

Department of Computing Sciences

Sketch-based Digital Storyboards and Floor
Plans for Authoring Computer-Generated

Film Pre-visualisations

Timothy Matthews

Supervisors: Dr. D. Vogts and Mr. K.A. Naudé

December 2012

Submitted in fulfilment of the requirements for the degree of

Magister Scientiae in the Faculty of Science

at the Nelson Mandela Metropolitan University

 i

Declaration

I, Timothy Matthews, hereby declare that the dissertation for the degree Magister Scientiae is

my own work and that it has not previously been submitted for assessment or completion of

any postgraduate qualification to another University or for another qualification.

Timothy Matthews

 ii

Acknowledgements

I would like to thank my supervisors, Dr. Dieter Vogts and Mr. Kevin Naudé, for supporting,

advising and encouraging me throughout my research project. I would also like to thank my

supervisors for reading the various versions of my dissertation and providing valuable

feedback.

I would also like to thank the staff of the Department of Computing Sciences for providing

me with valuable feedback during my research and the staff of Triggerfish Animations

Studios for making the interview possible.

I wish to thank Dr. Dieter Vogts for providing me with the equipment necessary to complete

this research. Finally, I would like to thank the National Research Foundation for supporting

this research financially.

 iii

Summary

Pre-visualisation is an important tool for planning films during the pre-production phase of

filmmaking. Existing pre-visualisation authoring tools do not effectively support the user in

authoring pre-visualisations without impairing software usability. These tools require the user

to either have programming skills, be experienced in modelling and animation, or use drag-

and-drop style interfaces. These interaction methods do not intuitively fit with pre-production

activities such as floor planning and storyboarding, and existing tools that apply a

storyboarding metaphor do not automatically interpret user sketches.

The goal of this research was to investigate how sketch-based user interfaces and methods

from computer vision could be used for supporting pre-visualisation authoring using a

storyboarding approach. The requirements for such a sketch-based storyboarding tool were

determined from literature and an interview with Triggerfish Animation Studios.

A framework was developed to support sketch-based pre-visualisation authoring using a

storyboarding approach. Algorithms for describing user sketches, recognising objects and

performing pose estimation were designed to automatically interpret user sketches. A proof of

concept prototype implementation of this framework was evaluated in order to assess its

usability benefit.

It was found that the participants could author pre-visualisations effectively, efficiently and

easily. The results of the usability evaluation also showed that the participants were satisfied

with the overall design and usability of the prototype tool. The positive and negative findings

of the evaluation were interpreted and combined with existing heuristics in order to create a

set of guidelines for designing similar sketch-based pre-visualisation authoring tools that

apply the storyboarding approach.

The successful implementation of the proof of concept prototype tool provides practical

evidence of the feasibility of sketch-based pre-visualisation authoring. The positive results

from the usability evaluation established that sketch-based interfacing techniques can be used

effectively with a storyboarding approach for authoring pre-visualisations without impairing

software usability.

Keywords: Pre-visualisation, Computer Graphics, Computer Vision, Sketch-based Interfaces,

Multi-touch Interfaces

 iv

Table of Contents

Declaration ...i

Acknowledgements .. ii

Summary .. iii

Table of Contents... iv

List of Figures ... x

List of Tables .. xv

List of Abbreviations ... xvi

Mathematical Notation ..xviii

Chapter 1: Introduction ... 1

1.1 Background .. 1

1.2 Situation of Concern ... 3

1.3 Thesis Statement .. 4

1.4 Research Objectives ... 4

1.5 Research Questions .. 4

1.6 Research Methodology ... 5

1.7 Scope and Constraints .. 6

1.8 Significance.. 7

1.9 Dissertation Outline .. 8

Chapter 2: Pre-production ... 10

2.1 Introduction .. 10

2.2 Filmmaking Process ... 11

2.3 Analysing the Script ... 13

2.4 Staging ... 14

2.5 Storyboarding ... 17

2.5.1 How Storyboards Are Used ... 18

2.5.2 The Storyboarding Process .. 18

2.5.3 Storyboard Detail .. 20

2.5.4 Annotations and Graphical Devices Used in Storyboarding 22

 v

2.5.5 Storyboarding Software ... 25

2.5.6 Discussion ... 28

2.6 Pre-visualisation ... 29

2.6.1 Textual Authoring Approach ... 30

2.6.1.1 Game-engine Code ... 31

2.6.1.2 Control Languages ... 31

2.6.2 Graphical Authoring Approach .. 33

2.6.2.1 Director Notation ... 33

2.6.2.2 Modelling and Animation Tools ... 35

2.6.2.3 Simplified Animation Tools ... 36

2.6.2.4 Sketch-based Storyboarding Tools ... 39

2.6.3 Discussion ... 41

2.7 Case study: Pre-visualisation for animated films ... 43

2.7.1 Background of Triggerfish Animation Studios... 43

2.7.2 Interview Methodology ... 44

2.7.3 Outcomes of the interview ... 44

2.7.3.1 The Filmmaking Process Used at Triggerfish ... 45

2.7.3.2 Storyboarding at Triggerfish ... 46

2.7.3.3 Pre-visualisation at Triggerfish ... 47

2.7.3.4 Problems and Areas open to Improvement .. 48

2.7.3.5 Requirements of a Sketch-based Pre-visualisation Authoring Tool 49

2.8 Summary of Sketch-based Pre-visualisation Requirements 50

2.9 Conclusions .. 52

Chapter 3: Understanding Sketches... 55

3.1 Introduction .. 55

3.2 The Object Recognition Process ... 56

3.3 Describing Images .. 57

3.3.1 Local Features and Global Features ... 58

3.3.2 Local Feature Detectors ... 58

3.3.2.1 Corner Detectors .. 59

3.3.2.2 Region Detectors .. 60

3.3.2.3 Edge Detectors ... 62

3.3.2.4 Discussion .. 64

3.3.3 Local Feature Descriptors .. 65

 vi

3.3.3.1 SIFT-based Descriptors .. 66

3.3.3.2 Grid-based Descriptors ... 68

3.3.3.3 Shape-based Descriptors .. 69

3.3.3.4 Summary of Local Region Descriptors for Sketches 71

3.3.4 Global Feature Descriptors .. 72

3.3.5 Discussion ... 73

3.4 Comparing Images ... 74

3.4.1 Feature Matching .. 74

3.4.2 Classification Approaches ... 75

3.4.2.1 Naïve Bayesian .. 77

3.4.2.2 Artificial Neural Networks ... 77

3.4.2.3 Support Vector Machines ... 78

3.4.2.4 Decision Trees ... 79

3.4.2.5 k-Nearest Neighbours ... 79

3.4.2.6 Discussion .. 79

3.5 Rigid Body Pose Estimation ... 80

3.5.1 Recognising Poses ... 81

3.5.2 Analytical Pose Estimation .. 82

3.5.3 Numerical Pose Estimation .. 83

3.5.3.1 POSIT .. 84

3.5.3.2 Iterative Closest Point (ICP) Registration ... 86

3.5.3.3 Discussion .. 87

3.6 Articulated Body Pose Estimation .. 88

3.6.1 Vision-based Posing Methods.. 89

3.6.2 Sketch-based Posing Methods ... 90

3.7 Conclusions .. 92

Chapter 4: Design and Implementation ... 94

4.1 Introduction .. 94

4.2 A Generalised Framework for Authoring Pre-visualisations 95

4.3 A Framework for a Sketch-based Storyboarding GUI ... 97

4.4 Data Collection... 98

4.5 Graphical User Interface Design ... 100

4.5.1 Look and Feel ... 101

4.5.2 Interface Layout and Navigation .. 102

 vii

4.5.3 Story Viewer and Script Viewer .. 104

4.5.4 Storyboard Editor .. 104

4.5.5 Floor Plan Editor ... 105

4.5.6 Sketch Editor ... 108

4.5.6.1 Sketching New Shots.. 108

4.5.6.2 Adding Characters .. 110

4.5.6.3 Adjusting Shots .. 112

4.5.7 Discussion ... 113

4.6 Algorithm Design ... 114

4.6.1 Requirements for Interpreting Sketches ... 114

4.6.2 Raster Representations and Vector Representations 115

4.6.2.1 Sampling Edgels from a Raster Image .. 115

4.6.2.2 Sampling a Raster Image from Edgels .. 117

4.6.3 Approaches for Describing Sketches ... 118

4.6.3.1 Contour-based Approach .. 118

4.6.3.2 Part-based Approach .. 120

4.6.3.3 Grid-based Approaches .. 122

4.6.3.4 Sampling Multiple Disks .. 123

4.6.3.5 Combined Approach .. 125

4.6.3.6 Discussion .. 129

4.6.4 Recognising Objects from Sketches ... 129

4.6.4.1 Training Phase ... 130

4.6.4.2 Recognition Phase .. 131

4.6.4.3 Discussion .. 132

4.6.5 Pose Estimation ... 133

4.6.5.1 Estimating the Pose of Rigid Bodies with an Unknown Camera 133

4.6.5.2 Estimating the Pose of Articulated Figures and Rigid Bodies with a Known

Camera ... 135

4.6.5.3 Discussion .. 138

4.6.6 Camera Estimation .. 138

4.7 Implementation .. 140

4.7.1 Implementation Tools .. 141

4.7.2 Third Party Libraries Used .. 142

4.7.3 Component Implementation .. 142

4.7.3.1 Computer Graphics Module ... 142

 viii

4.7.3.2 Component Model .. 143

4.7.3.3 Multi-touch Module ... 144

4.7.3.4 Computer Vision Module ... 144

4.8 Quantitative Performance Evaluation.. 145

4.8.1 Methodology ... 145

4.8.2 Performance Results .. 146

4.8.3 Discussion ... 147

4.9 Conclusions .. 148

Chapter 5: Usability Evaluation ... 149

5.1 Introduction .. 149

5.2 Existing Evaluation Methods .. 150

5.3 Selection of Evaluation Methods .. 151

5.4 Analytical Evaluation Design ... 151

5.5 Analytical Evaluation Results ... 152

5.5.1 Nielsen’s Heuristics for the GUI Design .. 152

5.5.2 Heuristic Evaluation for Touch-based Interaction with a 2D/3D Interface 154

5.5.3 Heuristic Evaluation for Sketch-based Recognition 155

5.5.4 Usability Issues ... 156

5.6 Empirical Evaluation Design .. 156

5.6.1 Participants.. 157

5.6.2 Evaluation Metrics .. 158

5.6.3 Instruments.. 159

5.6.4 Tasks ... 159

5.6.5 Experimental Setup and Procedure .. 160

5.7 Empirical Evaluation Results .. 161

5.7.1 Performance Results .. 161

5.7.1.1 Task Success Rate .. 161

5.7.1.2 Errors ... 162

5.7.1.3 Time on Task ... 163

5.7.1.4 Learnability .. 164

5.7.1.5 Efficiency ... 165

5.7.2 Satisfaction Results ... 169

5.7.2.1 Workload ... 169

5.7.2.2 Overall Satisfaction .. 170

 ix

5.7.2.3 Usability Results .. 171

5.7.2.4 Qualitative Feedback .. 171

5.7.3 Observations ... 173

5.8 Design Guidelines .. 176

5.9 Conclusions .. 179

Chapter 6: Conclusions... 180

6.1 Introduction .. 180

6.2 Achievement of Research Objectives .. 180

6.2.1 Achievements .. 181

6.2.2 Summary ... 185

6.3 Research Contribution .. 186

6.3.1 Theoretical Contributions .. 186

6.3.2 Practical Contributions .. 188

6.4 Limitations and Problems Encountered ... 188

6.5 Future Research .. 188

References .. 190

Appendix A : An Interview with Triggerfish Animation Studios 204

Appendix B : XML Data Format Examples .. 221

Appendix C : GUI Touch Gestures .. 222

Appendix D : Ethics Approval (Application)... 224

Appendix E : Ethics Approval (Letter).. 229

Appendix F : Heuristics Checklist ... 230

Appendix G : Informed Consent Form .. 231

Appendix H : Task List ... 233

Appendix I : Pre-Task Questionnaire ... 241

Appendix J : Performance Sheet ... 242

Appendix K : Post-Task Questionnaire (Staging).. 243

Appendix L : Post-Task Questionnaire (Storyboarding) .. 245

 x

List of Figures

Figure 1.1 The flow of the major phases of the filmmaking process.1

Figure 1.2: An example of a partial storyboard. ..2

Figure 1.3: The outline of the dissertation showing chapters, research questions and research

methods. ...8

Figure 2.1: An overview of Chapter 2. .. 10

Figure 2.2: The filmmaking process, tools and aspects that need planning. 11

Figure 2.3: The script specifying character action and dialogue . .. 13

Figure 2.4: A floor plan of the set 15

Figure 2.5: A floor plan for a dramatic block showing character blocking 16

Figure 2.6: A floor plan for a dramatic block showing character blocking and shots. 17

Figure 2.7: A flow diagram illustrating the storyboarding process... 19

Figure 2.8: Examples of increasingly detailed character sketches . .. 20

Figure 2.9: Expressing character emotion by sketching faces. ... 21

Figure 2.10: The three-point lighting approach 21

Figure 2.11: Examples of increasing detailed storyboard sketches .. 22

Figure 2.12: Graphical devices that illustrate object state. ... 23

Figure 2.13 Graphical devices and annotations for (a-c) movement and (d) motion paths. 23

Figure 2.14: Graphical devices for illustrating character feelings and emotions. 24

Figure 2.15 Annotations for illustrating camera behaviour. ... 24

Figure 2.16 Annotations for illustrating transitions between shots. .. 25

Figure 2.17: A screenshot of Storyboard Quick. .. 27

Figure 2.18: A screenshot of Storyboard Pro. .. 28

Figure 2.19: Pre-visualisation authoring approaches. .. 30

Figure 2.20: A diagram depicting the SAIBA framework.. 31

List of Figures

 xi

Figure 2.21: Illustrating a scene using (a) a storyboard frame, and (b) Director Notion. 34

Figure 2.22: Rigging and posing a character 36

Figure 2.23: A screenshot of iClone 5. .. 38

Figure 2.24: The basic activities involved in each part of the pre-production phase. 39

Figure 2.25: A screenshot of Storyboard Pro 3D 40

Figure 2.26: How authoring approaches improve. ... 41

Figure 2.27: A scene from Zambezia . .. 43

Figure 2.28: The interviewing methodology used. .. 44

Figure 2.29: Comparing the traditional film making process with Triggerfish’s process. 45

Figure 3.1: Bottom-up and top-down computer vision approaches 56

Figure 3.2: The general process followed by object recognition algorithms 57

Figure 3.3: Harris corners for a sketch of a character holding a book 60

Figure 3.4: An illustration of the scale space of an image. ... 61

Figure 3.5: Local features with (a) blob structures and (b) arbitrary shapes for a sketch of a

character holding a book .. 62

Figure 3.6: Indistinguishable edge responses. ... 63

Figure 3.7: Edge features for a sketch of a character holding a book 63

Figure 3.8: Sketching anomalies ... 64

Figure 3.9: An example of a textured image and an outlined image....................................... 65

Figure 3.10: SIFT-key detection process .. 66

Figure 3.11: The SIFT-key descriptor ... 67

Figure 3.12: Grid-based descriptors configured in rectangular and elliptical arrangements. ... 68

Figure 3.13: Describing shape contours using a of distance function histogram a Delaunay

triangulation angle histogram. ... 70

Figure 3.14: Chamfer matching for comparing shapes. ... 71

Figure 3.15: Using PCA to estimate the transformation parameters of a point set. 73

Figure 3.16: The probabilistic image classification problem. ... 76

List of Figures

 xii

Figure 3.17: The pose estimation problem .. 80

Figure 3.18: Indexing a model from sixteen reference views using a shape descriptor 81

Figure 3.19: A diagram showing the variables involved in solving a P3P problem using a

pinhole camera model ... 82

Figure 3.20: The perspective projection and scaled orthographic projection of object points to

image points. .. 84

Figure 3.21: An illustration of the 2D case of the point registration problem. 86

Figure 3.22: Pseudocode for the ICP registration algorithm ... 87

Figure 3.23: The process of sketching a character ... 88

Figure 3.24: Vision-based pose estimation using (a) a body planand (b,c) part assembly 89

Figure 3.25: A direct sketch-based rigid body posing method. .. 91

Figure 4.1: A generalised overview of frameworks for generating pre-visualisations 95

Figure 4.2: SISPA: A framework for sketch-based pre-visualisation authoring using a

storyboarding approach. ... 97

Figure 4.3: The Environmental Data Model. ... 99

Figure 4.4: Example assets that form part of the environment. .. 99

Figure 4.5: The Project Data Model. ... 100

Figure 4.6: The Asus EEE Slate EP121 used for prototyping .. 101

Figure 4.7: Touch gestures for performing a (a) Tap (b) Horizontal flick/scroll (c) Vertical

flick/scroll (d) Drag (e) Spread/enlarge (f) Pinch/shrink (g) rotate....................................... 102

Figure 4.8: GUI layout and navigation. ... 103

Figure 4.9: A screenshot of the storyboard editor. ... 105

Figure 4.10: A screenshot of the floor plan editor. .. 106

Figure 4.11: Sketches with their matching objects... 107

Figure 4.12: A screenshot of the Sketch Editor for sketching a new shot. 109

Figure 4.13: A screenshot of the Sketch Editor for adding a character. 111

Figure 4.14: Example facial expressions with their matching emotion symbols. 112

List of Figures

 xiii

Figure 4.15: A screenshot of the Sketch Editor for adjusting an existing shot. 112

Figure 4.16: Sampling edgels from a raster image. .. 116

Figure 4.17: Sampling a raster from edgels. .. 117

Figure 4.18: Overview of image descriptors investigated during the algorithm design process.

 ... 119

Figure 4.19: Part-based image description. ... 122

Figure 4.20: Describing a user sketch (a) using a grid-based approach (b-c)........................ 122

Figure 4.21: Approaches for sampling multiple disks from an image. 124

Figure 4.22: Pseudocode for describing objects in sketches... 126

Figure 4.23: Pseudocode for measuring the dissimilarity of objects in sketches................... 127

Figure 4.24: Comparing two disks with four SIFT feature bags... 128

Figure 4.25: The general process followed by object recognition algorithms 129

Figure 4.26: The training images used for recognising symbols. ... 130

Figure 4.27: The 3D model sampling method. .. 131

Figure 4.28: Pseudocode for the k-NN classifier used to classify query images. 132

Figure 4.29: The pose estimation problem as viewed from (a) top-down, and (b) the shot

sketched by the user. ... 133

Figure 4.30: The process of estimating the pose of a rigid body sketched by the user. 134

Figure 4.31: The coordinate systems involved for un-projecting an image point. 136

Figure 4.32: Posing props and characters with a known camera. ... 137

Figure 4.33: The camera estimation problem. ... 139

Figure 4.34: A comparison between two component models: Windows default and custom.

 ... 143

Figure 4.35: (a) Prop recognition scalability and (b) camera estimation scalability (n=10). . 146

Figure 4.36: Camera estimation accuracy (n=10). ... 147

Figure 5.1: Participant (a) background (b) storyboarding experience and (c) modelling and

animation experience (n=10). ... 157

List of Figures

 xiv

Figure 5.2: Participant experience with filmmaking activities. .. 158

Figure 5.3: Task success rates for (a) staging, and (b) storyboarding (n=10). 162

Figure 5.4: Errors made during (a) staging, and (b) storyboarding (n=10). 163

Figure 5.5: Time taken to complete non-trivial tasks (n=10). .. 164

Figure 5.6: Learnability results (n=10). ... 165

Figure 5.7: Success per minute efficiency results for non-trivial tasks (n=10). 166

Figure 5.8: Physical effort efficiency results (n=10). ... 168

Figure 5.9: The cognitive load using a 5-point semantic differential scale (n=10). 169

Figure 5.10: Overall satisfaction results using a 5-point Likert scale (n=10). 170

Figure 5.11: Usability results using a 5-point Likert scale (n=10).. 171

Figure 6.1: The SISPA framework. ... 187

 xv

List of Tables

Table 2.1: A comparative summary of Storyboard Quick and Storyboard Pro. 26

Table 2.2: A list of control languages.. 32

Table 2.3: A comparison of features provided by 3D modelling and animation software. 35

Table 2.4: A comparison of features provided by simplified animation software. 37

Table 2.5: Elements used in floor plans... 50

Table 2.6: Elements used in storyboards. .. 51

Table 2.7: A summary of the requirements for a sketch-based pre-visualisation authoring tool

using a storyboarding approach... 52

Table 3.1: A comparison of several corner detectors ... 59

Table 3.2: A comparison of several region detectors ... 60

Table 3.3: A summary of several region descriptors .. 72

Table 3.4: An overview of several classification approaches ... 76

Table 4.1: Important specifications of the Asus EEE EP121 tablet. 100

Table 4.2: Objects that are required be interpreted by the Computer Vision Module. 115

Table 4.3: The sketches used for quantitative performance evaluation. 145

Table 4.4: Quantitative performance evaluation hardware specifications............................. 146

Table 5.1: Task grouping for measuring learnability. .. 165

Table 5.2: Calculation of the average efficiency for non-trivial tasks. 166

Table 5.3: Most positive comments for the staging interface. .. 172

Table 5.4: Most negative comments for the staging interface. ... 172

Table 5.5: Most positive comments for the storyboarding interface. 173

Table 5.6: Most negative comments for the storyboarding interface. 173

Table 5.7: Observed usability issues (n=10) .. 174

 xvi

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

ANN Artificial Neural Network

APML Affective Presentation Markup Language

BEAT Behaviour Expression Animation Toolkit

BML Behaviour Markup Language

CG Computer Graphics

CPT Conditional Probability Tables

CV Computer Vision

DFT Discrete Fourier Transform

DN Director Notation

DoG Difference of Gaussian

EBR Edge Based Regions

EBSR Entropy Based Salient Regions

FML Functional Markup Language

GLOH Gradient Location-Orientation Histogram

GUI Graphical User Interface

IBR Intensity Based Regions

ICP Iterative Closest Point

IK Inverse Kinematics

KKT Karush-Kuhn-Tucker

LoD Level of Detail

MMH Maximum Marginal Hyperplane

MSER Maximally Stable Extremal Regions

MSML Movie Script Mark-up Language

MURML Multimodal Utterance Representation Markup Language

NURBS Non-Uniform Rational Basis Spline

k-NN k Nearest Neighbours

OCD Orientated Chamfer Distance

OI Orthogonal Iteration

POSIT Pose from Orthography and Scaling with ITerations

PC Personal Computer

PCA Principal Component Analysis

PCA-SIFT Principal Component Analysis-SIFT

PDF Portable Document Format

PML Player Markup Language

PnP Perspective-n-Point

POS Pose from Orthography and Scaling

RRL Rich Representation Language

List of Abbreviations

 xvii

SAIBA Situation, Agent, Intention, Behaviour, Animation

SIFT Scale Invariant Feature Transform

SISPA Storyboarding Interface for Sketch-based Pre-visualisation Authoring

SOP Scaled Orthographic Projection

SSE Sum of Squared Error

SVD Singular Value Decomposition

SVM Support Vector Machine

TCP/IP Transmission Control Protocol/Internet Protocol

UI User Interface

WIMP Windows Icons Menus Pointer

XML Extensible Markup Language

 xviii

Mathematical Notation

 { } Set of elements

∑

 Summation of the elements from to

 An by matrix

 ̅ The vector

 ̅ The point

 [

] Matrix

 [] Row matrix

 [

] [] Column matrix and transpose

 ̂ Basis vector

̅̅ ̅̅ ̅̅ ̅̅ Vector from point and

 ̅ ̅() Vector is a function of

 () Matrix is a function of

‖ ̅‖ Norm of ̅ (e.g. Euclidian)

 () Big O notation

 Variable assignment: value of variable is replaced by

 1

Chapter 1:
Introduction

1.1 Background

The filmmaking process has five major phases as shown in Figure 1.1 namely development,

pre-production, production, postproduction and distribution. The development phase involves

writing the script for the film and the pre-production phase involves preparation for film

production. The film receives the necessary funding if the goals of the development and pre-

production phases are met. If the film is approved for production then the filmmaking team

begins shooting each scene. The postproduction phase involves editing and finishing the final

film, which is then advertised and distributed during the distribution phase.

Figure 1.1 The flow of the major phases of the filmmaking process (Mamer 2008).

In particular, the pre-production phase is important because it involves planning the film and

preparing for the production phase. Every person, prop and shot must be planned in advance

so that the director can focus on actor performances (Tomaric 2010).

Being able to visualise the film during the pre-production phase is very important

(Moviestorm 2011). This is achieved by using pre-visualisation tools. Pre-visualisation is

useful for exploring various scene settings, actor behaviours and camera placements without

incurring the cost of production (Jung et al. 2010). Traditional storyboarding is one of the

most widely used pre-visualisation tools. Oxford (2010) defines a storyboard as “a sequence

Chapter 1: Introduction

 2

of drawings, typically with some directions and dialogue, representing the shots planned for a

movie or television production.”

An example of a storyboard is shown in Figure 1.2. It conveys information about what is

happing in the current scene. Each storyboard panel illustrates background scenery, actor and

prop placement, shot type and many other aspects that cannot be illustrated easily in a textual

script. Traditional storyboards are static in the sense that they cannot be used to illustrate

change continuously as time progresses. They only provide discrete snapshots of the events in

a scene. Directors want pre-visualisation tools that provide support for dynamic content (Jung

et al. 2010).

Figure 1.2: An example of a partial storyboard (Glebas 2008).

The simplest form of dynamic pre-visualisation is achieved by creating animated storyboards.

Animated storyboards display storyboard sketches in succession with synchronised dialogue

and audio. Camera movement is simulated by panning, rotating and zooming storyboard

panels in two dimensional (2D) space. 2D animation is problematic if the scene requires

accurate three dimensional (3D) planning.

3D computer generated animation is another approach to pre-visualisation (Chakravarthy et

al. 2010; Ye and Baldwin 2008). 3D animations are becoming more popular for film pre-

visualisation because they communicate a greater wealth of dynamic content more naturally

when compared with traditional storyboards and animated storyboards.

Several commercial pre-visualisation authoring solutions are available, such as Autodesk

Maya and 3D Studio Max (Autodesk 2011b; Autodesk 2011a). These tools require the author

to work at a low and very technical level. Simplified animation tools such as FrameForge3D

Chapter 1: Introduction

 3

are available to provide the user with an easy to use authoring environment (Innoventive

Software 2009). Both 3D animation approaches employ drag-and-drop style user interfaces.

The author needs to place individual characters and props on the virtual set and direct the

behaviour of virtual actors and cameras using mouse-based interaction. Authoring pre-

visualisations using drag-and-drop style user interfaces is a tedious, manual and non-intuitive

process. Traditional storyboarding techniques can be used to quickly communicate what is

happening in each scene.

One of the main limitations of the drag-and-drop style authoring approach is the chosen user

interaction technique. Traditional storyboards are typically sketched by hand, whereas

software alternatives require the user to use a mouse and keyboard. The storyboards

themselves are rich in scene information, but little attempt has been made to create pre-

visualisation tools that can extract this information automatically. Computer vision literature

demonstrates that information can be extracted from sketches automatically. It has been

shown how objects can be recognised from images and posed in 3D space (Shin and Igarashi

2007; Lee and Funkhouser 2008). It has also been shown how characters can be posed using

sketches (Dementhon and Davis 1995; Chaudhuri, Kalra and Banerjee 2004).

Sketch-based storyboarding is a novel approach to authoring pre-visualisations. Limited

research has been conducted on how pre-visualisation tools can be designed and implemented

using methods from computer vision to automatically interpret the user’s sketches (Jhala et al.

2008; Skorupski 2009). There is also a need to evaluate how effectively, efficiently and easily

users can author pre-visualisations using this approach.

1.2 Situation of Concern

The following problem statement articulates the situation of concern:

Existing authoring software does not effectively support the authoring of pre-

visualisations without impairing software usability.

Pre-visualisations are authored using software that requires users to specify scene and filming

information using drag-and-drop style user interfaces (Jung et al. 2010). The authoring

process is tedious and requires the user to manually provide information that could be

conveyed easily using simple storyboards. Authoring systems that provide interfaces based on

a storyboarding metaphor do not automate information extraction from user

sketches sufficiently (Jhala et al. 2008). This research addresses the situation of concern by

Chapter 1: Introduction

 4

investigating how a sketch/touch-based storyboarding approach can be applied in order to

allow a user to author pre-visualisations effectively and easily.

1.3 Thesis Statement

The following thesis statement will be used to guide this research:

Storyboarding with sketch-based interfacing techniques can be used effectively for

authoring pre-visualisations without impairing software usability.

Storyboarding is used to support decision-making during the pre-production phase of

filmmaking (Mamer 2008). This is because each frame in a storyboard includes information

about the camera in 3D space, the set, shot style, character identities, character action and

behaviour, camera action, etc. Directors can use existing storyboarding skills to author pre-

visualisations easily and quickly using a sketch-based interface that can interpret sketches

automatically. This simplifies the pre-visualisation authoring process by automating the

extraction of storyboard information instead of requiring the user to manually specify it using

traditional authoring software.

1.4 Research Objectives

The objectives of this research are:

O1: To investigate how pre-visualisations are currently created by focusing on the

methods and theories already developed.

O2: To investigate what methods are available for extracting information from sketches.

O3: To design and implement a sketch/touch-based storyboarding tool for authoring

pre-visualisations.

O4: To measure the extent to which a sketch-based storyboarding interface supports the

user in authoring pre-visualisations in terms of software usability.

1.5 Research Questions

The main research question addressed by this research is:

How can the authoring of pre-visualisations be supported using sketch-based digital

storyboarding without impairing software usability?

Chapter 1: Introduction

 5

The following sub-questions will be answered in order to answer this research question:

Q1: What methods and theories have been developed for authoring pre-visualisations?

Q2: What methods are available for extracting information from sketches?

Q3: How can the authoring of pre-visualisations be supported using a storyboarding

metaphor and sketch/touch-based interfacing techniques?

Q4: To what extent does a sketch-based storyboarding interface support the user in

authoring pre-visualisations in terms of software usability?

1.6 Research Methodology

The positivism research philosophy with a deductive approach will be used for this research.

The findings will be observed and described objectively without the interference of the

researcher (Oates 2006; Levin 1988; Saunders, Lewis and Thornhill 2009). Several theories

and practices have been developed in processing sketch-based input. This research will

involve investigating the most applicable methods for authoring pre-visualisations using a

storyboarding metaphor. The research methods used for answering the research questions are

summarised below:

Q1 What methods and theories have been developed for authoring pre-visualisations?

Literature studies provide critical reviews of specific research areas (Hofstee 2009).

This research question will be answered by conducting a literature study in order to

identify what methods and theories have been developed for authoring pre-

visualisations. This will involve reviewing existing film-making processes and

approaches for authoring pre-visualisations. An interview with experts from the

computer animation industry will also be conducted in order to investigate how film-

making and pre-visualisation is done in practice (Triggerfish Animation Studios 2012a).

Q2 What methods are available for extracting information from sketches?

This research question will be answered by conducting a literature study in order to

investigate methods for extracting information from sketches automatically. This

involves reviewing methods for consistently identifying points or regions of interest

known as features. Methods for describing, comparing and matching features will also

be investigated in order to perform object recognition. The methods will be critically

reviewed to determine the feasibility of each for automatically interpreting user

Chapter 1: Introduction

 6

sketches (with reasonable processing times). Methods for posing rigid bodies and

articulated bodies in 3D space will also be reviewed.

Q3 How can the authoring of pre-visualisations be supported using a storyboarding

metaphor and sketch/touch-based interfacing techniques?

This research question will be answered by applying the design and implementation

research strategy (Oates 2006). A framework will be created for relating the various

components required for implementing a storyboarding sketch/touch-based Graphical

User Interface (GUI) capable of automatically interpreting user sketches. A proof of

concept prototype tool will be designed and implemented for demonstrating the

feasibility of the methods and ideas presented in this research. The prototype will also

be required for conducting an experiment in order to answer the next research question.

Q4 To what extent does a sketch-based storyboarding interface support the user in

authoring pre-visualisations in terms of software usability?

The experimental research strategy will be applied in order to answer this research

question (Oates 2006). The usability of the prototype will be evaluated analytically and

empirically. The analytical evaluation will measure the design of the GUI against

several usability heuristics (Sharp, Rogers and Preece 2007). The empirical evaluation

will involve conducting usability tests in order to collect quantitative and qualitative

data from observations and questionnaires. The design and results of the usability

experiment will be discussed in detail in Chapter 5.

1.7 Scope and Constraints

There are many components involved in authoring, planning and rendering pre-visualisations;

however, the scope of the research will be limited to the design and implementation of the

following:

 A framework for sketch-based pre-visualisation authoring using a storyboarding

approach,

 Algorithms for recognising 2D objects and 3D objects,

 Algorithms for estimating the pose of rigid bodies and articulated bodies in 3D space,

 An algorithm for estimating the camera from a user sketch,

 A sketch/touch-based interface for authoring pre-visualisations using floor plans,

Chapter 1: Introduction

 7

 A sketch/touch-based interface for sketching storyboard panels using the algorithms

and ideas presented in this research, and

 A touch-based interface for creating and managing storyboards containing static pre-

visualisation images.

There are two main approaches to creating pre-visualisations (Moviestorm 2011):

1. Minimalistic pre-visualisations make use of simple virtual environments and omit

unnecessary animation.

2. Detailed pre-visualisations attempt to visualise each shot as closely to the final film as

possible using detailed virtual environments and animations.

The focus of this research will be on authoring minimalistic pre-visualisations using a

sketch/touch-based storyboarding interface. Animation will therefore be excluded from the

scope of this research. The design and implementation of the planning and rendering

components are not included. Furthermore, programmatically authoring pre-visualisations and

performing natural language processing on film scripts are not included.

1.8 Significance

There are several problems with using traditional tools for authoring pre-visualisations.

Existing pre-visualisation tools require programming skills or modelling and animation

expertise. Simplified tools are available that use drag and drop approaches; however, the

interaction method does not intuitively fit with pre-production activities such as writing and

sketching. Existing tools that apply storyboarding approaches do not automatically interpret

user sketches.

This research proposes methods for designing and implementing sketch-based pre-

visualisation authoring tools that apply a storyboarding approach for interpreting user

sketches automatically. The findings of the research are significant because it simplifies the

transition from storyboarding to pre-visualisation. It also accelerates the creative process by

allowing pre-visualisation artists to capitalise on existing storyboarding skills. The research

findings are significant to modellers and animators because it allows them to begin working

with 3D content earlier in the filmmaking process. The methods proposed by this research can

be used in other research areas such as sketch-based modelling, animation and technical

drawing.

Chapter 1: Introduction

 8

1.9 Dissertation Outline

This chapter provided a background to the research problem. It discussed the situation of

concern and articulated the research design by making a thesis statement, asking research

questions, stating research objectives and discussing the research methodology, scope and

significance. An outline of the dissertation is given in Figure 1.3.

Figure 1.3: The outline of the dissertation showing chapters, research questions

and research methods.

Chapter 2 and Chapter 3 cover the literature study component of this research. Chapter 2

provides an overview of the filmmaking process as well as several pre-production activities.

These include analysing the script, staging, storyboarding and pre-visualisation. It provides

the necessary background for designing a pre-visualisation authoring tool that aligns with

existing filmmaking processes, activities and deliverables. A detailed review on storyboarding

is provided which discusses the storyboarding process, what details are illustrated, what

annotations are used and what software is available for storyboarding. Approaches for

authoring pre-visualisations are discussed in order to determine their strengths and

weaknesses. Chapter 2 concludes with a practical view of storyboarding, pre-visualisation and

the filmmaking process within the context of a case study (explored through an interview) in

order to establish pre-visualisation requirements.

The literature study continues to Chapter 3 by reviewing approaches from computer vision for

extracting information from images in order to automatically interpret user sketches. Methods

Chapter 1: Introduction

 9

for detecting, describing, comparing and matching features are investigated. The methods are

critically reviewed to establish how feasible each would be for processing images sketched by

the user. Methods are also investigated for posing rigid bodies and articulated bodies in 3D

space from user sketches. The review of computer vision literature is used to answer the

second research question and provide groundwork for Chapter 4.

The main contributions of this research are presented in Chapter 4. It begins with a brief

overview of pre-visualisation authoring frameworks and proposes the SISPA framework for

the user interface layer. The chapter discusses the various components of the SISPA

framework, including the data model, the GUI and the Computer Vision Module. The GUI is

designed in order to address the shortcomings of existing drag-and-drop, mouse-based

authoring environments. The chapter includes a detailed discussion on various approaches for

describing user sketches so that the descriptors can be used for image recognition. The

strengths and weaknesses of each method are investigated in order to identify an approach

which is best suited for describing user sketches. The methods used for estimating the pose of

rigid bodies and articulated figures are discussed and an algorithm for estimating the camera

from user sketches is provided. The chapter concludes by discussing how the proof of concept

prototype tool was implemented so that it could be used for usability testing.

The evaluation of the prototype tool is discussed in Chapter 5. The chapter begins by

investigating the methods available for evaluating the usability of a user interface design or

prototype. It discusses the design of the evaluation by outlining its outcomes, selecting

evaluation methods and describing the details of the evaluation. This includes the sampling of

participants, the evaluation metrics used and the evaluation procedure (instruments, tasks, and

setup). The analytical and empirical results of the usability evaluation are reported as well as

observations made during the usability study. The lessons learned from the positive and

negative findings of the evaluation are compiled into a set of guidelines that can be used for

creating future sketch-based pre-visualisation authoring tools that use a storyboarding

approach.

The dissertation is concluded in Chapter 6, which shows how each research objective was

achieved and how the dissertation answered the corresponding research questions. It discusses

the theoretical and practical contributions that were made during this research as well as the

limitations and problems encountered. The chapter concludes by recommending future

research opportunities.

 10

Chapter 2:
Pre-production

2.1 Introduction

The pre-production phase involves planning every aspect of the film and preparing for

production. This chapter provides background on the research problem by discussing the

filmmaking process and focusing on the activities performed during the pre-production

phase (see Figure 2.1). The pre-production phase involves analysing the script, staging,

storyboarding and pre-visualisation. Insight into traditional storyboarding is provided by

discussing how storyboards are used and created. The details, graphical devices and

annotations found in storyboards are discussed.

Figure 2.1: An overview of Chapter 2.

Pre-visualisation is a valuable communication tool that is used during the pre-production

phase for planning and collaboration before production begins (Nitsche 2008; Mamer 2008).

It is useful for exploring various options for scene settings, actor behaviour and camera

placement without incurring the cost of production (Jung et al. 2010). This chapter discusses

the various textual and graphical approaches to authoring pre-visualisations. It concludes with

Chapter 2: Pre-visualisation

 11

a case study that reviews the topics discussed from a practical point of view. The case study is

based on an interview conducted with a producer from an animation studio. The findings of

the interview are used to determine the requirements for sketch-based pre-visualisation

authoring (see Appendix A).

The chapter answers the first research question identified in Chapter 1, namely Q1: what

methods and theories have been developed for authoring pre-visualisations? This is achieved

by answered the following sub-questions:

Q1.1: What phases and activities are involved in the film making process?

Q1.2: How are the activities of the pre-production phase performed?

Q1.3: What approaches exist for authoring pre-visualisations?

Q1.4: What are the requirements of a sketch-based storyboarding tool for authoring

pre-visualisations?

2.2 Filmmaking Process

The filmmaking process has five major phases: development, pre-production, production,

postproduction and distribution. Figure 2.2 provides an outline of these phases.

Figure 2.2: The filmmaking process, tools and aspects that need planning.

Chapter 2: Pre-visualisation

 12

The filmmaking process:

1. Development involves the creation of a well-written script. The script is used to plan

the dialogue, character actions and scene descriptions. Script writing is the most

important aspect of filmmaking and it is also the least costly (Tomaric 2010).

2. Pre-production involves thinking through every aspect of the film and doing all the

necessary preparations before the production phase begins. It includes analysing the

script, floor planning, storyboarding, pre-visualisation, budgeting, obtaining funding,

scouting locations, finding and hiring the cast, securing equipment and working out a

shooting schedule.

3. Production involves shooting all the scenes. The director manages producers,

cinematographers, sound and lighting technicians and other staff in order to bring their

vision to life. This process involves shooting, recording sound, illuminating the scene

and many other tasks. The production phase ends when the last scene has been shot

(Mamer 2008).

4. Postproduction involves editing and finishing the final film image; editing the

soundtrack; adding visual special effects; adding sound effects and music; and

transferring the film to video.

5. Distribution involves advertising the film on posters and other media. The film is then

duplicated for distribution and released to selected cinemas or other media outlets.

Filmmaking is a complicated process that requires the director to consider many aspects of the

film, including where props should be placed, how shots should be taken and how actors

should perform. This research focuses on some of the tools used during the pre-production

phase including floor plans, storyboards and pre-visualisations.

Floor planning is the process of creating top-down drawings of the set where the artist

indicates character behaviour and camera behaviour. Floor plans are used as a planning tool

for the storyboarding process. Floor plans are discussed in more detail in Section 2.4.

Storyboarding is the process of creating comic book like representations of a film.

Storyboards are used to convey information that may be difficult to describe in a textual

script. Shots, camera motion, character behaviours and emotions are examples of details that

are difficult or tedious to narrate. Section 2.5 provides a detailed discussion on storyboarding.

Chapter 2: Pre-visualisation

 13

Pre-visualisation is the process of creating the initial shots for a scene using virtual

environments (The Previsualisation Society 2012). Pre-visualisation authoring will be

discussed in Section 2.6.

The storyboarding team and the pre-visualisation team are both responsible for presenting the

film’s story visually. The script tells the story of the film and it is therefore their primary

information source. It narrates the film in terms of actions and dialogue that cannot be

visualised immediately. The script has to be restructured in terms of smaller units. This

process involves analysing the script.

2.3 Analysing the Script

The development phase begins with an original or adapted script. A script is a document

containing the actions, expressions and dialogue of the characters within the film. Figure 2.3

shows an example scene from a script in a typical format. The format distinguishes dialogue

from action by having the dialogue indented with respect to the rest of the text.

Figure 2.3: The script specifying character action

and dialogue (Mamer 2008).

During the pre-production phase, the director begins with the original script and analyses it.

This involves annotating the script with information in order to produce what is called a

shooting script. The shooting script is used as a guide during production and is constantly

refined by the director as well as other team members (Pramaggiore and Wallis 2008).

Chapter 2: Pre-visualisation

 14

The process of analysing the script begins by identifying scenes, dramatic blocks, acting beats

and narrative beats (Proferes 2005). Scenes are the smallest units of conflict in the story

(Glebas 2008). They contain conflict between characters who are trying to achieve their own

goals and overcome obstacles. Each scene in the shooting script is numbered. Scenes are

divided into smaller sections called dramatic blocks. A dramatic block contains one dramatic

idea. New dramatic ideas are often introduced to the audience by beginning each event in a

different location on the set. Dramatic blocks are indicated in the shooting script using

dramatic block headings. Each dramatic block contains several acting beats and narrative

beats. An acting beat is a unit of action carried out by a character. It occurs every time the

action of the character changes. Acting beats are used to differentiate the dialogue and action

elements of a scene. The director also identifies narrative beats which are acting beats that

progress the plot of the story. An additional column is added to indicate beats in the shooting

script. Narrative beats are indicated using capitalization or formatting.

The next step in analysing the script involves developing a shooting strategy.

Rabiger (2003) outlines two import aspects that have to be decided upon when creating such a

strategy . The first aspect is character placement and movement. The director is responsible

for placing the characters on the set and planning their movement and orientation. This task is

called character blocking. The second aspect of creating a shooting strategy is camera

placement and movement. It involves planning the placement and movement of the camera in

order to display the environment sufficiently and obtain the desired shot type. The process of

placing a character in a shot is called character framing. The director has to be careful when

taking single shots of characters partaking in a conversation because there are lines

connecting the eyes of the characters, called eyelines. The director has to place the camera on

the correct side of the eyeline so that it appears to the audience that the correct characters are

talking to each other. The director must also consider the movement speed of the camera as

well as the type of lenses being used in order to achieve the desired dramatic effect. The

shooting script provides descriptive detail about character blocking and character framing but

the exact location and movement of each character and camera is specified during the staging

process (Proferes 2005).

2.4 Staging

Staging refers to the process of designing the performance space of the film. It involves

blocking characters and planning performances, as well as positioning and moving the

Chapter 2: Pre-visualisation

 15

camera (Glebas 2008). Proferes (2005) and Rizzo (2005) identify several of the functions

staging provides in terms of character blocking and camera behaviour.

The director performs character blocking by rendering the action of each character. This is

achieved by indicating how characters move and turn, what gesture’s they make, what poses

they assume and any other physical action they perform. Character blocking is useful for

indicating the relationships between characters. For example, depending on where two

characters are sitting around an office table, the audience can assume which character is the

subordinate. Character blocking is also useful for associating characters with each other. This

can be achieved by blocking the characters closer together or by moving the camera.

The camera's position and movement are indicated during the staging process. Staging helps

the director to create a frame for the camera. The director uses the camera to familiarise the

audience with the location of the scene and emphasise important props in order to orientate

the viewer. The viewer's attention can be guided by redirecting and moving the camera. For

example, the camera can move along a kitchen table while pausing at particular dishes while a

chef discusses them. This forces the audience to pay attention to the dishes and listen to what

the chef is saying instead of focusing on the chef and missing the message.

The director visualises the staging of a scene of each dramatic block (see Section 2.3) by

drawing an overhead view called a floor plan. Floor plans are used to illustrate the contents of

the set and they illustrate the placement and movement of characters and cameras. The

director begins by drawing a blank floor plan as shown in Figure 2.4. The blank floor plan

only shows the walls, doors, windows and props of the set.

Figure 2.4: A floor plan of the set (Proferes 2005).

Chapter 2: Pre-visualisation

 16

Character blocking for a particular dramatic block is indicated by drawing symbols that

represent the characters. For example, in Figure 2.5, Andrea and Devlin are characters

performing in the scene and they are denoted by an A and D respectively. The director draws

a symbol for each character on the set. Character movement is illustrated by drawing solid

paths with arrows. In-between character locations are also used to indicated pauses and

reorientation.

Figure 2.5: A floor plan for a dramatic block showing character

blocking (Proferes 2005).

The director also uses the floor plan to document the position and movement of the

camera (Mamer 2008; Proferes 2005). Floor plans are therefore used to plan and document

the scene’s shooting strategy. A shooting strategy consists of several shots. A shot is a series

of frames that starts when the camera begins recording and stops when recording ends. There

may be several cameras on the set, but when the camera is referred to as being singular, it is

assumed to be the camera the audience is viewing from.

Figure 2.6 shows how the floor plan can be annotated to illustrate the shooting strategy. In

this example, symbols that look like eyes are used to indicate the position and orientation of

the camera for each shot. Camera movement is illustrated by drawing dotted paths with

arrows so that it can be differentiated from character movement. The orientation of a moving

camera can also be illustrated by drawing orientation symbols such as the darkened cameras

shown in this example.

Chapter 2: Pre-visualisation

 17

Figure 2.6: A floor plan for a dramatic block showing character blocking

and shots (Proferes 2005).

Numbering shots is important when creating a shooting strategy. If the shots are numbered

then the director can associate them with sections in the shooting script. The floor plan shown

in Figure 2.6 indicates shot numbers using a hash followed by the shot number and a letter

indicating whether the shot is beginning or ending (an “a” or “b” respectively). For example,

shot twelve follows Devlin as he moves into the next room. The shot begins at #12a and ends

at #12b while remaining focused on Devlin as he and the camera move.

The staging process produces information that is necessary for the next task performed during

pre-production, which is storyboarding. Storyboarding begins once the shooting strategy has

been documented on the shooting script and visualised on floor plans (Glebas 2008).

Sometimes the storyboard artist is only provided with an annotated script. In this case, the

storyboard artist creates rough floor plans in order to aid in the storyboarding process. The

next section provides a detailed discussion on storyboarding.

2.5 Storyboarding

A storyboard is a comic book like representation of a film. Storyboards should convey the

shooting strategy and approximate cast individuals (Mamer 2008). They are used in the early

Chapter 2: Pre-visualisation

 18

stages of production (or during the transition from pre-production to production) to present

the contents of the script visually. The type of storyboard and the amount of detail it contains

depends on the scene that is being created, the requirements of the director and the financial

limitations of the project (Glebas 2008; Long and Schenk 2002). This section discusses how

storyboards are used and what the storyboarding process entails. It provides an overview of

the details included in storyboard sketches, and it discusses the annotations and graphical

devices storyboard artists use. The section is then concluded with a comparison of two

popular software solutions that facilitate storyboarding.

2.5.1 How Storyboards Are Used

Storyboards are used differently depending on the needs of the director and the project. The

main function of storyboarding is to help the director think about aspects that might have been

missed during script development. Storyboarding requires the director and the storyboard

artist to plan the visual details required before production begins. These details may include

how to frame and shoot a scene, how the set appears, where props are and how characters

perform (Long and Schenk 2002). Storyboards need to clearly depict every important detail of

each character, including character action, emotion and appearance. The storyboard artist has

to follow a process in order to create the required storyboards. The next section will provide a

brief overview of the storyboarding process and the activities it involves.

2.5.2 The Storyboarding Process

Storyboarding is a process of preparation and iterative refinement (Glebas 2008). It consists

of at least six steps as shown in Figure 2.7. This subsection briefly discusses the activities

involved when preparing for storyboarding. It also discusses the activities involved when

creating storyboards.

Preparation for storyboarding requires the script to be formally analysed in order to identify

acting beats and narrative beats (see Section 2.3). The storyboard artist needs to know when

and where the action starts and ends. Narrative beats indicate to the storyboard artist when

action should be emphasised in order to capture the audience’s interest. In general, the

storyboard artist creates one or more storyboard drawings for each acting beat or narrative

beat.

Chapter 2: Pre-visualisation

 19

Figure 2.7: A flow diagram illustrating the storyboarding process.

The storyboard artist uses the annotated script to create a shot list. The shot list provides a list

of camera setups for each scene. Several storyboard drawings may be made for each

shot (Proferes 2005). The final preparation activity involves diagramming the action of each

scene. The storyboard artist uses existing floor plans if they are available (see Section 2.4). If

floor plans are not available then the artist roughly sketches out floor plans in order to

establish the scene’s environment and plan the positioning and movement of the camera and

characters. The storyboard artist begins sketching once the preparation for the storyboard is

complete.

The first sketches the storyboard artist makes are quick, low quality sketches called thumbnail

sketches. Thumbnail sketches are generally stamp-sized, or postcard-sized, and they are made

in the margin of the script. They allow the artist to quickly sketch variations of the scene in

order to iteratively explore and refine alternative ways of expressing the story visually. The

storyboard artist also makes use of subtext on the script while thumbnail sketching. Subtext is

additional text that is added to the script in order to add subtle ideas. The goal of subtexting is

to enhance the story beyond what was originally contained in the script. It is used to annotate

the script in order to answer questions related to the theme and story. The storyboard artist

creates a higher detail version of the storyboard once thumbnail sketching is completed. The

final sketching process is also iterative. The sketches are then placed in panels and laid out so

that the final storyboard can be presented.

The storyboard artist pitches the storyboard to the director and the team. Pitching a storyboard

involves showing the team the storyboard while performing dialogue, discussing action and

Chapter 2: Pre-visualisation

 20

showing how the story progresses by pointing at the storyboard panels. Storyboarding

software can also be used to automate the pitching activity (see Section 2.5.5). Dialogue

performances are recorded and combined with animation to create animated

storyboards (Rizzo 2005).

2.5.3 Storyboard Detail

A traditional storyboard consists of a rectangular arrangement of panels that are laid out on

each page. Each panel contains a single storyboard sketch and below it is a combination of

dialogue, action text and camera instructions. Above each panel is the scene number as well

as the panel number for that scene (Glebas 2008). This subsection discusses how the

characters, environment and special effects are illustrated in each storyboard panel.

Characters are the most important elements in a storyboard, irrespective of the level of detail

used. Sketches are used to convey character poses and body language. Figure 2.8 (a) shows an

example storyboard sketch that illustrates the pose of two characters by only using stick

figures. Artists use stick figures as a planning mechanism before adding body to their

characters. Figure 2.8 (b) shows how an artist can expand a stick figure so that it has shape

and body. It is impossible to identify each character in a sketch unless there is a way of

differentiating characters from one another.

