integer differences. The implication is that the half-life should
be small. A half-life of 2 is suggested, but in this study it was found that any small
integer worked just as well. In practice, many assignments may not be sensitive to the

89

choice of λ, since they actually only require a measure of relative similarity between
pairs of integers.

The problem of determining local similarity measures for other data types is related. As
with integers, the relative similarity of pairs is more important than the local measure
itself. This is largely because given alternative neighbour assignments, the relative
difference in the local similarity measures may become the deciding factor. This is
especially true in the first few iterations through the iterative formula6. Since structural
information has not yet propagated deeply throughout the graph, local similarity
information is more useful (and reliable) at that point.

5.2.2 Converting Scores to Marks

In general, the set of known programs against which the student programs are to be
compared form the standard of assessment. For this reason, it is referred to as the
standard set. Each program in the standard set must have an associated human assigned
mark. Comparing a student program with the programs of the standard set yields a set
of matches. Each of these are tuples containing first the similarity score and second the
human mark of the corresponding matched solution.

These tuples are arranged in decreasing (or at least non-increasing) order to form the
sequence < S1, H1 >,< S2, H2 >,< S3, H3 >, . . . , called the solution sequence. If
the standard set includes only perfectly ideal solution, each of the human marks will be
the upper limit (Hmax) for the assignment. In general, however, the standard set may
contain solutions of mixed quality levels.

The conversion of the similarity scores into a mark must take into account a subsequence
of the similarity scores and the corresponding human assigned marks. If only the highest
matching solution is used, then these sequences are trivially restricted to S1 and H1. As
S1 represents the fraction of the student program that matches the solution, the mark
awarded is given by M1 = S1H1. The mark depends on the simplifying assumption that
the human assigned marks in the solution are evenly distributed throughout the marked
program. The residual is that portion of the student program not covered by the matched
program, and is given by R1 = 1− S1.

6 This assumes that the efficient implementation strategy described for DAGs in Section 4.1.3 is not being
used.

90

It is quite possible that unforeseen solutions could be constructed by mixing parts of the
code in two or more distinct solutions. This is analogous to the crossover operation in
genetic algorithms. What this means practically is that the residual may contain part of
a solution strategy used in a different solution.

Suppose that the second closest matching solution is used to make the mark more
accurate. Its contribution over the residual portion of the program is given by
(1 − S1)S2H2, yielding the mark M2 = S1H1 + (1 − S1)S2H2. The simplifying
assumption here is that the second most similar solution best covers the residual portion
of the program. This may not be the case, but no better selection is easy to obtain. The
new residual portion of the program is given by R2 = 1−S1−(1−S1)S2 = R1−R1S2.

This approach may be extended to the general case of deriving a mark from the n

closest matching solutions. This will be called an n-Solution Conversion, and requires
an expression for the residual resulting from the n−1 preceding solutions. This is given
as follows:

R0 = 1

Rj+1 = Rj −RjSj+1

= Rj(1− Sj+1) =

j+1∏
i=1

(1− Si) (5.2)

The n-Solution Conversion, gives the nth order mark by:

Mn =
n∑

j=1

Rj−1SjHj (5.3)

This is a very general model for obtaining marks from similarity scores. Two important
observations can be made. The first is simple: the limit of the residual tends to zero,
as expected. The second is more difficult to see, but since each successive term only
contributes a mark from the residual portion of the program (for which no mark has yet
been attributed), the assigned mark cannot exceed Hmax.

As presented here, an n-Solution Conversion uses only the n closest matching solutions.
These n solutions may, of course, be selected in other ways. For example, if the top two
closest matches are themselves very similar, then little is gained in using the second
match. Better results may possibly be achieved by ignoring programs in the solution

91

sequence if they are highly similar to their predecessors. However, performing this
check is both a practical complication, and requires applying the similarity measure
more often.

A simpler solution may be to consider (for example) only every odd numbered solution
in the sequence of matching solutions. The idea is made explicit as follows: Cs shall
denote an |s|-Solution Conversion, where s is a set of indices into the set of matching
solutions. For example, C{1,3,5} will denote the 3-Solution Conversion based on the 1st,
3rd and 5th closest matching solutions.

5.2.3 Effect of Poor Programming Practices

While the experiments in Section 5.3 directly test the feasibility of using a similarity
measure in assessing student programs, it is also valuable to consider briefly the effect
of poor programming practices. For example, it is not expected that any ideal program
solution would use global variables where local variables are expected, but a student
program might. If the standard set consists exclusively of good quality programs, poorer
quality programs may not be effectively assessed.

To better understand how bad programming decisions influence the effectiveness of
using similarity in assessment, several variations of the programming example in Figure

5.10 are considered. This program repeatedly obtains integers from the console, and
accumulates their absolute values in a sum until either zero is read, or ten numbers have
been obtained from the console. Variations of this program are shown in the highlighted
portions of Figures 5.11a-c. Each of these programs exhibit a different example of poor
practice, and their respective similarity to the ideal solution is summarised in Table 5.1.

The first and second program variations of (Figures 5.11a and b) concern the exclusive
use of global variables, and some duplication of code. Table 5.1 shows that they suffer
modest penalties to the overall similarity. The case with code duplication receives the
heavier of the two penalties because code is not only duplicated but structured to allow
the duplication.

The third case (Figure 5.11c) is interesting in that it includes a formal test of a pre-
condition (which should always be true). The main problem is not the testing of the
condition (unit tests are actually good practice), but that the test causes a structural
change in the main body of code (which unit tests should never do). This third change

92

 procedure SumAbsolutes(Limit: Integer);

 // Precondition: Limit > 0

 var

 Num: Integer;

 Sum: Integer;

 begin

 Sum := 0;

 repeat

 Write('Enter num: ');

 ReadLn(Num);

 if (Num < 0) then Num := - Num;

 Sum := Sum + Num;

 Dec(Limit);

 until (Num = 0) or (Limit = 0);

 WriteLn('Sum is ', Sum);

 end;

begin

 SumAbsolute(10);

end.

