
An Evaluation of Programming Assistance Tools to
Support the Learning of IT Programming: A Case

Study in South African Secondary Schools

by

Melisa Koorsse

Submitted in fulfilment of the requirements for the degree of
Philosophiae Doctor in Computer Science at the Nelson Mandela

Metropolitan University

Promoter: Prof C.B. Cilliers
Co-Promoter: Prof. A.P. Calitz

January 2012



Declaration

I, Melisa Koorsse (199201064), hereby declare that the thesis for my qualification to be
awarded is my own work and that it has not previously been submitted for assessment or
completion of any postgraduate qualification to another University or for another quali-
fication.

M. Koorsse

Copyright © 2012 Nelson Mandela Metropolitan University
All rights reserved.

ii



Summary

Worldwide, there is a decline in interest in the computer science profession and in the
subject at secondary school level. Novice programmers struggle to understand introduc-
tory programming concepts and this difficulty of learning to program is contributing to
the lack of interest in the field of computer science. Information Technology (IT) learners
in South African secondary schools are novice programmers, introduced to introductory
programming concepts in the subject which also includes topics on hardware and system
software, e-communication, social and ethical issues, spreadsheets and databases. The
difficulties faced by IT learners are worsened by the lack of suitably qualified teachers,
a saturated learning programme that allocates very little time to the understanding of
complex programming concepts and limited class time where practical examples can be
implemented with the support of the IT teacher.

This research proposes that IT learners could be supported by a programming assistance
tool (PAT). A PAT is a software program that can be used by novice programmers to learn
how to program and/or improve their understanding of programming concepts. PATs use
different techniques to assist novice programmers. The main objective of this research
was to determine whether the use of a PAT impacted IT learners’ understanding of pro-
gramming concepts and motivation towards programming.

The literature study and feedback from IT learners and teachers were used to identify
novice programming difficulties and IT learner programming difficulties, respectively. Se-
lection criteria were derived from the programming difficulties identified. The selection
criteria were grouped into three categories, namely, programming concepts, programming
knowledge and programming skills. Existing PATs were evaluated using the selection cri-
teria and three PATs, namely, RoboMind, Scratch and B#, were selected as suitable for
use by IT learners. RoboMind was adapted in this research study, allowing it to support
the Delphi programming language. The three PATs were evaluated by participating IT
learners at four schools.

The findings of this research provided no conclusive evidence that IT learners who used
a PAT had a significantly better understanding of programming concepts and motivation

iii



SUMMARY iv

towards programming than learners who did not use a PAT. IT learner feedback was used
to identify the strengths and shortcomings of the three PATs and to provide recommen-
dations for the development of PATs specifically to support IT learners.

This research study has provided several theoretical and practical contributions, including
the research design, selection criteria, adaptations to RoboMind and the evaluation of the
three PATs. In addition, IT teachers and learners have been made aware of PATs and the
support that can be provided by these PATs. IT teachers have also been provided with
a means of selecting PATs applicable to the IT curriculum. All the research contribu-
tions have formed the basis for future work, such as improving and extending RoboMind’s
functionality and support of programming concepts, the refinement of the selection cri-
teria and, ultimately, the development of a new PAT, specifically designed to support IT
learner understanding of programming concepts and motivation towards programming.



Acknowledgements

This research could not have been completed without the contributions of many different
people, who have supported and assisted in this research in different ways. I would like
to extend my appreciation to the following:

I would like to thank God for the perseverance and wisdom that He has bestowed upon me
during this research, and throughout my life. The following words have been a constant
source of encouragement:

“I can do all things through Christ who strengthens me.” (Phillipians 4:13)

My promoters, Charmain Cilliers and André Calitz, for their invaluable guidance and
continuous support for the duration of this research. Their advice and suggestions were
always constructive and improved the quality of the work.

The participating schools and learners for their co-operation during this study. A special
thank you to the IT teachers at the participating schools for their time and co-operation
with regards to the administration of questionnaires and class tests. Their contribution
has been invaluable to this research study.

The Department of Computing Sciences for allowing me to conduct this research and for
providing ongoing research support.

Prof. Danie Venter and John Cullen for their time and assistance with statistical analysis
and language editing, respectively.

Clayton Burger for giving his time to provide feedback and technical support.

Finally, I would like to thank my family, in particular my mother, for unconditional
support and encouragement throughout a challenging time.

The financial assistance of the National Research Foundation (NRF) towards this research
is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the
author and are not necessarily to be attributed to the NRF.

v



Dedications

This thesis is dedicated to my grandmother
Dorothy Enith Cunningham

vi



Contents

Acknowledgements v

Dedications vi

Contents vii

List of Figures xii

List of Tables xiv

Listings xvi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Conclusion and Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Research Design and Methods 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Research Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Identification of Suitable PATs . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Evaluation of Proposed PATs . . . . . . . . . . . . . . . . . . . . . 18

2.3 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Participant Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1.1 IT Teacher Questionnaires . . . . . . . . . . . . . . . . . . 24
2.5.1.2 IT Decision Questionnaire . . . . . . . . . . . . . . . . . . 25

vii



CONTENTS viii

2.5.1.3 Perceived Difficulty of Programming Questionnaire . . . . 26
2.5.1.4 Motivated Strategies for Learning Questionnaire (MSLQ) . 27
2.5.1.5 Visual, Aural, Read/Write, Kinaesthetic (VARK) Ques-

tionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1.6 PAT Evaluation Questionnaire . . . . . . . . . . . . . . . 29

2.5.2 Class Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Risks and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Introductory Programming 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Difficulties of Learning to Program . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Programming Skills and Knowledge . . . . . . . . . . . . . . . . . . 36
3.2.2 Teaching Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Programming Language and Environment . . . . . . . . . . . . . . 42
3.2.4 Programming Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Approaches to Address Programming Difficulties . . . . . . . . . . . . . . . 45
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Selection Criteria for PATs to Support IT Programming 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 IT Teacher Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Teaching IT in South African Secondary Schools . . . . . . . . . . . 51
4.2.2 Teaching IT Programming Content . . . . . . . . . . . . . . . . . . 53
4.2.3 Selection Criteria from IT Teacher Feedback . . . . . . . . . . . . . 55

4.3 IT Learner Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Perceived Difficulty of IT . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Selection Criteria from IT Learner Feedback . . . . . . . . . . . . . 60

4.4 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Programming Assistance Tool Selection 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Techniques Used by PATs . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Definition of a PAT . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Evaluation of Techniques used by PATs . . . . . . . . . . . . . . . . 68
5.2.3 Learning Preferences of IT learners . . . . . . . . . . . . . . . . . . 69

5.3 Programming Assistance Tools for IT . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 BlueJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS ix

5.3.3 Greenfoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.5 B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.6 Jeliot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.7 Ville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.8 PlanAni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.9 Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.10 jGRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 PAT Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1 Programming Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 Programming Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Programming Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.4 Techniques used by the PATs . . . . . . . . . . . . . . . . . . . . . 90
5.4.5 PAT Selection for this Research Study . . . . . . . . . . . . . . . . 91

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 PAT Preparation for IT Learners 94
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Programming Concepts in Delphi and the PATs . . . . . . . . . . . . . . . 95

6.2.1 Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.2 RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2.1 Unadapted RoboMind . . . . . . . . . . . . . . . . . . . . 102
6.2.2.2 Adapted RoboMind . . . . . . . . . . . . . . . . . . . . . 103

6.2.3 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.4 B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 The Impact of PATs on the Understanding of Programming Concepts 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Application of Experimental Procedure . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Research Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2.2 Supplementary Support . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.3 Data Collection, Analysis and Presentation . . . . . . . . . . . . . . 121
7.2.4 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.5 Difficulties Experienced . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Evaluation of PATs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3.1 RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1.1 Understanding of Programming Concepts . . . . . . . . . 125
7.3.1.2 Evaluation of Techniques . . . . . . . . . . . . . . . . . . 128

7.3.2 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2.1 Understanding of Programming Concepts: Scratch1 . . . . 129



CONTENTS x

7.3.2.2 Understanding of Programming Concepts: Scratch2 . . . . 131
7.3.2.3 Evaluation of Techniques . . . . . . . . . . . . . . . . . . 134

7.3.3 B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.3.1 Understanding of Programming Concepts . . . . . . . . . 135
7.3.3.2 Evaluation of Techniques . . . . . . . . . . . . . . . . . . 137

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 The Impact of PATs on Motivation Towards Programming 140
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Application of Experimental Procedure . . . . . . . . . . . . . . . . . . . . 141
8.3 PAT Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3.1 RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3.2 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3.2.1 Scratch1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3.2.2 Scratch2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.2.3 Combined Evaluation of Scratch Techniques . . . . . . . . 148

8.3.3 B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 Conclusion 153
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3.1 Primary Objective 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.3.2 Primary Objective 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.3.3 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.4.1 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . . 160

9.4.1.1 Research Design: Selection of PATs . . . . . . . . . . . . . 160
9.4.1.2 Research Design: Evaluation of PATs . . . . . . . . . . . . 161
9.4.1.3 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . 161
9.4.1.4 Recommendations for a Suitable PAT . . . . . . . . . . . 163

9.4.2 Practical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.4.2.1 Evaluation of Selected PATs . . . . . . . . . . . . . . . . . 163
9.4.2.2 Adapted RoboMind for Delphi . . . . . . . . . . . . . . . 164
9.4.2.3 Research Results . . . . . . . . . . . . . . . . . . . . . . . 165

9.5 Limitations of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

List of References 169



CONTENTS xi

Appendices 177

A Questionnaires to IT Teachers 178
A.1 Open Questionnaire to IT Teachers . . . . . . . . . . . . . . . . . . . . . . 178
A.2 Questionnaire to IT Teachers . . . . . . . . . . . . . . . . . . . . . . . . . 182

B IT Decision Questionnaire 189
B.1 Pretest Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.2 Posttest Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C Perceived Difficulty of IT Questionnaire (Grade 11) 194

D Multiple Choice Tests 198
D.1 Grade 10: if -statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
D.2 Grade 10: for-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
D.3 Grade 10: repeat- and while-loops . . . . . . . . . . . . . . . . . . . . . . . 208
D.4 Grade 11: One-dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . 214
D.5 Grade 11: Procedures and Functions . . . . . . . . . . . . . . . . . . . . . 219

E PAT Evaluation Questionnaire 225
E.1 RoboMind Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
E.2 Scratch Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
E.3 B# Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

F Determination of PAT Rankings Based on Selection Criteria 231
F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
F.2 Programming Knowlege Rankings . . . . . . . . . . . . . . . . . . . . . . . 231
F.3 Programming Skill Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . 232
F.4 Programming Concept Rankings . . . . . . . . . . . . . . . . . . . . . . . . 232
F.5 Overall Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

G PAT Supporting Documentation 235
G.1 RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
G.2 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
G.3 B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

H Papers Originating from this Research Study 246
H.1 E-Skills 2010 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
H.2 SAICSIT 2010 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
H.3 SACLA 2010 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
H.4 SACLA 2011 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



List of Figures

1.1 Examples of PATs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Adapted Research Process Onion . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Relationship between the research objectives and questions . . . . . . . . . . . 16
2.2 Research strategy to achieve Primary Objective 1 . . . . . . . . . . . . . . . . 17
2.3 Research Strategy to achieve Primary Objective 2 . . . . . . . . . . . . . . . . 19
2.4 Pre- and posttests administered during the quasi-experimental approach . . . 21

3.1 Knowledge and skills required by a programmer . . . . . . . . . . . . . . . . . 37
3.2 Screenshot of Delphi compiler error messages . . . . . . . . . . . . . . . . . . . 43

5.1 Distribution of IT learner learning preferences: Multimodal or unimodal . . . 70
5.2 Distribution of learning preferences . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Distribution of unimodal learning preferences . . . . . . . . . . . . . . . . . . 71
5.4 Distribution of multimodal learning preferences . . . . . . . . . . . . . . . . . 72
5.5 Robot executing code to follow the white line in RoboMind . . . . . . . . . . . 73
5.6 BlueJ Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Greenfoot main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Greenfoot code window for the wombat object . . . . . . . . . . . . . . . . . . 76
5.9 Creating a script in Scratch by dragging building blocks . . . . . . . . . . . . 77
5.10 Stepping through code created using a flowchart in B# . . . . . . . . . . . . . 79
5.11 Use of animation to explain program execution in Jeliot . . . . . . . . . . . . 80
5.12 Execution of a program in Ville using multiple choice questions to assess pro-

gramming knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.13 Animation of program code execution in PlanAni . . . . . . . . . . . . . . . . 82
5.14 Program creation in Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.15 jGRASP main code window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Sample program (Listing 6.3) executed in Delphi . . . . . . . . . . . . . . . . 101
6.2 Adapted RoboMind: Procedures and use of parameters . . . . . . . . . . . . . 106
6.3 Adapted RoboMind: for-loop, repeat-loop and while-loop . . . . . . . . . . . . 107
6.4 Adapted RoboMind: Variables and if -statements . . . . . . . . . . . . . . . . 108

xii



LIST OF FIGURES xiii

6.5 Scratch: Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 Scratch: Arrays and looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7 Scratch: String handling, if -statements, input and output . . . . . . . . . . . 112
6.8 Sample program (Figure 6.7) executed in Scratch . . . . . . . . . . . . . . . . 112
6.9 B#: Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.10 Console application created using B# . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Pre- and posttests administered during the quasi-experimental approach . . . 122

8.1 RoboMind: Learner perceptions of IT difficulty . . . . . . . . . . . . . . . . . 143
8.2 Scratch1: Learner perceptions of IT difficulty . . . . . . . . . . . . . . . . . . . 145
8.3 Scratch2: Learner perceptions of IT difficulty . . . . . . . . . . . . . . . . . . . 147
8.4 B#: Learner perceptions of IT difficulty . . . . . . . . . . . . . . . . . . . . . 149

9.1 Process for the selection of PATs . . . . . . . . . . . . . . . . . . . . . . . . . 160



List of Tables

1.1 Learning Outcome Time Allocation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research objectives, questions and methods . . . . . . . . . . . . . . . . . . . 8

2.1 Non-equivalent groups design of quasi-experimental approach . . . . . . . . . . 20
2.2 Experimental research design for this study . . . . . . . . . . . . . . . . . . . 20
2.3 MSLQ Motivational Section Subscales and Components . . . . . . . . . . . . . 28
2.4 VARK learning preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Programming knowledge and skills required to generate code . . . . . . . . . . 47
3.2 Criteria for selecting PATs identified from introductory programming literature 48

4.1 Summary of IT teacher feedback related to the South African school teaching
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 IT teacher feedback: Difficulty of Programming Concepts (n=4) . . . . . . . . 54
4.3 Difficulty of programming concepts and skills as rated by Grade 11 learners

(Perceived Difficulty of Programming Questionnaire) . . . . . . . . . . . . . . 57
4.4 Selection criteria for PATs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Criteria to evaluate the techniques used by PATs . . . . . . . . . . . . . . . . 68
5.2 Evaluation of PATs using selection criteria: Programming knowledge . . . . . 86
5.3 Ranking of PATs based on evaluation of programming knowledge selection

criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Evaluation of PATs using selection criteria: Programming skills . . . . . . . . 87
5.5 Ranking of PATs based on evaluation of programming skills selection criteria . 88
5.6 Evaluation of PATs using selection criteria: Programming concepts . . . . . . 89
5.7 Ranking of PATs based on evaluation of programming concept selection criteria 89
5.8 Evaluation of techniques used by PATs . . . . . . . . . . . . . . . . . . . . . . 90
5.9 Summary of PAT evaluation using selection criteria . . . . . . . . . . . . . . . 91

6.1 Evaluation of RoboMind, Scratch and B# using selection criteria: Program-
ming concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Correspondence of programming concepts implemented in Delphi and un-
adapted RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Comparison of statements to read in input from the user in Delphi and B# . . 113

xiv



LIST OF TABLES xv

6.4 Comparison of statements to display output to the user in Delphi and B# . . 114
6.5 Support of programming concepts: Adapted RoboMind, Scratch and B# . . . 116

7.1 Number of participants in control and treatment groups . . . . . . . . . . . . 120
7.2 Multiple choice class tests used to evaluate IT learner understanding of pro-

gramming concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3 ANOVA: Impact of PAT and experimental group on multiple choice test scores

and final Grade 11 IT mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 Adapted RoboMind support of programming concepts results . . . . . . . . . 126
7.5 RoboMind techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 Scratch1 support of programming concepts results . . . . . . . . . . . . . . . . 130
7.7 Scratch2 support of programming concepts results . . . . . . . . . . . . . . . . 132
7.8 Scratch techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.9 B# support of programming concepts results . . . . . . . . . . . . . . . . . . 136
7.10 B# techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.11 Impact of PAT techniques on understanding of IT programming concepts . . 138

8.1 Motivated Strategies for Learning Questionnaire: Motivational subscales . . . 142
8.2 ANCOVA analysis results: Effect of experimental group on MSLQ sub-categories142
8.3 ANCOVA analysis results: Effect of RoboMind on MSLQ subscales . . . . . . 143
8.4 Learner Evaluation of RoboMind . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.5 ANCOVA analysis results: Effect of Scratch1 on MSLQ sub-categories . . . . . 145
8.6 Learner Evaluation of Scratch1 . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7 ANCOVA analysis results: Effect of Scratch2 on MSLQ sub-categories . . . . . 146
8.8 Learner Evaluation of Scratch2 . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.9 ANCOVA analysis results: Effect of B# on MSLQ sub-categories . . . . . . . 148
8.10 Learner Evaluation of B# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.11 Impact of PAT techniques on motivation to use the PAT . . . . . . . . . . . . 151

9.1 Contribution: Selection criteria for PATs . . . . . . . . . . . . . . . . . . . . . 162

F.1 Calculation of PAT ranking score based on programming knowledge criteria . 232
F.2 Calculation of PAT ranking score based on programming skill criteria . . . . . 232
F.3 Calculation of PAT ranking score based on programming concept criteria . . . 233
F.4 Overall PAT rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



Listings

6.1 Delphi: Procedures and use of parameters . . . . . . . . . . . . . . . . . . 98
6.2 Delphi: Arrays and looping . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Delphi: String handling, if -statements, input and output . . . . . . . . . . 100
6.4 String handling for console application . . . . . . . . . . . . . . . . . . . . 114

xvi



Chapter 1

Introduction

1.1 Background

The Information and Communications Technology (ICT) industry has become a major
industry internationally. ICT is important for organisations that want to adapt existing
business to new business opportunities (Cumps, Viaene and Dedene, 2010). ICT related
technical positions such as Computer Systems Analyst, Technical Writer and Computer
Programmer all rank within the top 30 professions (Strieber, 2011). The reason for the
high rankings can be attributed to an increase in the number of companies developing
web, mobile applications and cloud computing applications. Software engineering has
been identified as the top profession in America in 2011. Evaluated using five criteria
(Strieber, 2011), the software engineering profession offers a better than average income,
a comfortable working environment, few physical demands, comparatively low stress and
good hiring opportunities. Consequently, Computer Science remains a qualification in
great demand in the United States (NACE, 2011). In South Africa, programming skills
obtained through Computer Science and Information Systems degree programmes are just
as sought after by industry (Calitz, 2010).

Despite the demand for ICT qualifications, the number of learners choosing a career in
Computer Science is decreasing (Calitz, 2010; Gardner and Feng, 2010; Porta, Maillet and
Gil, 2010; Wilson, Sudol, Stephenson and Stehlik, 2010). This crisis is shared by countries
around the world, including the United States (Wilson et al., 2010), European countries
(Porta et al., 2010) and South Africa (Calitz, 2010; Rogerson and Scott, 2010). In the
U.S., the number of enrolments in Computer Science bachelor programs has decreased by
30% over the last decade (Egan, 2010). Research studies in Europe and North America
indicate that, although the number of learners pursuing careers in the fields of science and
technology is decreasing, the total number of enrolments in tertiary education institutions
has increased (Porta et al., 2010).

1



CHAPTER 1. INTRODUCTION 2

The apparent lack of interest in the fields of science and technology has resulted in a
decrease in the number of software developers available. The shortage of software devel-
opers has increased the costs of software development. Governments in several countries
around the world, including the U.S. (Wilson et al., 2010), European countries (Porta
et al., 2010) and South Africa (Medium Term Strategic Framework, 2009), are working to
promote interest in computing professions. The importance of equipping school learners
with technological skills and knowledge for future success has also been recognised (Wil-
son et al., 2010).

Computer Studies subjects at schools worldwide aim to develop the technological skills
and knowledge of learners (Appendix H). However, these subjects are in crisis due to lack
of qualified teachers, lack of quality instructional materials, and the difficulty of covering
all the subject topics in adequate detail in the limited time available (Wilson et al., 2010;
Havenga and Mentz, 2009). In addition, the difficulties experienced when learning to pro-
gram is resulting in high attrition rates, a decline in interest to continue with a career in
computing and a general negative impression of programming amongst learners (Garner,
2007; Gomes and Mendes, 2007).

There is consensus that programming is a difficult skill to learn1. The problem solving
and logical cognitive processes that expert or professional programmers possess (Bald-
win and Kuljis, 2000; Al-Imamy, Alizadeh and Nour, 2006) are essential when developing
software that is fast, scalable and can be adapted to technological advances. However, it
takes an average of 10 years for a novice2 to progress to the level of expert programmer
(Robins, Rountree and Rountree, 2003). Novice programmers typically need concurrently
to learn how to understand and solve a problem, formulate a solution in a structured
form (algorithm) and write the algorithm in a programming language (Vickers, 2009).
Inability to plan solutions (Rongas, Kaarna and Kalvianen, 2004), lack of understanding
of programming concepts due to the abstract nature of these concepts (Lahtinen et al.,
2005) and a lack of understanding of how a computer works (Levy, Ben-Ari and Uronen,
2001) are some of the reasons identified why programming is difficult.

The situation in South Africa is no different. The Information Technology (IT) subject
offered in South African secondary schools includes introductory programming knowl-
edge and skills in the subject learning outcomes (Department of Education, 2003). South
African IT learners, as novice programmers, are struggling to understand and apply pro-
gramming concepts (Havenga and Mentz, 2009). IT teachers struggle to address the

1Baldwin and Kuljis (2000); Gayo-Avello and Fernández-Cuervo (2003); Lahtinen, Ala-Mutka and
Järvinen (2005); Garner (2007); Teague and Roe (2008); Shuhidan, Hamilton and D’Souza (2009)

2A person learning to program regardless of programming language and with no previous program-
ming experience.



CHAPTER 1. INTRODUCTION 3

programming difficulties experienced by their IT learners due to limited contact time
with learners and an overloaded subject curriculum.

Figure 1.1: Examples of PATs

Research in the teaching of introductory programming has suggested the use of program-
ming assistance tools (PATs) designed specifically for novice programmers (Figure 1.1).
PATs are developed with the goals: to enhance comprehension of algorithms and com-
puter programs, assist with code debugging and/or assess programming knowledge and
skills (Kelleher and Pausch, 2005). Graphical environments and animation are techniques
that can be used to make programming interesting and enhance a user’s understanding
of programming concepts (Bryant, Weiss, Orr and Yerion, 2011; Pears, Seidman, Malmi,
Mannila, Adams, Bennedsen, Devlin and Paterson, 2007). Visualisation techniques have
also been incorporated into some PATs to improve the conceptual understanding of pro-
gramming concepts (Bryant et al., 2011; Baldwin and Kuljis, 2000).



CHAPTER 1. INTRODUCTION 4

In South African secondary schools, IT learners are not usually provided with PATs. IT
teachers seem to be unaware of the range of tools that can support the learners in teaching
and learning (Section 4.2). PATs also have educational deficiencies and do not support
all of the content in the IT subject programming syllabus (Section 5.4).

1.2 Research Relevance

IT is one of 29 subjects included in the National Curriculum Statement (NCS) of the
South African Department of Education (Department of Education, 2003) and is offered
at secondary school level for learners in Grades 10, 11 and 12. Although IT is a designated
subject contributing to the requirements of learners who want to enrol for a Bachelors
degree programme at a Higher Education institution, IT is not a prerequisite subject for
any computing related degree programme (NMMU, 2011; SUN, 2011; UCT, 2011).

IT, in South African secondary schools, has earned a reputation as a difficult subject
(Havenga and Mentz, 2009) and this impacts learners’ decisions to take IT as a subject.
Many learners that do attempt the subject change to another, “easier” subject before
Grade 12 (the final year) or remain in the subject class but lack the motivation and in-
terest in the programming content to achieve their potential. The lack of interest and
motivation in the subject and the negative impression created amongst learners seems
to affect negatively the number of learners who decide to pursue further education in a
computing discipline.

Table 1.1: Learning Outcome Time Allocation (Department of Education, 2008)

Learning Outcome (LO) Weighting

LO1 : Hardware and System Software 20%
LO2 : e-Communication 10%
LO3 : Social and Ethical Issues 10%
LO4 : Programming and Software Development 60%

100%

IT at school has four learning outcomes (Table 1.1) as specified in the IT National Cur-
riculum Statement (Department of Education, 2003). LO4 (Programming and Software
Development) has the highest and most substantial weighting of the IT subject and is
the most critical learning area. Consequently, learners who are unable to understand and
apply programming concepts are unlikely to perform well in the subject.



CHAPTER 1. INTRODUCTION 5

IT learners in South African secondary schools are faced with the same difficulties as
novice programmers around the world (Section 1.1). The difficulties faced by IT learners
are aggravated by a learning environment particular to secondary schools. Short (approx-
imately 45 minutes), daily lessons make it difficult both to teach and practise complex
programming concepts and skills during school hours (Chapter 4). There is consequently
inadequate time available for IT teachers to address the specific programming difficulties
of individual IT learners as well as accurately assess learner understanding of concepts
during class time. In Grade 10, IT class sizes can range from 20 to 35 learners in a class.
The numbers of learners continuing IT in the Grade 11 and Grade 12 classes are less due
to attrition.

IT learners lack support in the form of resources to supplement the prescribed IT subject
textbook. One such supporting resource is the use of PATs that assist with the develop-
ment of the understanding of programming concepts and skills during self-study. PATs
support self-study (Al-Imamy et al., 2006) and promote active interaction (Baldwin and
Kuljis, 2000). The problem that exists is that PATs are not used as IT teachers and
IT learners are generally not aware of them (Pears et al., 2007). Furthermore, many
of the PATs available are unsuitable for IT learners to use in a classroom learning en-
vironment in South African secondary schools. One of the reasons for this situation is
that very few of the PATs support the prescribed Delphi (Pascal) programming language.
Another problem is that many of the PATs assist in the development of only a subset of
the programming skills required by programmers (Rongas et al., 2004). This support is
insufficient to improve IT learners’ overall understanding of programming concepts.

PATs may employ different techniques to represent code and assist users to construct
programs (Kelleher and Pausch, 2005). Code may be represented using text, pictures,
flowcharts or animation. PATs may visualise structures or execution of code, animate al-
gorithms, construct algorithms and visualisations graphically, provide editing and syntax
support or generate code from templates (Pears et al., 2007). The techniques employed
by a PAT are as a result of the programming skills or knowledge that the PAT aims to
develop in a novice programmer.

1.3 Research Outline

The lack of support provided to IT learners learning introductory programming in South
African schools has been highlighted. The specific problem to be addressed in this inves-
tigation (Sections 1.3.1 and 1.3.2) gives rise to a number of research objectives (Section
1.3.3) and research questions (Section 1.3.4).



CHAPTER 1. INTRODUCTION 6

1.3.1 Problem Statement

The problem statement for this research is the following:

IT learners lack programming learning resource support to develop their under-
standing of programming concepts independently, resulting in a lack of interest
and motivation in IT as a subject and in computing as a career.

South African secondary school IT learners, as novice programmers, struggle to under-
stand and correctly apply programming concepts. The ratio of teacher to students in
an average IT class is high considering the practical nature of the programming learning
outcome with which learners need assistance. Furthermore, IT learners lack support and
assistance to develop programming skills and knowledge during self-study. In particular,
there is a lack of support for the Delphi programming language, which is used in most
schools offering IT as a subject.

Novice programming research has resulted in the development of a variety of PATs to
support the development of programming skills. IT teachers and learners are not aware
of the different PATs and how to use PATs to most effectively support the teaching and
learning of programming concepts. Furthermore, many of the PATs have deficiencies,
particularly with regard to the IT curriculum, which make them unsuitable for use by IT
learners in South African secondary schools.

1.3.2 Thesis Statement

The primary aim of this research is to evaluate the use of PATs by IT learners in South
African secondary schools. In particular, the objective is to evaluate the support provided
by PATs in developing IT learner understanding of programming concepts and the effect
of PATs on IT learner motivation towards programming.

The thesis statement that guides this research in achieving its goals is therefore:

Programming assistance tools (PATs) can support IT learner development of
programming skills and influence motivation to learn programming.

A number of research objectives are derived from the thesis statement.



CHAPTER 1. INTRODUCTION 7

1.3.3 Research Objectives

The primary and secondary objectives of this research are related to providing IT learners
with existing PATs that are suitable or can be made suitable to support the achievement
of the IT subject programming learning outcomes in South African secondary schools.

The primary objectives (POs) of this research are:

PO1: To identify existing introductory programming assistance tools (PATs) that can be
used to support learner understanding of programming concepts included in the
IT subject curriculum implemented in a case study of South African secondary
schools (Chapter 5).

PO2: To evaluate the impact of the selected programming assistance tools (PATs) on
a novice programmer’s understanding of programming concepts included in the
IT subject curriculum implemented in a case study of South African secondary
schools (Chapter 7 and 8).

The following secondary objectives (SOs) will be researched in order to achieve the primary
objectives (Table 1.2):

SO1.1: Formulate selection criteria for determining the suitability of PATs to support
the achievement of programming learning outcomes in the IT subject curriculum
(Chapter 4).

SO1.2: Adapt selected PATs to make them suitable to support the achievement of pro-
gramming learning outcomes in the IT subject curriculum implemented in South
African secondary schools (Chapter 6).

SO2.1: Evaluate the impact of the proposed PATs on IT learner understanding of pro-
gramming concepts (Chapter 7).

SO2.2: Evaluate the influence of the proposed PATs on IT learner motivation towards
programming (Chapter 8).

The following research questions (RQ) will be answered to guide the research in order to
achieve the research objectives (Table 1.2):

RQ1: What programming difficulties and skills do PATs need to address and develop,
respectively?



CHAPTER 1. INTRODUCTION 8

Table 1.2: Research objectives, questions and methods

Primary
Objec-
tive

Secondary
Objec-
tive

Research
Ques-
tion

Research Method Chapter

PO1
SO1.1

RQ1 Literature study: novice
programming

3

RQ2 Interviews with IT teachers 4Questionnaires to IT learn-
ers

SO1.2 RQ3 Literature study to identify
existing PATs

5

RQ4 Adaptation to PATs 6

PO2
SO2.1 RQ5 Questionnaires to IT learn-

ers (Perceived difficulty of
IT Questionnaire)

7

End-of-year summative as-
sessment marks
Multiple choice class tests

RQ7 Questionnaires to IT learn-
ers (Evaluation of PATs)

SO2.2 RQ6 Questionnaires to IT learn-
ers (Motivated Strategies
for Learning

8

RQ8 Questionnaires to IT learn-
ers (Evaluation of PATs)

RQ2: What factors may influence the use of PATs in SA secondary school learning en-
vironments?

RQ3: What PATs exist that would be suitable for use in SA secondary schools?

RQ4: How can the selected PATs be adapted for use by IT learners in SA secondary
schools to support the understanding of programming concepts?

RQ5: What impact do the different PATs have on IT learner understanding of program-
ming concepts?

RQ6: What impact do the PATs have on IT learner motivation towards programming?

RQ7: What techniques should PATs implement in order to assist IT learner understand-
ing of programming concepts?

RQ8: What techniques should PATs implement in order to motivate IT learners to learn
programming concepts and to use a PAT?