(a) (b) (c) (d)

Figure 2.8: Examples of increasingly detailed character sketches (Glebas 2008).

Characters can be differentiated by designing and sketching their appearance. A character’s

external features, such as its proportions, face, hair and costume, are used to differentiate it

from other characters. Figure 2.8 (c) and Figure 2.8 (d) show examples of how the

appearance of characters can be sketched. Storyboard artists typically sketch the characters’

faces and facial expressions as well. This allows them to express character emotion visually.

Chapter 2: Pre-visualisation

 21

(a) Main emotions (b) Refining emotion with the eyes and eyebrows

Figure 2.9: Expressing character emotion by sketching faces (Glebas 2008).

There are four main emotions as shown in Figure 2.9 (a): joy, anger, sadness and fear.

Intermediate emotions include confusion, frustration, shock and embarrassment. The key to

expressing emotion lies in the mouth and eyebrows of the character’s face (Glebas 2008). The

eyes themselves are used to refine the emotional state of the character. Figure 2.9 (b) shows

an example of how the direction of the eyes, the shape of the eyebrows and the character’s

hands can be used to express various emotions. Storyboard artists can express characters

sufficiently by combining emotion with character pose and appearance.

Shading is used to illustrate scene lighting and shadows. The three-point lighting approach is

standard in filmmaking. It involves using three light sources. Consider Figure 2.10 (a) – (c).

The key light is the primary light source. The fill light is used to illuminate the shadows being

cast by the key light. The back light is used to visually separate the character from the

background (Pramaggiore and Wallis 2008). Changing lighting attributes such as intensity,

placement and contrast allows the lighting team to change the mood of the scene. A skilled

storyboard artist can illustrate lighting setups if required.

(a) (b) (c)

Figure 2.10: The three-point lighting approach (Glebas 2008).

Chapter 2: Pre-visualisation

 22

Live-action films and animated films may require the storyboard artist to sketch the

environment of the scene in order to illustrate the camera setup and the set. The outdoor scene

shown in Figure 2.11 (a) illustrates the location and appearance of the building and characters.

The storyboard artist has to consider the three-dimensional accuracy of the sketch when

sketching the environment. This requires the artist to consider depth and perspective in order

to accurately illustrate a scene in three-dimensional space. Figure (b) shows another example

where depth, perspective and scale play an important role in the quality of the storyboard

sketch. Environmental effects are also illustrated when creating high quality storyboard

sketches such as the one shown in Figure 2.11 (c). The sketch shows the pose, emotion and

appearance of the involved characters. It also illustrates the environment, the lighting setup

and special effects, such as the slime and foam.

(a) (b) (c)

Figure 2.11: Examples of increasing detailed storyboard sketches (Glebas 2008; Forton

2011; Simon 2006).

Sketches can be used to effectively illustrate characters, emotions, lighting, environments and

effects. However, artists often augment storyboards with annotations and graphical devices in

order to illustrate character actions, shooting directions, emotions and effects that are difficult

to illustrate with a plain sketch. The following section provides a brief overview of the

annotations and graphical devices used in storyboarding.

2.5.4 Annotations and Graphical Devices Used in Storyboarding

Graphical devices are used to indicate action, emotion, feeling, and effects in

storyboards (Simon 2006). The use of graphical devices depends heavily on the style of the

storyboard artist. Attempts at recording and classifying graphical devices have been made,

such as the The Lexicon of Comicana (Walker 2000). This is an informal encyclopaedia that

attempts to describe, name and categorise most of the graphical devices found in cartoons.

There is, however, no formalised standard taxonomy or vocabulary that comprehensively

Chapter 2: Pre-visualisation

 23

covers the description of moving content in images (Luckow 2010). This subsection discusses

and categorises the annotations and graphical devices that are found in storyboards. It

includes several examples that highlight the annotations and graphical devices in colour.

These examples include illustrations for indicating the state of objects, the movement of

characters and objects, the feelings and emotions of a character, the behaviour of the camera

and the type of transitions between shots.

The state of an object can be indicated by emphasising an effect which is unique to that state.

For example, reflective objects like the glass ball shown in Figure 2.12 (a) can be indicated by

drawing a shiny spot on the object. Objects that produce light can be indicated by drawing

rays of light, as shown in Figure 2.12 (b). Hot objects can be sketched with steam like the cup

of hot tea in Figure 2.12 (c).

(a) (b) (c)

Figure 2.12: Graphical devices that illustrate object state (Clipartoday

2011; Clker 2011; SeagullsCalling 2011).

The movement of characters can be illustrated using graphical devices and annotations.

Figure 2.13 (a) and Figure 2.13 (b) show how curved lines and straight lines can be used to

indicate moving limbs and characters. Clouds that remain at a location can be used to indicate

that an object or character moves quickly, as shown with the cow in Figure 2.13 (c). The

movement of an object or character can also be illustrated using arrows and paths, as shown

in Figure 2.13 (d).

(a) (b) (c) (d)

Figure 2.13 Graphical devices and annotations for (a-c) movement and (d) motion

paths (a,d: Glebas 2008; b: StockphotoPro 2011; c: Greenhead 2011).

Chapter 2: Pre-visualisation

 24

Walker's (2000) work documents many graphical devices that can be used for illustrating the

emotions and feelings of characters. Figure 2.14 provides examples showing how graphical

devices can be used for expressing stress, surprise and dizziness.

Figure 2.14: Graphical devices for illustrating character feelings and

emotions (Shelly 2011; Glebas 2008; PicturesOf 2011).

The behaviour of the camera can be illustrated by annotating storyboards. The storyboard

artist can indicate how the focal length (zoom) of the camera changes, how the camera moves

on the set (dolly) and how the camera can be panned (Glebas 2008).

(a) (b)

(c) (d)

Figure 2.15 Annotations for illustrating camera behaviour (a,b: Goldman et al. 2006; c,

d: Glebas 2008).

Changes in the camera’s focal length are indicated using two rectangles of the same aspect

ratio, where one rectangle is inside the other. The smaller rectangle contains the visible area

of the shot at a closer zoom. The larger rectangle contains the visible area of the shot at zoom

that is further away. The corners of both rectangles are also connected by arrows to indicate

whether the camera is zooming inwards or outwards. Figure 2.15 (a) shows an example of the

camera zooming towards and away from a character posing in a western scene. The zoomed

in view focuses on the subject and the zoomed out view shows the context of the scene.

Chapter 2: Pre-visualisation

 25

Camera movement is indicated using rectangles and arrows similarly to when the camera’s

focal length is changed. The internal rectangle, however, is not always shown and the arrows

are normally thicker. The arrows are also drawn in perspective so that they appear in context

with the scene (Goldman et al. 2006). Figure 2.15 (b) shows an example of the western scene

but with a moving camera. Figure 2.15 (c) shows a variation of the annotation that does not

show the interior rectangle.

Camera panning is indicated by drawing a rectangle that covers the area being panned. The

storyboard artist indicates the starting and ending positions of the pan and considers the

production’s aspect ratio. Figure 2.15 (d) shows an example pan that starts with a view of a

porch and ends with a view of a mountain.

Transitions between shots are illustrated on storyboards by making annotations between the

storyboard panels (Glebas 2008). A transition that involves dissolving from one shot into

another shot is indicated by drawing a cross between the involved storyboard panels. Figure

2.16 (a) shows an example of how a storyboard artist indicates dissolving shots. Shot two

becomes more visible as shot one becomes less visible. A transition that involves fading from

one shot to another is indicated using a triangular left or right symbol that directs away from

the shot that is fading out. Figure 2.16 (b) shows an example of shot one fading out until it is

black, or some other colour, and then shot two appears instantly.

(a) (b)

Figure 2.16 Annotations for illustrating transitions between shots.

2.5.5 Storyboarding Software

In the past, the final storyboard was sketched by hand on paper. Today, storyboarding

software can be used to create storyboards quickly and easily. Computer generated

storyboards have several advantages over paper-based storyboards. Higher quality

storyboards can be made using tools that provide graphical user interfaces for digital

sketching or content placement. The resulting storyboard sketches can be manipulated after

Chapter 2: Pre-visualisation

 26

they have been created. This allows the storyboard artist to make changes to the storyboard

quickly and easily, unlike paper-based storyboards that require the panels to be re-sketched by

hand. This subsection provides a comparative discussion of the features provided by two

popular storyboarding software packages, namely Storyboard Quick and Storyboard Pro.

Table 2.1 provides a summary of the features compared in this discussion.

Table 2.1: A comparative summary of Storyboard Quick and Storyboard Pro.

 Storyboard Quick Storyboard Pro

Developer PowerProduction Software Toon Boom Animation

3D virtual environment

Actor posing

Animation

Content library

Artistic skill required

Audio support

Tool output
Storyboards: Printed, HTML

and Flash format

Storyboards: PDF;

Video format

Support for storyboarding

conventions and annotations

Storyboard Quick is a software package that storyboard artists can use for creating and editing

storyboards using a drag-and-drop interface (Power Production Software 2011). It allows the

user to create storyboards using 3D models from an object library. Figure 2.17 provides a

screenshot of Storyboard Quick showing how the storyboarding tool can be used to place

3D props and characters on a 2D background image. The user has limited control over the

interaction of virtual actors and the environment, for example a virtual actor cannot sit on a

chair that’s in the scene background. There is also limited support for animation, and the

storyboarding tool does not support audio recording or replay for narrative voice-overs.

Storyboard Quick has several features that typical storyboarding tools provide. It can import

scripts from professional screenwriting applications or text documents. It allows the director

to reorder, edit and add storyboard frames and shots. It also produces storyboards with

professional layouts that can be printed out.

Storyboard Quick allows for rapid storyboarding without the need for sketching, but it

compromises on the functionality that sketching interfaces provide. This includes sketching

on multiple overlapping layers and using various brushes and manipulation tools. Sketching

Chapter 2: Pre-visualisation

 27

interfaces provide the storyboard artist with more freedom and better tools for sketching

storyboards, but they require sketching skills to use them.

Figure 2.17: A screenshot of Storyboard Quick (Power Production Software 2011).

Storyboard Pro is a storyboarding tool that provides a sketching interface for creating 2D

storyboards (Toon Boom Animation Inc. 2011). The tool does not provide 3D graphics like

Storyboard Quick, but it provides a library of images for scene locations, props and actors.

Directors can use the drag-and-drop interface to create storyboards quickly and easily.

Figure 2.18 shows a screenshot of Storyboard Pro's sketching interface. A sketching device,

such as a graphics tablet or a tablet PC, can be used to make sketching on a computer easier.

The sketching interface allows the artist to sketch each storyboard panel using multiple layers.

This is similar to photo editing software such as Photoshop (Adobe 2012). Layers allow for

the separation of different parts of an image. The content of each layer is represented using

vector graphics. Layers can be resized, rotated and transformed without loss of quality. The

sketching interface allows the user to define and reuse different stroke types called brushes,

for example pencils, pens, paint brushes, etc. Captions can also be added to storyboard panels

for dialogue and action. Storyboard Pro does not interpret the contents of the storyboard, and

each sketch remains a collection of 2D strokes. Storyboard Quick represents the contents of

each panel with 3D models, but the user is required to place them manually and no sketching

Chapter 2: Pre-visualisation

 28

is involved. It is important to note that neither of the interfaces can interpret the storyboard

sketches in order to extract information about the scene.

Figure 2.18: A screenshot of Storyboard Pro (Toon Boom Animation Inc. 2011).

Storyboard Pro can also be used to create animated storyboards with audio. The tool supports

2D camera motion such as translation, zooming and rolling. Each layer can be animated

independently. For example, a young girl can be sketched on one layer, reaching out to

something. A bee can be sketched in the distance on another layer within in same storyboard

frame. The tool’s animation functionality can then be used to translate and rotate the bee so

that it appears to land on the girl’s hand. The starting configuration shows the bee in the

distance and the final configuration shows the bee on the girl’s hand. The final storyboard or

animation can then be stored as a PDF file or video.

2.5.6 Discussion

Storyboarding provides a way of visualising the contents of the script by showing static

snapshots of the envisioned film. Each snapshot provides insight about the characters

involved and their behaviour. It also illustrates the environment and how the audience views

the scene. The accuracy of the storyboard sketch depends on the storyboard artist's skill and

understanding of the scene's performance space. This is a problem when the storyboard artist

Chapter 2: Pre-visualisation

 29

sketches a scene in a manner that cannot be recreated on the set. It is one of the reasons why

directors require more accurate visualisation tools such as pre-visualisation. Pre-visualisation

tools allow the director to create computer generated visualizations of a scene within a 3D

virtual environment. The following section will discuss how pre-visualisations can be

authored using textual and graphical authoring approaches.

2.6 Pre-visualisation

Pre-visualisation is the process of creating the initial shots for a scene using animation tools

and virtual environments (The Previsualisation Society 2012). A pre-visualisation is generally

taken to be a rough version of the film that replaces or enhances the traditional

storyboard (Moviestorm 2011). Pre-visualisation is used to experiment with different

character setups and camera setups. It is also used to explore various ideas for how the camera

moves and how the characters perform (Bull and Kajder 2004; Robin 2008; Sadik 2008). A

pre-visualisation can be a static collection of images or it can be an animation.

An animated pre-visualisation is often called an animatic. Creating a pre-visualisation

involves creating an environment that contains the virtual versions of the set, props and

characters (Ye and Baldwin 2008). It also involves defining the interactions and behaviour

between all the characters, props and the environment according to the action defined in the

film’s script. There are two approaches used for creating a pre-visualisation, namely the

minimalistic approach and the detailed approach (Moviestorm 2011).

The minimalistic approach specifies as little detail as possible. It involves creating simple

virtual environments and omitting unnecessary animation. Background images are often used

to represent the set. There is no need for detailed lighting, visual effects or detailed set

dressings. The goal of minimalistic pre-visualisation is to get an idea of how the film flows

and how long each scene is. Directors or artists who are proficient with pre-visualisation

authoring tools create minimalistic pre-visualisations before asking a storyboard artist to

sketch a storyboard. The pre-visualisation is then used to create a computer generated

storyboard.

The detailed approach attempts to visualise each shot as close to the final film as possible.

This requires a detailed virtual environment containing all the assets that will be seen on

screen. Detailed actor performances are required with sound, music and visual effects.

Detailed pre-visualisation is usually utilised in large budget productions. The goal of this

Chapter 2: Pre-visualisation

 30

approach is to reduce the risk of expensive mistakes at a later point in the film making

process. This goal is achieved by involving every senior member of the production team in

creating the animatic. The pre-visualisation process becomes a collaborative effort where each

expert performs as if the film was in production, except they are using a practice version of

the film.

Figure 2.19: Pre-visualisation authoring approaches.

There are several authoring approaches for creating minimalistic pre-visualisations and

detailed pre-visualisations. Figure 2.19 provides an overview of the textual and graphical

approaches for authoring pre-visualisations. This section begins by briefly discussing how

game-engine code and text-based control languages can be used to programmatically author

pre-visualisations. It continues by discussing several graphical pre-visualisation authoring

approaches. These include the Director Notation, modelling and animation tools, simplified

animation tools and storyboard-based authoring tools. In particular, a critical review of two

storyboard-based approaches that align closely with this research is provided.

2.6.1 Textual Authoring Approach

Textual authoring approaches can be used to author pre-visualisations programmatically. This

can be achieved by writing code in a programming language. The lowest level of pre-

visualisation programming is done using a software development language such as C, C++,

Java, Visual Basic or C#. Game-engine code bases are often used to aid the development of

the pre-visualisation. Higher level pre-visualisation programming can be done using control

languages. A behaviour realisation engine parses and compiles the control language code in

order to produce the final pre-visualisation. Control languages can also be used to carry

information from a graphical authoring tool to a behaviour realisation engine. This subsection

reviews methods for authoring pre-visualisations using game-engine code bases and control

languages.

Chapter 2: Pre-visualisation

 31

2.6.1.1 Game-engine Code

Machinima is a new field for creating animated films using a real-time virtual 3D

environment (Marino 2004). Game-engines, such as the Unreal™ engine, are often used for

rendering pre-visualisations in real time (Jung et al. 2010). These pre-visualisations are

typically low fidelity, but they are sufficient for illustrating a film. The main problem with

this authoring approach is that it is a complex and difficult task to define the behaviour of

each character and camera using game-engine code (Skorupski 2009). Game programmers

and modelling artists are required if this authoring method is used. Game-engines generally

do not allow the user to directly control cameras, props and characters to the extent which

animation packages allow. Another problem with game-engine pre-visualisation is that it is

often difficult or impossible to customise character and camera behaviour because of

inaccessible underlying game-engine code (Nitsche 2008). It is desirable to be able to author

pre-visualisations using a higher level authoring approach. Control languages can be used to

provide such an authoring environment.

2.6.1.2 Control Languages

A control language is a language used to control the behaviour of entities within a virtual

environment (Jung 2009). Control languages are often used as intermediate tools for

authoring animated pre-visualisations. A graphical user interface is typically used to create

pre-visualisations, and the authoring system generates a digital script in a control language.

The script is then sent to a rendering component to be realised as a viewable animation

(Vilhjálmsson et al. 2007). This process is reflected in the application independent SAIBA

framework (Situation, Agent, Intention, Behavior, Animation) (Kopp et al. 2006). Figure 2.20

illustrates the framework. It consists of three stages which share data using control languages.

Figure 2.20: A diagram depicting the SAIBA framework (Kopp et al. 2006).

The first stage involves planning the communicative intents of the characters in the scene.

The second stage involves planning for the behaviour realisation of each character. The final

Chapter 2: Pre-visualisation

 32

stage involves parsing and rendering the planned behaviours of each character in order to

create the final pre-visualisation. Bi-directional communication between these stages is

supported using the Functional Markup Language (FML) and the Behaviour Markup

Language (BML).

FML is used to share data between the first two stages by describing character intent without

referring to physical behaviour. BML shares data between the second and third stages by

describing the desired physical behaviour. This framework offers an advantage over

machinima pre-visualisation because control languages are independent of the realisation

engine, and the realisation engine may be implemented using any graphics or sound model.

Many other control languages have been proposed by the research community for describing

the behaviour of characters within the scene (Vilhjálmsson et al. 2007). Table 2.2 provides a

list of several control languages and where they have been published. The languages are based

on the Extensible Markup Language (XML) which can be read easily using XML parsers.

The languages allow the synchronisation and timing of actor performances. Control languages

also support the scripting of individual limb movements in order to create gestures. They

support facial animation, which is useful for expressing emotion and phonemes for character

dialogue.

Table 2.2: A list of control languages.

Abbreviation Full name Published work

MURML
Multimodal Utterance Representation

Markup Language

(Kopp et al. 2003; Kopp and

Wachsmuth 2004)

MSML Movie Script Mark-up Language (Rijsselbergen et al. 2009)

PML Player Markup Language (Jung 2009)

APML
Affective Presentation Markup

Language
(Decarolis et al. 2004)

RRL Rich Representation Language (Piwek et al. 2004)

BEAT Behavior Expression Animation Toolkit

(Cassell, Vilhjálmsson and

Bickmore 2001; Vilhjálmsson

2004; Vilhjálmsson 2005)

FML Functional Markup Language
(Kopp et al. 2006)

BML Behaviour Markup Language

Chapter 2: Pre-visualisation

 33

The behaviour of the camera is authored by specifying the viewing direction, field of view,

target object and shot type. The camera can also be instructed to follow characters or objects

in order to keep them in frame.

The main advantage of using a control language is that it is simpler to author behaviour

descriptions for characters compared to using a software developing environment with game-

engine code bases. Another advantage is that behaviour scripts are independent of the

realisation engine and they can be reused for other applications, unlike machinima code,

which can only be used for a specific game-engine and application.

The most apparent disadvantage of authoring pre-visualisations using a control language is

that it is a textual authoring approach. Directors and storyboard artists desire pre-visualisation

tools that provide them with immediate visual feedback instead of a technical translation of

the film’s script into a control language. If no graphical user interface is used to produce the

required control language scripts then it is another form of pre-visualisation programming.

2.6.2 Graphical Authoring Approach

Graphical pre-visualisation authoring approaches allow trained animators, directors and

storyboard artists to author pre-visualisations without using programming languages or

control languages in text-based authoring environments. This subsection provides an

overview of several graphical authoring approaches. It begins by discussing a symbolic

approach to authoring pre-visualisations using Director Notation. The subsection continues by

discussing modelling and animation packages that trained animators use for creating animated

pre-visualisations. Simplified pre-visualisation authoring environments are also discussed that

allow directors and storyboard artists to author pre-visualisations without requiring the

technical skills and knowledge of trained animators. The subsection concludes by reviewing

several storyboard-based pre-visualisation authoring approaches that align closely with this

research.

2.6.2.1 Director Notation

A symbolic notation system called Director Notation (DN) has been developed for directing

films (Chakravarthy et al. 2010). DN is similar to the notation used by music composers in

the sense that both describe content formally. DN diagrams are created in order to author pre-

visualisations. A DN diagram represents a semantic model where each symbol is mapped to a

concept, relation or rule from film ontology (Chakravarthy et al. 2009; Chakravarthy et al.

Chapter 2: Pre-visualisation

 34

2010). A Graphical User Interface (GUI) called the Notation Editor is used to display a

preview of pre-visualisations authored using DN.

(a) (b)

Figure 2.21: Illustrating a scene using (a) a storyboard frame, and (b) Director

Notion (Chakravarthy et al. 2010).

Figure 2.21 (a) shows an example of a storyboard frame showing camera motion and

character action. Figure 2.21 (b) shows how the same scene can be described using DN. The

notation uses two columns called staffs. The first staff is for acting and the second staff is for

camerawork. Time is represented vertically and it progresses from the bottom up. Each

symbol that is crossed by a horizontal line is in effect at that instant in time. Elements are

delimited by relation symbols to define when, and for how long, the elements are in effect.

Symbols used in DN, such as symbols for shot type, camera tracking and character movement

are related to concepts in film ontology (Chakravarthy et al. 2010).

The main advantage of using the Notation Editor for creating DN diagrams is that no low

level programming is required. Another attractive aspect of using this authoring approach is

that the Notation Editor allows the director to adapt the DN diagram iteratively and preview

the results in order to address shot requirements.

The main disadvantage of the approach is that the author is required to possess knowledge

about the syntax of DN in order to create DN diagrams for each scene. The approach adds to

the author’s work load instead of capitalising on existing knowledge and skills. A storyboard

such as the one shown in Figure 2.21 (a), can be used to convey what is happening in each

scene without requiring the storyboard artist to learn a special authoring syntax. Another

disadvantage of the authoring approach is that detailed aspects are often inferred implicitly

when using DN because it is a high-level notation. For example, the director can specify that

Chapter 2: Pre-visualisation

 35

an actor moves in a series of straight lines and turns, but it’s not possible to specify what pose

the actor assumes when turning.

Graphical user interfaces with additional functions are required in order to control the

elements within each shot accurately. Modelling and animation software provide a means for

creating all the required assets of a scene as well as controlling the behaviour of the camera

and the actors. The next section discusses how modelling and animation software can be used

for the purposes of pre-visualisation authoring.

2.6.2.2 Modelling and Animation Tools

There are several 3D modelling and animation tools available for creating animated films,

visual effects and content for interactive 3D applications. The majority of the modelling and

animation tools that are available focus on the highly technical process of creating and

animating content. Table 2.3 lists and compares several poplar high-end modelling and

animation tools (Autodesk 2011b; Autodesk 2011a; Autodesk 2011d; Autodesk 2011c; Side

Effects Software 2012; LightWave 2012; Blender Foundation 2012).

Table 2.3: A comparison of features provided by 3D modelling and animation software.

Autodesk

Maya

3D Studio

Max

Softimage

XSI

Motion

Builder
Houdini

Light

Wave
Blender

Developer Autodesk Autodesk Autodesk Autodesk
Side Effects

Software
NewTek

Blender
Foundation

Modelling

Character

animation

Real time

rendering

Asset library

Motion capture

support

Video editing

Programmatic

Scripting

3D modellers create content by using modelling techniques to build 3D models. The 3D

models represent objects, characters and environments. Most high-end modelling GUIs are

complicated to use and require a steep learning curve. The technical process of creating a

model involves using mathematical structures such as polygons, bézier surfaces and NURBS

using a model editing interface.

Chapter 2: Pre-visualisation

 36

Animators are tasked with adding motion to the assets once they have been created. This

involves creating an armature for each character. An armature is a skeleton-like structure that

is attached to the model so that the character can be manipulated. Figure 2.22 (a-c)

demonstrates this process. Given a model such as the one in Figure 2.22 (a), the animator

attaches an armature like the one highlighted in Figure 2.22 (b), and then poses the armature

as shown in Figure 2.22 (c). The character’s model is deformed in order to match the pose of

the armature. Animation is achieved by key framing these poses in order to create an

animated sequence. It is a complicated, tedious and lengthy task to create animations using

this approach.

(a) (b) (c)

Figure 2.22: Rigging and posing a character (Blender Foundation 2012).

The 3D modelling and animation packages described in this subsection are not designed to

allow novice animators to create low-fidelity animated pre-visualisations because the

expertise and experience of skilled modellers and animators is required (Labschütz and Krösl

2011; Chakravarthy et al. 2010) . Modelling and animation packages are designed to be used

by modellers and animators that intend to create their own, specialised content.

Animation tools are available that provide a simplified approach to content management and

animation. They do not require the director or the storyboard artist to possess animation and

modelling expertise. The following subsection discusses the next graphical pre-visualisation

authoring approach, which is to utilise simplified pre-visualisation authoring environments.

2.6.2.3 Simplified Animation Tools

Simplified animation tools allow filmmakers of any scale to create pre-visualisations without

requiring a team of skilled modellers and animators with high-end tools, like 3D Studio Max

or Maya. Simplified animation tools are designed from the director’s perspective. The

approach focuses on drag-and-drop interaction using terminology with which the director is

familiar instead of technical jargon (Innoventive Software 2009).

Chapter 2: Pre-visualisation

 37

Table 2.4: A comparison of features provided by simplified animation software.

 FrameForge 3D Studio Moviestorm iClone

Developer Innoventive Software Moviestorm Reallusion

Set design 2D topdown view 3D perspective view 3D perspective view

3D objects and

actors

Scene construction

Actor posing

Equipment

constraints

Artistic skill

required

Authoring approach Shot by shot
Game-style &

Timeline

Controller-based &

Timeline

Audio support

Output
Annotated script with

shots
Animatic Animatic

The approach requires no artistic skills because the content is usually obtainable from a built

in content library or from external sources such as online asset libraries. Table 2.4 lists and

compares several examples of simplified animation tools that can be used for creating pre-

visualisations.

The environment of each scene is created using a GUI with an interactive 3D virtual

environment. The virtual environment of each scene contains models for the set and each prop

and character. It is populated by dragging the assets from an asset window or asset menu and

dropping it on a view of the virtual environment. The view can be a 3D perspective view such

as one used by iClone and Moviestorm (see Figure 2.23) (Reallusion 2012; Moviestorm

2011). A 2D top-down representation of the set can also be used build the set, to place props

and block characters (see Section 2.4). Walls, door and windows can be added for indoor

scenes and outdoor models can be added for outdoor scenes (Innoventive Software 2009).

Content libraries often contain predefined animations and facial expressions that can be used

across a variety of characters. The animation process is further simplified by providing the

facility to automatically generate animations using motions paths and object relationships.

The director does not have to specify the individual body part movements required. Some

Chapter 2: Pre-visualisation

 38

animation tools, like Moviestorm, provide a context sensitive popup menu that is similar to

the popup menus used in the popular SimsTM strategic life-simulation video game (Electronic

Arts 2009).

Figure 2.23: A screenshot of iClone 5 (Reallusion 2012).

Simplified animation tools are useful for planning the shots for a scene as well. Cameras can

be added and manipulated using controls. Each camera shot can be specified using the

environment view and camera controls (Innoventive Software 2009).

The final step in producing a pre-visualisation using this approach is to use the tool to

generate the final pre-visualisation. Minimalistic pre-visualisation tools, such as FrameForge

3D Studio, are capable of generating a series of still images which are combined with the

script in order to produce an annotated script with storyboard panels and camera instructions.

Detailed pre-visualisation tools, such as Moviestorm and iClone, can generate animatics with

sound and music.

The main advantage of using simplified animation tools is that they provide the director with

an easy to use environment for graphically authoring pre-visualisations without requiring

artistic skill or modelling and animation expertise. Automatic character animation and drag-

and-drop user interfaces simplify and quicken the pre-visualisation authoring process.

The main disadvantage of using this approach is that it is based on traditional Windows Icons

Menus Pointer (WIMP) interfaces (Sharp et al. 2007). The interaction method does not

Chapter 2: Pre-visualisation

 39

intuitively fit with the basic activities involved in the pre-production phase. Figure 2.24

illustrates the flow of these activities. The director writes annotations onto the script and

diagrams the action. Then the storyboard artist sketches the storyboard. Finally, a pre-

visualisation is created using a WIMP interface by clicking on controls and dragging objects

until the desired outcome is achieved (Machado, Gomes and Walter 2009). A more intuitive

approach would be to use a storyboarding metaphor with a sketch-based user interface to

author the final pre-visualisation. This makes the transition from storyboarding to pre-

visualisation authoring smoother in the sense that sketching a storyboard and sketching a pre-

visualisation is almost the same thing. The next subsection critically reviews previous work

that closely aligns with this idea.

Figure 2.24: The basic activities involved in each part of the pre-production phase.

2.6.2.4 Sketch-based Storyboarding Tools

The storyboarding approach is similar to simplified animation except that the author is

provided with a sketch-based GUI that supports existing storyboarding idioms and iconic

conventions (see Section 2.5). There are two approaches for using sketch-based storyboarding

interfaces for authoring pre-visualisations.

The first approach involves sketching the storyboard in a 2D environment. The storyboard

artist sketches the set, the props and the characters in each storyboard panel. Actors are added

to the storyboard by manually associating their sketches with their models in the 3D

environment. This is done by using the click-and-drag approach used by simplified animation

tools. The mapping between each sketched object and its corresponding model is therefore

made manually. There is an implementation of this approach called Longboard which

provides a shot planning algorithm (Jhala et al. 2008). It uses pre-defined character location

markers as well as character bounding rectangles from the sketch in order to estimate the

virtual camera. The props sketched in the background are not interpreted in order to establish

the position and orientation of the virtual camera. The approach does not automatically

recognise which model a prop in the sketch represents and it does not estimate the location

and orientation of the model in 3D space.

Chapter 2: Pre-visualisation

 40

The second approach involves sketching in a 3D environment (Toon Boom Animation Inc.

2012). Each sketch in the storyboard is represented by a collection of 2D layers that are

contained inside a 3D space. The individual 2D layers can be moved, rotated and scaled in

3D space. The storyboard artist can add models from an asset library using the same click-

and-drag approach used by simplified animation tools. The 2D layers can interact with the

3D models as they are manipulated or sketched. For example, Figure 2.25 shows a screenshot

of Storyboard Pro 3D showing the storyboard artist sketching a 2D figure of a character on a

pirate ship. The figure is manually placed on the ship’s deck by moving the 2D layer in

3D space or by using a top-down view. The individual sketches are not automatically

interpreted by the storyboarding tool to determine what each layer represents.

Figure 2.25: A screenshot of Storyboard Pro 3D (Toon Boom Animation Inc. 2012).

Existing tools, such as Storyboard Pro 3D do not perform object recognition or pose

estimation to automatically convert the 2D layers into 3D models. The user is required to

manually specify and position each model using click-and-drag interaction. The virtual

camera has to be specified in the same manner. An animatic can be generated once the

storyboard panels have been sketched and the 3D models have been added.

The main advantage of the sketch-based storyboarding approach is that it provides a sketching

interface for authoring pre-visualisations. This makes the transition from storyboarding to pre-

visualisation authoring smoother. It does not require the storyboard artist to have

programming knowledge or modelling and animation expertise. Instead, the storyboard artist

Chapter 2: Pre-visualisation

 41

can capitalise on existing storyboarding skills and use asset libraries to create pre-

visualisations quickly and easily.

Existing sketch-based storyboarding tools for authoring pre-visualisations have the

disadvantage of not automatically interpreting the contents of each storyboard sketch. The

storyboard artist is required to manually add 3D objects and associate them to their

corresponding elements in the storyboard sketch.

2.6.3 Discussion

Several text-based and graphical pre-visualisation authoring approaches were discussed in this

section, and each approach introduced advantages over the approach preceding it. Figure 2.26

outlines the flow of authoring approaches, showing how each approach improves on the

previous one.

Figure 2.26: How authoring approaches improve.

The first approach that was discussed involves using game-engine code bases to

programmatically author pre-visualisations. The problem with this approach is that it requires

the author to possess strong programming skills. It was also pointed out that pre-visualisation

programming is at a low and technical level and that game-engines are specifically designed

Chapter 2: Pre-visualisation

 42

for game play. This introduces problems for controlling the camera and characters. Control

languages address these problems by providing a high level text-based pre-visualisation

authoring environment that makes it easier to program character performances and camera

behaviour. Control languages are independent of the game-engine used to render the final pre-

visualisation so each control language script can be re-used for different applications.

Directors and storyboard artists prefer graphical authoring approaches over text-based

authoring approaches, because they provide immediate visual feedback throughout the

authoring process.

The Director Notation (DN) allows the director to graphically diagram the action of each

scene using a GUI and an authoring syntax. The director does not have to author the pre-

visualisation using game-engine code or control languages. The disadvantage is that it

requires the director to learn the syntax of the DN. This is a high level authoring notation and

many aspects of the pre-visualisation are often inferred implicitly, e.g. character poses.

Modelling and animation tools address this problem by providing the director with full

control of every aspect of the pre-visualisation.

Modelling and animation tools are used to create and animate the props, characters and

environments. Modelling and animation software have complicated GUIs that require the

expertise and experience of skilled modellers and animators. Simplified animation software

addresses this problem by providing simplified easy-to-use GUIs that are designed from the

director’s perspective instead of that of the modeller or animator. The approach focusses on

drag-and-drop interaction and terminology that the director is familiar with instead of

technical jargon. Asset libraries make it possible to populate and animate the contents of

virtual environments easily and quickly in order to author pre-visualisations. The main

problem with simplified animation tools is that the interaction technique is based on clicking

and dragging on WIMP based GUIs (Machado et al. 2009). This does not intuitively fit into

the flow of basic activities performed during the pre-production phase.

Current graphical pre-visualisation authoring approaches involve clicking and dragging. A

more intuitive interaction method would be to sketch. This makes the transition from

storyboarding to pre-visualisation authoring smoother in the sense that sketching a storyboard

and sketching a pre-visualisation are almost the same thing.

Previous work has investigated sketch-based storyboarding for authoring pre-visualisations;

however, the sketches made by the storyboard artist are not automatically interpreted. The

Chapter 2: Pre-visualisation

 43

storyboard artist is required to manually add 3D objects and associate them with their

corresponding elements in the storyboard sketch (Jhala et al. 2008).

The next section discusses a case study which investigates how pre-production and pre-

visualisation works in practice. It also provides a set of requirements for a pre-visualisation

authoring tool that uses the sketch-based storyboarding approach.

2.7 Case study: Pre-visualisation for animated films

This section provides a practical view of storyboarding, pre-visualisation and the filmmaking

process within the context of a case study. The case study is based on an interview conducted

with a producer from a South African animation studio called Triggerfish Animation

Studios (2012a). A brief review of Triggerfish’s background is provided as well as the

methodology and outcomes of the interview.

2.7.1 Background of Triggerfish Animation Studios

Triggerfish was established in 1996 as a stop-frame animation studio. The studio produced

animations for a South African animated series called Takalani Sesame Street (Takalani

2011). It also created several South African commercials in order to grow and generate

revenue. In 2008, Triggerfish moved from stop-frame animation to Computer Graphics (CG)

animation technology and gained positive international exposure after it produced a 30-

minute animated CG episode of the US series, Life at the Pond (2012). In 2012, the studio

produced its first full length feature film called Zambezia (see Figure 2.27). The film was

awarded the Best South African Feature Film award at the Durban Film Fest (Screen Africa

2012).

Figure 2.27: A scene from Zambezia (Triggerfish Animation Studios 2012b).

Chapter 2: Pre-visualisation

 44

2.7.2 Interview Methodology

The overall interviewing process was conducted in three stages as shown in Figure 2.28 (see

Appendix D and Appendix E). The preparation stage involved gathering information about

the studio’s background. A list of questions, topics and themes was prepared. These were

addressed in order to achieve the following four goals:

1. To investigate how Triggerfish’s filmmaking process compares with the traditional

filmmaking process (see Section 2.2).

2. To investigate how storyboarding and pre-visualisation works at the studio.

3. To identify problems and areas open to improvement.

4. To determine the requirements of a sketch-based pre-visualisation authoring tool that

uses a storyboarding approach.

The final preparation steps included sending an agenda to the interviewee and scheduling a

time and venue. The next phase was to conduct the interview. The interview with Triggerfish

was semi-structured. The order of the questions could change depending on the flow of the

conversation. The discussion was captured (with permission) using field notes and audio

recordings. If the interviewee introduced relevant themes that were not on the agenda then

they were also discussed. The semi-structured approach was chosen, because the goals of the

interview were exploratory in nature. The final phase of the interview was to transcribe the

audio recording so that the data could be checked with the interviewee for accuracy and then

analysed.

Figure 2.28: The interviewing methodology used (Oates 2006).

2.7.3 Outcomes of the interview

The main objective of the interview with Triggerfish was to investigate how the company

creates storyboards and performs pre-visualisation. This subsection begins by comparing

Chapter 2: Pre-visualisation

 45

Triggerfish’s filmmaking process with the traditional filmmaking process (see Section 2.2). It

continues by discussing how storyboarding is done at the studio and what the benefits and

problems are. A short discussion on Triggerfish’s pre-visualisation process is also provided.

Several problems and areas open to improvement are also identified. The final outcome was

to determine the requirements of a sketch-based pre-visualisation authoring tool that uses a

storyboarding approach.

2.7.3.1 The Filmmaking Process Used at Triggerfish

The filmmaking process used at Triggerfish is similar to the traditional filmmaking process

discussed in Section 2.2. The process starts with the development phase, which involves

writing the script. This is where most of the exploration is done because it allows for the least

expensive and fastest changes.

The pre-production phase begins by analysing the script to identify scenes, narrative beats and

shots (see Section 2.3). The analysed script is then given to storyboard artists who are

responsible for illustrating the scenes visually (see Section 2.5). Staging is performed by the

storyboard artist as well (see Section 2.4). In traditional films, pre-visualisation can begin as

soon as the storyboards are available. However, the filmmaking process at Triggerfish

requires low fidelity assets to be created first using Softimage (see Section 2.6.2.2). The

process of building content for the film is also part of the production phase. This means that

the Triggerfish crew perform pre-visualisation activities at the end of the pre-production

phase and at the start of the production phase as shown in Figure 2.29.

Figure 2.29: Comparing the traditional film making process with Triggerfish’s process.

The production of each scene begins when the scene’s pre-visualisation has been approved

and the required assets are ready. The pre-visualised scene and high-resolution assets are then

Chapter 2: Pre-visualisation

 46

given to the animators who do the performance animation. They also optimise each scene by

removing unseen content in order to reduce its rendering time. The scene is given to the

lighting team which is responsible for lighting and rendering each scene. Rendering is

normally done in single passes. The passes are then composed together afterwards.

The next phase is postproduction. All the scenes are graded during this phase. Grading

involves checking for consistent lighting and colouring across all the shots. The film is

checked on a cinema display once the animation has been graded. Music and audio effects are

added when the film is edited. The final phase is the distribution phase. The film is marketed

and released to selected cinemas or other media outlets.

2.7.3.2 Storyboarding at Triggerfish

The Triggerfish storyboarding team is responsible for sketching the storyboards required

during pre-production. The team uses storyboarding software developed by Toonboom called

Storyboard Pro in order to create the storyboards (see Section 2.5.5). The sketching tools used

by the individual storyboard artists depend on their individual preferences. Some artists scan

in paper based storyboards and others use Photoshop or Storyboard Pro. The choice of the

storyboarding tool is based on its usability and how quickly the artist can work with it.

Storyboard sketches are very rough estimations of the envisioned film. They are used to

quickly develop, refine and document ideas. Triggerfish’s storyboards show character

outlines, basic poses and emotion. They contain limited detail on the environment for each

scene. The storyboards rarely illustrate shading and colour, unless it is used to indicate the

principle character. The characters are represented by simple contour sketches. Shading is

also used occasionally to indicate special lighting conditions that are important for the story.

Each character and prop is on a separate layer so that it can be animated independently from

the other elements of the sketch. 2D animation is used to illustrate character movement using

translation, rotation and scaling operations.

Annotations are also made on the storyboard. The storyboard artist can draw arrows to

indicate the direction of movement. Arrows are also used to indicate when the camera moves

in closer or further away. Storyboard Pro uses these annotations to create 2D animation for

simple camera motion such as panning and zooming. The director instructs the storyboard

artist on the appropriate shots for each scene.

The interviewee identified several reasons why storyboarding is beneficial to Triggerfish’s

filmmaking process. The main advantage of storyboarding is that it allows the crew to quickly

Chapter 2: Pre-visualisation

 47

visualise each shot and see how the action unfolds. Triggerfish also adds audio dialogue to the

storyboards in order to preview character performances. The storyboards document the

graphical decisions made during the pre-production phase. A record of each storyboard sketch

is made for later reference. Another advantage of storyboarding is that it informs the pre-

visualisation team about character blocking, action and camera setups. Storyboards are

therefore required as input for pre-visualising films at Triggerfish.

The interview also identified several problems that storyboarding poses during pre-production

at Triggerfish. One of the problems of storyboarding the entire film is that it becomes a

tedious and expensive task to track the shot number of each storyboard panel as the

storyboard changes. Another problem is that the sketches used at Triggerfish are 2D

illustrations which provide limited or no detail of the environment. The interviewee

emphasised this problem by making the following statement:

“...we are finding that there’s a huge jump between drawing something in 2D

where your artists can do a lot of cheats where the artists doesn’t really take into

account perspective in real 3D space. So often, when it gets to the pre-vis guys

upstairs they find that this can’t really work.”

The interviewee pointed out with this statement that the storyboards seldom provide sufficient

information to the pre-visualisation team when the 3D space is important. It may be time-

consuming or impossible to physically implement the storyboard artists’ illustrations because

of the assumptions they made about the 3D space of the scene. Storyboards lack the 3D

context provided by tools such as modelling and animation packages (see Section 2.6.2). This

is where Triggerfish uses pre-visualisation to address this limitation.

2.7.3.3 Pre-visualisation at Triggerfish

The pre-visualisation stage is where the Triggerfish crew first gains an understanding of the

technical requirements of the film. The pre-visualisation activity is used to identify what

assets are required and at what level of detail. Triggerfish begins creating pre-visualisations at

the end of the pre-production phase after the storyboards have been created. The required

assets are created before beginning pre-visualisation. The resolution of each asset is reduced

and the model is configured with low quality hierarchical structures for simple posing. The

pre-visualisation team is responsible for manually translating the storyboards into animated

pre-visualisations using an animation package called Softimage (see Section 2.6.2.2). This

Chapter 2: Pre-visualisation

 48

manual process is a lengthy and costly task, but it is a crucial step to take before performance

animation can begin. The pre-visualisation team uses the storyboard as a guide for blocking

the characters in each scene and roughly animating their performances. Camera setups and

shots are also inferred from the storyboard and implemented in the pre-visualisation.

2.7.3.4 Problems and Areas open to Improvement

The interview identified the following four problem areas of the Triggerfish filmmaking

process that are open to improvement:

1. Shot management

2. Pre-visualisation authoring

3. Transferring from pre-visualisation to performance animation

4. Time requirement to reach the pre-visualisation stage

Managing shot information is problematic throughout the filmmaking process. Each shot is

associated with a scene that is described by a block of script, an image and audio dialogue.

The management of shot information is currently a manual process that requires the use of

shot numbers. These shot numbers change as shots are added, removed or reordered. The

interviewee proposed automating the management of shot information using an information

system. It was proposed that shot information be stored as self-contained units which can be

identified without referring to their shot numbers. All the shots of the film can then be stored

in a database for efficient management.

The pre-visualisation authoring approach used by Triggerfish can also be improved. The pre-

visualisation team manually places each character and prop and positions the camera so that

the pre-visualised shots match the corresponding storyboard panels as close as possible. This

involves using Softimage’s 3D manipulation tools to manually pose the individual parts of

each character and prop in the shot. It is a very time consuming and tedious process.

The translation from pre-visualisation content to performance animation is also a manual and

time consuming process because blocking and posing data is not digitally transferred into the

performance animation workspace. Instead, performance animators are required to manually

pose characters from pre-visualisations. A more intuitive approach would be to perform the

initial setup of character blockings and performances from pre-visualisation data

automatically. Performance animators can then start animating instead of doing this setup

manually.

Chapter 2: Pre-visualisation

 49

The time required to reach the pre-visualisation stage is also problematic for the studio.

Animators need to be able to represent 3D content at the storyboarding phase so that pre-

visualisation can start earlier. A tool is therefore required that can be used during the fast-

paced storytelling and the pre-visualisation phase.

2.7.3.5 Requirements of a Sketch-based Pre-visualisation Authoring Tool

In this research, it is proposed that a sketch-based interface is used for authoring pre-

visualisations in a storyboarding context. The interviewee believed that sketching would be a

faster and more intuitive approach to author pre-visualisations compared to using 3D

manipulation controls to pose characters manually and set up the camera. There is therefore a

need for a tool that can support sketch-based pre-visualisation authoring. The tool should

support the activities performed during the pre-production phase. This includes analysing the

script, developing a shooting strategy, creating storyboards and authoring pre-visualisations.

It should be possible to import an existing script that has been structured in terms of scenes

and dramatic blocks (see Section 2.3).

A floor plan editor is required in order to place props on the set and plan the shooting

strategy (see Section 2.4). This includes specifying the movement of each character and

indicating the shots involved in each scene. The floor plan editor should have basic

manipulation functionality for moving and rotating objects on the set. A sketch-based

interface would be desirable for staging because floor plans are traditionally made using

paper-based sketches.

The tool should also provide a GUI for sketching storyboard panels. Various types of pens for

drafting, shading and finalising sketches are required. It would be an advantage if the

storyboard artist could sketch on a tablet computer because a stylus makes sketching easier

and more natural for the storyboard artist. The GUI should be designed to be touch-friendly so

that the sketching area can be manipulated using touch input and gestures. The sketching

environment should also support the layering concept used by existing sketching

software (see Section 2.5.5). Each character and prop should be sketched on a separate layer

so that erasing and sketching is specific to a particular layer. The tool should automatically

generate the required storyboard from the storyboard sketches and the floor plan. It should

also automatically number the shots throughout the film.

An intelligent method of automatically converting 2D illustrations into 3D content is required

in addition to the basic 2D sketching functionality. It should be able to interpret the symbols

Chapter 2: Pre-visualisation

 50

sketched on the floor plan editor in order to automatically place and orientate the props,

characters and shots for each scene. It should also be able to interpret the 2D illustrations of

each storyboard panel sketched by the storyboard artist automatically in order to place the

camera in the 3D scene and create the pre-visualisation with props and characters. The

characters should be in the pose sketched by the storyboard artist and show the correct facial

expression.

In general, the floor plan and the storyboard should be linked and automatically updated as

each scene is authored. Changes in the floor plan must reflect on the storyboard and vice

versa. The process of creating a pre-visualisation should be as simple and fast as possible. It is

therefore important that the tool is easy to use and follows standard guidelines for touch

interaction.

2.8 Summary of Sketch-based Pre-visualisation Requirements

This section provides a summary of the objects, symbols, annotations, graphical devices and

other elements that are used in floor plans and storyboarding during the pre-production phase.

It also provides a summary of the pre-visualisation requirements that have been gathered

throughout this chapter. The requirements are summarised from the literature review and the

interview conducted with Triggerfish Animation Studios.

Table 2.5
1
 provides a summary of elements used in floor plans. It provides an element

identified, a description of each element as well as the input method used by existing tools to

create the element on the floor plan. Table 2.6 provides a similar summary for storyboards.

Table 2.7 provides a summary of the pre-visualisation requirements in terms of functionality,

usability, information, semantics and technical requirements.

Table 2.5: Elements used in floor plans.

ID Element Description Input Method

F1 Prop
Indicates type, location and orientation of

a prop.
Click-and-drag

F2 Blocking symbol
Indicates the location, orientation and

name of a blocking for a character.
Click-and-drag

F3 Shot symbol
Indicates the location and orientation of a

camera
Click-and-drag

F4
Character/camera

motion path

Indicates the movement of a

character/camera from one blocking/shot

to another

Sketched, interpreted

F5 Set details Illustrates the environment of the set. Click-and-drag

1 Elements that are highlighted in blue will be addressed in this research.

Chapter 2: Pre-visualisation

 51

Table 2.6: Elements used in storyboards.

ID Element Description Input method

S1
Character dialogue

and action

Indicates what characters are saying and

doing for a particular shot.

Click-and-drag /

Typed

S2 Scene number Identifies which scene a shot belongs to. n/a

S3 Panel number Identifies the shot for a storyboard panel. n/a

S4 Stick figures
Illustrates character poses and body

language

Sketched, not

interpreted

S5 Shading
Highlight principle characters and

illustrates lighting

Sketched, not

interpreted

S6 Character faces Expresses character emotion visually Click-and-drag

S7
Character

appearance
Illustrates how a character appears

Click-and-drag /

Sketched, not

interpreted

S8
Thumbnail

sketches

Used for roughly planning storyboard

panels in the margin of the script

Sketched, not

interpreted

S9
Environment and

props

Illustrates the camera setup for a shot and

the environment

Click-and-drag /

Sketched, not

interpreted

S10 Special effects Illustrates environmental effects

Click-and-drag /

Sketched, not

interpreted

S11
Objects state

devices

Indicates if objects are glowing, shiny, hot,

etc.

Sketched, not

interpreted

S12
Movement lines,

paths and clouds
Indicates how objects are moving

Sketched,

interpreted

S13 Emotion devices
Illustrates the emotional expressions of

characters

Sketched, not

interpreted

S14
Camera

annotations

Illustrates how the camera is zoomed,

panned and dollied

Sketched,

interpreted

S15 Shot transitions Illustrates transitions between shots Click-and-drag

S16 Layers
Used to separate individual props and

characters when sketching.

Sketched, not

interpreted

S17 Brushes
Used to create various types of digital

strokes, e.g. pencil, paint brush, spray, etc.

Sketched, not

interpreted

S18 Audio
Used for pitching actor and narrative

performances
Recorded

Chapter 2: Pre-visualisation

 52

Table 2.7: A summary of the requirements for a sketch-based pre-visualisation authoring tool

using a storyboarding approach.

Requirement Description

Function

requirements

Support staging by creating floor plans and automatically generate

storyboards if the shots are specified.

Support for automatically placing props, characters and cameras on the

set using symbols on the floor plan editor.

Support storyboarding using sketch-based GUI for sketching 2D

illustrations.

Allow the emotional expressions of each character and their body

postures to be indicated in each shot.

Support for automatically interpreting the user’s 2D illustration in each

storyboard panel in order to place the camera and characters on the set.

Allow content to be added to the pre-visualisation using a 3D view of

the scene.

Usability

Usability and working quickly is very important.

Seamless switching between pre-visualisation and storyboarding is

important.

The setup of pre-visualisations should be as fast as possible in terms of

user effort and time.

The simpler content is to draw, the better. Minimise sketching time. For

example, drawing a symbol.

The user interaction method should be a hybrid between sketch-based

input and touch-based input.

Information and

semantics

Sketch fidelity is at contours, basic poses, stick figures level of detail.

Support for annotations that have no semantics for the system, such as

character shading and strokes, is required. These may be useful for the

director but they are not important for pre-visualisation generation.

Technical

requirements

Pre-made content is available. No content generation is required.

A digital link between storyboards, pre-visualisation and scripts is

required.

Packaging each shot as a unit of information.

Synchronization between the floor plan and the storyboard is required.