Figure 5.10: Sum absolutes of numbers entered until limit reached or zero entered

All Code Poorly Structured
Variables Global Duplication Pre-Condition Testing

Similarity to Solution 0.879 0.806 0.580

Table 5.1: Similarity of poor programs to ideal solution

is the most benign, but has the largest overall effect (0.580) of the three modifications
considered. Since the structural change occurs nearer to the root of the program graph, it
suggests that the similarity measure is more sensitive to structural changes near the root
than those near leaves. This is interpreted as a side-effect of using vertex significance
based of the size of the subgraph reachable from the given vertex. Further research
may be needed to develop vertex significance functions which do not exaggerate this
problem.

5.3 Experiments

This section discusses the experiments to gauge the feasibility of using the Weighted

Assignment Similarity measure in assessing student programs. It is divided into three
sub-sections. The first describes how the data was obtained and the precautions taken
against possible sources of bias. The second sub-section discusses the experimental

93

v
a
r

N
u
m
:

I
n
t
e
g
e
r
;

S
u
m
:

I
n
t
e
g
e
r
;

p
r
o
c
e
d
u
r
e

S
u
m
A
b
s
o
l
u
t
e
s
(
L
i
m
i
t
:

I
n
t
e
g
e
r
)
;

/
/

P
r
e
c
o
n
d
i
t
i
o
n
:

L
i
m
i
t

>

0

b
e
g
i
n

S
u
m

:
=

0
;

r
e
p
e
a
t

W
r
i
t
e
(
'
E
n
t
e
r

n
u
m
:

'
)
;

R
e
a
d
L
n
(
N
u
m
)
;

i
f

(
N
u
m

<

0
)

t
h
e
n

N
u
m

:
=

-

N
u
m
;

S
u
m

:
=

S
u
m

+

N
u
m
;

D
e
c
(
L
i
m
i
t
)
;

u
n
t
i
l

(
N
u
m

=

0
)

o
r

(
L
i
m
i
t

=

0
)
;

W
r
i
t
e
L
n
(
'
S
u
m

i
s

'
,

S
u
m
)
;

e
n
d
;

 b
e
g
i
n

S
u
m
A
b
s
o
l
u
t
e
(
1
0
)
;

e
n
d
.

(a
)A

ll
va

ri
ab

le
s

gl
ob

al

p
r
o
c
e
d
u
r
e

S
u
m
A
b
s
o
l
u
t
e
s
(
L
i
m
i
t
:

I
n
t
e
g
e
r
)
;

/
/

P
r
e
c
o
n
d
i
t
i
o
n
:

L
i
m
i
t

>

0

v
a
r

N
u
m
:

I
n
t
e
g
e
r
;

S
u
m
:

I
n
t
e
g
e
r
;

b
e
g
i
n

S
u
m

:
=

0
;

r
e
p
e
a
t

W
r
i
t
e
(
'
E
n
t
e
r

n
u
m
:

'
)
;

R
e
a
d
L
n
(
N
u
m
)
;

i
f

(
N
u
m

<

0
)

t
h
e
n

b
e
g
i
n

N
u
m

:
=

-

N
u
m
;

S
u
m

:
=

S
u
m

+

N
u
m
;

e
n
d

e
l
s
e

b
e
g
i
n

S
u
m

:
=

S
u
m

+

N
u
m
;

e
n
d
;

D
e
c
(
L
i
m
i
t
)
;

u
n
t
i
l

(
N
u
m

=

0
)

o
r

(
L
i
m
i
t

=

0
)
;

W
r
i
t
e
L
n
(
'
S
u
m

i
s

'
,

S
u
m
)
;

e
n
d
;

 b
e
g
i
n

S
u
m
A
b
s
o
l
u
t
e
(
1
0
)
;

e
n
d
.

(b
)C

od
e

du
pl

ic
at

io
n

p
r
o
c
e
d
u
r
e

S
u
m
A
b
s
o
l
u
t
e
s
(
L
i
m
i
t
:

I
n
t
e
g
e
r
)
;

/
/

P
r
e
c
o
n
d
i
t
i
o
n
:

L
i
m
i
t

>

0

v
a
r

N
u
m
:

I
n
t
e
g
e
r
;

S
u
m
:

I
n
t
e
g
e
r
;

b
e
g
i
n

S
u
m

:
=

0
;

i
f

(
L
i
m
i
t

>

0
)

t
h
e
n

b
e
g
i
n

r
e
p
e
a
t

W
r
i
t
e
(
'
E
n
t
e
r

n
u
m
:

'
)
;

R
e
a
d
L
n
(
N
u
m
)
;

i
f

(
N
u
m

<

0
)

t
h
e
n

N
u
m

:
=

-

N
u
m
;

S
u
m

:
=

S
u
m

+

N
u
m
;

D
e
c
(
L
i
m
i
t
)
;

u
n
t
i
l

(
N
u
m

=

0
)

o
r

(
L
i
m
i
t

=

0
)
;

e
n
d
;

W
r
i
t
e
L
n
(
'
S
u
m

i
s

'
,

S
u
m
)
;

e
n
d
;

 b
e
g
i
n

S
u
m
A
b
s
o
l
u
t
e
(
1
0
)
;

e
n
d
.