The data collection methods that are used to answer each of the research questions in-
clude surveys, class tests and a review of relevant literature (Table 1.2). A study of related



CHAPTER 1. INTRODUCTION 9

work in the field of introductory programming identifies difficulties experienced by novice
programmers in general, as well as PATs suitable for use by IT learners. IT teacher and
learner questionnaire responses provide feedback regarding the novice programming dif-
ficulties experienced by IT learners in South African secondary schools. Questionnaires
are also used to evaluate IT learner motivation towards programming and the IT subject
(Section 2.5.1). Multiple choice class tests (Section 2.5.2) are used to evaluate IT learner
understanding of specific programming concepts. The research methods, questionnaires
administered to IT learners and teachers and multiple choice tests administered to IT
learners are presented in more detail in the research design and methods chapter (Chap-
ter 2).

1.4 Research Methodology

In any research study, the research plan must suit the purposes of the research (Cohen,
Manion and Morrison, 2007). The adapted research process “onion” (Figure 1.2) outlines
the main issues that need to be considered before starting the research study (Saunders,
Lewis and Thornhill, 2006).

The research philosophy or paradigm is a way of looking at the world and is composed
of philosophical assumptions that guide and direct thinking and action (Mertens, 2004).
The post-positivism paradigm will be adopted by this research to evaluate quantitatively
the impact of the proposed PATs.

The post-positivism paradigm is a philosophy associated with educational research (Phillips
and Burbules, 2000) and has been used to determine the impact of teaching methods (Levy
et al., 2001; Cohen et al., 2007). The post-positivism paradigm is mainly quantitative,
however, qualitative methods can also be used (Mertens, 2004; Cohen et al., 2007). The
research will follow a deductive approach using an experimental research strategy.

Quasi-experimental methods are commonly used in the evaluation of educational programs
in cases when it is not possible or practical to assign participants randomly (Gribbons
and Herman, 1997). The quasi-experimental method is used to determine if there is a
difference in IT learner motivation (SO2.2) and the perceived difficulty of programming
concepts (SO2.1) between learners that use a PAT and learners that do not. The research
uses a case study involving IT learners from a number of schools using Delphi as the pro-
gramming language. Qualitative methods are used to gather information on IT learner
opinions related to the proposed PATs (RQ7 and RQ8).



CHAPTER 1. INTRODUCTION 10

Figure 1.2: Adapted Research Process Onion

Data collection methods include a literature study together with questionnaire feedback
from South African IT learners and teachers (Table 1.2). The data collected from these
two methods are used to identify existing PATs and criteria to select PATs (SO1.1) in or-
der to support the learning of IT programming concepts. The proposed PATs are adapted,
if necessary and if possible, for use by learners (SO1.2).

The research methodology employed in this study is primarily quantitative in nature,
although qualitative analysis methods are also used. Qualitative research methods are
used at the start of the study to identify factors influencing the performance of IT learn-
ers in South African secondary schools. Quantitative data analysis techniques are used
to determine the impact of the proposed PATs on learner perceptions of the difficulty
of different programming concepts and the impact on learner motivation with regard to
programming. The research design is discussed in detail in Chapter 2.

1.5 Scope and Limitations

The non-equivalent groups design (NEGD) is common in education research for the selec-
tion of groups for the quasi-experimental research strategy. In the NEGD, two comparable
groups are selected for the research (Trochim, 2006). Groups are selected in such a way



CHAPTER 1. INTRODUCTION 11

that they are as similar as possible to compare them fairly. A limitation of using NEGD
is that the groups are not equivalent due to lack of random assignment. Any prior differ-
ences between the groups may thus affect the outcome of the research.

The context of the research includes schools in the Eastern Cape Province, specifically
Port Elizabeth. Schools in this province teach Delphi as the programming language. Some
aspects of the research, especially with regard to the PATs, may thus not be generalisable
for the teaching of all IT learners in South Africa as some provinces use Java as the pro-
gramming language. Learners, using the proposed PATs, should be able to achieve the
learning outcomes of the IT subject regardless of whether Delphi or Java is used as the
programming language, but this will not be verified as part of this investigation.

The number of schools in the sample population is less than that required to represent
accurately the theoretical population, which is all schools in SA teaching Delphi. The
study will require IT learners and teachers, as participants, to consent to participation in
the study (Appendix H). The sample size is consequently affected by the willingness of
schools, IT teachers and learners to participate in the research for the entire duration of
the investigation. To increase the chance of a random sample, the sample size is thus the
size of each participating class, which is on average less than 30 (Cohen et al., 2007).

The research study is designed to ensure, as far as possible, that the use of the PATs is
the only difference that the control and treatment groups may experience, besides the
fact that the classes themselves are different. However, changes in teacher or learning
environments at the school are beyond the control of the researcher. Any changes are
noted and catered for as best possible in the analysis of the research data.

Adaptations to the PATs are limited to changes that will make the programming language
of the PAT similar to the Delphi programming language. The quasi-experimental research
strategy is then used to evaluate the impact of the PATs in participating schools.

The research will not evaluate the use of the proposed PATs for all programming concepts
taught to IT learners for the duration of the IT subject to minimise the disruption of the
IT teacher’s planned work schedule. One of the selected PATs is provided to the partic-
ipating treatment group Grade 10 and Grade 11 IT learners in each of the participating
schools to use in their own time. IT learner knowledge of certain programming concepts
are assessed using class tests, after different concepts have been taught, in the course of
the year.



CHAPTER 1. INTRODUCTION 12

1.6 Conclusion and Thesis Structure

IT learners in South African secondary schools face many difficulties. IT learners strug-
gle to understand and successfully apply introductory programming concepts. Practical
programming time in class where learners are able to apply their programming knowledge
in the presence of the teacher, is limited. Consequently, IT learners require support and
assistance to develop their programming knowledge and skills independently. PATs could
support IT learners, however, IT teachers and learners are not aware of the range of PATs
in existence.

The aim of this study is to identify and evaluate PATs that would be suitable for use by
IT learners. The study evaluates the support PATs provide to IT learners with respect
to the understanding of programming concepts and the influence of PATs on IT learner
motivation towards programming. The results of this study indicate whether PATs can
improve IT learner understanding of programming concepts and motivation towards pro-
gramming. The findings of the study also identify different techniques used by the PATs
that motivate learners and assist with the understanding of programming concepts. Based
on the feedback from learners, techniques that a PAT should employ are suggested.

The research is using a case study of four IT schools in the Port Elizabeth area which use
Delphi as the programming language. One reason for selecting these schools is to make
access to participants more convenient. The influence of school environments and teach-
ers has also resulted in each of the participating schools receiving a different PAT. The
impact of the PAT on IT learner understanding of programming concepts and motivation
towards programming is evaluated for each PAT separately per school. The evaluation
of the PATs may thus not be generalisable to the larger IT learner populations. Certain
parts of the questionnaire feedback, related to IT learner opinions of IT programming,
are combined, increasing the sample size to make the results generalisable.

The research strategy used to answer the research questions and achieve the research
objectives of this research study, taking into consideration the scopes and limitations
outlined, is discussed in more detail in Chapter 2 (Research Design and Methods). This
discussion includes identifying the different research methods, data collection and analysis
methods that will be used.

Thereafter, the chapters of the thesis (Figure 1.3) are structured to address progressively
the research questions and objectives. Chapter 3 (Introductory Programming) provides
a study of related work on the topic of novice programming research. It is important to
identify reasons why programming is difficult and identify recommendations for assisting



CHAPTER 1. INTRODUCTION 13

Figure 1.3: Chapter outline

novice programmers in introductory programming courses (RQ1). Chapter 3 identifies
specific novice programming difficulties from literature that are included in the selection
criteria for PATs, formulated in Chapter 4.

Chapter 4 (IT Programming in South African Schools) first focuses on IT programming
in South African schools by gathering feedback from IT teachers participating in this
research study (RQ2). IT learner feedback, identifying difficult programming concepts
and learning preferences, is also presented (RQ1). The feedback from IT teachers and
learners, together with the programming difficulties identified in Chapter 3, are used to
formulate and present selection criteria for proposed PATs (SO1.1).

Chapter 5 (Programming Assistance Tools) discusses specific PATs identified from novice
programming research literature (RQ3). The selection criteria (Chapter 4) are used to



CHAPTER 1. INTRODUCTION 14

evaluate the PATs. Chapter 5 concludes by identifying PATs that are suitable for evalu-
ation by IT learners in South African secondary schools.

Chapter 6 (PAT Preparation for IT Learners) describes any adaptations made to the
PATs identified in Chapter 5 (RQ4). These adaptations are implemented before the PATs
are provided to IT learners for use and evaluation (SO1.2). Chapter 6 also discusses
issues where the implementation of programming concepts in the PATs differs from the
implementation in Delphi and no adaptation is possible.

At this point in the thesis, PATs suitable for South African secondary schools have been
selected, thus achieving Primary Objective 1. The selected PATs are then evaluated in
the participating schools in order to address Primary Objective 2.

Chapter 7 (Impact of PATs on the Understanding of Programming Concepts) evaluates
the impact of the PATs on IT learner understanding of programming concepts (SO2.1).
The impact is evaluated by comparing the difficulty of IT (Grade 11 learners) perceived
by the control and treatment group, multiple-choice class test assessment and end-of-year
summative assessment results (RQ5). IT learner questionnaire feedback is used to identify
techniques that support the learning of programming concepts (RQ7).

Chapter 8 (Impact of PATs on Motivation towards Programming) evaluates the impact
of the PATs on IT learner motivation towards programming as well as motivation to use
the different PATs selected (SO2.2). The impact on motivation towards programming is
evaluated by comparing control and treatment groups (RQ6). IT learner feedback with
respect to the usefulness and shortcomings of the PATs used, identify techniques that
motivate IT learners to use the PATs (RQ8).

Chapter 9 (Conclusion) presents a summary of the research results and conclusions drawn
from the findings of the research. The research objectives and questions are revisited and
major contributions of the research and future research opportunities are identified.



Chapter 2

Research Design and Methods

2.1 Introduction

IT learners in South African secondary schools, as novice programmers, struggle to de-
velop their programming skills. Several factors related to the secondary school teaching
environment contribute to this difficulty. Short daily lessons and the IT teacher as the
only tutor are just two of the factors identified (Section 1.2).

This research investigates whether the use of PATs impacts an IT learner’s understand-
ing of introductory programming concepts. In addition, the impact of the use of PATs
by IT learners on their motivation towards programming and the IT subject (Section
1.4), is evaluated. Appropriate research methods are identified to answer the research
questions and achieve the stated research objectives (Section 2.2). Research hypotheses
are presented (Section 2.3), followed by a description of the participant selection methods
(Section 2.4), methods used to collect data from IT learners and teachers (Section 2.5) and
data analysis methods (Section 2.6). The process contributes to a comprehensive eval-
uation strategy to assess the impact of the use of PATs in a secondary school environment.

2.2 Research Strategy

The research strategy used to achieve the research objectives is applied in two phases,
namely the identification of suitable PATs for IT learners (Primary Objective 1) and the
evaluation of the impact of the PATs identified on IT learner understanding of program-
ming concepts and their motivation towards programming (Primary Objective 2). In this
work, the term, suitable PATs, refers to PATs that support IT learner development of
their understanding of programming concepts that are included in the IT curriculum.

15



CHAPTER 2. RESEARCH DESIGN AND METHODS 16

Figure 2.1: Relationship between the research objectives and questions

The identification of suitable PATs in the first phase of the study to achieve Primary
Objective 1 (Figure 2.1) requires an understanding of the difficulties faced by novice pro-
grammers in general and IT learners in particular. An understanding of the difficulties
is used to evaluate existing PATs and determine their suitability for IT learners (Sec-
tion 2.2.1). In the second phase of the study, in order to achieve Primary Objective 2
(Figure 2.1), the impact of the selected PATs on IT learner understanding of programming
concepts and motivation towards programming, is assessed (Section 2.2.2). During this
phase, the selected PATs are provided to IT learners to use.

Data for both phases of the study is collected using several questionnaire instruments
(Section 2.5). Only Grade 10 and Grade 11 IT learners participate in the research study.
Grade 12 learners were not included to avoid any disruption in their final year that could
negatively affect their final assessment. The research strategy for each phase and the re-
search questions and objectives that each of these two phases aim to achieve are discussed
further in this section.



CHAPTER 2. RESEARCH DESIGN AND METHODS 17

2.2.1 Identification of Suitable PATs

PATs should be able to assist novice programmers with most, if not all, programming
concepts considered difficult to understand (Rongas et al., 2004). The first phase of the
research study (Figure 2.2) identifies PATs that can support IT learner programming skills
and understanding of programming concepts (Primary Objective 1). Primary Objective
1 is achieved by completing several steps which aim to identify the difficulties related
to introductory programming and programming in South African schools and to identify
PATs suitable for use in South African secondary schools.

Figure 2.2: Research strategy to achieve Primary Objective 1

The first step answers RQ1 (Figure 2.2) by identifying programming concepts with which
novice programmers and, specifically, IT learners have difficulty. A review of introduc-
tory programming literature (Chapter 3) addresses the former and questionnaires to IT
learners and teachers (Chapter 4) address the latter.



CHAPTER 2. RESEARCH DESIGN AND METHODS 18

In the second step, questionnaire responses from IT learners and teachers inform the re-
sponse to RQ2 (Figure 2.2). The programming concepts and learning environment factors
identified from RQ1 and RQ2 are used to formulate selection criteria.

A survey of related research and literature, as well as a general search of PATs that are
freely available for download from the Internet, are used to identify suitable PATs (Chap-
ter 5) in the third step (Figure 2.2). From the PATs identified, only those that would
be suitable for use by IT learners in South African secondary schools (Section 2.4) are
selected. Selection criteria are used to determine the suitability of PATs to support the
achievement of programming learning outcomes in the IT subject curriculum (Secondary
Objective 1.1).

In the fourth and final step, the PATs are adapted, if necessary and if possible, for use
by IT learners in South African secondary schools (Secondary Objective 1.2, Chapter 6).
Adaptations to the selected PATs to make them more suitable for use by IT learners are
implemented in order to answer RQ4. After the adaptations are implemented, the PATs
are ready for use by IT learners and Primary Objective 1 is achieved. The selected PATs
are evaluated in the second phase of the research study.

2.2.2 Evaluation of Proposed PATs

The second phase of the research study evaluates the impact of the PATs (Primary Objec-
tive 2) that have been identified and adapted in the first phase of the study (Figure 2.3). A
between-groups quasi-experimental approach (Figure 2.4) is used to evaluate the impact
of the selected PATs on IT learner understanding of programming concepts (Secondary
Objective 2.1) and on IT learner motivation towards programming (Secondary Objective
2.2). Several questionnaire instruments as well as class assessments are used to measure
IT learner understanding of programming concepts and motivation towards programming
(Figure 2.3).

An experimental type research design is suitable to evaluate the application of the com-
bination of the proposed PATs in natural settings - learning IT programming in a school.
Experimental research design propositions are of the form:

If the model is applied, a specific outcome will result and if the model is not
applied, the specific outcome does not result.

Experimental research propositions are ideal to test the proposed PATs where the desired
outcome would be improved understanding of programming concepts. However, the key



CHAPTER 2. RESEARCH DESIGN AND METHODS 19

Figure 2.3: Research Strategy to achieve Primary Objective 2

to success of the experimental approach is that the proposed PATs, in this case, are the
only reason why the specific outcome results or does not result. This is achieved in the
experimental research design by creating two equivalent groups - a control group not using
the proposed PATs and a treatment group where the proposed PATs are used.

In a true experimental design, the participants of each group should be equivalent. Equiv-
alence of the groups is achieved by randomly assigning participants to the two groups
(Cohen et al., 2007; Gribbons and Herman, 1997; Kenny, 1975; Trochim, 2006). How-
ever, participating learners across the different schools could not be randomly assigned to
control and treatment groups as there could be no guarantee that control group learners,
in the same class as treatment group learners, did not also use the treatment. Similarly,
there could be no way of knowing if treatment group learners in the same class but using
different PATs did not use the PAT assigned to other learners. Learners in one school
could also not be compared to learners in another school as different teachers teaching
each class in the control and treatment groups might result in bias in the data collected
to evaluate the PATs.

The quasi-experimental research design is thus appropriate to this investigation (Gribbons
and Herman, 1997; Kenny, 1975) as existing IT classes within the schools are used. Each
school’s participating learners receive the same PAT and the control and treatment group



CHAPTER 2. RESEARCH DESIGN AND METHODS 20

classes, allocated over two consecutive academic years, are compared within each school.
The non-equivalent groups design (NEGD) of the quasi-experimental research approach
(Table 2.1), is used. The NEGD is structured similarly to pretest-posttest randomised ex-
periments but lacks random participant assignment to the control and treatment groups
(Kenny, 1975). O1 represents the pretests administered to the treatment and control
groups before treatment, X (Table 2.1). O2 represents the posttests administered after
the treatment period.

Table 2.1: Non-equivalent groups design of quasi-experimental approach

Treatment O1 X O2
Control O1 O2

The proposed PATs are used by several IT classes in their respective schools. The treat-
ment group learners are introduced to and provided with the proposed PATs to use during
the school academic year. The effect of the teacher’s style of teaching on the results is
minimised by making the control group the teachers’ IT class of the academic year pre-
ceding the treatment group IT learners.

The research spans two academic years to collect the data required from the control and
treatment groups. A full academic year is used for each group as two separate classes per
grade from each school provides a larger number of learners to participate in the study
rather than splitting one academic class into control and treatment groups. Separating
the control and treatment groups by academic year also prevents control group partici-
pants from inadvertently having access to the treatment.

Table 2.2: Experimental research design for this study

Treatment O1 X O2
Control O1 O2

year α year α+1

Table 2.2 illustrates how the design is adjusted for this research study. The control and
treatment groups are IT classes of two different academic years. The control group pre-
and posttests are thus administered before the treatment group pretests are administered
at the beginning of the next academic year.

An experimental research strategy (Figure 2.4) is used to predict the expected relation-
ship between the control and treatment groups with respect to IT learner understanding
of programming concepts (RQ5). The Perceived Difficulty of Programming questionnaire



CHAPTER 2. RESEARCH DESIGN AND METHODS 21

Figure 2.4: Pre- and posttests administered during the quasi-experimental approach

(Section 2.5.1, Appendix C), together with multiple choice tests to assess concept knowl-
edge are used for the evaluation (Section 2.5.2). An experimental research strategy is also
used to determine the impact of the proposed PATs on IT learner motivation towards
programming (RQ6). The Motivated Strategies for Learning Questionnaire is used for
this evaluation (Section 2.5.1). The findings and analysis of questionnaire results (Sec-
tion 2.5.1) are also used to identify the techniques used by the PATs to assist IT learner
understanding of (RQ7) and motivation for learning programming concepts (RQ8).

Quantitative hypotheses (Section 2.3) are used to compare the relationship between the
control and treatment groups with respect to IT learner’s understanding of programming
concepts and motivation towards programming (Creswell, 2009). The procedure used to
select and obtain participants for this research, is then discussed (Section 2.4). This is
followed by a section on data collection (Section 2.5), providing detailed descriptions of



CHAPTER 2. RESEARCH DESIGN AND METHODS 22

each of the questionnaire instruments used and their purpose in the research study. The
methods that are used for the analysis of the data collected are presented (Section 2.6)
and risks to the study (Section 2.7) due to the research strategy and methods used, are
identified before this chapter is concluded (Section 2.8).

2.3 Research Hypotheses

The main hypothesis tested for this research related to Primary Objective 2 is the follow-
ing:

H0,0: There is no difference in the performance/experience between control and treatment
groups

H0,1: There is a difference in the performance/experience between control and treatment
groups

The main hypothesis is tested using two sub-hypotheses. The first sub-hypothesis (H1)
aims to answer RQ5 by evaluating the impact the different PATs have on IT learner un-
derstanding of programming concepts. The second sub-hypothesis (H2) aims to answer
RQ6 by evaluating the impact the different PATs have on IT learner motivation towards
programming. The hypotheses are tested at the 95% significance level.

H1: Programming concept knowledge:

H1,0: There is no difference between the assessment means of the control and treatment
groups (µ1=µ2, µ1 is the control group assessment mean, µ2 is the treatment group
assessment mean)

H1,1: There is a difference between the assessment means of the control and treatment
groups (µ1 6= µ2)

The mean referred to is an assessment of the concept knowledge shown by the control and
treatment groups using the Perceived Difficulty of Programming Questionnaire (Section
2.5.1.3) as well as the end-of-year IT summative assessment mark obtained by learners.

H2: Motivation toward IT Programming:

H2,0: There is no difference between the motivational strategy means of the control and
treatment groups (ω1=ω2, ω1 is the control group motivational strategy scores mean,
ω2 is the treatment group motivational strategy scores mean)

H2,1: There is a difference between the motivational strategy means of the control and
treatment groups (ω1 6= ω2)



CHAPTER 2. RESEARCH DESIGN AND METHODS 23

The motivational strategy scores are obtained from the Motivated Strategies for Learning
Questionnaire (MSLQ) discussed in Section 2.6.1.

2.4 Participant Selection

The selection and number of schools and IT teachers that participate in the experiment is
affected by the willingness of the teacher, learners and school to participate. IT teachers
of schools in the sampling frame were approached and requested to participate in the re-
search. The selections of the treatment and control groups or classes and their willingness
to participate thus determine the sample size, n where:

n = min(participants year(α), participants year(α+1))

Grade 10 and Grade 11 IT learners in the consenting schools consent to participate in the
research study following all required ethical consideration (Ref: H10-Sci-CSS-001). All
participants in the study, namely learners, teachers and schools, are informed that partic-
ipation in the study is voluntary. Participants may withdraw from the study at any time
after consenting to participate. Those not participating are not disadvantaged in any way.
There is a risk that due to the fact that participation is voluntary and parental/guardian
consent is required, the number of participants could be less than the minimum required
for a sample normal distribution. Attrition of IT learners in the class may also reduce the
number of participants over the course of the study. Commonly used inferential statistical
methods for experimental data analysis may thus not be applicable; alternative methods
will have to be used (Section 2.7).

2.5 Data Collection

Several data collection methods are employed to gather qualitative and quantitative data
for this research study. The main method of data collection for this research study is
the use of questionnaire instruments (Section 2.5.1). Several different questionnaires are
completed by IT learner participants in the study. Additional data relating to IT learner
knowledge of programming concepts is obtained from multiple-choice class tests written
by IT learners (Section 2.5.2). Final IT end-of-year summative assessment marks are
obtained from the IT teachers for participating learners in Grade 10 and 11.



CHAPTER 2. RESEARCH DESIGN AND METHODS 24

2.5.1 Questionnaires

A questionnaire is a useful instrument for collecting survey information (Cohen et al.,
2007). It can provide structured, often numerical data and can be administered without
the researcher having to be present. A questionnaire is therefore the ideal survey instru-
ment for collecting information from IT learners. The large number of participants would
make interviews impractical.

All questionnaires are self-administered without the researcher being present. Question-
naires administered to IT teachers are aimed at gathering information on the teacher’s
views of IT in South African schools (Section 2.5.1.1). The questionnaires provided to
IT learners are used to determine reasons for selecting IT as a subject (Section 2.5.1.2),
learner perception’s of different programming concepts and skills (Section 2.5.2.3), learner
motivation in the subject (Section 2.5.2.4), learning preferences of IT learners (Section
2.5.2.5) and IT learner evaluation of the PATs received (Section 2.5.2.6).

2.5.1.1 IT Teacher Questionnaires

The aim of the questionnaires to IT teachers is to gain insight into the difficulties faced by
IT teachers in South African schools with regards to the factors that influence the teach-
ing of introductory programming concepts in schools. The questionnaires to IT teachers
gather data to address RQ1: What programming difficulties and skills do PATs need to
address and develop, respectively? and RQ2: What factors may influence the use of PATs
in SA secondary school learning environments?

Two questionnaires are administered to IT teachers at the beginning of the research study.
One of the questionnaires is an open-ended questionnaire which aims to gather information
regarding the current IT teaching environments and the IT teacher’s opinions regarding
the difficulties faced by IT teachers (Appendix A.1). The purpose of this questionnaire is
to gather data that can be used to qualitatively address RQ2. The questionnaire consists
of 12 questions that investigate the IT teacher’s views on the current IT curriculum, the
differences between teaching IT and other subjects, the challenges of teaching IT, the
suitability of current textbooks and supporting materials and whether or not the amount
of time allocated in the school timetable to IT and programming is adequate for present-
ing programming concepts to learners in sufficient amount of detail.

The second questionnaire (Appendix A.2) consists of items that aim to identify program-
ming concepts that IT teachers find difficult to teach to learners, teaching styles used by
teachers to introduce programming concepts, the manner in which IT teachers manage



CHAPTER 2. RESEARCH DESIGN AND METHODS 25

programming exercises, methods of debugging taught to learners and whether or not IT
teachers have used PATs to teach programming concepts. The data collected using this
questionnaire is used to answer RQ1.

Qualitative analysis results (Section 4.2) of the questionnaire data collected are used to
gain further insight into the current teaching environment with regards to the IT subject
in South African secondary schools. The questionnaire aims to acquire IT teacher opin-
ions relating to the challenges faced when teaching IT with respect to the curriculum and
teaching environments. The questionnaire also aims to gather feedback on which con-
cepts are easy and which are difficult for IT learners to understand. The questionnaire
responses are incorporated in the selection criteria formulated (Section 4.4) to identify
PATs that would be suitable for IT learners.

2.5.1.2 IT Decision Questionnaire

The aim of this questionnaire (Appendix B) is to identify the reasons why Information
Technology (IT) was chosen as a subject by the learners. IT learner responses to the
questionnaire identify IT learner perceptions and expectations of the IT subject and
programming in particular. The results of this questionnaire administered to Grade 10
learners contribute to an understanding of the IT learning environment and, in particular,
the expectations of IT learners. The feedback is used to answer RQ2: What factors may
influence the use of PATs in SA secondary school learning environments? This question-
naire is adapted from questions used by Biggers, Brauer and Yilmaz (2008) in a similar
study to investigate university student perceptions of Computer Science (CS) and the
reasons why students decided to major in CS.

The questionnaire is administered to both control and treatment Grade 10 groups as a
pretest at the beginning of the academic year. Grade 10 learners, in the first term of their
Grade 10 year, would have received no or very little programming instruction up until the
time the questionnaire is administered and would thus not be able to provide meaningful
feedback on the difficulty of programming. It was therefore decided to determine Grade
10 learners’ reasons for selecting IT as a subject.

Learners are also asked to rate the following two questions, “I think IT is a difficult sub-
ject when compared to other school subjects” and “I think I can do well in IT”, using
a 7-point semantic differential scale where 1 is “Strongly disagree” and 7 is “Strongly
agree”. These two questions are aimed at determining a learner’s perceived difficulty of
the subject. At the end of the Grade 10 year, a follow-up (posttest) questionnaire is



CHAPTER 2. RESEARCH DESIGN AND METHODS 26

administered to learners in the control and treatment groups (Appendix B). IT learners
rate their perceived difficulty of the subject again and, in addition, learners are asked to
motivate whether they would repeat their decision to select IT as a subject. The results
from these items are used to determine whether or not the use of the PATs influenced
learners’ perceptions of the difficulty of programming and their decision to take IT as a
subject. These results are presented in the evaluation of the impact of PATs on learner
motivation towards programming (RQ6).

2.5.1.3 Perceived Difficulty of Programming Questionnaire

The Perceived Difficulty of Programming Questionnaire (Appendix C) is aimed at iden-
tifying programming concepts and skills with which IT learners have difficulty. This
questionnaire serves two purposes in this research study. The first purpose is to answer
RQ1: What programming difficulties and skills do PATs need to address and develop, re-
spectively?

The second purpose of this questionnaire is to determine whether the proposed PATs
influence learner perceptions of the difficulty of specific programming concepts and skills,
ability to debug code and ability to problem solve and plan solutions. This is achieved by
comparing questionnaire results from the control and treatment groups. The results are
used to answer RQ5: What impact do the different PATs have on IT learner understand-
ing of programming concepts?

The first item in the questionnaire requires IT learners to rate the difficulty of program-
ming concepts that are included in the IT subject content and the difficulty of certain
programming skills which IT learners are required to develop if they are to achieve the
IT learning outcomes. Participants are required to rate each concept or skill appearing
in a provided list using a 7-point semantic differential scale where 1 is “Extremely easy”
and 7 is “Extremely difficult”. Participants can provide a 0 (zero) rating if the concept
or skill has not been taught yet. Learners are also asked to identify which one of the 22
programming concepts in the list they consider to be the most difficult (item 2).

The remaining 18 items in the questionnaire are aimed at determining the degree to which
IT learners are able to understand simple programming concepts (items 3-6), apply sim-
ple programming solutions to other problems or exercises (items 7-10), debug or find
errors in their code, problem solve (items 11-15) and plan solutions to problems (items
16-20). Learners are required to rate items on a 7-point semantic differential scale where
1 is “Strongly disagree” and 7 is “Strongly agree”. This questionnaire is administered



CHAPTER 2. RESEARCH DESIGN AND METHODS 27

as a pre- and posttest to Grade 11 learners in the control and treatment groups of the
experimental research strategy to identify concepts that IT learners have difficulty under-
standing and to evaluate the effectiveness of the proposed PATs.

Questionnaire data collected from the control group pretest are used to gain insight into
the concepts that South African IT learners find difficult, thus addressing RQ1. These
results contribute to the selection criteria to identify suitable PATs that may be able to
address any problems or difficulties identified (Section 4.3). Control and treatment group
pre- and posttest data are analysed to evaluate the impact of the PATs on IT learner
understanding of programming concepts (RQ5, Chapter 7).

2.5.1.4 Motivated Strategies for Learning Questionnaire (MSLQ)

The Motivated Strategies for Learning Questionnaire (MSLQ), developed by Pintrich,
Smith, Garcia and McKeachie (1991), was designed to assess college students’ motiva-
tional orientations and use of learning strategies in college courses (Artino and Anthony,
2005; Chen, 2002). The final version was presented in 1991 after numerous statistical tests
were completed to confirm the reliability and validity of the instrument, including con-
firmatory factor analysis, internal consistency estimates of reliability (Cronbach’s alpha)
and zero-order correlations between the different cognitive and motivational scales (Artino
and Anthony, 2005). The MSLQ is administered to IT learners during the research study
to determine the impact of PATs on IT learner motivation towards programming (RQ6).

The MSLQ was designed to be used by researchers as an instrument for investigating the
nature of learner motivation and use of learning strategies. Educators and learners would
be able to use the instrument as a means of assessing motivation and study skills in a
given course. Scores from the MSLQ have also been used for empirical research to evalu-
ate the effects that instructional interventions including various educational technologies
or differing course structures, have on motivational orientation and learning strategies
(Artino and Anthony, 2005).

The MSLQ is a self-reporting instrument consisting of 81 items. Learners rate the items
on a 7-point semantic scale where 1 represents “Not at all true of me” and 7 represents
“Very true of me”. The 81 items are divided into two sections: motivational (31 items)
and learning strategies (50 items). Items are also further divided into 15 subscales of
which six are within the motivational section and nine are within the learning strategies
section.



CHAPTER 2. RESEARCH DESIGN AND METHODS 28

Persmission was obtained to use the motivational section of the MSLQ instrument in this
research study to determine the motivational orientation of IT learners. The learning
strategies section is not administered to learners as only the motivation of learners in the
IT subject is of interest.

The motivational section of the MSLQ instrument assesses learners’ goals and value be-
liefs for a subject, their belief about their skill to succeed and their anxiety about tests.
The six subscales that are within the motivational section of the MSLQ are intrinsic goal
orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy
for learning and performance, and test anxiety (Table 2.3).