2.9 Conclusions

This chapter addressed the first research question listed in Chapter 1, namely what methods

and theories have been developed for authoring pre-visualisations? The chapter answered

this question by answering the sub-questions provided in Section 2.1.

Chapter 2: Pre-visualisation

 53

Q1.1 was answered by discussing the various activities involved in development, pre-

production, production, postproduction and distribution phases of filmmaking. Q1.2 was

answered by focusing on the pre-production activities of the filmmaking process including

script analysis, staging, storyboarding and pre-visualisation. It was found that floor plans are

useful for documenting the shooting strategy for each individual dramatic

block (see Section 2.4 and Table 2.5). It was shown how storyboard artists illustrate

characters, emotions, environments and dynamics using sketches, annotations and graphical

devices (see Section 2.5 and Table 2.6). A review of storyboarding software provided insight

into what storyboard artists would expect from a storyboarding tool with a sketching

interface.

Q1.3 was answered by discussing pre-visualisation and several textual and graphical pre-

visualisation authoring approaches, including game-engine code, control languages, DN,

modelling and animation tools, simplified animation tools and sketch-based animation tools.

It was found that each approach provided an advantage over the previous approach and that

the most intuitive and user-friendly approach was the sketch-based storyboarding approach.

This research proposes using a sketch-based interface for authoring pre-visualisations using a

storyboarding approach. The approach makes the transition from storyboarding to pre-

visualisation authoring smoother in the sense that sketching a storyboard and sketching a pre-

visualisation are almost the same thing. The need for such an authoring tool was confirmed at

an interview conducted with a producer from Triggerfish Animation Studios (2012a). A set of

requirements for such a tool was gathered in order to answer Q1.4. The requirements were

identified from the literature review and the interview and summarised in Section 2.8. In

particular, it was determined that the tool should be able to interpret the sketches made by the

artist during staging activities and storyboarding activities.

Existing pre-visualisation tools focus on authoring detailed animated pre-visualisations using

a click-and-drag authoring approach (Jhala et al. 2008; Jung et al. 2010). Limited research has

been conducted on how user sketched floor plans and storyboards can be automatically

interpreted for authoring pre-visualisations. The focus of this research is to investigate how a

sketch/touch-based storyboarding tool can be designed and implemented in order to author

minimalistic pre-visualisations within a 3D virtual environment. The following floor plan and

storyboard elements (highlighted in blue) will therefore be addressed from Table 2.5 and

Table 2.6:

Chapter 2: Pre-visualisation

 54

 F1, F2, F3 and F4 will be included. F5 will not be included because it involves

modelling virtual environments. Pre-designed virtual environments will be used.

 S1, S2, S3, S16 and S17 will be included. These were requirements identified from the

interview with Triggerfish Animation Studios.

 S6 and S9 will be included for automatic interpretation because existing tools do not

interpret the user’s sketches of these elements. S7 will also be included but the

appearance of each character will not be interpreted for recognition purposes. The

character’s pose will be extracted from S4 and the user will specify which character is

represented using touch-based interaction.

 The remaining storyboard elements will not be addressed by this research because

they are required for authoring detailed, animated pre-visualisations. Existing

storyboarding tools such as Storyboard Pro 3D is capable of interpreting user sketched

annotations for character and camera behaviours (Toon Boom Animation Inc. 2012).

This research project will focus specifically on interpreting the user’s sketches of the

props and characters in each storyboard panel.

The next chapter investigates several methods from computer vision for interpreting the user’s

sketches of the floor plan and storyboard elements selected above. It critically reviews

methods for recognising objects from 2D images and placing them within a 3D context. This

involves performing object recognition and pose estimation. The chapter provides a broad

overview of the various methods available, but also focuses on the methods that are useful for

analysing sketch-based input in order to answer the second research question, namely what

methods are available for extracting information from sketches?

 55

Chapter 3:
Understanding Sketches

3.1 Introduction

Authoring pre-visualisations from storyboards requires information from each storyboard

sketch to be extracted in order to understand its contents. This chapter answers second

research question identified in Chapter 1, namely Q2: what methods are available for

extracting information from sketches? This research question is answered by answering the

following sub-questions:

Q2.1: How can sketches be described qualitatively?

Q2.2: How can sketches be compared with images in order to recognise objects?

Q2.3: How can the pose of a rigid body be estimated from a sketch?

Q2.4: How can the pose of an articulated body be estimated from a sketch?

The problem of understanding the contents of an image falls within the field of computer

vision (CV) and it has two main sub-problems, namely object recognition and pose

estimation (Pellegrini 2007):

1. Object recognition seeks to identify objects within an image and label each with the

appropriate class name or instance name.

2. Pose estimation involves estimating the position, orientation and posture (if

applicable) of all the objects identified within the image. The position and orientation

of each rigid body, such as a prop, are estimated with a single coordinate frame. The

posture of each articulated body, such as a character, is estimated using a set of nested

coordinate frames where each coordinate frame represents the location and orientation

of a body part.

Chapter 3: Understanding Sketches

 56

Human perception inspired the use of models in computer vision. A model is a collection of

information that is known for an object. It has been theorised that human perception integrates

two perception approaches, namely the bottom-up approach and the top-down approach (Marr

1982). The bottom-up approach involves extracting information from the image and

comparing it to the information available from the model. The top-down approach involves

instantiating the model and using it to learn more about the object in the image.

Understanding the image (the user’s sketch of a particular object) involves recognising the

object. This is achieved by describing the image, classifying it and then associating it with an

instance of the class model. The object recognition step is therefore a bottom-up

approach (see Figure 3.1). The transformation parameters required to estimate the pose of the

instantiated model is calculated from the image using pose estimation methods. The pose

estimation step is therefore a top-down approach.

Figure 3.1: Bottom-up and top-down computer vision approaches (Marr 1982).

This chapter reviews the object recognition process as well as several methods for describing

and comparing images for the purposes of recognising symbols and props from query images

that represent user sketches. Methods for estimating the pose of rigid bodies and articulated

bodies are also reviewed in order to estimate the location and posture of characters sketched

by the user.

3.2 The Object Recognition Process

The overall object recognition process occurs in two phases: the offline training phase (see

Figure 3.2 A) and the online recognition phase (see Figure 3.2 B). The training phase begins

by sampling an object in order to create training images. Feature detectors are used to

Chapter 3: Understanding Sketches

 57

determine points or regions of interest (see Section 3.3.2). The features are described and

recorded in a codebook for the particular object (see Section 3.3.3).

Figure 3.2: The general process followed by object recognition algorithms (Pellegrini 2007).

The object recognition phase accepts a query image as input. Similarly to the training phase,

the object recognition phase involves detecting and describing the features of the query

image. The codebook created in the training phase is now used to determine what object is

most likely presented in the query image. This is achieved by first matching the features

contained in each entry of the codebook with the features in the query image by determining

feature correspondences (see Section 3.4.1). The query image is now associated with several

candidate objects. The next step is to classify the query’s feature set in order to determine

which candidate is the most probable match (see Section 3.4.2). The most probable candidate

is then considered to represent the object which best matches the query image.

The training phase and the recognition phase of the object recognition process involve

describing training images and query images respectively. Images are often described in terms

of their features. The next section discusses several approaches from computer vision

literature for detecting and describing the features of an image.

3.3 Describing Images

A feature of an image is an image property that can be used to characterise the image or part

of the image. This section defines two types of features, namely local features and global

features. It also provides a detailed review of several local feature detectors (see

Chapter 3: Understanding Sketches

 58

Section 3.3.2) and local feature descriptors (see Section 3.3.3). The section concludes with a

brief overview of two global feature descriptors.

3.3.1 Local Features and Global Features

A local feature is an image property located on a point or small region of an image. It may be

characterised by the colour, intensity and gradient values of the pixels in its local

neighbourhood (Roth and Winter 2008). A local feature is interesting when it provides

sufficient information to distinguish it from other local features. It is important that local

features are invariant to the location, rotation, scale and illumination changes in the image.

Local features should also be invariant to changes in the viewing direction of the observer.

Selecting local features that support a high degree of invariance allows for more robust object

recognition (Pellegrini 2007). Section 3.3.3 reviews how local features can be described using

various local feature descriptors.

A global feature is an image property that quantitatively describes the entire image or sub-

region of the image. Jolliffe (2002) illustrated how Principal Component Analysis (PCA) can

be used to determine the principal components of a collection of points. The affine
2

parameters of the image can be determined from the principal components. Section 3.3.4

reviews how images can be described using PCA.

3.3.2 Local Feature Detectors

A feature detector is an algorithm that finds local features in an image. Local feature

detection involves determining the location, orientation, scale and shape of each local feature

in a robust manner. If the local feature detector provides insufficient local feature information,

or the feature detector is not invariant to changes in the image, then the information encoded

by the feature descriptor will be inaccurate and may misguide the recognition

process (Battiato et al. 2007).

This section discusses three types of local feature detectors. Corner detectors are used for

identifying points of interest. Region detectors include rotation, scale and shape information;

and edge detectors identify edges within the image (edges are typically found in areas where

there are large changes in pixel intensity). The strengths and weaknesses of each local feature

2 The affine parameters of an object represent scaling, rotation, translation and shearing transformation

parameters.

Chapter 3: Understanding Sketches

 59

detector are reviewed. The section concludes with a discussion on applying these approaches

for detecting local features from user sketches reliably.

3.3.2.1 Corner Detectors

One of the earliest and most well know feature detectors is the Harris detector (Harris and

Stephens 1988). The Harris detector, like many other feature detectors, considers the image as

a function () where () is the location of each pixel and () is the greyscale value

of the pixel. The Harris detector evaluates the “corner-ness” of each pixel by evaluating the

eigenvalues of the second moment matrix of () . If both eigenvalues
3
 are small in

magnitude then the local region around the pixel is approximately constant in intensity. If one

eigenvalue is large in magnitude and the other eigenvalue is small in magnitude then the pixel

lies on an edge. If both eigenvalues are large in magnitude then the pixel lies on a corner. The

main advantage of the Harris detector is that it can detect many local features quickly. The

main disadvantage is that the Harris detector is not invariant to changes in the image. If the

image is affected by affine transformations then the corners may not be detected correctly. In

addition, the detector does not provide scale and shape information about local features.

Table 3.1: A comparison of several corner detectors (Roth and Winter 2008).

Detector
Transformation

Invariance
Runtime

Number of

detections

Harris None Very short High

Hessian Rotation Very short High

Harris-Laplace Scale Medium Medium

Hessian-Laplace Scale, Rotation Medium Medium

Several other corner-based feature detectors have been developed since the introduction of the

Harris detector. A literature study conducted by Roth and Winter (2008) provides a review of

several corner detectors (see Table 3.1). The Hessian matrix of the image function can be used

instead of the second moment matrix to provide rotational invariance. Furthermore, the

Harris-Laplace and Hessian-Laplace detectors provide additional scale invariance at the cost

of performance by applying the normalised Laplacian in scale space (Mikolajczyk and

Schmid 2001).

3 The second moment matrix is always a matrix.

Chapter 3: Understanding Sketches

 60

Figure 3.3 shows how corners can be detected from a user sketch using the Harris feature

detector. The corners are detected around the turns of each stroke and they do not provide any

scale or orientation information. This makes it difficult to describe each corner quantitatively

because it is not known which region should be described. Instead, the image is described by

the locations of all the corners relative to each other or a set of reference corners.

Figure 3.3: Harris corners for a sketch of a character holding a book (Glebas 2008).

3.3.2.2 Region Detectors

An alternative approach to edge detectors is to search for regions. Table 3.2 provides a

comparative summary of several region detectors reviewed by Roth and Winter (2008).

Region detectors are more desirable because they provide additional information regarding

the shape, scale and orientation of each local feature. There are essentially two types of

regions, namely free-form shapes and blobs. Free-form shapes define regions with arbitrary

boundaries (usually pixels). Regions that lack clearly refined boundaries are known as

blobs (Mikolajczyk and Schmid 2005).

Table 3.2: A comparison of several region detectors (Roth and Winter 2008).

Detector
Transformation

Invariance
Runtime

Number of

detections
Shape

Difference of Gaussian (DoG) Scale and Rotation Short Medium Blob

Harris-Affine Affine Medium Medium Blob

Hessian-Affine Affine Medium Medium Blob

Edge Based Regions (EBR) Affine Very long Medium Blob

Intensity Based Regions (IBR) Projective Long Low Blob

Maximally Stable Extremal

Regions (MSER)
Projective Short Low

Free-

form

Entropy Based Salient

Regions (EBSR)
Affine Very long Low

Free-

form

Chapter 3: Understanding Sketches

 61

Blob detection involves determining the affine transformation parameters of each blob.

Several region detectors are suitable for blob detection. One of the simplest blob detectors is

the Difference of Gaussian (DoG) detector (Lowe 2004a). The DoG detector generates several

images in a pyramid structure that represent the scale space (see Figure 3.4). Images within

the pyramid are ordered from a high resolution at the base to a low resolution at the apex. The

DoG detector generates each image by calculating the differences of several Gaussian blurred

images at scales and where . The variance of the Gaussian filters increase as

the scale level of the image increases. The base of the pyramid contains a sharp image at a

high resolution, and the apex of the pyramid contains a blurred image at a low resolution.

Figure 3.4: An illustration of the scale space of an image.

The location of each blob is obtained using a corner detector. Their scale is selected from the

scale space in such a way that each blob appears similar across the scale space (see Figure

3.4). Their orientation is determined from the image gradient. The image gradient is

calculated from the first order partial derivatives of the image’s intensity function. The DoG

detector is fast but it only provides scale and orientation information (see Figure 3.5 (a)).

Affine transformation information is desirable for robust feature description.

The Harris-Affine detector and the Hessian-Affine detector provides location, shape and

orientation information by making iterative estimations of the affine transformation of each

local feature (Mikolajczyk and Schmid 2002). The disadvantage of the iterative approach is

that it increases the runtime of the detector. Alternatively, the Edge Based Regions (EBR)

detector can determine the affine transformation by examining local edge structures of local

the features (Tuytelaars and Gool 1999). The latter method has a very long runtime. Similarly,

the Intensity Based Regions (IBR) detector evaluates the intensity of pixels around each

Chapter 3: Understanding Sketches

 62

interest point to determine their affine frames (Tuytelaars and Gool 2004). The IBR detector

is slightly faster than the EBR detector but it is slower than the Harris-Affine detector and the

Hessian-Affine detector.

(a) (b)

Figure 3.5: Local features with (a) blob structures and (b) arbitrary shapes for a sketch of a

character holding a book (Glebas 2008).

Region detectors are available for identifying regions with clearly defined boundaries with

arbitrary shapes. The boundary of each region is defined by the border pixels enclosing it.

One approach for determining these boundaries is to consider the images obtained from

applying all the possible binary thresholds. An area that does not change shape between

consecutive thresholds is known as a Maximally Stable Extremal Region (MSER) (see Figure

3.5 (b)). The MSER detector is fast, robust and invariant to projective transformations and

monotonic intensity changes (Matas et al. 2004). The number of features detected by the

MSER detector is considerably less than the number of features detected by corner detectors.

Similarly, the Entropy Based Salient Region (EBSR) detector uses a thresholding approach to

determine regions of interest (Kadir and Brady 2003). Instead of applying the threshold on the

intensity of each pixel, the EBSR detector uses a saliency measure of the pixel. The EBSR

detector is robust and scale invariant but it has a very long runtime. Affine adaptations of the

EBSR detector have been proposed but they have even longer runtimes (Mikolajczyk et al.

2005; Kadir, Zisserman and Brady 2004).

3.3.2.3 Edge Detectors

Corner-based feature detectors and region-based feature detectors analyse the texture of an

image in order to identify regions of interest. In some cases, these approaches may not be able

to detect invariant and distinguishable features in a robust and repeatable manner. Corner-

based detectors often detect interest points that exist on edges. These interest points are called

edge responses (Lowe 2004b). Figure 3.6 provides an example showing four blob regions for

Chapter 3: Understanding Sketches

 63

an image containing edges. Blobs A, B and C are edge responses. The orientation of each

blob is determined from the gradient of the image and the size is determined from the scale

space of the image. If the blobs are compared irrespectively of their location, size and

orientation then the edge responses A, B and C are nearly indistinguishable. Local feature

detection is therefore optimised to reduce edge responses.

Figure 3.6: Indistinguishable edge responses.

Edges provide valuable information about the contents of an image. This is because the edges

can be used to distinguish objects from one another and determine the shape of each object.

Edge detectors are used for extracting edges from images. The majority of edge detection

algorithms generate edge maps (see Figure 3.7). An edge map is a monochrome image where

each pixel provides a binary indication of whether the corresponding pixel in the original

image exists on an edge or not (Nadernejad and Sharifzadeh 2008).

Figure 3.7: Edge features for a sketch of a character holding a book (Glebas 2008).

One of the earliest edge detectors is the Marr-Hildreth edge detector (Marr and Hildreth

1980). The Marr-Hildreth edge detector makes use of the first and second order derivatives of

the smoothed image intensity function by applying a two dimensional Laplacian filter to the

image. Pixels that undergo a sign change are then marked as edge pixels. The remaining

pixels are marked as non-edge pixels. The Marr-Hildreth edge detector perceives many edges

but they are often thick, disjoint or spotty.

Chapter 3: Understanding Sketches

 64

The Canny edge detector was proposed for improved edge detection. Instead of applying a

threshold on the pixels, the Canny edge detector compares the gradient of each pixel with

gradients of its neighbours. Hysteresis thresholding is used to determine whether pixels are

part of an edge or not (Canny 1986). The Marr-Hildreth edge detector and the Canny edge

detector consider the gradient of the image, making it possible to determine the direction of

edges (Nadernejad and Sharifzadeh 2008). This is useful when tracing edges for the purposes

of extracting polylines and polygons from the image.

3.3.2.4 Discussion

There are two main challenges to consider when selecting a local feature detector for simple

hand-drawn sketches. Firstly, no texturing information is available. This is because the user’s

sketches are not shaded and they primarily consist of minimalistic strokes. Secondly, the

sketches may contain several anomalies caused when the user sketches in an arbitrary fashion.

Figure 3.8: Sketching anomalies (Glebas 2008).

Figure 3.8 highlights three types of anomalies that can exist in a user’s sketch:

1. Strokes may not be connected consistently (shown in red)

2. Strokes may be omitted (shown in green)

3. Unnecessary strokes may be included (shown in blue)

Corner detectors can identify corners reliably from user sketches but they do not provide scale

and orientation information. Edge detectors and free-form region detectors (such as the

MSER detector) detect edges and regions along the boundary pixels of each stroke. The

problem is that edge detectors and free-form region detectors cannot be used reliably because

the user’s sketches are prone to the anomalies identified above. If any one of these anomalies

is present then the detected edges or free-form regions may be significantly different to the

local features detected during the training phase. This is problematic for reliable object

recognition. These problems can be addressed by using blob-based region detectors.

Chapter 3: Understanding Sketches

 65

Blob-based region detectors provide scale and orientation information for each local feature.

The advantage of using blob-based region detectors is that they can be used to identify many

local features. If some of the blobs are not consistently detected, or they are edge responses,

then they can be omitted without significantly influencing the accuracy of the overall object

recognition process (Roth and Winter 2008).

3.3.3 Local Feature Descriptors

A local feature descriptor quantitatively describes the appearance of the region around a local

feature by measuring properties that are invariant to transformations and illumination changes

in the image (Roth and Winter 2008). Local feature descriptors can be compared based on

their rotational invariance, dimensionality, performance and the image type they are most

suited for:

 The rotational invariance of a feature description determines if the description of the

local region is dependent on its orientation in the image.

 The dimensionality of a feature description is the number of data values it contains.

Feature descriptions with high dimensionalities are more expensive to compare.

 The performance of a local feature descriptor measures the extent to which local

features of an image can be described and matched repeatedly with local features of

another image (Mikolajczyk and Schmid 2005). The performance of a local feature

detector is therefore directly proportional to the repeatability rate of achieving the

desired matching results.

 The image type best suited for an image descriptor can be textured images or outlined

images (see Figure 3.9).

Textured Outlined

Figure 3.9: An example of a textured image and an outlined image (Ke and Sukthankar 2004;

Glebas 2008).

Chapter 3: Understanding Sketches

 66

If the local features are detected incorrectly then the local feature descriptions will be changed

dramatically. This will lead to fewer matches during the feature matching step and the overall

accuracy of object recognition will degrade. It is therefore clear that blob-based region

detectors are better suited to identifying local features from user sketches because they are

less prone to being severely affected by the anomalies mentioned in Section 3.3.2.4

(Mikolajczyk et al. 2005).

This section focuses on the description of blob-based local features. The local feature

descriptors can be classified into three descriptor groups:

1. SIFT-based descriptors,

2. Grid-based descriptors, and

3. Shape-based descriptors

3.3.3.1 SIFT-based Descriptors

One of the most popular blob-based local feature descriptors is the Scale Invariant Feature

Transform (SIFT) (Lowe 2004b; Lowe 1999). The SIFT is a combination of a detector and a

descriptor for blob-based local features. Lowe called the blob-based local features SIFT-keys.

The SIFT-key detector is based on the DoG detector (see Section 3.3.2.2). The scale space

pyramid and the Difference of Gaussian (DoG) pyramid are constructed for the image as a

pre-processing step. The SIFT-keys are detected by scanning all the pixels of the image at

different levels in the DoG pyramid. The resolution of the DoG pyramid is fixed for the SIFT

descriptor and only the variance of the Gaussian function changes between scale

levels (see Figure 3.10).

Figure 3.10: SIFT-key detection process (Lowe 2004a).

The neighbouring pixels at the current scale, the scale above and the scale below are

considered for each candidate pixel (marked as “X” with 26 surrounding pixels). If the

Chapter 3: Understanding Sketches

 67

intensity of the candidate pixel is greater than, or smaller than, all the 26 neighbouring pixels

then it is detected as a SIFT-key with the current scale. A strict inequality can be used

or a relaxed inequality for some threshold value . The orientation of the SIFT-

key is based on the gradient of the image at the current scale (see Figure 3.4).

Each SIFT-key is described as follows (see Figure 3.11). As a preparation step, the local

region of the SIFT-key is normalised using its scale and orientation (Step 1). The region

around the SIFT-key is divided into a grid of non-overlapping patches (Step 2). A

Gaussian weighted window with a standard deviation of 1.5 times the scale of the SIFT-key is

used to weigh the contents of the SIFT-key. This allows the local feature to be transformed

slightly without significantly effecting the resulting feature description.

Figure 3.11: The SIFT-key descriptor (Lowe 2004a).

The SIFT-key descriptor is based on the orientation of the image’s gradient vectors. The

gradient vectors in each patch are weighted with the value of the Gaussian window at the

location of the corresponding pixels. The orientations of the weighed gradient vectors for each

patch are quantised into orientation histograms (Step 3). Lowe recommends using eight

orientation bins for each patch. The values of the histograms are smoothed and concatenated

into a single vector which is then normalised (Step 4). SIFT-key descriptions can be

compared by measuring the Euclidean distance between their corresponding vectors. SIFT-

key descriptor vectors therefore have a dimensionality of .

In order to reduce the dimensionality for shorter runtimes, the Principal Component Analysis-

SIFT (PCA-SIFT) descriptor uses PCA to determine the most significant eigenvectors instead

of using all the gradient vectors. The PCA-SIFT descriptor provides shorter runtimes but at a

Chapter 3: Understanding Sketches

 68

slight cost of performance (Ke and Sukthankar 2004). Mikolajczyk and Schmid (2005)

proposed the Gradient Location-Orientation Histogram (GLOH), which utilises a circular

arrangement of patches instead of a rectangular arrangement. They showed that it is more

accurate for outlined images than rectangular SIFT-key descriptors.

SIFT-based local feature descriptors rely heavily on the availability of image gradient

information. This poses a problem because the images sketched by the user mainly consist of

simple strokes. No texturing information is available for the regions between the strokes.

Change in the gradient of the image is therefore only observable near the strokes themselves.

Removing edge responses (see Section 3.3.2.3) further decreases the number of SIFT-keys

that can be detected by the SIFT-key detector. It can therefore be concluded that SIFT-based

local feature descriptors should only be used on textured images that provide sufficient

gradient information. Sketches can be described by combining SIFT-key descriptors with

grid-based descriptors.

3.3.3.2 Grid-based Descriptors

One of the simplest methods for describing parts of an image uses grid-based

descriptors (Sajjanhar and Lu 1997). A grid is placed over the image using a rectangular or

elliptical arrangement of cells (see Figure 3.12). Grid-based descriptors require information

about the scale, orientation and location of the image part. The normalisation step is therefore

essential to the performance of grid-based descriptors.

Rectangular arrangement Elliptical arrangement

Figure 3.12: Grid-based descriptors configured in rectangular and elliptical arrangements.

The contents of each cell can be indicated using a binary representation or a real

representation. Binary grid-based descriptors represent each region with a binary string. Each

cell contains a 1 if and only if the cell intersects with an outline in the region. The

dissimilarity between two binary grid-based descriptions is computed using the Hamming

distance: summing the ones obtained by taking the exclusive-or of both strings (Sajjanhar and

Lu 1997). Real grid-based descriptors represent each cell in terms of the mean intensity of the

Chapter 3: Understanding Sketches

 69

outlines they contain. The intensities of the cells are transformed using the two dimensional

Discrete Fourier Transform (DFT). This has the effect of removing high-frequency noise from

the description and improving the performance of the grid-based descriptor (Zhang and Lu

2002).

A special case of real elliptical grid-based descriptors is when the grid is configured in a

circular arrangement. Real, circular grid-based descriptors can be represented using spin

images. A spin image is a 2D histogram of the intensity values and pixel distances to the

centre of the circle. The 2D histogram representation allows for planar rotational

invariance (Lazebnik, Schmid and Ponce 2003).

Grid-based descriptors provide a simple method for describing the contents of a user’s sketch.

There are, however, several complications when using grid-based descriptors to describe user

sketches. It is crucial that the area being described is correctly normalised because grid-based

descriptors do not provide translation, rotation and scaling invariance. Another issue is

selecting the correct resolution for the grid descriptor. If the resolution is too low then the

grid-based descriptor does not provide sufficient discriminative information. If the resolution

is too high then the grid-based descriptor becomes too sensitive to noise in the image (such as

the anomalies identified in the introduction of Section 3.3.2.4) (Shahabi and Safar 2007). An

alternative to representing an image in terms of a grid is to describe the shapes of the objects

contained in the image.

3.3.3.3 Shape-based Descriptors

Shape-based descriptors consider the edge structure of the local region being described. This

makes shape-based descriptors well suited to describing outlined images like sketches

because they do not require gradient information to be available (Zhang and Lu 2002). The

local edge structure of each region is determined by detecting corners and tracing the edge

map of the region. The edges and corners are then analysed in order to construct shape-based

feature descriptions.

One of the simplest approaches to constructing a shape-based feature is to base it on the shape

of the contour that surrounds the edges. This is achieved by sampling the distances along

predefined radial lines from the centroid of the shape to its boundary (Ferilli et al. 2011). The

distances are then quantised into a histogram where each bin represents the angle(s) of the

radial lines sampled (see Figure 3.13 (a)). This distance histogram can be compared to other

distance histograms using the Euclidean distance. A Discrete Fourier Transform can also be

Chapter 3: Understanding Sketches

 70

applied to the distance function in order to remove noise (Zhang and Lu 2002). This approach

is not invariant to scale and rotation and therefore requires the region to be normalised. The

descriptions can, however, be compared irrespectively of the orientations of the

corresponding regions by rotating one of the histograms with a finite number of angles in

order to minimise the resulting Euclidean distance. The main limiting factor of the distance-

based shape description approach is that it does not consider the internal details of the shape.

An improvement over the distance-based shape description approach was proposed by Tao

and Grosky (1999). A shape can be described invariantly to the location, scale and orientation

of the region by generating a Delaunay triangulation from the corners of the shape. The

internal angles of all the Delaunay triangles are quantised into a histogram which then serves

as a shape descriptor, as shown in Figure 3.13 (b). The Delaunay triangulation approach

provides greater transformation invariance over the distance-based shape descriptor.

However, the triangulation is dependent on the corners identified by the corner detector.

Introducing new corners or removing existing corners from the Delaunay triangulation can

affect the resulting angle histogram. The approach therefore relies heavily on robustness of

the corner detector used. The sketching anomalies identified in Section 3.3.2.4 also effect the

resulting Delaunay triangulation.

The advantages of boundary-based shape representation approaches are that they are highly

descriptive, robust to noise and relatively simple to implement. The main disadvantage is that

these methods only consider the boundary of the shape and therefore provide no means of

describing the content of the shape’s interior. This problem can be addressed by using SIFT-

(a) Distance function (b) Delaunay triangulation angles

Figure 3.13: Describing shape contours using a of distance function histogram a Delaunay

triangulation angle histogram (Ferilli et al. 2011; Tao and Grosky 1999).

Chapter 3: Understanding Sketches

 71

based or grid-based descriptors. It is also possible to describe the individual edge structures of

the feature.

The edges contained in a feature can be compared to the edges contained in another feature

using the Chamfer Matching dissimilarity measure (Barrow et al. 1977). The Chamfer

Matching dissimilarity measure estimates the integral distance or area between the edges of

two shapes. The Chamfer distance between shape A and shape B is calculated as the sum of

the minimum distances between the vertices of A and B as shown in Figure 3.14. Shotton et

al. (2008) extended the Chamfer Matching dissimilarity measure to include line segment

orientation as well. The advantage of considering the edges of the shape instead of its

boundary is that the internal contents of the shape can be described. The approach is not

invariant to scaling, translation or rotation. The shapes have to be normalised before they can

be compared reliably.

Shapes A and B Chamfer Matching

Figure 3.14: Chamfer matching for comparing shapes.

3.3.3.4 Summary of Local Region Descriptors for Sketches

Describing the local features of the user’s sketch involves selecting or combining appropriate

region descriptors based on their strengths and weaknesses. SIFT-based descriptors provide a

robust and transformation invariant method of describing blob-based features. The problem is

that the user’s sketches do not contain sufficient gradient information for SIFT-based feature

description. The grid-based description approach can be combined with the SIFT-based

feature description approach in order to address this problem. This can be achieved by

describing the sketch using a grid-based approach and then using the gradient information of

the grid to detect and describe SIFT-based local features.

An alternative approach to describing user sketches is to describe the shapes of the local

regions. This can be achieved by describing the boundary of each feature by measuring the

distance function or Delaunay triangle angles. The limitation of this approach is that it does

Chapter 3: Understanding Sketches

 72

not consider the internal details of each feature. The internal edge structures can be compared

using the Chamfer matching approach in order to address this limitation; however, it would

require the features to be normalised reliably first.

Table 3.3: A summary of several region descriptors (Roth and Winter 2008).

Descriptor

Classification
Descriptor

Rotational

invariance
Dimensionality Performance

Image

type

SIFT-based

SIFT No High Good

Textured SIFT-PCA
1

No Low Good

SIFT-GLOH
2

No High Good

Grid-based
Grid No High Medium

Both
Spin images Yes Medium Medium

Shape-based

Distance

function
No Medium Good

Outlined Delaunay

triangulation
Yes Medium Good

Edge-structures No High Medium

1 The dimensionality of the SIFT feature vectors is reduced using Principal Component Analysis (PCA).
2 A circular arrangement of patches is used instead of a rectangular arrangement of patches.

A summary of the local region descriptors discussed in this section is provided in Table 3.3. It

may be necessary to combine several approaches for describing local features and global

features in order to describe user sketches in a robust manner. Chapter 4 will investigate how

this can be achieved.

3.3.4 Global Feature Descriptors

Global feature descriptors quantitatively describe the overall appearance of images. An

example of a global feature descriptor is the principal components of an image. The locations

of local features such as corners, edges and blobs can be used to calculate the principle

components.

Principal Component Analysis (PCA) is used to convert a set of observations into a reduced

set of values for linearly uncorrelated variables known as principal components while

retaining as much of the variation of the data set as possible. The 2D case is considered for

determining the principal components ̅ and ̅ of a point set for an image. Let

 { } and { } be the respective x-coordinates and y-

coordinates of the point set. Let be the covariance matrix of and then the

principal components of the point set is determined from the eigenvalues and eigenvectors

Chapter 3: Understanding Sketches

 73

of . Let (̅) be the eigenvalue-eigenvector pair with the largest eigenvalue and (̅)

be the second eigenvalue-eigenvector pair then ̅ √ ̅ and ̅ √ ̅ (Jolliffe 2002).

Figure 3.15: Using PCA to estimate the transformation parameters of a point set.

The principal components of the point set can be used to estimate the orientation and scale of

the image. The horizontal and vertical scale of the image can be estimated as a constant

multiple of the length of the corresponding eigenvectors. The furthest point along each

principal axis can also be used to determine the boundaries of the image (Chaudhuri and

Samal 2006). The orientation of the image can be estimated from ̅ and ̅ as shown in

Equation (3.1) where and are numerical error values and [] is the top row of the

rotation matrix [̅ ̅]. Its location can be estimated as the mean location of the points in

the set. These parameters are required for normalising regions so that transformation variant

descriptors, such as grid-based descriptors, can be used reliably.

(() ()) , where [̅ ̅] [

] (3.1)

3.3.5 Discussion

The object recognition phase involves the following four steps (see Figure 3.2):

Step 1. Detect the features of the query image provided.

Step 2. Describe the query features quantitatively.

Step 3. Match the query’s features with the features of each candidate image.

Step 4. Classify the query image using a similarity/dissimilarly measure.

This section discussed several methods from computer vision for steps one and two. In

particular, it is important to note that describing user sketches presents two main challenges.

Chapter 3: Understanding Sketches

 74

Firstly, there is no texturing information available. Secondly, the user’s sketches may contain

several anomalies (see Section 3.3.2.4). It is therefore necessary to consider the strengths and

weaknesses of each approach when describing user sketches. The next section will discuss

how images can be compared for the purposes of performing object recognition. This involves

performing steps three and four.

3.4 Comparing Images

The recognition phase of the object recognition process involves comparing the features of a

query image with the features of candidate images and determining which object is most

likely represented by the query image (see Section 3.2). This section reviews several methods

for matching the features of a query image with the features of a candidate image. It also

provides an overview of several classification approaches and suggests a classifier suitable for

classifying user sketches.

3.4.1 Feature Matching

The feature matching problem involves matching the features of a training image to the

features of a query image (Torresani, Kolmogorov and Rother 2008). Object recognition is

facilitated by searching for feature correspondences across several training images. This

section will provide an overview of two different approaches that have been proposed for

finding feature correspondences.

The first approach utilises the appearance of the features and discards spatial and structural

information. The features are matched only on their appearance. This approach is often

referred to as the bag of features approach (Dance et al. 2004). Each feature of the query

image is matched to the corresponding feature of the candidate image which has the most

similar descriptor. The main advantage of the bag of features approach is its simplicity. The

method also provides invariance to affine transformations. The main disadvantage of the

approach is that it relies heavily on the descriptive capability of the feature descriptor. Feature

descriptions are therefore required to be clearly distinguishable from similar features and they

should avoid encoding irrelevant variations such as noise. Another disadvantage is that it does

not consider the geometric structure of the features of the image.

The second approach utilises structural models. A structural model is a mathematical model

that measure the correspondence of features while considering their appearances and

geometric structure (Zhang et al. 2007). Writing the structural model as an optimisation

Chapter 3: Understanding Sketches

 75

problem is one way to formulate the feature matching problem (Torresani et al. 2008). In this

case, the model serves as an objective function (̅) where ̅ is the correlation vector to be

optimised for two feature sets and . Each entry of ̅ corresponds to a pair

where if is a matching configuration, otherwise . The problem is formulated

to optimise a function (̅) ∑

 where is a cost function for the feature

property and is a weight for scaling the importance of the cost function. Torresani et al.

(2008) matched features based on their appearance (̅) , occlusion (̅) , geometric

compatibility (̅) and spatial proximity (̅) , . Therefore the problem involved

finding an ̅ that minimises (̅) as shown in Equation (3.2).

 (̅) (̅) (̅) (̅) (̅) (3.2)

Formulating the feature correspondence problem as an optimisation problem has the

advantage of using structural and appearance information. The disadvantage is that the

optimisation of the objective function is an NP-hard problem and therefore has very high

computational costs (Gold and Rangarajan 1996). The approach may be practical if off-the-

shelf solvers can be used.

3.4.2 Classification Approaches

The final step of the object recognition phase is the classification step (see Section 3.2). The

codebook is populated with training images which are each associated with a class label ,

 . The probabilistic image classification problem involves finding the best classes

 {
 } for a given a tuple () representing a query image. The

tuple can describe the image in terms of pixels or lower dimensional representations such as

local features (see Section 3.3). The object corresponding to the best class from can be

assumed to be the object most likely sketched by the user. The remaining classes from can

be considered to be alternative best matches.

Chapter 3: Understanding Sketches

 76

Figure 3.16: The probabilistic image classification problem.

Figure 3.16 provides an example illustrating the classification problem. The codebook is

shown to contain three classes, namely =”couch”, = “chair” and = “table”. Suppose the

tuple represents a rough sketch of a chair created by the user. The goal of the image

classification problem is to determine which class best represents based on the data

contained in the codebook or on classifier training data.

Table 3.4: An overview of several classification approaches (Seetha et al. 2008; Han and

Kamber 2006).

Classification

Approach
Data Type Advantages Disadvantages

Naïve Bayesian
Categorical,

Numerical
Simple to implement.

Naïve Bayes assumption usually

violated.

Artificial Neural

Networks
Numerical

Tolerant to noisy

input.

Over fitting is possible when too

many attributes are used.

Support Vector

Machines
Numerical

Over fitting is

unlikely to occur.

Difficult to determine optimal

parameters when the data is not

linearly separable.

Decision Trees
Categorical,

Numerical

Not sensitive to

outliers.

Low generalisation performance

with high dimensionality.

k -Nearest

Neighbours
Numerical

Distance function

implicitly defines

decision boundaries.

High requirements for storing class

instances.

Table 3.4 provides an overview of several approaches that can be taken for classifying images

based on their appearance. This section provides an overview each of these classification

approaches in order to determine which classifier can be used for recognising the objects

sketched by the user. The classifiers include Naïve Bayes classifiers, Artificial Neural

Networks, Support Vector Machines, Decision Trees and k-Nearest Neighbours classifiers.

Chapter 3: Understanding Sketches

 77

3.4.2.1 Naïve Bayesian

Let be the hypothesis that the tuple ̅ belongs to the class . The classification problem

involves determining the posterior probability (̅) of conditioned on ̅. (̅)

reflects the probability of ̅ belonging to class . Let () be the prior probability of ,

then () reflects the probability of class being selected regardless of the tuple values.

Let (̅) be the posterior probability of ̅ conditioned on , and let (̅) be the prior

probability of tuple ̅ occurring.

 (̅)
 (̅) ()

 (̅)
 (3.3)

Bayes’ Theorem relates these probabilities as shown in Equation (3.3) (Han and Kamber

2006). The goal is to find a class that maximises (̅). (̅) is constant for all the

classes. If () is not known then let () ()
 . The problem

reduces to maximising (̅). The Naïve Bayesian Classifier assumes that the attributes or

dimensions of ̅ are conditionally independent and that Equation (3.4) holds.

 (̅) ∏ () () () ()

 (3.4)

The values for () can be calculated in two ways. If the values of is categorical then

 () is calculated as the number of training tuples of class having the value of in

the i
th

 dimension. If the values of are continuous then () is calculated from the

Gaussian function where the mean and standard deviation is determined from the training

tuples of . If all the attributes or dimensions of are not conditionally independent, then

Bayesian networks can be used to model the relationships between these variables using a

directed acyclic graph and Conditional Probability Tables (CPTs). The topology of the

network is manually defined. The CPTs can be trained using a gradient descent strategy.

McCann and Lowe (2011) showed that the Naïve Bayesian Classifier can be combined with

the k-Nearest Neighbours classification approach to effectively classify low resolution

images.

3.4.2.2 Artificial Neural Networks

An Artificial Neural Networks (ANN) is another type of network that can be used for image

classification. ANNs consist of connected input, hidden and output units that receive and send

signals. The connections between the units are weighed. If the sum of the weighed input for a

Chapter 3: Understanding Sketches

 78

unit is above a trained threshold then the unit activates and sends its signal along the output

connections. The weights can be determined by training the ANN with training tuples and

their expected outputs. The various class labels for the image are encoded by the ANN output

signal. ANNs can be used to classify low resolution images (Xu and Wei 2012; Mustapha,

Lim and Jafri 2010). However, three major problems can be identified for using ANNs to

classify high resolution images such as sketches (Engelbrecht 2002):

 If over fitting occurs when an ANN is trained then it loses the ability to generalise to

unseen input.

 A large training set of images is required for training a reliable ANN. The set should

include validation images that can be used to prevent over fitting. This is problematic

because it is difficult to create a sufficiently large set of user sketches.

 It is difficult to model the image classification problem using ANNs. It involves

designing an appropriate ANN architecture and representing each image as a single

input vector. Images are typically described in terms of features which are in turn

represented by description vectors.

3.4.2.3 Support Vector Machines

Support Vector Machine (SVM) classifiers can be used for classifying images or image

features. A SVM classifier is an algorithm that constructs a Maximum Marginal

Hyperplane (MMH) that separates the tuples of two classes from one

another. If the dataset is not linearly separable then the tuples can be transformed into a higher

dimensional space. If the tuples are linearly separable in the higher dimensional space then a

MMH can be determined. The two regions separated by the MMH are given by

Equation (3.5).

 (̅ ̅)
 (3.5)

The bias and MMH weight vector ̅ are determined using a Lagrangian formulation. The

problem can then be solved using the Karush-Kuhn-Tucker (KKT) conditions (Han and

Kamber 2006; Mitra, Shankar and Pal 2004). SVM classifiers can be combined for classifying

more than two classes.

Chapter 3: Understanding Sketches

 79

3.4.2.4 Decision Trees

Decision tree classifiers assume that the classification problem can be broken down into a

series of rule-based tests or decisions. The rule system is represented in terms of a tree

structure where the vertices represent the attributes being tested and the edges represent

possible values or ranges. Decision trees are learned by means of decision tree induction

methods such as the Iterative Dichotomiser algorithm (Quinlan 1985). It has been shown,

however, that decision trees have low generalisation performance when the dimensionality of

 ̅ is very high (Geurts 2002). Maree et al. (2004) showed, however, that decision trees can be

learnt and used to classify tuples with lower dimensionalities by considering smaller regions

of the image.

3.4.2.5 k-Nearest Neighbours

The classification approaches discussed so far construct classification models before receiving

query tuples to classify. The generalisation of image data is therefore modelled during the

training phase of the classifier. Training tuples are used to construct the classification model

and the generalisation performance of the classifier depends on the training data provided. An

alternative approach is to classify query tuples based on their similarity to stored training

tuples known as class instances. The class instances then represent the classification

model (Han and Kamber 2006).

The k-Nearest-Neighbours (k-NN) algorithm classifies a tuple ̅ as follows. Each class is

associated with a set of class instances { ̅

 }. The k-NN algorithm finds the best

class instances that minimise a distance function (̅ ̅
). If the Euclidean distance given

by Equation (3.6) is used, then it is important to scale the individual dimensions of the search

space appropriately so that the Euclidean norm is not biased along the dimensions with large

values. Other distance metrics for measuring the dissimilarity between images can also be

used, such as the error involved when matching local features (see Section 3.4.1).

 (̅ ̅
) √∑ (

)

 (3.6)

3.4.2.6 Discussion

This section discussed several classification approaches that can be used for classifying the

sketches created by the user. This included methods that construct classification models

Chapter 3: Understanding Sketches

 80

during the training stage of object recognition, such as Bayesian Classification, Artificial

Neural Networks, Support Vector Machines and Decision Trees.

A sufficient training set consisting of user sketches is required for each class in order to train

these classification models with acceptable generalisation performance. This is problematic

because it is difficult to produce a training dataset when the different users can each sketch

objects in an arbitrary fashion. Another problem is that these methods represent images in

terms of individual tuples or vectors. However, images are typically described using multiple

features that are each represented with a feature description vector (see Section 3.3). The k-

Nearest-Neighbour classification approach addresses this problem by classifying images

based on a similarity measure. This makes it possible to use image descriptors in order to

classify images. The images do not have to be represented with vectors of high

dimensionality. The k-Nearest-Neighbour classification approach therefore provides a feasible

method for classifying user sketches from limited training data.

3.5 Rigid Body Pose Estimation

A rigid body is a non-deformable object that can only be manipulated using translation,

rotation or scaling transformations (Fitzpatrick and West 2001). Estimating the pose of a rigid

body involves approximating the transformation needed to map the body’s model from its

local coordinate system to the coordinate system represented in the image (see Figure 3.17).

Figure 3.17: The pose estimation problem (Rosenhahn, Perwass and Sommer 2004).

The scale of the rigid body is usually assumed to be constant in order to facilitate monocular

depth perception (Lee and Funkhouser 2008). This section reviews three approaches for

estimating the pose of a rigid body from an image:

1. Object recognition for recognising the pose of the rigid body.

Chapter 3: Understanding Sketches

 81

2. Analytical pose estimation methods.

3. Numerical pose estimation methods.

3.5.1 Recognising Poses

One of the simplest pose estimation approaches is to recognise the model’s approximate pose

from a codebook instead of determining its exact pose. The idea is to index each object into a

codebook from several views. An object recognition algorithm is used to determine which

object is present and what its approximate pose is. Shape descriptors are commonly used to

describe the boundaries of each object viewed from different angles (see

Section 3.3.3.3) (Funkhouser et al. 2003; Hou and Ramani 2006; Loffler 2000). This

approach has also been proposed as a pre-processing step for high-precision pose estimation

algorithms that require an initial pose estimate (Shin and Igarashi 2007; Lee and Funkhouser

2008). Figure 3.18 shows an example of how a model can be sampled to generate a boundary-

based description for each view. A representative number of samples are taken to index the

anticipated orientations of the object. Shin and Igarashi (2007) used sixteen reference views

and a centroid Fourier shape descriptor to build their codebook. The shape descriptor is used

to find the closest codebook entry from which the estimated pose can be determined.

Figure 3.18: Indexing a model from sixteen reference views using a shape

descriptor (Adapted from Shin and Igarashi 2007).

Although the pose estimation approach is simple to implement, it relies heavily on the quality

of the codebook and the discriminative capability of the feature descriptor. Feature descriptors

that do not include internal detail, such as boundary-based descriptors, cannot be used to

distinguish views of objects that have similar boundaries. Front/back ambiguity and symmetry

is therefore a problem. Figure 3.18 shows an example of where front/back (0⁰ and 180⁰) and

symmetry ambiguity (67.5⁰ and 247.5⁰) can be problematic. Another limitation of the method

is that it can only recognise poses that have been indexed in the codebook.

Chapter 3: Understanding Sketches

 82

3.5.2 Analytical Pose Estimation

A more direct approach to the pose estimation problem is to determine the required

transformation parameters analytically. The problem is usually formulated as a Perspective-n-

Point (PnP) problem (Lepetit and Fua 2005). The PnP problem involves determining the

position and orientation of the camera from a set of 3D points with their corresponding 2D

perspective projections. Early research on the PnP problem produced several analytical

solutions for small values of (Haralick, Lee and Ottenburg 1991; Navab and Faugeras 1993;

Abidi and Chandra 1995; Yuyan, Iyengar and Jain 1994).

Figure 3.19: A diagram showing the variables involved in solving a P3P

problem using a pinhole camera model (Abidi and Chandra 1995).

In the 1990s, the P3P problem was approached using a pinhole camera model (Abidi and

Chandra 1995). Figure 3.19 illustrates the formulation of the P3P problem using this camera

model. For the purposes of pose estimation, assume that a 3D model of an object is available

and that three correspondences between the 3D points and image points are known.

Also assume that the camera is calibrated, i.e. the focal length of the camera is known. The

P3P problem involves finding the points
 within the coordinate system of the camera

located at . Each point
 is found by estimating the distance ‖ ‖ between

and . The distances are calculated by finding the roots of a fourth degree polynomial

which is derived from constraints found in the triangles . Once the points

are known, the transformation that moves the points from to
 is taken as the solution to

the P3P problem. The transformation can be found using 3D registration algorithms such as

the Iterative Closest Point algorithm (see Section 3.5.3.2) (Jost 2003). The transformation is

not unique because multiple polynomial roots exist. In fact, the P3P problem either has an

Chapter 3: Understanding Sketches

 83

infinite number of solutions or at most four solutions (Gao, Hou and Tang 2003). An

additional correspondence is often required to resolve the ambiguity.

More recently, several analytical PnP solutions were proposed that are based on algebraic

methods (Moreno-Noguer, Lepetit and Fua 2007; Bujnak and Kukelova 2008; Triggs and

Quan 2000; Wu and Hu 2006; Ansar and Daniilidis 2003; Fiore 2001). The most popular

approach is to estimate the unknown point distances in the camera’s coordinate system by

formulating the geometric problem as a system of polynomials. The system of polynomials is

then written as an equivalent linear system which is solved using the hidden variable method,

the Gröbner basis solver or the singular value decomposition method.

The main advantage of analytical methods is that unique solutions can be found quickly, and

in some cases, in () time (Moreno-Noguer et al. 2007). The main disadvantage of using

analytical methods is that they are specialised for small cases of . PnP solutions with a small

 are highly sensitive to projection errors (Dementhon and Davis 1995). This is problematic

because projection errors occur when local features are detected at slightly incorrect locations

or when the correspondences between local features and their 3D points are incorrectly

determined. These errors are especially prominent when dealing with rough user sketches.

Numerical PnP solutions are often preferred over non-iterative solutions when stability is

more important than efficiency.

3.5.3 Numerical Pose Estimation

Numerical pose estimation methods approach the PnP problem by estimating the pose and

improving the estimated pose iteratively (Didier, Ababsa and Mallem 2008). This can be

achieved by modelling the pose estimation problem in terms of a set of geometric constraints

and estimating the rotation and translation components of the pose using Least-squares model

fitting techniques (Horn, Hilden and Negahdaripour 1988). Least-squares model fitting

techniques are typically very sensitive to outliers; however, improved model fitting

techniques have been proposed in order to produce more stable iterative pose estimation

algorithms (Hanson and Kumar 1994).

Numerical pose estimation methods often relax the perspective projection model. The

Orthogonal Iteration (OI) algorithm assumes the pinhole camera model (see Section 3.5.2) in

order to iteratively minimise an error metric which is based on the alignment of the projected

2D points and the 3D points of the posed model (Lu, Hager and Mjolsness 2000). The POSIT

algorithm assumes the scaled orthographic projection model instead of the perspective

Chapter 3: Understanding Sketches

 84

projection model (Dementhon and Davis 1995). The simplified camera model is used to

estimate the pose of the object.

This section provides a detailed discussion on the POSIT algorithm as well as a discussion on

the Iterative Closest Point (ICP) registration algorithm. The advantages and disadvantages of

using numerical pose estimation approaches for estimating the pose of rigid bodies contained

in user sketches is also discussed.

3.5.3.1 POSIT

The Pose from Orthography and Scaling with ITerations (POSIT) algorithm consists of two

parts. The first part is the Pose from Orthography and Scaling (POS) algorithm. The POS

algorithm finds the rotation matrix and translation vector of the pose by assuming the Scaled

Orthographic Projection (SOP) camera model and solving a linear system of equations. The

second part (POS with Iterations) iteratively refines this pose by computing better scaled

orthographic projections of the model points and applying the POS algorithm again using the

improved projections (Dementhon and Davis 1995).

Figure 3.20: The perspective projection and scaled orthographic projection

of object points to image points (Dementhon and Davis 1995).

Figure 3.20 illustrates the pinhole camera model approximated by the POSIT algorithm. The

image plane is a distance (focal length) away from the origin . The unit vectors of the

camera’s coordinate system are ̂, ̂ and ̂ respectively. The object points are known in the

Chapter 3: Understanding Sketches

 85

object’s coordinate system for all
 . is called the reference point of the object. The

image points ̅ () of the object points are also known for each
 . The points

 ̅ (

) are the scaled orthographic projections of . The coordinates () of

in terms of the camera’s coordinate system are not known because the object’s pose is

unknown. The POSIT algorithm estimates the pose of the object by calculating the rotation

matrix and translation vector of the object without calculating () explicitly.