(c
)P

oo
rl

y
st

ru
ct

ur
ed

pr
e-

co
nd

iti
on

te
st

in
g

Fi
gu

re
5.

11
:P

oo
re

r
va

ri
at

io
ns

of
Fi

gu
re

5.
10

(c
ha

ng
es

hi
gh

lig
ht

ed
)

94

method, while the results are discussed in the third sub-section.

5.3.1 Data Preparation

A large pool of Object Pascal program submissions were collected in the CS&IS
department of NMMU. Each submission was marked by a human marker on a five
point scale. It was determined that this scale of human marking was too coarse
for a meaningful comparison of assessment techniques. For this reason a particular
programming assignment was singled out as being the task with largest diversity in
human scores, and requiring a variety of programming constructs in its solution.

var

 NumJudges: Integer;

 Count: Integer;

 Sum: Integer;

 Score: Integer;

 Low, High: Integer;

 FinalScore: Real;

begin

 Write('Number of Judges: ');

 ReadLn(NumJudges);

 Write('Enter Score: ');

 ReadLn(Sum);

 Low := Sum;

 High := Sum;

 for Count := 2 to NumJudges do

 begin

 Write('Enter Score: ');

 ReadLn(Score);

 Sum := Sum + Score;

 if (Score > High) then High := Score;

 if (Score < Low) then Low := Score;

 end;

 FinalScore := (Sum - High - Low) / (NumJudges - 2);

 WriteLn('Final score: ', FinalScore:0:2);

end.

Figure 5.12: Program to calculate an Olympic ice-skater’s score

The programming task was to write a program that requested and obtained the number
of judges of an Olympic ice-skating event. The average score of the judges had to be
reported, after the highest and lowest scores were discarded. An ideal solution to this
problem is shown in Figure 5.12.

This selected assignment was remarked on a finer assessment scale. To minimise
the possibility of any bias resulting from the human marker, the marking proceeded

95

Criteria �
Variables Defined: NumJudges, Count
Variables Defined: Sum, Score
Variables Defined: Low, High
Console IO: Read NumJudges
Appropriate Initialisation: Sum
Appropriate Initialisation: Low, High
Quality: Initialisation Is Clean (no magic numbers)
Loop: Initialised
Loop: Valid Condition
Loop: Update Loop Variable
Console IO: Read Score
Update: Sum
Update: Low
Update: High
Quality: Update Is Clean (not intertwined in complex logic)
Arithmetic: Sum - Low - High
Arithmetic: NumJudges - 2
Console IO: Write Final Score

Table 5.2: The 18-point rubric used for marking the assignment

according to an eighteen point rubric (Table 5.2) covering the artefacts that should be
present in a solution. This reduced the number of judgement decisions that had to be
made on a per submission basis.

The assignments were not completed in a controlled environment so the possibility of
plagiarism was very real. Unfortunately, there is no foolproof way to identify which
programs were plagiarised and which were not. To reduce the problem with plagiarism,
the programs were preprocessed to remove comments and to collapse whitespace.
Duplicates were then eliminated. This process discarded about 15% of the student
submissions which were clearly adapted from other students’ work, leaving 96 unique
submissions.

5.3.2 Method

Using the Weighted Assignment Similarity measure in assessment requires the construc-
tion of a standard set of solutions. This set may be obtained either through the synthesis
of the artefacts known to be required in a solution, or by gathering a set of historic data
for the same problem. Both approaches are investigated in the study.

96

i. Synthetic Standard Set
A synthetic standard set is a set of solutions that have been carefully constructed
by hand in advance of seeing any student submissions. Two synthetic standard
sets were developed for these experiments. The first contains 40 unique program
solutions, all of which are considered good solutions. This reflects the strategy
of assessing against ideal or near-ideal solutions only. The second synthetic
standard set contains all 40 of the first set, but is salted with a further 2 examples
of particularly bad programs. These poor quality programs lack the main loop
that any true solution is expected to have, and have received correspondingly low
human marks. The first set was called the synthetic good solutions set, while the
second was called the synthetic mixed solutions set.

The construction of the first synthetic standard set was very labour intensive.
Beginning with the ideal solution presented in Figure 5.12, alternatives were
carefully synthesised and collected into the standard set. The first main variation
of the ideal solution involves initialising the highest and lowest judge scores to
fixed constants. Additional variations arise from the loop bounds, as these can
be formulated in several ways. The solution in Figure 5.12 counts from 2 to
NumJudges, but it is just as valid to count from 0 to NumJudges - 2, for
example. More variation can be attributed to the updating of the highest and
lowest scores. Here the decisions can be formulated in several ways – some less
than obvious – or replaced entirely with calls to the Min and Max functions.

The problem is that almost none of these local variations are mutually exclusive,
giving rise to many combinations. It was not clear how many variations would
be necessary to obtain reasonable results. After 40 different variations had been
found, the author was reluctant to consider more, as allowing another local
variation was likely to yield a standard set almost as large as the number of
submissions. Clearly many variations are possible, creating a high degree of
similarity between solutions in the standard set. Many of the variations developed
were not actually helpful as only 18 found strong representation amongst student
programs, but this could not be determined in advance.

ii. Historic Standard Set
If a sample of student submissions have been marked by a human being, they
may be regarded as a historic standard set. For example, if the same assignments
are used in successive or alternating years of offering, a rich source of example
programs is readily available. This is historic data in the truest sense. However,

97

if the class is large enough the same effect can be achieved by taking a sample of
programs from the current year of offering and marking these by hand.

To evaluate the effectiveness of this idea, the 96 student programs were sorted on
human mark, and then split into two samples (A and B) with the same distribution
of scores. Either set could then be treated as the standard set, while the other
became the set of student submissions requiring automated marking. In other
words, half of the available data could be treated as being accurately marked
historic data.