Table 2.3: MSLQ Motivational Section Subscales and Components

Motivational Subscale
1. Value Components

a. Intrinsic Goal Orientation
b. Extrinsic Goal Orientation
c. Task Value

2. Expectancy Components
a. Control Beliefs
b. Self-Efficacy for Learning and Performance

3. Affective Components
a. Test Anxiety

The MSLQ instrument is administered to Grade 10 and 11 learners in the control and
treatment groups of the experimental research strategy to determine the impact of the
proposed PATs on learner motivation. The instrument is administered as a pre- and
posttest for both the treatment and the control groups.

2.5.1.5 Visual, Aural, Read/Write, Kinaesthetic (VARK) Questionnaire

The Visual, Aural, Read/Write, Kinaesthetic (VARK) Questionnaire was designed by
Neil Fleming (Fleming and Baume, 2006; Fleming, 2010) to identify preferred modes of
learning. Fleming designed the questionnaire based on his own prior experiences and
observations working with students and teachers at Lincoln University. Fleming claims
that modal preferences influence a person’s behaviours, including learning. A “Younger”
version of the questionnaire is a modified version of the main questionnaire for people
aged between 12 and 18 and uses wording more appropriate for people in this age group
(Fleming, 2010). The VARK Questionnaire is included as a questionnaire in this research



CHAPTER 2. RESEARCH DESIGN AND METHODS 29

to determine the learning preferences of IT learners. Permission to use the VARK ques-
tionnaire was obtained.

Table 2.4: VARK learning preferences

Modal Preference Description Teaching Strategies
Visual Seeing or observing Drawings, charts, symbolic represen-

tations, diagrams, demonstrations,video
materials

Aural Auditory or hearing Explanations or verbal presentations, dis-
cussions, chats, verbal instructions

Read/Write Reading and writing Information in text format, interaction
with textual material, reading and/or
writing instructions

Kinaesthetic Hands-on experience Physical experience, real or simulated
practice, touching, performing activity,
lessons that emphasise doing and manip-
ulation of objects

A person’s learning preference is the manner in which information about which they
are attempting to learn is most efficiently and effectively processed, stored and recalled
(Wehrwein, Lujan and DiCarlo, 2007). Table 2.4 outlines the learning preferences and
approaches that can be used to help learners (Bednarik and Fränti, 2004; Wehrwein et al.,
2007) by presenting information in a manner aligned with their particular preference or
combination of preferences. The results of the VARK questionnaire can indicate that a
person has a strong preference for one of the four learning modalities and is thus uni-
modal or has several preferred learning preferences and is thus multimodal. A person
with multimodal learning preferences can have balanced preferences between two, three
or all four learning modalities (Wehrwein et al., 2007).

The VARK questionnaire administered to Grade 10 and Grade 11 learners in this study
is the “Younger Version”. The questionnaire consists of 16 multiple-answer questions
presenting everyday situations. Participants can indicate one or more answers for each
item. The results of the VARK Questionnaire identify the learning preference modes that
should be used to present information to IT learners.

2.5.1.6 PAT Evaluation Questionnaire

The purpose of this questionnaire (Appendix E) is to obtain IT learner feedback regarding
the PATs. The PAT Evaluation Questionnaire is used to obtain IT learner perceptions of
the usefulness of the PAT with regards to the understanding of programming concepts.



CHAPTER 2. RESEARCH DESIGN AND METHODS 30

The ease of use and learnability of the PAT are evaluated and open-ended questions are
used for learners to provide opinions about what they liked and disliked about the PAT.

The PAT Evaluation Questionnaire is administered to treatment group learners as two
versions. Each version is administered at a different point in time during the treatment
group evaluation. The first version of the questionnaire is administered up to three months
after the PAT is received by treatment group learners. The second version of the ques-
tionnaire is administered at the end of the study together with the posttest questionnaires.

The reason for the first version is, firstly, to determine early in the year whether IT learn-
ers are using the PAT. Early detection of a large number of learners not using the PAT
would allow time for alternative methods to be used in order to promote use. The second
reason for the first version of the questionnaire is that, if learners have used the PAT
for a short time but have discontinued using it, learners would still be able to evaluate
their use of the PAT accurately. Accurate evaluation of the PAT may not be possible if a
considerable amount of time has elapsed between the administration of the questionnaire
and use of the PAT.

The reason for the second version of the questionnaire is that the first version will be ad-
ministered before all the programming concepts have been covered in class. Learners may
not have used the PAT to practise the implementation of all the programming concepts
supported. The second version of the questionnaire administered at the end of the year,
only evaluates the programming concepts supported by the PATs (Section 6.2). If the
first version of the questionnaire is not administered to treatment group learners owing
to reasons beyond the control of the research, only the first version of the questionnaire
is administered to treatment group learners, but at the end of the year.

Both versions of the questionnaire require IT learners to indicate whether the PAT was
installed and how often the PAT was used. Learners also evaluate the usefulness of the
PAT in assisting with the understanding of programming concepts. Only programming
concepts supported by the PAT are evaluated. The feedback regarding the programming
concepts is used to answer RQ5: What impact do the different PATs have on IT learner
understanding of programming concepts?

The first version of the questionnaire requires IT learners to rate whether they agree or
disagree that the PAT is easy to use, quick to learn to use, if they require assistance to
use the PAT and are confident using the PAT. These four questions are derived from the
System Usability Scale (SUS) Questionnaire (Brooke, 1996), developed to provide a global



CHAPTER 2. RESEARCH DESIGN AND METHODS 31

view of subjective assessments of usability. The questions are rated on a five-point se-
mantic differential scale where 1 represents “Strongly disagree” and 5 represents “Strongly
agree”. Results from these questions are used to evaluate the impact of the PAT on IT
learner motivation towards programming and are thus used to answer RQ6: What impact
do the PATs have on IT learner motivation towards programming?

Open-ended questions in the first version are used to obtain feedback regarding what
learners liked and disliked about the PAT. Learners are also asked to explain how they
would like the PAT improved. If learners are not using the PAT, they are requested to
provide reasons explaining why they are not using the PAT. The responses to the open-
ended questions are analysed in order to answer RQ5 and RQ6. Learner comments related
to the techniques used by the PATs are used to address RQ7: What techniques should
PATs implement in order to assist IT learner understanding of programming concepts?
and RQ8: What techniques should PATs implement in order to motivate IT learners to
learn programming concepts and to use a PAT?

2.5.2 Class Tests

One of the aims of the research study is to identify PATs that can be used to assist IT
learner understanding of programming concepts. Assessments in the form of class tests,
examinations (theory and applied) and assessment tasks are completed by IT learners
throughout the academic year. These assessments are prepared and marked by the IT
teacher. The final paper in Grade 10, Grade 11 and Grade 12 is prepared by the Depart-
ment of Education. The nature of the questions and the manner in which the concepts
are assessed are beyond scope of this research study. However, the end-of-year summative
assessment marks for Grade 10 and Grade 11 learners are used to determine the impact
of PATs on IT learner understanding of programming concepts (Chapter 7).

Several short class tests (Appendix D) prepared by the researcher are also administered
to the treatment and control groups. The class tests are in the form of multiple-choice
questions and are similar to the test prepared by Lister, Adams, Fitzgerald, W.Fone,
Hamer, Lindholm, McCartney, Moström, Sanders, Seppälä, Simon and Thomas (2004)
used in their multi-national study of the reading and tracing skills of novice programmers.

The class tests are administered to Grade 10 and Grade 11 learners in the control and
treatment groups of the experimental research strategy. The tests are administered after
the relevant programming concept has been completed by the class as a normal class test
during one of the IT lessons. All learners in the class write the test, however, only the



CHAPTER 2. RESEARCH DESIGN AND METHODS 32

answer sheets of learners who have consented to participation in the research study are
analysed and included in the evaluation of the impact of the PATs.

Identical class tests are administered to the control and treatment groups in each respec-
tive academic year. The multiple choice tests assess IT learner knowledge and understand-
ing of specific programming concepts. The programming concept knowledge assessed by
the multiple choice class tests are presented in Section 7.2.3.

2.6 Data Analysis

Qualitative data analysis is used to report on the results from the questionnaires adminis-
tered to IT teachers. The results of the questionnaire are used to describe the situation in
South African secondary schools. Qualitative data analysis, specifically content analysis
(Cohen et al., 2007), is used to analyse IT learner feedback for open-ended questions de-
scribing what features they liked, disliked and would like to have improved, with respect
to the PATs (Chapters 7 and 8).

Quantitative data analysis methods, namely descriptive and inferential data analysis
methods (Cohen et al., 2007), are used to analyse the questionnaires and class tests
administered to IT learners participating in this research study. Descriptive data analysis
methods such as the calculation of the sample mean (µ) and standard deviation (s), as
well as frequency distribution of responses, are used to report semantic differential scale
results. Descriptive statistics are also used to describe the relationship between different
variables such as control or treatment group and grade with respect to questionnaire re-
sponses in the presentation of results in Chapters 7 and 8.

Most of the questionnaires administered contain items that use a 5- or 7-point semantic
differential scale. All semantic differential scale data referred to in this work are analysed
as interval ratio data as only the extreme values have descriptions (e.g. “Strongly dis-
agree” and “Strongly agree”) on the questionnaires.

Inferential statistics are used to test the research hypotheses. This includes determining
whether the differences in the results of the control and treatment groups are statistically
and/or practically significant. Statistical significance is determined at the 95% confidence
interval. Analysis of covariance (ANCOVA) methods are used to examine the differences
between the control and treatment groups where pre- and posttest data are available.
Data collected from the Perceived Difficulty of Programming Questionnaire, MSLQ and



CHAPTER 2. RESEARCH DESIGN AND METHODS 33

Grade 11 IT summative assessment marks are evaluated using this analysis. Analysis of
variance (ANOVA) methods are used to determine signficant differences between control
and treatment groups where only one dependent variable is available. Multiple choice
class results are evaluated using this analysis. One sample t-tests are used to determine
the difference between mean scores and the neutral value of rating scale data. PAT Eval-
uation Questionnaire results are evaluated using this analysis. Cohen’s d is calculated
only for statistically significant results, as a measure of practical significance.

2.7 Risks and Limitations

Several risks are identified with respect to the evaluation phase due to the fact that the
research is dependent on the co-operation and support of schools, IT teachers and IT
learners. One risk to the study is a sample size smaller than the minimum required for
a normal distribution and thus the use of conventional inferential methods. This risk
is managed by identifying appropriate analysis techniques that can be used for smaller
sample sizes. The data from different schools are grouped together for certain of the
descriptive and inferential data analysis performed.

Another risk is that there is no control over how the questionnaires and multiple choice
tests are administered to the participating IT learners. IT learners are relied upon to
co-operate by returning questionnaires. If questionnaires are not returned, the data for
certain IT learners would be incomplete. Consequently, the learner may have to be ex-
cluded from certain of the data analyses which would further reduce the sample size.

There is no control over the research in the schools, thus any changes in the teaching
environment need to be managed. The impact of any changes in the teaching environ-
ment would be monitored and the effect on the research results evaluated, specifically
the correlation between the use of the PAT and the effect on IT learner understanding of
programming concepts and motivation. Analysis of data from such a school would be con-
sidered carefully and the possible impact of this situation noted in the analysis discussion.

2.8 Conclusion

IT learners in South African secondary schools, as novice programmers, need assistance
with introductory programming concepts (Chapter 1). This research evaluates the im-
pact of using PATs on IT learner understanding of programming concepts, as well as IT
learner motivation towards programming. The primary research objectives (Chapter 1)



CHAPTER 2. RESEARCH DESIGN AND METHODS 34

are achieved using two phases. The purpose of the first phase is to identify PATs that
are suitable for use by IT learners (Primary Research Objective 1, as well as Secondary
Research Objectives 1.1 and 1.2). Selection criteria (Section 4.4) are formulated from a
review of related work in the field of introductory programming and novice programmer
literature (Chapter 3), together with feedback from IT teachers and learners in South
African secondary schools (Chapter 4).

Questionnaires are administered to IT teachers aimed at identifying difficult concepts
as well as methods used to teach IT programming. IT learners’ perceptions of IT pro-
gramming are determined using the Perceived Difficulty of Programming Questionnaire.
Selection criteria are used to evaluate the suitability of the PATs (Section 5.3) and, where
possible, selected PATs are adapted to meet the selection criteria (Chapter 6).

The purpose of the second phase of the study is to evaluate the PATs identified in the
first phase (Primary Research Objective 2 and Secondary Research Objective 2.1 and
2.2). A quasi-experimental research strategy is used for the evaluation to cater for the
fact that learners cannot be randomly assigned to the control and treatment groups. The
IT learner questionnaire results for the Perceived Difficulty of Programming Questionnaire
and Motivated Strategies for Learning Questionnaire are used as pre- and posttest data
in the experimental design to test the two secondary research hypotheses (Section 2.3).
This is achieved by comparing the control and treatment groups to evaluate the impact
of the PATs on learner motivation and perceived difficulty of programming (Phase 2 to
achieve Primary Research Objective 2). In addition to the questionnaires, multiple choice
class tests to assess learner knowledge of several IT concepts are administered to the con-
trol and treatment groups. The multiple choice test results are also used to evaluate the
impact of the PATs on learner understanding of programming concepts.

Results are presented indicating whether or not providing IT learners with PATs sup-
ports their study of programming concepts (Chapter 7) and their motivation towards
programming (Chapter 8). IT learner feedback is used to formulate guidelines describing
the particular presentation techniques that a PAT should implement to support novice
programmers (Chapter 9).



Chapter 3

Introductory Programming

3.1 Introduction
“Learning to program is difficult.”

This statement by Shuhidan et al. (2009) is supported by the vast amount of research
(Pears et al., 2007) worldwide dedicated to the area of novice programming. Many learners
are interested in programming (Gayo-Avello and Fernández-Cuervo, 2003; Robins et al.,
2003) but the poor results of students in high school and especially in higher education
introductory programming courses (Lister et al., 2004) have prompted much of the re-
search undertaken by various groups. Learners, struggling to understand programming
concepts, become frustrated, negative and stressful and, in many cases, this leads to
failure in and eventual withdrawal from the subject (Garner, 2007; Haataja, Suhonen,
Sutinen and Torvinen, 2001; Robins et al., 2003; Shuhidan et al., 2009).

Learners continue to struggle to cope with introductory programming despite the large
amount of research contributions over the last two decades aimed at assisting novice pro-
grammers to understand complex programming concepts. These contributions have had a
limited effect on classroom practice (Pears et al., 2007; Shuhidan et al., 2009). The large
amount of active research (Havenga and Mentz, 2009; Pears et al., 2007; Shuhidan et al.,
2009) continuing to take place in this field is indicative of the fact that further initiatives
to address the difficulties experienced by novice programmers, are required.

Appropriate PATs to assist novice programmers in South African secondary schools can-
not be proposed before the difficulties experienced by novice programmers are identified.
The purpose of this chapter is therefore to address RQ1: What programming difficulties
and skills do PATs need to address and develop, respectively?

35



CHAPTER 3. INTRODUCTORY PROGRAMMING 36

This chapter provides a discussion of general novice programming difficulties identified
in literature while Chapter 4 addresses RQ1 further in the context of South African sec-
ondary schools. The difficulties identified in these chapters, are used to formulate selection
criteria for PATs that can address these difficulties, thus achieving Secondary Objective
1.1: Formulate selection criteria for determining the suitability of PATs to support the
achievement of programming learning outcomes in the IT subject curriculum.

The results of novice programming research that attempt to identify the reasons why
novice programmers struggle with programming concepts and introductory programming
courses are explored (Section 3.2). The suggested solutions to overcome the difficulties
faced by novice programmers and the success of these solutions are also discussed (Section
3.3).

3.2 Difficulties of Learning to Program

Novice programmer dissatisfaction and frustration, poor assessment results and a de-
cline of interest in computer science courses indicate that difficulties are experienced by
novice programmers with introductory programming content. Research studies have been
done to identify why these difficulties are experienced by students (Gomes and Mendes,
2007). The difficulties that learners experience while learning to program are attributed
to a lack of programming skills and abilities (Section 3.2.1), style of teaching approach
(Section 3.2.2), programming language and environment used (Section 3.2.3) and specific
types of programming concepts (Section 3.2.4).

3.2.1 Programming Skills and Knowledge

Programming is a complex activity requiring the learner to learn non-trivial new con-
cepts, facts and skills (Baldwin and Kuljis, 2000). Figure 3.1 summarises the relationship
between the different types of knowledge required by a novice programmer and code com-
prehension and generation.

Novice programmers need to understand that code generation involves three sequential
steps (Figure 3.1):

1. Studying a given problem statement or set of requirements and deciding on the best
programming strategy to use.

2. Producing an algorithm to solve the problem. The algorithm will often be formu-
lated using pseudocode.



CHAPTER 3. INTRODUCTORY PROGRAMMING 37

Figure 3.1: Knowledge and skills required by a programmer

3. Translating the algorithm into the code of the programming language being used.
Testing and changing the program code until the program meets the original set of
requirements and thus solve the problem.

A programmer requires certain abilities and knowledge in order to achieve the steps de-
scribed and to formulate the solution. The aspects which influence programming ability
are the application of knowledge and strategies and the relationship between code com-
prehension and code generation (de Raadt, 2008; Robins et al., 2003).

Programming knowledge and strategies are distinct but related (de Raadt, 2008). Pro-
gramming knowledge relates to the body of information describing programming concepts
and principles (for example: how a for-loop works or the purpose of a variable), knowl-
edge of computers (for example: how an event is generated) and programming language
knowledge or syntax1. If a programmer is not aware of concepts such as loops, data
structures or objects, it would be difficult for the programmer to plan a suitable solution.
Knowledge of the syntax is required to implement a solution in a particular programming

1Syntax refers to the way in which keywords, names and symbols can be combined to create expres-
sions and statements in a language without consideration to their meaning (Seaton, 2007; Slonneger and
Kurtz, 1995)



CHAPTER 3. INTRODUCTORY PROGRAMMING 38

language (Pears et al., 2007). Regardless of how well the solution is designed, if the syntax
is incorrect, the program will not run successfully. Knowledge in all three of these areas
is required for a novice programmer to be successful in programming.

Programming strategy is the way in which programming knowledge is applied to solve a
particular problem (de Raadt, 2008; Robins et al., 2003). Programming strategies are
more abstract than programming knowledge and are thus applicable regardless of pro-
gramming language (de Raadt, 2008).

Programming strategies are required for the first step of code generation (Figure 3.1),
while different programming knowledge areas are required for different steps of the code
generation process. Novice programmers who lack either programming knowledge or
strategies will struggle with programming. For example, novice programmers may under-
stand the syntax of a certain concept but struggle to use the concept in context or transfer
their knowledge to solve similar problems (Lahtinen et al., 2005; de Raadt, 2008), thus
lacking programming strategy. If the syntax is correct, the program will compile even
though the program may not solve the problem (Al-Imamy et al., 2006). Alternatively, a
program that uses the correct programming strategies will not compile if there are errors
in the syntax.

Teachers need to develop both a learner’s programming knowledge and programming
strategies. In general, however, more time is spent teaching programming language knowl-
edge than programming strategy (Al-Imamy et al., 2006; Pears et al., 2007). Novice pro-
grammers often combine Steps 1 and 2 of the code generation process (Figure 3.1) as
they attempt to solve the algorithm in a particular programming language (Garner, 2007;
Rongas et al., 2004). Lack of planning or lack of algorithm design leads to difficulty in
solving a given problem (Shuhidan et al., 2009). A novice programmer should also have
adequate knowledge in all three programming knowledge areas to comprehend and gen-
erate code successfully (Figure 3.1).

Several researchers (Heines and Schedlbauer, 2007; Lahtinen et al., 2005; Lister et al.,
2004; Robins et al., 2003) agree that many novice programmers lack knowledge of ab-
stract programming concepts. This deficiency results in a limited surface knowledge of
programs and a fragile grasp of basic programming principles and concepts (Lahtinen
et al., 2005; Lister et al., 2004). Novice programmers are unable to identify the con-
nection between the techniques and the problems or transfer their knowledge from one
problem to another (Heines and Schedlbauer, 2007; Hooper, Carr, Davis, Millard, White
and Wills, 2007).



CHAPTER 3. INTRODUCTORY PROGRAMMING 39

Another reason, highlighted in similar studies, for the difficulty novice programmers have
in programming successfully is that they lack knowledge of a computer and thus struggle
to understand how a computer sequentially executes program code (Levy et al., 2001;
Rongas et al., 2004; Lahtinen et al., 2005). Novice programmers consequently lack a
viable mental model of how a computer works (Levy et al., 2001; Kumar, 2006) which
contributes to their poor knowledge of programming (Kumar, 2006). One result of this
misunderstanding is that novice programmers may use the correct instructions and syntax
but the instructions are written in an incorrect order (Rongas et al., 2004).

A problem related to the lack of comprehension of sequential execution of program code
is that many novice programmers have difficulty reading and understanding code (Ala-
Mutka, 2003; Rongas et al., 2004). Program comprehension is described as a “cognitively
complex skill” (Bednarik and Tukiainen, 2006; Lister et al., 2004). Research results have
identified that novice programmers struggle to follow the execution of code or under-
stand how the state of a variable changes from one line to another (Lahtinen et al., 2005;
Vainio and Sajaniemi, 2007). Novice programmers reading code should be able to identify
knowledge, such as concepts used in the solution and the strategy applied to produce the
solution (de Raadt, 2008). Novice programmers therefore require an adequate knowledge
of all three programming areas to be able to comprehend code (Figure 3.1).

A correlation has been shown to exist between code comprehension and code generation
(de Raadt, 2008; Lister, Simon, Thompson, Whalley and Prasad, 2006). Novice program-
mers who are unable to read and understand code are unable to write similar code (Lister
et al., 2006). This is a problem as new concepts are explained to novice programmers us-
ing existing practical examples. If novice programmers are unable to read and understand
code solutions, they will be unable to build their knowledge of programming concepts and
strategies to solve real-world problems (Lister et al., 2004, 2006). The ability to read and
understand code is moreover important for finding bugs or logical errors in code (Lister
et al., 2006). Debugging is a programming skill that is important in order to program
successfully (Bednarik and Tukiainen, 2006).

An explanation for the inability of novice programmers to transfer their knowledge of
problem solutions to similar problems is that they lack program comprehension and have
a fragile knowledge of programming principles. Their knowledge is not deep enough to
understand how the principles can be applied to new or larger problems that are more
complex. Many researchers have indicated that novice programmers lack problem solving
ability (Heines and Schedlbauer, 2007; Lahtinen et al., 2005; Lister et al., 2004; Robins
et al., 2003). However, novice programmers may be capable of problem solving but be
unable to express solutions in a programming language or in manner that a computer



CHAPTER 3. INTRODUCTORY PROGRAMMING 40

would understand. This is supported by the finding that novice programmers have a
non-viable mental model of programming concepts which results in misconceptions and
difficulties when trying to solve programming problems (Ma, Ferguson, Roper, Ross and
Wood, 2008).

Code comprehension, code generation and problem solving ability are important program-
ming skills required by novice programmers in order to become successful programmers.
However, these high-order skills require knowledge of programming principles and con-
cepts, syntax and computers together with programming strategies (Figure 3.1). Novice
programmers in an introductory programming course learn the knowledge and skills re-
quired from their teacher. The teaching approach is important to consider as it may
contribute to the difficulties experienced by novice programmers.

3.2.2 Teaching Approach

A novice programming student (learner at school or student at university) is exposed to
programming through the teacher presenting the subject. The programming language
knowledge, programming concepts, syntax, programming environment and problem solv-
ing strategies are all introduced to the students by the teacher and by other resources,
for example, textbooks.

Teachers may overemphasise trying to teach the students how to, for example, how to
use a for-loop or variable in a particular problem. Students may be unable to transfer
what they have learnt as their knowledge of the underlying skills and concepts is limited
(Baldwin and Kuljis, 2000). Overemphasising why will provide students with a wider
knowledge base of the underlying principles. However, this large amount of theory should
be balanced with the practical experience of applying the principles, concepts and skills
to problems.

There is a shortage of qualified IT or Computer Science teachers who are able to teach
programming (Haataja et al., 2001; Havenga and Mentz, 2009). Many times teachers are
enthusiastic about the subject and are dedicated to assisting students. However, teachers
face many challenges imposed by the time available in the academic year (Al-Imamy et al.,
2006) and subject content prescribed by the curriculum (Kölling and Rosenberg, 2002).
Teachers may also lack experience teaching programming concepts that were not always
included in the subject content outline (Kölling and Rosenberg, 2001, 2002). The lack of
experience would result in the teachers not being able to assist the student to develop a
proper mental model or correct knowledge.



CHAPTER 3. INTRODUCTORY PROGRAMMING 41

Different people create different mental models of concepts, especially abstract concepts.
If the teacher is not able to explain a concept in a way that a particular student would
understand, that student may develop a poor or incorrect model of the concept. An
incorrect mental model would affect the student’s understanding of the concepts and re-
sult in the student becoming frustrated and losing confidence when material that is more
complex is taught (Shuhidan et al., 2009).

Each student has a preferred learning style (Lahtinen et al., 2005; Rongas et al., 2004)
(Appendix H). Students also have differing abilities, learning speeds and attitudes or
motivations towards the subject (Lahtinen et al., 2005). In large classes, it is extremely
difficult for a teacher to explain a programming concept in a way that everyone in the
class can understand. Large class sizes make individual student contact very difficult
(Rongas et al., 2004).

Teachers have been identified as assisting students to develop misconceptions and mis-
understandings (Baldwin and Kuljis, 2000). This is due to the fact that teachers are
criticized for failing to develop student understanding of key concepts and skills such as
program comprehension. It is claimed that teachers focus more on programming language
syntax. Often, it is difficult for the teacher to go beyond syntax coverage. The teacher
is struggling to ensure that all students understand the syntax which is difficult when
using a one-size-fits-all teaching approach to teach students of different backgrounds and
learning abilities (Al-Imamy et al., 2006). There is simply not enough class time for the
teacher to cover everything.

Introductory programming teachers in school learning environments are expected to ad-
dress individual learner difficulties and learning abilities while structuring short daily
lessons in such a way that the time is utilised effectively. Adequate time should be allo-
cated for theoretical explanations as well as practical implementation of concepts in class,
to allow the teacher to be able to assist learners. No matter how effective the teaching
approach employed is, it may still not be able to address or avoid contributing to the
difficulties faced by individual learners due to the school learning environment.

The method used by the teacher to introduce programming concepts to learners can be
an influential factor contributing to the difficulties experienced by novice programmers
(Kunkle, 2010). PATs may be able to assist teachers to improve learner understanding by
helping IT learners to develop proper mental models of abstract programming concepts,
cater for different learning styles and promote self-learning and exploration by learners.



CHAPTER 3. INTRODUCTORY PROGRAMMING 42

3.2.3 Programming Language and Environment

The programming language and development environment used are the software tools
that allow novice programmers to experience programming. The most appropriate pro-
gramming language for teaching introductory programming has been debated extensively
(Mannila and de Raadt, 2006; Pendergast, 2006; Pears et al., 2007). The language is cho-
sen based on factors such as relevance in industry, the availability and cost of program-
ming development environments (for educational purposes), educational aspects of the
language and preference of faculties or other controlling institutions (Pears et al., 2007).
The choice of language is important as the programming languages and the development
environments used to develop programs can contribute to the difficulties experienced by
novice programmers (Pears et al., 2007).

Certain programming languages are too complex to explain or use to teach some of the
programming concepts taught to novice programmers (Kölling, 1999). A student may
have difficulty understanding the initial explanation or definition of a concept. Further
explanation of the concept using a code example should not confuse the student any fur-
ther. This would be the case if the implementation of the concept as code is complicated.

Similarly, programming development environments for writing code and compiling and
running programs can be confusing to students (Kölling, 1999). A professional program-
ming development environment may overwhelm the students by presenting them with
functionality and interfaces not needed by novice programmers (Kölling, 1999; Levy et al.,
2001; Pendergast, 2006). Furthermore, the compiler messages provided by professional
programming development environments are directed at professional programmers (Ron-
gas et al., 2004).

Program compilers ensure that programs are syntactically and semantically correct be-
fore executing. If an error is found in the code, a compiler message is displayed to the
programmer describing the error and providing the location of the error in the code. Most
compiler messages are too complicated and low-level and do not explain sufficiently well
to a novice programmer which syntactical or semantic errors have occurred.

Figure 3.2 is a screenshot of compiler messages provided for code that is not syntactically
correct. Missing semi-colon messages are associated with the code line following the line
where the semi-colon should be. Vague error messages such as the identification of in-
compatible types do not provide programmers with information on how the error can be
corrected. In professional programming development environments, novice programmers
struggle to understand compiler error messages intended for professional programmers



CHAPTER 3. INTRODUCTORY PROGRAMMING 43

Figure 3.2: Screenshot of Delphi compiler error messages

with a better understanding of the programming environment and more programming
expertise.

Programming languages and development environments can contribute to the difficulties
faced by novice programmers. However, certain programming concepts are more difficult
for novice programmers to understand, regardless of the programming language or devel-
opment environment.

3.2.4 Programming Concepts

Novice programmers struggle to understand abstract concepts and data types with no
real-life metaphor presented in introductory programming courses (Hu, 2008). Accurate
mental models of these concepts need to be developed if the student is to succeed.

Several programming concepts which novice programmers struggle to understand, have
been identified, namely:

• if -statements and logical operations (Haataja et al., 2001)

• Control structures, namely sequence, repetition and selection (Brewer, 2009; Gayo-
Avello and Fernández-Cuervo, 2003)

• Nested loops (Shuhidan et al., 2009)

• Abstract data types such as arrays (Haataja et al., 2001; Lahtinen et al., 2005)



CHAPTER 3. INTRODUCTORY PROGRAMMING 44

• Procedures and functions (Gayo-Avello and Fernández-Cuervo, 2003; Haataja et al.,
2001)

• Debugging errors in code (Lahtinen et al., 2005)

• Object-oriented programming (OOP) (Cooper, Dann and Pausch, 2003; Jones, Boyle
and Pickard, 2003; Kölling, 1999; Kunkle, 2010)

• Recursion (Haataja et al., 2001; Lahtinen et al., 2005; Shuhidan et al., 2009)

Recursion is the only difficult concept identified which is not included in the IT syllabus
in South African secondary schools (Department of Education, 2008).

The reason why novice programmers may struggle with if -statements is related to their
understanding of booleans and logical operators used when the condition is tested (Tew,
McCracken and Guzdial, 2005). This would also be applicable to repetition control struc-
tures and nested loops where statements are repeated while a certain condition is met.
The difficulties experienced with arrays could be associated with an incorrect under-
standing of the use of the array index (Tew et al., 2005). The difficulty associated with
procedures and functions is that novice programmers would need to understand larger
entities of the program in order to divide the functionality of the code into, and be able
to call, procedures and functions (Lahtinen et al., 2005).

Natural language transfer is a factor that may be the cause of difficulties associated with
control structures where the English meaning of a word is confused with its meaning in a
particular programming language (Bonar and Soloway, 1989). For example, while is con-
sidered a continually active test in natural language (Bonar and Soloway, 1989). Novice
programmers may also have difficulty interpreting an assignment statement such as a :=
a + 1; as this differs from what they have been taught in algebra (Putnam, Sleeman,
Baxter and Kuspa, 1989).

Another difficult programming concept for novice programmers is object-oriented pro-
gramming (OOP) (Cooper et al., 2003; Jones et al., 2003; Kölling, 1999; Kunkle, 2010).
There is a debate how best to introduce OOP to novice programmers. The most com-
mon method of instruction in introductory programming is to start with simple concepts
and programs and gradually advance to more difficult concepts and complex exercises
(Cooper et al., 2003). The complexities of understanding the different aspects of OOP
such as objects, classes, instantiation and inheritance are too complex and abstract for a
novice when starting to program (Hu, 2008; Kölling, 1999). A novice programmer learn-
ing object instantiation and method calls before any other concepts such as for-loops and



CHAPTER 3. INTRODUCTORY PROGRAMMING 45

if -statements, is likened to teaching a child sentences before words (Hu, 2008). However,
when OOP is taught last, many teachers find OOP difficult to teach due to the paradigm
shift from structured methods (Cooper et al., 2003; Kölling, 1999).