Scaled Orthographic Projection (SOP) is used to approximate the perspective camera model

as follows. The approximation assumes that the depth of the points ̅ are close enough to

each other for the depth of the reference point ̅ to be used to project the points ̅ to ̅

as shown in Equation (3.7).

 is called the scaling factor.

 ,

 , (3.7)

The geometric interpretation of SOP is illustrated in Figure 3.20. Each point ̅ is

orthographically projected in the plane K located at the reference point ̅ in order to obtain

 ̅ . Each point ̅ is then projected onto the image plane G at ̅ using perspective projection.

 ̅ is the “true” perspective projection of ̅ and ̅ is the SOP approximate. Dementhon and

Davis (1995) proved that ̅ and ̅ (

) are related as shown in Equation (3.8),

Equation (3.9) and Equation (3.10) where ̅

 ̂ and ̅

 ̂.

̅̅ ̅̅ ̅̅ ̅̅ ̅ ()

 (3.8)

̅̅ ̅̅ ̅̅ ̅̅ ̅ ()

 (3.9)

̅̅ ̅̅ ̅̅ ̅̅ ̂, where

̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅ (3.10)

If values are given to then Equation (3.8) and Equation (3.9) provide a system of linear

equations that can be used for solving ̅ and ̅. The linear system of equations is given in

Equation (3.11) and Equation (3.12) where the rows of are the object points relative to the

object’s coordinate system.

 ̅ ̅ , where ̅ () (3.11)

 ̅ ̅ , where ̅ () (3.12)

Chapter 3: Understanding Sketches

 86

The linear system of equations is solved for ̅ and ̅ by finding a least squares solution using

the pseudoinverse matrix of . POSIT requires the object points to be non-planar in order to

solve this system of equations.

 directly influences the accuracy of the estimated pose. is initially set to zero and then

improved as the algorithm iterates. ̂ and ̂ are calculated by normalising ̅ and ̅. The cross

product of ̂ and ̂ yields ̂. The next value of is given by (‖ ̅‖ ‖ ̅‖)⁄ where

‖ ̅‖ is the Euclidian norm of ̅. An improved value for is calculated using Equation (3.10).

 ̂, ̂ and ̂ form the rows of the object’s rotation matrix . The translation vector is calculated

as
̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅.

3.5.3.2 Iterative Closest Point (ICP) Registration

The Iterative Closest Point (ICP) registration algorithm determines the rotation and translation

transformation required to align a set op points { ̅
 } as close as possible to

another set of points { ̅
 } as shown Figure 3.21. The ICP registration algorithm

can be used to estimate the pose of an object if the posed object points are known in terms of

the camera (see Section 3.5.2).

Figure 3.21: An illustration of the 2D case of the point registration problem.

The ICP registration algorithm iterates four steps in order to estimate the transformation

required to align the points of to the points of as closely as possible. Figure 3.22 provides

the pseudocode for the ICP registration algorithm. It iterates until no significant improvement

 in () can be observed or the maximum number of iterations have been executed. The

translation vector can be estimated at step 3 as the difference of the mean of and

respectively: ̅

∑ ̅

∑ ̅

 .

Chapter 3: Understanding Sketches

 87

DO

Step 1. Compute the Nearest Neighbour (NN) point such that ‖ ̅ ̅ ‖ is a

minimum for every correspondence (̅ ̅) (̅ ̅).

Step 2. Weigh each correlation with an weight , e.g. ‖ ̅ ̅ ‖

Step 3. Compute the best transformation (̅) where is the rotation

matrix and ̅ is the translation vector of that minimises:

 ()

∑ ‖ ̅ ̅ ̅ ‖

 , where ∑

Step 4. Apply transformation to the points in .

WHILE REPEAT

Figure 3.22: Pseudocode for the ICP registration algorithm (Jost 2003).

Singular Value Decomposition (SVD) of the correlation matrix of and can be used to

estimate the rotation matrix for (Golub and Loan 1996). The NN search in step 1 can be

performed efficiently at each iteration using a kd-tree for spatial indexing in (()) time

instead of using a () exhaustive search (Zhang 1994).

3.5.3.3 Discussion

The main advantage that numerical pose estimation algorithms provide over analytical ones is

that they are suitable for PnP problems with a large value. This allows numerical pose

estimation approaches to be significantly more accurate and stable than analytical PnP

solutions (Dementhon and Davis 1995). Numerical PnP solutions are also less susceptible to

the jitter caused by noise and feature errors. User sketches are often inaccurate compared to

the images used during the training phase. The sketches are likely to contain the anomalies

identified in Section 3.3.2.4. It is therefore possible that feature detection and matching errors

occur during the recognition phase. Numerical pose estimation approaches are not affected as

severely by this issue as analytical pose estimation approaches if a large enough is used.

A common disadvantage of numerical approaches is that they are usually less efficient than

analytical approaches (Didier et al. 2008). Initialisation of the first estimated pose may also

affect the convergence of the algorithm. If the first estimate is incorrectly chosen then the

algorithm may require many iterations to converge, or it may fail to converge to a globally

optimum pose. However, it has been shown that iterative pose estimation approaches

converge to a globally optimum estimate pose in most cases (Lu et al. 2000).

Chapter 3: Understanding Sketches

 88

3.6 Articulated Body Pose Estimation

The process of sketching a character involves planning the posture of the character, defining

its proportions and elaborating on its appearance as illustrated in Figure 3.23. A blue pencil is

often used to sketch the planning aspects of the character and a black pencil is used for the

final aspects of the character. A storyboard artist usually sketches a stick figure first for

planning the pose of the character. Next, the artist fleshes out the skeleton by sketching the

volume of the character’s various body parts and indicating elements with structural

importance such as joints, hips and lines of symmetry. The artist then uses the resulting

“balloon person” as a foundation for sketching the final appearance of the character.

Stick

figure

Balloon

person

Drafting

appearance

Final

appearance

Shading

(Optional)

Figure 3.23: The process of sketching a character (Glebas 2008).

At this stage the artist can elaborate on the physical appearance of the character. This may

include details such as gender, clothing, hairstyle, facial expression, etc. An optional step is to

shade the character in order to illustrate its colouring, texturing and lighting.

Each character in the user’s sketch is represented by an articulated body. The articulated body

defines the appearance of the character, its location and orientation on the set, and the pose of

its individual body parts. Articulated body pose estimation methods are required in order

estimate these parameters. There are essentially two approaches that can be utilised in order to

achieve this goal. The first approach is to estimate the character’s pose from the character’s

appearance using methods from computer vision. The second approach is to apply sketch-

based posing methods on the stick figure sketched during the planning stage (see Figure 3.23).

Chapter 3: Understanding Sketches

 89

3.6.1 Vision-based Posing Methods

Many methods have been proposed in computer vision for estimating the pose of an

articulated body from an image. They can be classified into three major groups (Moeslund,

Hilton and Kruger 2006):

1. Model-free pose estimation

2. Indirect-model pose estimation

3. Direct-model pose estimation

Model-free pose estimation techniques can be separated into two approaches. The first

approach, namely the probabilistic part assembly approach, is a bottom-up 2D pose estimation

technique. The method detects the likely locations of the various body parts of the character.

Sidenbladh et al. (2000) proposed a body part detector for tracking humanoid body parts.

Figure 3.24 (a) shows an example of a template used to define an abstract humanoid body.

The template is also called a body plan. The parts of the body plan are assembled in order to

obtain a configuration that best matches the pose observed in the image (see Figure

3.24 (b, c)). The resulting assembly can then be used to estimate the 3D pose of the character.

The second model-free pose estimation technique estimates the character’s pose based on

training data. The shape of each pose from the training set is encoded and compared to the

query image using contour descriptors (see Section 3.3.3.3) (Brand 1999; Howe 2004).

Example-based model-free methods are limited to the poses provided in the training dataset.

(a) (b) (c)

Figure 3.24: Vision-based pose estimation using (a) a body plan (Sidenbladh et al. 2000) and

(b,c) part assembly (Ramanan, Forsyth and Zisserman 2005).

Indirect-model pose estimation techniques are used to construct the shape and pose of a

character from a 3D visual hull without an a priori model of the subject (Cheung, Baker and

Kanade 2003; Miki et al. 2002). Indirect-model pose estimation techniques require several

images from multiple viewpoints in order to construct the visual hull. They are therefore not

suitable for monocular character pose estimation from single view storyboard sketches.

Chapter 3: Understanding Sketches

 90

Direct-model pose estimation techniques make use of an explicit model in order to synthesise

the 3D pose observed in the image. The model provides information about the kinematics,

shape and appearance of the character. Monocular direct-model pose estimation has proven to

be a very difficult problem to solve; however, several direct-model approaches have been

proposed. These approaches combine the probabilistic approach with higher level knowledge

about human kinetics (Navaratnam et al. 2005; Wachter and Nagel 1997). The poses are

limited to those that do not violate kinematic constraints (Bregler, Malik and Pullen 2004;

Wachter and Nagel 1997). Inverse Kinematics (IK) approaches that are based on models

learned from human motion have also been proposed (Grochow et al. 2004; Ong and Hilton

2006). IK involves calculating the orientations of the body parts in order to allow characters

to reach out to specific points. Learnt IK methods are limited to specific motion models and

lack general posing capabilities (Moeslund et al. 2006).

Vision-based pose estimation methods are able to process more complex and descriptive

elements of an image in order to estimate character poses in the user’s sketch. The methods

are able to take into account the shape, texturing and colouring of each part of the character

sketched by the user. However, it was identified in Chapter 2 that the characters sketched by

the user should be as minimalistic as possible so that they can be sketched as quickly as

possible. If sketching a character’s stick figure is all that is required, then it would be

preferable to sketching a detailed character. This presents a problem for vision-based pose

estimation methods because they are designed to operate on images that explicitly show the

details of each articulated body. The next section discusses methods that can be used to

estimate the character’s pose from the user sketched stick figure.

3.6.2 Sketch-based Posing Methods

Several methods have been proposed for articulated body pose estimation from sketches. The

pose of the articulated body can be estimated indirectly from the sketch or it can be estimated

directly.

Indirect sketch-based posing methods use the sketch for guiding the pose estimation process.

The pose is not directly extracted from the user’s stick figure. A popular indirect approach is

to compare the sketch with known poses from a motion-tracking database and find the closest

pose (Lin 2006). The method has the disadvantage of only being able to recognise poses

which are known in the database. Inverse Kinematics (IK) can also be used to determine the

pose (Vaidya, Shaji and Chandran 2006; Chaudhuri et al. 2004). IK algorithms are typically

Chapter 3: Understanding Sketches

 91

provided with joint angle constraints in order to produce acceptably realistic results. The

disadvantage of IK methods is that they provide limited control of how bones should reach

out to their targets.

Direct sketch-based posing methods determine the pose directly from the user’s sketch. This

requires each bone of the articulated body to be associated with a corresponding line segment

in the sketch. The simplest way of doing this is to require the artist to manually label the

sketch (Lin 2006; Mao and Qin 2005). The advantage of requiring the artist to manually label

the sketch is that any level of fidelity can be used. Unfortunately, the task of manually

labelling line segments to their corresponding bones is very tedious and time consuming.

Figure 3.25: A direct sketch-based rigid body posing method (Matthews and Vogts 2011).

Automated labelling methods have been proposed such as using image degrading techniques

to extract the stick figure (Davis et al. 2003). Previous research
4
 conducted by the author of

the dissertation proposed a method for extracting and posing articulated bodies as they are

sketched. The direct sketch-based rigid body posing approach is shown in Figure 3.25. The

method constructs a directed tree that represents the stick figure as the user sketches (Step 1).

4This research on sketch-based articulated figure animation was published in the following paper: Matthews, T.

and Vogts, D. (2011): A sketch-based articulated figure animation tool. In Proceedings of the South African

Institute of Computer Scientists and Information Technologists (SAICSIT) The Pavilion Conference Centre,

V&A Waterfront, Cape Town, South Africa.

Chapter 3: Understanding Sketches

 92

Colour coding is used to disambiguate the topology of the stick figure (Step 2). An

isomorphic mapping is then determined between the graph of the stick figure and the armature

of the model (Step 3). The strokes of the stick figure are then simplified so that there is a one-

to-one mapping between the bones of the armature and the line segments of the stick

figure (Step 4). The pose of the articulated body can then be determined by calculating the

foreshortening of each bone recursively (Step 5) (Matthews and Vogts 2011).

The main problem with automatic skeleton association methods is that there may be many

associations between the user’s sketch and the articulated body. Depth ambiguity is also a

problem that adds to the ambiguous nature of the articulated body pose estimation problem. In

most cases, there are many poses that satisfy the sketch to some extent. For this reason, the

solution space is culled using known information about the model and the sketch. Invalid

solutions are usually removed using joint angle constraints (Davis et al. 2003; Lin 2006;

Matthews and Vogts 2011). The remaining solution set can be further reduced using

information from the sketch. Mao et al. (2005) proposed using multiple strokes to indicate

joints and bones that are closer to the viewer. However, this approach may clutter the sketch

as more strokes are added. Pressure information from the sketching device can be used to

solve depth-related ambiguity.

3.7 Conclusions

This chapter answered the second research question identified in Chapter 1, namely what

methods are available for extracting information from sketches? This research question was

answered by answering the sub-questions provided in Section 3.1.

Q2.1 was answered by reviewing several methods for detecting and describing image features.

The first part of the sub-question was answered by discussing corner detectors, region

detectors and edge detectors. It was established that there are two main challenges when

describing user sketches quantitatively. Firstly, there is no texturing information available

because the user’s sketches are not shaded and they consist primarily of minimalistic strokes.

The second challenge is that the sketches may contain several anomalies (see Section 3.3.2.4).

Blob-based region detectors, such as the DoG detector, were identified as being the most

suitable approach for detecting local features from user sketches.

The second part of sub-question Q2.1 was answered by reviewing several local feature

descriptors and two global feature descriptors. It was proposed that SIFT-based descriptors be

combined with Grid-based descriptors in order to describe user sketches reliably.

Chapter 3: Understanding Sketches

 93

Q2.2 was answered by reviewing feature matching methods and approaches for classifying

user sketches (a class for each prop and symbol). It was determined from literature that the

bag of features approach is suitable for finding feature correspondences. The classification

problem was addressed by reviewing Bayesian classifiers, ANNs, SVMs, decision trees and

k-NN classifiers. It was determined that the k-NN classification approach is the most suitable

for classifying user sketches. This is because the k-NN classifier makes it possible to classify

images based on their local features. The images do not have to be represented with single,

high-dimensional vectors. The k-Nearest-Neighbour classification approach therefore

provides a feasible method for classifying user sketches from limited training data.

Q2.3 was answered by reviewing three approaches for estimating the pose of a rigid

body (such as props), namely pose recognition, analytical pose estimation and numerical pose

estimation. It was determined that the pose recognition approach alone is not suitable for

estimating the pose of a rigid body because of front/back ambiguity and symmetry. It was also

determined that numerical pose estimation approaches provide more stability than analytical

pose estimation approaches. The sketches are likely to contain the anomalies identified in

Section 3.3.2.4 and it is possible that feature detection and matching errors will occur during

the recognition phase. Numerical rigid body pose estimation approaches are not affected as

severely by these errors as analytical approaches if a large enough is used.

Q2.4 was answered by reviewing two approaches for estimating the pose of characters. The

characters are represented by articulated bodies. An overview of several vision-based posing

methods was provided and it was determined from the requirements identified in Chapter 1

that vision-based articulated body posing methods are not suitable for interpreting the

characters sketched in the storyboards, because the characters will be sketched using

minimalistic stick figures. It was proposed that a direct sketch-based articulated body pose

estimation approach is used in order to provide the user with a quick and easy method for

sketching characters.

The next chapter investigates how a sketch-based pre-visualisation authoring tool using a

storyboarding approach can be designed and implemented. The design includes selected

methods reviewed in this chapter in order to automatically interpret user sketches. Chapter 4

will answer the third research question, namely how can the authoring of pre-visualisations

be supported using a storyboarding metaphor and sketch/touch-based interfacing techniques?

.

 94

Chapter 4:
Design and Implementation

4.1 Introduction

Chapter 2 proposed several requirements for sketch-based pre-visualisation authoring using a

storyboarding approach, and Chapter 3 provided a review of several approaches that can be

used for interpreting the storyboard sketched by the user. This chapter addresses the key

requirements which were identified in Chapter 2 (see Table 2.7) by discussing the design and

implementation of a proof of concept prototype sketch-based graphical user interface for

authoring pre-visualisations using a storyboarding approach.

The third research question identified in Chapter 1 is addressed in this chapter, namely Q3:

how can the authoring of pre-visualisations be supported using a storyboarding metaphor

and sketch/touch-based interfacing techniques? The following sub-questions are answered:

Q3.1: How can sketch-based pre-visualisation authoring using a storyboarding

approach be integrated into existing pre-visualisation authoring frameworks?

Q3.2: How can the data required for the proposed approach be structured and

represented?

Q3.3: How can a Graphical User Interface be designed to support the proposed

approach?

Q3.4: How can the content sketched by the user be interpreted automatically to

determine the 3D context for each shot?

Q3.5: How can the proposed design be implemented?

The chapter begins by discussing the general framework of pre-visualisation authoring

environments and then proposes a new framework for the user interface layer of the general

framework (see Section 4.3). The chapter continues by discussing how the data required for

Chapter 4: Design and Implementation

 95

authoring pre-visualisations using the proposed approach can be structured and represented. A

detailed discussion on the design of the user interface and the required algorithms is provided.

In particular, the algorithm design section investigates several computer vision methods for

representing and comparing user sketches (see Section 4.6). It also discusses how objects are

recognised and posed, and how the camera is estimated for a storyboard sketch. The chapter

concludes by discussing how the prototype was implemented (see Section 4.7).

4.2 A Generalised Framework for Authoring Pre-visualisations

A framework is defined in this research as a large-scale re-usable design that shows how

interacting components of a software system are composed together (Johnson 1997). Several

frameworks have been proposed for creating cinematic content using game-engines. Notable

frameworks include the SAIBA framework (see Section 2.6.1), the Zuzen framework and the

Zocalo (Mimesis) framework (Young et al. 2004; Kopp et al. 2006). This section provides a

brief generalisation of these frameworks.

Figure 4.1: A generalised overview of frameworks for generating

pre-visualisations (Young et al. 2004; Jhala and Young 2006).

Figure 4.1 illustrates a generalised framework for generating pre-visualisations using game-

engines. The components of the framework are organised in three layers. The layers

communicate with each other using the Extensible Markup Language (XML) via TCP/IP

Chapter 4: Design and Implementation

 96

connections. The layers include the user interface layer, the planning layer and the realisation

layer. The following paragraphs discuss the framework from the bottom up.

The realisation layer is responsible for generating the pre-visualisation based on control

language commands supplied by the planning layer. The realisation layer contains a

rendering-engine that is responsible for generating the final output of the pre-visualisation.

The data required by the rendering-engine is obtained from a data source which contains

character models, prop models, set models, sounds, animations and textures. The realisation

layer also contains a recorder component that captures the pre-visualisation and stores it on a

file server. The user interface layer loads the pre-visualisation so that it can be viewed by the

user. The BML Realization System and SmartBody are examples of realisation engines that

can be used in the realisation layer (Thiebaux et al. 2008; Aleksandra Čereković, Tomislav

Pejša and Igor Pandžić 2010).

The planning layer is responsible for processing action instructions and camera instructions

from the user interface layer in order to produce control language scripts that can be processed

by the components in the realisation layer. The planning layer contains a planner and a

controller. The planner is responsible for processing high level action instructions and camera

instructions in order to schedule the commands into a plan that can be interpreted by the

controller component. Action instructions are used to control the behaviour of the characters

in each scene. Camera instructions are used to specify the shots for each scene. Typically, the

instructions are at a high level, e.g. “move to X” and “close-up shot of Y”. The planner can

also process underspecified plans using domain knowledge and guidelines in order to generate

complete plans. Darshak is an example implementation of such a planning component (Jhala

and Young 2006). It accepts a sequence of commands and uses a planning algorithm to

generate a complete plan that depicts what each character, prop and camera does throughout

the pre-visualisation. The planning layer also contains a controller that converts the plan into

a set of commands that can be processed by the realisation layer.

The user interface layer provides the user with a way of interacting with the tool in order to

author the pre-visualisation. A GUI is provided that generates action instructions and camera

instructions for the next layer. MWorld is an example GUI component which is used in the

Zocalo framework (Young et al. 2004). The Unreal Tournament 2003 game-engine was

modified in order to create the MWorld authoring GUI for the Zocalo framework. Longboard

is another example GUI that is used within the Zocalo framework. It provides the user with a

Chapter 4: Design and Implementation

 97

sketch-based storyboarding tool for authoring pre-visualisations. Section 2.6.2.4 provided a

review on the features provided by Longboard and similar approaches.

Existing GUI components for the user interface layer employ drag and drop interfacing

techniques. Furthermore, storyboarding interfaces (such as Longboard) do not interpret the

sketches created by the user in order to understand the 3D context of each scene. This

research aims to contribute by investigating how sketch-based storyboarding GUIs can be

improved by applying methods from Computer Graphics and Computer Vision. A framework

for such a GUI is proposed in the next section.

4.3 A Framework for a Sketch-based Storyboarding GUI

This research proposes a framework called SISPA (Storyboarding Interface for Sketch-based

Pre-visualisation Authoring) for the user interface layer in order to support sketch-based pre-

visualisation authoring using a storyboarding approach. Figure 4.2 illustrates the proposed

framework.

Figure 4.2: SISPA: A framework for sketch-based pre-visualisation

authoring using a storyboarding approach.

Chapter 4: Design and Implementation

 98

SISPA has four main components, namely the Data Manager, the GUI, the Data Collection

component and the 3D context component. Each component is made out of several

subcomponents. This chapter discusses the design and implementation of these components

and subcomponents.

At the core of the framework is the Data Manager. It is responsible for transferring data

between the Data Collection component, the GUI and the Planning Layer. The Data

Collection component (see Section 4.4) involves storing data from the environment and from

the project being authored. Environmental data includes the script, 3D models and animations

for characters and props, GUI data, and computer vision training data. Project data includes

user provided data for authoring the pre-visualisation, e.g. shooting strategies, storyboards

and sketches.

The GUI component (see Section 4.5) provides the user with a touch-friendly sketch-based

GUI for storyboarding and staging. The GUI component has a Multi-touch Module for

processing touch input and gestures. It also contains a Component Model which includes a

framework of GUI controls that allow the user to interact with the tool. The Navigator is

responsible for controlling the navigational flow between the various parts of the GUI. This

includes a Storyboard Editor and two sketching interfaces. The first sketching interface is the

Floor Plan Editor. It allows the user to create floor plans in order to diagram the shooting

strategy. The second sketching interface is the Sketch Editor which allows the user to sketch

the individual storyboard panels.

The framework contains a 3D Context component (see Section 4.6) which provides a 3D

context to the floor plan editor and the Sketch Editor. The 3D Context component contains a

Computer Graphics Module which allows the user to work directly on the 3D virtual

environment. It also contains a Computer Vision Module which is responsible for interpreting

the user’s sketches.

4.4 Data Collection

The data collection component of the SISPA framework models environmental data and

project data. The environmental data includes all the data required for the GUI to function and

render the required assets. The user’s project data includes all the data entered by the user in

order to author the pre-visualisation, e.g. shooting strategy and storyboard sketches.

Chapter 4: Design and Implementation

 99

Figure 4.3: The Environmental Data Model.

The Environmental Data Model is illustrated in Figure 4.3. The environment includes a script,

assets, GUI data and computer vision training data. The script contains a collection of action

and dialogue elements. The assets are represented by 3D models. These include 3D models

for sets, characters and props (see Figure 4.4). GUI data include the icons and images for

functions and GUI controls. The computer vision training data includes codebooks required

for recognising and props estimating the pose of 2D symbols (such as characters, shots and

emotions) and 3D props (see Section 4.6). The environmental data is represented using the

Extensible Markup Language (XML). Appendix B provides an example of the XML

documents used to store references to script data, assets and training data.

Set Character Prop Prop

Figure 4.4: Example assets that form part of the environment.

The Project Data Model represents the user’s project data in terms of the script (see Figure

4.5). The script is structured in terms of scenes and dramatic blocks as discussed in Section

2.3. Each dramatic block is associated with a single floor plan and a single storyboard.

The floor plan is used to create the shooting strategy for a particular dramatic

block (see Section 2.4). It illustrates where the action takes place as well as the required props

and characters. The character blockings, camera shots and motion paths are indicated on the

floor plan. The floor plan also requires the user to associate each shot with the characters that

appear in it.

Chapter 4: Design and Implementation

 100

Figure 4.5: The Project Data Model.

The storyboard for a particular dramatic block contains several storyboard panels. Each

storyboard panel is associated with several action/dialogue script elements which describe the

character action and narrative content of the corresponding shots. If a storyboard panel is

sketched by the user then it also contains a layer for each prop and character. This allows the

user to sketch and edit the individual props and characters separately. It is important to note

that the layering concept allows sketched objects to be separated so that each object can be

recognised and posed individually (see Section 4.6).

The project data model influences the design of the GUI. The navigation between the various

components of the GUI should support the logical structure of the user’s data. The next

section will discuss the design of the overall GUI, the navigational flow between its

subcomponents and the design of each individual subcomponent.

4.5 Graphical User Interface Design

This section discusses the design of the proposed sketch-based GUI for authoring pre-

visualisations using a storyboarding approach. The GUI is designed to be used on touch-

enabled tablets that allow users to create and annotate sketches using a stylus. The GUI is

implemented and evaluated on the Asus EEE EP121 (see Table 4.1 and Figure 4.6.)

Table 4.1: Important specifications of the Asus EEE EP121 tablet.

Feature Specification

Processor Intel Core i5 470um, 1.33 GHz

Memory (RAM) 4 GB

Graphics Acceleration Integrated, 166 MHz

Stylus-enabled Yes

Multi-touch support Two points, Capacitive

Display 12.1" LED Backlight WXGA Screen

Chapter 4: Design and Implementation

 101

Figure 4.6: The Asus EEE Slate EP121 used for prototyping (Asus 2012).

This section begins by discussing the look and feel of the GUI. It also discusses the design

considerations taken into account in order to take advantage of the tablet’s support for multi-

touch interaction. The section continues by discussing the overall layout of the

subcomponents of the GUI and how the user navigates between them. It also discusses the

functions each subcomponent supports. In particular, it focuses on the subcomponents that

support sketch-based input. This includes the floor plan editor and the storyboard editor.

4.5.1 Look and Feel

Existing pre-visualisation authoring GUIs make use of traditional WIMP interfaces, e.g.

animation and modelling tools (see Section 2.6.2). Furthermore, sketch-based pre-

visualisation authoring tools, such as Longboard, also follow this design approach. The

problem with the approach is that the traditional WIMP design approach works well for

desktop user interfaces but it does not work well for touch-based user interfaces that operate

on portable touch enabled devices such as tablets. The sketch-based design proposed by this

research aims to contribute by designing for a touch-enabled portable device that can support

sketch-based storyboarding. The design is touch-friendly and supports several of the gestures

provided by smartphones and tablets (McKenzie 2011; Nielsen et al. 2003). The User

Interface (UI) design includes a multi-touch module for recognising the user’s gestures.

Figure 4.7 (a-g) illustrates the gestures that the user can use to interact with the UI. The multi-

touch module supports taps, single finger gestures and double finger gestures. The

implementation of the multi-touch module is discussed in Section 4.7.3.3.

Chapter 4: Design and Implementation

 102

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: Touch gestures for performing a (a) Tap (b) Horizontal flick/scroll (c) Vertical

flick/scroll (d) Drag (e) Spread/enlarge (f) Pinch/shrink (g) rotate.

The component model is designed to provide UI components that appear similar to ones used

by the well adopted and touch-friendly iOS and Android operating systems (Gadhavi and

Shah 2010). The design supports touch interaction by limiting the minimum size of all the UI

components that can be interacted with. The icons are large enough for the user to touch

comfortably using a single finger. The design also takes a minimalistic approach by avoiding

unnecessary lines, bevels and nested panels that are often seen in traditional WIMP interface

designs. The user is provided with touch feedback in the form of animations and component

highlighting effects. Appendix C provides a summary of the touch gestures used for

manipulating objects and navigating throughout the GUI. The design of the Component

Model is illustrated throughout this section using screenshots of the final design.

4.5.2 Interface Layout and Navigation

The subcomponents of the GUI are organised within three layers as shown in Figure 4.8.

These layers include the story layer, the dramatic block layer and the shot layer. The

granularity of the user’s view of the story depends on the currently active layer. The story

layer provides an overview of the entire story. The dramatic block layer provides the user

with access to all the assets for that particular dramatic block. This includes the relevant script

segment, the floor plan with the shooting strategy and the storyboard. The shot layer provides

the user with access to the individual storyboard panels which represent the individual shots

in the shooting strategy. The user can navigate between the various layers using the spread

gesture, the pinch gesture and the zoom “in/out” buttons. Tapping the “zoom in” button at the

bottom right of each screen, or using the spread gesture, zooms in to view the story at a finer

granularity. Similarly, using the pinch gesture, or tapping on the “zoom out” button, views the

story at a courser granularity.

The story layer contains a single screen, namely the story viewer. This screen provides the

user with a list of scenes and dramatic blocks in order to illustrate an overview of the story. It

Chapter 4: Design and Implementation

 103

also allows the user to navigate to a particular dramatic block. This is done by selecting the

dramatic block by tapping it once. Using the spread gesture, or tapping the “zoom in” button,

will take the user to the layer for the selected dramatic block.

Figure 4.8: GUI layout and navigation.

The dramatic block layer contains the script viewer, the floor plan editor and the storyboard

editor. The screens are organised around a conceptual cylinder. The user can rotate the

screens around the cylinder from left to right or vice versa using the flick gesture. The GUI

indicates neighbouring screens using tabs to the left and right edges of the device’s display.

The script viewer shows the part of the script for the current dramatic block. The floor plan

editor allows the user to diagram the shooting strategy for the current dramatic block. The

storyboard editor can be used for adding, removing and rearranging storyboard panels. An

individual storyboard panel can be selected by tapping its image. If a storyboard panel is

selected then the user can navigate to the next layer using the “zoom in” button or the spread

gesture.

The shot layer contains the Sketch Editor. It allows the user to visualise a specific storyboard

panel and edit it. The Sketch Editor provides a sketching interface for sketching the individual

storyboard panels. It can also extract information from the user’s sketch using algorithms

from computer vision (see Section 4.6) in order to create a 3D pre-visualisation of the

particular shot.

Chapter 4: Design and Implementation

 104

The overall layout of the user interface supports the logical structure of the user’s data. This

makes it easier for the user to quickly navigate to the various parts of the story. The remaining

subsections discuss the subcomponents of the GUI in greater detail. The components that only

require touch-based interaction are briefly discussed. This includes the story viewer, the script

viewer, and the storyboard editor. A detailed discussion is provided about the design of the

subcomponents requiring sketch-based input. This includes the floor plan editor and the

Sketch Editor.

4.5.3 Story Viewer and Script Viewer

The Story Viewer provides a way of navigating between the dramatic blocks of the story. It

shows a two-level hierarchical list of the story. The first level lists the scenes of the story in

alphabetical order. The second level lists the dramatic blocks for each scene numerically. It

also provides a “delete” button for clearing all the data for the current project. A confirmation

dialogue box appears to confirm the deletion in order to prevent accidental data loss.

The Script Viewer displays the part of the story’s script for the current dramatic block. It

provides a list of items for illustrating action and dialogue (see Section 2.3). These items can

be used to populate the action/dialogue entries of the individual storyboard panels. The need

for entering text into the tablet is therefore removed. This design decision is based on the fact

that entering text on portable touchscreen devices is difficult due to the lack of tactile

feedback (Hoggan, Brewster and Johnston 2008).

4.5.4 Storyboard Editor

The Storyboard Editor shows the storyboard for the current dramatic block (see Figure 4.9). It

allows the user to add new, blank storyboard panels and remove existing ones using the “add”

button (plus) and the “remove” button (cross) respectively. Removing a storyboard panel also

removes the corresponding shot in the floor plan. The user can add action/dialogue elements

to each storyboard panel. This is achieved by tapping a panel to select it and then tapping the

“dialogue” button (speech balloon) in order to show the script fragment selection dialogue

box. The user selects the script fragments that are to be placed into the dialogue/action area of

the storyboard panel. The user can also rearrange the storyboard panels using the arrow

buttons.

Chapter 4: Design and Implementation

 105

Figure 4.9: A screenshot of the storyboard editor.

The currently selected storyboard panel determines which action/dialogue list box can be

scrolled (shown with a blue scrolling indicator). The entire storyboard cannot be scrolled

while a storyboard panel is selected (its scrolling indicator is greyed out). The user is required

to deselect the currently selected storyboard panel so that the scrolling indicator for the entire

storyboard activates. This design decision was made because informal testing showed that it

was difficult to scroll if both the storyboard and the storyboard panels received scroll input.

4.5.5 Floor Plan Editor

Directors and storyboard artists visualise the staging and shooting strategy for each dramatic

block by sketching overhead views called floor plans (see Section 2.4). They are used to

illustrate the contents of the set. Floor plans also illustrate the movements of the characters

and the camera on the set. The Floor Plan Editor allows the user to sketch props directly on an

interactive top-down view of the 3D virtual environment as shown in Figure 4.10. It also

allows the user to sketch the shooting strategy by annotating the floor plan. The annotations

are used to indicate character blocking and camera movement. The Floor Plan Editor has three

parts. It has an interactive editor that supports sketching and touch-based manipulation, a

toolbar at the bottom of the screen and a list of props placed at the right of the screen.

Chapter 4: Design and Implementation

 106

Figure 4.10: A screenshot of the floor plan editor.

The tool bar provides several tools for manipulating objects on the floor plan. It has two

sketching modes, a colour chooser, an eraser toggle, a “pan/zoom” toggle and a rotation

toggle. The “design” sketching mode is used for sketching props in order to design the set.

The “annotate” sketching mode is used for annotating the script in order to perform the

staging for the dramatic block. The colour chooser allows the user to specify the colour of a

prop. This is important for a pose estimation algorithm that will be discussed in Section 4.6.6.

The eraser is useful for erasing props, symbols and parts of sketches. The “pan/zoom” toggle

instructs the floor plan editor to use touch input to move objects and change the view of the

set instead of navigating to other components of the GUI. The rotation toggle is similar to the

movement toggle except that it is used for rotating objects. The “pan/zoom” toggle and the

rotation toggle are mutually exclusive.

The prop list can be used to add a new prop. This is achieved by tapping the “add” button

(plus). The new, blank prop is shown in the list but not on the floor plan. This is because the

3D model of the prop is unknown. While in the “design” sketch mode, the user sketches the

prop as it would be seen from the top-down view (see Figure 4.11 (a)). An object recognition

Chapter 4: Design and Implementation

 107

algorithm recognises which prop has been sketched and shows a progress bar below the prop

in the list. The user’s sketch is substituted with a 3D model and placed in the 3D virtual set

when the algorithm finishes. The prop is stacked on top of another prop if the user sketched

them overlapping, e.g. a bowl on a table. A prop can be selected by tapping on it on the floor

plan or in the prop list. The selected prop can be removed by tapping the “remove” button

(minus). If the incorrect prop is recognised then the user can select the prop and change it to

the correct prop by tapping the “change” button. A list of candidate props is shown from

which the user can select the correct prop.

(a) Prop (b) Shot (c) Character

Figure 4.11: Sketches with their matching objects.

The user can sketch the shooting strategy for the current dramatic block by changing the

sketching mode to “annotate”. The user can add new annotation symbols by sketching directly

onto the floor plan without adding the symbols explicitly using a button. The purpose of the

prop list is to allow the user to sketch and select props that overlap each other. It is assumed

that shots and characters never overlap. This design prevents the user from having to manage

two lists or mixing annotation symbols with props in the same list. To indicate a new shot, the

user sketches the shot symbol as shown in Figure 4.11 (b). An object recognition algorithm

recognises and places the shot on the floor plan. An animated spinning donut provides

feedback to the user while the algorithm is running. Similarly, the user can add character

blockings by sketching character symbols on the floor plan as shown in Figure 4.11 (c). The

user is prompted to select the desired character when a character symbol is recognised. Shots

and character blockings can be connected with paths in order to indicate motion, as shown

in Figure 4.10.

Solid blue paths indicate character motion and dashed blue paths indicate camera movement.

Sketching a path from a camera symbol to a character symbol, or vice versa, associates the

shot with the character blocking. The association is visualised with a straight grey line

connecting the camera symbol and the character symbol. This is useful for specifying in

which shots the characters appear. Moving or erasing connected shots or character blockings

removes all the connected motion paths and associations. The tool automatically adds the

Chapter 4: Design and Implementation

 108

corresponding storyboard panels to the storyboard for each shot indicated on the floor plan.

Each storyboard panel shows the 3D scene with the indicated props and characters. The shots

and corresponding storyboard panels are automatically numbered and managed. The shot

numbers are automatically updated when adding new shots, removing existing shots and

reordering shots.

4.5.6 Sketch Editor

The Sketch Editor provides the user with a sketching interface for sketching the individual

panels of the storyboard. The user begins with a blank sketch and then sketches the props seen

in the shot. The props are recognised and then positioned and orientated in a 3D space. The

tool can be used for establishing the position and orientation of the camera automatically once

all the props have been recognised. The design also allows the user to work with a storyboard

panel with a known camera. When the position and orientation of the camera are known then

the user can sketch the characters that are visible in the shot. Their body posture and

emotional expressions are extracted directly from the user’s sketches. The Sketch Editor also

allows the user to manually adjust the camera using touch gestures. It is possible to sketch

props directly onto the 3D visualisation of the scene in order to add additional props. This

section will discuss the various tools offered by the Sketch Editor for sketching new shots,

adding characters and adjusting existing shots.

4.5.6.1 Sketching New Shots

The overall design of the Sketch Editor is similar to the Floor plan Editor. It has an interactive

editing area that supports sketching and touch-based manipulation, a toolbar at the bottom of

the screen and a list of layers at the right of the screen (see Figure 4.12). The Sketch Editor

can be used to sketch a new storyboard panel from a blank sketch. The user begins by adding

a new prop layer. The GUI shows a screen with a list of possible layer options. The options

include a layer type for props and a layer type for each character in the story. The user taps

the “accept” button after selecting the layer type for a new prop. A blank layer entitled

“unknown prop” is added to the list of layers on the right side of the screen. The user sketches

the prop as it should appear in the shot. Each prop and character is sketched on a separate

layer. The colours of each prop layer should match the colour of the corresponding props in

the floor plan. This UI design is a performance related requirement of the camera estimation

algorithm (see Section 4.6.6).

Chapter 4: Design and Implementation

 109

Figure 4.12: A screenshot of the Sketch Editor for sketching a new shot.

The Sketch Editor supports four sketching modes. The solid pencil is used for sketching the

final version of each layer. The final version of a layer is used for recognising the object and

estimating its pose. The draft pencil is used for quickly drafting the contents of the layer. This

makes it easier to sketch the final version of the layer. The fill pencil allows the user to add

shading to the layer. Complete sketches of each prop and character are required by the

computer vision algorithms discussed in this chapter. To make it easier to visualise the sketch,

the fill pencil can be used to “colour in” parts of a layer that should occlude layers below it.

For example, the blue chair is closer to the viewer than the red table. Both objects have been

completely sketched but the chair appears to block the view of the corner of the table. The

emotion pencil is used to sketch the facial expressions of the characters. It is only visible

when the selected layer is a character (see Figure 4.13).

The toolbar at the bottom of the screen also shows several tools. The sketch mode chooser

allows the user to change the current sketching mode. The colour chooser is used to specify

the colour for the currently selected layer. The user can use the stylus to erase parts of the

currently selected layer if the eraser is toggled. The eraser will erase strokes that match the

Chapter 4: Design and Implementation

 110

current sketching mode. For example, if the sketching mode is set to drafting then the eraser

will only erase draft strokes. Solid strokes, fill strokes and emotion strokes will not be erased.

The “pan/zoom” function is similar to the one provided by the floor plan editor. The toolbar

contains a ruler toggle and two layer ordering buttons. The ruler allows the user to draw

straight line segments easily. Layers can be reordered by tapping the “move forwards” and

“move backwards” buttons.

An algorithm processes each layer after the user finishes sketching. It begins five seconds

after the last stroke is added to the layer. If the user continues sketching while the algorithm is

running then the algorithm is interrupted. It then waits another five seconds after the user

finishes making the change. The user’s sketch can be converted into a 3D visualisation of the

shot once all the layers have been sketched and processed.

The camera estimation algorithm is called once the user taps the “3D” button. A list of ranked

candidate shots is presented to the user. The shots are ranked on the quality of the estimated

camera. The storyboard panel’s background changes to a view of the 3D scene when the user

selects the desired shot. The user can select an alternative shot by using the “change” button

and selecting a different candidate shot. Figure 4.13 shows a screenshot of the 3D shot

generated for the sketch provided in Figure 4.12.

4.5.6.2 Adding Characters

Characters can be added to the shot once the 3D context of the camera is known. Storyboard

artists often begin sketching characters by sketching simple stick figures to plan their posture

and proportions. The artist then “fleshes out” the stick figure in order to sketch a complete

character (see Section 2.5.3). The Sketch Editor allows the user to add characters to the 3D

scene by indicating their body posture and position on the set using stick figures. To do this,

the user adds a new character layer. The tool provides a list of options, showing a “prop”

option and an option for each character. Selecting the desired character adds a new character

layer for the character. The user can sketch the character’s stick figure using the solid pencil.

The eraser can be used for erasing parts of the stick figure. An algorithm analyses the stick

figure as it is sketched. The character is then placed in the shot with the indicated posture

when the stick figure is completed. The stick figure changes from a uniform black colour

scheme to a red, blue and black colour scheme. If the character posing algorithm recognises

the stick figure correctly then the red part of the stick figure indicates the character’s right half

Chapter 4: Design and Implementation

 111

and the blue side indicates the character’s left half. The character is assumed by default to

face the camera.

Figure 4.13: A screenshot of the Sketch Editor for adding a character.

In order to sketch characters that are facing away from the camera, the user can enable the

“flip” toggle. This will interchange the red and blue colours of the stick figure and turn the 3D

character model 180⁰ on the set. Characters that are added in the Sketch Editor are also

automatically added to the floor plan for the dramatic block if they do not exist yet.

The facial expressions of each character can be specified using the emotion pencil to sketch

the character’s facial expression as shown in Figure 4.13. Emotion strokes are indicated in

blue and they are associated with the layer for the particular character. The user illustrates the

expression by sketching an emotion symbol on the character’s face. Figure 4.14 shows the

default emotion and three example emotions. An algorithm processes the sketched emotion

symbol to determine which emotion was sketched. The texture of the 3D character model is

updated to reflect the facial expression on the character’s face. The current GUI

implementation supports a default facial expression and three facial expressions (happy, sad

Chapter 4: Design and Implementation

 112

and angry) for each character. The emotions can be extended by providing additional training

data and corresponding emotion textures for the 3D models.

Default Happy Sad Angry

Figure 4.14: Example facial expressions with their matching emotion symbols.

4.5.6.3 Adjusting Shots

The Sketch Editor also allows the user to adjust an existing shot for which the camera is

already known. Figure 4.15 shows a screenshot of the Sketch Editor showing the same 3D

scene but from a different view. The toolbar provides a “rotate camera” toggle and a “move

camera” toggle that can be used to rotate the camera and move the camera in 3D space

respectively.

Figure 4.15: A screenshot of the Sketch Editor for adjusting an existing shot.

Chapter 4: Design and Implementation

 113

Camera rotation is in the opposite direction to the drag direction. For example, if the user

drags the viewing area to the left then the camera will rotate to the right. This design is

consistent with the way the user pans the view in the floor plan editor. The spread gesture will

move the camera forwards and the pinch gesture will move the camera backwards. Similarly,

if the “move camera” toggle is enabled then dragging the viewing area will move the camera

within the current viewing plane. The movement of the camera is in the opposite direction to

the drag gesture. Spreading and pinching while moving the camera will also move the camera

forwards and backwards.

The user can also sketch props directly onto a storyboard panel with a known 3D camera.

This can be done by adding a new prop layer and sketching the prop as it should appear in the

shot. The layer is marked as temporary with a “temp” icon. An algorithm recognises and

places the prop in the virtual set when the user finishes sketching the prop. It intelligently

places the prop so that props can be stacked or placed on the ground. For example, drawing a

bowl on the table will result in the prop being positioned on the table’s surface as shown

in Figure 4.15. The temporary layer is removed after the prop is placed in the 3D set. Props

and characters that are added using the Sketch Editor are automatically added to the floor plan

for the relevant dramatic block. Characters are also automatically associated with the relevant

shot for the storyboard panel.

4.5.7 Discussion

Existing GUI designs for authoring pre-visualisations employ traditional WIMP user

interfaces that follow the point-and-click interaction approach. It was mentioned in

Section 2.6.3 that this method does not intuitively fit into the pre-production phase because its

activities mainly involve writing, diagramming and sketching. Existing sketch-based GUIs,

such as Longboard, do not automatically interpret sketches and they do not fully support the

multi-touch environment provided by today’s multi-touch portable devices (Jhala et al. 2008).

This section discussed a GUI design that provides a touch-friendly environment for sketching

floor plans and storyboards in order to author pre-visualisations. The sketch-based GUI is

designed to be similar to traditional paper-based approaches in order to allow the user to

sketch floor plans and storyboards quickly and easily. A stylus can be used to sketch a

storyboard directly on a tablet computer (see Figure 4.6) and use gestures to move and resize

the viewing area of the storyboard “page”. The design is also structured around the activities

Chapter 4: Design and Implementation

 114

performed during the pre-production phase. This supports GUI navigation that is logical to the

user.

Several algorithms are required in order to provide the user with a sketching environment that

is capable of interpreting user sketches. These include algorithms for recognising the 2D

symbols and 3D objects that the user sketches. It also includes algorithms for estimating the

location of each object, orientating it, and determining the camera parameters required in

order to obtain the shot sketched by the user. Algorithms for posing and positioning

characters from stick figures are also required in order to support the GUI design. The next

section discusses the design of these algorithms and how they are used by the GUI.

4.6 Algorithm Design

The different types of elements that are required to be interpreted in order to author

minimalistic pre-visualisations were discussed in Section 2.9. This section discusses the

design of the algorithms required by the Computer Vision Module in order to interpret

sketches containing these elements. It begins by identifying the key requirements for

interpreting the user’s sketches in order to support the elements for minimalistic pre-

visualisation authoring. It provides a brief discussion on how vector data and raster data is

converted, and continues to discuss several approaches for describing sketches. A discussion

on the approach used to recognise objects from user sketches is then provided. Methods used

for estimating the pose of props and characters are discussed for known shots and unknown

shots. The algorithm design is concluded with a discussion on estimating the camera from a

user’s sketch.

4.6.1 Requirements for Interpreting Sketches

The Computer Vision Module is required to automatically interpret floor plans and

storyboards. Table 4.2 summarises the different types of objects that should be interpreted.

These include the symbols, props and characters. The algorithms used by the Computer

Vision Module are required to reliably describe, recognise and pose objects sketched by the

user within a reasonable amount of time (a few seconds or less with the hardware discussed in

Section 4.5). The image description method used should be invariant to changes in the

translation, scaling and rotation of the image. Local feature correspondences are required in

order to estimate the orientation and location of the 3D props found in storyboard sketches.

Chapter 4: Design and Implementation

 115

The Computer Vision Module is also required to estimate the location and orientation of the

camera from the user’s sketch.

Table 4.2: Objects that are required be interpreted by the Computer Vision Module.

Object Space Type of Body Requirements

Floor plan symbol 2D Rigid
Recognise the symbol and estimate its 2D

orientation and location.

Floor plan prop 2D Rigid
Recognise the prop and estimate its 2D

orientation and location.

Storyboard symbol 2D Rigid Recognise the symbol.

Storyboard prop 3D Rigid
Recognise the prop and estimate its 3D

orientation and location.

Storyboard

character
3D Articulated

Estimate the 3D location and orientation of

the character and orientate its body parts.

4.6.2 Raster Representations and Vector Representations

The algorithms discussed in this section make use of raster-based representations and vector-

based representations. A raster image is represented by a grid of pixels. Photos are often

stored using raster images because they are capable of illustrating fine details and textures.

The disadvantage of the approach is that pixelisation anomalies occur when raster images are

transformed. Vector images do not suffer from this problem because they are represented

using geometric shapes, polygons and curves (Hill and Kelley 2007). The sketches created

using the sketching components discussed in Section 4.5.5 and Section 4.5.6 are represented

in a vector-based format. The user’s strokes are represented by collections of line segments

called edgels (Shotton et al. 2008). Some of the algorithms discussed in this section operate

on edgels and other algorithms require them to be sampled into a raster image. This

subsection discusses how the Computer Vision Module is designed to convert between the

two image representations.

4.6.2.1 Sampling Edgels from a Raster Image

Edgels are extracted from raster images by applying two steps:

Step 1. Apply a series of image filters to create an edge map.

Step 2. Apply an edge tracing algorithm to find the edges.

Image filters are applied to the original raster image to create an edge map (see Section 3.3.2).

The edge map indicates where the edges are in the original raster image. The value for each

individual pixel of an edge map provides a measure of the strength of the edge response at the

Chapter 4: Design and Implementation

 116

pixel location. The original image is converted into a floating point greyscale image. The

Laplacian filter used by the Marr-Hildreth edge detector is then applied to the greyscale

image (Marr and Hildreth 1980). This produces a raster image that has negative values and

positive values along edge responses. Pixels that have near-zero values are non-edge

responses. The absolute magnitude of the pixel intensity indicates the strength of the edge

response at that location. The resulting edge map is blurred slightly using a bilinear image

filter. This reduces the noise of the image and thickens the edges. If an edge response is in the

interval of [] or [] then the pixel value is set to one, otherwise it is set to

zero. The resulting edge map is blurred using the bilinear filter in order to reduce noise and

thicken the edges. Figure 4.16 (b) shows the edge map that is obtained by applying the series

of filters on the original grey scale raster image obtained from Figure 4.16 (a).

(a) Original Image (b) Edge Map (c) Traced Edgels

Figure 4.16: Sampling edgels from a raster image.

The next step is to extract the edgels from the edge map. This is achieved by tracing the edges

in the edge map. Figure 4.16 (c) illustrates the edgels identified from the edge map provided

in Figure 4.16 (b). The design of the Computer Vision Module includes an edge tracing

algorithm. It calls a tracing subroutine for each non-zero pixel of the pixel map. The

subroutine starts at a particular pixel location and adds edgels to an edgel collection as it

follows the pixels with strong edge responses along on the edge map. It also clears the pixels

it encounters on the edge map as it progresses. This prevents the algorithm from iterating

indefinitely and it also reduces the tracing time required. The trace subroutine considers a

pixel and then erases a small area of pixels around it. The subroutine then considers the local

region of non-zero pixels in order to find pixels with strong edge responses. The candidate

edgel is the line segment connecting the current pixel to the candidate pixel. Each candidate

pixel is scored on the quality of the candidate edgel. An error value measures how

perpendicular the candidate edgel is to the image gradient and how parallel the candidate

edgel is to the previously found edgel. The candidate edgel with the lowest error is selected

and the subroutine continues from the end of the selected edgel until no further candidate

Chapter 4: Design and Implementation

 117

edgels can be found. The edge tracing algorithm produces a set of edgels while minimising

tracing anomalies such as zigzags.

4.6.2.2 Sampling a Raster Image from Edgels

Some of the methods applied in the design of the Computer Vision Module, such as SIFT,

require raster-based input (see Section 3.3.3). The problem is that the sketches recorded by

the sketching components of the GUI represent the user’s sketches using a collection of

edgels. It is therefore necessary to sample a raster-based representation of these edgels in

order to take advantage of raster-based computer vision methods. This is achieved by

sampling a raster image from the edgels. This is achieved in two steps:

Step 1. Place and orientate a rectangular grid or elliptical grid over the edgels.

Step 2. Set the intensity of each pixel of the raster image by measuring the distance

from the corresponding grid cell to the closest edgel.