The synthetic standard sets were each used to assess all 96 student submissions. Historic
set A was used to assess the 48 submissions in historic set B, and vice versa. In each
case, several similarity score conversion functions, as described in Section 5.2.2, were
used and the marks recorded.

5.3.3 Results

After performing the experiments, the correlation7 of the similarity derived marks to the
human assigned marks was calculated. These are presented in Table 5.3. All correlations
were significant at the p < 0.01 level.

The correlations in Table 5.3 are all strong. To highlight which conversion functions
performed best, each entry is in bold typeface if it is larger than the average for its row.
The conversion functions C{1,2}, C{1,3} and C{1,3,5} consistently yielded above average
correlations. These all proved to be good candidates for converting similarity scores
into marks. Of these three, C{1,3,5} achieved the highest average correlation.

The scatter plots that correspond to these correlations, using C{1,3,5}, are presented in
Figures 5.13 and 5.14. Table 5.4 summarises the results of the regression analysis.
From both the figure and the table it is clear that each regression line has a gradient of
almost 1, except the synthetic good solutions case. A gradient of 1 is desired because it
indicates that similarity derived marks may be substituted for human marks (they do not
merely predict human marks). The standard set containing only good solutions does not
have this property, as its similarity scores appear positively biased. This indicates that
if the standard set includes only good solutions, poor programs with low human marks
receive very inaccurate similarity derived marks.

7 In all cases, the non-parametric Spearman’s correlation was used, as the data was not normally distributed.

98

C
{1
}

C
{1

,2
}

C
{1

,2
,3
}

C
{1

,2
,3

,4
}

C
{1

,2
,3

,4
,5
}

C
{1

,3
}

C
{1

,3
,5
}

C
{1

,5
}

A
ve

ra
ge

Sy
nt

he
tic

G
oo

d
So

lu
tio

ns
0.

68
(9

6)
0.

70
(9

6)
0.

71
(9

6)
0.

66
(9

6)
0.

59
(9

6)
0.

71
(9

6)
0.

72
(9

6)
0.

71
(9

6)
0.

68
7

Sy
nt

he
tic

M
ix

ed
So

lu
tio

ns
0.

69
(9

6)
0.

72
(9

6)
0.

72
(9

6)
0.

69
(9

6)
0.

66
(9

6)
0.

72
(9

6)
0.

74
(9

6)
0.

73
(9

6)
0.

71
0

H
is

to
ri

c
A

vs
.B

0.
69

(4
8)

0.
73

(4
8)

0.
71

(4
8)

0.
73

(4
8)

0.
70

(4
8)

0.
74

(4
8)

0.
72

(4
8)

0.
71

(4
8)

0.
71

7
H

is
to

ri
c

B
vs

.A
0.

73
(4

8)
0.

81
(4

8)
0.

80
(4

8)
0.

78
(4

8)
0.

76
(4

8)
0.

82
(4

8)
0.

82
(4

8)
0.

81
(4

8)
0.

79
1

A
ll

co
rr

el
at

io
ns

si
gn

ifi
ca

nt
at

th
e

p
<

0.
01

le
ve

l
B

ol
d

in
di

ca
te

s
co

rr
el

at
io

n
gr

ea
te

rt
ha

n
ro

w
av

er
ag

e
C

s
ar

e
co

nv
er

si
on

fu
nc

tio
ns

as
de

sc
ri

be
d

in
Se

ct
io

n
5.

2.
2

Ta
bl

e
5.

3:
C

or
re

la
tio

ns
of

si
m

ila
ri

ty
de

ri
ve

d
m

ar
ks

to
hu

m
an

as
si

gn
ed

m
ar

ks

99

y = 2.0808x - 19.715

R
2
 = 0.5326

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Similarity Derived Mark

H
u

m
a

n
 M

a
rk

(a) Synthetic Good Solutions

y = 0.9537x - 0.7968

R
2
 = 0.6479

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Similarity Derived Mark

H
u

m
a

n
 M

a
rk

(b) Synthetic Mixed Solutions

Figure 5.13: Scatter plots for synthetic standard, using C{1,3,5}

Evidence for this is found in Figure 5.15, which shows a large average deviation from
human assigned mark. Furthermore, the synthetic mixed solutions set, which includes
only two examples of poor programs, incurs only small deviations for poor programs.
This indicates that its accuracy is improved for knowing examples of poor programs.
It also suggests that best accuracy is achieved if the standard set includes examples of
programs from all quality levels. The historic standard sets have this property, and as
shown in Figure 5.15, exhibit low average deviations across all quality levels.

Chapter 4 argued that existing graph similarity measures are inappropriate for use in
student program assessment. To show that this is the case, the SimRank measure was
applied to the same data. It is not clear how SimRank scores should be converted into
marks, but this does not matter since correlation is not sensitive to scaling and linear

100

y = 0.8985x + 1.3241

R
2
 = 0.7019

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Similarity Derived Mark

H
u

m
a

n
 M

a
rk

(a) Historic A vs. B

y = 1.0264x - 0.8725

R
2
 = 0.6129

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

Similarity Derived Mark

H
u

m
a

n
 M

a
rk

(b) Historic B vs. A

Figure 5.14: Scatter plots for historic standard, using C{1,3,5}

transformations of the data. For this reason, a correlation considering the raw SimRank

scores is just as meaningful as a correlation using scaled SimRank scores.

Table 5.5 summarised the correlations between SimRank scores and human marks.
However, it proves more useful to discuss this measure in terms of the corresponding
scatter plot. Figure 5.16 shows the scatter plot after applying the technique with the
synthetic mixed solutions data – the counterpart of which is Figures 5.13b.