3.3 Approaches to Address Programming
Difficulties

A vast amount of research has been done to identify the difficulties novice programmers
face (Al-Imamy et al., 2006; de Raadt, 2008; Gayo-Avello and Fernández-Cuervo, 2003;
Lister et al., 2004; Kunkle, 2010; Robins et al., 2003). In addition to identifying and
explaining the difficulties, approaches to overcome these problems are suggested in many
of the research studies. The approaches are aimed at making learning to program easier
for novice programmers. Several ways of overcoming novice programming difficulties are
presented in this section.

The lack of problem solving ability has also been identified as an important problem af-
fecting novice programmers (Section 3.2.1). A solution suggested to improve problem
solving is the use of a customised PAT (Al-Imamy et al., 2006) which allows novices to
focus on planning a solution without having to worry about syntax. Problem solving
ability can also be developed and enhanced by using PATs that can guide students when
writing programming constructs. Common errors can be avoided and students will be
able to learn faster and with more confidence.

It is accepted that novice programmers require syntactic and conceptual knowledge to-
gether with programming strategies (Al-Imamy et al., 2006; de Raadt, 2008). It is sug-
gested that more emphasis be placed on design and creative thinking or problem solving
skills (Al-Imamy et al., 2006). Students should also be assisted in the learning process
by being provided with templates to guide and scaffold the building of knowledge. The
learning process should become more language independent - a learner should be able
to demonstrate understanding of concepts by being able to implement a concept in any
programming language. This is often not possible in many classroom environments but
the deeper understanding of programming concepts and principles is important.

Novice programmers must be able to develop a proper mental model of programming prin-
ciples and concepts if they are to apply these principles and concepts correctly to different
programming problems. It is therefore important that novice programmers understand
the basic programming concepts (Lahtinen et al., 2005) and that the correct definitions



CHAPTER 3. INTRODUCTORY PROGRAMMING 46

and explanations are provided (Baldwin and Kuljis, 2000; Hu, 2008). For example, with-
out a proper understanding of the flow of control in a program, students will be unable
to plan and program solutions effectively, especially as the exercises become more complex.

Theoretical knowledge of programming concepts alone is meaningless for a programmer.
Programming is a practical skill and students must be able to apply their knowledge.
Exercises and examples are therefore very important in a novice programmer’s learning
process. Simple examples focusing on one or two concepts allow students to build their
initial understanding of a concept (Lahtinen et al., 2005). Thereafter, the student should
practise generating code by doing many practical exercises. This will assist the students
to increase their knowledge, understanding and use of strategies (Rongas et al., 2004).

An important aspect of using exercises and examples to improve learning is that students
need to be able to read and understand the code (Lopez, Whalley, Robbins and Lister,
2008). Students are encouraged to work through as many examples as possible to build
their knowledge and understanding of the code gradually (Rongas et al., 2004). PATs
that indicate flow of execution through code can assist novice programmers to improve
their tracing skills (Ala-Mutka, 2003).

A student’s understanding of programming can be influenced by collaboration or by work-
ing alone. Survey results in the research done by Lahtinen et al. (2005) showed that
students prefer working and studying alone. Working alone on exercises was more useful
to students than lectures or group practical sessions. This is supported by Baldwin and
Kuljis (2000) who state that students need to teach themselves. This can be accomplished
with the assistance of computer programming assistance or learning tools.

Alternatively, collaboration amongst students is encouraged by Al-Imamy et al. (2006).
Students are able to discuss and solve problems as a team. Collaboration may be benefi-
cial if all students actively participate in the collaboration. Williams, Wiebe, Yang, Ferzli
and Miller (2002) have researched the benefits of pair programming. Students involved
in pair-programming during practical sessions were more likely to succeed in the course,
performed better on programming projects, were more self-sufficient and less reliant on
teaching staff.

The approaches discussed above have resulted from research investigating the difficulties
of learning to program. The large amount of ongoing research in the field of novice pro-
gramming, as well as a lack of consensus on certain issues, is an indication that these
approaches may not assist with all the difficulties with which novice programmers are



CHAPTER 3. INTRODUCTORY PROGRAMMING 47

faced. An approach that may not be successful in improving learners’ understanding or
overall assessment marks, could, instead, ensure that learners remain confident that they
can succeed and that they are motivated to continue to improve their understanding of
programming principles and knowledge. Motivation is a contributing factor to the success
and building of knowledge in programming courses (Fidge and Teague, 2009).

3.4 Conclusion

This chapter investigates the difficulty of introductory programming in related research
studies in order to address RQ1: What programming difficulties and skills do PATs need
to address and develop, respectively? and achieve Secondary Objective 1.1: Formulate
selection criteria for determining the suitability of PATs to support the achievement of
programming learning outcomes in the IT subject curriculum. This chapter has shown
that researchers agree that novice programmers find it difficult to learn to program. De-
spite various proposals, there is also no clear or easy solution to make learning to program
easier for novice programmers to understand.

Table 3.1: Programming knowledge and skills required to generate code

Programming Knowledge/Skill Code Generation

Knowledge of programming principles Step 1: Planning and identifying
strategies

Knowledge of computers Step 2: Writing the algorithm

Knowledge of syntax Step 3: Implementing algorithm in
specific programming language

Specific programming knowledge and programming skills are required by novice program-
mers in order to be successful. In order to generate code successfully, a programmer
should be able to comprehend code. A programmer will not be able to understand a seg-
ment of code unless there is knowledge of programming principles and concepts, syntax
and the computer (Table 3.1). A program is generated in three main steps: planning or
identifying the strategies required to solve the problem, writing the algorithm and then
generating the actual code for the algorithm in a specific programming language. Syntax
of a particular programming language is required for the final step and knowledge of pro-
gramming principles and knowledge of how the computer will execute the solution, are
required for the first two. Programmers that lack knowledge or ability in any one or more
of these areas will have difficulty with programming.



CHAPTER 3. INTRODUCTORY PROGRAMMING 48

Table 3.2: Criteria for selecting PATs identified from introductory programming literature

Category Criteria Item

Programming
knowledge Assists with the understanding of code execution

Assists with the learning of programming language syntax
Assists with developing knowledge of programming principles and
concepts
Constructivist to promote self-study
Programming environment suitable for novice programmers
Assists with the application of programming knowledge
(programming strategies)

Programming
skills Provides simple error messages to assist with debugging

Promotes problem solving
Develops code comprehension

In order for PATs to support the novice programmer, PATs should assist learners to
develop programming knowledge in three areas, namely, computer execution of pro-
gram code, programming language syntax and programming principles and concepts (Ta-
ble 3.1). Addressing these three areas together with methods of improving code compre-
hension, should implicitly assist users to improve problem solving ability. PATs should
also support the development of programming strategies in terms of applying program-
ming knowledge.

PATs selected should promote self-study (Table 3.2) for the learner to improve knowledge
in spite of the difficulties related to the teaching approach and programming language
and development environment. PATs appropriate for use by IT learners should promote
debugging by identifying errors in code or solution creation and provide simple error mes-
sages that users can understand. The specific programming language addressed by PATs
identified in this research is restricted to Delphi. However, the programming environment,
that is, the interface provided by the PAT, should not confuse learners.

There are programming concepts that are more difficult for novice programmers to un-
derstand. The following programming concepts identified as difficult by research (Section
3.2.4) are included in the Information Technology subject framework for South African
secondary schools (Department of Education, 2008):

• if -statements

• Nested loops

• Control structures



CHAPTER 3. INTRODUCTORY PROGRAMMING 49

• Abstract data types, including arrays

• Procedures and functions

• OOP

Novice programmers have difficulty developing an accurate mental model of these con-
cepts due to their abstract nature. The selection of PATs to assist IT learners as novice
programmers should assist learners to develop a clear understanding of these concepts.

This chapter identifies selection criteria to address general novice programming difficul-
ties categorised as programming knowledge and programming skills required by novice
programmers (RQ1). Specific programming concepts that PATs should address have also
been identified. The difficulties identified in this chapter are combined with the specific
problems and challenges faced by South African IT teachers and learners (Chapter 4)
and used in the formulation of the selection criteria for the PATs (Chapter 4) to achieve
Secondary Objective 1.1. Thereafter, PATs that meet these selection criteria are identified
(Chapter 5).



Chapter 4

Selection Criteria for PATs to
Support IT Programming

4.1 Introduction

Programming is difficult for novice programmers regardless of whether they are IT learners
at high school or computing science students at university. Literature shows that novice
programmer difficulties can be attributed to a lack of knowledge of programming con-
cepts, programming language syntax and how a computer executes code (Section 3.2.1)
as well as the teaching approach (Section 3.2.2) and programming development environ-
ment (Section 3.2.3). RQ1: What programming difficulties and skills do PATs need to
address and develop, respectively? has been partially addressed by identifying the intro-
ductory programming difficulties from related research (Section 3.2).

One of the aims of this research study is to provide suitable PATs for South African IT
learners. RQ1 is addressed further by identifying the difficulties in programming concepts,
skills and knowledge included in the IT subject curriculum with which IT learners need
assistance (Section 4.2 and 4.3). Feedback from IT teachers and learners is also used to
answer RQ2: What factors may influence the use of PATs in SA secondary school learning
environments?. Feedback from IT teachers on how the IT subject content, particularly
programming concepts, is taught and managed in South African secondary schools is pro-
vided to address RQ2 (Section 4.2). IT learner questionnaire (Appendix C) responses
are used to identify specific programming concepts, knowledge and skills with which IT
learners have difficulty (Section 4.3.1).

The programming difficulties experienced by novice programmers in general (Section 3.2)
contribute to the selection criteria (Section 3.4), which are combined with selection crite-
ria derived from IT teacher and learner feedback regarding the programming difficulties

50



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 51

experienced by IT learners (Section 4.4). Selection criteria in this chapter are categorised
according to the three categories identified in Chapter 3. Programming concepts crite-
ria include concepts IT learners are required to know as defined by the IT curriculum,
programming knowledge criteria assist IT learner understanding of programming concepts
and principles and programming skills criteria assist IT learner ability to perform pro-
gramming related skills such as tracing code execution. The results of Chapter 3 together
with the findings of this chapter achieve Secondary Objective 1.1: Formulate selection
criteria for determining the suitability of PATs to support the achievement of program-
ming learning outcomes in the IT subject curriculum.

The selection criteria formulated (Section 4.4) are used to evaluate PATs suitable for use
by IT learners in South African secondary schools (Section 5.4). Based on the evaluation
using the selection criteria, PATs are selected for use by treatment group IT learners in
the experimental phase of this research study (Section 2.2.2).

Participants in this research study - IT teachers and learners - are sampled from four
(67%) secondary schools in Port Elizabeth, South Africa, which offer IT as a subject and
consented to participate in the research. The research was restricted to schools in the
Port Elizabeth area to allow easy access to participants during the research study for the
administration of tests and questionnaires.

4.2 IT Teacher Feedback

This section presents IT teacher experiences with regard to teaching the IT subject and
programming in particular. The teaching approaches used by IT teachers (Section 4.2.1)
of the South African secondary schools participating in this research study and the factors
affecting the teaching of IT in the school (Section 4.2.2) are outlined. The IT teacher
feedback is used to contribute to the selection criteria for the evaluation and identifica-
tion of PATs (Section 4.2.3) that are used by IT learners in the experimental phase of the
research study (Section 2.2.2).

4.2.1 Teaching IT in South African Secondary Schools

IT teachers at the four secondary schools participating in this research study completed a
questionnaire (Appendix A.1) consisting of open-ended questions designed to gather infor-
mation regarding the current IT teaching environments and the participating IT teacher’s
opinions regarding the difficulties faced by IT teachers. The purpose of the questionnaire



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 52

is to identify any challenges faced by IT teachers with regard to the IT subject content
and the teaching environments in the participating schools.

Qualitative data analysis methods are used to identify common statements and themes in
the responses of IT teachers. Responses to the different questions are combined to provide
overall feedback regarding the challenges in the IT teaching environment and methods
employed by IT teachers to address these challenges (Table 4.1). Only statements con-
firmed by two or more IT teachers have been included.

Table 4.1: Summary of IT teacher feedback related to the South African school teaching
environment

Theme Statement n
Positive Smaller IT classes allow more individual contact time. 4

Practical nature of subject (not just theory). 2
Talented, stronger, more motivated learners take IT. 2

Negative Lessons are too short to practise programming effectively. 4
Learners who are struggling are asked to attend extra lessons. 3
IT is on par with Mathematics & Science and more difficult

than other subjects. 3

IT only starts in Grade 10, unlike other subjects of similar
difficulty. 2

Positive feedback from IT teachers regarding the IT subject (Table 4.1) indicate that IT
class sizes are generally smaller than the classes for other subjects thus IT teachers can
provide their learners with more individual contact time (n=4). The practical nature of
the subject allows IT teachers to make lessons interesting for learners as the content is
not only theoretical (n=2). Another positive point identified by IT teachers (n=2) is that
a greater number of talented learners tend to take IT.

Negative points identified by IT teachers are that the IT subject content is similar in
difficulty to subjects such as Mathematics and Science (n=3). However, unlike these
subjects, IT is only started in Grade 10 (n=2), allowing less time to develop a proper
understanding of the subject content as IT learners are not exposed to programming con-
tent in the preceding grades. Another negative point identified by IT teachers is that
time is a challenge for the learning of IT content, particularly programming, in South
African secondary schools. Forty-five minute lessons are too short to practise program-
ming content effectively (n=4) - one teacher indicated that learners “take a while to get
into coding mode”. The IT teacher has to assume that IT learners do not have access to
the programming development environment outside of the allocated IT subject time at
school and thus the majority of work needs to be done in class. This is difficult for weaker



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 53

learners as they require more time than is available during school to understand concepts
and practise exercises.

IT teachers encourage IT learners to practise coding longer than the allocated class time
per day as regular, consistent practice is important to develop programming skills and
knowledge. However, this is difficult for IT learners as not all IT learners may have the
Delphi development environment installed on their privately owned PC’s (n=1). Borland
Delphi is one of the development environments used in SA secondary schools. Borland
Delphi is a commercial software package that must be purchased, which is not feasible
for all IT learners. Other non-commercial Delphi development environments are available
but lack certain of the graphical components that Borland Delphi offers and are then not
suitable for school IT subject use. Access to the programming development environment
or a privately owned computer is not a prerequisite for an IT learner to take IT as a
subject. Extra lessons are arranged by IT teachers to allow IT learners more access to
the Delphi programming environment and provide IT learners with more individual time
to assist with difficulties (n=3), but not all learners can or want to attend.

4.2.2 Teaching IT Programming Content

The IT teachers participating in this research study also completed a questionnaire (Ap-
pendix A.2) designed to gather information regarding the methods used to teach pro-
gramming concepts to their learners. All questions require IT teachers to provide a rating
using a 7-point semantic differential scale.

IT teachers provided a rating of the difficulty of programming concepts and skills in terms
of perceived learner understanding. Table 4.2 indicates programming concepts that IT
teachers believed were difficult for IT learners to understand. Concepts were rated from 1
(extremely easy) to 7 (extremely difficult). Programming concepts are categorised as diffi-
cult concepts if 50% (n=2) or more of the sample rated the concept as difficult (5-7 rating).

IT teachers rated objects and classes as the most difficult programming concept for IT
learners to understand. Correct use of parameters had the second highest mean rating
even though the mean ratings for procedures and functions are slightly above neutral.
Parameters are used to pass values to procedures and functions.

IT teachers also rated the difficulty of programming skills in terms of learner understand-
ing. All the IT teachers (n=4) rated problem solving, planning of solutions and algorithms
as difficult (ratings of 5-7). An algorithm is defined as a finite set of steps for solving



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 54

Table 4.2: IT teacher feedback: Difficulty of Programming Concepts (n=4)

Programming Concept Mean SD
D
iffi

cu
lt
C
on

ce
pt
s

Objects & classes 6.3 0.5
Planning (skill) 6.0 1.2
Problem solving (skill) 5.5 0.6
Correct use of parameters 5.5 1.3
Algorithms (skill) 5.3 0.5
Two-dimensional arrays 5.3 1.7
Debugging (skill) 5.0 1.0
String handling 5.0 1.6
One-dimensional arrays 4.8 1.3
Accessing a database 4.8 1.3
Case-statements (Delphi) 4.5 1.3
while-loops 4.5 1.3
repeat-loops 4.5 1.3
Procedures 4.5 1.3
Functions 4.5 1.3
SQL statements 4.0 1.2
File handling 3.5 0.6
Variables 3.3 1.5
for-loops 3.0 1.2
if -statements 3.0 0.8
Input 2.5 0.6
Output 2.3 0.5

a problem or computing a result (Vickers, 2009). An algorithm would be formulated as
a set of code instructions after the problem solving step (Section 3.2.1). Debugging was
rated as a difficult programming skill by 50% of the IT teachers (n=2).

The remaining items in the questionnaire (Appendix A.2), require IT teachers to rate
their agreement with statements related to the method used to administer programming
exercises to learners as well as IT learners’ debugging skills. 75% of the teachers indicated
that most of the programming exercises provided to learners are for completion during
class time. The IT teachers provide their learners with solutions to exercises (n=4), but
only check exercises solutions if requested by the learner (n=3).

All the IT teachers (n=4) indicated that learners have difficulty applying programming
concepts, that they have learnt, to different problems and exercises. 75% of the teachers
disagreed with the statement that there is enough time in class to ensure that each learner
understands the concepts satisfactorily.

Two of the IT teachers agreed with the statement that learners who struggle have diffi-
culty with the programming language syntax, compared to one teacher who disagreed and



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 55

one neutral response (rating of 4). Most of the IT teachers (n=3) indicated that learners
do not understand compiler error messages or how to use compiler error messages to assist
them to identify syntax errors. Only one teacher indicated that learners are taught how
to use breakpoints to debug code for errors. Creating breakpoints within the code is a
feature available within the programming environment that allows programmers to step
through code execution.

None of the IT teachers currently provides or recommends a PAT to their learners to use.
The teachers indicated that they would like to provide a PAT to their learners (n=4),
although two of the teachers feel that time spent introducing a new tool to their learners
in the class may be a negative factor.

4.2.3 Selection Criteria from IT Teacher Feedback

Selection criteria have been identified to address points arising from the IT teacher feed-
back. The criteria are also categorised as Programming Knowledge (PK) or Programming
Skill (PS) to identify whether the criteria address a point related to understanding of
programming concepts or to improving programming skills, respectively.

Constructivist to promote self-study (PK): As short lessons result in less time in
class to practise programming with the assistance of the IT teacher, learners should
be able to use the PAT without the assistance of the teacher to build their knowledge
and explore different programming concepts (Areias and Mendes, 2007).

Develops knowledge of programming principles and concepts (PK): PATs that
provide an explanation of programming concepts and principles can improve learner
understanding of concepts during self-study.

Assists with the application of programming knowledge (PK): Learners struggle
to apply programming knowledge and can be assisted if the PAT provides support in
the application of programming knowledge to different problems and exercises. An
example would be support in the form of scaffolding that assists the learner to plan
a code or non-code solution (Wood, Bruner and Ross, 1976). When the scaffolding
is removed, the learner should be able to perform the task independently (Kunkle,
2010).

Assist with learning syntax knowledge (PK): IT teachers indicated that struggling
learners have difficulty with programming syntax. Improving syntax knowledge is
important for novice programmers to produce a successful code solution (Section
3.2.1). In this research study, PATs should assist IT learners with the learning of



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 56

Delphi programming language syntax, particularly as learners may not have access
to Delphi beyond the classroom.

Feedback regarding errors (PS): PATs will benefit IT learners who struggle to iden-
tify syntax errors, by providing feedback regarding errors in the code or solution.
Error feedback will assist learners to develop debugging skills.

Provides simple error messages (PS): If feedback is provided, simple error messages
should be used that are easy to understand and help to identify the error in order
to improve an IT learner’s debugging skills.

Promotes problem solving and planning (PS): IT teachers identified problem solv-
ing and planning of solutions as skills that IT learners have difficulty understanding
and applying. The PAT should help to promote these skills.

Feedback to guide solution creation (PS): IT learners need assistance to improve
their ability to create algorithms. The PAT should assist learners to convert a
planned solution to a code solution that can be executed.

In addition to the programming knowledge and skills criteria listed, the ranking of pro-
gramming concepts on difficulty as a result of the feedback from IT teachers (Table 4.2)
will be evaluated with difficult programming concepts identified from literature (Section
3.4), as well as programming concept results from IT learners (Section 4.3.2). The eval-
uation of programming concepts will result in a ranked list of programming concepts
(descending order of difficulty) that PATs should be able to implement (Section 4.4).

4.3 IT Learner Feedback

IT learners participating in the research study as part of the Grade 11 control group were
provided with the Perceived Difficulty of Programming Questionnaire (Appendix C) at
the start of the first year of the study. The aim of the questionnaire is to identify factors
contributing to the difficulty of IT programming from an IT learner perspective (Section
4.3.1).

The IT learners participating in the study are from the Grade 11 IT classes of four schools
in the Port Elizabeth area. The participating learner responses from each school are com-
bined for the results in this section. The sample size is n=45 learners.



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 57

4.3.1 Perceived Difficulty of IT

The Perceived Difficulty of Programming Questionnaire (Appendix C) was completed at
the beginning of the Grade 11 year, thus learners were rating their perceptions of the
difficulty of programming concepts and skills learnt in Grade 10. Learners are required
to rate the difficulty of 22 different programming concepts and skills (Table 4.3) derived
from the IT Learning Programme Guidelines (Department of Education, 2008). Items
are rated on a 7-point semantic differential scale where 1 is “Extremely easy” and 7 is
“Extremely difficult”. Three of the programming concepts (accessing a database, SQL
statements and objects and classes) have been omitted from Table 4.3 as IT learners had
not yet covered these concepts at the time of administering the questionnaire. Table 4.3
indicates the mean value of the ratings provided by IT learners. None of the mean ratings
were above the neutral value of four.

Table 4.3: Difficulty of programming concepts and skills as rated by Grade 11 learners (Per-
ceived Difficulty of Programming Questionnaire) in descending order of frequency.

Programming Frequency Mean SD n Teacher
Concept/Skill n=38 Mean

D
iffi

cu
lt

Procedures 13 3.65 1.40 37 4.5
Debugging (skill) 5 3.47 1.70 43 5.0
repeat-loops 4 3.11 1.79 44 4.5
Planning (skill) 3 3.47 1.52 32 6.0
Functions 2 3.40 1.38 30 4.5
One-dimensional arrays 2 2.66 1.75 35 4.8
for-loops 2 2.61 1.74 44 3.0
String handling 2 2.44 1.45 45 5.0
Two-dimensional arrays 1 3.35 1.50 17 5.3
while-loops 1 2.93 1.71 45 4.5
Problem solving (skill) 1 2.86 1.25 44 5.5
Correct use of parameters 1 2.67 1.57 33 5.5
File handling 1 2.42 1.35 24 3.5
Algorithms (skill) 0 3.13 1.40 40 5.3
case-statements 0 2.64 1.42 44 4.5
if -statements 0 1.98 1.22 43 3.0
Output 0 1.67 1.21 45 2.3
Variables 0 1.59 1.19 44 3.3
Input 0 1.56 1.22 45 2.5

Participants are also required explicitly to rank the concept that they perceive as the most
difficult. The frequency count in Table 4.3 indicates the number of learners that specifi-
cally identified a concept as most difficult. Procedures was identified as the most difficult
concept to understand by 34% of the learners (n=13) (Table 4.3). Learners also identified
the programming skills debugging of code (n=4) and planning (n=3) as difficult. Proce-
dures, functions, planning, debugging and algorithms were generally rated higher when



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 58

compared to other items with mean values above 3. Although algorithms has the fifth
highest mean value rating, none of the learners explicitly identified algorithms as difficult.

Two of the programming concepts, namely file handling and for-loops, categorised as dif-
ficult based on the results of IT learner feedback, were not identified as difficult concepts
in the results from IT teachers (Table 4.2). Case-statements and algorithms were also
identified as a difficult programming concept and skill, respectively, by IT teachers but
not by IT learners.

Strings are implemented as an array of characters in Delphi (Kerman, 2002). IT learners
apply the same knowledge to strings as to arrays, in order to read specific characters
within a string. IT learners are also required to develop knowledge and an understanding
of string handling procedures and functions. The use of string handling procedures and
functions develops learner understanding of procedure and function calls as well as pass-
ing the correct parameter arguments. Even though string handling requires programming
knowledge of one-dimensional arrays, procedures and functions, it is rated as one of the
easier programming concepts by IT learners based on the mean rating, only more difficult
than input, output, variables and if -statements (Table 4.3). This is in contradiction to
the IT teacher feedback. IT teachers rated string handling as the fourth most difficult
concept for learners to understand.

The remaining questionnaire items aim to determine the IT learner perceptions of their
ability to understand simple code exercises and solutions, apply their understanding of
simple solutions to more complex problems, debug errors in code and plan solutions to
programming problems. Participants are required to rate their responses using a 7-point
semantic differential scale where 1 is “Strongly disagree” and 7 is “Strongly agree”.

Learners have a positive perception of their ability to understand simple examples (µ=6.22,
s=0.82, n=45, t(44)=17.31, p<0.01) and apply knowledge to more complex examples
(µ=5.39, s=1.06, n=45, t(44)=8.78, p<0.01), as a one-sample t-test indicates responses
are statistically significant from the neutral value (4). IT learners’ perceptions of their
ability to understand simple exercises is statistically significantly higher (t(44)=5.93,
p<0.01, d=0.76) than learners’ perceived ability to apply programming concepts and
understanding to more complex examples. Learners’ positive perception of their ability
to apply knowledge to more complex examples contradicts IT teacher feedback indicating
that IT learners have difficulty applying programming knowledge to different problems
and exercises (Section 4.2.2).



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 59

IT learner perceptions of their ability to debug errors in code were also evaluated. Two
debugging items are related to the use of compiler error messages displayed by the pro-
gramming development environment. A dependent samples t-test indicates that there
is a statistically significant difference (t(41)=-2.27, p=0.029, d=0.31) between the use
of compiler error messages (µ=5.31, s=1.87, n=43) and the understanding of compiler
messages (µ=4.76, s=1.65, n=44). IT learners try to use the compiler error messages to
find errors in code; however, learners may not always understand and correctly interpret
the error indicated by the compiler error message.

The results for debugging also indicate that learners use output statements to display
variable values at critical points in the program (µ=4.82, s=2.25, n=44). The mean rat-
ing is statistically significantly higher than the neutral value, 4 (t(43)=2.41, p=0.02). The
use of breakpoints, a function supported by professional programming environments used
to step through code during runtime and evaluate flow of execution and variable values
manually, was given the lowest rating for the questions related to debugging (µ=3.67,
s=2.21, n=43). Although the mean indicates breakpoints are not used, the result is not
statistically significantly lower than the neutral value (t(42)=-0.97, p=0.34). The ability
to trace the flow of code execution, either using breakpoints or output messages, is a
skill that is important for creating a successful code solution (Section 2.3.1). Learners
indicated that test input is used to check whether a solution is correct (µ=5.64, s=1.52,
n=45, t(44)=7.23, p<0.01).

One of the factors identified as influencing a novice programmer’s ability to program suc-
cessfully (Section 3.2.1) is the ability to plan solutions (Fidge and Teague, 2009; Rongas
et al., 2004). The remaining items in the questionnaire to Grade 11 IT learners determine
the extent to which IT learners plan solutions before programming. One sample t-tests
are used to indicate responses that are statistically significant (p<0.05) from the neutral
value (4).

Learners indicated that they are able to understand what is required for most problems
or exercises (µ=5.69, s=1.18, t(44)=9.57, p<0.01). Learners also indicated confidence
in their ability to produce a code solution for programming questions (µ=5.44, s=1.25,
t(44)=7.73, p<0.01). Forty-seven percent of the learners (n=21) agreed with the state-
ment that they work out some form of solution to the problem before coding, while 20%
disagreed (µ=4.53, s=1.59, t(44)=2.25, p=0.029). The results for the last two items re-
lated to planning indicate that learners do not write non-code solutions (µ=2.95, s=1.55,
t(44)=-4.52, p<0.01) nor do learners use comments to explain their code (µ=2.95, s=1.77,
t(44)=-3.96, p<0.01).



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 60

4.3.2 Selection Criteria from IT Learner Feedback

Selection criteria for PATs, based on the feedback from IT learners, are presented. The
selection criteria derived from the IT learner feedback address the difficulties associated
with the understanding of Programming Knowledge (PK) and improvement of Program-
ming Skills (PS).

Assists with understanding of code execution (PK): Assistance with code execu-
tion could allow learners to learn how to trace a program and evaluate the state of
variables at different points during the execution of the code. These criteria would
assist learners to improve debugging skills as well as algorithm and code compre-
hension.

Provides simple error messages (PS): Results indicated that learners’ understand-
ing of compiler error messages rated lower than their use of compiler error messages.
Simple error messages would allow learners who use error messages to understand
the error during debugging. Debugging is a skill learners identified as difficult.

Develops code comprehension (PS): Improving a learner’s ability to read and under-
stand code (Section 3.2.1) could help learners to evaluate their own code solutions
and assist with debugging. Code comprehension would also assist learner under-
standing of common algorithms and how to adapt algorithms to different problems.

Promotes problem solving and planning (PS): Planning was identified as the third
most difficult programming concept. Results indicated that learners do not create
non-code solutions to assist with planning a solution. The PAT should thus assist
learners to develop a program solution. This includes providing feedback during
code execution to guide learners to identify any problems.

Feedback to guide solution creation (PS): The purpose of this criterion is to assist
learners to convert a program solution (non-code) into a code solution, thus improv-
ing their ability to create code algorithms.

The programming concepts identified by IT learners will be evaluated together with the
IT programming concepts (Section 4.2.2) and programming concepts identified as difficult
to understand from literature, to form a set of selection criteria (Section 4.4).

4.4 Selection Criteria

The questionnaire responses from IT teachers and learners together with the results from
the introductory programming literature study (Section 3.3) are used to formulate the



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 61

selection criteria (Table 4.4) used to select PATs that can assist IT learners to understand
programming concepts, improve programming knowledge and develop programming skills.

Table 4.4: Selection criteria for PATs

C
at
eg
or
y

Criteria Li
te
ra
tu
re

T
ea
ch
er

Le
ar
ne

r

W
ei
gh

ti
ng

C
on

ce
pt
s

Two-dimensional arrays X X X 18
String handling X X X 17
One-dimensional arrays X X X 16
Procedures X X X 15
Functions X X X 14
repeat-loops X X X 13
while-loops X X X 12
Objects & classes X X 11
for-loops X X 10
if -statements X 9
Correct use of parameters X X 8
SQL statements X 7
Accessing a database X 6
case-statements X 5
File handling X 4
Variables 3
Input (getting information from the user) 2
Output (displaying information to the user) 1

K
no

w
le
dg

e

Assists with the learning of the Delphi programming
language syntax X X 5

Assists with developing knowledge of programming
principles & concepts X X 4

Constructivist to promote self-study X X 3
Assists with the application of programming knowledge X X 2
Assists with the understanding of code execution X X 1

Sk
ill
s

Promotes problem solving and planning X X X 5
Provides simple error messages to assist with debugging X X X 4
Develops code comprehension X X 3
Feedback to guide solution creation X X 2
Feedback regarding errors X 1

Programming concepts that are included in the IT subject framework for South African
secondary schools (Department of Education, 2008) are included as programming con-
cept criteria that PATs should address (Table 4.4). The programming concepts have been
ranked in descending order of difficulty. The ordering of the selection criteria has been
derived from considering common identification by literature, IT teachers and IT learners.



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 62

Selection criteria identified by literature are ranked higher than criteria that are not, as
criteria identified in literature are supported by research studies. Programming concepts
that are identified by the same groups, that is, literature, IT teachers and IT learners, are
ranked based on the IT teacher ranking of programming concepts in order of difficulty
(Table 4.2). Planning, problem solving, debugging and algorithms have been excluded
from the list of programming concepts as they have been addressed by the selection cri-
teria to improve programming skills (Table 4.4).