The first step involves placing a grid over the edgels. The grid can be a rectangular

arrangement of cells organised in rows and columns or an elliptical arrangement of cells

organised in tracks and sectors (see Section 3.3.3.2).

The second step is to calculate the intensity of each pixel in the raster image. The distance

from the centre of a cell to the nearest edgel used to determine the pixel value for the cell.

Figure 4.17 illustrates how the distance from each cell of a rectangular grid arrangement is

used to calculate the pixel intensities.

Figure 4.17: Sampling a raster from edgels.

The intensity of each pixel is calculated using Equation (4.1) and Equation (4.2) where is the

value of the pixel, is the distance from the cell’s centre to the closest edgel, is the

maximum distance to an edgel and is a measure of the sharpness of the raster edges. The

raster is sampled at a higher resolution and then reduced to a lower resolution in order to

improve the quality of the resulting raster image and reduce aliasing anomalies which are

caused by low resolution sampling. The parameters and are used to control the thickness

Chapter 4: Design and Implementation

 118

and smoothness of the raster representation of each edgel. Smaller values for produce

thinner edges and larger vales of produce sharper edges. These parameters depend on the

requirements of the object recognition algorithm and the limitations of the hardware.

 {

 (4.1)

 (

)

 (4.2)

4.6.3 Approaches for Describing Sketches

Many of the approaches discussed in Section 3.3 are aimed at processing textured images.

The problem is that the sketches provided by the user are outlined and not textured. An image

description method is therefore needed to describe the user’s sketches and fulfil the

requirements identified in Section 4.6.1.

This section discusses the design of several approaches for describing user sketches. Figure

4.18 provides an overview of all the methods and variations investigated during the design of

the Computer Vision Module. The green positive blocks show the strengths of each variation

and the red negative blocks show their weaknesses. Three overall approaches were

investigated. This includes a contour-based method, two part-based approaches and several

grid-based methods. The approach implemented by the Computer Vision Module is a

combination of the most suitable approaches.

4.6.3.1 Contour-based Approach

The first approach is to use the distance function discussed in Section 3.3.3.3. The distance

function measures the distance from the centre of the sketched object to the points along its

contour. distances are sampled between the angular interval of [] . The distance

function is transformed into the frequency domain using the one dimensional Discrete Fourier

Transform in order to approximate the contour and reduce the dimensionality of the

descriptor (D. Zhang and Lu, 2002). The descriptor consists of a histogram of the Fourier

transformation coefficients. The coefficients are calculated using the equation

∑ ()

 ⁄

 where is the number of points on the shape and is the

imaginary unit number.

Chapter 4: Design and Implementation

 119

Figure 4.18: Overview of image descriptors investigated during the algorithm design process.

Chapter 4: Design and Implementation

 120

A query image is compared with a candidate image by comparing their descriptors. Contour-

based descriptors can be compared with () time, where is the number of bins each

descriptor contains. The method is therefore very fast. It is not rotationally invariant;

however, if is kept small then the query image descriptor can be resampled for a number of

rotations in order to minimise the distance between the descriptors and determine the rotation

parameter. If is the number of rotations considered, then the rotationally invariant variation

of the contour-based approach therefore runs in () time.

The problem with the overall approach is that it only considers the contour of the user’s

sketch. It cannot, for example, distinguish between a double-seat couch and a triple-seat

couch when the edgels of both images are normalised into a unit square. The approach does

not meet the requirements specified in 4.6.1, namely robust description and scale invariance.

4.6.3.2 Part-based Approach

The second approach is to extract internal details and contour-based features using the part-

based object recognition approach proposed by Shotton et al. (2008) for structural region-

based shape description. The descriptor provides a way of describing the various parts of an

image. The parts are allowed to be disjoint and incomplete and contain internal detail. Each

part is a cluster of contour fragments. A contour fragment is a cluster of edgels that are

similar in location and appearance. The Orientated Chamfer Distance (OCD) is used to

compare the appearance of the edgels in order to create contour fragments (see

Section 3.3.3.3). The contour fragments are clustered together based on their location using

the k-medoids clustering algorithm which uses () time. The total time required for

creating a descriptor for each training image is therefore worse than (), where is the

number of edgels and is the number of contour fragments. The approach does not require a

descriptor to be created for each query image. Instead, the query image is searched for the

expected parts from a training image. This is achieved by sampling the edgels from the query

using sliding windows of various sizes. The edgels of the training window are then compared

with the edgels of each training image part using the OCD metric. Shotton et al. trained a

classifier using an evolutionary algorithm in order to determine if the parts found in the query

image match the parts in the training image adequately. This is problematic because it

requires a representative sample of sketches in order to train the classifier. Instead, a heuristic

classifier was designed for this research.

Chapter 4: Design and Implementation

 121

Consider Equation (4.3) and Equation (4.4). is the probability of a query image with

parts to be correctly associated with the parts of a candidate image. is the OCD from the

 query part to the candidate part and
 is the expected OCD. is used to control

the error tolerance when classifying parts as correct or incorrect. is a classification

parameter that controls the shape of the probability function. High values of allow

probabilities around 50% to be widely spread and probabilities close to 0% and 100% to be

compact. The part-based image description approach becomes more robust as increases.

 , where (4.3)

 ∑

()

 and {

 ()

 (4.4)

The greatest problem with applying the part-based approach for the Computer Vision Module

is that the algorithm has very high computational requirements. This is because the OCD

metric is () and the scaled sliding window search takes () time. A variant of this

approach was investigated in order to reduce the scanning requirement.

The gradient of a high-level scale space image is used in order to guide the search for a

particular part in () time (see Section 3.3.2.2). The approach is similar to the gradient

ascent method used for local maximisation problems. It assumes that each part is located at

the centre of a dense area containing edges. It also assumes that each query part is near the

relative expected location of the corresponding candidate part and that their relative scales are

the same. Informal experimentation showed that this is not always the case. For example, if

two legs of a table are close together then it cannot be assumed that there exists a single part

between the two table legs. If the parts are identified separately in the training image then the

parts need to be identified separately in the query image. This is why a complete search using

a scalable sliding window is necessary (at least around the expected locations).

Figure 4.19 shows an example with 30 parts after scanning a sketch made of a bed during

informal experimentation. Each part is annotated with the value of . This example returns

a high value for the correct candidate image because a large value was chosen and the

parts were located using a complete search. A single comparison took at least one minute

using the hardware discussed in Section 4.5.1. Decreasing the number of parts, clustering

edgels, and using the () searching approach reduced this time down to 2 seconds per

comparison. This is still slow and the approach begins to lose its effectiveness at this point.

Chapter 4: Design and Implementation

 122

Figure 4.19: Part-based image description.

4.6.3.3 Grid-based Approaches

The third approach applies a simple grid-based descriptor for the image. An elliptical grid is

rasterised over the axis aligned bounding rectangle of the edgels contained in the sketch or

training image (see Section 3.3.3.2 and Section 4.6.2.2). The resulting disk is a global feature

descriptor that illustrates the presence of edgels. Figure 4.20 (b) shows the disk for a user

sketch shown in Figure 4.20 (a). If the disk is unrolled then it illustrates the edgel distribution

of the image in polar coordinates as shown in Figure 4.20 (c).

(a) (b) (c)

Figure 4.20: Describing a user sketch (a) using a grid-based approach (b-c).

Query images are compared to candidate images by comparing their disks. Each disk is

expressed of the descriptor as a single dimensional vector where is the number of

tracks and is the number of sectors. The distance between the two disks is taken to be the

square of the Euclidean norm of the difference between the query descriptor and the candidate

descriptor (Sajjanhar and Lu 1997). A single comparison therefore takes () time. The

approach has low computational requirements but it has several limitations.

Its effectiveness depends on the resolution (descriptive ability) of the disk. If the resolution is

too low then the disk cannot be used to distinguish between different images that appear

Chapter 4: Design and Implementation

 123

similar at a low resolution. If the resolution is too high then the disk cannot be used to

measure the distance between images accurately if distortion, scaling or rotation is present.

For example, if the part of the sketch in Figure 4.20 (a) marked “A” is sketched at a slightly

higher position, then the resulting query disk has a greater squared Euclidean distance to the

corresponding candidate.

Another limitation to the approach is that the descriptor is very sensitive to the location of the

disk on the image. Moving the disk changes the tracks close to the centre significantly and it

changes the outer tracks moderately. The changes are less severe near the middle tracts of the

disk. This problem is addressed by applying a weight to each track so that the disks can be

displaced slightly without causing a large deviation when measuring the distance between two

disks. Informal experimentation showed that is a good weight function

where

, is the current track and is the number of tracks. The approach required

prior edgel normalisation because it is not invariant to rotation or scaling.

The problem relating to distortion-related sensitivity of the disk approach is connected to the

use of a fixed resolution. This problem is addressed with a Level of Detail (LoD) pyramid

disk design. The concept of a LoD disk is similar to the concept of the scale space of an

image (see Section 3.3.2.2). The LoD disk contains a pyramid of disks starting with a high

resolution disk at the base and ending with a low resolution disk at the apex. The comparison

between two LoD disks is similar to normal disk comparison except that it includes how the

scale affects the resulting distance measurement. This is achieved by starting at the apex disk

and then progressing towards the base disk. If the distances between the disks decrease by

moving down the pyramid then the algorithm continues to do so until an improvement less

than is measured. The distance between each query-candidate pair is divided by the

dimensionality of the descriptors at the scale of the pair. This prevents low resolution disks

from biasing the search. A single comparison runs in (()) time, where is the

dimensionality of base disk and is the number of scale space layers. Informal experiments

showed that this approach provides improved recognition accuracy. However, the robustness

of the approach is sensitive to the LoD parameters chosen, such as , and . The method

improves on the simple disk-based approach but it is not invariant to rotation.

4.6.3.4 Sampling Multiple Disks

The forth approach attempts to increase the descriptive ability of the Computer Vision

Module by sampling multiple disks from the image. Measuring multiple disks involves

Chapter 4: Design and Implementation

 124

determining the location, orientation and scale of each disk consistently. Several variants of

the approach were attempted in order to rasterise multiple disks from training images and

query sketches.

The first variant attempts to use the Harris corners of the image in order to estimate the

location of each of the disks (see Section 3.3.2.1). The k-medoids clustering algorithm is

used to identify clusters. The centre of each cluster is used to position a disk (see

Figure 4.21 (a)). Query images and candidate images are compared by measuring descriptor

distances between the best matching disk pairs. The main disadvantage of this approach is

that it relies heavily on the placement of the disks. Informal experimentation shows that the k-

medoids clustering variant of the approach does not produce consistent disks for images that

are slightly rotated or distorted.

(a) Harris Clustering (b) DoG Detector (c) Harris Gift-wrapping

Figure 4.21: Approaches for sampling multiple disks from an image.

The second variant attempts to use the Difference of Gaussian (DoG) local feature detector in

order to place and scale the disks for the image. The scale space is constructed on a high

resolution edge map of the image. The largest blobs are used to place the disks and they are

orientated along the gradient of the blurred edge map (see Figure 4.21 (b)). The use of the

DoG local feature detector introduces several problems. It does not always return a complete

set of disk locations and sizes. The approach provides limited invariance to rotation and

distortion and it is costly to construct the scale space for a high resolution edge map.

The third and fourth variants attempt to place the individual disks at specific locations so that

they cover the entire image space. This is done by normalising the edgels of each image by

removing its translation, scaling and rotation. The disks are placed around an ellipse at pre-

determined positions (see Figure 4.21 (c)). The problem with using this approach is that the

transformation parameters required for normalisation need to be calculated. The third

approach achieves this by first calculating the boundary around the Harris corner points using

Chapter 4: Design and Implementation

 125

the Gift wrapping algorithm in () time (Jarvis 1973). The boundary points are then

clustered into two clusters which are connected by a line segment. This line segment is taken

to be the horizontal axis of the bounding rectangle of the image. The vertical axis is taken to

be perpendicular to the horizontal axis such that a right hand coordinate system results. The

coordinate system is then used to normalise the query image the training images. The problem

with the clustering approach is that the centres of the two clusters do not always provide an

accurate representation of the image’s coordinate system. The fourth variant of this approach

applies Principal Component Analysis instead to provide more accurate and consistent

coordinate systems for the query images and training images (see Section 3.3.4).

Using multiple disks to represent an image does increase the descriptive ability of the

Computer Vision Module. The main limitation of the approach is that its effectiveness is

influenced by the location, orientation and scaling of the individual disks. Image distortion

and rotation is therefore problematic for this approach. Another disadvantage of using

multiple disks is that the time required to compare each image increases linearly with each

disk added to the descriptor. The Computer Vision Module requires a robust image

description method while being invariant to changes in rotation, scale and translation. The

final approach taken takes the lessons learnt from the previous approaches discussed so far

and provides an approach for describing objects in user sketches.

4.6.3.5 Combined Approach

The image description approach used by the Computer Vision Module should be able to

describe and compare images reliably and within a reasonable amount of time (a few seconds

or less with the hardware discussed in Section 4.5). The requirements identified in

Section 4.6.1 states that the approach should be invariant to changes in the translation, scaling

and rotation of the image and it should provide local feature correspondences so that rigid

body pose estimation can be performed. This poses five main problems:

1. The objects in the sketch should be separated.

2. The description and comparison of each object should be invariant to translation,

scaling and translation.

3. The method should be able to describe simple objects like symbols and top-down

views of props.

4. The methods should be able to describe detailed objects like 3D views of props.

5. The description of detailed 3D props should include local features.

Chapter 4: Design and Implementation

 126

These problems are solved by using a combination of image description approaches. The

approach involves two stages, namely the description stage and the comparison stage.

The description stage involves creating a description for each object in the sketch. Each prop

and symbol is sketched on separate layers or isolated within bounding rectangles (see

Section 4.5.6.1). Figure 4.22 provides a pseudocode illustration of the description stage.

Step 1. Normalise the edgels with PCA into a unit square.

Step 2. Sample low resolution disk .
Step 3. Sample high resolution disk .
Step 4. Find SIFT features { } of .

Step 5. Group the SIFT features { } into bags { }.
Step 6. Construct a kd-tree from { }.

Figure 4.22: Pseudocode for describing objects in sketches.

The edgels of the user’s sketch are normalised to a unit square after removing the translation

and rotation of the image using Principal Component Analysis (PCA) (see Section 3.3.4). The

principal components are two perpendicular vectors that align with the principal axis of the

edgels’ local coordinate frame. The magnitude of each principal component is proportional to

the variance of the edgels along the corresponding principal axis. A bounding rectangle is

placed around the local coordinate frame of the edgels. The width and height of the rectangle

is set to a constant multiple of the length of the corresponding principal components. The

angle from the x-axis of the parent coordinate frame to the first principal axis represents the

rotation of the image. The vector from the parent coordinate frame’s origin to the origin of the

local coordinate frame represents the translation of the image. Normalisation involves

removing the translation, rotation and scaling of the image (in this order) so that the edgels of

the image fits into a unit square. The principal components identified by using PCA depend

on the distribution of edgels. If the resulting local coordinate frame is a left-handed coordinate

frame then the second principal component is mirrored. This ensures that all the coordinate

frames are right-handed. It is important to ensure that the images are normalised consistently;

otherwise the overall method cannot be invariant to scaling or rotation. The overall

description method is therefore scale and translation invariant. Rotational invariance is

achieved during the comparison stage.

The object in the image is described using a single disk approach because it allows for the

fastest queries (see Section 4.6.3.3). Two resolutions of the disk are used. A lower resolution

disk is used for recognising images that are simpler to represent. These include the top-down

views of the props and symbols sketched in the floor plan editor and emotions sketched in the

Chapter 4: Design and Implementation

 127

sketched editor. A higher resolution disk is used for describing sketched props that are

illustrated from a 3D viewpoint. Local SIFT-based features are extracted from the high

resolution disk using the DoG local feature detector (see Section 3.3.2.2 and Section 3.3.3.1).

The SIFT features are then grouped into local feature bags which are indexed using a kd-

tree (see Section 3.4.1). The local features are used to determine the points from the query

image that correspond with the points on the candidate image.

The comparison stage involves measuring the dissimilarity between two image descriptions.

Figure 4.23 provides a pseudocode illustration of how the dissimilarity measure is calculated.

IF a low resolution disk is used THEN DO

Step 1. Determine the rotation of the low resolution query disk.

Step 2. RETURN the SSE between the low resolution query disk and

the candidate disk.

ELSE

Step 1. Determine the rotation of the high resolution query

disk.

Step 2. Set
Step 3. FOR EACH SIFT feature on the query disk { } DO

Step a. Find the closest bag of SIFT features from

the candidate image using the candidate NN

kd-tree.

Step b. Find the SIFT feature in that is the

most similar to .
Step c. ()

END FOR

Step 4. RETURN

, where is the number of features in { }

END IF

Figure 4.23: Pseudocode for measuring the dissimilarity of objects in sketches.

The first step in comparing low resolution disks and high resolution disks is to determine the

rotation of the object in the query image. The angle of rotation between the query disk and a

candidate disk is required in order to measure the distance between the descriptors. This angle

is then converted into an integer index
 ⁄ where indicates how many sectors the

candidate disk should be rotated before comparing it to the query disk, and is the total

number of sectors for each disk. Two approaches for calculating have been found to work

well during the design process.

The first approach involves constructing a second disk of a lower resolution with sectors

for the query image and the training image. The lower resolution candidate disk is iteratively

rotated by
 ⁄ and compared with the candidate image. This approach works well when the

rotation of the image does not have to be precisely estimated and short runtimes are required.

Chapter 4: Design and Implementation

 128

The second approach for determining the rotation of the query image is to use the Iterative

Closest Point (ICP) registration algorithm (see Section 3.5.3.2). The performance of the ICP

registration algorithm is improved by using a kd-tree spatial index on a reduced set of

points (Bentley 1975). The final rotation angle is calculated using Equation (4.5) from the

rotation component of the resulting registration transformation where and are numerical

error values and [] is the top row of the rotation matrix returned by the ICP

registration algorithm. This approach works well if a precise estimate is required and a longer

run time is acceptable. The disk is rotated by integer index of
 ⁄ sectors.

(() ()) , where [

] (4.5)

The distance from the query disk to the candidate disk is determined as follows. If a low

resolution disk is used then the distance is measured as the square of the Euclidean norm of

the difference between the query disk and the candidate disk (Sum of Squared Error (SSE)). If

a high resolution disk is used then the distance is measured using the local SIFT-based

features. The nearest feature bag
 of the candidate grid for each local feature of the query

grid is determined using NN kd-trees in (()) time. The best local feature
 in the

feature bag
 is than mapped to . The distance between the disks is calculated as the

average dissimilarity between the feature pairs {(
)}.

Figure 4.24: Comparing two disks with four SIFT feature bags.

Chapter 4: Design and Implementation

 129

Figure 4.24 provides an example showing how the feature pairs are determined. The scale and

direction of each blob is illustrated by a black circle with a direction indicator. The grids

around the blobs are the SIFT-keys. Each blob of the query disk is mapped to a single feature

bag of the candidate disk. The blob is then mapped to the feature in the feature bag that has

the most similar SIFT-key.

Local feature correspondences are required in order to perform pose estimation. The point

correspondences are also required to be in the original space of the query sketch or training

image. A dictionary mapping is therefore used to map the normalised local feature locations

to their original locations.

4.6.3.6 Discussion

This section provided a detailed discussion of all the approaches investigated during the

design process for describing user sketches. A combined approach was discussed which is

invariant to translation, scaling and rotation transformations, and determines local feature

correspondences. The combined approach therefore fulfils the sketch description requirements

identified in Section 4.6.1.

4.6.4 Recognising Objects from Sketches

The Computer Vision Module is designed to follow the general object recognition process

outlined in Section 3.2 (see Figure 4.25). The approach discussed in Section 4.6.3.5 is used

during the training phase and the recognition phase for detecting and describing features.

Figure 4.25: The general process followed by object recognition algorithms (Pellegrini 2007).

Chapter 4: Design and Implementation

 130

This section discusses how the training images are sampled and described in order to populate

the codebook. It also discusses how the objects sketched in floor plans and storyboards are

classified in order to support object recognition.

4.6.4.1 Training Phase

The Computer Vision Module is required to recognise 2D objects, such as top-down views of

the props sketched using the floor plan editor and symbols used for staging and illustrating the

facial expressions of each character. The Computer Vision Module is also required to

recognise 3D objects from 2D sketches in order to interpret contents of the storyboard panels

sketched by the user. The necessary objects need to be stored and associated with 2D images

so that they can be used for recognition by the Computer Vision Module. The environment

data collection contains a set of codebooks that store this data.

The training images used for the floor plan symbols and character emotions were created

manually. Each symbol is associated with one or more training images as shown in Figure

4.26. Additional emotion symbols can be added to the environmental data

collection (see Section 4.4).

Shot Character Happy Sad Angry

Figure 4.26: The training images used for recognising symbols.

The training images used for the props are generated automatically using the Computer

Vision Module. The props are rendered with a white background. The light source is placed in

the centre of the viewing area behind the image plane. This produces images that clearly show

important edges that outline the shape and interior of the 3D model of each prop. Two

codebooks are generated for each prop. The first codebook contains orthographic top down

images of the prop’s 3D model. The second codebook contains the images sampled from the

various perspective views of the prop’s 3D model.

The perspective views are selected in a manner similar to that of Shin and Igarashi (2007).

Shin and Igarashi sampled 16 reference views for each 3D model. Informal experimentation

determined, however, that using 16 views is insufficient for recognising 3D objects using the

image descriptor implemented in the Computer Vision Module. Instead,

reference views are sampled. Four vertical angles and 24 horizontal angles are used for each

Chapter 4: Design and Implementation

 131

vertical angle as illustrated in Figure 4.27. It is assumed that the props will not be sketched

from the button up. The large codebook size provides the training data required for effective

pose recognition (see Section 3.5). If too little training data is provided then the correlations

returned by the image descriptor will be inaccurate and the pose estimation algorithm will

yield poor results.

Figure 4.27: The 3D model sampling method.

The next step is the training phase. It involves describing each training image in order to

populate the codebook. The codebook contains a collection of objects that are each associated

with image description data. This includes the data necessary for storing disks, kd-trees, SIFT

features and point dictionaries. The positions of the local features are 2D. Some pose

estimation methods such as POSIT require 3D point correspondences (see Section 3.5). The

3D data for the training images is acquired using the Computer Graphics Module. Each 3D

model is rendered on the front buffer in graphics memory. The buffer contains a

() tuple for each pixel () where the () is the colour component and

is the pseudo-depth value for the pixel. The location of the corresponding 3D point in space is

calculated by un-projecting () into the model-view coordinate system. The

corresponding 3D point of each local feature is stored in the codebook. The codebook also

contains a model-view matrix for each 3D sample taken. The model-view matrix specifies the

camera transformation used when the sample was taken.

4.6.4.2 Recognition Phase

The first step performed during the recognition phase is to describe the sketch using the

approach discussed in Section 4.6.3.5. The sketch is classified by comparing this description

with the descriptions of candidate objects from the codebook. The orthographic codebook is

Chapter 4: Design and Implementation

 132

used if the user is sketching symbols or top-down views of props. Otherwise, if the user is

sketching props in perspective then the arbitrary-view codebook is used.

The object sketched by the user is classified using the k-Nearest Neighbours (k-NN)

classifier (see Section 3.4.2.5). The k-NN classifier allows the Computer Vision Module to

classify sketches using the dissimilarity measure provided by the image description approach

discussed in Section 4.6.3.5.

Step 1. Measure the distance from the query description to each
candidate description in the codebook. Add the distance-

candidate pair () to an ordered dictionary such that
contains a maximum of entries.

Step 2. Let be the label of the 3D model that the occurs most

frequently in .
Step 3. IF occurs only once in THEN DO

RETURN the candidate

 with the shortest distance

.

ELSE

RETURN the candidate

 labelled with the shortest

distance

.

END IF

Figure 4.28: Pseudocode for the k-NN classifier used to classify query images.

Figure 4.28 shows the pseudocode for the k-NN classifier. An ordered dictionary containing

(distance, candidate) pairs is maintained with a maximum of entries. The class label that

occurs the most in the dictionary (and more than once) is considered to represent the most

probable object sketched by the user. The candidate

 labelled with the smallest

 is

associated with the user’s sketch.

Informal experimentation determined that is suitable for classifying floor plan symbols

and character emotions (each symbol class has three or less instances). was found to

be a suitable value for classifying perspective sketches of props (each prop class has 96

instances). The top alternative candidates are presented to the user if it is necessary to

manually choose a different prop.

4.6.4.3 Discussion

This section discussed how the objects sketched by the user are recognised. The process

involves sampling images of the each object that can be sketched and then generating a

codebook that contains descriptors for each training image. The k-NN classifier is used to

determine which object is most likely represented by the user’s sketch.

Chapter 4: Design and Implementation

 133

The codebooks containing the 3D views of each prop are augmented with 3D point data so

that each 2D local feature on the training image has a corresponding 3D point in the space of

the 3D model. This data is important for estimating the position and orientation for rigid

bodies like props. The next section discusses how the Computer Vision Module is designed to

estimate the pose of each prop and character in the user sketches.

4.6.5 Pose Estimation

The Computer Vision Module is also required to place each prop and character into the 3D

virtual environment once they have been recognised from the user’s sketch. The process of

determining location and orientation of each prop and character is known as pose

estimation (see Section 3.5 and Section 3.6). This subsection discusses two cases for

estimating the pose of a prop or character. The first case is when the camera is unknown and

the user sketches props on a blank sketch using the Sketch Editor (see Section 4.5.6.1). The

second case is when the camera is known and the user sketches props and characters over the

rendered image of the known 3D virtual environment.

4.6.5.1 Estimating the Pose of Rigid Bodies with an Unknown Camera

Each prop is represented by a 3D model that is placed and orientated on the set. The 3D

model is a rigid body with no deformable or moveable parts. The location and orientation of

an object is also known as its pose. The floor plan provides the pose of each prop relative to

the set. When the user sketches the prop using the Sketch Editor, its pose is relative to the

view the prop is sketched from. The problem is that the camera’s location and orientation are

unknown. The Sketch Editor is responsible for automatically interpreting the user’s sketch in

order to determine the camera parameters for placing the shot in the floor plan as shown

in Figure 4.29 (a).

(a) (b)

Figure 4.29: The pose estimation problem as viewed from (a) top-

down, and (b) the shot sketched by the user.

Chapter 4: Design and Implementation

 134

The Computer Vision Module estimates these parameters by calculating the model-view

matrix for each prop the user sketches. These model-view matrices are then combined in order

to estimate the final camera for the sketched shot (see Section 4.6.6). The resulting model-

view matrix is then used to place and orientate the camera as shown in Figure 4.29 (b).

The model-view matrix for a prop is estimated from its sketch as follows. The prop is

assumed to be positioned at the origin with its default orientation. The model-view matrix is

estimated using a combination of the pose recognition approach and iterative pose

estimation (see Section 3.5) (Shin and Igarashi 2007; Lee and Funkhouser 2008). The pose

recognition approach utilises the image descriptor selected in Section 4.6.2. The codebook is

searched for a candidate sample that best matches the prop illustrated in the user’s sketch (see

Section 4.6.4.2). The model-view matrix contained in the codebook for the matching

candidate prop is used to estimate the rotation for the camera. The POSIT iterative pose

estimation algorithm is then used to determine the camera’s translation and refine the

camera’s rotation (Dementhon and Davis 1995). The POSIT algorithm requires a set of

correspondences between 2D image points and 3D model points (see Section 3.5.3.1). The

image descriptor used by the Computer Vision Module is used to determine the required

correspondences (see Section 4.6.3.5).

Figure 4.30: The process of estimating the pose of a rigid body sketched by the user.

Figure 4.30 illustrates the pose estimation process implemented by the Computer Vision

Module. The first step requires the user to sketch each prop in the camera frame as it should

Chapter 4: Design and Implementation

 135

appear in the final shot. Object recognition is then performed in the second step in order to

find the best sample from the codebook that matches the sketched prop. Correspondences

between the features in the query image and features in the best candidate sample are

determined during the third step. The required correspondences are obtained by

mapping the original points from the sketch for each respective query feature to the locations

of the 3D features stored in the prop’s codebook.

The dictionary stored in the prop’s codebook is used to obtain the corresponding 3D points of

the model for each SIFT feature. The POSIT algorithm is used in the fourth step to estimate

the translation component of the model-view matrix and refine the orientation component. It

takes a set of 2D image points from the user’s sketch and a set of corresponding 3D model

points as input. The POSIT algorithm yields better results if it is provided with a rough

estimate of the model’s rotation (Dementhon and Davis 1995). The 3D points are therefore

rotated around the origin using the rotation component of the model-view matrix obtained

from the codebook. This is a necessary step because the quality of the pose returned by

POSIT depends heavily on the quality of the correlations with which it is provided.

It is not unusual for the correlations to be inaccurate, because they are based on low resolution

local feature descriptions (SIFT) and distorted input. Every imperfection in the user’s sketch

worsens the orientation estimation returned by the POSIT algorithm. This is why the

codebook model-view matrix is used for estimating the overall orientation of the prop’s pose

and the POSIT orientation is used for minor orientation refinements. The final step is to

combine the estimated model-view matrix for each prop in order to estimate the final shot.

Section 4.6.6 will discuss this step in greater detail.

4.6.5.2 Estimating the Pose of Articulated Figures and Rigid Bodies with a Known

Camera

If the camera’s model-view matrix is known then the pose of each character and prop can be

estimated by un-projecting the relevant points from the sketch into the world coordinate

system using the Computer Graphics Module. Posing characters also involves determining the

orientation of the individual bones in order to estimate the character’s posture for the sketch.

Figure 4.31 illustrates the seven coordinate systems involved when un-projecting the user’s

sketches into the 3D environment so that characters and props can be posed.

Chapter 4: Design and Implementation

 136

Figure 4.31: The coordinate systems involved for un-projecting an image point.

The Sketch Editor is responsible for un-projecting the 2D position of the mouse cursor (the

stylus/pen) into the image space to which the 3D virtual environment is rendered. This image

space is represented by the “shot” coordinate system and it is different from the “image”

coordinate system to which the GUI is rendered. The “sketch” coordinate system is

intermediate to the “Image” coordinate system and the “Shot” coordinate system. It allows the

user to pan and scale the current view of the shot. The Computer Graphics Module is

responsible for un-projecting 2D points from the “shot” coordinate system to the “model”

coordinate system or a leaf “bone” coordinate system.

The position of an entity on the set is calculated by un-projecting a predetermined anchor

point from the user’s sketch. The anchor point for a prop is located at the middle of the lower

edge of the bounding rectangle of the user’s sketch of the prop (see Figure 4.32 (a)). The

anchor point for a character is located halfway between its feet (see Figure 4.32 (b)). Prop

anchor points can be placed on the floor or on top of other props. Character anchor points can

only be placed on the floor of the set.

If the shot coordinates of the point are represented by ̅ () where is the point’s

pseudo-depth and ̅ () (̅) is a function that un-projects ̅ to ̅ in world

coordinates, then a ray is constructed from ̅ () to ̅ (). The ray is

intersected with the floor and the top-most surface of the 3D bounding box of each prop. The

intersection point with the highest coordinate is taken as the 3D correspondence of the 2D

anchor point. The entity is then placed on the 3D anchor point. If the entity is a prop then the

methods discussed in the previous section are used to determine its orientation. If the entity is

a character then the character is assumed to face the camera. If the “flip” option is enabled

then the character faces away from the camera. The location and orientation of the character

or prop is now known. In other words, the matrix for the “entity” coordinate system has been

estimated. If the entity is a character then it is also necessary to estimate the orientations of

the individual bones in order to pose the character from the user’s sketch.

Chapter 4: Design and Implementation

 137

Figure 4.32: Posing props and characters with a known camera.

Figure 4.32 (b) illustrates how the user sketches the pose of a character (see Section 4.5.6.2).

The pose of a character is indicated with a red, black and blue coloured stick figure. The red

side represents the character’s right side and the blue side represents the character’s left side.

The stick figure is analysed using an algorithm designed from previously published work.
5

The algorithm accepts a colour coded stick figure and the corresponding armature. The

armature is then recursively configured in order to match the pose illustrated by the stick

figure while remaining within bone rotational constraints. The stick figure is represented

using a tree structure. The tree is automatically constructed as the user sketches. The original

algorithm requires user to manually colour code the individual bones in order to resolve

ambiguities. In this research, the bones are automatically colour coded. This is because the

current design is limited to humanoid characters. It simplifies the sketching process because

the user no longer has to set up the colour coding for the armature.

The stick figure is automatically colour coded as follows. The vertex having a degree of four

is assumed to be the torso. The shortest edge is assumed to be the head and it is coloured

black. The leftmost edge is assumed to be the right arm and it is coloured red. The rightmost

edge is assumed to be the left arm and it is coloured blue. The remaining edge is assumed to

be the back and it is coloured black. The vertex at the end of the back is assumed to be the

pelvis. The leftmost edge from the pelvis is assumed to be the right leg and it is coloured red.

5 This research on sketch-based articulated figure animation was published in the following paper: Matthews, T.

and Vogts, D. (2011): A sketch-based articulated figure animation tool. In Proceedings of the South African

Institute of Computer Scientists and Information Technologists (SAICSIT) The Pavilion Conference Centre,

V&A Waterfront, Cape Town, South Africa.

Chapter 4: Design and Implementation

 138

The rightmost edge from the pelvis is assumed to be the left leg and it is coloured blue. If the

“flip” mode is enabled then the red and blue colours are exchanged.

If there is a problem with finding the required edges or vertices then the sketch is taken to be

invalid and the algorithm terminates. Otherwise, if the colour coding was successful then the

algorithm continues to find a single isomorphic mapping between the sketched stick figure

and the armature of the character. The recursive posing algorithm then traverses the strokes of

the stick figure and orientates the associated bone chains by taking bone foreshortening into

account (Matthews and Vogts 2011).

4.6.5.3 Discussion

This subsection discussed how the pose of each prop is estimated from a user’s sketch. If the

camera is known then the prop is correctly placed into the 3D virtual environment. If the

camera is unknown then the pose of each of the props is used to estimate the camera. This is

achieved by consolidating the model-view matrices of the props while maintaining the spatial

relationships between them. The consolidated model-view matrix is used to estimate the

camera for the shot sketched by the user. The following section discusses how this is

achieved.

4.6.6 Camera Estimation

The Computer Vision Module is designed to be able to estimate the camera for a shot

sketched using the Sketch Editor. This is achieved by estimating the pose of each individual

prop for an unknown camera using the method discussed in Section 4.6.5. The location and

orientation of each prop on the floor plan is then combined with the information gathered

from the pose estimation algorithm. Figure 4.33 illustrates the camera estimation problem

using an example.

The example shows a floor plan containing a table with two chairs and a sketch with the

corresponding layers (see Section 4.5.6.1). Let {
 } be the set containing the

props of the floor plan. Let {
 } be the set containing the corresponding layers for

each prop. The user is required to sketch the props in the correct colour so that the prop-layer

correspondences are known. Let be the transformation matrix representing the

location and orientation of on the floor plan.

Chapter 4: Design and Implementation

 139

Figure 4.33: The camera estimation problem.

Each layer is associated with a set of candidate poses {()

 }. If is placed at the origin with its default orientation () then

 is the candidate model-view matrix that transforms the prop so that it is projected

onto the user’s sketch when rendered. However, is not necessarily placed at the origin with

its default orientation. It is therefore necessary to express the model-view matrix of the

camera for the prop while including its location and orientation on the floor

plan. is determined as follows.

Let be a vertex of the 3D model of prop at ̅ . The position of V on the floor plan is

 ̅ ̅. The 3D space of the floor plan is the same as the 3D space of the 3D virtual

environment where the shot is taken. This implies that the world position of is ̅ . The

problem involves positioning so that it is projected onto the user’s sketch when the prop is

rendered. This position ̅ is calculated by removing the prop’s floor plan transformation

from V and then applying the estimated pose: ̅
 ̅ . The model-view matrix of the

camera is therefore
 for the prop and the candidate match.

The camera estimation problem involves selecting the best model-view matrix for each prop

so that they can be consolidated into a single model-view matrix. The model view matrix for

each prop represents the displacement and orientation of the same camera. These matrices

differ slightly due to computer vision error. Recognising the wrong poses or obtaining poor

Chapter 4: Design and Implementation

 140

correlations causes the coordinate frames of the model-view matrices to misalign. It is

important to select the best candidate pose for each prop in order to minimise this error.

 ̅ () ∑ ∑ (

)

 (4.6)

Equation (4.6) expresses the camera estimation problem as an integer minimisation problem.

The problem involves finding a vector ̅ () where
 is the index of

the best candidate pose for prop that minimises . () is a function for measuring

the misalignment of two coordinate frames represented by the transformation matrices and

 for a particular prop . The misalignment of and is measured for a prop using bounded

coordinate systems (Huang et al. 2009). The basis vectors ̅
 ̅

 of each coordinate

system are rescaled to match the dimensions of the 3D models of the respective props. If the

camera coordinate frames are written as [̅
 ̅

 ̅
] and

 [̅
 ̅

 ̅
] where are the origins of and respectively then the

misalignment of and is given by Equation (4.7).

 () ‖ ‖ ∑‖ ̅
 ̅

 ‖

 (4.7)

Solving the minimisation problem yields a vector ̅ of indices that select the best

candidate model-view matrix for each prop. Let {
 } be the set of best

model-view matrices. The set of matrices is consolidated by decomposing each into a

coordinate frame [̅
 ̅

 ̅
] and constructing the final model-view matrix

as shown in Equation (4.8). is used to specify the camera transformation required to view

the world space.
 provides the location and viewing direction of the camera on the floor

plan so that the corresponding shot symbol can be placed automatically (see Section 4.5.5).

 [

∑ ̅

∑ ̅

∑ ̅

∑

] (4.8)

4.7 Implementation

The components of the proposed framework for a sketch-based storyboarding tool for

authoring pre-visualisations were implemented as part of the design and implementation

process. An implementation of each algorithm was required in order to investigate its

effectiveness and efficiency during the algorithm design process (see Section 4.6). The

Chapter 4: Design and Implementation

 141

implementation of the GUI was required so that the GUI design and the sketch-based

storyboarding approach could be evaluated (see Chapter 5).

This section discusses the implementation of the GUI and algorithm design described in this

chapter. It begins by discussing the tools that were used in order to implement the prototype

and create the required environmental data (see Section 4.4). It continues by discussing third

party implementations and libraries that were used in order to implement selected

subcomponents of the prototype. The section concludes with a discussion on the

implementation of the components of the prototype.

4.7.1 Implementation Tools

The prototype was implemented in the C# programming language on the .NET

framework (Microsoft 2012). The language provides many modern programming features that

allowed for faster and easier prototyping. The object orientated nature of language and

support for operator overloading, delegates and events proved useful for implementing

components and frameworks. A small utility framework for representing working with

structures was implemented. Example mathematical structures that were implemented include

classes for graphs, matrices, and quaternions. The utility framework and implementation of

algorithms from previous research
6
 were reused in the implementation of the prototype.

The 3D models required by the prototype for representing the set, props and characters were

created using Blender 3D (see Section 2.6.2) (Blender Foundation 2012). The modelling and

animation tool was used for creating the meshes for each 3D model. A generic character was

created with an attached armature. The generic character was modified in order to create the

four characters used in the Goldilocks scenario. A Python script was created to export the 3D

model data into an XML format that is read by the prototype tool (see Appendix B).

The tablet computer used for the implementation and evaluation of the prototype runs on the

Microsoft Windows 7 operating system. Windows 7 provides sufficient support for third party

libraries (see Section 4.7.2). It also provides a native Application Programming

Interface (API) for retrieving multi-touch input, which was necessary for the implementation

of the prototype. Windows 7’s graphical user interface is based on the Windows Icons Menus

6 This research on sketch-based articulated figure animation was published in the following paper: Matthews, T.

and Vogts, D. (2011): A sketch-based articulated figure animation tool. In Proceedings of the South African

Institute of Computer Scientists and Information Technologists (SAICSIT) The Pavilion Conference Centre,

V&A Waterfront, Cape Town, South Africa.

Chapter 4: Design and Implementation

 142

Pointers (WIMP) approach. It is designed to receive input from the mouse and keyboard. The

operating system supports touch interaction and multi-touch gestures; however, the default

Windows 7 component model is not touch friendly. This is because the buttons are too small

to touch comfortably. The components do not respond as well to touch input as they do with

mouse interaction, e.g. scrollbars are hard to use. The user interface of the prototype was

implemented using its own, touch-friendly component model instead of the default Windows

component model.

4.7.2 Third Party Libraries Used

The prototype tool was implemented using two third party libraries. The first library is called

the Tao Framework (Mono 2012). It provides an API for accessing the graphics hardware of

the tablet computer so that 3D content can be presented in real time. The Tao Framework

provides a wrapper class library for accessing OpenGL API. The OpenGL API is used to call

graphics routines that are used to send geometry and graphics data to the graphics

hardware (Hill and Kelley 2007; Khronos Group and Silicon Graphics 2012).

The second library is called the EMGU CV (EMGU 2012). The library provides wrapper

classes to the OpenCV image processing library (Intel Corporation, Willow Garage and Itseez

2012). The OpenCV API provides access to efficient implementations of image processing

routines that are used in computer vision. The API provides an implementation of the POSIT

algorithm used for performing pose estimation (see Section 3.5) (Dementhon and Davis

1995). An implementation of the SIFT local feature descriptor was used for extracting local

features and generating their image descriptors (Lowe 2004b; Tabibian 2005).

4.7.3 Component Implementation

This section provides a brief discussion of the implementation of the components of the GUI

and the 3D Context component (see Figure 4.2). It begins by discussing the implementation of

the Computer Graphics Module and the custom component model used to implement the

GUI. It continues to discuss the implementation of the multi-touch module and the graphical

user interface. The section then concludes with a brief discussion of the implementation of the

Computer Vision Module.

4.7.3.1 Computer Graphics Module

The Computer Graphics Module was implemented in OpenGL using the Tao Framework. It

provides an environment for rendering content by encapsulating OpenGL routines in order to

Chapter 4: Design and Implementation

 143

render 3D models and 2D content for presenting the user interface. The Computer Vision

Module also provides useful functions for rendering content off-screen and un-projecting

points from the image buffer into the 3D world. These functions were used to implement the

adjustable 3D view provided by the Sketch Editor. The un-project function was used to obtain

the 3D data required for sampling and training images. It was also used for performing pose

estimation if the model-view matrix is known (see Section 4.6.5). The Computer Graphics

Module was also used to implement the component model for the prototype’s GUI.

4.7.3.2 Component Model

A custom component model was implemented to provide an environment for building touch-

friendly GUIs. It contains controls that are similar to several Windows controls, such as

buttons, list boxes, labels, panels and image boxes. Panels can be nested similarly to the

containers implemented in the Windows component model. It also provides a 3D scene

control which is used for 3D visualisation within a specific area on the screen.

The component model was implemented in OpenGL using the Computer Graphics Module.

This enabled the GUI to call OpenGL routines directly for rendering 3D content when

required. The design of the component model was guided by Android GUI design

guidelines (McKenzie 2011).

The custom components were implemented so that they can be touched and manipulated

comfortably. Figure 4.34 provides a comparison between the example components from the

default Windows component model and the custom component model. The red circles

indicate the area required for the user to interact comfortably with each component. The

elements of each Windows control of the windows component model are too small to touch

comfortably. The controls provided by the custom component model have larger regions that

can be interacted with. The use of text is also minimised and replaced with informative icons.

The custom component model supports all the touch gestures discussed in Section 4.5.1.

Figure 4.34: A comparison between two component models: Windows default and custom.

Chapter 4: Design and Implementation

 144

4.7.3.3 Multi-touch Module

The multi-touch module was implemented for analysing touch-based input in order to capture

the touch gestures discussed in Section 4.5.1. The multi-touch module sends event messages

to the component model for each touch gesture performed by the user. The module handles

two cases of touch input. The first case is when only one touch point is active and the second

case is when two touch points are active.

If there are no active touch points then the multi-touch module registers a single-touch gesture

at the touched location. If the user releases the multi-touch surface then a tap gesture is

invoked. If the user’s fingertip is moved then the multi-touch module updates the position of

the first touch point and invokes the drag gesture. If the movement of drag gesture is large

enough along an axis then the flick gesture is invoked.

If the user touches the screen with a second finger while the multi-touch module is handling

the single-touch case then it handles the multi-touch case for the second touch point and

single-touch case for the first touch point. The multi-touch case involves calculating the

length and orientation of the line segment connecting the two touch points. If the user moves

the first touch point or the second touch point then the scaling, rotation and translation

parameters for that gesture are calculated. A manipulation gesture is invoked with the

required scaling, rotation and translation parameters. If the scaling is large enough then the

relevant spread or pinch gestures are invoked.

4.7.3.4 Computer Vision Module

The Computer Vision Module was implemented using the utility framework discussed in

Section 4.7.1 as well as computer vision libraries and algorithm implementations discussed in

Section 4.7.2. It implements routines for extracting edges from raster images in order to

generate query images and sample images. All the approaches discussed in Section 4.6.3 were

implemented, however the final approach was selected for generating image descriptions,

measuring the distance between these descriptions and finding local feature correspondences.

The object recognition routine was implemented with an ordered dictionary that sorts

candidate objects based on their distance from the query image descriptor. The pose

estimation methods discussed in Section 4.6.5 and the camera estimation algorithm discussed

in Section 4.6.6 were implemented using the Computer Graphics Module, the utility

framework and the POSIT implementation provided by OpenCV.

Chapter 4: Design and Implementation

 145

4.8 Quantitative Performance Evaluation

A quantitative performance evaluation was conducted to measure the scalability and accuracy

of the prop recognition and camera estimation algorithms discussed in Section 4.6. The

experiment has a limited scope but it evaluates the performance of these algorithms

sufficiently within the context of this chapter. This section discusses the evaluation

methodology followed and the resulting outcomes.

4.8.1 Methodology

The quantitative performance evaluation measured the following three performance metrics:

1. Prop recognition scalability: The total time (in seconds) required to recognise all the

props in the user’s sketch.

2. Camera estimation scalability: The total time (in seconds) required to estimate the

camera from the user’s sketch.

3. Camera estimation accuracy: Measured by scoring the estimated camera as follows:

0% (estimation failed), 50% (camera requires adjustment) or 100% (camera requires

minor (or no) adjustment.

These performance metrics were measured against a varying number of props (up to six

props) with varying shapes in order to determine the scalability and accuracy of the prop

recognition and camera estimation algorithms. This was achieved by creating six template

sketches as listed in Table 4.3. Each template was sketched times and the above

metrics were measured for each sketch.

Table 4.3: The sketches used for quantitative performance evaluation.

Template Props

1 Table

2 Big couch, medium couch

3 Big couch, medium couch, small couch

4 Table, kitchen chair, 2 bowls

5 Big couch, medium couch, table, bowl, kitchen chair

6 Table, 3 kitchen chairs, 2 bowls

The quantitative performance evaluation was conducted on a desktop personal computer with

the specifications given in Table 4.4.

Chapter 4: Design and Implementation

 146

Table 4.4: Quantitative performance evaluation hardware specifications

Feature Specification

Processor Intel Core i7 3.4 GHz

Memory (RAM) 8 GB

Graphics Acceleration Dedicated, AMD Radeon HD 6900 Series

4.8.2 Performance Results

The total time required () by the prop recognition algorithm to recognise all the props () in

the sketch was measured and analysed. Figure 4.35 (a) illustrates the scalability of the prop

recognition algorithm in terms of runtime with 95% confidence intervals. The high Pearson

product-moment correlation coefficient () indicates a linear correlation between

and . This implies that the algorithm is ().

(a) (b)

Figure 4.35: (a) Prop recognition scalability and (b) camera estimation scalability (n=10).

The total time () required by the camera estimation algorithm to estimate the camera of a

sketch with props was also measured and analysed. Figure 4.35 (b) illustrates the scalability

of the camera estimation algorithm in terms of runtime with 95% confidence intervals and a

logarithmic vertical scale. The high correlation coefficient between () and

indicates that the camera estimation algorithm is exponential of nature This implies that the

algorithm is () for some .

Chapter 4: Design and Implementation

 147

Figure 4.36: Camera estimation accuracy (n=10).

The camera estimation accuracy () with props was also measured and analysed. Figure

4.36 illustrates the accuracy of the camera estimation algorithm with 95% confidence

intervals. The low correlation coefficient () indicates that and are not

linearly correlated. However, it can be noted that the accuracy of the algorithm was at least

70% when .

4.8.3 Discussion

The results of the quantitative performance evaluation showed that the camera estimation

algorithm growths exponentially. This can be explained as follows. The implemented

algorithm minimises the error function (see Equation (4.6)) by exploring every possible value

of ̅ (). This operation grows exponentially as the number of props ()

increases. The scalability of this algorithm can be improved in future research by

investigating other optimisation methods.

The camera estimation algorithm demonstrated that it could estimate the camera consistently

with a score of over 70% if . This is because the algorithm uses the relative location of

each prop on the set in order to provide an improved camera estimation. If there is only one

prop then the algorithm can only use the prop’s appearance to determine the orientation and

location of the camera. Furthermore, the prop recognition algorithm could not always

successfully recognise and orientate props that are symmetric, lack clearly defined edges or

have too many edges (i.e. noisy image descriptors). Quantitative performance evaluation

showed that the prop recognition algorithm scales well as the number of props

increases (linear growth).

Chapter 4: Design and Implementation

 148

4.9 Conclusions

The chapter addressed the third research question identified in Chapter 1, namely how can the

authoring of pre-visualisations be supported using a storyboarding metaphor and

sketch/touch-based interfacing techniques? This research question was answered by

answering the sub-questions provided in Section 4.1.

Q3.1 was answered by proposing a framework for improving the user interface layer of the

general pre-visualisation framework discussed in Section 4.2. Q3.2 was answered by

discussing the data design that describes how the data can be structured in order to implement

the proposed approach. Q3.3 was answered by discussing the design of a touch-friendly GUI

for storyboarding on a tablet. A navigational layout for the required GUI components was

proposed. The design of each subcomponent was discussed, with the focus being on the

subcomponents receiving sketch-based input. The subcomponents requiring sketch-based

input were designed to utilise the Computer Vision Module.

Q3.4 was answered by discussing the design for the Computer Vision Module in Section 4.6.

The section proposed and discussed several methods for describing the contents of user

sketches. It was found that the best approach for describing the user’s sketch was to use a

single high resolution disk and a low resolution disk for describing sketched objects after they

have been normalised using PCA. The ICP and discreet disk rotation methods were applied to

achieve rotational invariance. The DoG local region-based feature detector and the SIFT

feature descriptor were used to map features in order to find point correspondences. The

correspondences proved to be useful for rigid body pose estimation. Object recognition was

achieved by using k-NN classifier with the mean SIFT error as the distance function. An

algorithm was proposed for estimating the camera for a user sketch by combing information

from the floor plan with the pose data estimated for each prop the user sketches.

Q3.5 was answered by discussing on how the proposed prototype was implemented. In

particular, it was shown how the GUI and Computer Vision Module could be implemented

for Windows 7 using a custom component model, OpenGL and OpenCV.

The next chapter discusses the usability evaluation of the prototype tool in order to assess its

usability benefits. It investigates the extent to which the sketch-based storyboarding approach

supports the user in authoring pre-visualisations effectively and easily.

 149

Chapter 5:

Usability Evaluation

5.1 Introduction

Chapter 4 discussed the design and implementation of a proof of concept prototype sketch-

based tool for authoring pre-visualisations using a storyboarding approach. This chapter

evaluates the implemented prototype in order to answers the fourth research question

identified in Chapter 1 namely, Q4: to what extent does a sketch-based storyboarding interface

support the user in authoring pre-visualisations in terms of software usability? The following

sub-questions are answered:

Q4.1: To what extent does the sketch-based storyboarding interface follow the design

guidelines for touch-based GUIs that support sketch-based input?

Q4.2: To what extent does the sketch-based storyboarding interface support the user in

terms of performance and user satisfaction?

Q4.3: To what extent do users prefer the storyboarding approach over the conventional

pre-visualisation authoring approaches?

Q4.4: How can sketch-based pre-visualisation authoring tools with a storyboarding

approach be designed in order to support the user in terms of usability?