From the SimRank scatter plot it is clear that there is no specific relationship between
the human scores and the scores assigned by the SimRank measure - SimRank assigns
scores of about 0.3 regardless of the human assigned score. This does not imply that
SimRank is a poor graph similarity measure, but rather that it disregards precisely the
detail that is important in assessment. In contrast, the Weighted Assignment Similarity

101

Regression Formula R2

Synthetic Good Solutions y = 2.0808x− 19.715 0.5326
Synthetic Mixed Solutions y = 0.9537x− 0.7968 0.6479
Historic A vs. B y = 0.8985x + 1.3241 0.7019
Historic B vs. A y = 1.0264x− 0.8725 0.6125

All significant at the p < 0.01 level

Table 5.4: Result of regression analysis

0

2

4

6

8

10

12

0--5 6--10 11--14 15--18

Strata of Human Marks

A
v

e
ra

g
e

 D
e

v
ia

ti
o

n

Synthetic Good Solutions Synthetic Mixed Solutions

Historic A (vs. B)

Figure 5.15: Deviations from human marks

scores are meaningfully related to the human scores (Figure 5.13b).

5.4 Conclusion

In this case study, the conversion of programs into normal form was vital to the
feasibility of using the graph similarity measure for assessment. In this regard, a similar
mechanism to that used by Saikkonen et al. (2001) proved effective in finding patterns
in programs that may be transformed into normal form.

Employing the Weighted Assignment Similarity measure to assessment is novel, but

SimRank p
Synthetic Good Solutions 0.25**(96) 0.013
Synthetic Mixed Solutions 0.25**(96) 0.013
Historic A vs. B 0.09 (48) 0.54
Historic B vs. A 0.06 (48) 0.70

** significant at the p < 0.05 level

Table 5.5: Correlations of SimRank scores to human assigned marks

102

y = 139.05x - 29.572

R
2
 = 0.1162

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SimRank Scores

H
u

m
a
n

 M
a
rk

s

Figure 5.16: Scatter plot after applying SimRank to the synthetic mixed standard set

some relationships to prior work exist. The PASS system, due to Thorburn & Rowe
(1997), relies on a mix of static and dynamic analysis to map functions in the student
program to functions in the ideal solution. In a similar way, the Weighted Assignment

Similarity measure uses purely static structural information to map functions between
the programs. However, this similarity measure does not only map similar functions,
but similar constructs at a much finer granularity.

The case study investigated in this chapter was small, but still of a sufficient size to show
that the measure can feasibly be used for assessment. The most significant remaining
problem concerns the development of a standard set against which to grade student
submissions. The selection of the standard set most directly affects the accuracy of the
technique. However, further work relating to the vertex significance function may also
make the technique more accurate.

103

Chapter 6

Conclusion

A substantial body of research has been conducted regarding the application of
computers in assessment. The largest proportion of this research has concerned the
assessment of student program code, as this is a significant factor in the lives of many
Computer Science academics. With large classes common in introductory programming
courses, assessment becomes a substantial burden for academics, and the value of
assessments, from a student perspective, occasionally suffers as a result. The problem
is accentuated by the need for frequent assessment, necessitated by the practice needed
in learning to program.

This final chapter presents an overview of the objectives achieved in this research, as
well as a discussion of the contributions made in the problem domain. Further sections
discuss the limitations of this research and the opportunities for further work that arise.

6.1 Research Objectives

Chapter 2 provided a thorough review of the very large body of research on Computer
Aided Assessment. Douce et al. (2005) provides a useful classification of CAA systems,
but the distinction between second and third generations (the presence of a web front-
end) disregards the assessment method. It was argued that it is more useful to define
the third generation according to the special capabilities of the assessment techniques.
In particular, it was suggested that the third generation be redefined as those systems
capable of assessment at finer than whole program granularity.

104

The literature, indicates that dynamic analysis of student programs is well-understood.
The same is true for measures of program quality based on static analysis. However, it
was clear that more research was required in the application of static structural analysis
to program assessment. The second objective was to investigate the available measures
of similarity between structured data. Traditional measures of similarity were largely
restricted to tree structures due to their computational complexity. Tree data structures
are occasionally used for representing programs, but in each case there is important
information (mostly dependency information), that cannot be stored within the normal
structural relationships of the tree. A more flexible data structure, such as directed

acyclic graphs was needed.

Several more recent graph similarity measures, based on propagating similarity scores
through a product graph, are promising as they operate on general directed graphs.
However, each of the published methods produce final similarity scores that may be
compared with one another, but do not have intrinsic meaning. This latter requirement
is essential if the similarity scores are to be treated as percentages.

6.2 Research Contributions

The main contribution of this research is a new graph similarity measure, called the
Weighted Assignment Similarity measure. This is based on similarity propagation and is
somewhat similar to the SimRank measure (Jeh & Widom, 2002). The novel feature of
the new measure is that similarity only propagates across the locally optimal neighbour
assignment, rather than across all possible neighbour assignments. This fact is sufficient
to grant the similarity scores intrinsic meaning, and can reasonably be regarded as
percentages.

Associated with this measure are several additional contributions:

• An important feature of the graphs that represent programs and graphs in many
other application domains, is that important semantic detail is captured by
attributes in vertices and edges. Prior authors, for example Jeh & Widom (2002),
have suggested that these details may possibly be used to influence the similarity
propagation measure. The first general technique by which this may be done is
detailed in the current study.

105

• The attributes used in program graphs usually capture fine detail, such as literal
values and the use of identifiers. A major problem in comparing programs is
that they very often use distinct sets of identifiers. A further contribution of this
research is the general technique for applying the similarity measure in a two step
process. The first step finds the optimal mapping between identifiers in the two
programs. In the second step, these mappings become relevant attribute detail that
can steer the similarity measure.