All of the programming concepts identified in the literature study, excepting for if -
statements, are confirmed by IT teacher and/or IT learner results as difficult concepts.
Correct use of parameters is the only programming concept identified as difficult by both
IT teachers and learners, but not explicitly identified in the literature study (Section 3.3).

The programming knowledge criteria items are all derived from literature and are sup-
ported by the IT teacher results for all except one of the criteria items. The criteria
that PATs should assist with the understanding of code execution is supported by the IT
learner results. Programming skills criteria items to promote problem solving and plan-
ning as well as the use of simple error messages to assist with debugging are identified by
literature and confirmed by the IT teacher and IT learner results (Table 4.4).

PATs selected for this research study should support the Delphi programming language.
The criteria item to assist with the learning of programming language syntax explicitly
requires PATs to support Delphi. A PAT is considered to address programming knowl-
edge and programming skill selection criteria items if the PAT provides an explanation
addressing the criteria explicitly and/or the criterion is implemented practically, to im-
prove learner understanding and skills. A PAT is evaluated as meeting a programming
concept selection criterion if the PAT provides assistance to support the understanding
of the concept.

All the selection criteria are allocated a priority weighting based on the ranking of the
criteria item within each category. The priority weighting is used to calculate a score for
a PAT based on the number and priority of the selection criteria the PAT addresses. The
first of the five programming knowledge and programming skills selection criteria items
have a weighting of five and the last a weighting of one. The first programming concept
criteria item has a weighting of 18 and the weighting is decremented by one for each
criterion thereafter. No allowance has been made for equivalent weightings. Although
Table 4.4 only indicates if concepts were identified as difficult by literature, IT teach-
ers and IT learners, the mean ratings from IT teacher feedback have been used to rank



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 63

“equivalent” criteria items. The experience of IT teachers has been considered an impor-
tant factor in the decision to use the IT teacher rankings instead of the IT learner rankings.

4.5 Conclusion

The main purpose of this chapter is to formulate the selection criteria to identify PATs
that are suitable for use by IT learners in South African secondary schools (Secondary
Objective 1.1). This objective is achieved by addressing RQ1 and RQ2.

In addressing RQ1: What programming difficulties and skills do PATs need to address
and develop, respectively? the questionnaire responses from IT teachers and learners have
identified specific programming concepts that IT learners have difficulty understanding.
The PATs should assist learners with the understanding of as many of the programming
concepts included in the IT subject curriculum as possible with particular focus on the
difficult concepts. Important skills with which IT learners have difficulty and that should
be supported by PATs are problem solving, planning and debugging of errors. IT learners
also need assistance to develop a code solution to a problem (algorithm).

The responses from IT teachers identify factors that make the learning of IT programming
concepts difficult for IT learners and that may influence the use of PATs. The feedback
is used to answer RQ2: What factors may influence the use of PATs in SA secondary
school learning environments? PATs will benefit IT learners by assisting learners to im-
prove programming knowledge, develop programming skills and improve understanding
of programming concepts during self-study, due to the short class lessons with the teacher
present. IT learners may also not have access to the Delphi programming environment
out of class time, thus a PAT that assists learners to implement programming examples
using code that is the same or similar to the Delphi programming language would be
beneficial.

The IT teacher and learner feedback have been combined with the criteria identified from
the literature study discussed in Chapter 3 to formulate selection criteria for PATs to
support IT learners (Table 9.1). The selection criteria are grouped into three categories:

Programming concepts assisting learner understanding and use of specific program-
ming concepts such as if -statements and loops,

Programming knowledge assisting learners to improve their knowledge of program-
ming principles, execution of code and programming language syntax



CHAPTER 4. SELECTION CRITERIA FOR PATS TO SUPPORT IT PROGRAMMING 64

Programming skills to develop IT learner programming skills such as debugging, prob-
lem solving and planning.

The selection criteria within the programming knowledge and programming skills cate-
gories are ranked in descending order of priority, and the programming concept criteria
are ranked in descending order of difficulty, making identification of suitable PATs easier.
The identification and formulation of the selection criteria has achieved Secondary Ob-
jective 1.1: Formulate selection criteria for determining the suitability of PATs to support
the achievement of programming learning outcomes in the IT subject curriculum.

The selection criteria can be used to evalute PATs suitable for a specific category, namely,
programming knowledge, programming skills or programming concepts or to identify PATs
taht satisfy all three categories. PATs are evaluated by identifiying if a specific criterion
is met by the PAT or not. A more detailed evaluation of a PAT would evaluate how a
particular criterion item is met. For example, whether the PAT provides minimal support
for a criterion item or whether the criterion is explicitly addressed by the PAT. The PAT
can be scored based on the number of criteria met and the priority fo the criteria items
using the weightings (Table 4.4). The PAT score is calculated as:

ScorePAT =
∑

ciwi

where ci=1 if criterion item i is met, otherwise ci=0 and wi is the priority weighting
assigned to criteria item, i. PATs can receive four scores, one for each category and one
overall score combining the scores of the three categories.

Chapter 5 identifies several PATs developed to assist novice programmers. The selection
criteria (Table 9.1) are used to select PATs that are suitable to improve South African IT
learner understanding of programming concepts.



Chapter 5

Programming Assistance Tool
Selection

5.1 Introduction

The difficulties faced by novice programmers with regard to programming can be at-
tributed to various ffactors (Section 3.3). Research has been done to identify these factors
and to suggest ways of overcoming the difficulties. Research studies tend to focus on one
difficulty and suggest a method, either tool or technique, for overcoming that particular
difficulty.

The selection criteria have been formulated to select suitable PATs for IT learners (Section
4.4). The evaluation of PATs using the selection criteria can rank the suitability of PATs
based on the priority and number of selection criteria that the PAT addresses. Existing
PATs need to be identified in order to answer RQ3: What PATs exist that would be suitable
for use in SA secondary schools?. The result of this chapter is thus the achievement of Pri-
mary Objective 1: To identify existing introductory programming assistance tools (PATs)
that can be used to support learner understanding of programming concepts included in
the IT subject curriculum implemented in a case study of South African secondary schools.

The techniques used by PATs to support novice programmer understanding of program-
ming concepts, together with IT learner feedback regarding learning preferences, are pre-
sented (Section 5.2), before identifying specific PATs from different research studies in the
field of novice programming (Section 5.3). The formulated selection criteria (Section 4.4)
are used to determine the suitability of each of the PATs identified (Section 5.4). The
chapter concludes by identifying three PATs suitable for use in South African secondary
schools that are used to address Primary Objective 2: To evaluate the impact of the se-
lected programming assistance tools (PATs) on a novice programmer’s understanding of

65



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 66

programming concepts included in the IT subject curriculum implemented in a case study
of South African secondary schools.

5.2 Techniques Used by PATs

The purpose of a PAT is to assist novice programmer users to develop their programming
skills and knowledge (Section 5.2.1). PATs use different techniques, such as animation
or graphical representations, to support user understanding of different programming
knowledge and skills (Section 5.2.2). The VARK questionnaire (Section 2.5.1) has been
administered to IT learners to determine the learning preferences that should be addressed
by PATs (Section 5.2.3).

5.2.1 Definition of a PAT

PATs are specifically designed for use by novice programmers. PATs can use visualisation
techniques to make the programming environment far simpler to use than professional
programming environments. PATs can also visualise programming concepts in order to
support novice programming understanding of abstract concepts. Interactive microworlds
can make programming more interesting and applicable (Pears et al., 2007).

Rongas et al. (2004) states that the ideal PAT would be able to support:

• problem solving,

• algorithm design,

• data structure design,

• assist with the learning of syntax for a particular programming language,

• partial compiling for fast checking of output and operation of a code block,

• administrative properties to support the teacher, and

• communication properties to support team work.

A combination of several systems would fulfill all requirements but would be too compli-
cated to use (Rongas et al., 2004).



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 67

An advantage of using a PAT is that it can assist a novice programmer to develop an
understanding of programming concepts as well as provide automated assessment of pro-
gramming tasks and correction of simple errors (Rongas et al., 2004). Other advantages
are that PATs can promote interactivity as well as support self-study, providing novice
programmers with different pedagogical learning methods.

PATs can employ visualisation techniques to enhance algorithm comprehension, improve
debugging ability and guide exploration to understand concepts (Pears et al., 2007). The
structure or execution of code can be visualised or a programming concept can be ani-
mated. There are PATs that have environments that allow novice programmers to con-
struct algorithms and visualisations graphically, using flowcharts or drag-and-drop tech-
niques (Kelleher and Pausch, 2005) and thus prevent novice users from making syntax
errors. Structured editing, where elements are specified from a menu when typing the
program, can also be used (Guzdial, 2004) where placeholders indicate to users where
additional code should be specified, such as variable names or values. Structured editing
assists users by providing valid constructs, thus allowing users to develop an executable
solution, although logic errors may exist.

Microworlds can be used to make the understanding of programming more concrete as
users can view the result of programming solutions as actions by characters or objects in a
visual and/or animated environment (Kelleher and Pausch, 2005). General-purpose, pro-
fessional programming languages can be abstract and difficult to understand. Microworld
environments motivate users to want to learn as the environment is fun.

PATs use animation and/or visualisation in different ways. A solution can be created by
typing code while the resulting program can be animated, such as a robot performing
actions in a 3D world. Alternatively, graphical objects can be used to create the program
solution even though the running program may not have any animation nor use a graph-
ical user interface.

A PAT that uses visualisation techniques may not assist novice programmers. In some
cases novice programmers that use a PAT do not perform better than those not using it
(Levy et al., 2001). The visualisation techniques used by a PAT may not be successful
when the learners are not able to map programming concepts to elements in the anima-
tion. PATs may also use animations that still require explanations from the teacher to
be successful. However, learners using a PAT with animation show increased satisfaction
and motivation compared to learners who do not use a PAT.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 68

5.2.2 Evaluation of Techniques used by PATs

It is important when evaluating the impact of the PATs on IT learner motivation towards
programming and on IT learner understanding of programming concepts, to evaluate the
different methods the learner uses in the PAT to create the program solution and the
resulting “program”. Kelleher and Pausch (2005) use several items to evaluate PATs with
regards to the representation of code, construction of programs, support to understand
programs and prevention of syntax errors.

Table 5.1: Criteria to evaluate the techniques used by PATs. † indicates criteria originating
from Kelleher and Pausch (2005).

Criteria Description
Representation of the program solution

Text† The program solution is programming code represented as text.
Flowchart† The user creates a flowchart of the program solution.

Graphics Graphical objects (such as building blocks) or pictures are combined to
create the program solution.

Method of constructing programs

Typing of code† Program solution has a textual representation.
Assembling or positioning
graphical objects†

Graphical objects are connected and/or positioned in relation to other
graphical objects.

Selecting/form filling† The user can select objects or text from a list provided. Variable names
and values are filled into placeholders provided.

Format of resulting program

Text (input & output) A command-line interface type program is created.

Graphical User Interface (GUI) A form window (similar to a print dialog box) created for user
interaction.

Animation The resulting program, game or video is animated.

Microworld A microworld may include animation, but is restricted to a specific
character (for example a robot or turtle).

Support to understand programs

Debugging† The program includes methods to check for errors in the solution

Animation of program execution Animation used to demonstrate creation of variables, assigning of
values, etc.

Testing user knowledge
(questions)

Program assesses user knowledge of programming concepts and code
execution while the program is running.

Preventing syntax errors

Selection from valid options† Only valid options are provided to users.
Dropping only in valid
locations† The solution can only be created in a way that will prevent errors.

Informative syntax error
messages† Syntax errors provided are explain the error and how to correct.

Relevant categories used by Kelleher and Pausch (2005), namely representation of code,
construction of programs, support to understand programs and preventing syntax errors



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 69

are included to define criteria (Table 5.1) to evaluate the techniques used by PATs iden-
tified by this research (Section 5.4).

The category, format of resulting program, has been included to evaluate the techniques
used to represent the resulting program when the solution is executed. Within each
category, the technique criteria have been adapted after researcher interaction with the
different PATs identified (Section 5.3) resulting in certain of the criteria used by Kelleher
and Pausch (2005) to be omitted and/or the addition of criteria items not used by Kelle-
her and Pausch (2005).

The representation of code category indicates techniques used to represent the code so-
lution created by programmers (Kelleher and Pausch, 2005). Techniques include a text
program solution in a specific programming language, flowcharts as well as the use of
graphical objects connected together in some way to indicate flow of execution. Program
solutions can be constructed by typing the code or pseudocode in the case of text represen-
tations. Solutions can also be created by dragging or selecting appropriate programming
concepts from a list of options.

Once a program solution is created, the program is executed. An evaluation of the PATs
has shown that PATs use different techniques to display the program output. Certain
PATs execute the program solution as a console application that accepts text input and
displays text output. Graphical user interfaces can be used to allow users to interact with
the executing program. PATs can also execute the program solution using visualisation
techniques such as animations and microworlds.

Techniques provided to support user understanding of programming concepts and knowl-
edge include visualisation techniques that animate the execution of the program solution
and the identification of errors in the program solution, to assist with debugging. Certain
of the PATs evaluated assess user knowledge of programming and understanding of the
execution of the programming solution. PATs can also employ techniques to prevent syn-
tax errors in code by allowing users to select only from valid options and/or place selected
options in valid locations. Informative messages allow users to identify syntax errors in
the program solution.

5.2.3 Learning Preferences of IT learners

Grade 10 and Grade 11 learners in the control group of this study (n=105) completed the
Visual, Aural, Read/Write and Kinesthetic (VARK) Questionnaire (Fleming and Baume,



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 70

2006) to determine their learning preferences (Chapter 2.3.1). The purpose of admin-
istering the VARK questionnaire to participating learners is to determine the learning
preferences of IT learners that PATs should address (RQ2). The results of the VARK
Questionnaire are relevant for the selection of PATs for use by IT learners thus the ques-
tionnaire has only been administered to control group learners.

The VARK questionnaire identifies four learning preferences (Section 2.5.1), namely, vi-
sual (use of graphics or drawings to explain a concept), aural (to hear an oral explanation
of a concept by teacher or speak-out-loud repetition by learner), read/write (reading or
writing out the explanation of a concept) and kinaesthetic (to see a demonstration of or
to perform a task related to the concept being learnt).

The learning preference(s) of the IT learners were determined by totalling the number
of responses for each of the four learning preferences and then determining which of the
learning preferences is dominant (Fleming and Bonwell, 1997). Fifteen learning preference
categories exist (Slater, Lujan and DiCarlo, 2007), indicating a combination of learning
preferences (multimodal) or a single preferred learning preference (unimodal). Multimodal
can further be classified as bimodal (two learning preferences are preferred), trimodal
(three learning preferences are preferred) or quadmodal (all four learning preferences are
preferred).

Figure 5.1: Distribution of IT learner learning preferences as multimodal (bi-, tri- or quad-
modal) or unimodal

The majority of learners (79%, n=85) are multimodal (Figure 5.1). Overall, learners
have a slight preference for the kinaesthetic learning preference (Figure 5.2). Figure 5.3
indicates that more unimodal learners prefer the kinaesthetic learning preference (48%,
n=11), while only one (4%) of the unimodal learners prefers the visual learning preference.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 71

Figure 5.2: Distribution of learning preferences

Figure 5.3: Distribution of unimodal learning preferences

Figure 5.4 shows the categorisation of multimodal learning preferences. Thirty-one per-
cent (n=26) of learners are quadmodal (all four learning preferences are preferred). The
majority of multimodal learners (65%, n=55) have visual and kinaesthetic as two of their
preferred learning preferences.

The VARK questionnaire results indicate that PATs catering for visual and kinaesthetic
learning preferences would fulfill the learning preferences of the majority of learners (54%).
However, unimodal learners prefer either the kinaesthetic, read/write or aural learning
preferences, with only one learner preferring the visual learning preference.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 72

Figure 5.4: Distribution of multimodal learning preferences (V=Visual, A=Aural,
R=Read/Write, K=Kinaesthetic)

5.3 Programming Assistance Tools for IT

The PATs selected for review and evaluation have been identified based on availability.
PATs identified had to be freely available for download in order to make the PAT avail-
able to IT learners (Section 1.5). The PATs reviewed are a representative sample of tools
developed to support novice programmers.

PATs are evaluated using the selection criteria (Section 4.4). Only PATs that have met
most of the criteria items are included in this section for further discussion, for the sake of
brevity. PATs that were evaluated but which have been omitted as they did not address a
majority of the selection criteria include MatrixPro1, KarelRobot2, NoteTab3, NotePad2 4,
Phrogram5, JHave6, Squeak7, EToys8 and GameMaker9. PATs that have been evaluated
and included in this section for discussion include: RoboMind (Section 5.3.1), BlueJ (Sec-
tion 5.3.2), Greenfoot (Section 5.3.3), Scratch (Section 5.3.4), B# (Section 5.3.5), Jeliot
(Section 5.3.6), Ville (Section 5.3.7), PlanAni (Section 5.3.8), Alice (Section 5.3.9), and
jGRASP (Section 5.3.10).

1http://www.cse.hut.fi/en/research/SVG/MatrixPro
2http://karel.sourceforge.net
3http://www.notetab.com
4http://www.flos-freeware.ch/notepad2.html
5http://phrogram.com
6http://jhave.org
7http://squeak.org
8http://www.squeakland.org
9http://www.yoyogames.com/make



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 73

5.3.1 RoboMind

RoboMind10 has been designed as a tool that can be used as a first introduction to au-
tomation and programming without any prerequisites. A simple text-based educational
programming language called ROBO is used to program a robot (on the screen) to inter-
act with objects in a world specified by a map (Figure 5.5). RoboMind is suitable for use
by primary education learners through to university students as the difficulty level can
be adapted to the user’s preference.

Figure 5.5: Robot executing code to follow the white line in RoboMind

RoboMind provides users with a set of commands to move the robot through the world.
Commands include movement commands such as forward(n) where n specifies the num-
ber of blocks to move, turning commands such as right()and “looking” commands
which requires the robot to provide feedback about the space around it, for example,
frontIsObstacle() returns true if there is a wall, box or other obstacle directly in front
of the robot. The robot is also able to detect, pick up and drop beacons, paint blocks
white or black and flip a coin to make a decision (randomisation).

10http://www.robomind.net/en/index.html



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 74

RoboMind implements basic programming concepts such as looping and nested if -statements.
Procedures with parameters are also acceptable. No variables can be declared or used, ex-
cept for the procedure parameters. The language syntax used is similar to Java although
there is some variation such as the lack of semi-colons.

The user types out the code instructions to navigate the robot through the world (A in
Figure 5.5) and then selects Run to execute the instructions. The tool will notify the user
of any errors in the code. If the code is error-free, the user can watch the robot navigate
through its environment based on the code instructions provided (B in Figure 5.5). The
current line of code being executed is indicated by a pointer and a message at the bottom
of the screen (red boxes in Figure 5.5). Users can stop or pause the execution of the
program (blue box in Figure 5.5) as well as change the execution speed.

The RoboMind environment is freely available for individual, educational and commercial
use (RoboMind, 2009). The RoboMind 2.2 development environment is available as open
source, allowing RoboMind to be adapted.

5.3.2 BlueJ

Figure 5.6: BlueJ Main Window showing interactive class creation (Kölling, 2004)

BlueJ 11 is a tool that can be used to introduce novice programmers to the concept of
objects and classes using an objects first approach with the Java programming language.

11http://www.bluej.org



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 75

It is difficult to teach the concept of objects to novice programmers who have very little
programming knowledge. If professional programming IDEs, such as Delphi or Netbean-
s/Eclipse for Java, are used to teach objects and classes, learners would need to understand
many different concepts and complicated syntax before anything could be implemented
(Kölling and Rosenberg, 2002). BlueJ can be used to assist with the understanding of
objects and classes as it demonstrates the concepts without the learner having to write
any code (Kölling and Rosenberg, 2001). Classes are created interactively using graphical
objects and the associated Java code is generated automatically.

The advantages of BlueJ are that it is simple to use, interactive and uses visualisation
to help novice programmers understand objects and classes. UML-like class diagrams
provide a graphical overview of the project structure (Figure 5.6). Other features include
interactive class creation and the ability to invoke interactively public methods (Kölling
and Rosenberg, 2002). A disadvantage is that, although the interface is interactive and
simple to use, teachers would have to design exercises based on the functionality provided
by BlueJ, for example, exercises to create objects and classes using the graphical class
diagrams and visualisations.

5.3.3 Greenfoot

Figure 5.7: Greenfoot main window

Greenfoot12 is a tool that can be used to teach object-oriented programming to novice
programmers (Henrikson and Kölling, 2004). The framework provided by Greenfoot al-

12http://www.greenfoot.org



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 76

lows users to create easily different microworlds that are visually appealing and easy to
interact with.

Figure 5.8: Greenfoot code window for the wombat object

In Greenfoot all objects have a graphical representation and a position in the world, for
example, the bear and leaf objects in the initial Greenfoot exercise (A in Figure 5.7). Users
can interact with these objects directly and changes in the position and appearance of
objects can be observed directly. The world itself (the background area behind Greenfoot
objects - represented as a grid (A in Figure 5.7)) is also an interactive, programmable
object. Classes associated with Greenfoot objects are displayed to the right of the world
(B in Figure 5.7). Controls to run, stop, single-step or control the speed of simulations
(red box in Figure 5.7) are provided for users to control program execution.

All object code can be modified to alter behaviours of objects in the world such as the
code generated for a wombat object (Figure 5.8). The Java code associated with the
objects is generated automatically. Greenfoot is designed, specifically, to improve novice
programmer understanding of objects and classes using visual representations of objects.

5.3.4 Scratch

Scratch13 was developed as an approach to programming that would allow children to
start programming earlier (Utting, Cooper, Kölling, Maloney and Resnick, 2010). The

13http://scratch.mit.edu/



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 77

primary goal of Scratch is not to prepare users for careers as professional programmers
but it allows people of different backgrounds and interests, who lack previous program-
ming experience, to create easily their own interactive stories, games, animations and
simulations (Resnick, Maloney, Monroy-Hernández, Rusk, Eastmond, Brennan, Millner,
Rosenbaum, Silver, Silverman and Kafai, 2009; Utting et al., 2010).

Figure 5.9: Creating a script in Scratch by dragging building blocks

Scratch uses a building block metaphor that allows users to build scripts by combining
graphical blocks similar to building a jigsaw puzzle (A in Figure 5.9). This approach elim-
inates syntax errors as it allows the novice programmer to focus on finding the solution
to problems (Maloney, Burd, Kafai, Rusk, Silverman and Resnick, 2004). The different
blocks are designed in such a way that users are able to play around with the sequence
and combinations of blocks. Blocks are also designed, specifically, to assist users by using
shapes and colours to indicate different concepts. For example, control structures such as
repeat-loop blocks are yellow and C-shaped to indicate to users that other blocks should
be placed inside (A in Figure 5.9).

Similar programming construct blocks are grouped together in colour-coded categories
(green box in Figure 5.9), for example, motion, sound and variables. Selecting a cate-
gory lists all the associated blocks (C in Figure 5.9), thus allowing users to drag required
blocks to the work area (A in Figure 5.9) to build a script. The program is executed in
the window on the top right (B in Figure 5.9). The script blocks are highlighted as the
program executes to indicate flow of code execution. In addition, users can set an option



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 78

to execute blocks one step at a time (single-step), making it easier for users to follow
the execution of code and associate code blocks with actions of the graphical objects and
characters.

The advantages of using Scratch are that it is visually appealing and promotes active
learning. Research by Malan and Leitner (2007) showed a decrease in the number of stu-
dents dropping or failing an introduction to computer science course when Scratch was
used to introduce programming concepts to the learners. A drawback of using Scratch
is that users may struggle to move to a traditional programming environment without
an intermediate software tool to provide a link between the programming concepts in-
troduced in Scratch and the methods of implementing these concepts in a programming
language (Resnick et al., 2009) where syntax becomes relevant.

5.3.5 B#

B# (Greyling, Cilliers and Calitz, 2006) is an iconic programming environment designed
to simplify programming tasks by assisting novice programmers with problem-solving
strategies and the design of algorithms. B# uses a visual flowchart approach that sup-
ports programming concepts such as assigning values to variables, conditions, loops, in-
puts and outputs (Greyling et al., 2006). Version 3 of B# is evaluated with regard to the
selection criteria in Section 5.4.

Figure 5.10 is a snapshot of the B# user interface currently in the execution state. The
iconic flowchart representation of the program running is depicted (A Figure 5.10). The
associated code generated by the system is also displayed (B in Figure 5.10) allowing
users to compare the flowchart created with the code generated. The code generated by
B# is Object Pascal (Delphi) code; however, no graphical user interface components are
used. Input and output is received using readln and displayed using write/writeln,
respectively. The resulting program is a command line console program (D in Figure 5.10)
that accepts text input and displays text output.

Functionality is provided to control execution of the program, such as stepping through
the code one line at a time or stopping the execution at a particular point (red box in
Figure 5.10). The current values assigned to variables are visible at all times during the
execution of the code (C in Figure 5.10).



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 79

Figure 5.10: Stepping through code created using a flowchart in B#

5.3.6 Jeliot

Jeliot14 is a tool that is capable of animating programs to assist novice programmer under-
standing of introductory programming concepts. Jeliot supports the Java programming
language. The current version, Jeliot 3, is capable of animating object allocation (Moreno,
Myller and Bednarik, 2005).

Jeliot uses program visualisation to assist novice programmers to develop an accurate
mental model during program execution (Moreno et al., 2005). Four areas are used in
the animation to indicate the current value of variables, the evaluation of expressions,
the value of constants and the allocation of and reference to objects and arrays (B in
Figure 5.11). The current line of execution in the code solution (A in Figure 5.11) is
visible when the program is executing.

The standard Jeliot program provides animations to assist novice programmers to under-
stand Java programs (Moreno et al., 2005). However, Jeliot 3 was redesigned to separate
the interpretation and animation of the Java programs. MCode, a textual representation
of a running program, is used to connect the interpretation and animation. MCode is lan-
guage independent, thus, a Delphi interpreter, for example, could produce MCode for a

14http://cs.joensuu.fi/jeliot/



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 80

Figure 5.11: Use of animation to explain program execution in Jeliot

program written in Delphi and send it to Jeliot 3 which would use the MCode to generate
an animation for the program. In this way, Jeliot can be adapted for other programming
languages, if an interpreter is available.

5.3.7 Ville

Ville15 is a language-independent programming tool (Rajala, Laakso, Kailo and Salakoski,
2007). Ville has a built-in syntax editor that can be used to add new programming lan-
guages to the tool or to modify the syntax of the built-in languages. Visualisation is used
to demonstrate code execution.

Ville provides a library of example programs to explain different programming concepts.
The user (or teacher) is also able to add exercises. Ville allows the user to run a program
(A in Figure 5.12) with control for the speed of execution, to stop execution or step for-
ward and backward through the code (blue box in Figure 5.12). Visualisation is used to
indicate to the user which line of code is currently being executed. An explanation for
program lines is also provided (B in Figure 5.12). Ville can also be set up to ask the user
questions about the current code being executed thus testing user knowledge of program-
ming concepts and understanding of the code being executed (red box in Figure 5.12).
The program line explanations and questions to test user knowledge would need to be set

15http://ville.cs.utu.fi/



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 81

Figure 5.12: Execution of a program in Ville using multiple choice questions to assess pro-
gramming knowledge

up by a teacher for any new exercises to assist learner understanding of the programming
concepts.

Ville provides users with the functionality to compare code in two different programming
languages. Built-in programming languages include Java, Python, PHP, javascript, C++
and pseudo code. Additional languages can be added by mapping statements in the new
language to Java statements. However, there are shortcomings with this approach. For
example, in Delphi no semi-colon should appear after the last line before an else state-
ment, but there is no way to indicate this in the syntax editor.

5.3.8 PlanAni

PlanAni16 is a tool that uses visualisation to animate the roles of variables in a program
(Byckling and Sajaniemi, 2006). In any program, each variable has a particular purpose
or role. The role of a variable describes how the variable will behave within the program.
PlanAni is a PAT specifically developed to enhance a novice programmer’s understanding
of the different roles of variables.

PlanAni allows novice programming users to select built-in code examples in one of four
different programming languages: C, Java, Pascal or Python. Users can only view the
execution of built-in examples (A in Figure 5.13). Novice programming users cannot

16http://cs.joensuu.fi/~saja/var_roles/planani/



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 82

create their own programs and the built-in example code cannot be edited in PlanAni.
Java, as well as Pascal examples, are provided by the system. There are very few built-in
examples, and PlanAni opens specific types of files - not normal code files. Teachers can
create their own examples in this special file format that will not only provide the code for
a particular solution but also include instructions on how each line should be animated
and the messages that should be displayed to users to explain each line of code.

Figure 5.13: Animation of program code execution in PlanAni

Users can select to run the program which will start the animation. Each line of code is
executed with messages (blue box in Figure 5.13) to explain to the user what task the line
of code is performing or to describe the role of a particular variable and how its value is
being assigned. Visualisation is used to indicate to the user what the current variable val-
ues are and how they are changed (D in Figure 5.13). Different graphical representations
are used to depict the different variable roles, for example, footsteps represent a stepper
variable, and a tombstone represents a fixed value variable. Functionality is provided to
stop and step through the code one line at a time (red box in Figure 5.13)

5.3.9 Alice

Alice17 is a 3D programming environment that can be used to teach introductory pro-
gramming concepts using an “objects first” approach. Alice allows users to create 3D
animations (D in Figure 5.14), games or videos (Henrikson and Kölling, 2004).

17http://www.alice.org



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 83

Figure 5.14: Program creation in Alice

Figure 5.14 is a screenshot of Alice that shows the environment used to create animations
by assembling objects (C in Figure 5.14) and instructions (A in Figure 5.14) using drag
and drop actions to generate the program solution (Cooper et al., 2003). The position
of each object is set in the virtual world. Each object added by the user, encapsulates
its own data (private properties such as height, width and location). Users can select
primitive methods for each object from a list (B in Figure 5.14). User defined methods
can also be added.

The drag-and-drop method of code generation in Alice allows the user to focus on de-
signing the solution instead of the complexity of the syntax and punctuation (Cooper
et al., 2003). The focus away from syntax and punctuation does mean that Alice does not
assist novice programmers in their knowledge of programming language syntax. However,
research has shown (Cooper et al., 2003) that novice programmers quickly master syntax
when making the transition from Alice to a programming language.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 84

5.3.10 jGRASP

jGRASP18 is a visualisation tool that provides automatic generations of control structure
diagrams for source code visualization (red box in Figure 5.15) and UML Class diagrams
(B in Figure 5.15). jGRASP was created to provide visualisations to help users improve
their understanding of programming code. jGRASP provides a lightweight development
environment that supports Java, C, C++, Objective-C, Ada and VHDL programming
languages.

Figure 5.15 shows a screenshot of the jGRASP development environment. Java class
files can be opened and edited in the main window (A in Figure 5.15). A UML class
diagram is automatically generated by jGRASP from Java class files in a project (B in
Figure 5.15). The resulting program of a code solution in jGRASP is a command-line
type text interface that displays text output and receives text input from the user (C in
Figure 5.15).

A jGRASP user is able to insert a breakpoint that will stop the execution of code at any
point and allow the user to view the state of a data structure such as a linked list, array
or binary tree (Cross, Hendrix, Jain and Barowski, 2007). Data structures are updated in

18http://jgrasp.org

Figure 5.15: jGRASP main code window



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 85

the viewer as individual statements are executed using functionality to step through the
code one line at a time. This provides a deeper understanding of the use of data structures.