The chapter begins by investigating and selecting appropriate methods for evaluating the

usability of a prototype tool. It continues by providing an analytical evaluation of the

prototype design. The results from an empirical evaluation are then reported as well as the

observations made during usability testing. The chapter concludes by providing a set of

guidelines, based on the findings of this chapter, for designing sketch-based pre-visualisation

authoring tools using a storyboarding approach.

Chapter 5: Usability Evaluation

 150

5.2 Existing Evaluation Methods

The goal of evaluating the usability of a prototype (system, product or design) is to determine

to what extent users can accomplish their own tasks quickly and easily (Dumas and Redish

1999). Traditionally, usability is evaluated through usability testing on desktop computers

within controlled environments (Sharp et al. 2007). Usability testing involves measuring the

user’s performance and satisfaction while using the prototype. This is achieved by observing

and recording the user’s actions in order to identify usability problems.

Usability problems are identified by assessing how efficiently and accurately the user can

perform each task. User accuracy can be measured by noting errors and user efficiency can

be measured by recording the time required to perform each task. The defining characteristic

of usability testing is that it is conducted in a controlled environment with laboratory (or

laboratory-like) conditions (Koyani et al. 2004). Using a controlled environment isolates the

user from day-to-day interruptions. This is important when capturing performance related data

such as the time taken per task. Using a control environment ensures that the data collected is

not affected by external variables that may distort the data. For example, if a user is busy with

a task on a multi-touch surface and fails because a second person touched the screen in order

to point something out then, the unanticipated external variable (multi-user collaboration)

distorts the usability data. Field studies are conducted when it is important to consider the

natural working environment of the user.

Field studies can be conducted remotely where the evaluator is not present during the

evaluation of the prototype. The main data collection methods for this evaluation approach

are recording interaction data on the prototype automatically and using satisfaction

questionnaires. Remote evaluators are not able to observe the user during the evaluation

session and important usability issues can be missed. If the evaluator is present during a field

study and evaluates the usability of the prototype within the context of the user’s natural

environment then it is known as an ethnographic usability study. They are useful for

identifying opportunities for new technologies, establishing requirements for a design,

introducing a new technology or deploying an existing technology in a new context (Balaji et

al. 2005). Data is recorded by using non-obtrusive observations and interviewing participants

outside the use of the prototype.

If the goal of the study is only to identify usability issues and maximise the usability of the

prototype then a field study may not necessarily be appropriate. Kaikkonen et al. (2005)

Chapter 5: Usability Evaluation

 151

found that field studies do not necessarily reveal more usability issues compared to

conducting usability testing. This is because the time allocated for evaluation is often limited

and field studies require more time and effort to conduct. Tan et al. (2006) showed that if

there is sufficient time available then field studies reveal more usability issues because

participants tend to respond more negatively to usability issues in the field than in the

laboratory.

Usability testing and field studies can be very costly in terms of time and effort (Vredenburg

et al. 2002). Shorter, informal usability tests are often conducted with a smaller population

size during the design and implementation phase of the development of the prototype. This

ensures that the prototype’s GUI is understandable and addresses the needs of the user (Sharp

et al. 2007). Formal (and informal) heuristic evaluations can be conducted without involving

users. Heuristic evaluations are made using guidelines and standards which are known as

heuristics in the usability community. Examples of heuristics for evaluating the usability of

user interfaces include those developed by Nielsen (1994).

5.3 Selection of Evaluation Methods

The selection of the evaluation methods was influenced by two goals:

G1: To measure the extent to which the prototype follows the design guidelines for touch-

based GUIs that support sketch-based input.

G2: To measure the usability of the prototype in terms of performance and user

satisfaction.

The first goal was achieved by performing informal heuristic evaluations on the design of the

prototype. The second goal was achieved by conducting usability tests in order to measure the

usability benefits of the prototype tool and identify usability issues. The high-level outcome

of the usability evaluation was to measure how effectively the user can author pre-

visualisations using a sketch-based user interface with a storyboarding approach. The

evaluation method was selected because related research showed that sketch-based GUIs can

be evaluated successfully through usability testing (Shin and Igarashi 2007; Kelleher 2006;

Matthews and Vogts 2011).

5.4 Analytical Evaluation Design

The prototype design was evaluated analytically by the researcher. This was achieved by

conducting informal heuristic evaluations. The extent to which the prototype design satisfied

Chapter 5: Usability Evaluation

 152

existing guidelines or standards (heuristics) was determined. This involved inspecting and

analysing the prototype design using these heuristics in order to identify usability

issues (Sharp et al. 2007). The following heuristics were compiled into a

checklist (see Appendix F) and applied:

 Nielsen’s heuristics were used to evaluate the design of the graphical user

interface (1994).

 The design guidelines proposed by Salo et al. (2012) were used to evaluate the

prototype’s 2D/3D touch interaction design.

 The guidelines proposed by Wais et al. (2007) was used to evaluate the prototype’s

sketch-based recognition design.

The outcomes of the informal heuristic evaluation included a set of usability issues for each

heuristic. The evaluation method also required example instances to be identified for each

usability issue. The next section will discuss the resulting outcomes of the analytical

evaluation.

5.5 Analytical Evaluation Results

The findings made during the heuristic evaluation of the prototype GUI design are presented

in this section. A discussion on the extent to which the design complies to (or violates) each

heuristic is provided (see Appendix F). The resulting usability issues are then summarised at

the end of this section.

5.5.1 Nielsen’s Heuristics for the GUI Design

The findings made by applying Nielsen’s Heuristics (1994) are as follows:

1. Visibility of system status

The design of the GUI utilises progress bars and animated icons to illustrate the

progress of processes and system responsiveness. This is achieved by executing

processor intensive tasks in separate threads.

2. Match between system and real world

The GUI is designed from the director and storyboard artist’s perspective. It uses

terminology that is familiar to the user, e.g. staging and storyboarding. No technical

jargon is used, e.g. articulated figures and meshes.

Chapter 5: Usability Evaluation

 153

3. User control and freedom

The GUI is designed with navigational buttons, tabs and screen titles that show where

the user is at all times. The user can use the appropriate gesture or the “go out” button if

the incorrect screen is opened accidently. The sketch editing components also allow the

user to correct mistakes using an eraser. Objects that have been placed on the floor plan

can be manipulated using gestures. The current design and implementation of the GUI

does not support undo/redo functionality.

4. Consistency and standards

The functions of the GUI are consistently designed and laid out across the various

screens. The sketch editing components have similar sketch editing tools. The Android

touch GUI guidelines were followed during the GUI design (see Section 4.5.1).

5. Error prevention

Errors are prevented by disabling functions that are not applicable based on the active

state of the GUI. Dialogue boxes are used to provide meaningful instructions if invalid

user actions are performed. The dialogue boxes are built into the GUI and do not make

use of the default Windows dialogue windows.

6. Recognition rather than recall

The information for each narrative block is visible throughout the design. The floor plan

shows the set and the shooting strategy and the action/dialogue entries for the

storyboard can be selected directly from the script. The current design and

implementation require the user to maintain a mental map of the floor plan and the

colour of each prop.

7. Flexibility and efficiency of use

Props, symbols and storyboard sketches can be created quickly by sketching them

directly as they should appear. The user can sketch while the prototype is recognising

existing sketches.

8. Aesthetic and minimalistic design

Each screen contains the minimum number of tools required to perform the required

tasks. Informative icons are used instead of unnecessary text. The elements of the GUI

are designed with a touch-friendly look and feel (see Section 4.5.1). The design is

aesthetic and minimalistic.

Chapter 5: Usability Evaluation

 154

9. Recognise, diagnose and recover from errors

Understandable error messages are provided if the user attempts an action that would

place the prototype in an erroneous state. If object recognition fails to recognise the

correct prop during set design then the user can select the correct prop from a list of

alternative props. Currently, options for changing floor plan symbols and emotion

symbols are unavailable. The user is required to erase the symbol and sketch it again.

10. Help and documentation

The GUI was designed so that it could be used without the need for referring to

documentation. The current design does not support online documentation.

5.5.2 Heuristic Evaluation for Touch-based Interaction with a 2D/3D Interface

The findings made by evaluating the touch interaction design for the 2D/3D prototype GUI

against the guidelines proposed by Salo et al. (2012) are as follows:

1. Provide onscreen touch gestures

The design allows the user to directly manipulate objects in the editing environment

using tab, drag, rotate and scale gestures. Spread, pinch and flick gestures are available

for navigating between screens (see Figure 4.7).

2. Avoid gestures which are too similar to each other

The gestures can be easily distinguished based on their function and the context in

which they are used. For example, spreading or pinching on a component that allows

editing causes the view to zoom in and out respectively. Performing a spread or pinch

gesture on the screen and disabling the pan/zoom/rotate function causes the prototype to

navigate to the relevant screen. The current design and implementation of the prototype

does not provide online guidance showing how the gestures are performed.

3. Reduce the need for overlaying UI controls

The editing components do not contain any controls which are overlaid on the working

area. The tools and functionalities are located to the south and east panels of the

screen (see Section 4.7.3).

Chapter 5: Usability Evaluation

 155

4. Only use 2D icons in 2D space

The icons used in the design of the GUI are only used in a 2D context. 2D icons are

used to indicate symbols and characters in the floor plan editor. The floor plan is a top-

down 2D orthographic projection of the 3D virtual environment. It appears to be a

simple 2D floor plan of the environment.

5. Use simple, large and consistent icons

Simple and meaningful icons are used to represent the tools that the user can interact

with. The icons are large enough to be touched comfortably and they are not placed too

close to one another. The designs, locations and functions are consistent for each icon

throughout the GUI design.

5.5.3 Heuristic Evaluation for Sketch-based Recognition

The findings made by evaluating the sketch-based recognition design against the guidelines

proposed by Wais et al. (2007) are as follows:

1. Efficient and reliable recognition triggers

The trigger for recognising sketches is automatic. The recognition is triggered after a

specific amount of time after the user completes the last stroke of the sketch. The design

does not currently support user controlled recognition triggers.

2. Separate recognised and unrecognised objects

Objects that have not been recognised are illustrated using the user’s original strokes.

Recognised sketches, such as props, characters and shots are replaced with the

respective 3D models and symbol icons to indicate that recognition has been completed.

3. Minimise the clutter and user sketch transformations

The design allows the user to enlarge and adjust the view of the sketching area. This

allows the user to sketch the floor plan and individual storyboard panels without

cluttering the working environment. The user’s sketches are also automatically hidden

once they have been interpreted and the 3D pre-visualisation has been prepared. The

user can choose to unhide these sketches as well. Recognised objects can be

manipulated but the user’s original strokes are not modified or transformed at all.

Chapter 5: Usability Evaluation

 156

4. Allow errors to be corrected after sketching

The design provides an eraser for performing corrections in sketches. Movement and

rotation tools are available for adjusting objects. Alternatives are presented to the user

when performing object recognition.

5. Provide predictable and understandable recognition errors

The current design and implementation of the GUI does not support online assistance

for sketching objects. The task list was used to illustrate how objects should be sketched

when performing the staging tasks and sketching storyboard panels (see Appendix H).

5.5.4 Usability Issues

This subsection reports on the usability issues identified during the analytical evaluation of

the GUI component designed and implemented for the SISPA framework (see Figure 4.2):

 The GUI requires undo/redo functionality so that the user can easily correct mistakes.

 The GUI requires the user to maintain a mental map of the floor plan while sketching

the props for a shot on a blank storyboard panel. This can be resolved by providing a

small preview area of the floor plan that shows the individual props, where they are on

the set and which colour they are. The user should be able to hide and retrieve the

preview window using a swipe gesture so that it does not obstruct the working area.

 The GUI does not allow the user to change recognised floor plan and emotion

symbols. This can be resolved by adding a popup menu that shows alternatives when

the user touches the symbol.

 The design and implementation of the prototype does not support built-in help that

documents how the various features of the GUI are used, how objects are sketched and

how touch gestures are performed. This can be resolved by integrating a sub GUI that

provides a help system similar to the Windows Help system. It should follow the

design guidelines for touch-based interfaces and illustrate how gestures are performed

graphically.

5.6 Empirical Evaluation Design

A usability evaluation was conducted in order to measure the usability of the prototype tool

and identify usability benefits and issues (see Appendix D, Appendix E and Appendix G).

The evaluation also measured to what extent the participants preferred the sketch-based

Chapter 5: Usability Evaluation

 157

storyboarding approach over conventional pre-visualisation authoring tools, based on their

personal experience. This section discusses how the evaluation was designed in order to make

these measurements. It discusses the background of the participants used for the evaluation,

the evaluation metrics measured and the instruments used. The section concludes by

discussing the task list and the experimental setup and procedure.

5.6.1 Participants

Tullis and Albert (2008) recommends using five participants per significantly different class

of user. Two user classes were considered, namely users with a background related to

filmmaking and participants with a background related to Information Systems. A

representative sample of ten students was drawn from the Department of Photography; the

Department of Journalism, Media and Philosophy; and the Department of Computing

Sciences at the Nelson Mandela Metropolitan University (NMMU) (see Figure 5.1 (a)).

(a) (b) (c)

Figure 5.1: Participant (a) background (b) storyboarding experience and (c) modelling and

animation experience (n=10).

60% of the participants had a film related or media related background. The participants were

required to have at least some experience in sketching storyboards. 40% of the participants

were skilled at sketching storyboards and 60% had basic storyboarding experience (see Figure

5.1 (b)). 70% of the participants had experience with using 3D modelling and animation

tools (see Figure 5.1 (c)).

Participants were asked to specify if they had any experience in activities performed during

the filmmaking process (see Figure 5.2). All of the participants reported that they had

storyboarding experience. It should be noted that nine of the ten participants reported that

30%

30%

30%

10%

Participant
Background

Media
Graphics Design
Information Systems
Other

40%

60%

Storyboarding
Experience

Skilled storyboarding

Rough storyboarding

70%

30%

Modelling and
Animation
Experience

Experienced

Novice

Chapter 5: Usability Evaluation

 158

they had experience with writing or reviewing scripts, and two of the participants reported

that they had performed computer animation for a project. Participants also had experience in

planning, shooting, editing and performing other filmmaking activities such as directing and

creating shot lists.

Figure 5.2: Participant experience with filmmaking activities.

5.6.2 Evaluation Metrics

The ISO9241-11 standard defines usability as the “extent to which a product can be used by

specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a

specified context of use” (1998). The definition refers to three metrics for measuring the usability

of the prototype:

1. Effectiveness is a performance metric that measures the accuracy and completeness of

the tasks performed by the user. For example, the user performed nine out of ten tasks

successfully and made three errors in the process.

2. Efficiency is a performance metric that measures the time taken or the number of user

actions required to complete tasks successfully. For example, the user took 2 minutes

to complete the task and touched the touch display 40 times during the use of the

system.

3. Satisfaction as a satisfaction metric for measuring the positive and negative attitudes

towards the product. For example, the user commented that the GUI is easy to use but

needs a feature.

Performance metrics were measured by observing the success level, time required and errors

made by the user for each task performed during usability testing. The physical effort

5

3

2

9

3

9

2

10

0 1 2 3 4 5 6 7 8 9 10

Other

Editing

Animating

Shooting

Planning

Scripting

Pitching Storyboards

Storyboarding

Number of participants with experience

A
ct

iv
it

y

Experience in Filmmaking Activities

Chapter 5: Usability Evaluation

 159

expended in using the prototype was also recorded as performance metrics. This was achieved

by automatically logging the touch-based gestures and stylus taps/strokes performed by the

user. The learnability of the prototype was evaluated by measuring how the time and physical

effort required to complete tasks successfully changed as the users became more proficient

with the prototype. Cognitive effort was measured as part of the satisfaction questionnaire.

Quantitative data and qualitative data were collected using satisfaction questionnaires in order

to measure user satisfaction. The next section discusses the instruments that were used in

order to conduct the usability test and gather the required information.

5.6.3 Instruments

Each participant was presented with a list of tasks that needed to be performed in order to

evaluate the prototype (see Appendix H). The participants were each asked to complete a pre-

task questionnaire for collecting background information (see Section 5.6.1 and Appendix I).

The evaluation was divided into two parts. The first part of the evaluation covered all the

features that support the staging activity. The second part of the task list covered the features

required for performing the storyboarding activity.

The user’s effectiveness in performing each task was measured and recorded on a

performance sheet for each part of the evaluation (see Appendix J). The performance sheet

recorded whether the participants were able to complete each task successfully and accurately.

It also recorded the time required and the number of errors made for each task. The

participants were observed in order to identify usability issues.

User satisfaction was measured using a user satisfaction questionnaire for each part of the

evaluation (see Appendix K and Appendix L). The user satisfaction questionnaires were

adapted from the Computer System Usability Questionnaire (CSUQ) (Lewis 1995). It

measures the user’s cognitive load using a 5-point semantic differential scale. Overall user

satisfaction and views of the usability of the prototype were measured using a 5-point Likert

scale.

5.6.4 Tasks

The task list used for evaluating the prototype tool was designed for performing the staging

and storyboarding for a specific scenario story, namely Goldilocks and the Three Bears (see

Appendix H). The prototype was preloaded with a script, set, props and characters. The

participant was required to author a small part of the Goldilocks story. The task list was

Chapter 5: Usability Evaluation

 160

divided into two parts. The first part required the user to sketch the design of the set for the

living room and create a floor plan that illustrated the shooting strategy for the particular

dramatic block. The second part of the evaluation required the user to design the set for the

kitchen and sketch a 3D illustration of the shot for the storyboard of the dramatic block. The

tasks included the following:

1. Staging part (narrative block: “My chair is broken!”)

1.1. Navigate from the story viewer to the floor plan editor for the narrative block.

1.2. Design the set for the narrative block.

1.3. Block out each character.

1.4. Indicate the movement of each character.

1.5. Specify the position and direction of each shot.

1.6. Indicate the movement of a shot.

1.7. Associate each shot with the characters that appear in it.

1.8. Navigate to the storyboard editor and populate the dialogue/action entries.

2. Storyboarding part (narrative block: “My porridge has been eaten!”)

2.1. Design the set for the narrative block.

2.2. Create a new, blank storyboard panel.

2.3. Sketch shot #1 for the narrative block indicating props and characters.

2.4. Indicate the emotional expression on each character’s face.

2.5. Navigate to the floor plan editor and add a second shot #2.

2.6. Navigate to the Sketch Editor for shot #2.

2.7. Use the camera manipulation tools of the Sketch Editor to adjust shot #2.

2.8. Add props to shot #2 by sketching them on the 3D rendering.

2.9. Add characters to shot #2.

2.10. Use the floor plan editor to indicate the motion of each character.

5.6.5 Experimental Setup and Procedure

Usability testing was conducted in a controlled environment. The prototype was installed on

an Asus EEE Slate EP121 tablet computer. The tablet was placed on a flat table surface with a

chair for the participant and a chair for the evaluator. The table was prepared by laying out the

required instruments and loading the prototype. A notepad and stopwatch was also used for

recording time-per-task data and noting usability issues.

The evaluation of the prototype proceeded as follows. A single evaluation was conducted at a

time for each participant. The procedure of the evaluation, as well as the goals of the study,

were briefly explained to each participant. The participant provided consent for taking part in

the evaluation (see Appendix D). The Pre-Task Questionnaire was completed by the

participant in order to collect background information. The user was given a short training

session once the prototype was loaded and the participant completed the Pre-Task

Questionnaire (see Appendix I). The participant was then asked to complete the tasks listed in

the staging part of the evaluation. The participant then completed the staging Post-Task User

Chapter 5: Usability Evaluation

 161

Satisfaction Questionnaire (see Appendix K). Similarly, the participant was asked to complete

the second part of the evaluation and fill in the storyboarding Post-Task User Satisfaction

Questionnaire (see Appendix L).

Observed usability issues and performance data were recorded on the notepad and the

Performance Sheet throughout the evaluation (see Appendix J). The prototype performed

automatic logging of all the touch and stylus input provided by the user. This was achieved by

recording each touch event and mouse event invoked by the GUI for each screen. An image of

the screen and its event data was captured and written to secondary storage each time the

participant navigated to a different screen.

5.7 Empirical Evaluation Results

The usability of the proof of concept prototype implementation of the SISPA framework was

measured empirically in terms of performance metrics (effectiveness, learnability and

efficiency) and user satisfaction metrics (see Section 5.6.2). This subsection will report on the

empirical evaluation results as well as the observations made during the usability tests.

5.7.1 Performance Results

This subsection discusses the performance results obtained from analysing performance data

collected from usability testing. The performance results shows how effectively and

efficiently the users could perform each task using the prototype implementation of the

SISPA framework. The task success rate, the time per task, the errors per task, the efficiency

of performing tasks and the learnability of the GUI are discussed.

5.7.1.1 Task Success Rate

The success rate of each task was measured by recording whether each task was completed

successfully or not and whether there were any problems. The success of each task for each

participant was recorded as being completed successfully with “no problems” or “some

problems”. If the task was not completed successfully then it was recorded as “failed”. Figure

5.3 (a) shows the success rates of the staging tasks and Figure 5.3 (b) shows the success rates

for the storyboarding tasks.

Most of the tasks received a 100% success rate except for task 2.9 which received a success

rate of 90%. The participant performed the task correctly but an implementation issue caused

the prototype to become non-responsive (memory leak caused by off-screen rendering).

Chapter 5: Usability Evaluation

 162

(a) (b)

Figure 5.3: Task success rates for (a) staging, and (b) storyboarding (n=10).

The evaluation continued after the issue was resolved. It can be concluded that both the

staging and storyboarding functionalities of the prototype design and implementation

effectively supported the user’s tasks due to the high success rate for each task.

5.7.1.2 Errors

Several errors were recorded while observing the participants during usability testing. The

errors were recorded on the performance sheet and given severity ratings. The errors were

rated as follows.

 Tasks completed without any problems were rated as “no errors”.

 Issues that did not contribute to task failure but caused the user to become annoyed or

frustrated were rated with “low severity”.

 Issues that contributed to task failure but did not directly cause it were rated with

“medium severity”.

 Issues that contributed directly to the failure of a task were rated with “high severity”.

Figure 5.4 (a) and Figure 5.4 (b) show the errors observed for the staging tasks and the

storyboarding tasks. Most of the “low severity” errors were observed during tasks 1.2, 1.3,

2.1 and 2.4. These tasks involved sketching props, symbols and characters. User frustration

was caused by recognition errors (k-NN with) and the automatic recognition trigger.

The automatic trigger invokes the recognition algorithm after five seconds of completing a

sketch. Some of the participants (n=2) felt that five seconds was not sufficient time and others

(n=8) felt comfortable with the trigger delay. There was a medium severity error observed

when a participant attempted task 2.4. The participant attempted to sketch the back, left arm

and right arm of a character’s stick figure without lifting the stylus.

0%

20%

40%

60%

80%

100%

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Staging

0%

20%

40%

60%

80%

100%

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10

Storyboarding

Chapter 5: Usability Evaluation

 163

(a) (b)

Figure 5.4: Errors made during (a) staging, and (b) storyboarding (n=10).

This meant that the back, left arm and right arm were represented with a single stroke. The

Computer Vision Module created a tree structure to represent the character’s armature as the

participant sketched (see Section 4.6.5). It could not successfully construct the tree because

the sketch only contained a single stroke. This is a limitation of the character pose estimation

method. The participant was required to erase the stick figure and sketch the back and arms

using two strokes. The high severity error in task 2.9 was caused by the prototype becoming

non-responsive (the memory leak issue was resolved).

Accuracy is a key requirement for completing tasks effectively and efficiently (Stone et al.

2005). It was found that 100% of the staging tasks performed and 98% of all the

storyboarding tasks performed were without any medium/high severity errors. It can be

concluded that the participants could perform the staging tasks and storyboarding tasks

accurately.

5.7.1.3 Time on Task

The time required by each participant for each task was recorded on the performance sheet

and analysed. Figure 5.5 shows the average time required (in minutes) for each non-trivial

task with 95% confidence intervals. Only tasks that required more than one minute to

complete are shown. Outliers were removed if they were above minutes

where is the average time for a task, is its standard deviation and . was

determined empirically in order to minimise data skewing. Two outlier times out of the 80

recordings made were removed.

0%

20%

40%

60%

80%

100%

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Er
ro

r
P

e
rc

e
n

ta
ge

Task

Staging Errors

0%

20%

40%

60%

80%

100%

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10

Task

Storyboarding Errors

Chapter 5: Usability Evaluation

 164

Figure 5.5: Time taken to complete non-trivial tasks (n=10).

Tasks 1.2, 1.3 and 1.5 involved sketching the design of the set (with three props) and the

shooting strategy for the dramatic block. The participants were able to perform tasks 1.2, 1.3

and 1.5 under a total time of six minutes. This time was spent mostly on sketching, adjusting

objects and correcting object recognition errors. Task 1.8 involved navigating to the

storyboard and populating the generated storyboard panels with action/dialogue entries. The

task required one minute on average. It was observed that two of the participants attempted to

use the navigation gesture while being in the move/zoom/pan editing state. They waited to see

if the system was responding and then noticed and corrected the state issue. Task 2.3 and task

2.4 required the most time because they required the participant to sketch each prop and

character for the shot as it would appear in 3D. The participants achieved this in an average of

seven minutes. Task 2.9 also required the user to sketch characters like task 2.4 but it required

one minute less time to complete.

5.7.1.4 Learnability

Learnability is measured by examining the time required to complete tasks as the participant

gains experience (Tullis and Albert 2008). This is achieved by collecting time-per-task data

for multiple trial evaluations (2 to 4 trials). Each evaluation took one hour to complete. It was

not feasible to conduct usability tests lasting two or three hours each. Instead, the task list was

designed to include repetition of staging and storyboard sketching activities. Similar staging

tasks and similar storyboarding tasks were grouped into two groups each as shown in Table

5.1 (see Appendix H).

1.73

2.64

1.12 1.11

1.94

3.38 3.19

1.85

0

1

2

3

4

1.2 1.3 1.5 1.8 2.1 2.3 2.4 2.9

Ti
m

e
 (

m
in

u
te

s)

Task

Time on Non-trivial Tasks

Chapter 5: Usability Evaluation

 165

Table 5.1: Task grouping for measuring learnability.

Activity Description Group Tasks

Staging Add props and shots
Staging A 1.2 and 1.5

Staging B 2.1 and 2.5

Sketching
Sketch characters and indicate

facial expressions

Sketching A 2.4

Sketching B 2.9

Figure 5.6 shows the total time required to complete each group of tasks with 95% confidence

intervals. The learnability of the design accounted for a 20% reduction of the time required

for performing the staging tasks as the participants became more proficient with using the

GUI. A 42% time reduction was measured for performing the sketching tasks. It can be

concluded that the participants were able to learn how to use the GUI as they gained more

experience of using it.

Figure 5.6: Learnability results (n=10).

5.7.1.5 Efficiency

The Common Industry Format defines efficiency as the “level of effectiveness achieved to the

quantity of resources expended” (NIST 2001). The amount of resources expended can be

measured as the time used, or the amount of effort the user expended, per task. Effort is

measured as either being physical effort (e.g. number of touches, gestures and strokes) or

cognitive effort. This subsection will report on the efficiency of the successfully completed

tasks in terms of task time and physical effort.

Figure 5.7 shows the task efficiency measured in terms of success per minute for each non-

trivial task. Only tasks with similar complexities are compared task efficiency is influenced

A A B
B

0

0.5

1

1.5

2

2.5

3

3.5

4

Staging Sketching

Ti
m

e
(M

in
u

te
s)

Activity

Learnability

Chapter 5: Usability Evaluation

 166

by its difficulty and time requirements of the task (Tullis and Albert 2008). The tasks are

grouped into three levels of complexity namely “low”, “medium” and “high”.

Efficiency

Figure 5.7: Success per minute efficiency results for non-trivial tasks (n=10).

Tasks 1.3, 2.3 and 2.4 had relatively low efficiency values. The efficiency of task 1.3 was

reduced because of object recognition errors and automatic recognition trigger delays (it

involved sketching six symbols). The efficiency of task 2.3 was reduced because it had high

time requirements (it involved sketching a 3D scene with three props). The efficiency of task

2.4 was reduced because of a thresholding issue with the automatic interpretation of user stick

figures (see Section 5.7.3). The overall average efficiency was calculated for the non-trivial

tasks. The efficiency percentage for each level of task complexity was calculated using

Equation (5.1) (Tullis and Albert 2008).

 (5.1)

Table 5.2 shows the average efficiency for each complexity level. It was found that the

average efficiency for performing non-trivial tasks was 86%. It can therefore be concluded

that the participants were able to perform the tasks efficiently in terms of task success per

minute.

Table 5.2: Calculation of the average efficiency for non-trivial tasks.

Complexity

Level

Maximum

Efficiency

Average

Efficiency

Efficiency

Percentage

Low 0.9 0.9 100%

Medium 0.64 0.51 80%

High 0.49 0.38 78%

Average Efficiency 86%

0.90 0.90

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.5 1.8

Su
cc

e
ss

 p
e

r
M

in
u

te

Low Complexity

0.64

0.38

0.51

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1.2 1.3 2.1
Tasks

Medium Complexity

0.33 0.31

0.49

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2.3 2.4 2.9

High Complexity

Chapter 5: Usability Evaluation

 167

Efficiency was also measured in terms of the physical effort expended. This was achieved by

recording the number of gesture events and stylus events invoked by the GUI as each

participant performed the tasks. The data was stored each time the participant navigated away

from a screen. The event data was grouped into two groups for staging and storyboarding

similarly to the previous subsection, namely “staging A”, “staging B”, “sketching A” and

“sketching B”. Figure 5.8 (a-e) shows the average number of taps, drags, manipulations,

stylus strokes and stylus release events that where invoked for each group with 95%

confidence intervals. It is interesting to note that the physical effort required for staging and

storyboarding reduced from A to B for most event types. The manipulation effort increased

slightly from “sketching A” to “sketching B”. This is because the participants preferred seeing

an overview of the sketch during the “sketching A” tasks. The participants adjusted the view

of the sketch more often during the “sketching B” tasks. It can be concluded that the

participants became more efficient in terms of physical effort as the GUI was learned.

Chapter 5: Usability Evaluation

 168

(a) (b)

(c) (d)

(e)

Figure 5.8: Physical effort efficiency results (n=10).

Chapter 5: Usability Evaluation

 169

5.7.2 Satisfaction Results

This subsection discusses the satisfaction results obtained from analysing the data from the

user satisfaction questionnaires for the staging activities and the storyboarding activities (see

Appendix K and Appendix L). User satisfaction was measured in terms of cognitive load,

overall satisfaction and usability using 5-point semantic differential scales and 5-point Likert

scales. The user satisfaction questionnaires also included sections for collecting qualitative

data describing positive, negative and general aspects of the GUI. This subsection reports on

the common themes identified from the qualitative data.

5.7.2.1 Workload

The cognitive load was low for both the staging tasks and the storyboarding tasks (see Figure

5.9). The average ratings given for the mental demand and physical demand were in the “low”

rank vicinity. The physical demand of the storyboarding tasks was higher than the physical

demands of the staging tasks. Similarly, the storyboarding tasks required more effort and

time, and caused more user frustration compared to the staging tasks. This can be explained

by the fact that sketching shots in 3D perspective requires more skill, effort and time than

sketching 2D symbols for a floor plan. This is supported by the efficiency data collected (see

Section 5.7.1).

Figure 5.9: The cognitive load using a 5-point semantic differential scale (n=10).

The staging tasks received the lowest frustration rating, suggesting that it was easy for the

participants to sketch the floor plans. Overall, the participants rated their performance

1.9

1.4

1.9 1.9
2.1

1.2

2
1.8

2.2 2.2
2.4

1.9

1

2

3

4

5

Mental
demand

Physical
demand

Temporal
demand

Failure Effort FrustrationR
a

ti
n

g
(1

 =
 v

er
y

lo
w

, 5
 =

 v
er

y
h

ig
h

)

Workload Questions

Workload

Staging

Storyboarding

Chapter 5: Usability Evaluation

 170

(success rates) for the staging tasks and the storyboarding tasks as being, on average, better

than “high” (shown with a “low” average failure rating in Figure 5.9). It can be concluded that

the participants reported to be able to successfully complete the tasks while being under low

levels of cognitive and physical load.

5.7.2.2 Overall Satisfaction

Overall user satisfaction usability metrics were measured using 5-point Likert scales. Figure

5.10 shows the overall satisfaction reported by the participants for the staging tasks and the

storyboarding tasks with 95% confidence intervals.

Figure 5.10: Overall satisfaction results using a 5-point Likert scale (n=10).

The participants’ average response on the ease of use, overall satisfaction, learnability and

simplicity of the staging and storyboarding GUI components were all positive (average was

4.4 = good). The overall satisfaction section of the storyboarding questionnaire also contained

a question regarding the preference between the storyboarding approach and the conventional

pre-visualisation authoring approach.

An average rating of 4.6 was given in favour of the storyboarding approach. Two participants

mentioned that they would have preferred having access to the conventional pre-visualisation

authoring methods and the proposed storyboarding approach. The following statements were

made by participants to support the high rankings they gave the storyboarding approach:

 “The ability to use the 2D and 3D interface. This renders paper obsolete.”

 “…a great fusion of paper sketching and 3D modelling.”

 “This process makes much more sense.”

 “This will make the production process much easier for both skilled and non-skilled
users”

Chapter 5: Usability Evaluation

 171

 “Most of the other authoring tools are truly complex to learn…, but with the sketched-
based authoring it was the opposite.”

 “Most of those (other) programs aren’t as simple to use…”

5.7.2.3 Usability Results

The satisfaction questionnaire was used to collect self-reported data about the usability of the

sketch-based interface for staging and storyboarding on 5-point Likert scales. Figure 5.11

shows the self-reported usability results with 95% confidence intervals.

The participants reported an average rating of 4.1 = good for how easily, efficiently,

productively and effectively the staging and storyboarding tasks could be performed. The

participants also reported that the staging and storyboarding interfaces had the functionality

they expected and that they were comfortable with the touch interaction provided by the GUI.

The slight differences between the ratings given between the staging and storyboarding

interfaces are motivated by analysing the qualitative feedback provided by the participants.

Figure 5.11: Usability results using a 5-point Likert scale (n=10).

5.7.2.4 Qualitative Feedback

The post-task user satisfaction questionnaires included sections for commenting on the most

positive, the most negative and general aspects of the staging interface and the storyboarding

interface. Analysis of the qualitative data revealed several common themes. General

comments were moved to the sections for positive and negative comments respectively.

Table 5.3 shows the most positive comments made regarding the staging interface. Five

participants commented that the props, characters and shots were easy to draw using the floor

plan editor. This was supported by four participants commenting that the staging interface

Chapter 5: Usability Evaluation

 172

does not require artistic talent. Six participants commented that the staging interface was

simple, fun to use and easy to learn.

Table 5.3: Most positive comments for the staging interface.

Description n

Simple and fun to use. 6

Easy to learn. 6

Easy to draw props, characters and shots to place them in the scene. 5

No artistic talent required. 4

Good visual feedback. 3

The icon for each function is easy to understand. 3

Easy to navigate between screens. 2

Would make production simpler. 2

Table 5.4 shows the comments that were made about the most negative aspects of the staging

interface. In general, the participants commented about the lack of double tap support (n=1),

difficulties recognising character symbols (n=1) and non-responsiveness during the rendering

of relatively hi-polygon scenes (n=1). Two participants commented on the limited number of

props and characters provided. The proof of concept prototype was implemented in order to

support the Goldilocks scenario for user evaluation. Additional 3D assets can be included in

the environment by creating the 3D models, adding them and training them (see Section 4.4

and Section 4.6.4). Five participants commented that they would like more functions in

general, e.g. undo/redo.

Table 5.4: Most negative comments for the staging interface.

Description n

Would like more functions. 5

Limited number of assets. 2

No double tap gesture for accepting options. 1

Difficulties recognising character symbols. 1

Lags when rendering highly populated scenes. 1

Table 5.5 shows the most positive comments that were made about the storyboarding

interface. Four participants commented that being able to automatically convert user sketches

into 3D shots is a useful feature. Five participants found the storyboarding interface to be easy

to use and learn. Four participants reported that it was efficient to use as well.

Chapter 5: Usability Evaluation

 173

Table 5.5: Most positive comments for the storyboarding interface.

Description n

Easy to use. 5

Easy to learn. 5

Converting sketches to 3D is a useful feature. 4

The storyboarding interface is efficient to use. 4

Organisation and manipulation of objects is easy. 3

It is simple to place characters. 2

Table 5.6 shows the most negative comments made about the storyboarding interface. It was

commented that there is no double tap gesture for accepting options (n=2) and that the

storyboarding interface needs more functions, e.g. undo/redo. One of the participants

commented that it was difficult to sketch in 3D perspective and that it would be easier to use a

drag-and-drop approach so that sketching would not be necessary for creating shots. The

focus of this research is to investigate sketch-based methods. Implementing and evaluating a

drag-and-drop approach as well was therefore out of scope. Two participants commented that

the props and characters had low visual appeal and that “it would be ideal if the visuals,

ability and options matched that of the Sims game” (Electronic Arts 2009). Low polygon 3D

models were used because of the hardware limitations of the tablet computer. It did not

provide any dedicated graphics acceleration. Limited graphics acceleration was supported by

the integrated graphics chipset provided by the Intel Core i5 processor (Intel Corporation

2012).

Table 5.6: Most negative comments for the storyboarding interface.

Description n

No double tap gesture for accepting options. 2

The assets have low visual appeal and more of them are desired. 2

The storyboarding interface needs more functions. 1

It is difficult to sketch in a 3D environment. 1

5.7.3 Observations

The participants were observed during usability testing in order to identify usability issues.

The usability issues were categorised and given severity ratings (low, medium, high) similar

to the ratings given during the measurement of the task success metric.

Chapter 5: Usability Evaluation

 174

Table 5.7: Observed usability issues (n=10)

Category Issue Severity n

A.) Symbols
1) Large bounding box, for

symbols/props
high 1

B.) Stick figures
1) Stick figure snap thresholds medium 4

2) Stick figure head and overlap medium 2

C.) Touch
1) Double tap to submit/activate low 2

2) Select character on view touch low 1

D.) 3D viewing 1) 3D viewing axis inversion low 3

E.) GUI state

1) Mode for manipulation/gesture low 6

2) New layer for annotations

misunderstanding
low 5

3) Forgetting to add layers for

each prop/character
low 3

Table 5.7 summarises the usability issues observed. There was one issue identified with high

severity in the “symbols” category where the symbols sketched by the user could not be

differentiated. The issue was caused by the way the prototype implemented symbol bounding.

The user’s strokes were used to indicate the bounds of each symbol. The issue was that one

participant preferred sketching each symbol five or six times its normal size on the floor plan.

The boundaries of each symbol overlapped and the prototype was placed in an erroneous

state, thereby causing task failure. This issue was resolved by using the boundary area of the

recognised object and not the user’s sketch. The user could then sketch the props and symbols

at any scale without compromising the state of the floor plan editor.

Two medium severity issues were identified when the participants sketched stick figures in

order to add characters to a shot. Issue B.1 was caused by thresholds that determine when the

strokes should be attached to the vertices of the user’s stick figure. It was found that when the

participant sketched a small stick figure for a distant character then the stroke connecting

thresholds were too large. Conversely, when the characters were sketched to be close to the

camera, then the thresholds were too small. This issue can be resolved by dynamically

adjusting the thresholds according to the scale of the stick figure.

Issue B.2 was caused by a limitation in the character pose estimation method. The Computer

Vision Module creates a tree structure to represent the character’s armature as the participant

sketches (see Section 4.6.5). If the user attempts to sketch the stick figure’s head using a

circle or attempts to sketch the figure using one stroke then the algorithm cannot correctly

Chapter 5: Usability Evaluation

 175

associate the stick figure with the armature. The participants were required to erase the stick

figure and sketch the neck, back, arms and legs with separate strokes.

Three low severity, touch related issues were identified. Two participants attempted to

perform a double tap gesture to select and open story items from the story viewer (issue C.1).

This issue can be resolved by incorporating the double tap gesture into the multi-touch

module and the GUI implementation. One participant attempted to select a character layer

from the Sketch Editor by touching the character in the working area instead of the list of

layers (issue C.2). This issue can be resolved by using a picking method for 3D object

selection from the rendered image (e.g. the selection buffer in OpenGL).

Issue D.1 involved moving and rotating the camera in 3D spacing using the drag gesture. It

was observed that three participants tried to move the camera towards a direction by dragging

in the same direction. The method for panning the view of a 3D scene was designed to be

consistent when panning 2D views. The participants were able to orientate themselves in 3D

space when interacting with the touch based GUI. The issue can be resolved by including a

function that allows the participant to choose whether camera movement and rotation should

be inverted along the horizontal and vertical axis or not.

There were several GUI state related, low severity issues. The screens that required sketch-

based input allowed the participants to pan the view of the current sketching area. The

“pan/zoom” toggle was used to distinguish between panning gestures and navigation gestures.

In issue E.1, six participants forgot about this GUI state and attempted to navigate while the

GUI was in a “pan/zoom” mode. The participants noticed this and disabled the toggle to

navigate. The issue can be resolved by removing the “pan/zoom” toggle and restricting flick

gestures to the tabs on the sides of the screen.

Issue E.2 and issue E.3 involved layer management. Five participants thought that a new layer

was required for creating an annotation symbol and three participants forgot to add new layers

between sketching props. The layer concept was introduced in order to allow the user to

sketch stacked props, e.g. sketching a bowl on a table. However, it placed additional cognitive

load on the participants. Issue E.2 and issue E.3 can be resolved by removing the layer

concept from the floor plan editor and using bounding boxes to distinguish props (similarly to

how symbols are distinguished). A “stack” toggle can then be added to allow the user to

sketch stacked props when required.

Chapter 5: Usability Evaluation

 176

5.8 Design Guidelines

Several design recommendations can be made based on the results from the analytical and

empirical evaluations. The lessons learned from the evaluation have been compiled into ten

guidelines for designing sketch-based pre-visualisation authoring tools with a storyboarding

approach. The design guidelines are as follows:

1. Design for sketch-based input based on real world deliverables

The design of the GUI should be based on real world deliverables such as scripts, floor

plans and storyboards. The tool should be able to analyse sketch-based input

automatically in order to interpret the user’s sketches of props, characters and floor

plans. Algorithms that interpret the user’s sketches should be executed in separate

threads if they are computationally expensive. The user should be able to sketch at

interactive rates without abrupt interruptions. It is also important that the algorithms

used by the Computer Vision Module are sufficiently robust in order to process rough

sketches (see Section 4.6). This will allow artistic and non-artistic users to be able to

use the sketch-based pre-visualisation authoring tool.

2. Minimise clutter in user sketches

The GUI components that accept sketch-based input should provide a means for

reducing the cluttering of user sketches. The view of the working area should be

adjustable using zoom and pan gestures so that participants can sketch the props and

symbols at the correct scale. Grids should be provided in order to provide the user with

an indication of scale. If objects are recognised then their sketches should be replaced

by the recognised object. The 3D camera of a storyboard panel should be known

before changing the user’s 3D sketches into 3D objects. Sketch editors that require

users to sketch in 3D should support the layering concept so that props and characters

can be sketched, manipulated and analysed separately.

3. Provide help so that the sketched objects can be recognised successfully

The GUI should provide built-in help features to aid the user in sketching objects and

using the system. This can be achieved by providing animated tutorials. A “show me

how” feature can be included to demonstrate how the stylus can be used to sketch

props, symbols and characters so that they can be recognised and posed effectively.

Chapter 5: Usability Evaluation

 177

4. Provide user controlled recognition triggers

Automatic recognition triggers should be optional and the main recognition trigger

should be user controlled. This can be achieved by providing a “recognise all” button.

The recognition processing can work in the background without requiring the user to

begin the process, but it should be the user’s responsibility to change the sketches into

their respective objects. An optional time-delayed automatic recognition trigger can be

provided, but it should not be the only option.

5. Provide comprehensive editing functionality for the sketching interface

The interface components requiring sketch-based input should support common

editing functionalities provided by editing software, such as selecting, clipboard

functionality and undo/redo functionality. The space available to include these touch-

friendly tools may be limited. If this is the case then a tabbed toolbar can be used to

organise the tools. If the sketching interface allows 3D viewing then the user should be

able to choose whether movement/rotation around the axis should be inverted,

depending on the user’s preference.

6. Design for touch-based input

The GUI should be designed to be touch-friendly by following touch interaction

design principles (see Section 4.5.1). The GUI should be simple, consistent,

minimalistic and aesthetic. Informative icons should be used instead of unnecessary

text. Intuitive and logical touch gestures should be provided for interacting with the

various components of the GUI.

7. Allow props, characters and symbols to be sketched in any fashion

The method used for interpreting user sketches automatically should allow the user to

sketch props, characters and symbols in any fashion. The method used for recognising

objects and estimating their pose should not be dependent on how the objects are

sketched. For example, if stick figures are used to represent characters then the user

should be able to sketch the parts of the stick figure in any order.

Chapter 5: Usability Evaluation

 178

8. Minimise the number of GUI states

The design of the touch/sketch-based GUI should minimise the number of states

required to interact with the tool. The GUI should be designed so that the touch

gestures are specific to relevant GUI components so that a “navigate/manipulate” state

is not needed. In addition to minimising touch interaction states, the GUI should only

apply the layering concept in the Sketch Editor. Having layers for individual props in

the Floor Plan Editor adds to the cognitive load on the user. The props’ bounding

boxes can be used to differentiate props. A “stack” toggle can be used to allow props

to be placed on top of one another, e.g. bowls on a table.

9. Reduce cognitive effort required for sketching the storyboard panels

The user should not be required to maintain a mental image of the props on the floor

plan while sketching a new shot. The cognitive effort required for remembering where

props are relative to each other should be reduced. This can be done by adding a floor

plan preview to the Sketch Editor. The user should be able to toggle the visibility of

the floor plan preview.

10. Provide touch-based alternatives for adding props, characters and shots to the

scene

Additional touch-based methods should be available to users for adding props and

symbols to the floor plan. For example, performing a long press gesture at a point on

the set can show a context menu for the user to select a prop, character or shot. The

user can then use the drag and rotate gestures to adjust the pose of the object. This

provides an alternative method for users who prefer not to sketch the individual

objects during the staging activity.

These design guidelines are supported by the findings of the analytical and empirical

evaluation of the sketch-based prototype tool for authoring pre-visualisations using a

storyboarding approach. Guidelines 1 to 6 are based on existing heuristics for designing

sketch-based GUIs that support touch interaction (see Section 5.5). Guidelines 7 to 10 are

based on the findings of the empirical evaluation. They extend existing design heuristics by

requiring that objects be sketched in any fashion, that the number of GUI states is minimised,

that the cognitive effort required for sketching shots is reduced and that touch-based

alternatives are available for adding objects to the scene.

Chapter 5: Usability Evaluation

 179

5.9 Conclusions

This chapter answered the fourth research question listed in Chapter 1, namely to what extent

does a sketch-based storyboarding interface support the user in authoring pre-visualisations

in terms of software usability? The chapter answered this research question by providing an

analytical and empirical evaluation of the GUI design discussed in Chapter 4.

The results from the analytical evaluation showed that the design followed proven guidelines

for overall GUI design, touch interaction and sketch-based recognition. The usability of the

proof of concept prototype was evaluated empirically through usability testing with ten

participants. Usability was measured in terms of effectiveness, efficiency and user

satisfaction. It was found that the prototype allowed users to effectively author pre-

visualisations, with an average success rate of 99% for non-trivial tasks. 100% of the staging

tasks and 98% of all the storyboarding tasks were completed with only minor errors. The

participants could complete the tasks efficiently in terms time and effort. It was also found

that the time and effort required decreased as the participants learned to use the prototype.

This shows that the prototype was easy to learn.

User satisfaction was measured using satisfaction questionnaires. The participants responded

positively by reporting that the prototype required low cognitive effort to use. The participants

also responded that they could achieve high performance levels without feeling frustrated or

pressured for time. The average response on the ease of use, overall satisfaction, learnability

and simplicity of the staging and storyboarding GUI components was 4.4 out of five. Positive

usability responses were reported with an average rating of 4.1 out of five. The positive

results show that the prototype design supports the user in terms of software usability.

The participants were asked whether they preferred using conventional pre-visualisation

authoring approaches, the proposed sketch-based storyboarding approach or a combination of

the two approaches. Interestingly, an average rating of 4.6 out of five was given in favour of

the storyboarding approach. This chapter concluded by proposing ten design guidelines based

on the lessons learned from the evaluation (see Section 5.8).

The next chapter concludes the dissertation by discussing how the objectives of this research

were achieved and what theoretical and practical contributions were made. The chapter also

proposes future research opportunities.

 180

Chapter 6:
Conclusions

6.1 Introduction

The main objective of this research was to investigate how sketch-based user interfaces and

methods from of computer vision can be used for supporting pre-visualisation authoring using

a storyboarding approach. Problems with existing pre-visualisation authoring tools were

identified and a sketch-based storyboarding approach was proposed in order to address these

problems. Appropriate computer vision methods were identified and incorporated in the

design of a new framework, namely SISPA, for the proposed approach. A proof of concept

prototype was implemented for the SISPA framework so that a usability evaluation could be

conducted in order to measure the extent to which the approach supports the user in authoring

pre-visualisations. The findings of the evaluation were used to propose a set of guidelines for

designing future sketch-based pre-visualisation authoring tools that utilise computer vision

methods in order to automatically interpret user sketches.

This chapter concludes this research by discussing how the research objectives were achieved

and summarising the theoretical and practical contributions made. The limitations of this

research and the problems that were encountered are also discussed. The chapter closes by

making recommendations for feature research in sketch-based pre-visualisation authoring.

6.2 Achievement of Research Objectives

The thesis statement for this research is as follows, as presented in Chapter 1:

Storyboarding with sketch-based interfacing techniques can be used effectively for

authoring pre-visualisations without impairing software usability.

Chapter 6: Conclusions

 181

The main objective of this research was to investigate how sketch-based user interfaces and

methods from computer vision can be used for supporting pre-visualisation authoring using a

storyboarding approach. This section discusses how the following sub-objectives were met in

order to achieve the main research objective:

O1: To investigate how pre-visualisations are currently created by focusing on the

methods and theories already developed.

O2: To investigate what methods are available for extracting information from sketches.

O3: To design and implement a sketch/touch-based storyboarding tool for authoring

pre-visualisations.

O4: To measure the extent to which a sketch-based storyboarding interface supports the

user in authoring pre-visualisations in terms of software usability.

6.2.1 Achievements

This research showed that sketch-based interfacing techniques can be used effectively for

authoring pre-visualisations without impairing software usability. This was supported by

addressing the research questions presented in Chapter 1 in order to address the above-

mentioned research objectives.

Q1: What methods and theories have been developed for authoring pre-visualisations?

The first research question was answered in Chapter 2. This involved reviewing the five

phases of the filmmaking process namely, development, pre-production, production,

postproduction and distribution. The chapter included a detailed review of the activities

performed during the pre-production phase, namely script analysis, staging, storyboarding and

pre-visualisation. It was found that floor plans are useful for documenting the shooting

strategy for each individual dramatic block (see Section 2.4 and Table 2.5). The review also

discussed how storyboard artists illustrate characters, emotions, environments and dynamics

using sketches, annotations and graphical devices (see Section 2.5 and Table 2.6). This

investigation was necessary in order to align the proposed authoring approach with existing

filmmaking methods and theories.

The chapter reviewed textual and graphical pre-visualisation authoring approaches, including

game-engine code, control languages, Director Notation, modelling and animation tools,

simplified animation tools and sketch-based animation tools. It was found that each approach

provided an advantage over the previous approach and that existing pre-visualisation tools

Chapter 6: Conclusions

 182

focus on authoring detailed animated pre-visualisations using click-and-drag interaction

methods. The most intuitive and user friendly approach was identified to be the sketch-based

storyboarding approach. It makes the transition from storyboarding to pre-visualisation

authoring smoother in the sense that sketching a storyboard and sketching a pre-visualisation

is almost the same thing. The need for such an authoring tool was confirmed during an

interview with a producer from Triggerfish Animation Studios. A set of requirements was

identified from the literature review and the interview and summarised in Section 2.8. In

particular, it was determined that the tool should be able to interpret the sketches made by the

artist during staging activities and storyboarding activities. It was therefore necessary to

investigate methods for extracting information from user sketches.