• Since similarity propagation measures are iterative techniques, some assurances
of timely convergence are needed for practical use. A proof of convergence over
DAGs is offered, as well as a very efficient algorithm for applying the measure to
DAGs.

In prior work such as that of Truong et al. (2004), the use of structural analysis was
restricted to considering only small fill-in-the-gaps exercises, as it was not widely
considered feasible to assess anything larger. An important contribution of this research
is to show that it is indeed feasible to use structural similarity in the assessment of
modest student programs.

6.3 Limitations of Research

Programming assignments are usually formulated as a description of the objectives and
tasks the program must perform. However, this is not the only kind of programming
assignment. Students may also be given partially completed programs, or be asked
to extend a working program to add features. Sometimes students might be given
a program with a variety of bugs, and the student’s task is to identify and remove
the bugs. A limitation of this research is that it cannot easily be applied to these
kinds of questions, but its application is presently restricted to traditional programming
assignments (program creation).

In the assessment of these kinds of assignments, an assumption had to be made,
namely when humans assign marks to an ideal program solution, the marks are evenly
distributed throughout the program. In general this is not the case. In particular, after
students reach some proficiency, educators may wish to begin taking some programming
details for granted and only assign marks to those regions they consider pertinent.

106

A further limitation is simply that the assessment contains no true intelligence. When
it finds structural similarities, they accrue scores. Suppose a student does not really
know how to solve a given problem, but submits a program with a moderate number
of arbitrarily arranged constructs. Some of these may match elements of the structure
of the ideal solution, accruing marks that a human marker would not assign. This is
because human markers are able to extract meaning from the choice of variable names,
string constants, and comments in the program. Such knowledge is simply not available
to any current computer aided assessment system.

6.4 Suggestions for Future Research

A number of open problems remain. For example, a great deal of similarity between
programs in the standard set is common. This is because each local variation must
be represented by a whole new program. It seems clear that local variations may be
expressed and managed more efficiently.

Program normalisation is important as it reduces the variety of program solutions that
must be considered. An opportunity exists to investigate the relative value of different
program transformations. Each have associated costs, but their benefits are (in general)
not formally understood.

An important problem that remains is to determine to what extent this assessment
method scales to larger problems. Are there heuristics that may be used to alert
educators that an assignment is too complex to support assessment by structural
similarity? Answers for these problems are expected, but their form is currently
unknown.

Another large research opportunity is the investigation of feedback mechanisms based
on the assessment technique. As the similarity measure accrues similarity scores at
each vertex of the program graph, there is a wealth of information available to construct
meaningful commentary for a program.

107

6.5 Conclusion

This current research addressed a problem that has received much attention in the
academic community. The important approaches to the problem rely on either testing
programs for correctness, or examining the code using heuristics that measure program
quality. The application of structural similarity (another static analysis technique) to
program assessment has seen some attention, but this has been largely restricted to
program critiquing.

This study makes several valuable and novel contributions to computer aided assess-
ment. It introduces a novel similarity measure and shows that it can be successfully
applied to marking student programs, yielding marks strongly correlated to those
assigned by a human marker.

The primary research question of this work regarded the extent to which the structural
similarity between candidate and ideal programs can be used in assessment. This
research confirms that student programs may be assessed in this way. It also shows
that the most accurate assessments are achieved when programs are compared with
a standard set of mixed-quality solutions, rather than only comparing against good
solutions.

This study represents the first successful application of structural similarity to program
assessment.

108

Bibliography

ALA-MUTKA, K. 2005. A Survey of Automated Assessment Approaches for Program-
ming Assignments. Computer Science Education, 15(June), Pages 83–102.

ALLALI, J., & SAGOT, M-F. 2005. A New Distance for High Level RNA Secondary
Structure Comparison. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2(1), Pages
3–14.

ARCHER HARRIS, J., ADAMS, E. S., & HARRIS, N. L. 2004. Making program
grading easier: but not totally automatic. J. Comput. Small Coll., 20(1), Pages 248–
261.

BEATY, S. J. 2001. Programs, not code. J. Comput. Small Coll., 17(1), Pages 278–283.

BERRY, R E., & MEEKINGS, B. A. E. 1985. A style analysis of C programs. Commun.
ACM, 28(1), Pages 80–88.

BLONDEL, V. D., & VAN DOOREN, P. 2004. A Measure of Similarity between Graph
Vertices: Applications to Synonym Extraction and Web Searching. SIAM Rev., 46(4),
Pages 647–666.

BLONDEL, V. D., NINOVE, L., & VAN DOOREN, P. 2004. Convergence of graph
similarity algorithms. Proceedings of the 23rd Benelux Meeting on Systems and
Control, Paper FrP06–4.

BLONDEL, V. D., NINOVE, L., & VAN DOOREN, P. 2005. An affine eigenvalue
problem on the nonnegative orthant. Linear Algebra and its Applications, 404, Pages
69–84.

BLOOM, B. 1956. Taxonomy of Educational Objectives: The Classification of Educa-
tional Goals. Susan Fauer Company, Inc. Pages 201–207.

BUTTLER, D. 2004. A Short Survey of Document Structure Similarity Algorithms.
Pages 3–9 of: International Conference on Internet Computing.

CARTER, J., ALA-MUTKA, K., FULLER, U., DICK, M., ENGLISH, J., FONE, W.,
& SHEARD, J. 2003. How shall we assess this? Pages 107–123 of: ITiCSE-WGR
’03: Working group reports from ITiCSE on Innovation and technology in computer
science education. New York, NY, USA: ACM Press.