5.4 PAT Selection

The selection criteria (Section 4.4) are used to determine the suitability of the PATs
identified in Section 5.3 for the teaching of IT programming in South African secondary
schools. The PATs are evaluated on three categories of selection criteria: programming
knowledge (Section 5.4.1), programming skills (Section 5.4.2) and programming concepts
(Section 5.4.3). The techniques used by PATs to create program solutions, represent out-
put programs and explain programming concepts, are also identified for each of the PATs
(Section 5.4.4). Where applicable, the criteria are evaluated with respect to the learning
preferences that are catered for by the PAT - indicated by a V (visual), A (Aural), R
(Read/write) and/or K (Kinaesthetic). Alternatively, a check mark (X) is used to indi-
cate if a PAT meets the criteria.

5.4.1 Programming Knowledge

All of the reviewed PATs, with the exception of Alice and Scratch, can assist users to im-
prove their knowledge of programming language syntax (Table 5.2) as program solutions
are implemented or generated in a particular programming language (either Delphi/Pas-
cal, Java or both). The statements used by RoboMind are similar to Java but the editor
can be adapted to compile statements that users are more accustomed to using in a par-
ticular programming language. Scratch and Alice use drag and drop building blocks.

All of the PATs are constructivist to promote self-study (Table 5.2) by learners to improve
their understanding of programming concepts. All of the PATs assist with the develop-
ment of knowledge of programming principles and concepts, however, different learning
preferences are addressed by each of the PATs in meeting this criterion. All of the PATs
address the development of programming knowledge and principles criterion using the
visual learning preference and all but one – PlanAni – use the kinaesthetic learning pref-
erence by allowing users to create their own programming solutions using the PAT. Jeliot,
Ville and PlanAni also address the Read/Write learning preference, by providing textual
explanations or questions to assess understanding of programming concepts. PlanAni is
the only tool that does not allow users to program a solution, however, explanations of
built-in examples help build user knowledge of programming principles, particularly the
role of variables.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 86

Table 5.2: Evaluation of PATs using selection criteria: Programming knowledge

Criteria R
ob

oM
in

d

B
lu

eJ

G
re

en
fo

ot

Sc
ra

tc
h

B
#

Je
lio

t

V
ill

e

P
la

nA
ni

A
lic

e

jG
R

A
SP

Assists with the learning of the Delphi
programming language syntax • J J D J J DJ J

Assists with developing knowledge of
programming principles & concepts VK VK VK VK VK VK VRK VR VK VK

Constructivist to promote self-study X X X X X X X X X X
Assists with the application of
programming knowledge X X X

Assists with the understanding of code
execution VR V V V VR VR VR V V V

X= PAT meets the criteria V = Visual
•= PAT can be adapted to meet the criteria A = Aural
D = Delphi R = Read/Write
J = Java K = Kinaesthetic

Jeliot, Ville and PlanAni assist with the application of programming knowledge. Jeliot
and PlanAni use visualisation to demonstrate how different programming knowledge is
applied to solving a programming solution. Ville includes a variety of simple and com-
plex programming examples to demonstrate to users how programming knowledge can be
applied to solve programming problems.

Table 5.3: Ranking of PATs based on evaluation of programming knowledge selection criteria

PAT Score

1. PlanAni 15
2. RoboMind (with adaptations) 13

B# 13
4. Ville 10
5. Jeliot 10
6. BlueJ 8

Scratch 8
Alice 8
jGRASP 8

The top five PATs that address the programming knowledge selection criteria have been
identified (Table 5.3). The PATs have been ranked based on the ranking score obtained
by considering the number and importance of selection criteria that are addressed by the
PAT (Appendix F). PATs that address the Delphi programming language syntax are
preferred, as the selected PATs are provided to IT learners using Delphi. Only PATs that
support the Delphi programming language are considered to meet the first criteria when
the scores are calculated.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 87

PlanAni meets all of the programming knowledge selection criteria. B# and RoboMind
(after adaptations) cater for the Delphi programming language and are thus ranked above
Jeliot. Jeliot addresses all of the programming knowledge criteria, however, Jeliot only
provides support for the Java programming language syntax.

Ville is ranked above Jeliot as the former addresses the kinaesthetic learning preference
in addition to the read/write and visual learning preferences in the development of knowl-
edge and programming principles (Table 5.2).

5.4.2 Programming Skills

Scratch and Alice make use of the drag-and-drop interface which ensures that users can
only use the correct statements and syntax. These two PATs thus indirectly support error
handling but learners’ error messages are not provided to learners to support debugging;
hence, the blocks are greyed out (Table 5.4). Error handling and compiler messages are
also not applicable for PlanAni as built-in examples are used which cannot be edited by
the user.

Table 5.4: Evaluation of PATs using selection criteria: Programming skills

Criteria R
ob

oM
in

d

B
lu

eJ

G
re

en
fo

ot

Sc
ra

tc
h

B
#

Je
lio

t

V
ill

e

P
la

nA
ni

A
lic

e

jG
R

A
SP

Promotes problem solving & planning VK VK VK
Provides simple error messages to
assist with debugging R R

Develops code comprehension V V VR VR VR V
Feedback to guide solution creation V V V
Feedback regarding errors R R R R R R R
X= PAT meets the criteria V = Visual
•= PAT can be adapted to meet the criteria A = Aural

R = Read/Write
K = Kinaesthetic

Only two PATs - RoboMind and B# - use simple error messages to inform users of syntax
errors in the code using language and terms that are simple for novice programmers to
understand (Table 5.4). The remaining PATs - BlueJ, Greenfoot, jGRASP and Jeliot -
use the standard Java compiler. The error messages are the same messages that expert
programmers would receive in professional programming environments such as Netbeans
or Eclipse.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 88

The statements used in Scratch and Alice indicate to users where conditions or variables
must be inserted or if other statements must be included within a loop or control structure
in order to guide the creation of a solution (Table 5.4). B# allows users to build a solution
using a flowchart diagram. Users are able to visualise the execution of the solution using
the flowchart.

Table 5.5: Ranking of PATs based on evaluation of programming skills selection criteria

PAT Score

1. B# 15
2. Scratch 12.5

Alice 12.5
4. PlanAni 5.5
5. RoboMind 5
6. Jeliot 4

Ville 4
8. BlueJ 1

Greenfoot 1
jGRASP 1

The PATs can also be ranked based on the number and importance of programming skills
selection criteria that are addressed (Table 5.5). Priority weightings are used to deter-
mine the score for each of the PATs in addressing the programming skill selection criteria
(Appendix F). B# addresses all of the programming skills selection criteria. Scratch and
Alice do not need to provide feedback regarding errors or simple error messaging as the
drag and drop technique used by these two PATs do not allow syntactical errors to occur.

5.4.3 Programming Concepts

BlueJ, Greenfoot and jGRASP are able to open and compile any java source files, thus al-
lowing them to implement all the programming concepts (Table 5.5). BlueJ and jGRASP
only assist with the understanding of certain programming concepts, such as objects and
classes, debugging and variables, for which visualisation is used or status information such
as the current line of execution, is provided.

Programs in Greenfoot create microworld games or animations allowing users to observe
the resulting behaviour of programming concepts used in the program. Jeliot allows users
to visualise the code execution of programming concepts. Jeliot is not able to implement
access to a database or handling text files (reading from or writing to).



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 89

Table 5.6: Evaluation of PATs using selection criteria: Programming concepts

Criteria R
ob

oM
in

d

B
lu

eJ

G
re

en
fo

ot

Sc
ra

tc
h

B
#

Je
lio

t

V
ill

e

P
la

nA
ni

A
lic

e

jG
R

A
SP

Two-dimensional arrays � X X X
String handling � X X X X �
One-dimensional arrays � X X X X X X
Procedures X � X X X X X �
Functions � X X �
repeat-loops • � X X X X X X X �
while-loops X � X X X X X X X �
Objects & classes X X X X X X
for-loops X � X X X X X X X �
if -statements X � X X X X X X X �
Correct use of parameters X � X X X X
SQL statements � X �
Accessing database � X �
case-statements � X X X X
File handling � X �
Variables • � X X X X X X X X
Input � X X X X X X �
Output � X X X X X X X �
X= PAT assists with understanding of the concept.
� = Concept can be implemented. No specific assistance provided to assist with understanding.
•= PAT can be adapted to include concept.

Table 5.7: Ranking of PATs based on evaluation of programming concept selection criteria

PAT Score

1. Scratch 109
2. Alice 76
3. RoboMind (with adaptations) 72
4. PlanAni 66
5. B# 55

PATs have been ranked based on an evaluation of the programming concept selection
criteria (Table 5.7, Appendix F). PATs that support or can be adapted to support the
Delphi programming language, namely RoboMind, B# and PlanAni are considered for
selection based on programming concept selection criteria. Scratch and Alice are also
considered as the graphical objects used to create program solutions are independent of
programming language and are designed to promote an understanding of the program-
ming concepts, although not programming language syntax.



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 90

5.4.4 Techniques used by the PATs

The categories and items used to evaluate the techniques used by different PATs (Ta-
ble 5.8), are discussed in Section 5.2.2. A distinction is made between how the code is
represented as it is being created, the method used to create the program and the form
of the final program (Table 5.8).

RoboMind is described as a microworld as the purpose of the program created is to control
a robot in a map environment. Scratch and Alice allow the user to create games and ani-
mations and are not considered microworlds. Scratch supports both the text and pictures
techniques to represent program solutions as the graphical blocks used to construct the
program use programming concept text similar to a programming language syntax. Only
B# uses a flowchart technique to represent the program solution.

Table 5.8: Evaluation of techniques used by PATs

R
ob

oM
in
d

Bl
ue
J

G
re
en
fo
ot

Sc
ra
tc
h

B# Je
lio

t

V
ill
e

Pl
an

A
ni

A
lic
e

jG
R
A
SP

Representation of the program solution
Text X X X X X X X X X X
Flowchart X
Pictures X X X

Construction of programs
Typing of code X X X X X X
Assembling or positioning graphical
objects X X X X X

Selecting/form filling X X X

Resulting program
Text (input & output) X X X X X X
GUI X
Animation X X X
Microworld X

Support to understand programs
Debugging X X X X X X X
Animation of program execution X X X
Testing user knowledge (questions) X X

Preventing syntax errors
Selection from valid options X X X
Dropping only in valid locations X X X
Informative syntax error messages X

X= PAT meets the criteria



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 91

None of the PATs evaluated execute the program by providing a GUI similar to Del-
phi programs for the user to interact with. Scratch allows users to create an interactive
interface by implementing graphical picture objects as buttons that can use similar com-
ponents to a Delphi GUI interface. RoboMind is the only evaluated PAT that provides
informative syntax error messages, althougth Alice and Scratch do not require support for
error messages. These two PATs only allow programming concept blocks to be selected
from and dropped into valid locations. Support for syntax error messages is thus not
required.

5.4.5 PAT Selection for this Research Study

Primary Objective 2 is to evaluate the impact of PATs on IT learner understanding of
programming concepts and motivation towards programming. Grade 10 and Grade 11
learners at each school participating in the research study receive a PAT to use. The PATs
selected for evaluation by the participating schools should assist learner understanding of
programming concepts. The programming knowledge and programming concept criteria
are of more relevance than the programming skills criteria which are not evaluated.

The selection of PATs also considers the techniques used by the PATs to create program
solutions. The PATs selected should differ in the techniques used in order to evaluate
learner feedback on different methods of program creation and the format of resulting
programs on learner understanding and motivation. PATs that allow learners to create
different program solutions are preferred to PATs that only demonstrate programming
examples.

Table 5.9: Summary of PAT evaluation using selection criteria

PAT Knowledge Skills Concepts Total Selected

1. B# 13 15 5.5 33.5 X
2. Scratch 8 12.5 10.9 31.4 X
3. Alice 8 12.5 7.6 28.1
4. RoboMind (Adapted) 14 5 7.2 26.2 X
5. PlanAni 15 3 6.6 24.6

PATs that can assist with the understanding of the Delphi programming language are
considered for selection (Table 5.9). The score calculated for RoboMind is based upon
the implemetation of adaptations to support the Delphi programming language. Alice is
not considered for selection as Scratch and Alice use similar techniques to create program



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 92

solutions and produce a resulting program and Scratch obtained a higher score for ad-
dressing the programming concept criteria than Alice.

Four schools have consented to participate in the research study, however, treatment sam-
ple sizes at two of the schools are smaller than the other two schools. It was decided to
select three PATs for evaluation in the schools, where two schools would receive the same
PAT so that the number of learners evaluating the three PATs would be approximately
equivalent (Section 7.2.1).

Scratch is selected as it has the highest score with regards to programming concepts.
RoboMind is selected as it has the next highest programming concept score since Alice is
not being considered and the second highest programming knowledge score. PlanAni does
not allow users to create their own programs and only six example programs are provided.
B# is the only one of the PATs under consideration that uses a flowchart technique for
the creation of program solutions.

Scratch is provided to the two participating schools with the smallest number of partic-
ipants. The reason for selecting Scratch as the PAT to provide to these schools, firstly
because Scratch provides the best support for programming concepts (Table 5.9) and,
secondly, because it is the PAT recommended for use by Grade 10 learners in the imple-
mentation of the new IT curriculum (Department of Basic Education, 2011).

5.5 Conclusion

This chapter identifies several PATs that have been developed for use by novice program-
mers to improve their understanding of programming concepts. All these tools are freely
available. The formulated selection criteria (Section 4.4) are used to evaluate the tools.
RQ3: What PATs exist that would be suitable for use in SA secondary schools? and Pri-
mary Objective 1: To identify existing introductory programming assistance tools (PATs)
that can be used to support learner understanding of programming concepts included in
the IT subject curriculum implemented in a case study of South African secondary schools
are addressed in this chapter by identifying PATs and providing an indication of which
criteria are met by each of the tools (Section 5.2).

The most important consideration when selecting a tool to teach IT programming is which
programming language - Delphi or Java - is taught to the IT learners. Only a few of the
PATs support Delphi (Pascal). IT learners that require support for the Java program-
ming language have a wider variety of tools that cover all programming concepts - BlueJ,



CHAPTER 5. PROGRAMMING ASSISTANCE TOOL SELECTION 93

Greenfoot, Jeliot and JGRASP. These tools all use the standard Java compiler. Jeliot
would be of most benefit to learners requiring assistance with programming in general
as it also assists learners with code comprehension. BlueJ and Greenfoot focus more on
promoting understanding of object-oriented programming concepts.

None of the PATS identified will assist IT learners with all programming concepts as-
sociated with the Delphi programming language. Most of the tools that support Delphi
(Pascal) address the majority of the difficult concepts identified (Chapter 4).

The three most appropriate PATs to support the teaching of the Delphi programming
language are identified for evaluation in South African schools teaching Delphi to its IT
learners. These PATs are:

• RoboMind

• Scratch

• B#

These PATs all use different techniques to assist user understanding of programming con-
cepts. Three PATs are identified for evaluation in the four participating tools. Each
school receives one PAT. Scratch is provided to two of the participating schools with the
lowest participation numbers.

The selected PATs are provided to participating schools in order to achieve Primary Ob-
jective 2: To evaluate the impact of the selected programming assistance tools (PATs) on
a novice programmer’s understanding of programming concepts included in the IT subject
curriculum implemented in a case study of South African secondary schools. The dif-
ferences between the three selected PATs and Delphi are identified before the impact of
PATs on IT learner understanding of programming concepts can be evaluated. Chapter 6
discusses the adaptations made to RoboMind as well as the differences in the way certain
programming concepts are presented in the three tools compared to Delphi.



Chapter 6

PAT Preparation for IT Learners

6.1 Introduction

Primary Objective 1 of this study is to identify programming assistance tools (PATs)
suitable for use by IT learners in South African secondary schools. RoboMind, Scratch
and B# have been identified (Section 5.5) as appropriate PATs. Despite their suitability,
there are various shortcomings in terms of the educational support of the syntax of pro-
gramming concepts which had to be identified. Where possible, these shortcomings were
addressed before each of the PATs was provided to IT learners and thus before Primary
Objective 1 could be met.

In order for the PATs to support the learning of programming concepts in the IT subject,
the syntax of the programming concepts implemented in the PATs should be the same or
similar to the syntax of the Delphi programming language as IT learners were to use the
PAT to support the learning of programming using the Delphi programming language.
No adaptations were implemented to change the manner in which the PATs visually rep-
resent programming concepts or the techniques used to construct program solutions and
display program output. The techniques used by PATs were also evaluated and thus were
not adapted before the evaluation and without research to support any adaptations to
the visual representations of the programming concepts and techniques used to create
program solutions.

The aim of this chapter is to compare the implementation of concepts in each of the PATs
to the implementation of corresponding concepts in Delphi. RoboMind is the only PAT
for which the programming concept syntax can be adapted to match the Delphi syntax.
A discussion of the adaptations made to RoboMind addresses RQ4: How can the selected
PATs be adapted for use by IT learners in SA secondary schools to support the under-
standing of programming concepts?. Addressing RQ4 achieves Secondary Objective 1.2:

94



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 95

Adapt selected PATs to make them suitable to support the achievement of programming
learning outcomes in the IT subject curriculum implemented in South African secondary
schools.

This chapter describes how Delphi implements programming structures such as looping
and if -statements (Section 6.2) and then identifies how the implementation of certain
programming concepts in each of the three PATs differs from the implementation in Del-
phi (Section 6.3). The adaptations to RoboMind, to allow it to implement concepts in
a manner (syntax and semantics) similar to Delphi, are presented (Section 6.3.1). The
reasons why Scratch and B# were not adapted are presented, together with a description
of the differences between Delphi and Scratch (Section 6.3.2) and Delphi and B# (Section
6.3.3), respectively.

6.2 Programming Concepts in Delphi and the PATs

The three PATs selected (Section 5.5) have been identified as suitable for use by IT learn-
ers. The use of the PATs was self-administered and it was important that, without the
guidance of the teacher, the PATs could assist learners to learn to program and not con-
fuse learners. If a PAT is to support IT learner understanding of programming concepts,
the implementation of programming language concepts in each of the PATs should be as
close to that of the programming concepts implemented in Delphi. Table 6.1 lists the
programming concepts, which IT learners are required to have an understanding of (De-
partment of Education, 2008).

Scratch supports the most programming concepts of the three PATs (Table 6.1) but the
syntax of programming concepts implemented in Scratch differ from the Delphi program-
ming language syntax. Programming concept syntax in Scratch cannot be adapted as the
source code is not available. Programming concepts supported by B# match the Delphi
programming language syntax, except for input and output that differ. Programming
concepts supported by RoboMind needed to be adapted in order for the syntax to match
the Delphi programming language syntax.

The implementation of selected programming concepts in Delphi are presented in Sec-
tion 6.2.1. An understanding of how programming concepts are implemented in Delphi
is required in order to identify differences between the implementation of programming
concepts in the PATs and to determine adaptations required for RoboMind.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 96

Table 6.1: Evaluation of RoboMind, Scratch and B# using selection criteria: Programming
concepts

Unadapted
Programming Concept RoboMind Scratch B#
Two-dimensional arrays
String handling ?
One-dimensional arrays ?
Procedures X ?
Functions
repeat-loops • ? X
while-loops � ? X
Objects & classes ?
for-loops � ? X
if -statements � ? X
Correct use of parameters ?
SQL statements
Accessing database
case-statements X
File handling
Variables • ? X
Input ? ?
Output ? ?

X= Concept supported and syntax matches Delphi
� = Concept supported but syntax does not match Delphi. Can be adapted.
? = Concept supported but syntax does not match Delphi. Cannot be adapted.
•= Concept not supported but PAT can be adapted to include concept
blank = PAT does not support and cannot be adapted to support the concept

The differences between Delphi and RoboMind are evaluated and adaptations made to
RoboMind (Section 6.2.2) are presented. The differences between Scratch and Delphi are
presented (Section 6.2.3). No adaptations were made to Scratch as the source-code is
not available. The difference between B# and Delphi related to the method of interac-
tion with the user in terms of input and output is presented (Section 6.2.4). Although
the source code is available, no adaptations were made to B# to address the differences
between the string handling associated with the input and output programming concepts.

6.2.1 Delphi

Delphi refers to Borland Software Corporation’s Delphi development environment, which
uses the Object Pascal programming language (Kerman, 2002). Object Pascal evolved
from the Pascal programming language to support the development of Windows-based
applications.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 97

The basic programming concepts and structures, such as variables, looping and decision
structures, are implemented as in the original Pascal programming language. Due to the
support for Windows-based applications, Delphi can be used to develop GUI user inter-
faces that use components such as buttons, edit boxes, labels and pop-windows to receive
input from and display output to users.

A description of the implementation of programming concepts in Delphi makes it easier
to highlight the differences between Delphi and the three PATs in terms of programming
concept syntax. Only selected programming concepts (as identified earlier) are presented.
Before presenting the specific programming concepts, the following programming rules
specific to Delphi are highlighted:

1. The keywords, begin and end, are used to delimit code blocks.

2. Code statements in Delphi (Object Pascal) are separated using a semicolon (;) (Ker-
man, 2002). The line before the else keyword as part of an if-then-else statement
does not end with a semicolon (lines 8-9 of Listing 6.3).

3. Variable, procedure/function and reserved keyword names are not case sensitive.

4. := is used to assign a value (right-hand side) to a variable or property (left-hand
side), while = is a boolean comparison of two values.

Procedures A procedure is a subroutine that does not return a value. A procedure is
defined using the procedure keyword (line 1 of Listing 6.1). This is followed by
a procedure name (moveSquare in Listing 6.1) and a declaration of any parameter
variables that must be passed to the procedure.

Local procedure variables are declared (line 2 of Listing 6.1) and the code to im-
plement the task that the procedure should perform is enclosed in a begin..end
block. The procedure is called using the procedure name followed by any data to
be passed as parameters in brackets (line 15 of Listing 6.1).

Correct use of parameters Parameter variables are declared by specifying the param-
eter name and data type in brackets after the procedure name. In Listing 6.1 (line
1) an integer parameter named size is passed to the procedure. The parameter
variable is used as a local variable in the procedure body (line 6 of Listing 6.1). In
Listing 6.1 the number of steps to move is obtained as input from the user (line 14
of Listing 6.1)



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 98

Listing 6.1: Delphi: Procedures and use of parameters

1 procedure moveSquare ( s i z e : i n t e g e r ) ;
2 var i : i n t e g e r ;
3 begin
4 for i := 1 to 4 do
5 begin
6 moveForward ( s i z e ) ; //custom procedure
7 r ightTurn ( ) ; //custom procedure
8 end ;
9 end ;

10

11 procedure whenButtonIsClicked ( ) ;
12 var s t ep s : i n t e g e r ;
13 begin
14 s t ep s := strToInt ( edtSteps . t ex t ) ;
15 moveSquare ( s t ep s ) ;
16 end ;

One-dimensional arrays Delphi supports static and dynamic arrays. The length of
static arrays is defined when the array variable is declared (line 1 of Listing 6.2),
while the length of dynamic arrays can be set in the code body. Array elements can
only have one data type, indicated when the array is declared.

The starting and ending indices of static arrays are also indicated when the array is
declared. The starting index is thus only zero (0) if specified. Square brackets ([])
are used to reference an element in the array at a specific position. Array elements
are referenced when assigning values to the element (line 8 in Listing 6.2) or reading
the value of an element (line 12 and 20 in Listing 6.2).

repeat..until loops A repeat-loop is an indeterminate loop structure and can be used
when the number of times the loop will execute is not known and cannot be de-
termined before the loop starts executing. A repeat-loop is implemented using the
repeat and until keywords to block the code that must be repeated.

The boolean condition that must be checked to determine whether the loop con-
tinues executing, appears after the until keyword (line 13 in Listing 6.2). The
condition statement indicates when the loop must stop executing (that is, the loop
will continue executing if the condition is false). The boolean condition is only



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 99

checked after the code in the loop statements have been executed, thus a repeat-
loop is a post-conditional loop and always executes at least once.

Listing 6.2: Delphi: Arrays and looping

1 var arrNums : array [ 1 . . 1 0 ] of i n t e g e r ;
2 counter , sum : i n t e g e r ;
3 begin
4 sum := 0 ;
5 counter = 1 ;
6

7 for counter := 1 to 10 do
8 arrNums [ counter ] := counter ∗2 ;
9

10 repeat
11 sum := sum + arrNums [ counter ] ;
12 inc ( counter ) ; // increments counter by 1
13 until ( counter > 10 ) ;
14

15 sum := 0 ;
16 counter = 1 ;
17

18 while ( counter <= 10) do
19 begin
20 sum := sum + arrNums [ counter ] ;
21 inc ( counter ) ; // increments counter by 1
22 end ;

while..do loops A while-loop is also an indeterminate loop structure implemented using
the while and do keywords either side of a boolean condition that must be true
for the loop to continue executing (line 18 of Listing 6.2). The condition is checked
before the loop executes thus a while-loop is also a pre-conditional loop.

The while- and repeat-loops in Listing 6.2 perform the same task. The difference
between the two is the boolean condition used to stop the loops (line 13 and line
18 in Listing 6.2) as well as the fact that the while-loop is pre-conditional and the
repeat-loop is post-conditional.

for-loops A for-loop in Delphi (line 4 in Listing 6.2) is a determinate loop structure
(Kerman, 2002) and is used when the exact number of times the loop must exe-



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 100

cute can be specified using starting and ending values. The for-loop includes a loop
counter variable (counter in Listing 6.2). When Delphi executes the for-loop code,
the counter variable is initially assigned to the starting value and is compared to
the ending value before executing the body of the loop. A for-loop is thus a pre-
conditional loop. The counter variable is incremented or decremented by the value
one (1) depending on if the for-loop uses the keyword to or downto, respectively.

String handling A string data type in Delphi is an array of characters. Any character
in a string can be obtained by referencing the character position. Strings can be
concatenated using a plus (+) sign (lines 8, 10 and 12 in Listing 6.3). Only string
values are concatenated. Integer or real numbers that are to be included in a string
text must be converted to a string using intToStr (lines 8 and 10 in Listing 6.3)
or floatToStr, respectively.

if -statement In Delphi, the if -statement boolean (true/false) condition is placed be-
tween the if and then keywords (line 7 in Listing 6.3). The else keyword is used
to indicate statements that must be executed if the boolean condition (line 7 in
Listing 6.3) evaluates to false.

Listing 6.3: Delphi: String handling, if -statements, input and output

1 var num : i n t e g e r ;
2 i npStr : string ;
3 begin
4 i npStr := edtWord . Text ;
5 num := length ( inpStr ) ;
6

7 i f (num mod 2 = 0) then
8 lb lOutput . capt ion := ’ Length␣ ’ + intToStr (num) + ’ ␣even ’
9 else

10 lb lOutput . capt ion := ’ Length␣ ’ + intToStr (num) + ’ ␣odd ’ ;
11

12 lb lOutput2 . capt ion := ’The␣ f i r s t ␣ l e t t e r ␣ i s ␣ ’ + inpStr [ 1 ] ;
13 end ;

Variables Variables are declared after the procedure (or function) header and before
the first begin keyword. Variables cannot be declared in the code body as is the
case with other programming languages such as Java. The var keyword is used
to indicate the declaration of variables. The variable names are listed followed by



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 101

a colon (:) and the data type of the variables (lines 1-2 in Listing 6.3). Multiple
variable names of the same data type can be listed together. Values are assigned to
variables using := .

Input IT learners are taught to receive input for program from users using graphical
components such as an edit box (edtWord in Figure 6.1), radio button or checkbox.
Variables can be assigned to the value of graphical components. For example, line
4 of the code in Listing 6.3 assigns a value entered by a user in the edit box (Fig-
ure 6.1) to the string variable inpStr.

Output IT learners are taught to display the output of a Delphi program in a graphical
component such as a label (lblOutput and lblOutput2 in Figure 6.1). A string
value is typically assigned to a property of the graphical component. For example,
a string value is assigned to the caption properties of the two label components in
Listing 6.3 (lines 8, 10 and 12).

Figure 6.1: Sample program (Listing 6.3) executed in Delphi

Figure 6.1 is a screenshot of the resulting GUI interface generated for input from and
output to the user during execution of the sample program from Listing 6.3. The user
types a word in the edit box (edtWord), clicks the button (named Calculate) and the
program (Listing 6.3) will display the output in the two label components.

6.2.2 RoboMind

RoboMind supports a Java-type programming language called Robo that can implement
looping, if -statements and self-defined procedures with or without parameters. RoboMind



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 102

also supports the use of various pre-defined commands used to control the actions of the
robot in the map world (Section 5.3.1).

The implementation of programming concepts in the unadapted RoboMind are presented
(Section 6.2.2.1). The RoboMind source code has been adapted so that the supported
programming concept syntax is the same or similar to the Delphi programming language
syntax (Section 6.2.2.2). The source code has also been adapted so that RoboMind can
support variables and repeat-loops.

6.2.2.1 Unadapted RoboMind

Programs in the unadapted RoboMind do not comply with any of the general Delphi
programming rules (Section 6.2.1):

1. Curly brackets are used to delimit the start ({) and end (}) of code blocks – begin
and end keywords are used in Delphi. RoboMind does not require a main code
block to be delimited – there is no opening { or closing } .
RoboMind requires code blocks to be delimited for programming statements related
to if -statements and looping commands, regardless of the number of statements that
are to be executed. Delphi does not require code blocks specified for if -statements
and loops although only the first code statement is associated with the preceding
if, else, while-loop, or for-loop command.

2. Code statements are not separated with a semicolon. No statement separator is
used in RoboMind.

3. Procedure/function and reserved keyword names are case sensitive.

4. No assignments or boolean evaluations of equality (=) are supported in the un-
adapted RoboMind.

Table 6.2: Correspondence of programming concepts implemented in Delphi and unadapted
RoboMind

Concept RoboMind Delphi
Procedures (and
parameters)

procedure turn (a,b) procedure turn(a,b:integer)

while-loop repeatWhile(frontIsClear()) while (frontIsClear()) do
for-loop repeat(3) for i := 1 to 3 do
if-statement if (frontIsClear()) if (frontIsClear()) then

The unadapted RoboMind supports five programming concepts, namely procedures, the
use of parameters, while-loops, for-loops and if -statements. Only the implementation of
procedures in the unadapted RoboMind is the same as in Delphi (Table 6.2).



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 103

Procedures The same as in Delphi, RoboMind uses the procedure keyword to define a
procedure. A procedure is called using the procedure’s name.

Correct use of parameters Parameters can be passed to procedures in RoboMind.
However, only integer parameters are supported. The parameter data type is thus
not specified when the procedure is defined.

while-loop The while-loop is supported in the unadapted RoboMind, however, the syntax
differs from the implementation in Delphi (Table 6.2). The repeatWhile keyword
is used instead of the while..do keywords.

for-loop RoboMind implements a determinate loop structure as repeat(x), where x
indicates the exact number of times the loop must execute. No counter variable is
used as in Delphi.

if -statements The only difference between the unadapted RoboMind and the Delphi
programming language is that Delphi requires a then keyword after the condition
is stated (Section 6.2.1) while RoboMind does not. For example, Table 6.2 compares
statements in Delphi and the unadapted RoboMind that would be used to check if
the front is clear. Nested if -statements are also supported by RoboMind.

6.2.2.2 Adapted RoboMind

RoboMind’s source code is open source Java code. Adaptations can be made to any aspect
of RoboMind including the graphics and the interpreter that converts a code solution in
RoboMind to actions that the robot must perform. The scope of the adaptations for this
research were restricted to making the syntax of programming concepts similar to or the
same as the Delphi programming language syntax.

Adaptations were thus restricted to the implementation of the RoboMind compiler, specif-
ically the RoboCompiler.java file (Robo.Script.Command package). Where reference is
made to a file that has been adapted, the file (and the package in which the file is in-
cluded) is part of the RoboMind source code.

Adaptations to the RoboMind source code could only be implemented after the method
used to implement the RoboMind software tool, specifically the compiler, had been iden-
tified and understood. The compiler is implemented using a list of commands. Each



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 104

command has a pointer to the next command. In the case of decision commands based
on a boolean condition, one pointer indicates the command to execute if the condition
evaluates as true and another if the condition evaluates as false.