Q2: What methods are available for extracting information from sketches?

The second research question was answered in Chapter 3 by discussing methods from

computer vision literature for extracting information from user sketches. Two main challenges

were identified. Firstly, there is no texturing information available because the user’s sketches

are not shaded and they consist primarily of minimalistic strokes. The second challenge is that

the sketches may contain anomalies such as inconsistent, missing or unnecessary strokes

(see Section 3.3.2.4). The feasibility of each method for operating on user sketches was

discussed. The methods included approaches for describing images, comparing images and

estimating the pose of rigid bodies and articulated bodies.

The chapter reviewed several feature detectors and descriptors (see Section 3.3). It was

established that Blob-based region detectors, such as the DoG detector, were the most stable

approach for detecting local features from sketches. It was also found that the best approach

to describing sketch features is to combine feature description approaches. SIFT-based

descriptors can be combined with Grid-based descriptors in order to describe sketches

reliably. Literature suggested that shape-based local feature descriptors are also suited for

describing outlined images such as sketches.

Approaches for matching features and classifying user sketches were reviewed from

literature. It was determined that the bag of features approach and structured feature matching

approaches are both suitable for finding feature correspondences. Bayesian classifiers, ANNs,

SVMs, decision trees and k-NN classifiers were considered. It was determined that the k-NN

classification approach is the particularly suitable for classifying user sketches. This is

because the k-NN classifier makes it possible to classify images based on their local features.

Chapter 6: Conclusions

 183

The images do not have to be represented with single, high-dimensional vectors. The k-

Nearest-Neighbour classification approach is particularly suitable for classifying user

sketches from limited training data.

Several approaches were reviewed for estimating the pose of rigid bodies (such as props) and

articulated bodies (such as characters). It was determined that pose recognition is not suitable

for estimating the pose of a rigid body because of front/back ambiguity and symmetry. The

sketches are also likely to contain the above-mentioned anomalies (see Section 3.3.2.4). The

literature review revealed that numerical rigid body pose estimation approaches such as

POSIT provide more stability than analytical approaches (see Section 3.5). Based on the

requirements identified in Chapter 2, it was determined that vision-based articulated body

posing methods are not suitable for interpreting the characters, because they will be sketched

using minimalistic stick figures. It was determined that the direct sketch-based articulated

body pose estimation approach should be used instead in order to provide the user with a

quick and easy method for sketching characters.

Q3: How can the authoring of pre-visualisations be supported using a storyboarding

metaphor and sketch/touch-based interfacing techniques?

The third research question was answered in Chapter 4 by proposing a new framework called

SISPA for improving the user interface layer of the general pre-visualisation framework

(see Section 4.2. and Section 4.3). The design and implementation of a proof-of-concept

prototype that implements the components of the SISPA framework was discussed.

A touch-friendly Graphical User Interface (GUI) design was proposed for storyboarding on a

tablet computer. A GUI component layout supporting the filmmaking activities identified in

Chapter 2 was discussed, as well as an intuitive method for navigating between them. The

components requiring sketch-based input were designed to utilise the computer vision

approaches identified in Chapter 3 for extracting information from sketches.

Chapter 4 discussed several methods for describing the contents of user sketches using the

approaches reviewed in Chapter 3. It was found that the best approach for describing the

user’s sketch was to combine a single high resolution disk (grid-based) and a low resolution

disk for describing sketched objects after they have been normalised using Principal

Component Analysis (PCA). The resulting descriptor was found to be invariant to scaling.

The Iterative Closest Point (ICP) registration and discreet disk rotation methods were applied

to achieve rotational invariance. The image correspondence was determined using the

Chapter 6: Conclusions

 184

Difference of Gaussian (DoG) local region-based feature detector. The SIFT feature

descriptor was used to match features in order to find 2D-3D point correspondences. The

correspondences proved to be useful for rigid body pose estimation with a known or unknown

camera. Object recognition was achieved by using k-NN classifier with the mean SIFT error

as the distance function. An algorithm was proposed for estimating the camera for a user

sketch by combing information from the floor plan with the pose data estimated for each prop

in the user sketch. A discussion was included on how the proposed touch-friendly GUI could

be implemented on a multi-touch tablet using OpenGL and OpenCV.

Q4: To what extent does a sketch-based storyboarding interface support the user in authoring

pre-visualisations in terms of software usability?

The fourth research question was answered in Chapter 5 by providing an analytical and

empirical evaluation of the proof-of-concept prototype discussed in Chapter 4. Ten design

guidelines were proposed, based on the lessons learned from the analytical and empirical

evaluation (see Section 5.8).

The results from the analytical evaluation showed that the design followed proven guidelines

for overall GUI design, touch interaction and sketch-based recognition interfaces. The

usability of the proof-of-concept prototype was evaluated empirically through usability testing

using ten participants. 40% of the participants were skilled at sketching storyboards and 70%

of the participants had experience with using 3D modelling and animation tools. The usability

of the prototype was measured in terms of effectiveness, efficiency and user satisfaction. The

evaluation involved performing a set of tasks for authoring a pre-visualisation in a small

scenario. Tasks were included for staging, storyboarding and sketching.

The usability testing showed that the prototype allowed users to effectively author pre-

visualisations using the prototype with an average success rate of 99% for non-trivial tasks. It

was found that the participants could complete the tasks efficiently in terms of time and effort

(physical and cognitive). It was also found that the time and physical effort required

decreased as the participants learned to use the prototype. This showed that the prototype was

easy to learn.

The participants responded positively on the user satisfaction questionnaires by reporting that

they could achieve high performance levels with minimum effort without feeling frustrated or

pressured for time. The participants also reported that the prototype required low cognitive

and physical effort to use. The average response on the ease of use, overall satisfaction,

Chapter 6: Conclusions

 185

learnability and simplicity of the staging and storyboarding GUI components was 4.4 out of

five. Positive usability responses were reported with an average rating of 4.1 out of five.

The positive performance and user satisfaction results show that the design discussed in

Chapter 4 supports the user in terms of software usability. The participants were also asked

whether they would prefer using conventional pre-visualisation authoring approaches, the

proposed sketch-based storyboarding approach or a combination of the two approaches.

Interestingly, an average rating of 4.6 out of five was given in favour of the storyboarding

approach. Two of the ten participants responded in favour of a combined approach.

6.2.2 Summary

The research objectives defined in Chapter 1 were supported by this research. It was shown

how a sketch-based pre-visualisation authoring tool that uses a storyboarding approach could

be designed and implemented. The results of the prototype evaluation showed that the

approach supports the user in pre-visualisation authoring. This result supports the thesis

statement of this research. This research resulted in the following achievements:

 Investigation of the filmmaking process and the activities performed during the pre-

production phase;

 Identification of several problems with existing pre-visualisation authoring

approaches;

 Identification of the requirements for sketch-based pre-visualisation authoring tools

that employ the storyboarding approach;

 Selection of the most appropriate computer vision methods for extracting information

from user sketches in order to recognise and pose objects in the user’s sketches;

 Development of a framework (SISPA) for improving the user interface layer of the

general pre-visualisation framework using a sketch-based storyboarding approach;

 Design and implementation of a proof-of-concept prototype tool that implements the

components of the SISPA framework;

 Evaluation of the usability of the prototype tool and the extent to which the proposed

approach supports the user in authoring pre-visualisations; and

 Proposal of a set of guidelines for designing sketch-based pre-visualisation authoring

tools that automatically interpret user sketches and follow the storyboarding approach.

Chapter 6: Conclusions

 186

6.3 Research Contribution

This research has several theoretical and practical contributions. The theoretical contributions

are related to the general pre-visualisation authoring framework. It also contributed by

showing how computer vision and sketch/touch-based interaction methods could be used to

support pre-visualisation authoring. The practical contributions are related to the

implementation of the approaches for supporting sketch-based pre-visualisation authoring.

6.3.1 Theoretical Contributions

A set of requirements for sketch-based pre-visualisation authoring was identified from

filmmaking literature and an interview with an animation studio called Triggerfish Animation

Studios (see Section 2.8). The requirements included a list of objects, symbols, annotations,

graphical devices and other elements that are used in floor plans and storyboards during the

pre-production phase. It also included requirements regarding functionality, usability,

information and semantics and technical aspects. These can be used as a guideline for

determining what elements a sketch-based pre-visualisation authoring tool should support.

A new framework namely SISPA was proposed for the user interface layer of the general pre-

visualisation authoring framework. The SISPA framework includes the following main

components (see Figure 6.1):

 Data Manager: The Data Manager is responsible for transferring data between the

data collection component, the GUI and the planning layer.

 Data Collection: The Data Collection component stores data from the environment

and data from the project being authored.

 Graphical User Interface: The GUI provides the user with a touch-friendly sketch-

based interface for storyboarding and staging. It provides support for multi-touch

interaction, navigation, editing storyboards, and sketching floor plans and

storyboards.

 3D Context: The 3D Context component provides a 3D context to the floor plan

editor and the Sketch Editor. It contains a Computer Graphics Module which allows

the user to work directly on the 3D virtual environment. It also contains a Computer

Vision Module which is responsible for interpreting the user’s sketches.

Chapter 6: Conclusions

 187

Figure 6.1: The SISPA framework.

The findings made during the design and implementation of the Computer Vision Module can

be used to assist future research in describing images quantitatively for the purpose of

interpreting rough sketches. The investigation revealed the strengths and weaknesses of each

approach and it showed how the methods can be combined in order to describe rough user

sketches reliably (see Section 4.6.3).

An algorithm for estimating the unknown camera represented in the user’s sketch is also

proposed (see Section 4.6.6). The algorithm combines the information known from the floor

plan and the poses estimated from the props sketched by the user in order to estimate the

camera parameters for the storyboard panel. Existing sketch-based storyboarding tools do not

automatically interpret the user’s sketches in order to establish the camera from the sketched

environment (see Section 2.6.2.4).

A set of guidelines was proposed for designing sketch/touch-based pre-visualisation authoring

tools that automatically interpret user sketches and follow the storyboarding

approach (see Section 5.8). The guidelines were derived from existing heuristics and the

lessons learned from the usability evaluation of the prototype conducted during this research.

Chapter 6: Conclusions

 188

The guidelines can be used by future researchers and developers for designing similar pre-

visualisation authoring tools.

6.3.2 Practical Contributions

The practical contributions of this research include the proof-of-concept prototype tool which

is one of the first touch-friendly storyboarding tools that can interpret user sketches in order to

estimate the camera, place props and characters in the 3D virtual environment and author pre-

visualisations using a stylus-enabled multi-touch tablet computer. The prototype tool was

designed and implemented modularly and it can be extended easily for future research. The

results of the usability evaluation are also part of the practical contributions made in this

research. Future researchers can use the evaluation results for comparative studies.

6.4 Limitations and Problems Encountered

This research was limited to investigating how minimalistic pre-visualisations can be

authored using a sketch-based storyboarding interface. Sketch-based methods for authoring

detailed (animated) pre-visualisations were not investigated. The scope of the research was

therefore limited to a selected number of storyboard elements, annotations and graphical

devices (see Section 2.8). The environmental data used during the evaluation of the proof-of-

concept prototype tool was also limited. A small scenario with a single set, six props and four

characters was used (eleven low polygon 3D models). This was due to limitations on the

hardware used for usability testing.

The problems encountered during this research include the above-mentioned hardware

limitation. The tablet computer (see Section 4.5) used did not provide any dedicated graphics

hardware acceleration. Limited graphics acceleration was supported by the integrated graphics

chipset provided by the Intel Core i5 processor. The additional graphics processing

requirements on the processor increased the run times of the computer vision algorithms. This

lowered the prototype’s performance compared to using a desktop computer with dedicated

graphics hardware.

6.5 Future Research

There are several research opportunities for authoring pre-visualisations using a sketch/touch-

based storyboarding approach. Future research could investigate how the framework proposed

in this research (SISPA) can be combined with existing pre-visualisation frameworks in order

Chapter 6: Conclusions

 189

to generate detailed animated pre-visualisations (see Section 4.2). This involves designing

interfaces between the different components of the sketch-based storyboarding GUI and the

pre-visualisation framework that can translate the story representation into control language

scripts (see Section 2.6.1.2).

The research could also be extended to include more elements from the requirements

identified in Section 2.8. This would introduce new problems for interpreting user sketches

that can be solved using computer vision and sketch-based interfacing methods. These

problems include the creation of continuous animations from the still storyboard images as

well as dealing with sketched elements that are not valid or accurate in 3D

space (see Section 2.7.3.2).

There is also a need to investigate how sketch-based storyboarding tools can be incorporated

into existing high-end modelling and animation tools (see Section 2.6.2.2) and simplified

animation tools (see Section 2.6.2.3). The qualitative results from the usability evaluation

conducted in this research suggest that sketch-based storyboarding methods may be useful for

modelling and animation experts.

Future research could also involve evaluating the proposed authoring approach using

comparative studies and field studies. A comparative study could compare the sketch-based

storyboarding approach with existing click-and-drag approaches in terms of usability and

usefulness. A field study could be conducted over a period of time to investigate how the

sketch-based storyboarding approach can be adopted in the filmmaking industry for authoring

pre-visualisations.

 190

References

Abidi, M.A. and Chandra, T. (1995): A New Efficient and Direct Solution for Pose

Estimation Using Quadrangular Targets: Algorithm and Evaluation. In IEEE

Transactions on Pattern Analysis and Machine Intelligence. : pages 534–538

Adobe (2012): Photoshop [online]. Available at: http://www.photoshop.com/ [Accessed 18

November 2012].

Aleksandra Čereković, Tomislav Pejša and Igor Pandžić (2010): A Controller-based

Animation System for Synchronizing and Realizing Human-like Conversational

Behaviors. In Development of Multimodal Interfaces: Active Listening and Synchrony.

Springer Berlin / Heidelberg : pages 80–91

Ansar, A. and Daniilidis, K. (2003): Linear Pose Estimation from Points or Lines. In IEEE

Transactions on Pattern Analysis and Machine Intelligence. : pages 578–589

Asus (2012): Eee Slate EP121 [online]. Available at:

http://www.asus.com/Eee/Eee_Pad/Eee_Slate_EP121/ [Accessed 28 October 2012].

Autodesk (2011a): Autodesk 3ds Max Products Products: Features [online]. Available at:

http://usa.autodesk.com/3ds-max/features/ [Accessed 20 June 2011].

Autodesk (2011b): Autodesk Maya Feature Compare [online]. Available at:

http://usa.autodesk.com/maya/compare/ [Accessed 21 June 2011].

Autodesk (2011c): Autodesk MotionBuilder Real-Time 3D Character Animation Software

[online]. Available at:

http://usa.autodesk.com/adsk/servlet/pc/index?id=13581855&siteID=123112 [Accessed

20 June 2011].

Autodesk (2011d): Autodesk Softimage Features [online]. Available at:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13571400 [Accessed

20 June 2011].

Balaji, T.S., Holtzblatt, K., Kangas, E., Kates, J., Kinnunen, T., Landers, B., Page, C., Moritz,

B., Bloom, J., Chipcase, J., Lehikoinen, J. and Rondeau, D. (2005): Designing for the

mobile device: experiences, challenges and methods. In Communications of the ACM.

ACM

Barrow, H., Tenenbaum, J., Bolles, R. and Wolf, H. (1977): Parametric correspondence and

chamfer matching: Two new techniques for image matching. In International Joint

Conference On Artificial Intelligence. Cambridge, USA: Morgan Kaufmann : pages

659–663

References

 191

Battiato, S., Gallo, G., Puglisi, G. and Scellato, S. (2007): SIFT Features Tracking for Video

Stabilization. In Proceedings of the 2007 International Conference on Image Analysis

and Processing. : pages 825–830

Bentley, J.L. (1975): Multidimensional binary search trees used for associative searching. In

Communications of the ACM. : pages 509–517

Blender Foundation (2012): Blender Foundation [online]. Available at:

http://www.blender.org/blenderorg/blender-foundation/ [Accessed 18 October 2012].

Brand, M. (1999): Shadow puppetry. In Proceedings of the Seventh IEEE International

Conference on Computer Vision. Kerkyra , Greece : pages 1237–1244

Bregler, C., Malik, J. and Pullen, K. (2004): Twist Based Acquisition and Tracking of Animal

and Human Kinematics. International Journal of Computer Vision, 56(3), pages 179–

194.

Bujnak, M. and Kukelova, Z. (2008): A general solution to the P4P problem for camera with

unknown focal length. In Proceedings of the 2008 IEEE Conference on Computer Vision

and Pattern Recognition. : pages 1–8

Bull, G. and Kajder, S. (2004): Digital storytelling in the language arts classroom. Learning &

Leading with Technology, 32(4), pages 46–49.

Canny, J. (1986): A Computational Approach to Edge Detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6).

Cassell, J., Vilhjálmsson, H.H. and Bickmore, T. (2001): BEAT: the Behavior Expression

Animation Toolkit. In Proceedings of the 28th annual conference on Computer graphics

and interactive techniques. New York, NY, USA: ACM

Chakravarthy, A., Beales, R., Jung, Y., Wagner, S., Jung, C., Yannopoulous, A., Koutsoutos,

S., Schiffmann, R., Hedtke, R. and Saenen, I. (2010): A Notation Based Approach To

Film Pre-vis. In Proceedings of the Conference for Visual Media Production. Los

Alamitos, CA, USA: IEEE Computer Society : pages 58–63

Chakravarthy, A., Beales, R., Walland, P. and Yannopoulos, A. (2009): ANSWER: A

Semantic Approach to Film Direction. In Proceedings of the International Conference

on Internet and Web Applications and Services. Los Alamitos, CA, USA: IEEE

Computer Society : pages 645–648

Chaudhuri, D. and Samal, A. (2006): A simple method for fitting of bounding rectangle to

closed regions. Pattern Recognition, 40(7), pages 1981–1989.

Chaudhuri, P., Kalra, P. and Banerjee, S. (2004): A System for View-Dependent Animation.

Computer Graphics Forum, 23(3), pages 411–420.

Cheung, K.M.G., Baker, S. and Kanade, T. (2003): Shape-from-silhouette of articulated

objects and its use for human body kinematics estimation and motion capture. In

References

 192

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. : pages 77–84

Clipartoday (2011): Clipart Today [online]. Available at:

http://www.clipartoday.com/clipart/cartoons/cartoon/cartoon_266948.html [Accessed 25

July 2011].

Clker (2011): Light Bulb clip art [online]. Available at: http://www.clker.com/clipart-

6937.html [Accessed 26 July 2011].

Dance, C., Willamowski, J., Fan, L., Bray, C. and Csurka, G. (2004): Visual Categorization

with Bags of Keypoints. In Proceedings of the ECCV International Workshop on

Statistical Learning in Computer Vision. : page 22

Davis, J., Agrawala, M., Chuang, E., Popović, Z. and Salesin, D. (2003): A Sketching

Interface for Articulated Figure Animation. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation. San Diego, California:

Eurographics Association : pages 320–328

Decarolis, B., Pelachaud, C., Poggi, I. and Steedman, M. (2004): APML, a Mark-up

Language for Believable Behavior Generation. Life-Like Characters: Tools, Affective

Functions, and Applications, pages 65–86.

Dementhon, D.F. and Davis, L.S. (1995): Model-Based Object Pose in 25 Lines of Code.

International Journal of Computer Vision, 15(1), pages 123–141.

Didier, J.-Y., Ababsa, F. and Mallem, M. (2008): Hybrid camera pose estimation combining

square fiducials localisation technique and orthogonal iteration algorithm. International

Journal of Image and Graphics, pages 169–188.

Dumas, J.S. and Redish, J.C. (1999): A Practical Guide to Usability Testing, Intellect Books.

EMGU (2012): EMGU CV [online]. Available at:

http://www.emgu.com/wiki/index.php/Main_Page [Accessed 7 November 2012].

Electronic Arts (2009): The Sims 3 [online]. Available at: http://www.ea.com/the-sims-3

[Accessed 20 October 2012].

Engelbrecht, A.P. (2002): Computational Intelligence: An Introduction, Wiley.

Ferilli, S., Basile, T.M.A., Esposito, F. and Biba, M. (2011): A Contour-based Progressive

Technique for Shape Recognition. In Proceedings of the International Conference on

Document Analysis and Recognition. : pages 723–727

Fiore, P.D. (2001): Efficient Linear Solution of Exterior Orientation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(2), pages 140–148.

Fitzpatrick, J.M. and West, J.B. (2001): The Distribution of Target Registration Error in

Rigid-Body Point-Based Registration. IEEE Transactions on Medical Imaging, 20(9),

pages 917–927.

References

 193

Forton, G. (2011): Gerald Forton’s Website [online]. Available at:

http://www.home.earthlink.net/~movieboards/fortonboard1.html [Accessed 12

November 2011].

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin Princeton, D. and

Jacobs, D. (2003): A Search Engine for 3D Models. ACM Transactions on Graphics,

22(1), pages 83–105.

Gadhavi, B. and Shah, K. (2010): Analysys of the Emerging Android Market. San José State

University.

Gao, X.-S., Hou, X.-R. and Tang, J. (2003): Complete solution classification for the

perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(8), pages 930–943.

Geurts, P. (2002): Contributions to decision tree induction: bias/variance tradeoff and time

series classification. University of Liege, Belgium.

Glebas, F. (2008): Directing the Story: Professional Storytelling and Storyboarding

Techniques for Live Action and Animation illustrate, Focal Press.

Gold, S. and Rangarajan, A. (1996): A graduated assignment algorithm for graph matching.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), pages 377–388.

Goldman, D.B., Curless, B., Salesin, D. and Seitz, S.M. (2006): Schematic Storyboarding for

Video Visualization and Editing. ACM Transactions on Graphics, 25(3), pages 862–871.

Golub, G.H. and Loan, C.F. (1996): Matrix Computations 3rd edition,

Greenhead, B. (2011): Take-off cartoon [online]. Available at:

http://www.cartoonstock.com/directory/t/take-off.asp [Accessed 15 November 2011].

Grochow, K., Martin, S.L., Hertzmann, A. and Popović, Z. (2004): Style-Based Inverse

Kinematics. In Proceedings of the 2004 SIGGRAPH Conference. Los Angeles,

California: ACM : pages 522–531

Han, J. and Kamber, M. (2006): Data Mining: Concepts and Techniques 2nd edition, San

Francisco, California, USA: Diane Cerra.

Hanson, A.R. and Kumar, R. (1994): Robust methods for estimating pose and a sensitivity

analysis. Computer Vision and Image Understanding, 60(11), pages 313–342.

Haralick, R.M., Lee, D. and Ottenburg, K. (1991): Analysis and Solutions of The Three Point

Perspective Pose Estimation Problem. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. : pages 592–598

Harris, C. and Stephens, M. (1988): A combined corner and edge detector. In Proceedings of

the Alvey Vision Conference. : pages 147–151

References

 194

Hill, F.S. and Kelley, S.M. (2007): Computer Graphics Using OpenGL Third, Pearson

Education.

Hofstee, E. (2009): Constructing a Good Dissertation: A Practical Guide to Finishing a

Master’s, Johannesburg, South Africa: EPE.

Hoggan, E., Brewster, S. and Johnston, J. (2008): Investigating the effectiveness of tactile

feedback for mobile touchscreens. In Proceedings of the CHI conference on Human

factors in computing systems. New York, New York, USA: ACM : page 1573

Horn, B.K.P., Hilden, H.M. and Negahdaripour, S. (1988): Closed-form solution of absolute

orientation using orthonormal matrices. Journal of the Optical Society of America, 5(7),

pages 1127–1135.

Hou, S. and Ramani, K. (2006): Sketch-based 3D Engineering Part Class Browsing and

Retrieval. In Proceedings of the EUROGRAPH-ICS Workshop on Sketch-Based

Interfaces and Modeling. : pages 131–138

Howe, N.R. (2004): Silhouette Lookup for Automatic Pose Tracking. In Proceedings of the

Computer Vision and Pattern Recognition Workshop. : pages 15–22

Huang, Z., Shen, H.T., Shao, J. and Zhoa, X. (2009): Bounded Coordinate System Indexing

for Real-time Video Clip Search. Transactions on Information Systems, pages 1–33.

ISO9241-11 (1998): Ergonomic requirements for office work with visual display terminals

(VDTs) - Part 11: Guidance on usability.,

Innoventive Software (2009): FrameForge Previz Studio [online]. Available at:

http://www.frameforge3d.com/Products/ [Accessed 20 April 2011].

Intel Corporation (2012): 3rd Generation Intel® Core
TM

 i5 Processor [online]. Available at:

http://www.intel.com/content/www/us/en/processors/core/core-i5-processor.html

[Accessed 15 November 2012].

Intel Corporation, Willow Garage and Itseez (2012): OpenCV [online]. Available at:

http://opencv.org/ [Accessed 7 November 2012].

Jarvis, R.A. (1973): On the Identification of the Convex Hull of a Finite Set of Points in the

Plane. Information Processing Letters, pages 18–21.

Jhala, A., Rawls, C., Munilla, S. and Young, R.M. (2008): Longboard: A Sketch Based

Intelligent Storyboarding Tool for Creating Machinima. In Proceedings of FLAIRS ’08,

pages 386–391.

Jhala, A. and Young, R.M. (2006): Representational Requirements for a Plan Based Approach

to Automated Camera Control. In Proceedings of the Second Conference on Artificial

Intelligence and Interactive Digital Entertainment. Marina del Rey, CA

Johnson, R.E. (1997): Components, Frameworks, Patterns. In Proceedings of the 1997

symposium on Software reusability. ACM : pages 1–23

References

 195

Jolliffe, I.T. (2002): Principal Component Analysis 2nd edition,

Jost, T. (2003): A Multi-Resolution ICP with Heuristic Closest Point Search for Fast and

Robust 3D Registration of Range Images. In Proceedings of the International

Conference on 3-D Digital Imaging and Modeling. : pages 427–433

Jung, Y., Wagner, S., Jung, C., Behr, J. and Fellner, D. (2010): Storyboarding and Pre-

Visualization with X3D. In Proceedings of the 15th International Conference on Web

3D Technology. Los Angeles, California : pages 73–82

Jung, Y.A. (2009): PML 2.1 Specification [online]. Available at: www.answer-

project.org/innovations/PMLSpecification.pdf [Accessed 18 April 2011].

Kadir, T. and Brady, M. (2003): Scale Saliency: a novel approach to salient feature and scale

selection. In Visual Information Engineering. : pages 25–28

Kadir, T., Zisserman, A. and Brady, M. (2004): An affine invariant salient region detector.

Image Rochester NY, 3021, pages 228–241.

Kaikkonen, A., Kallio, T., Kankainen, A., Kekalainen, A. and Cankar, M. (2005): Usability

Testing of Mobile Applications : A Comparison between Laboratory and Field Testing.

Journal of Usability Studies, 1(1), pages 4–16.

Ke, Y. and Sukthankar, R. (2004): PCA-SIFT: A more distinctive representation for local

image descriptors. In Proceedings of the 2004 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. : pages 506–513

Kelleher, C. (2006): Motivating Programming using storytelling to make computer

programming attractive to middle school girls. Carnegie Mellon University.

Khronos Group and Silicon Graphics (2012): OpenGL [online]. Available at:

http://www.opengl.org/ [Accessed 7 November 2012].

Kopp, S., Jung, B., Leßmann, N. and Wachsmuth, I. (2003): Max – A Multimodal Assistant

in Virtual Reality Construction. Künstliche Intelligenz, 17.

Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Thórisson, K.R. and

Vilhjálmsson, H. (2006): Towards a Common Framework for Multimodal Generation

The Behavior Markup Language. In Intelligent Virtual Agents. Springer Berlin /

Heidelberg : pages 205–217

Kopp, S. and Wachsmuth, I. (2004): Synthesizing multimodal utterances for conversational

agents. Computer Animation and Virtual Worlds, 15, pages 39–52.

Koyani, S.J., Bailey, R.W., Nall, J.R., Allison, S., Mulligan, C., Bailey, K. and Tolson, M.

(2004): Research-Based Web Design & Usability Guidelines, GSA.

Labschütz, M. and Krösl, K. (2011): Content Creation for a 3D Game with Maya and Unity

3D. In The 15th Central European Seminar on Computer Graphics.

References

 196

Lazebnik, S., Schmid, C. and Ponce, J. (2003): A Sparse Texture Representation Using

Affine-Invariant Regions 2 . Building the Representation. In Computer Vision and

Pattern Recognition. : pages 19–324

Lee, J. and Funkhouser, T. (2008): Sketch-Based Search and Composition of 3D Models. In

Proceedings of the EUROGRAPHICS Workshop on Sketch-Based Interfaces and

Modeling.

Lepetit, V. and Fua, P. (2005): Monocular Model-Based 3D Tracking of Rigid Objects: A

Survey. Foundations and Trends in Computer Graphics and Vision, pages 1–89.

Levin, D.M. (1988): The opening of vision: nihilism and the postmodern situation, Routledge.

Lewis, J.R. (1995): IBM computer usability satisfaction questionnaires: Psychometric

evaluation and instructions for use. International Journal of Human-Computer

Interaction, 7(1), pages 57–78.

Life at the Pond (2012): Life at the Pond [online]. Available at: http://lifeatthepond.com/

[Accessed 23 October 2012].

LightWave (2012): LightWave [online]. Available at: https://www.lightwave3d.com/

[Accessed 18 October 2012].

Lin, Y. (2006): 3D character animation synthesis from 2D sketches. In Proceedings of the 4th

international conference on Computer graphics and interactive techniques in

Australasia and Southeast Asia. Kuala Lumpur, Malaysia: ACM : pages 93–96

Loffler, J. (2000): Content-based Retrieval of 3D Models in Distributed Web Databases by

Visual Shape Information. In Proceedings of IEEE International Conference on

Information Visualization. IEEE Computer Society : pages 82–87

Long, B. and Schenk, S. (2002): The Digital Filmmaking Handbook, Charles River Media.

Lowe, D.G. (2004a): Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2).

Lowe, D.G. (2004b): Method and apparatus for identifying scale invariant features in an

image and use of same for locating an object in an image. The University of British

Columbia, (US Patent 6,711,293).

Lowe, D.G. (1999): Object Recognition from Local Scale-Invariant Features. In Proceedings

of the Seventh IEEE International Conference on Computer Vision. : pages 1150–1157

Lu, C.P., Hager, G.D. and Mjolsness, E. (2000): Fast and globally convergent pose estimation

from video images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(6), pages 610–622.

Luckow, R. (2010): Unnamed things creating a controlled vocabulary for the description of

animated moving image content. Journal of Digital Asset Management, 6(3), pages 153–

157.

References

 197

Machado, T.L. de A., Gomes, A.S. and Walter, M. (2009): A comparison study: sketch-based

interface versus wimp interfacesin three-dimensional modeling tasks. In Proceedings of

the Latin American Web Congress. : pages 29–35

Mamer, B. (2008): Film Production Technique: Creating the Accomplished Image 5, illustr,

Wadsworth Cengage Learning.

Mao, C. and Qin, S.F. (2005): A Sketch-Based Gesture Interface for Rough 3D Stick Figure.

In Proceedings of Eurographics Workshop on Sketch Based Interfaces and Modeling.

Dublin: Eurographics

Maree, R., Geurts, P., Piater, J. and Wehenkel, L. (2004): A generic approach for image

classification based on decision tree ensembles and local sub-windows. In Proceedings

of the 6th Asian Conference on Computer Vision. : pages 860–865

Marino, P. (2004): 3D Game-Based Filmmaking: The Art of Machinima, Scottsdale, AZ:

Paraglyph Press.

Marr, D. (1982): Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information, New York: Freeman and Company.

Marr, D. and Hildreth, E. (1980): Theory of edge detection. In Proceedings of the Royal

Society of London. : pages 187–217

Matas, J., Chum, O., Urban, M. and Pajdla, T. (2004): Robust Wide Baseline Stereo from

Maximally Stable Extremal Regions. Image and Vision Computing, 22(10), pages 761–

767.

Matthews, T. and Vogts, D. (2011): A sketch-based articulated figure animation tool. In

Proceedings of the South African Institute of Computer Scientists and Information

Technologists Conference on Knowledge, Innovation and Leadership in a Diverse,

Multidisciplinary Environment. Cape Town, South Africa: ACM : pages 151–160

McCann, S. and Lowe, D.G. (2011): Local Naive Bayes Nearest Neighbor for Image

Classification. Computer Vision and Pattern Recognition.

McKenzie, D. (2011): Designing For Android Tablets [online]. Available at:

http://mobile.smashingmagazine.com/2011/08/09/designing-for-android-tablets/

[Accessed 29 October 2012].

Microsoft (2012): Microsoft .Net [online]. Available at: http://www.microsoft.com/net

[Accessed 7 November 2012].

Miki, I., Trivedi, M.M., Hunter, E. and Cosman, P.C. (2002): Human Body Model

Acquisition and Motion Capture Using Voxel Data. In Proceedings of the Second

International Workshop on Articulated Motion and Deformable Objects. : pages 104–

118

Mikolajczyk, K. and Schmid, C. (2005): A performance evaluation of local descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(10), pages 1615–1630.

References

 198

Mikolajczyk, K. and Schmid, C. (2002): An affine invariant interest point detector. In

Proceedings of the 7th European Conference on Computer Vision. : pages 1–7

Mikolajczyk, K. and Schmid, C. (2001): Indexing based on scale invariant interest points. In

Proceedings of the IEEE International Conference on Computer Vision. Vancouver, BC

, Canada : pages 525–531

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F.,

Kadir, T. and Gool, L.V. (2005): A Comparison of Affine Region Detectors.

International Journal of Computer Vision, 65(1-2), pages 43–72.

Mitra, P., Shankar, B.U. and Pal, S.K. (2004): Segmentation of multispectral remote sensing

images using active support vector machines. Pattern Recognition Letters, 25(9), pages

1067–1074.

Moeslund, T.B., Hilton, A. and Kruger, V. (2006): A survey of advances in vision-based

human motion capture and analysis. Computer Vision and Image Understanding, 104(2),

pages 90–126.

Mono (2012): Tao [online]. Available at: http://www.mono-project.com/Tao [Accessed 7

November 2012].

Moreno-Noguer, F., Lepetit, V. and Fua, P. (2007): Accurate Non-Iterative O(n) Solution to

the PnP Problem. In Proceedings of the International Conference on Computer Vision. :

pages 1–8

Moviestorm (2011): The Moviestorm guide to previsualisation [online]. Available at:

http://www.moviestorm.co.uk/hub/professional [Accessed 28 November 2011].

Mustapha, M., Lim, H. and Jafri, M. (2010): Comparison of Neural Network and Maximum

Likelihood Approaches in Image Classification. Journal of Applied Sciences, 20(22),

pages 2847–2854.

NIST (2001): Common Industry Format for Usability Test [online]. Available at:

www.nist.gov/iusr [Accessed 14 November 2012].

Nadernejad, E. and Sharifzadeh, S. (2008): Edge Detection Techniques Evaluations and

Comparisons. Applied Mathematical Sciences, 2(31), pages 1507–1520.

Navab, N. and Faugeras, O. (1993): Monocular Pose Determination from Lines: Critical Sets

and Maximum Number of Solutions. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition. : pages 254–260

Navaratnam, R., Thayananthan, A., Torr, P.H.S. and Cipolla, R. (2005): Hierarchical Part-

Based Human Body Pose Estimation. In Proceedings of the 2005 British Machine Vision

Conference.

Nielsen, J. (1994): Usability Inspection Methods. In Proceedings of the Conference

Companion on Human Factors in Computing Systems. ACM : pages 413–414

References

 199

Nielsen, M., Störring, M., Moeslund, T.B. and Granum, E. (2003): A procedure for

developing intuitive and ergonomic gesture interfaces for HCI. In Gesture-Based

Communication in Human-Computer Interaction.

Nitsche, M. (2008): Experiments in the Use of Game Technology for PreVisualization. In

Proceedings of the 2008 Conference on Future Play: Research, Play, Share. Toronto,

Ontario, Canada: ACM : pages 160–165

Oates, B.J. (2006): Researching information systems and computing, SAGE.

Ong, E.-J. and Hilton, A. (2006): Learnt inverse kinematics for animation synthesis.

Graphical Models, 68(5-6), pages 472–483.

Oxford, D. (2010): “storyboard” Oxford Dictionaries. [online]. Available at:

http://oxforddictionaries.com/definition/storyboard?region=us [Accessed 12 October

2011].

Pellegrini, S. (2007): Articulated Object Recognition. Society for Optics and Photonics, pages

14–24.

PicturesOf (2011): A Retro Cartoon of a Man Disoriented and Dizzy [online]. Available at:

http://www.picturesof.net/pages/100603-003024-326053.html [Accessed 15 November

2011].

Piwek, P., Krenn, B., Schröder, M., Grice, M., Baumann, S. and Pirker, H. (2004): RRL: A

Rich Representation Language for the Description of Agent Behaviour in NECA. Net

Environment for Emboddied Emtional Conversational Agents.

Power Production Software (2011): Storyboard Quick [online]. Available at:

http://www.powerproduction.com/storyboard_quick.html [Accessed 3 July 2011].

Pramaggiore, M. and Wallis, T. (2008): Film: A Critical Introduction,

Proferes, N.T. (2005): Film Directing Fundamentals, Focal Press.

Quinlan, J.R. (1985): Induction of Decision Trees. Machine Learning, 1(1), pages 81–106.

Rabiger, M. (2003): Directing: Film Techniques and Aesthetics 4, illustr, Focal Press.

Ramanan, D., Forsyth, D.A. and Zisserman, A. (2005): Strike a pose: tracking people by

finding stylized poses. In Proceedings of the 2005 Conference on Computer Vision and

Pattern Recognition. IEEE Computer Society : pages 271–278

Reallusion (2012): iClone 5 [online]. Available at: http://www.reallusion.com/iclone/

[Accessed 20 October 2012].

Rijsselbergen, D.V., Keer, B.V.D., Verwaest, M., Mannens, E. and Walle, R.V. de (2009):

Movie script markup language. In Proceedings of the 9th ACM symposium on Document

engineering. ACM : pages 161–170

References

 200

Rizzo, M. (2005): The Art Direction handbook for Film,

Robin, B.R. (2008): Digital storytelling: A powerful technology tool for the 21st century

classroom. Theory Into Practice, 47(3), pages 220–228.

Rosenhahn, B., Perwass, C. and Sommer, G. (2004): Foundations about 2D-3D Pose

Estimation [online]. Available at: http://homepages.inf.ed.ac.uk/rbf/CVonline/ [Accessed

12 January 2012].

Roth, P.M. and Winter, M. (2008): Survey of appearance-based methods for object

recognition. Institute for Computer Graphics and Vision Graz University of Technology

Austria Tech Rep.

Sadik, A. (2008): Digital storytelling A meaningful technology-integrated approach for

engaged student learning. Educational Technology Research and Development, 56,

pages 487–506.

Sajjanhar, A. and Lu, G. (1997): A Grid Based Shape Indexing and Retrieval Method.

Computer Journal on Multimedia Storage and Archiving Systems, 29, pages 131–140.

Salo, K., Arhippainen, L. and Hickey, S. (2012): Design Guidelines for Hybrid 2D / 3D User

Interfaces on Tablet Devices A User Experience Evaluation. In Proceedings of the Fifth

International Conference on Advances in Computer-Human Interactions. ACHI : pages

180–185

Saunders, M., Lewis, P. and Thornhill, A. (2009): Research Methods for Business Students,

Pearson Education.

Screen Africa (2012): Zambezia wins at Durban Film Fest [online]. Available at:

http://www.screenafrica.com/page/news/festivals/1343610-Zambezia-wins-at-Durban-

Film-Fest#.UIWkAsV196w [Accessed 23 October 2012].

SeagullsCalling (2011): SeagullsCalling [online]. Available at:

http://seagullscalling.com/?p=189 [Accessed 15 November 2011].

Seetha, M., Muralikrishna, Deekshatulu, B.L., Malleswari, B.L., Nagaratna and Hegde, P.

(2008): Artificial Neural Networks and Other Methods of Image Classification.

Theoretical and Applied Information Technology, pages 1039–1053.

Shahabi, C. and Safar, M. (2007): An experimental study of alternative shape-based image

retrieval techniques. Multimedia Tools and Applications, 32(1), pages 29–48.

Sharp, H., Rogers, Y. and Preece, J. (2007): Interaction design: beyond human-computer

interaction, Wiley.

Shelly (2011): Escape [online]. Available at: http://zumbaspot.blogspot.com/ [Accessed 28

November 2012].

References

 201

Shin, H. and Igarashi, T. (2007): Magic Canvas: Interactive Design of a 3-D Scene Prototype

from Freehand Sketches. In Proceedings of the 2007 Graphics Interface Conference.

Montreal, Canada: ACM : pages 63–70

Shotton, J., Blake, A. and Cipolla, R. (2008): Multi-Scale Categorical Object Recognition

Using Contour Fragments. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(7), pages 1270–1281.

Side Effects Software (2012): Side Effects Software [online]. Available at:

http://www.sidefx.com/ [Accessed 18 October 2012].

Sidenbladh, H., Black, M.J. and Fleet, D.J. (2000): Stochastic Tracking of 3D Human Figures

Using 2D Image Motion. In Proceedings to the European Conference on Computer

Vision. : pages 702–718

Simon, M. (2006): Storyboards: motion in art 3rd edition, Focal Press.

Skorupski, J. (2009): Storyboard Authoring of Plan-Based Interactive Dramas. In

Proceedings of the 4th International Conference on Foundations of Digital Games.

Orlando, Florida: ACM : pages 349–351

StockphotoPro (2011): Race [online]. Available at:

http://www.stockphotopro.com/photo_of/race/6761373ZNF/__race__action__cartoon_

[Accessed 11 August 2011].

Stone, D., Jarrett, C., Woodroffe, M. and Minocha, S. (2005): User Interface Design and

Evaluation, San Francisco, California, USA.

Tabibian, B. (2005): SIFT Implementation [online]. Available at:

https://sites.google.com/site/btabibian/projects/3d-reconstruction/code [Accessed 6 June

2012].

Takalani (2011): Takalani Sesame [online]. Available at:

http://www.takalanisesame.com/about.html [Accessed 23 October 2012].

Tan, G.C.B., Duh, H.B. and Chen, V.H. (2006): Usability Evaluation for Mobile Device : A

Comparison of Laboratory and Field Tests. In Proceedings of the 8th conference on

Human-computer interaction with mobile devices and services. ACM : pages 181–186

Tao, Y. and Grosky, W.I. (1999): Delaunay triangulation for image object indexing: a novel

method for shape representation. In Proceedings of the SPIE Symposium on Storage and

Retrieval for Image and Video Databases. : pages 23–29

The Previsualisation Society (2012): Specific Types of Previs [online]. Available at:

http://previssociety.com/specific-types-of-previs/ [Accessed 4 October 2012].

Thiebaux, M., Marsella, S., Marshall, A.N. and Kallmann, M. (2008): SmartBody: Behavior

Realization for Embodied Conversational Agents. In Proceedings of the 7th

international joint conference on Autonomous agents and multiagent systems. Estoril,

References

 202

Portugal: International Foundation for Autonomous Agents and Multiagent Systems :

pages 151–158

Tomaric, J. (2010): Filmmaking: Direct Your Movie from Script to Screen Using Proven

Hollywood illustrate, Focal Press.

Toon Boom Animation Inc. (2011): Storyboard Pro [online]. Available at:

http://beta.toonboom.com/professionals/storyboard-pro/features [Accessed 4 July 2011].

Toon Boom Animation Inc. (2012): Storyboard Pro 3D [online]. Available at:

http://beta.toonboom.com/professionals/storyboard-pro-3d/features [Accessed 21

October 2012].

Torresani, L., Kolmogorov, V. and Rother, C. (2008): Feature Correspondence via Graph

Matching: Models and Global Optimization. In Proceedings of the European Conference

on Computer Vision. Springer : pages 596–609

Triggerfish Animation Studios (2012a): Triggerfish Animation Studios [online]. Available at:

http://www.triggerfishstudios.com/en/ [Accessed 23 October 2012].

Triggerfish Animation Studios (2012b): Zambezia [online]. Available at:

http://www.zambeziamovie.com/index.html [Accessed 23 October 2012].

Triggs, B. and Quan, L. (2000): Camera Pose Revisited - New Linear Algorithms. Esprit,

pages 6–8.

Tullis, T. and Albert, W. (2008): Measuring the User Experience 2nd edition, Burlington,

MA: Morgan Kaufmann.

Tuytelaars, T. and Gool, L.J.V. (1999): Content-based Image Retrieval based on Local

Affinely Invariant Regions. Visual Information and Information Systems, 1614, pages

493–500.

Tuytelaars, T. and Gool, L.V. (2004): Matching widely separated views based on affine

invariant regions. International Journal of Computer Vision, 59(1).

Vaidya, A.S., Shaji, A. and Chandran, S. (2006): Vision-Based Posing of 3D Virtual Actors.

In Proceedings of the 2006 Asian Conference on Computer Vision. : pages 91–100

Vilhjálmsson, H. (2004): Animating Conversation in Online Games. In Proceedings of the

2004 International Conference on Entertainment Computing. Springer Berlin /

Heidelberg : pages 193–218

Vilhjálmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S., Mancini, M.,

Marsella, S., Marshall, A.N., Pelachaud, C., Ruttkay, Z., Thorisson, K.R., Welbergen, H.

and Werf, R.J. (2007): The Behavior Markup Language Recent Developments and

Challenges. In Proceedings of the 7th international conference on Intelligent Virtual

Agents. Paris, France: Springer-Verlag : pages 99–111

References

 203

Vilhjálmsson, H.H. (2005): Augmenting Online Conversation through Automated Discourse

Tagging. In Proceedings on the Hawaii International Conference on System Sciences.

IEEE Computer Society

Vredenburg, K., Mao, J.-Y., Smith, P.W. and Carey, T. (2002): A survey of user-centered

design practice. In Proceedings of the SIGCHI conference on Human factors in

computing systems. New York, New York, USA: ACM Press : page 471

Wachter, S. and Nagel, H. (1997): Tracking of persons in monocular image sequences. In

Proceedings of the Nonrigid and Articulated Motion Workshop. San Juan , Puerto Rico :

pages 2–9

Wais, P., Wolin, A. and Alvarado, C. (2007): Designing a Sketch Recognition Front-End :

User Perception of Interface Elements.

Walker, M. (2000): The Lexicon of Comicana, Iuniverse Inc.

Wu, Y. and Hu, Z. (2006): PnP Problem Revisited. Journal of Mathematical Imaging and

Vision, 24(1), pages 131–141.

Xu, M. and Wei, C. (2012): Remotely sensed image classification by complex network

eigenvalue and connected degree. Computational and mathematical methods in

medicine.

Ye, P. and Baldwin, T. (2008): Towards Automatic Animated Storyboarding. In Proceedings

of the Twenty-Third AAAI Conference on Artificial Intelligence. Chicago, Illinois: AAAI

Press : pages 578–583

Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J. and Saretto, C.J. (2004): An

architecture for integrating plan-based behavior generation with interactive game

environments. Journal of Game Development, 1(1), pages 1–29.

Yuyan, W., Iyengar, S.S. and Jain, R. (1994): A New Generalized Computational Framework

for Finding Object Orientation Using Perspective Trihedral Angle Constraint. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(10), pages 961–975.

Zhang, D. and Lu, G. (2002): Shape Based Image Retrieval Using Generic Fourier

Descriptors. Signal Processing: Image Communication, 17, pages 825–848.

Zhang, J., Marszałek, M., Lazebnik, S. and Schmid, C. (2007): Local Features and Kernels for

Classification of Texture and Object Categories: An In-Depth Study. International

Journal of Computer Vision, 73(2), pages 213–238.

Zhang, Z. (1994): Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13(2), pages 119–152.

 204

Appendix A :
An Interview with Triggerfish Animation Studios

Interview with Producer/Animator

Position responsibilities

Overseeing and influencing every aspect of computer generated animation.

Interview proceedings

<Recording begins>

Interviewee: As much as possible we tried to indicate basing movement of characters so that

we can get a basic idea what the framing would be like and if there where camera moves.

Timothy: So the storyboard artist would use a storyboarding tool and sketch characters and a

light background with basic movement. Do you guys do animation on the camera as well?

Panning and zooming?

Interviewee: Yes, you would. Let me see.. (video)

Dieter: I think there’s some zooming at the end.

Timothy: If we look at this image, there’s a lot of information we can extract and

automatically put in your pre-vis software. At the moment, you’re asking your animators to

block the characters into basic posing <Interviewee agrees>. It might be possible to automate

that.

Dieter: You draw this and the system will place the characters.

Interviewee: That’s interesting, because we are finding that there’s a huge jump between

drawing something in 2D where your artists can do a lot of cheats where the artists doesn’t

really take into account perspective in real 3D space. So often, when it gets to the pre-vis guys

upstairs they find that this can’t really work. I can show you the pre-vis version… (video)

Dieter: There’s some information from the storyboard that might be useful, like the shot and

lensing.

Appendix A: An Interview with Triggerfish Animation Studios

 205

Interviewee: So that’s the next step from storyboarding to pre-vis.

Dieter: The idea for the project is that you draw stuff in storyboards fairly quickly and then

you get pre-vis automatically.

Interviewee: I would assume that you would have established the 3D environment

beforehand.

Dieter: Yes. There will be two different parts like a top-down map planner – you draw the

terrain a bit - and once you have a basic one with key features in place, that if you see it on in

screen, you know where this scene is taking place. If you have enough of those, if you want to

pose it, you draw a key feature somewhere in the picture and then it would know where to

position it.

Timothy: So, you’ll still need your content to be created beforehand. And, have a rough

layout of your scene, e.g. where rocks and trees would be. Then some algorithm will try to

recognise the content from the storyboard and automate the 3D context of the scene and place

the characters.

Dieter: The idea is also if there’s stuff you want to add, e.g. “I needed a tree here”. – You can

draw it in the scene in the correct place, if it has enough information.

Timothy: Do you want to stay with the storyboarding software you have at the moment, what

was it called?

Interviewee: Yes, Toonboom.

Timothy: Would you consider using a storyboarding tool that can analyse the storyboard to

generate pre-vis, or would you rather use an entirely different system?

Interviewee: I think it would be down to usability. If the artist can work quickly in it (the

whole idea of storyboarding is speed). If it’s easy for them draw the basic of what they need,

then I don’t mind. On this team, some guys where drawing on paper, others were using

toonboom, others were doing it in photoshop – just depending on their preference.

Dieter: Aside from the pre-vis, is there any other output that gets used elsewhere. Does that

feed into any of your other processes aside for just being a visual artifact?

Timothy: In other words, do you use your pre-vis poses as input for a higher fidelity version

of the film?

Appendix A: An Interview with Triggerfish Animation Studios

 206

Interviewee: Yes. When the animator picks up the scene, he would use the same positioning

and the same posing..

Dieter: Is there a link between someone seeing it, and someone creating it down there?

Timothy: Like a digital.. ?

Interviewee: No, it’s a manual transition.

Dieter: That’s the gap we are trying to bridge.

Timothy: What activities are involved in the filmmaking process, and specifically in the pre-

production phase?

Interviewee: The first step is script writing. Once you have the story outlined, it’s broken into

scenes so that each event in the story is then broken down into a scene – still in script form.

Then each scene is given a scene number. Those are then handed over to the storyboard

artists, and they would be told: “this is scene 102, this character walks in, he does this, he has

a fight with so and so, and then he leaves” Then the storyboard artist would look at that and

try to picture the best way of illustrating that with images.

Timothy: So, the shot type is not annotated on the script. It’s up to the storyboard artist to

decide what shot is.

Interviewee: Yes, but he would be directed by the director. (example) The script would have

some basic directions, e.g. “Pumba walks from left to right and looks angrily at so and so”. It

might also include information like: “closeup on Xheco and he’s looking angry, cut to wide

shot of Desatory”

Timothy: So, you have different versions of the script and then you start annotating it

<Interviewee agrees>.

Interviewee: More information gets added as you go along. By the time you’re briefing the

storyboard artists, they should be told that sort of thing.

Timothy: Is your script digital as well, or is it paper-based?