109

CHANON, R. N. 1966. Almost alike programs. Pages 215–222 of: Proceedings of the
1966 21st national conference. New York, NY, USA: ACM Press.

CHAWATHE, S. S., & GARCIA-MOLINA, H. 1997. Meaningful change detection in
structured data. Pages 26–37 of: SIGMOD ’97: Proceedings of the 1997 ACM
SIGMOD international conference on Management of data. New York, NY, USA:
ACM Press.

CHAWATHE, S. S., RAJARAMAN, A., GARCIA-MOLINA, H., & WIDOM, J. 1996.
Change detection in hierarchically structured information. Pages 493–504 of: SIG-
MOD ’96: Proceedings of the 1996 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press.

COBERTURA. 2006. Cobertura. http://cobertura.sourceforge.net, ac-
cessed on 19 October 2006.

DALY, C. 1999. RoboProf and an introductory computer programming course. SIGCSE
Bull., 31(3), Pages 155–158.

DOUCE, C., LIVINGSTONE, D., & ORWELL, J. 2005. Automatic test-based assess-
ment of programming: A review. J. Educ. Resour. Comput., 5(3), Page 4.

EDWARDS, S. H. 2003. Improving student performance by evaluating how well stu-
dents test their own programs. J. Educ. Resour. Comput., 3(3), Page 1.

ELLSWORTH, C. C., FENWICK, J. B., & KURTZ, B. L. 2004. The Quiver system.
Pages 205–209 of: SIGCSE ’04: Proceedings of the 35th SIGCSE technical sympo-
sium on Computer Science education. New York, NY, USA: ACM Press.

ENGLISH, J. 2004. Automated assessment of GUI programs using JEWL. Pages 137–
141 of: ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education. New York, NY, USA: ACM Press.

FORSYTHE, G. E., & WIRTH, N. 1965. Automatic grading programs. Commun. ACM,
8(5), Pages 275–278.

GANESAN, P., GARCIA-MOLINA, H., & WIDOM, J. 2003. Exploiting hierarchical
domain structure to compute similarity. ACM Trans. Inf. Syst., 21(1), Pages 64–93.

GAREY, M. R., & JOHNSON, D. S. 1990. Computers and Intractibility: A Guide to
the Theory of NP-Completeness. Chichester, England: Ellis Horwood Limited.

GOLDWASSER, M. H. 2002. A gimmick to integrate software testing throughout the
curriculum. Pages 271–275 of: SIGCSE ’02: Proceedings of the 33rd SIGCSE
technical symposium on Computer Science education. New York, NY, USA: ACM
Press.

GRUNE, D., & JACOBS, C. J. H. 1990. Parsing techniques a practical guide. Chich-
ester, England: Ellis Horwood Limited.

110

HEXT, J. B., & WININGS, J. W. 1969. An automatic grading scheme for simple
programming exercises. Commun. ACM, 12(5), Pages 272–275.

HIGGINS, C., SYMEONIDIS, P., & TSINTSIFAS, A. 2002. The marking system for
CourseMaster. Pages 46–50 of: ITiCSE ’02: Proceedings of the 7th annual confer-
ence on Innovation and technology in computer science education. New York, NY,
USA: ACM Press.

HIGGINS, C. A., GRAY, G., SYMEONIDIS, P., & TSINTSIFAS, A. 2005. Automated
assessment and experiences of teaching programming. J. Educ. Resour. Comput.,
5(3), Page 5.

HOLLINGSWORTH, J. 1960. Automatic graders for programming classes. Commun.
ACM, 3(10), Pages 528–529.

JACKSON, D. 1996. A software system for grading student computer programs. Com-
put. Educ., 27(3-4), Pages 171–180.

JACKSON, D. 2000. A semi-automated approach to online assessment. Pages 164–167
of: ITiCSE ’00: Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE conference
on Innovation and technology in computer science education. New York, NY, USA:
ACM Press.

JACKSON, D., & USHER, M. 1997. Grading student programs using ASSYST. Pages
335–339 of: SIGCSE ’97: Proceedings of the twenty-eighth SIGCSE technical sym-
posium on Computer science education. New York, NY, USA: ACM Press.

JCOVERAGE. 2006. jcoverage (sic). http://www.jcoverage.com, accessed on
19 October 2006.

JEH, G., & WIDOM, J. 2002. SimRank: a measure of structural-context similarity.
Pages 538–543 of: KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. New York, NY, USA: ACM
Press.

JOY, M., & LUCK, M. 1998. Effective electronic marking for on-line assessment. Pages
134–138 of: ITiCSE ’98: Proceedings of the 6th annual conference on the teaching
of computing and the 3rd annual conference on Integrating technology into computer
science education. New York, NY, USA: ACM Press.

LASS, R. N., CERA, C. D., BOMBERGER, N. T., CHAR, B., POPYACK, J. L.,
HERRMANN, N., & ZOSKI, P. 2003. Tools and techniques for large scale grading
using Web-based commercial off-the-shelf software. Pages 168–172 of: ITiCSE ’03:
Proceedings of the 8th annual conference on Innovation and technology in computer
science education. New York, NY, USA: ACM Press.

MCCABE, T. J. 1976. A complexity measure. Page 407 of: ICSE ’76: Proceedings of
the 2nd international conference on Software engineering. Los Alamitos, CA, USA:
IEEE Computer Society Press.

111

MELNIK, S., GARCIA-MOLINA, H., & RAHM, E. 2002. Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to Schema Matching. ICDE,
00, Pages 117–128.

MORRIS, D. S. 2003. Automatic grading of student’s programming assignments: an
interactive process and suite of programs. fie, 3, Paper S3F–6.