A program in RoboMind is compiled in a two level process. The first compile level parses
the program code to ensure that the syntax is correct. Different commands are iden-
tified and parsed accordingly, for example, if the while keyword is identified, a boolean
expression should be parsed next. If there are no errors parsing the command struc-
ture, instances of specific command objects are created and added to a list of program
commands. The program commands are maintained using an array list. Each program
command instance maintains data such as the current line of execution in the editor and
variable names or integer values passed as arguments for movement commands, for ex-
ample.

The second compile level binds variable values to the list of program commands. For ex-
ample, if the line forward(n);is used in the code, a moveForwardCommand object would
have been added to the program commands list in the first compile level. In the second
compile level the value assigned to the variable n in the code is associated with the move-
ForwardCommand. The second compile level also assigns indices to program command
objects to assist with code execution. For example, the execution of an if -statement must
point to the index of the first statement to be executed depending on the value of the
boolean condition. The index is the position of the associated program command in the
array list of program commands. After the second compile level has completed, the array
list of program commands is interpreted and the commands are converted into visual
actions performed by the robot.

Programming concepts and rules that are supported in RoboMind but the syntax does not
match Delphi, were adapted by changing the keyword pattern strings and/or the order in
which keywords or symbols that are parsed in the first compile level. RoboMind was also
adapted to include repeat-loops and variables as these two concepts are already supported
to a certain extent. Repeat-loops are similar to while-loops. The only differences are the
order in which keywords are parsed and the boolean expression value (true/false) that is
returned. RoboMind supports parameter variables as local variables in procedure code.
The data structures used to maintain and use parameter variables in procedures were
extended to support variables in the main RoboMind code.

Adaptations have been made to RoboMind source code so that the code implemented
in RoboMind complies with the general Delphi programming rules (Section 6.2.1). The
adaptations have been implemented as follows:



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 105

1. Delimitation of code blocks: The begin and end keywords have been defined in
the English version of the Robo Language Definition file (RLD_default_en.properties
in the misc package). The associated string patterns are initiated in the RoboCom-
piler.java file (robo.script package), namely begin, end; and end (used before an
else keyword). The begin and end keywords are recognised instead of the curly
brackets when the source code is parsed.
The adapted RoboMind enforces the requirement of the unadapted RoboMind that
code blocks be delimited to associate program statements with if, else, while-loop
and for-loop commands.

2. Code statements are separated with a semicolon: RoboMind has been adapted
to accept the semicolon as the programming statement separator. This was imple-
mented by parsing the semicolon character after statements such as procedure calls,
variable declarations and assignments, the end keyword and after the until state-
ment of a repeat-loop.

3. Procedure, variable and reserved keyword names are not case sensitive: The
Java Pattern class (Pattern.java) is used by RoboMind to match string keywords
in the program code to the syntax of programming concept keywords when the
program is parsed. The adaptation to make the program code case insensitive has
been implemented by including the Pattern.CASE_INSENSITIVE flag when the
keyword string is compiled to an instance of the Pattern class.

The syntax of supported looping commands, namely for-loops and while-loops, have been
adapted. The RoboMind compiler has also been adapted to support repeat-loops and the
use of variables. The adapted RoboMind code in Figure 6.2 is equivalent to the Delphi
sample program in Listing 6.1.

Procedures The implementation of procedures in RoboMind is the same as the im-
plementation of procedures in Delphi. No adaptations were thus required. The
procedure is defined using the procedure keyword followed by the name of the
procedure (line 1 of sample code in Figure 6.2). The procedure is called using the
procedure name and arguments in brackets (line 11 of sample code in Figure 6.2).

Correct use of parameters No changes have been made to the implementation of pa-
rameters in RoboMind. RoboMind does not support the specification of data types
when the parameter variables are defined in the procedure declaration (line 1 of
sample code in Figure 6.2). RoboMind only supports integer data types as proce-
dure arguments. The compiler would have been adapted to include data types if
procedures were required to pass more than one type of data type as parameters.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 106

Figure 6.2: Adapted RoboMind: Procedures and use of parameters

repeat-loop RoboMind supports the implementation of while-loops. The difference be-
tween the implementation of repeat-loops and while-loops in Delphi is that a repeat-
loop is post-conditional and a while-loop is pre-conditional. The boolean condition
of a repeat-loop must be true to stop execution of the loop while the boolean con-
dition of a while-loop must be false to stop execution of the loop.

The code to compile a while-loop in RoboMind was used as a template for the imple-
mentation of the repeat-loop. The repeat and until keywords were defined in the
English version of the Robo Language Definition file (RLD_default_en.properties)
and the associated string patterns were initiated in the RoboCompiler.java file
(robo.script package).

Two boolean methods – tryParseBeginRepeatUntil() and tryParseEndRepeatUntil()
– were created in the RoboCompiler.java file (robo.script package) to parse the start
and end of the repeat-loop, respectively, during the first compile level. An instance
of the custom program command procedure, BeginRepeatUntilCommand is added
to the list of program commands when the start of the repeat-loop is parsed. The
end of the repeat-loop is specified in the list of program commands by adding an
instance of the custom program command procedure, EndRepeatUntilCommand to
the list. EndRepeatUntilCommand keeps a reference to the associated BeginRepea-
tUntilCommand object.

The second compile level sets the index of the first code statement that must be
executed in the loop after the repeat-loop condition is evaluated. The code execu-
tion jumps back to this index in the list after evaluating the boolean loop condition
to false. If the boolean loop condition is evaluated to true, the next program com-
mand in the command list, is executed. The repeat-loop in the adapted RoboMind



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 107

is thus post-conditional and the loop continues if the condition is false, the same as
in Delphi. The syntax of the repeat-loop also matches the Delphi syntax (Figure 6.3).

Figure 6.3: Adapted RoboMind: for-loop, repeat-loop and while-loop

while-loop The while and do keywords have been defined in the English version of the
Robo Language Definition file (RLD_default_en.properties) and initiated in the
RoboCompiler.java file (robo.script package). The parsing code in the first compile
level has been changed to parse the do keyword after the boolean loop condition.
Figure 6.3 indicates the implementation of the while-loop in the adapted RoboMind.

for-loop The repeat(x)command supported by the unadapted RoboMind is the equiv-
alent of the for-loop where the loop counter starts from one and loops until the
counter variable is greater than x. The loop thus iterates x times. The Delphi code
equivalent is for i := 1 to x do, where i is the counter variable of integer type.
The counter variable in the RoboMind implementation is not specified by the user,
although a counter variable is used during compilation.

The adaptation implemented replaces the repeat keyword with the keyword for1to
(Figure 6.3). The new keyword includes the for substring as well as indicates that
the loop will iterate from the integer value one (1) to a specified ending value – an
integer value or variable. The counter variable remains hidden and is not specified.

if -statements The adapted RoboMind supports the then keyword to be present after
the condition in the if -statement. The statement before the elsekeyword - the end



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 108

Figure 6.4: Adapted RoboMind: Variables and if -statements

keyword in the adapted RoboMind - should not be followed by a semicolon (line
9 of Figure 6.4). These two rules have been implemented in order to make the
RoboMind programming language syntax consistent with the Delphi programming
language syntax.

The code for parsing if -statements in the first compile level has been adapted to
parse the then keyword after the boolean expression is evaluated. A semicolon is
not parsed following the end before an else keyword.

Variables RoboMind has been adapted to support variables in the main procedure by
allowing a variable to be created and assigned a value (lines 1 and 2 of Figure 6.4).
No data types are indicated as only integer variables are accepted. Variables can be
used as arguments for movement commands or self-defined procedures.

The implementation of parameters for self-defined procedures has been used as
a template indicating the data structures and algorithms required to implement
variables. An array list has been added to the RoboMind source code (RoboCom-
piler.java) to maintain variables and the values assigned to variables. Separate lists



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 109

enable the compiler to differentiate between self-defined procedure parameters and
variables within the scope of the main procedure (Figure 6.4).

In the Delphi programming language, all variables are declared before the begin
statement for the program or procedure (Section 6.2). In the adapted RoboMind,
variables can be declared anywhere in the code before the variable is used as an ar-
gument. The declaration of variables in the adapted RoboMind differs from Delphi
because this was the best possible method of supporting variables at the time.

The possibility of implementing programming concepts not supported in the unadapted
RoboMind is influenced by the robot microworld. The purpose of programs created in
RoboMind are to control the robot in the microworld. Programming concepts that are not
required for the robot’s interactions with and movement in the microworld, are difficult to
support in RoboMind as the programming output techniques and purpose of the robot in
the microworld would need to be changed. The purpose of adaptation to the PATs is only
focused on programming language syntax and supporting programming concepts that are
already supported in some way, hence the support added for variables and repeat-loops
in RoboMind.

6.2.3 Scratch

Scratch is a PAT that allows users to create programs using a drag-and-drop interface
that does not enforce syntax rules (Section 5.3.4). Users, therefore, do not need to be
concerned with the overhead of programming language syntax. More focus can be given
to the planning of programming solutions. Scratch is not open-source software, thus no
adaptations could be made to Scratch. The differences between the implementation of
programming concepts in Scratch and Delphi are highlighted:

Procedures Multiple scripts can be created for different events that occur such as a key
that is pressed or if one sprite touches another. Scripts can also be called when a
name is broadcast (Figure 6.5 is the Scratch equivalent to the Delphi sample pro-
gram in Listing 6.1). Broadcasting a specified name is the equivalent of a procedure
call in Delphi. The When I receive block script is the equivalent of the procedure
code.

Correct use of parameters Procedure parameters are not supported in Scratch. Global
variables are used instead of passing parameter values to the procedure.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 110

Figure 6.5: Scratch: Procedures

One-dimensional arrays Scratch supports the implementation of a list. A list is sim-
ilar to a dynamic array in Delphi. The length of the list is not specified when the
list is created. Values can be added to the list without specifying a position, in
which case the value is appended at the end of the list. Values can also be inserted
at specific positions in the list (Figure 6.6, which is the Scratch equivalent to the
Delphi sample program in Listing 6.2), similar to assigning values to a static array
at specific index positions.

repeat-loops The Delphi repeat-loop equivalent in Scratch is the repeat until block
(Figure 6.6). The loop terminates when the conditional statement is true, which
is equivalent to the implementation of the repeat-loop in Delphi. However, in Del-
phi, the repeat-loop is post-conditional while in Scratch it is pre-conditional. The
wording used on the block can also be associated to the syntax of the repeat-loop
in Delphi.

while-loops The forever if block in Scratch (Figure 6.6) is equivalent to the while-
loop in Delphi. The loop continues while the conditional statement is true and the
loop is pre-conditional, which is equivalent to the implementation of the while-loop
in Delphi (Section 6.2.1). The wording on the block, however, does not correspond
to the syntax of the while-loop in Delphi.

for-loops The Scratch equivalent of the Delphi for-loop is the The repeat block (Fig-
ure 6.6). However, only the number of times the code in the block must be repeated
is specified. The repeat block is thus equivalent to a Delphi for-loop in which the



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 111

Figure 6.6: Scratch: Arrays and looping

counter variable iterates from the value one (1) to the integer value specified. No
counter variable is defined in the Scratch repeat block. In addition, the wording
used on the block is not consistent with the Delphi for-loop syntax.

String handling Scratch supports Delphi string operations (Figure 6.7, which is the
Scratch equivalent to the Delphi sample program in Listing 6.3) such as joining
words and values in a string, determining the length of a string and returning spe-
cific characters within a string. The wording used on the blocks differs from the
syntax that is used in Delphi.

if -statements Scratch supports if -statements (Figure 6.7). A simple if block as well as
an if else block are available for use in program solutions. Nested if -statements
are also supported in Scratch.

Variables Variables are supported although no data types are specified. Values are as-
signed to variables using the set block. The orange blocks in each of the three
figures (Figure 6.5, 6.6 and 6.7) demonstrate the use of variables in Scratch.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 112

Figure 6.7: Scratch: String handling, if -statements, input and output

Input Scratch is able to execute scripts triggered by events such as mouse-clicks or key
presses, as in Delphi. Scratch is also able to accept string input from the user using
the ask block (Figure 6.7).

Output Scratch supports different types of program output. Sprites can move, change
colours, draw pictures and play music. String output which is the most common
form of output in Delphi, can also be displayed (Figure 6.7).

Figure 6.8: Sample program (Figure 6.7) executed in Scratch

Figure 6.8 is an example of the input and output screens that are displayed to users when
the sample program in Figure 6.7 is executed. Any of the sprites can ask for user input
that can be assigned to a variable and display speech bubbles to display messages to users
as output.



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 113

6.2.4 B#

B# is an iconic PAT in which the user can create a flowchart to solve a particular program-
ming problem by dragging icons from the toolbar. B# automatically generates program
code for a Delphi console application from the flowchart created by the user.

The only programming concepts supported by B# that differ with regard to syntax from
Delphi are input and output. B# interacts with users using a console application for the
main execution, however, when tracing through the program GUI forms are used to accept
user input. The Delphi programming environment can be used to create console appli-
cations as well as programs with a Graphical User Interface (GUI). The subject content
outline for programming in the IT subject requires IT learners to create programs that in-
teract with users (input and output) using a GUI. IT learners programming in Delphi are
not required to and may not be explicitly taught to use a console line application interface.

Input In B# input is obtained from the user by displaying a message instructing the user
what to enter (Figure 6.10) and then assigning the value entered by the user to a
variable. The instruction to enter data is achieved by using the writeln command
(Table 6.3). The program then waits for the user to enter a number and press Enter.
The value entered by the user is assigned to a variable using the readln procedure
(Table 6.3). No string to integer conversion is necessary if the user input is assigned
to an integer variable.

Table 6.3: Comparison of statements to read in input from the user in Delphi and B#

Delphi B#

num := strToInt(edtNum.text); writeln(’Enter a number’);
readln(num);

In Delphi the user types input into a graphical component such as an edit box. The
Delphi code in Table 6.3 demonstrates how the text value in an edit box (edtNum)
is converted to an integer value and is assigned to the integer variable num. The
string to integer conversion is achieved using the strToInt function.

Output There are differences in the manner in which output would be displayed to a
user in Delphi and B#. Delphi uses graphical components such as a label, memo
box or rich edit to display string output. Table 6.4 shows the Delphi code used to
display a message indicating the value entered by the user. In the Delphi example



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 114

code, the output is displayed using a graphical label component (lblOutput) on
a form. B# uses the writeln procedure to display a string in the command line
console.

Table 6.4: Comparison of statements to display output to the user in Delphi and B#

Delphi B#

lblOutput.caption := ’The user
entered’ + intToStr(num);

writeln(’The user entered’, num);

There is a difference in the manner in which the string output is constructed in Del-
phi and B#. In Delphi, the plus sign (+) is used to concatenate two string types.
An integer to string conversion (intToStr) is necessary in Delphi if the value of
an integer variable must be displayed (Table 6.4). However, in B# the writeln
procedure accepts multiple arguments where different data types are separated by
commas. The writeln procedure handles the concatenation of the arguments into
a string to be displayed in the console application. For example, in Table 6.4 the
string and integer variables are delimited using a comma and the integer variable,
num is not converted to a string value.

An alternative would be first to assign the output string to a string variable and then
only pass the string variable as the writeln argument (Listing 6.4). The string and
number values can be concatenated using the plus sign (+) and an integer to string
conversion is required for integer values using intToStr (floatToStr required to
convert real numbers to a string). However, B# does not support string handling
therefore strings cannot be concatenated using the plus sign. The intToStr func-
tion is also not recognised by B#.

Listing 6.4: String handling for console application

1 var s : string ;
2 num : i n t e g e r ;
3 begin
4 s := ’The␣ user ␣ entered ’ + intToStr (num) ;
5 writeln ( s ) ;
6 end ;

B# automatically generates program code based on the flowchart created by users. Fig-
ure 6.9 is an example of the program code generated in B# that corresponds to the Delphi
sample program in Listing 6.3. The console application corresponding to the B# program



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 115

Figure 6.9: B#: Input and output

code, is shown in Figure 6.10. The code and console application are the B# equivalents
to the Delphi sample code listing in Listing 6.3 and the Delphi GUI form in Figure 6.1,
respectively.

Figure 6.10: Console application created using B#

The main difference of the B# tool is that input and output of data is executed using a
console application (Figure 6.10). IT learners using Delphi write programs that receive
input and display output using graphical user interface components such as edit boxes
and memo boxes (Figure 6.1).

The only adaptations that would be considered in B# is to add basic string handling and
allow B# to recognise the intToStr function. This would allow the output to users to be



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 116

handled similarly to Delphi. However, adaptations to B# have not been possible as the
source code available is incomplete and does not allow the full project file to be opened
or compiled.

6.3 Conclusion

The adaptations to the RoboMind tool have been implemented and supplementary sup-
port has been provided to support the understanding of programming concepts using the
PATs. This is in order to address RQ4: How can the selected PATs be adapted for use by
IT learners in SA secondary schools to support the understanding of programming con-
cepts? and address Secondary Objective 1.2: Adapt selected PATs to make them suitable
to support the achievement of programming learning outcomes in the IT subject curricu-
lum implemented in South African secondary schools.

Table 6.5: Support of programming concepts: Adapted RoboMind, Scratch and B#

Programming Concept R
ob

oM
in
d

Sc
ra
tc
h

B
#

Procedures X ?
Functions
One-dimensional arrays ?
repeat..until loops X ? X
Objects & classes ?
Two-dimensional arrays
while..do loops X ? X
String handling ?
for-loops ? ? X
Correct use of parameters ?
if -statements X ? X
SQL statements
File handling
Accessing database
case (Delphi)/switch (Java) statements X
Output ? ?
Variables ? ? X
Input ? ?

X= Concept supported and syntax matches Delphi
? = Concept supported but syntax does not match Delphi
blank = PAT does not support the concept

The three PATs - RoboMind, Scratch and B# - have been identified as the most suitable
for IT learners using Delphi as the programming language based on an evaluation using



CHAPTER 6. PAT PREPARATION FOR IT LEARNERS 117

the formulated selection criteria (Section 5.5). RoboMind has been adapted to support the
Delphi syntax of programming concepts and support has been provided for variables and
repeat-loops. Table 6.5 provides an indication of the programming concepts supported by
the three PATs that are evaluated by the participating IT learners.

In addition to comparing the syntax of programming concepts implemented in Delphi and
the three PATs, other properties and shortcomings of the PATs are identified. RoboMind
is open-source which allows the programming language used to program the robot to be
adapted. It can therefore be made the same or similar to the programming language in
which the learner is learning to program. However, adaptations to include programming
concepts not supported by RoboMind are influenced by the microworld environment with
which the robot interacts. Any programming concepts implemented should have a pur-
pose for the robot. For example, support for string handling would not be necessary until
a reason for the robot to use strings is implemented such as interaction with a user or
“reading” instructions.

Scratch cannot be adapted. The programming concept keywords used are general and
not specific to a particular high-level programming language. Scratch can thus be used
when learning any high-level language. The keywords used are also simple enough for
learners to transfer to programming concepts being learnt in a high-level programming
language, such as Java or Delphi. There are differences in the manner in which the loop-
ing structures are implemented. This may cause confusion for IT learners trying to find
the equivalent looping structure in Delphi.

B# has also not been adapted due to difficulties opening the full project file in Delphi.
IT learners using Delphi do not use a console application at any stage. However, many
PATs use console applications to accept input from and display output to users, as do the
IT learners using the Java programming language (Section 1.5).

The next phase of this research is the evaluation of the impact of the three PATs on
IT learner understanding of programming concepts (Chapter 7) and motivation towards
programming (Chapter 8). The evaluation is a comparison of the control and treatment
group responses from participating learners.



Chapter 7

The Impact of PATs on the
Understanding of Programming
Concepts

7.1 Introduction

Three PATs - RoboMind, Scratch and B# - have been selected for participating treat-
ment group learners to evaluate at the four participating schools. This chapter together
with Chapter 8, addresses Primary Objective 2: To evaluate the impact of the selected
programming assistance tools (PATs) on a novice programmer’s understanding of pro-
gramming concepts included in the IT subject curriculum implemented in a case study of
South African secondary schools.

The aim of this chapter is specifically to address Secondary Objective 2.1: Evaluate the
impact of the proposed PATs on IT learner understanding of programming concepts. This
is achieved by comparing control and treatment group results in terms of perceived dif-
ficulty of IT (Grade 11). Multiple choice class test scores and end-of-year summative
assessment marks for the IT subject are also analysed to assess IT learner understand-
ing of programming concepts. Self-reported evaluations of the PATs by treatment group
learners provide feedback from IT learners related to the usefulness of the PAT with re-
spect to the understanding of specific programming concepts, as well as learner comments
on what they preferred or did not prefer about the PAT.

The questionnaire and multiple choice class test results are used to address RQ5: What
impact do the different PATs have on IT learner understanding of programming concepts?
In addressing RQ5, the research hypothesis H1 (Section 2.3) is tested to determine if
the null hypothesis H1,0, which states that there is no difference between the assessment

118



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 119

means of the control and treatment groups (µ1=µ2, µ1 is the control group assessment
mean, µ2 is the treatment group assessment mean), is rejected. If H1,0 is rejected, the
alternative hypothesis, H1,1: µ1 6= µ2, is accepted. The impact of the techniques used
by PATs on learner understanding of programming concepts is also evaluated in order
to address RQ7: What techniques should PATs implement in order to assist IT learner
understanding of programming concepts?

The application of the experimental procedure is explained together with a presentation
for research sample sizes, overall results and difficulties experienced (Section 7.2). The
results for each of the PATs provided to the four participating schools, namely RoboMind
(Section 7.3.1), Scratch (Section 7.3.2) and B# (Section 7.3.3), are presented. Finally,
the impact of each of the PATs on IT learner understanding of programming concepts, to
address RQ5 and RQ7, as well as whether the null hypothesis, H1,0, is rejected based on
the results, are evaluated in the conclusion (Section 7.4).

7.2 Application of Experimental Procedure

A breakdown of the number of learners participating in the research in the control and
treatment groups (Section 7.2.1) and a description of the supporting documentation pro-
vided to treatment group learners when the PAT was administered (Section 7.2.2), are
presented. The data collection methods are discussed (Section 7.2.3), followed by over-
all inferential analysis results comparing the entire control and treatment group samples
(Section 7.2.4), regardless of PAT. The difficulties experienced during the experimental
study, resulting in incomplete data, are highlighted (Section 7.2.5) before the results for
the different PATs are presented (Section 7.3).

7.2.1 Research Sample

The participants for this research study consisted of Grade 10 and Grade 11 IT sub-
ject learners at four consenting schools in the Port Elizabeth area. The sample size of
participants in each school-grade group was affected by the class size and willingness of
individual learners to participate.

Learners in the Grade 10 and Grade 11 IT subject class at each school in the first year
form part of the control group (Table 7.1). Learners in the Grade 10 and Grade 11 IT
subject class at each school in the second year all received the PAT. However, use of the
PAT was not enforced, thus consenting learners who chose not to use the PAT ultimately



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 120

form part of the control group, while learners that indicated that they installed and used
the PAT form the treatment group.

Table 7.1: Number of participants in control and treatment groups. Two schools received
Scratch and are identified as Scratch1 and Scratch2.

Control Treatment
PAT Grade 10 Grade 11 Total Grade 10 Grade 11 Total
RoboMind 25 27 52 24 4 28
Scratch1 24 15 39 5 3 8
Scratch2 7 5 12 14 6 19
B# 17 12 29 18 11 29
Total 73 59 132 60 24 84

Two schools received Scratch (Table 7.1). These were the schools with the smallest number
of learners consenting to participate in the second year of the study. Scratch was the PAT
selected to provide to two schools as it received the highest programming concept ranking
score of the PATs selected (Section 5.4.5). Scratch has also been recommended in the
new IT subject curriculum to teach programming to Grade 10 IT learners (Department
of Basic Education, 2011).

7.2.2 Supplementary Support

A brief presentation demonstrating installation and use of the PATs was provided to
treatment group learners when they received the PATs. Supporting documentation (Ap-
pendix G) accompanied each of the PATs, including a brief description of the PAT together
with instructions on how to install the PAT. Details of how to use the PAT and to find
example programs are included in the supporting documentation. The supporting docu-
mentation for each of the three PATs also includes a screenshot for each PAT accompanied
by a brief description of the interface and guidelines for using the PAT.

Each of the three PATs included supplementary support in the form of help files, online
help (website) and/or example programs to illustrate use of the PAT. The Scratch help
files, included with the installation, provide a detailed description of how to use Scratch.
The help topics available within the RoboMind environment explain the robot commands
that can be used and provide four example programs. Tutorial help files explaining how
to use B# are included with the B# installation but the help files are not accessible from
within the B# programming tool interface.

In addition to the help files, RoboMind and Scratch include example programs when in-
stalled. Scratch provides users with access to a large collection of example programs



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 121

which are categorised into subfolders such as animation, games, greetings, interactive art,
simulations and stories. The example programs provided with the Scratch installation are
complex, interactive scripts, in most cases using multiple sprite objects. Novice program-
mers may find these programs difficult to understand when first learning to use Scratch.

A folder containing example programs, compiled specifically for this research study, has
been included with each of the three PATs provided to IT learners. The aim of the example
programs is to demonstrate how programming concepts included in the IT curriculum can
be implemented in the PAT. In particular, the example programs included with Scratch
provide simple programs to assist users to start using Scratch as well as to demonstrate
how different programming concepts, such as arrays, looping and conditional statements,
can be implemented. In RoboMind, example programs, included with the original version,
have been rewritten in the adapted RoboMind programming syntax. Additional exercises
have also been included to demonstrate the different programming concepts that can be
implemented in RoboMind. Similarly, the B# example programs folder provided for IT
learners includes exercises that demonstrate how different programming concepts sup-
ported by B# can be implemented.

7.2.3 Data Collection, Analysis and Presentation

The results presented are categorised according to PAT received and experimental group
(control/treatment). The following notation is used to identify a particular group:

<ExperimentalGroup>(PAT,Grade)

where ExperimentalGroup ∈ {Control, Treatment}, PAT ∈ {Robo, Scratch1, Scratch2,
BSharp} and Grade ∈ {10,11,10&11}. For example, Treatment(BSharp,10) refers to the
Grade 10 treatment group evaluating B#, while Control(Robo,10&11) refers to the entire
control group corresponding to the RoboMind treatment group.

Grade 11 learners in the control and treatment groups completed the Perceived Difficulty
of Programming Questionnaire (Section 2.5.1, Appendix C) at the beginning (pretest)
and towards the end (posttest) of the year (Figure 7.1). The Perceived Difficulty of Pro-
gramming Questionnaire evaluates IT learners’ perceptions of the difficulty of specific
programming concepts as well as learners’ perceived ability to understand and apply pro-
gramming knowledge and skills.

Multiple choice class tests are used to assess IT learner understanding of specific pro-
gramming concepts (Section 2.5.2, Appendix D). The tests are administered to the entire



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 122

Figure 7.1: Pre- and posttests administered during the quasi-experimental approach

IT class (including non-participating learners) by the IT teacher as a class test after the
programming concept has been taught to the learners. IT classes of both academic years
at all the schools wrote the same tests.

Table 7.2: Multiple choice class tests used to evaluate IT learner understanding of programming
concepts

Grade 10 Grade 11
Programming Concept Questions Total Mark Questions Total Mark
if -statements 12 25
for-loops 8 16
repeat and while-loops 12 24
One-dimensional arrays 10 20
Procedures and functions 10 20



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 123

Five multiple choice tests (Appendix D) have been administered to IT learners to assess
their knowledge of specific programming concepts (Table 7.2). All the concepts assessed
are identified as difficult concepts from the study of related literature (Section 3.4). All of
the programming concepts evaluated, using multiple choice tests, except for if -statements,
are in the top ten most difficult programming concepts with which IT learners need as-
sistance (Section 4.4).

The Grade 10 multiple choice tests evaluate programming concepts that are supported
by all three of the selected PATs (Table 6.1). The questions in the repeat- and while-
loops test are separated to report results on repeat-loops and results on while-loops. No
questions in the repeat- and while-loops test use a combination of the two loops thus the
separation of results is possible.

In addition to the multiple choice class tests, the end-of-year summative assessment marks
achieved by participating Grade 11 IT learners were also used to evaluate the impact of
the PATs on IT learner understanding of programming concepts. No pretest score was
available for Grade 10 learners as IT is not offered in Grade 9.

The PAT Evaluation Questionnaire (Section 2.5.2, Appendix E) was administered to
treatment group IT learners to evaluate their use of the PAT they received. Only the
items to determine the participant’s perceived usefulness of the PAT for the understand-
ing of specific programming concepts are reported in this chapter. The remaining items in
the questionnaire relate to the participant’s motivation towards using the PAT (Chapter
8). Grade 10 and Grade 11 feedback from the PAT Evaluation Questionnaire are com-
bined as the sample sizes for individual grades were too small for the evaluation of certain
of the PATs.

Two-way analysis of variance (ANOVA) and analysis of covariance (ANCOVA) inferential
statistics are used to examine the effect of independent variables as well as the interac-
tion between independent variables (Cohen et al., 2007), respectively. The independent
variables used are experimental group – control or treatment – and PAT. The dependent
continuous variables evaluated are multiple choice class test, final IT subject assessment
mark and Perceived Difficulty of Programming Questionnaire results. Cohen’s d is calcu-
lated to measure practical significance only for statistically significant results.



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 124

7.2.4 Overall Results

Two-way ANOVA results of the multiple choice class tests indicate that there are no
statistically significant results (Table 7.3) for the main effect experimental group or the
interaction effect (PAT*experimental group), indicating that the use of the PATs did
not result in a statistically significant difference in the class test marks of those learners
who used the PAT (treatment group) and those who did not (control group). There was
also no overall statistically significant difference between the control and treatment group
learners, regardless of which PAT was used.

Two-way ANCOVA analysis was used to determine a statistically significant difference
between the control and treatment group final Grade 11 IT assessment mark. The Grade
10 final marks were used as the covariate for the analysis. The analysis indicated that
there is no statistically significant result (Table 7.3) for the main effect experimental group
or the interaction effect (PAT*experimental group) on the final IT assessment mark for
Grade 11 learners.

Table 7.3: ANOVA: Impact of PAT and experimental group on multiple choice test scores and
final Grade 11 IT mark

if for repeat while Procedures Final Mark
df=1;89 df=1;122 df=1;128 df=1;128 df=1;44 df=1;53

Experimental group F 1.735 1.732 0.01 0.62 1.27 0.26
p 0.4001 0.191 0.914 0.433 0.265 0.613

PAT*experimental group F 1.920 1.053 2.24 2.35 1.97 1.22
p 0.153 0.372 0.087 0.075 0.167 0.305

7.2.5 Difficulties Experienced

The completeness and reliability of the results reported in this chapter and the chapter
hereafter have been impacted by the research methods implemented. Difficulties with
regards to the data collection process have resulted.

Questionnaires and class tests were administered to learners by the IT teacher during the
course of the year. The IT teacher’s work schedule also had to be taken into consideration
and the research placed an additional burden on IT teachers. There was no direct con-
trol over the administration of class tests and questionnaires to ensure that the planned
research methods were followed. In certain cases questionnaires were not administered as
planned and some multiple choice class test marks were not obtained due to administra-
tive issues.



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 125

The IT teacher was changed, during the treatment year, at one of the schools using
Scratch. The results of the two Scratch schools are thus reported separately as the change
in the teaching environment could influence results evaluating the impact of the PAT.

Another difficulty experienced with regards to the analysis was as a result of the small
treatment group sample sizes. Not all participants in the treatment group used the PAT
received and learners did not complete all questionnaires. This is a useful result for the
research, however, as small sample sizes (n<10) reduce the reliability of the data analy-
sis. Missing data is brought to the reader’s attention in the appropriate places of analysis.