Interviewee: It’s digital.

Dieter: How closely do you link that with your storyboards?

Interviewee: It’s a bit difficult at first, and it’s also frustrating. There is a lot of change in the

initial part of film making is very fluid. You would have a scene that starts out at six shots

Appendix A: An Interview with Triggerfish Animation Studios

 207

long and then suddenly goes to eight and the to nine and then back to two shots – very

quickly. So numbering is quite a mission

Timothy: So it’s a problem of manual management of the storyboard panels and ordering

things as your requirements change.

Interviewee: Ideally, what I would like, is to package it so that each shot has a packet of

information. Attached to the shot, would be the chunk of script that defines that scene – using

some sort of ID number, not a shot number, because it shot numbers change. The IDed packet

can then be stored in a database for later reference.

Timothy: So, basically – you want electronic, automatic linking between the elements of your

script and the elements of your storyboard. Because, at the moment, that’s manual.

Interviewee: Yes

Dieter: And if you swap the order of stuff, the link should still be preserved.

Interviewee: Yes, it causes a lot of chaos throughout the movie. Not just in the storyboarding

process.

Timothy: And any other activities after/during storyboarding?

Interviewee: Once you’ve produced a script, you go to the storyboard artist and they will

draw frames of each major action that happens in the scene. Mostly, if it’s a simple shot, it

would we one image. If there’s more than one storyboard beats that’s happening in that shot,

they’ll draw a couple of frames. It’s still one shot, even if there’s more than one frame.

Timothy: At what level is an action/story beat: e.g. a character turning or something major

happening in the scene?

Interviewee: Anything that is important to the story. So, if the character is just standing there

throughout the scene, then it’s not. But, if he’s standing there and someone comes up behind

him and he looks to see what that is, that’s a beat. And you’d want to include that so that if

someone looks at the storyboard then he/she would know to take that into account.

Timothy: And then, the next step: from the storyboard to the pre-visualisation. So, everything

is still within the pre-production phase? You haven’t started producing anything yet.

Interviewee: Yes, well, the pre-vis stage is more of a production phase because we had to

create all of these 3D assets in order to create these pre-vis’s. So we consider storyboarding to

be pre-production and pre-vis – production.

Appendix A: An Interview with Triggerfish Animation Studios

 208

Timothy: So, this research doesn’t fall perfectly in pre-production. It kind of leans over until

the content is available.

Interviewee: It depends. Different studios will define pre-production and production in

different ways. Ideally, you’d want these processes to run in parallel for quite a long time

before you get into real production. Because, this is the check, fast, high turn-over phase

where you can make a lot of mistakes and so a lot of working out. Storyboards are a limitation

in that they don’t give you any 3D information so you can make assumptions that don’t turn

out to be accurate when you try to put the characters in 3D space.

Dieter: How many alternative possibilities do you try for a particular shot for a scene? Do

you make one linear one and make little changes? Or do you try major alterations? What is

typical?

Interviewee: Typically, you do as much exploration as possible in the script because it is very

fast. In storyboarding there’s quite a bit of turnover because it’s the first time we see anything

in visual form. They’ll probable rework that 2 or 3 times.

Dieter: Would you like to be able to go back and look at previous attempts exactly as they

were planned? Like the roll-back features to go backwards and forwards.

Interviewee: We do store everything we create and version it, so we are able to go back if we

need to.

Timothy: is it well manage, or a manual process?

Interviewee: It’s a manual. Well, the storyboarding process was manual but in the pre-vis

tools, we’ve written some tools that automate it which makes it easier.

Timothy: Let’s say you’ve got your storyboards and you’ve asked your animators to translate

them into rough pre-vis. How would you feel, if you changed something major in the scene,

for example: the character is no longer sitting and turning his head, he’s now flying over the

scene. Would you prefer to be able to sketch the frame over as a storyboard frame or rather

ask the animator to manually change the scene. What would be easier?

Interviewee: If the automatic conversion from the storyboard to the pre-vis can guarantee

animation coherence, then that would be ideal because it would be a faster way of making

adjustments. However, if there are slight coherence problems such as characters being placed

slightly different in the scene, that would be a problem. For example, if a rock would be

Appendix A: An Interview with Triggerfish Animation Studios

 209

sketched in one place and then in another, then that would be a problem in the continuity of

the animation.

Dieter: So, once an asset has been placed, it’s basically locked (static assets) in terms of

movement.

Interviewee: Unless you specifically direct it to move.

Timothy: One of the largest problems of storyboards is that because they are really rough,

they are prone to error. For example, a rock moving. The conversion process will have to be

robust and look for these contradictions.

Interviewee: What might be useful – to have a tool that goes back and forward between

these, because when you’re doing this, you haven’t established any of these major things. You

know, the actual terrain and layout of the set. Once you have this, you want to be able to

quickly adjust character positions which be easier to sketch in. For example, this guys is the

wrong place, quickly sketch him here..

Dieter: As far as sketching is concerned. If you saw his video, the way it works, you sketch

the skeleton as a stick figure and it would reposition the model the way it would look then.

Would that we a problem?

Timothy: It’s possible to use more advanced algorithms so that you can draw the outline, but

it becomes really difficult.

Interviewee: You basically want the simplest way of doing it. In fact, I’d find the master

hierarchy of the model and just move it in the set. But, let’s say his head is up, and we’d like

to move it down, it would be nice if you could just draw curve of the neck and head and it

pops to the right position.

Timothy: It sounds like you want a combination of three things: something that you can

storyboard in that does the automatic conversion from the storyboard into pre-vis. But, if you

change the pre-vis the storyboard should be updated so they are almost basically the same

thing (linked). And thirdly, you want some of the basic animation functionality that animation

packages have: like moving, rotating objects, so that you don’t have to sketch the contour of

the character changing.

Interviewee: Also, you want to make the setup as fast as possible. If I’m an artist, I just want

to click on the pivot point and drag this down. So that it’s fast. If you have to draw in a line

and indicate the weighting of the effect, it would take more time.

Appendix A: An Interview with Triggerfish Animation Studios

 210

Dieter: The idea we had… Most of the stuff we read, they did storyboarding..not like a video,

on paper, comic strip drawn by hand. The idea was that you take a tablet and draw each panel

with a stylus and it converts it into that strait away.

Timothy: Storyboard Quick does something similar, but it outputs an animatic (No

conversion for storyboard to pre-vis)

Dieter: The reason I asked is that the clicking and dragging sounds more like a tool like

SoftImage.

Interviewee: Well, we built basic rigs into our characters so we can rig quickly and do those

poses.

Dieter: And if for example, as output from this thing you got a timeline that has a set of key

frames that didn’t have animation, but stepped keys – would that be useful, because we can

put in basic animation like if the thing moves – interpolate.

Timothy: We were considering a higher fidelity animation. Let’s say you have some pre-

canned animations. They don’t have to be production quality. In the animatic, you’d do really

basic movement, like the character is being translated. It’s possible to, if you use some

gestures, to tell the system the character is performing a walking animation. So, instead of

having a block moving, it would look like zebra is walking.

Dieter: Well, it would do walking but not necessarily sticking to the ground properly.

Timothy: Would that be useful?

Interviewee: Yes it would. Well, we’ve already gotten around that. We’ve saved some basic

walking clips.

Timothy: Could you please briefly discuss what you do in production and post production?

Interviewee: Once you have an approved pre-vis shot, the next phase would be to take it to

performance animation, but at the same time, you have a team who is involved in asset

creation and they are building every single piece, prop, sets, characters that’s required in the

movie. The idea is to have that happening in parallel with your storyboarding and pre-vis

phase. In fact, they inform each other quite a bit. We’ll see, this camera is looking at this rock.

Someone needs to build that rock. And then the camera swings around to look at something

else – we need that as well in this amount of detail but it doesn’t need to be high-res because

the camera doesn’t get that close. There’s quite a bit of interaction between the modellers and

the pre-vis artists.

Appendix A: An Interview with Triggerfish Animation Studios

 211

Dieter: If you do storyboards and you could indicate distance, would a list of assets and level

of detail, or the nearest camera looking at that. Do you think that would be useful.

Interviewee: Yes

Dieter: Or how frequently this occurs in the shot, so it should be built first.

Interviewee: Yes that would be very useful. We use our pre-vis to try and determine that. So,

we would know: I’ve got a wide shot here, all of this environment will have to be built and

detailed with rocks and grass or whatever the case is. And it’s a moving camera and it takes

quite a lot of the set. (video)

Pre-vis and content creation almost end at the same time, so that when production of that

scene begins – you have all of those assets ready. Then the animators would take the high-res

characters and the stripped down version of the set and do the performance animation and the

camera settings and do their performance animation. At the same time, a team would be

working on the set, optimizing it – to make sure that, based on that camera angle, they’ll strip

out everything that’s not within the camera to make the scene light. And then, they also dress

it, so for shot specific camera angle, they’ll adjust plant positions for composition for a

particular shot. Once the animators finished the shot, the characters within the animation is

placed within that final set and it’s given to the lighting team. The lighting team will then set

up lighting for the shot and render it out. Often, almost always, the rendering is done in

several single different passes. The characters will be rendered in one pass, the background

will be rendered in another pass, certain aspects of lighting might be rendered in different

passes. E.g. specular pass, or a pass for one particular light. So that you have control after the

rendering process, you’ll have to have a bit of control in terms of lifting the lighting on a

particular character, blurring the background.

Dieter: Do you ever indicate lighting information in your storyboards?

Interviewee: Sometimes. (video example)

Timothy: It’s possible to indicate lighting information in storyboards, but it doesn’t look like

these storyboards are that level of fidelity.

Dieter: That’s why we are asking. We were thinking of including it.

Interviewee: We often don’t in our storyboards, but we do in our pre-vis. For example,

there’s a scene here where characters are talking to each other in front of a fire. And we

indicate a strong light to get a rough idea of where the yellow light is coming from.

Appendix A: An Interview with Triggerfish Animation Studios

 212

Dieter: Do you think it would be useful if you could sketch the lighting information in the

storyboard and it would add the lighting to the pre-vis?

Interviewee: I think it would be helpful, yes; especially for scenes where the lighting is a key

part of the story. E.g. if there are just standing around and talking to each other in the middle

of the day – you’ll probably wound need it. But if they would be sitting around a camp fire –

you’d like to see the glow on their faces.

Timothy: So, we’d assume some kind of default environment light source, and that would be

extracted from whatever 3D context have been determined. If there’s any special cases, like a

camp fire, the storyboard artist would just indicate using special lighting gestures.

Interviewee: Yes.

Dieter: Do you guys use any special annotations to mean specific things? Like: arrows,

squares and stuff that move.

Interviewee: Yes, sometimes the storyboard artist would draw an arrow to indicate that the

character can walk off-screen, or the direction he is going, or an arrow to indicate that the

camera should push in. But generally, we’ve taken that process out because we can indicate

that in the animatic.

Timothy: I’m wondering if it would be more suitable to take an animatic as input instead of

static images. I’m not sure, what do you think? How does the storyboard artist feel about it? Is

he drawing each asset individually and just drag and dropping?

Interviewee: He’ll draw them individually on different layers. E.g., he’d know this guy

moves, so he’d draw him on a separate layer. And once he’s finished drawing it, he’d animate

the character sort of moving the screen.

Dieter: So, at least the layer concept is well known. Because we were thinking of having

different layers for different kinds of information. Like, a layer for scenery, a layer for

characters, one for lighting, one for camera movements. <Interviewee agrees>

Timothy: Okay, so to get back to the process…

Interviewee: Once the shots are rendered you get multiple passes for each frame. That goes to

the compositing team. They take all the passes and assembles them into a single frame. They

would layer them on top of each other, treat colour, fix any rendering errors – which are easy

to fix instead of sending the frames back to the render farm.

Appendix A: An Interview with Triggerfish Animation Studios

 213

Timothy: How serious are these errors? Pixel errors, or… ?

Interviewee: Yes, pixel errors.

Timothy: For example, rays that were calculated incorrectly or when layers are composed

and there would be gaps?

Interviewee: Yes, a typical example would be a rendering glitch. Maybe there’s a black spot

that pops on and off on a characters face because that scene was rendered across several

different computers and some of them made some kind of mess. We had problems on the

Zambezi project with flickering feathers.

Timothy and Dieter: <It was probably the depth buffer or alpha blending>

Interviewee: If you could get away with painting on it. Then the compositing artist would just

fix it. If it was too much of a job, then they’d have to send it back to the render farm to be re-

rendered. So, they fix any errors and sweeten the shot – they make it look as beautiful as it

can possibly be. They adjust the colours...

Timothy: Like post imaging operations, like blooming…

Interviewee: Yes, exactly - applying face depth of field by blurring the background. Once

that’s done, the image would be taken to the edit suite.

Timothy: Is this still during the production phase, or are we leaning over to…

Interviewee: This is still production, I think. This is pretty much at the end of production

though. Once the image has been through composition, it’s done. It’s in the edit suite and the

editors add audio from that point.

Timothy: Then you guys move on to the post-production phase?

Interviewee: Yes, the post-production phase very quickly would be grading. They would look

at all the shots on the timeline and make sure that each individual scene is consistent in terms

of the lighting. Because, often when you have different lighters lighting the shot, there’d be

slight inconsistencies in colour because it’s a different person. So, they’ll overall the scene,

lift the blacks, adjust colour so that there’s a consistency across it. After grading, it would

then be taken to the cinema with a protector on the bring screen to see how it would be like on

large screen format. Once that’s done, they’ll be doing the final music and audio effects after

because every time you change the edit you lose audio sync.

Appendix A: An Interview with Triggerfish Animation Studios

 214

Timothy: I hear from the animatic that you are already using dialogue. During the

storyboarding phase, would it be useful to be able to add music at the storyboarding phase?

Interviewee: Generally we don’t bother with music at this phase.

Timothy: Ok, so I see you guys don’t use text at the bottom, you just record audio – but

having the link between the script and the digital storyboard would be useful.

Interviewee: Yes.

Dieter: You could turn the text on and off like a flag.

Interviewee: It’s useful to have the script as well as the audio, because it gives extra

information.

Timothy: Then, after you’ve added the audio then you can move over to the next phase,

marketing?

Interviewee: Yes.

Dieter: What format are your scripts in? Is it a text document?

Interviewee: We use a program called Final Draft. Yes, “sngf”. I think it’s an XML

document.

Timothy: Regarding the style of storyboarding, do all your storyboards look like that where

you sketch out contours or do take higher level where you start shading things?

Interviewee: Not unless it’s specific to the story.

Timothy: Ok, so it’s just important to show the contours of the characters.

Dieter: Basic placement, how they are and basic pose.

Interviewee: You might indicate, if there was a crowd, you would indicate in colour that he’s

the principle character.

Dieter: How frequent do you use colour in your storyboards?

Interviewee: Very seldom, more likely, this guys would be grey and everyone else would be

white.

Timothy: Ok, how accurate do your storyboards predict what you envision the film to be in

the beginning.

Appendix A: An Interview with Triggerfish Animation Studios

 215

Interviewee: At first, they are very rough because the physical 3D sets don’t exist. The artist

is just interpreting what is coming out of the script. The script says there is a cliff. So, the

storyboard artist draws a cliff but we do not know how high it is, where it is until we have

actually made it in 3D space.

Timothy: I see that you space particular frames in time. How far away can you space them to

have a realistic animation? For example if the character’s standing there and he’s moving to

the other side of the scene. Do you show individual shots in between? When is it important to

show that the character’s here and now he’s there?

Dieter: I think that depends on what they are trying to do.

Timothy: <checking questions>Is there anything that we haven’t spoken about that you find

important to annotate on storyboards? Can you think of anything else except arrows and

colours?

Interviewee: Reference number I guess, or some shot ID.

Timothy: <checking questions> Ok, are there any limitations of the storyboarding software

and the Photoshop pre-vis you have at the moment that you can share you us?

Dieter: Thinks that’ll like to improve.

Timothy: Stuff that is problematic for you especially with storyboarding and the pre-vis

software.

Interviewee: One of the key things, wanting to be able to manage change so that the

information about the hot doesn’t get disconnected or lost. Because there are so many aspects

describing a scene: there would be script, an image, audio – just to describe a shot. If that

changes in the ordering of the sequence of events in the edit, then you want to make sure all

that information goes with. At the moment that is a manual process – managed by giving it a

shot number. So we know that all text associated with scene 13 shot 5 manually kind of move

with it. I’d like to be able to manage it as one unit. All if the information sits at one place and

move it as a whole.

Timothy: So, it’s basically a limitation with automated management of the pre-vis content. Is

there anything else you can think of, except for shot numbers?

Interviewee: I guess the more information you can get into your storyboard, the better.

Anything that optimises creating new poses or quickly showing camera moves. The key

limitation with storyboards is that it’s not in 3D, but it’s very fast. So, you can sketch a

Appendix A: An Interview with Triggerfish Animation Studios

 216

character much faster than you can load a model and pose it. So, those are the tradeoffs. In

storyboarding, you are working very fast but not very accurate. In pre-vis you are more

accurate but a little bit slower. In animation you are working very accurate but very very

slow.

Timothy: So, something you’d like to see is mid-way. It would allow you to move between

the two.

Interviewee: Yes, if would be possible to be able to represent 3D more at the storyboarding

phase.

Timothy: Well, what we can do, is make storyboarding and pre-visualisation appear to be the

same thing. For example, using non-photo realistic rendering. You sketch the thing, it

recognises the scene, poses the characters and automatically generates the non-photo realistic

pre-vis in the same storyboard panel. So that you don’t even notice it happened. And then you

press the play button and your storyboard comes to life. That would get you the data and still

look like a storyboard. <Interviewee agrees>

Dieter: The only down side is asset creation, the order is a bit flipped. So you’d have to have

some basic models for these things before you could to this sketching like that.

Interviewee: You know, for us, ideally – we want to get to the pre-vis stage earlier, because

this is where we really start to see what’s involved in physically making the film. Storyboards

are more about story. How do the characters interact? How do we tell the story. Pre-vis is

more about how do we technically, physically make this movie. So the sooner we can get to

pre-vis, the better. If we could use this as our high-speed story telling phase as well as our

phase that informs our asset creation, that would be great. Because, we are working in a 3D

medium because we need to get to get to this medium as fast as we can.

Timothy: Do you think a non-photo realistic approach would be nice like a cartoon shader?

Interviewee: At this point, aesthetics are not that important.

Timothy: So, if it looks like this then..<looking at their pre-vis>

Interviewee: …It’s perfect, yes.

Timothy: And the fact that you are sketching on top of this thing, it doesn’t matter?

Appendix A: An Interview with Triggerfish Animation Studios

 217

Dieter: So, for example, if you wanted to add a new character here, you might add a new

layer, select a character and draw the skeleton and they are in there. Would that kind of thing

be helpful?

Interviewee: Yes.

Dieter: One of the issues we have, is that we are aiming for a totally sketch-based interface,

that you can draw whatever you want. But then there’s always a problem with selection. “Do

you want to draw a rock, or trees?” The question is, should you allow them to draw anything

and allow it to try and find out what it is, or would be better to select a specific thing and

you’d draw it and then it places it? Any ideas on how you think that would be?

Interviewee: I guess it’s probably better if you have a preset library of trees, rocks and

characters. So, you say “oh, I need a tree” immediately in the back ground. So, I go and find

the preset tree drag, draw and you scale it up to the right size and it’s set in the scene. One

problem, the sketch-based thing is a 2D system. But actually, you want to be able to influence

the stuff in a 3D environment.

Dieter: You will be able to, if you know a tree is this tall and you draw it at a certain location

and a certain height. If it has enough information about the background, it can place the

camera it can place the tree at the correct place and side in the 3D scene.

Interviewee: Let’s say, I would like to draw a tree behind this character. If I just draw a tree,

how does it know where in space the base of that tree is?

Timothy: It would be based in the size. Assuming the artist has enough skill to indicate that

the tree is in the distance, then the algorithm will be able to determine that the tree is in the

distance. If he sketches really big, then algorithm will determine that the tree is in front of the

character. It would heavily depend on the artist’s skill. The alternative, is to use a drag and

drop style interface, then it wouldn’t matter. But, we’d like to investigate sketch-based

methods.

Interviewee: I think if you look at sketch-based methods, the best thing for it is along your

current project. To be able pose characters based on sketches. If it’s fast and intuitive for the

artists and generally sketching is more intuitive than grabbing a control and moving it. If they

want to say “I want this guy’s neck to bend the other way” and they can just sketch it, then

that would be much more useful and fast than also using it to populate a scene, then it

probably wouldn’t be that useful. And the scope that is huge, whereas if you are limited to

posing characters it’s more feasible.

Appendix A: An Interview with Triggerfish Animation Studios

 218

Dieter: So, it sounds that character posing is more important than scene creation.

Interviewee: Yes, because it’s much more specific. For example, the artist might draw a tree.

But what tree is it? What is it’s shape? If he draws a pine tree, will the algorithm know I must

generate a pine tree? Or, will you be pre-selecting content from a database?

Timothy: You create content while you do pre-visualisation and storyboarding and it’s like

two-way communication. So, if you have that content in low or high fidelity in a database, it’s

possible to do image recognition then there are algorithms that can look at that content and

based on the storyboard you sketch, automatically select the correct content.

Dieter: Well, the closest to what you have.

Interviewee: So then it would be simpler for the artist to draw. Not so much an accurate,

spend a lot of time drawing. Just, basically draw a symbol.

Dieter: Or different shape trees. If they can draw the one that’s the closest to that particular

tree then it would select that one.

Timothy: We are aiming for low fidelity storyboards, so most of the image recognition

algorithms will fail.

Dieter: For us, we consider this low. Do you consider this high?

Timothy: In these storyboards, there are only basic contours. You can’t use feature based

recognition methods. <Dieter agrees> And, a very vague future work question. Are there any

advances in pre-visualisation that’d you like to see. Something you don’t have at the moment,

that would be nice. For example, the crowd thing we spoke of earlier.

Interviewee: Being able to represent more complexity with speed. Because, generally, pre-vis

is sort of the blue print of the movie. You try to get as much information in there as possible

but get it turn over very quickly. The more information you can get in there, the better. But it

needs to be quick. So, you’ll need to be able to put in a crowd quickly and say “I’ve got a

crowd”, because if you take a crowd and put it in one of these scenes, it would just hang.

Because, there is just too much information. The crowd would be full of rigged characters and

those characters would be heavy.

Timothy: So, to generalise. You want very densely populated scenes to be animated for pre-

visualisation without the costs processing and asking staff to do the manual posing.

Appendix A: An Interview with Triggerfish Animation Studios

 219

Interviewee: Yes. One of the other problems is determining the level of detail. For some

people, this would be sufficient detail. For example, for the animators doing the performance,

this is probably sufficient detail. They know my character stands here and moves to here. For

the director, this may be insufficient detail. “What’s behind those characters?” “I need to

think of the composition of this shot as well”. The last time we pre-vised the movie on

Zambezia, we didn’t even include any texture on the characters. So it was all grayscale. This

time, we took it a little bit further, because we could. We took a bit more time to prepare the

characters on that level.

Timothy: <Looking at pre-vis> It looks like they are just vertex coloured. <Interviewee

agrees> And the animal on the right has a high poly count and the one on the left is very low.

It seems like there are inconsistencies. Is that serious?

Interviewee: No, we created the characters beforehand and we did polygon reduction on them

to get them down to low-res version.

Timothy: Oh, and the characters you created. Where they rigged at that stage?

Interviewee: Yes they were rigged, but with a very simple rig.

Timothy: When you reduce the character, it seems like you are losing the rig and then re-

rigging it using blocks. <Interviewee agrees> Because, I think it’s possible to reduce the

character’s poly count and still keep the skeleton so that you don’t have to re-rig it.

Interviewee: But, we actually need two different rigging systems, because it’s wasteful to

have the high quality rig at this stage. It would be heavy and drain resources. So, when we

knock the character down, we actually do the modelling phase first. We’ll model the high-res

character. Then we’ll model the low-res character. Then we’ll rig the low-res character and

separately rig the high-res character. So we have a rig for pre-vis and a separate rig for

animation.

Timothy: Ok, it is possible to simplify the skeleton of the character. But, even if you keep the

high definition skeleton and you keep the low definition mesh, the computation over head is

still small because the calculations are being done on the vertices and not the skeleton.

Interviewee: Yes, it’s actually the complexity of the rig itself. The constrains, relationships

and dependencies in that are built into the skeleton itself that cause it to be slow.

Timothy: Oh, I see. So, the skeleton itself is heavy. And you have high bone counts, like 100

/ 50?

Appendix A: An Interview with Triggerfish Animation Studios

 220

Interviewee: Probably not high numbers of actual bones. Maybe 50. It’s more about the

dependencies. For example, you might have 5 bones in the neck. But in the final rig, you’ll

need it do be IK/FK switching. You need it to be squashy and stretchy. And all of that create

extra computational overhead that you actually wouldn’t build onto in the pre-vis rig. So, this

example is probably just an IK setup.

Timothy: I’m wondering, but this might be out of scope. It seems like your team is spending

a lot of resources translating your high fidelity content into pre-vis content. That process can

be automated.

Interviewee: It is to a certain extent, but we have rigging tools that allow riggers to say: “this

is the top of the shoulder, this is the top of the foot, go” and it would automatically put in the

rig for you. So, it’s not 100% automatic, there’s definitively a manual aspect to it. But we are

gradually getting there. Ultimately, it would be great if we had the final character, put the rig

in, press a button and it pops out a low-res character with all the non-essential rig elements

stripped out.

Dieter: That could be a project for next year.

Timothy: Ok, well I can’t think of any other questions.

Dieter: Ok, well thank you very much for the time you’ve given us.

Interviewee: It was a pleasure.

<Recording ends>

 221

Appendix B :
XML Data Format Examples
Figure B.1 (a) shows an example of an XML file which stores the name and type of each asset

in the environment Figure B.1 (b) shows an example of a script file.

(a) (b)

Figure B.1 (a) An XML environment file. (b) An XML script file.

Each 3D model is stored in a separate file using a custom XML format. The 3D model format

used by a sketch-based animation tool was reused for this research (Matthews and Vogts

2011). Figure B.2 shows an example model stored in the custom XML 3D model format.

Figure B.2: An XML 3D model file.

 222

Appendix C :
GUI Touch Gestures

Table C.1 and Table C.2 provides a summary of the touch gestures supported by the GUI of

the SISPA framework. Single tap gestures for selecting objects not shown in the summary.

See Section 4.5.1 for a discussion of the touch gesture types.

Table C.1: The touch gestures for the Story Viewer, Script Viewer and Storyboard Editor.

Screen State Gesture Area Description

S
to

ry
 v

ie
w

er

Navigate Anywhere

Spread

Navigates to the Script Viewer, Floor

plan Editor or Storyboard Editor for

the selected dramatic block.

Vertical

Scroll
Scrolls the story overview vertically.

S
cr

ip
t

v
ie

w
er

Navigate

Anywhere Pinch Navigates to the Story Viewer.

Tabs
Flick Left Navigates to the Floor Plan Editor.

Flick Right Navigates to the Storyboard Editor.

List
Vertical

Scroll
Scrolls the script vertically.

S
to

ry
b
o
ar

d
 E

d
it

o
r

Navigate

Anywhere
Spread

Navigates to the Sketch Editor for the

selected storyboard panel.

Pinch Navigates to the Story Viewer.

Tabs
Flick Left Navigates to the Script Viewer.

Flick Right Navigates to the Floor Plan Editor.

Storyboard
Vertical

Scroll
Scrolls the storyboard vertically.

Dialogue
Vertical

Scroll

Scrolls the action/dialogue list

vertically.

Appendix C: GUI Touch Gestures

 223

Table C.2: The touch gestures for the Floor Plan Editor and the Sketch Editor.

Screen State Area Gesture Description

F
lo

o
r

P
la

n
 E

d
it

o
r

Navigate Anywhere

Pinch Navigates to the Story Viewer.

Flick Left Navigates to the Storyboard Editor.

Flick Right Navigates to the Script Viewer.

Pan/Zoom Editor

Spread Zoom in the view of the floor plan.

Pinch Zoom out the view of the floor plan.

Drag

Set (Any): Pans the Editor’s view.

Prop (Design): Move a prop.

Symbol (Annotate): Move a symbol.

Rotate Editor Rotate
Prop (Design): Rotate a prop.

Symbol (Annotate): Rotate a symbol.

Any Prop List Scroll Scrolls the prop list vertically.

S
k
et

ch
 E

d
it

o
r

Navigate Anywhere Pinch Navigates to the Storyboard Editor.

Pan/Zoom Editor

Spread Zoom in the view of the sketch.

Pinch Zoom out the view of the sketch.

Drag Pans the view of the sketch.

Rotate

Camera
Editor

Spread Moves the camera forwards.

Pinch Moves the camera backwards.

Drag Rotates the camera.

Move

Camera
Editor

Spread Moves the camera forwards.

Pinch Moves the camera backwards.

Drag
Moves the camera within the current

viewing plane.

Any Layer List Scroll Scrolls the layer list vertically.

224

Appendix D :
Ethics Approval (Application)

NMMU RESEARCH ETHICS COMMITTEE (HUMAN)

SECTION A:(To be filled in by a representative from the Faculty RTI Committee)

Application reference code:
H 12 SCI CS 015

HUMAN YEAR FACULTY DEPARTMENT NUMBER

Resolution of FRTI Committee:
 Ethics approval given (for noting by the REC-H)

 Referred to REC-H for consideration(if referred to REC-H, electronic copy
of application documents to be emailed to Imtiaz.Khan@nmmu.ac.za)

Resolution date:

Faculty RTI representative signature:

1. GENERAL PARTICULARS

TITLE OF STUDY

a) Concise descriptive title of study (must contain key words that best describe the study):

Sketch-based Digital Storyboards for Authoring Film Pre-visualizations

PRIMARY RESPONSIBLE PERSON (PRP)

b) Name of PRP (must be member of permanent staff. Usually the supervisor in the case of students):

Dr. Dieter Vogts 090101F

c) Contact number/s of PRP: 0415042089

d) Affiliation of PRP: Faculty ScienceSpecify here, if “other”
Department (or equivalent):Computing Sciences

PRINCIPLE INVESTIGATORS AND CO-WORKERS

e) Name and affiliation of principal investigator (PI) / researcher (may be same as PRP):

Timothy Matthews Gender: Male

f) Name(s) and affiliation(s) of all co workers (e.g. co-investigator/assistant researchers/supervisor/co-
supervisor/promoter/co-promoter). If names are not yet known, state the affiliations of the groups they will be
drawn from, e.g. Interns/M-students, etc. and the number of persons involved:
Dr. Dieter Vogts (supervisor) and Mr. Kevin Naudé(co-supervisor)

STUDY DETAILS

g) Scope of study: Local h) If for degree purposes: Master's

i) Funding :NRF grant

Additional information (e.g. source of funds or how combined funding is split)

Appendix D: Ethics Approval (Application)

225

j) Are there any restrictions or conditions attached to publication and/or presentation of the study results?No

If YES, elaborate (Any restrictions or conditions contained in contracts must be made available to the
Committee):Not applicable

k) Date of commencement of data collection: 2012/09/03

Anticipated date of completion of study: 30 November 2012

l) Objectives of the study (the major objective(s) / Grand Tour questions are to be stated briefly and clearly):
The main objective of this study is to determine how effectively sketch-based user interfaces can support
the authoring of animated pre-visualizations.

m) Rationale for this study: briefly (300 words or less) describe the background to this study i.e. why are you doing
this particular piece of work. A few (no more than 5) key scientific references may be included:

Pre-production is an important phase of the filmmaking process because it involves planning every aspect
of the film and preparing for film production (Mamer 2008). The need for film pre-visualization has lead to
the use of several authoring systems. Systems tailored for film pre-visualization authoring employ drag-
and-drop style user interfaces that make authoring a tedious and manual process (Innoventive_Software
2009). Traditional storyboarding techniques can be used to quickly communicate what is happening in
each scene. Limited research has been conducted in applying a storyboarding metaphor for authoring film
pre-visualizations (Jhala, Rawls et al. 2008; Skorupski 2009). Research has demonstrated that information
can be extracted from sketches (Shin and Igarashi 2007; Lee and Funkhouser 2008) and animated
characters from sketches (Davis, Agrawala et al. 2003; Chaudhuri, Kalra et al. 2004; Lin 2006). This research
will investigate how film pre-visualizations can be effectively authored using sketch-based interfacing
techniques and a storyboarding metaphor. A prototype system will be implemented in order to conduct a
usability evaluation for assessing the usability benefits of sketch-based pre-visualization authoring using
storyboards.

METHODOLOGY

n) Briefly state the methodology (specifically the procedure in which human subjects will be participating) (the full
protocol is to be included):

A sketch-based pre-visualization authoring tool on a tablet device is being developed and will be used to
determine ifsketch-based user interfaces can effectively support the authoring of animated pre-
visualizations. A user study will be conducted in order to evaluate the usability and authoring effectiveness
of the prototype. Participants will be asked to author a pre-visualization from a case study. Performance
and self-reported metrics will be evaluated to determine the effectiveness and efficiency of the prototype.
These metrics will provide insight into the usability and user satisfaction of the prototype tool. Participants
will be given a pre-task questionnaire, a set of tasks detailing the authoring process and thereafter asked
to complete a post-task questionnaire.

o) State the minimum and maximum number of participants involved (Minimum number should reflect the number
of participants necessary to make the study viable)
Min: 15Max: 30

2. RISKS AND BENEFITS OF THIS STUDY
a) Is there any risk of harm, embarrassment or offence, however slight or temporary, to the participant, third parties

or to the community at large? No
If YES, state each risk, and for each risk state i) whether the risk is reversible, ii) whether there are alternative
procedures available and iii) whether there are remedial measures available.

Not applicable

b) Has the person administering the project previous experience with the particular risk factors involved? No

If YES, please specify: Not applicable

Appendix D: Ethics Approval (Application)

226

c) Are any benefits expected to accrue to the participant (e.g. improved health, mental state, financial etc.)? No
If YES, please specify the benefits: Not applicable

d) Will you be using equipment of any sort? Yes

If YES, please specify: Tablet PC : Asus EEE Slate EP121

e) Will any article of property, personal or cultural be collected in the course of the project? No

If YES, please specify: Not applicable

3. TARGET PARTICIPANT GROUP
a) If particular characteristics of any kind are required in the target group (e.g. age, cultural derivation, background,

physical characteristics, disease status etc.) please specify: Participants will be required to have basic drawing
skills and knowledge of using tablet devices.

b) Are participants drawn from NMMU students? Yes

c) If participants are drawn from specific groups of NMMU students, please specify: Participants will be drawn
from the Department of Journalism, Media and Philosophy at NMMU. Participants will also be drawn from
Triggerfish Animation Studios in Cape Town.

d) Are participants drawn from a school population? No

If YES, please specify: Not applicable

e) If participants are drawn from an institutional population (e.g. hospital, prison, mental institution), please specify:
Not applicable

f) If any records will be consulted for information, please specify the source of records: Not applicable

g) Will each individual participant know his/her records are being consulted? No

If YES, state how these records will be obtained: Not applicable

h) Are all participants over 18 years of age? Yes

If NO, state justification for inclusion of minors in study: Not applicable

4. CONSENT OF PARTICIPANTS
a) Is consent to be given in writing? Yes

If YES, include the consent form with this application.

If NO, state reasons why written consent is not appropriate in this study.

b) Are any participant(s) subject to legal restrictions preventing them from giving effective informed consent? No

If YES, please justify: Not applicable

c) Do any participant(s) operate in an institutional environment, which may cast doubt on the voluntary aspect of

consent? No

If YES, state what special precautions will be taken to obtain a legally effective informed consent: Not applicable

d) Will participants receive remuneration for their participation? No
If YES, justify and state on what basis the remuneration is calculated, and how the veracity of the information can
be guaranteed. Not applicable

e) Which gatekeeper will be approached for initial permission to gain access to the target group? (e.g. principal,

nursing manager, chairperson of school governing body) HOD of the Department of Journalism, Media and
Philosophy (Ms B M Wright) ; a producer from Triggerfish Animation Studios (Mr M Buckland) and the
NMMU DVC: Academic (Prof T. Mayekiso).

f) Do you require consent of an institutional authority for this study? (e.g. Department of Education, Department of
Health)No

Appendix D: Ethics Approval (Application)

227

If YES, specify: Not applicable

5. INFORMATION TO PARTICIPANTS
a) What information will be offered to the participant before he/she consents to participate? (Attach written

information given and any oral information)

b) Who will provide this information to the participant? (Give name and role)
Timothy Matthews PI

c) Will the information provided be complete and accurate? Yes

If NO, describe the nature and extent of the deception involved and explain the rationale for the necessity of this
deception: Not applicable

6. PRIVACY, ANONYMITY AND CONFIDENTIALITY OF DATA
a) Will the participant be identified by name in your research? No

If YES, justify: Not applicable

b) Are provisions made to protect participant’s rights to privacy and anonymity and to preserve confidentiality with

respect to data? Yes

If NO, justify. If YES, specify: Participants will be assigned, and referred to by anonymous participant
numbers in this study and will not be mentioned by name.

c) If mechanical methods of observation be are to be used (e.g. one-way mirrors, recordings, videos etc.), will
participant’s consent to such methods be obtained? Yes

If NO, justify: No mechanical methods of observation are being used

d) Will data collected be stored in any way? Yes
If YES, please specify: (i) By whom? (ii) How many copies? (iii) For how long? (iv) For what reasons? (v) How will

participant’s anonymity be protected? (i) Dr. Dieter Vogts and Mr Timothy Matthews (ii) one copy (iii) Five
years (iv) Data analysis and Reporting purposes (v) Participants will be assigned participant numbers

e) Will stored data be made available for re-use? No

If YES, how will participant’s consent be obtained for such re-usage? Not applicable

f) Will any part of the project be conducted on private property (including shopping centres)? Yes

If YES, specify and state how consent of property owner is to be obtained: Permission will be obtained from a
producer from Triggerfish Animation Studios, Mike Buckland

g) Are there any contractual secrecy or confidentiality constraints on this data? No

If YES, specify: Not applicable

7. FEEDBACK
a) Will feedback be given to participants? No

If YES, specify whether feedback will be written, oral or by other means and describe how this is to be given (e.g.
to each individual immediately after participation, to each participant after the entire project is completed, to all

participants in a group setting, etc.): Not applicable

b) If you are working in a school or other institutional setting, will you be providing teachers, school authorities or
equivalent a copy of your results? Not applicable

If YES, specify, if NO, motivate:

Appendix D: Ethics Approval (Application)

228

8. ETHICAL AND LEGAL ASPECTS

The Declaration of Helsinki (2000) or the Belmont Report will be included in the references: No

If NO, motivate: The report is not applicable to this study

(A copy of the Belmont Report is available at the following link for reference purposes: http://www.nmmu.ac.za/documents

/rcd/The%20Belmont%20Report.pdf)

a) I would like the REC-H to take note of the following additional information:

The latest date for the commencement of data collection is the 3rd of September 2012 and is expected to
last until the 30th of September 2012. Thereafter data analysis will be performed and the Masters
Dissertation will be submitted at the end of November 2012. The successful completion of the Masters
qualification depends on the date at which data collection may commence.

9. DECLARATION

If any changes are made to the above arrangements or procedures, I will bring these to the attention of the Research
Ethics Committee (Human). I have read, understood and will comply with the Guidelines for Ethical Conduct in
Research and Education at the Nelson Mandela Metropolitan University and have taken cognisance of the availability
(on-line) of the Medical Research Council Guidelines on Ethics for Research (http://www.sahealthinfo.org/ethics/).
All participants are aware of any potential health hazards or risks associated with this study.

I am not aware of potential conflict(s) of interest which should be considered by the Committee.
If affirmative, specify:Not applicable

 09 April 2013

SIGNATURE:Dr. Dieter Vogts (Primary Responsible Person) Date

 09 April 2013

SIGNATURE:Timothy Matthews (Principal Investigator/Researcher) Date

10. SCRUTINY BY FACULTY AND INTRA-FACULTY ACADEMIC UNIT
This study has been discussed, and is supported, at Faculty and Departmental (or equivalent) level. This is
attested to by the signature below of a Faculty (e.g. RTI) and Departmental (e.g. HoD) representative, neither of
whom may be a previous signator.

NAME and CAPACITY (e.g. HoD) SIGNATURE Date

NAME and CAPACITY (e.g. Chair:FacRTI) SIGNATURE Date

http://www.nmmu.ac.za/documents%20/rcd/The%20Belmont%20Report.pdf
http://www.nmmu.ac.za/documents%20/rcd/The%20Belmont%20Report.pdf
http://www.sahealthinfo.org/ethics/

229

Appendix E :
Ethics Approval (Letter)

230

Appendix F :
Heuristics Checklist

Heuristics for GUI Design Poor Good
7
 Excellent

1. Visibility of system errors
2. Match between system and real world
3. User control and freedom

4. Constancy and standards
5. Error prevention
6. Recognition rather than recall

7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Recognise and recover from errors

10. Help and documentation

Heuristics for Sketch-based Recognition Poor Good Excellent

1. Efficient and reliable recognition triggers

2. Separate recognised and unrecognised objects
3. Minimize clutter and user sketch transformations
4. Allow errors to be corrected after sketching
5. Predictable and understandable recognition errors

2D/3D Heuristics for Tablets Poor Good Excellent

1. Provide onscreen touch gestures
2. Avoid gestures which are too similar

3. Reduce the need for overlaying controls
4. Only use 2D icons in 2D space
5. Use of simple, large and consistent icons

7
 The extent to which each heuristic applies to the design of the prototype was rated as

follows:

 Poor: Serious usability issues have been identified.

 Good: Minor usability issues have been identified.

 Excellent: No usability issues have been identified.

231

Appendix G :
Informed Consent Form

NELSON MANDELA METROPOLITAN UNIVERSITY

INFORMATION AND INFORMED CONSENT FORM

RESEARCHER’S DETAILS
Title of the research project Sketch-based Digital Storyboards for Authoring Pre-

visualisations

Reference number H12-SCI-CS-015

Principal investigator Timothy Matthews

Contact telephone number
(private numbers not advisable)

041 504 2094

A. DECLARATION BY OR ON BEHALF OF THE PARTICIPANT Initial

I, the participant and the undersigned (full names)

A.1. HEREBY CONFIRM AS FOLLOW Initial

I, the participant was invited to participate in the above-mentioned research project

that is being undertaken by Timothy Matthews
from Department of Computing Sciences
Of the Nelson Mandela Metropolitan University

A.2 THE FOLLOWING ASPECTS HAVE BEEN EXPLAINED TO ME, THE
PARTICIPANT

 Initial

Aim

The main objective of this study is to determine how
effectively sketch-based user interfaces can support the
authoring of animated pre-visualisations.
The information will be used to/for research purposes

Procedures

I understand that I am required to use a system in order
to evaluate how effectively sketch-based user interfaces
can be used to support the authoring of animated pre-
visualisations

Risks

I understand that there are no risks involved in
participating in this process

Confidentiality

My identity will not be revealed in any discussion,
description or scientific publications by the investigators

Voluntary participation /
refusal / discontinuation

My participation is voluntary
YES NO

My decision whether or not to
participate will in no way affect my
present or future
career/employment/lifestyle

TRUE FALSE

 No pressure was exerted on me to consent to participate and I understand that I may

Appendix G: Informed Consent Form

232

withdraw at any stage without penalisation

 Participation in this study will not result in any additional cost to myself

I HEREBY VOLUNTARILY CONSENT TO PARTICIPATE IN THE ABOVE-
MENTIONED PROJECT:

Signed/confirmed at on 20

Signature

Signature of the witness:

Full name of witness:

B. STATEMENT BY OR ON BEHALF OF INVESTIGATOR(S)

 I, (name of interviewer) declare that:

1.

I have explained the information given in this
document to

(name of patient/participant)

And / or his / her representative (name of representative)

2 He / She was encouraged and given ample time to ask me any questions;

3

This conversation was conducted in Afrikaans English Xhosa Other

and no translator was used OR this conversation was translated into

(language) by (name of translator)

4. I have detached section D and handed it to the participant Yes No

Signed /confirmed at on 20

Signature of the interviewer

Signature of witness:

Full name of witness:

233

Appendix H :
Task List

Tasks Description

Pre-visualisations are mock up computer generated previews that are used to visualise a film before or

during production. You will be ask to perform the set of tasks using the sketch-based pre-visualisation

authoring tool provided in order to author a pre-visualisation for a case study. You will then be given a

questionnaire to complete regarding the use of the system. Please feel free to ask me questions at any point if

you feel lost or confused and I will assist you. The main focus of the prototype tool is to support effective

pre-visualisation authoring using a simple and easy to use sketch-based storyboarding interface.

Task 1: Staging

In this task you will be required to perform the staging for one narrative block within the "Goldilocks and

the Three Bears" case study. The case study begins where the three bears enter the house after Goldilocks

falls asleep. The narrative block entitled “My chair is broken!” ends after the baby bear becomes hungry.

1.1
Select the narrative block entitled "My chair is broken!", and navigate to the floor planning

screen.

1.2 Draw three chairs in the living room: A red 3-seat couch, a green 2-seat couch and a blue 1-seat

 couch as shown below using the prop pencil.

The props are listed on the right

 hand of the screen. Draw each prop separately by adding a new prop using the

button.

Appendix H: Task List

234

1.3 Select the symbol pencil

using the pencil drop down box.

 Block the daddy bear, mommy bear and baby bear by drawing character symbols

 at their starting and ending locations as shown below.

1.4
Connect the bears’ starting and ending positions using the annotation pencil, which is currently

active, to indicate the movement of each bear as shown below.

1.5 Draw four cameras on the floor plan by sketching the

symbols as shown below.

Appendix H: Task List

235

1.6
Connect the first and second camera’s starting and ending positions using the annotation pencil,

which is currently active, to indicate the movement of the camera as shown below.

1.7
Associate the camera symbols of each shot with the characters’ they contain by connecting the

shot symbol with the relevant characters as shown below.

Appendix H: Task List

236

1.8 Navigate to the storyboard screen and add dialogue and action

as shown below.

Please complete the questionnaire for Task 1.

Appendix H: Task List

237

Task 2: Storyboarding

In this task the user will be required to edit the storyboard for two narrative blocks.

2.1 Navigate to the narrative block entitled “My porridge has been eaten!” and view its floor plan.

In the kitchen, add two kitchen chairs and a table as shown in the figure below. The table is red,

the top chair is green and the right-hand chair is blue.

2.2 Navigate to the storyboard screen and add a new, blank storyboard panel.

2.3 Zoom into the storyboard panel and sketch the table and the chairs as shown below. Sketch each

prop on a separate layer and using the correct colour. Use the drafting pencil for drafting and

the solid pencil for the final finishing.

 Touch the 3D button

when you are finished.

2.4 Add and sketch the three happy bears by sketching their stick figures as shown below. Use the

Appendix H: Task List

238

emotion pencil

to indicate the facial expressions of each bear.

2.5 Navigate to the floor planning screen and add another shot (#2) using the annotation pencil as

shown below.

2.6 Navigate to the storyboarding screen and zoom in on the last storyboard panel (shot #2).

Appendix H: Task List

239

2.7 Using the touch surface to rotate and move the camera using the

move camera

and rotate camera

tools in order to get the shot below.

2.8 Add two bowls to the list of layers and sketch them on the table as shown below.

2.9 Add two angry bears around the table as shown below.

Appendix H: Task List

240

2.10 Navigate to the floor plan and indicate how the bears move in the kitchen as shown below.

Please complete the questionnaire for Task 2.

Thank you for participation!

241

Appendix I :
Pre-Task Questionnaire

Pre-Task Questionnaire

1. What is your current occupation (e.g. media student, animator, producer, storyboard artist)

2. Do you have any experience with sketching storyboards? If so, then please
mention what experience you have.

Yes No

3. Do you have any experience with performing pre-production activities? If
so, then please mention what experience you have.

Yes No

4. Do you have any experience with sketching storyboards? If so, then please
mention what experience you have.

Yes No

5. Do you have any experience with creating 3D computer generated
animations? If so, then please mention what experience you have.

Yes No

6. Do you have any experience with any other tasks related to the pre-
production and production stages of filmmaking? If so, then please
mention what experience you have.

Yes No

242

Appendix J :
Performance Sheet

Task 1: Staging

Task Success Time Errors

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Task 2: Storyboarding

Task Success Time Errors

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

243

Appendix K :
Post-Task Questionnaire (Staging)

Staging: Post-Task Questionnaire

A. Cognitive load

1. Mental demand: How mentally demanding were the tasks?

Very Low 1 2 3 4 5

Very
High

2. Physical demand: How physically demanding were the tasks?

Very Low 1 2 3 4 5

Very
High

3. Temporal demand: How hurried or rushed was the pace of the tasks?

Very Low 1 2 3 4 5

Very
High

4. Performance: How successful were you in accomplishing what you were asked to do?

Very Low 1 2 3 4 5

Very
High

5. Effort: How hard did you have to work to accomplish your level of performance?

Very Low 1 2 3 4 5

Very
High

6. Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

Very Low 1 2 3 4 5

Very
High

B. Overall satisfaction

1. Overall, I am satisfied with how easy it is to use the staging screen.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

2. Overall, I am satisfied with the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

3. It was easy to learn to use the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

4. It was simple to use the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

Appendix K: Post-Task Questionnaire (Staging)

244

C. Usability

1. I can easily author the pre-visualisation for the case study using the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

2. I was able to efficiently author the pre-visualisation for the case study using the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

3. I became productive quickly using the staging screen

 Strongly
disagree

1 2 3 4 5
Strongly

agree

4. The staging screen has all functions and capabilities I expect from a staging tool

Strongly
disagree

1 2 3 4 5
Strongly
agree

5. I can effectively author the pre-visualisation for the case study using the staging screen

Strongly
disagree

1 2 3 4 5
Strongly

agree

6. I am satisfied with the touch interaction provided by the software

Strongly
disagree

1 2 3 4 5
Strongly

agree

D. General

1. Identify the most positive aspects of the staging interface.

2. Identify the most negative aspects of the staging interface.

3. Please provide any general comments or suggestions for improvement for the staging interface.

245

Appendix L :
Post-Task Questionnaire (Storyboarding)

Storyboarding: Post-Task Questionnaire

E. Cognitive load

1. Mental demand: How mentally demanding were the tasks?

Very Low 1 2 3 4 5

Very
High

2. Physical demand: How physically demanding were the tasks?

Very Low 1 2 3 4 5

Very
High

3. Temporal demand: How hurried or rushed was the pace of the tasks?

Very Low 1 2 3 4 5

Very
High

4. Performance: How successful were you in accomplishing what you were asked to do?

Very Low 1 2 3 4 5

Very
High

5. Effort: How hard did you have to work to accomplish your level of performance?

Very Low 1 2 3 4 5

Very
High

6. Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

Very Low 1 2 3 4 5

Very
High

F. Overall satisfaction

1. Overall, I am satisfied with how easy it is to use the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

2. Overall, I am satisfied with the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

3. It was easy to learn to use the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

4. It was simple to use the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

5. I would like to use sketched-based authoring software in the future instead of traditional pre-visualisation
authoring tools (e.g. Storyboard pro, Maya 3D, paper based storyboards).

 Strongly
disagree

1 2 3 4 5
Strongly

agree

Appendix L: Post-Task Questionnaire (Storyboarding)

246

6. Please motivate the score you selected in the above statement (F.5).

G. Usability

1. I can easily author the pre-visualisation for the case study using the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

2. I was able to efficiently author the pre-visualisation for the case study using the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

3. I became productive quickly using the storyboarding interface.

 Strongly
disagree

1 2 3 4 5
Strongly

agree

4. The storyboarding interface has all functions and capabilities I expect from a sketched based storyboarding
tool.

Strongly
disagree

1 2 3 4 5
Strongly
agree

5. I can effectively author the pre-visualisation for the case study using the storyboarding interface.

Strongly
disagree

1 2 3 4 5
Strongly

agree

6. I am satisfied with the touch interaction provided by the software.

Strongly
disagree

1 2 3 4 5
Strongly

agree

H. General

1. Identify the most positive aspects of the storyboarding interface.

2. Identify the most negative aspects of the storyboarding interface.

3. Please provide any general comments or suggestions for improvement.