MUNKRES, J. 1957. Algorithms for the Assignment and Transportation Problems.
Journal of the Society of Industrial and Applied Mathematics, 5(1), Pages 32–38.

NIERMAN, A., & JAGADISH, H. V. 2002. Evaluating Structural Similarity in XML
Documents. In: Proceedings of the Fifth International Workshop on the Web and
Databases (WebDB 2002).

NOUNIT. 2006. NoUnit. http://nounit.sourceforge.net, accessed on 19
October 2006.

PRESTON, J. A. 1997. Evaluation software: improving consistency and reliability
of performance rating. Pages 132–134 of: ITiCSE-WGR ’97: The supplemental
proceedings of the conference on Integrating technology into computer science edu-
cation: working group reports and supplemental proceedings. New York, NY, USA:
ACM Press.

PRESTON, J. A., & SHACKELFORD, R. 1999. Improving on-line assessment: an
investigation of existing marking methodologies. SIGCSE Bull., 31(3), Pages 29–
32.

REEK, K. A. 1989. The TRY system -or- how to avoid testing student programs. Pages
112–116 of: SIGCSE ’89: Proceedings of the twentieth SIGCSE technical symposium
on Computer science education. New York, NY, USA: ACM Press.

REES, M. J. 1982. Automatic assessment aids for Pascal programs. SIGPLAN Not.,
17(10), Pages 33–42.

RICH, C., & WILLS, L. M. 1990. Recognizing a Program’s Design: A Graph-Parsing
Approach. IEEE Softw., 7(1), Pages 82–89.

ROSÉ, C. P., ROQUE, A., BHEMBE, D., & VANLEHN, K. 2003. A hybrid approach to
content analysis for automatic essay grading. Pages 88–90 of: NAACL ’03: Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology. Morristown, NJ, USA:
Association for Computational Linguistics.

SAGER, T., BERNSTEIN, A., PINZGER, M., & KIEFER, C. 2006. Detecting similar
Java classes using tree algorithms. Pages 65–71 of: MSR ’06: Proceedings of the
2006 international workshop on Mining software repositories. New York, NY, USA:
ACM Press.

112

SAIKKONEN, R., MALMI, L., & KORHONEN, A. 2001. Fully automatic assessment
of programming exercises. SIGCSE Bull., 33(3), Pages 133–136.

SAIP, H., & LUCCHESI, C. 1993. Matching algorithms for bipartite graphs. Technical
Report DCC-03/93 (Departamento de Ciência da Computação, Universidade
Estudal de Campinas).

SCHORSCH, T. 1995. CAP: an automated self-assessment tool to check Pascal programs
for syntax, logic and style errors. Pages 168–172 of: SIGCSE ’95: Proceedings of
the twenty-sixth SIGCSE technical symposium on Computer science education. New
York, NY, USA: ACM Press.

SELKOW, S. M. 1977. The tree-to-tree editing problem. Information Processing Letters,
6, Pages 184–186.

SHASHA, D., & ZHANG, K. 1989. Fast parallel algorithms for the unit cost editing
distance between trees. Pages 117–126 of: SPAA ’89: Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures. New York, NY, USA:
ACM Press.

SITTHIWORACHART, J., & JOY, M. 2004. Effective peer assessment for learning
computer programming. Pages 122–126 of: ITiCSE ’04: Proceedings of the
9th annual SIGCSE conference on Innovation and technology in computer science
education. New York, NY, USA: ACM Press.

TAI, K-C. 1979. The Tree-to-Tree Correction Problem. Journal of the ACM, 26(3),
Pages 422–433.

THOMAS, P., WAUGH, K., & SMITH, N. 2005. Experiments in the automatic marking
of ER-diagrams. Pages 158–162 of: ITiCSE ’05: Proceedings of the 10th annual
SIGCSE conference on Innovation and technology in computer science education.
New York, NY, USA: ACM Press.

THORBURN, G., & ROWE, G. 1997. PASS: An automated system for program
assessment. Computers & Education, 29(4), Pages 195–206.

TRAYNOR, D., BERGIN, S., & PAUL GIBSON, J. 2006. Automated assessment in CS1.
Pages 223–228 of: CRPITS’52: Proceedings of the 52nd conference on Computing
education 2006. Darlinghurst, Australia: Australian Computer Society, Inc.

TREMBLAY, G., & LABONTÉ, É. 2003. Semi-automatic marking of Java programs
using JUnit. Pages 42–47 of: EISTA ’03: Proceedings of the International
Conference on Education and Information Systems: Technologies and Applications.
International Institute of Informatics and Systemics.

TRUONG, N., ROE, P., & BANCROFT, P. 2004. Static analysis of students’ Java
programs. Pages 317–325 of: ACE ’04: Proceedings of the sixth conference on
Australasian computing education. Darlinghurst, Australia: Australian Computer
Society, Inc.

113

VON MATT, U. 1994. Kassandra: the automatic grading system. SIGCUE Outlook,
22(1), Pages 26–40.

YANG, R., KALNIS, P., & TUNG, A. K. H. 2005. Similarity evaluation on tree-
structured data. Pages 754–765 of: SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. New York, NY, USA:
ACM Press.

ZELKOWITZ, M. V. 1976. Automatic program analysis and evaluation. Pages 158–
163 of: ICSE ’76: Proceedings of the 2nd international conference on Software
engineering. Los Alamitos, CA, USA: IEEE Computer Society Press.

ZHANG, K., STATMAN, R., & SHASHA, D. 1992. On the edit distance between
unordered labeled trees. Pages 133–139 of: Information Processing Letters, vol.
42.

114