7.3 Evaluation of PATs

The reported results are presented according to the PATs provided to participating learn-
ers, namely RoboMind (Section 7.3.1), Scratch (Section 7.3.2) and B# (Section 7.3.3).
The Scratch feedback is separated into the feedback from the two schools evaluating
Scratch and identified as Scratch1 and Scratch2. Grade 10 and Grade 11 questionnaire
and multiple choice test results are provided for each PAT. The results aim to provide
feedback on the impact of each PAT on IT learner understanding of programming con-
cepts.

7.3.1 RoboMind

The majority of the learners in Grade 10 (87%, n=24) who received RoboMind utilised the
PAT. In contrast, only 29% (n=4) of the Grade 11 learners who received RoboMind used
the PAT. Grade 11 learners indicated that they did not need to use a PAT as they were
confident in their understanding of Delphi, did not have enough time to use RoboMind or
found RoboMind too complicated to use.

The results from the different questionnaire feedback and class test results are presented
based on the research question the results address. The results that evaluate the impact
of RoboMind on IT learners’ understanding of programming concepts (Section 7.3.1.1)
address RQ5. The results that provide feedback regarding the techniques used by the
RoboMind (Section 7.3.1.2) to support IT learner understanding of programming concepts,
address RQ7.

7.3.1.1 Understanding of Programming Concepts

The impact of RoboMind on the understanding of specific programming concepts is eval-
uated using three instruments (Table 7.4), namely, the Perceived Difficulty of Program-



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 126

T
ab

le
7.

4:
A
da

pt
ed

R
ob

oM
in
d
su
pp

or
t
of

pr
og

ra
m
m
in
g
co
nc

ep
ts

re
su
lts

P
D

P
Q

M
ul

ti
pl

e
C

ho
ic

e
T

es
ts

PA
T

E
va

l
P

ro
gr

am
m

in
g

E
va

l1
E

va
l2

C
on

ce
pt

µ
1

µ
2

A
N

C
O

V
A

µ
1

µ
2

A
N

O
V

A
µ

2
T

-s
ta

t
µ

2
T

-s
ta

t
Pr

oc
ed

ur
es

2.
56

2.
5

F(
1;
16

)=
0.
18

3
88

.1
5

90
.0
0

F(
1;
29

)=
0.
06

9
2.
50

t(
5)
=
-0
.7
45

2.
00

t(
7)
=
-1
.5
28

(1
.7
2)

(0
.5
8)

p
=
0.
67

4
(1
3.
31

)
(1
1.
55

)
p
=
0.
79

4
(1
.6
4)

p
=
0.
49

(1
.8
5)

p
=
0.
17

0
n
=
27

n
=
4

n
=
27

n
=
4

n
=
6

n
=
8

re
pe
at
-lo

op
s

2.
22

1.
00

F(
1;
27

)=
6.
49

70
.0
0

74
.8
1

F(
1;
47

)=
0.
63

2.
43

t(
6)
=
-0
.9
3

2.
71

t(
16

)=
-0
.9
6

(1
.3
4)

(0
.0
0)

p=
0.

01
7*

(2
2.
04

)
(2
0.
45

)
p=

0.
43

3
(1
.6
3)

p=
0.
38

6
(1
.8
5)

p=
0.
17

0
n
=
27

n
=
4

n
=
22

n
=
27

n
=
7

n
=
17

wh
ile

-lo
op

s
2.
04

1.
00

F(
1;
27

)=
5.
54

77
.9
2

84
.1
3

F(
1;
47

)=
1.
38

2.
00

t(
5)
=
-1
.9
4

2.
65

t(
16

)=
-1
.1
4

(1
.1
9)

(0
.0
0)

p=
0.

02
6*

(2
3.
63

)
(1
2.
74

)
p=

0.
24

7
(1
.6
2)

p=
0.
38

6
(1
.2
7)

p=
0.
26

9
n
=
27

n
=
4

n
=
22

n
=
27

n
=
6

n
=
17

fo
r-
lo
op

s
1.
63

1.
00

F(
1;
27

)=
3.
49

79
.0
9

82
.1
5

F(
1;
47

)=
0.
40

2.
38

t(
7)
=
-1
.0
5

2.
71

t(
16

)=
-1
.0
0

(0
.8
4)

(0
.0
0)

p=
0.
07

3
(1
8.
8)

(1
5.
21

)
p=

0.
53

2
(1
.6
9)

p=
0.
32

9
(1
.2
1)

p=
0.
33

2
n
=
27

n
=
4

n
=
22

n
=
27

n
=
8

n
=
17

C
or
re
ct

us
e
of

2.
52

3.
50

F(
1;
22

)=
1.
87

pa
ra
m
et
er
s

(1
.7
2)

(2
.3
8)

p=
0.
18

6
n
=
27

n
=
4

if
-s
ta
te
m
en
ts

1.
44

1.
00

F(
1;
27

)=
2.
76

73
.8
2

79
.5
6

F(
1;
47

)=
1.
60

2.
96

t(
24

)=
-0
.1
7

3.
00

t(
20

)=
-0
.0
0

(0
.8
5)

(0
.0
0)

p=
0.
10

8
(1
4.
75

)
(1
6.
62

)
p=

0.
21

3
(1
.0
1)

p=
0.
87

0
(1
.3
0)

p=
1.
00

n
=
27

n
=
4

n
=
22

n
=
27

n
=
25

n
=
21

Va
ria

bl
es

1.
19

1.
00

F(
1;
27

)=
1.
65

2.
88

t(
23

)=
-0
.5
5

2.
70

t(
19

)=
-1
.1
4

(0
.4
0)

(0
.0
0)

p=
0.
21

0
(1
.1
2)

p=
0.
58

8
(1
.1
7)

p=
0.
26

7
n
=
27

n
=
4

n
=
24

n
=
20

*
p
<
0.
05



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 127

ming Questionnaire (PDPQ) (Appendix C), multiple choice class tests (Appendix D) and
PAT Evaluation Questionnaire for RoboMind (Appendix E). The specific programming
concepts evaluated are the concepts supported by RoboMind (Section 6.2.2). The ques-
tionnaire results for the Perceived Difficulty of Programming Questionnaire and the PAT
Evaluation Questionnaire are self-reported metrics, while the multiple choice class tests
are tests to assess learner knowledge of the programming concepts. The multiple choice
tests are standard for all participants. One sample t-tests are used to test the evaluation
mean against the neutral value of 3 for the PAT Evaluation Questionnaire results. Higher
evaluation values indicate learners believe the PAT assisted. Standard deviation values
are indicated in brackets below the mean values.

A comparison of the mean scores of the control and treatment group posttest results
for the Perceived Difficulty of Programming Questionnaire indicate that learners in the
treatment group perceived the programming concepts to be easier than the control group
did, except for the use of parameters (Table 7.4). The differences between the control and
treatment group means for the repeat- (F(1;27)=6.49, p=0.017) and while-loop concepts
(F(1;27)=5.54, p=0.026) are statistically significant.

The multiple choice class test results (Table 7.4) indicate that the treatment group test
means are higher than the control group means for all of the programming concepts eval-
uated. No class tests specifically evaluated learner understanding of the use of parameters
or variables. One-way ANOVA analysis showed no statistically significant differences be-
tween the class test means. The array test results for Grade 11 learners are not included
as RoboMind does not support arrays and the array test was administered to learners in
the treatment group before RoboMind was received.

Treatment(Robo,10&11) group respondents evaluated the usefulness of RoboMind twice in the
academic year (Section 7.2.3). The usefulness of RoboMind in terms of assisting with the
understanding of the programming concepts supported was evaluated using a semantic
differential scale where a rating of 1 indicates that learners strongly disagreed and a rating
of 5 indicates that learners strongly agreed that RoboMind assisted their understanding
of the concept. The mean evaluation ratings (Table 7.4) for all of the concepts are less
than, or equal to the neutral value, 3. One sample t-tests indicate that none of the pro-
gramming concept mean values are statistically significantly different from the neutral
value. Both evaluation results indicate the highest mean ratings for the support provided
by RoboMind for the understanding of if -statements (µ2=2.96 for the first and µ2=3.00
for the second evaluation).



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 128

In summary, the results indicate statistically significant mean score differences between
the control and treatment group for repeat- and while-loops in terms of learner perceptions
of difficulty. The treatment group mean class test mark for these two concepts is higher
than the control group mean, although not statistically significant. The results from all
three instruments indicate support for the understanding of if -statements. For each of
these concepts, RoboMind supports the correct syntax and implementation (Section 6.2.2).

Treatment(Robo,10&11) group respondents (n=10) provided qualitative feedback about what
they liked and disliked about RoboMind (PAT Evaluation Questionnaire, Appendix E).
Ninety percent of respondents (n=9) indicated that RoboMind helped to practise basic
programming concepts. Forty percent of respondents (n=4) indicated that they disliked
that the syntax of certain of the programming concepts supported in RoboMind (Section
6.2.2) are slightly different to coding in Delphi. Forty percent of the responses (n=4)
indicated dislike for the fact that RoboMind supports a limited number of programming
concepts.

7.3.1.2 Evaluation of Techniques

RoboMind represents the program solution output as a robot moving around a map world
(Table 7.5). The program solution is text code displayed next to the microworld anima-
tion during program execution.

Table 7.5: RoboMind techniques

Representation of the program solution
Text

Construction of programs
Typing of code
Selecting/form filling

Resulting program
Microworld

Support to understand programs
Debugging

Preventing syntax errors
Selection from valid options
Informative syntax error messages

Treatment(Robo,10&11) learner responses (40%, n=6) to open-ended questions in the PAT
Evaluation Questionnaire related to the techniques used by RoboMind to support pro-
gramming indicated that having the microworld next to the code being executed made it



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 129

easier to see how the code is being implemented. Learners did not make any comment
(like or dislike) related to typing of the code or the textual representation of the code.

7.3.2 Scratch

Scratch was administered to participating Grade 10 and Grade 11 IT learners at two of
the participating schools. The results for each of these schools on the impact of Scratch
on understanding of programming concepts are presented separately as Scratch1 (Section
7.4.2.1) and Scratch2 (Section 7.4.2.2). The results are separated per school as differ-
ent circumstances at each of the schools influence the impact of Scratch on IT learners’
understanding of programming concepts. Specifically, Scratch1 school had a change of
teacher during the treatment year, whereas Scratch2 had no change of teacher. Learner
feedback on the evaluation of the techniques used by Scratch to support programming are
combined as evaluation of the PAT is not influenced by the school environment (Section
7.4.2.3).

7.3.2.1 Understanding of Programming Concepts: Scratch1

Twenty-five percent of Grade 10 learners who received Scratch indicated that they utilised
the PAT. Scratch was used by 38% of the Grade 11 learners who received it. A high rate
of attrition due to teaching circumstances at the school, out of the researchers’ control,
resulted in small sample sizes with regards to Treatment(Scratch1,10&11) group results.

The Perceived Difficulty of Programming Questionnaire, PAT Evaluation Questionnaire
and multiple choice class tests were used to evaluate the impact of Scratch on IT learners’
understanding of the programming concepts supported by Scratch (Table 7.6). Control
and treatment group perceived difficulty of the programming concepts and multiple choice
class test marks are compared.

The mean ratings (Perceived Difficulty of Programming Questionnaire) for input, if -
statements, string handling and procedures indicate that the Treatment(Scratch1,11) group
respondents perceived these concepts to be more difficult than the Control(Scratch1,11) group
respondents. A two-way ANCOVA analysis does not indicate statistically significant dif-
ferences between the control and treatment group mean ratings for any of the program-
ming concepts supported (Table 7.6). The concepts with the lowest treatment group
mean ratings (n=3) and with higher corresponding control group ratings (n=15), are the
for-loop (µ1=1.73, µ2=1.33), while-loop (µ1=1.93, µ2=1.33) and array concepts (µ1=1.87,
µ2=1.33). Only three treatment group learners completed the Perceived Difficulty of Pro-
gramming Questionnaire, affecting the reliability of the comparison between control and



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 130

T
ab

le
7.

6:
Sc

ra
tc
h 1

su
pp

or
t
of

pr
og

ra
m
m
in
g
co
nc

ep
ts

re
su
lts

P
D

P
Q

M
ul

ti
pl

e
C

ho
ic

e
T

es
ts

PA
T

E
va

l
P

ro
gr

am
m

in
g

C
on

ce
pt

µ
1

µ
2

A
N

C
O

V
A

µ
1

µ
2

A
N

O
V

A
µ

2
T

-s
ta

t
St
rin

g
ha

nd
lin

g
1.
80

(0
.8
6)

2.
00

(1
.0
0)

F(
1;
15

)=
0.
75

2.
00

(1
.4
1)

t(
3)
=
-1
.4
1

n=
15

n=
3

p=
0.
40

0
n=

4
p=

0.
25

2
O
ne

-d
im

en
sio

na
l

1.
87

(0
.9
9)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
82

97
.6
7(
4.
95

)
86

.6
7(
23

.0
9)

PA
Ts

re
ce
iv
ed

1.
5(
0.
71

)
t(
1)
=
-3
.0
0

ar
ra
ys

n=
15

n=
3

p=
0.
38

0
n=

15
n=

2
af
te
r
te
st

n=
2

p=
0.
20

5
Pr

oc
ed

ur
es

2.
5(
1.
13

)
3.
3(
2.
08

)
F(

1;
12

)=
1.
60

92
.0
0(
14

.7
4)

75
.0
0(
35

.3
6)

F(
1;
24

)=
1.
78

2.
00

(1
.4
1)

t(
1)
=
-0
.5
00

n=
15

n=
3

p=
0.
23

0
n=

15
n=

2
p=

0.
20

2
n=

2
p=

0.
50

0
re
pe
at
-lo

op
s

2.
27

(1
.1
)

1.
67

(1
.1
5)

F(
1;
14

)=
0.
41

70
.0
0(
30

.0
8)

46
.6
7(
28

.2
8)

F(
1;
24

)=
1.
35

3.
00

(1
.1
5)

t(
3)
=
0.
00

n=
15

n=
3

p=
0.
53

4
n=

20
n=

9
p=

0.
25

7
n=

4
p=

1.
00

wh
ile

-lo
op

s
1.
93

(0
.8
8)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
57

71
.4
3(
22

.7
1)

53
.9
7(
30

.1
2)

F(
1;
24

)=
0.
61

2.
50

(1
.2
9)

t(
3)
=
-0
.7
7

n=
15

n=
3

p=
0.
46

2
n=

20
n=

9
p=

0.
42

2
n=

4
p=

0.
49

5
fo
r-
lo
op

s
1.
73

(0
.8
)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
81

62
.8
4(
20

.0
8)

59
.6
3(
21

.6
7)

F(
1;
24

)=
0.
00

3.
00

(1
.4
1)

t(
3)
=
0.
00

n=
15

n=
3

p=
0.
38

2
n=

19
n=

8
p=

0.
99

9
n=

5
p=

1.
00

0
if
-s
ta
te
m
en
ts

1.
27

(0
.4
6)

1.
68

(1
.1
5)

F(
1;
15

)=
1.
07

72
.0
0(
17

.7
9)

68
.0
0(
14

.0
2)

F(
1;
24

)=
0.
65

3.
60

(1
.1
4)

t(
4)
=
1.
18

n=
15

n=
3

p=
0.
31

7
n=

20
n=

8
p=

0.
43

0
n=

5
p=

0.
30

5
Va

ria
bl
es

1.
33

(0
.3
5)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
62

3.
00

(1
.0
0)

t(
4)
=
0.
00

n=
15

n=
3

p=
0.
44

4
n=

5
p=

1.
00

0
In
pu

t
1.
27

(0
.4
6)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
02

3.
2(
1.
48

)
t(
4)
=
0.
30

n=
15

n=
3

p=
0.
89

9
n=

5
p=

0.
78

O
ut
pu

t
1.
47

(0
.6
4)

1.
33

(0
.5
8)

F(
1;
15

)=
0.
01

3.
00

(1
.4
1)

t(
4)
=
0.
00

n=
15

n=
3

p=
0.
91

4
n=

5
p=

1.
00

0



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 131

treatment group results. The multiple choice class test mean scores for the treatment
group learners are lower than the control group scores for all of the programming con-
cepts supported. None of the differences are statistically significant (Table 7.6).

Treatment(Scratch1,10&11) learners provided feedback regarding the usefulness of the PAT
in learning about the supported programming concepts. The results are obtained using
the PAT Evaluation Questionnaire. The mean evaluation ratings (Table 7.6) for input,
output, variables, if -statements, for-loops and repeat-loops are greater than or equal to
the neutral value, 3. One-sample t-test analysis indicates that none of the ratings are
statistically significant from the neutral value.

Only one of the two evaluations (Section 2.5.1) is reported as learners did not complete
the questionnaire and because of administrative difficulties (Section 7.2.5). The number
of learners, who evaluated the usefulness of Scratch to understand the programming con-
cepts supported, ranged from two to five learners, depending on the concept (Table 7.6).

Treatment(Scratch1,10&11) group learner evaluations of the difficulty of programming con-
cepts (Perceived Difficulty of Programming Questionnaire) as well as the neutral mean
results from the evaluation of the PAT (PAT Evaluation Questionnaire) indicate, although
not significantly, that Scratch provides support for the looping concepts, particularly for-
loops. Scratch supports a repeat block (Section 6.2.3) as the Delphi for-loop equivalent
where the number of times to repeat the code statements is indicated. The for-loop char-
acteristic of finite repetitions is demonstrated using a repeat block even though the syntax
does not match. The multiple choice class test results do not provide any indication of
programming concepts supported by Scratch in terms of improving learner understanding.

An evaluation of the comparison of the treatment and control group results indicates that
treatment group learners struggled to understand programming concepts (Perceived Diffi-
culty of Programming Questionnaire and multiple choice test results). The IT teacher was
replaced after the first term of the treatment year. The results suggest that the learners’
transition to a different IT teacher and teaching environment influenced the poorer per-
formance (tests) and greater perceived difficulty of programming concepts by treatment
group learners. The results thus suggest that Scratch is not able to support learners who
do not have a stable teaching environment.

7.3.2.2 Understanding of Programming Concepts: Scratch2

The PAT Evaluation Questionnaire responses indicate that Scratch was installed and
used by fourteen Grade 10 and six Grade 11 learners. These learners form the respec-



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 132

T
ab

le
7.

7:
Sc

ra
tc
h 2

su
pp

or
t
of

pr
og

ra
m
m
in
g
co
nc

ep
ts

re
su
lts

P
D

P
Q

M
ul

ti
pl

e
C

ho
ic

e
T

es
ts

PA
T

E
va

l
P

ro
gr

am
m

in
g

C
on

ce
pt

µ
1

µ
2

A
N

C
O

V
A

µ
1

µ
2

A
N

O
V

A
µ

2
t

St
rin

g
ha

nd
lin

g
2.
25

(1
.8
9)

3.
5(
1.
05

)
F(

1;
7)
=
0.
32

1.
17

(0
.9
1)

t(
13

)=
-5
.2
6

n=
4

n=
6

p=
0.
59

1
n=

14
p=

0.
00

02
**

O
ne

-d
im

en
sio

na
l

4.
75

(2
.0
6)

3.
00

(1
.5
8)

F(
1;
2)
=
0.
12

92
.0
0(
10

.9
5)

79
.1
7(
13

.5
7)

PA
Ts

re
ce
iv
ed

1.
89

(1
.1
7)

t(
8)
=
-2
.8
6

ar
ra
ys

n=
4

n=
5

p=
0.
76

3
n=

5
n=

6
af
te
r
te
st

n=
9

p=
0.

02
1*

Pr
oc
ed

ur
es

3.
54

(1
.0
0)

4.
33

(1
.2
1)

F(
1;
5)
=
15

.3
1

83
.3
3(
28

.8
7)

M
ar
ks

no
t

–
2.
14

(1
.4
7)

t(
6)
=
-1
.5
5

n=
4

n=
6

p=
0.
01

2
n=

3
re
ce
iv
ed

n=
7

p=
0.
17

2
re
pe
at
-lo

op
s

3.
5(
2.
52

)
3.
83

(1
.6
0)

F(
1;
7)
=
0.
08

40
.0
0(
30

.9
8)

51
.4
3(
29

.0
5)

F(
1;
14

)=
0.
09

2.
38

(1
.3
1)

t(
15

)=
-1
.9
1

n=
4

n=
6

p=
0.
79

0
n=

6
n=

14
p=

0.
76

7
n=

16
p=

0.
07

6
wh

ile
-lo

op
s

3.
5(
2.
08

)
3.
33

(1
.2
1)

F(
1;
7)
=
0.
17

50
.0
0(
29

.6
2)

30
.2
0(
29

.2
1)

F(
1;
14

)=
0.
03

2.
13

(1
.1
5)

t(
15

)=
-3
.0
5

n=
4

n=
6

p=
0.
69

0
n=

6
n=

14
p=

0.
86

0
n=

16
p=

0.
00

8*
*

fo
r-
lo
op

s
2.
5(
1.
73

)
2.
83

(0
.9
8)

F(
1;
6)
=
1.
89

64
.6
7(
17

.8
0)

50
.5
7(
23

.6
1)

F(
1;
14

)=
0.
72

2.
29

(1
.3
1)

t(
16

)=
-2
.2
2

n=
4

n=
6

p=
0.
21

8
n=

3
n=

14
p=

0.
40

9
n=

17
p=

0.
04

1*
if
-s
ta
te
m
en
ts

1.
5(
1.
00

)
1.
83

(0
.4
1)

F(
1;
7)
=
1.
62

86
.4
(1
3.
74

)
73

.2
3(
20

.6
2)

F(
1;
14

)=
1.
40

2.
25

(1
.3
4)

t(
15

)=
-2
.2
4

n=
4

n=
6

p=
0.
24

3
n=

5
n=

13
p=

0.
25

7
n=

16
p=

0.
04

1*
Va

ria
bl
es

1.
25

(0
.5
)

2.
00

(0
.0
0)

F(
1;
7)
=
19

.9
7

2.
76

(1
.2
5)

t(
14

)=
-0
.7
8

n=
4

n=
6

p=
0.
00

3
n=

17
p=

0.
45

0
In
pu

t
2.
75

(1
.2
6)

2.
50

(1
.2
2)

F(
1;
7)
=
19

.9
7

2.
88

(1
.4
5)

t(
16

)=
-0
.3
3

n=
4

n=
6

p=
0.
56

4
n=

17
p=

0.
74

3
O
ut
pu

t
2.
25

(0
.9
6)

2.
50

(0
.5
5)

F(
1;
7)
=
0.
12

3.
00

(1
.2
7)

t(
16

)=
-0
.0
0

n=
4

n=
6

p=
0.
73

4
n=

17
p=

1.
00

0
*
p
<
0.
05

**
p
<
0.
01



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 133

tive treatment groups. Treatment(Scratch2,11) group learners perceived input, while-loops
and arrays to be easier (Table 7.7) than the Control(Scratch2,11) group learners, as indi-
cated by the lower mean ratings of these programming concepts in the posttest of the
Perceived Difficulty of Programming Questionnaire. The Control(Scratch2,11) group mean
ratings for the remaining programming concepts are less than the mean ratings for the
Treatment(Scratch2,11) group. ANCOVA analysis indicates that the differences between the
mean ratings are not statistically significant (Table 7.7).

The Treatment(Scratch2,10) group mean class test scores (Table 7.7) for repeat-loops and
while-loops are greater than the Control(Scratch2,10) group mean test scores. The for-
loop and if -statement test mean scores for the Treatment(Scratch2,10) group are less than
the Control(Scratch2,10) group mean scores. The mean score differences are not statisti-
cally significant as indicated by one-way ANOVA analysis. The array class test for the
Treatment(Scratch2,11) group was administered before the learners received Scratch and the
procedure test scores were not recorded.

The usefulness of Scratch in terms of assisting learners with the understanding of sup-
ported programming concepts was evaluated using the PAT Evaluation Questionnaire
(Table 7.7). The mean rating of all the programming concepts is less than or equal to
the neutral value, 3. One sample t-test analysis indicates that the mean rating of arrays,
while-loops, string handling, for-loops and if -statements is statistically significantly less
than the neutral value, 3, indicating that learners did not agree that Scratch assisted with
their understanding of these programming concepts.

The results indicate that treatment group learners perceived the difficulty of programming
concepts (input, while-loops and arrays) to be easier when compared with the perception
of the control group learners although the differences are not statistically significant. PAT
Evaluation Questionnaire results contradict the learners perceived difficulty of program-
ming concepts. This indicates that learners do not believe Scratch assisted with the
understanding of these concepts.

The mean multiple choice test score for repeat-loops is higher when compared with the
control group mean score, although the difference is not statistically significant. Treat-
ment group learners perceived repeat-loops to be more difficult than control group learners
did. Overall, the results suggest that Scratch did not impact learner understanding of
programming knowledge.



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 134

7.3.2.3 Evaluation of Techniques

Scratch provides an interface where learners must drag and drop picture code blocks to
build a program solution (Table 7.8). The resulting program can include animation and
sound. User input can be accepted thus programs can be created that perform calcula-
tions based on user input or interactive games can be created that respond to keyboard
input or mouse-events.

Table 7.8: Scratch techniques

Representation of the program solution
Text
Pictures

Construction of programs
Assembling or positioning graphical objects
Selecting/form filling

Resulting program
GUI
Animation

Preventing syntax errors
Selection from valid options
Dropping only in valid locations

Respondents’ provided responses to open-ended questions in the PAT Evaluation Ques-
tionnaire about what they liked and disliked about Scratch. Only 6 of the 31 responses
to what respondents liked about Scratch could be associated with the theme: the role of
techniques to improve an understanding of programming concepts.

Respondents (n=4) liked that the graphical representation made the programming code
solution easier to read. One learner indicated that Scratch helps with the understanding
of programming problems while another learner indicated that Scratch helped with the
understanding of loops. The remainder of the responses to what learners liked, as well as
the responses to what learners disliked about Scratch, are associated with learner moti-
vation towards programming (Section 8.3.2).

7.3.3 B#

Seventy-five percent (n=18) of Grade 10 learners and 61% (n=11) of Grade 11 learners
who originally received B# indicated that they used it. The results are presented to eval-
uate the impact of B# on IT learner understanding of programming concepts (Section



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 135

7.3.3.1) and to evaluate the effect of the techniques used by B# to support the under-
standing of programming concepts (Section 7.3.3.2).

7.3.3.1 Understanding of Programming Concepts

The perceived difficulty of programming concepts was evaluated by Grade 11 control and
treatment group learners (Table 7.9). The Treatment(BSharp,11) mean ratings for all of
the programming concepts are less than the Control(BSharp,11) group mean ratings. Lower
scores indicate that the Treatment(BSharp,11) group learners perceived the programming
concepts to be easier than the Control(BSharp,11) group learners did. The mean scores are
equal for case-statements. ANCOVA analysis indicates that the difference between the
control and treatment group means are not statistically significant.

The multiple choice class test results (Table 7.9) indicate that Treatment(BSharp,10) group
mean test scores are greater than the Control(BSharp,10) group mean test scores for the
three looping concepts. One-way ANOVA analysis indicates that the mean score differ-
ences are not statistically significant. The Treatment(BSharp,10) group learner test scores
for the if -statements test were not recorded (Section 7.2.5).

The usefulness of B# with regard to the understanding of the programming concepts
supported, was evaluated twice (Table 7.9) by Treatment(BSharp,10&11) learners in the aca-
demic year (Section 7.2.3). In both evaluations, the results indicate that learners did not
agree that B# was useful to assist with the understanding of repeat-loops, while-loops,
if -statements and case-statements. For all of these concepts, one sample t-test analysis
indicated that the mean rating score is statistically significantly different from the neutral
value, 3. The mean rating for output in the first evaluation are also statistically, signifi-
cantly different from the neutral value. The results for for-loops were not captured due
to an error in the questionnaire (Appendix E).

Treatment group learners have higher mean ratings than control group learners for the
looping concepts evaluated using the perceived difficulty of programming concepts results
and multiple choice test results. However, none of the mean differences are statistically
significant and treatment group learners disagree that B# assisted with the understanding
of the looping concepts. Overall, there is no indication from the results that B# assisted
with learner understanding of programming knowledge.



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 136

T
ab

le
7.

9:
B#

su
pp

or
t
of

pr
og

ra
m
m
in
g
co
nc

ep
ts

re
su
lts

P
D

P
Q

M
ul

ti
pl

e
C

ho
ic

e
T

es
ts

PA
T

E
va

l
P

ro
gr

am
m

in
g

E
va

l1
E

va
l2

C
on

ce
pt

µ
1

µ
2

A
N

C
O

V
A

µ
1

µ
2

A
N

O
V

A
µ

2
T

-s
ta

t
µ

2
T

-s
ta

t
re
pe
at
-lo

op
s

3.
57

2.
5

F(
1;
12

)=
0.
58

44
.0
0

53
.3
3

F(
1;
36

)=
0.
87

2.
20

t(
9)
=
-2
.4
5

2.
00

t(
8)
=
-2
.4
5

(0
.9
8)

(1
.6
9)

p=
0.
46

2
(3
4.
70

)
(2
5.
67

)
p=

0.
35

7
(1
.0
3)

p=
0.

03
7*

(1
.2
2)

p=
0.

04
0*

n=
7

n=
8

n=
20

n=
18

n=
10

n=
9

wh
ile

-lo
op

s
2.
88

2.
13

F(
1;
13

)=
0.
75

46
.4
9

62
.7
0

F(
1;
36

)=
2.
77

2.
00

t(
9)
=
-3
.0
0

1.
78

t(
8)
=
-3
.3
5

(0
.6
4)

(1
.5
5)

p=
0.
40

1
(3
4.
10

)
(2
4.
57

)
p=

0.
10

5
(1
.0
5)

p=
0.

01
5*

(1
.0
9)

p=
0.

01
0*

n=
8

n=
8

n=
20

n=
18

n=
10

n=
9

fo
r-
lo
op

s
2.
50

2.
00

F(
1;
13

)=
0.
05

60
.8
9

62
.2
2

F(
1;
35

)=
0.
02

(0
.7
6)

(1
.4
1)

p=
0.
82

1
(2
3.
36

)
(2
9.
05

)
p=

0.
87

9
Er

ro
r
in

qu
es
tio

nn
ai
re

n=
8

n=
8

n=
19

n=
18

if
-s
ta
te
m
en
ts

1.
88

1.
75

F(
1;
13

)=
0.
01

70
.3
3

M
ar
ks

no
t

2.
00

t(
14

)=
-4
.1
8

1.
78

t(
8)
=
-3
.3
5

(0
.6
4)

(0
.8
9)

p=
0.
91

2
(2
0.
14

)
re
ce
iv
ed

–
(0
.9
3)

p=
0.

00
1*

*
(1
.0
9)

p=
0.

01
0*

n=
8

n=
8

n=
12

n=
15

n=
10

ca
se
-s
ta
te
m
en
ts

2.
5

2.
5

F(
1;
13

)=
0.
36

2.
00

t(
11

)=
-2
.8
7

1.
67

t(
8)
=
-4
.6
2

(1
.2
0)

(1
.4
1)

p=
0.
55

7
(1
.2
1)

p=
0.

01
5*

(0
.8
7)

p=
0.

00
2*

*
n=

8
n=

8
n=

12
n=

9
Va

ria
bl
es

2.
00

1.
50

F(
1;
12

)=
0.
41

2.
6

t(
14

)=
-1
.4
7

2.
00

t(
8)
=
-2
.0
0

(1
.4
1)

(0
.7
6)

p=
0.
53

5
(1
.0
6)

p=
0.
16

4
(1
.5
)

p=
0.
08

1
n=

8
n=

8
n=

15
n=

9
In
pu

t
1.
75

1.
38

F(
1;
13

)=
1.
06

2.
4

t(
14

)=
-2
.0
7

2.
11

t(
8)
=
-1
.5
7

(0
.7
1)

(0
.7
4)

p=
0.
32

1
(1
.1
2)

p=
0.
05

7
(1
.6
9)

p=
0.
15

4
n=

8
n=

8
n=

15
n=

9
O
ut
pu

t
2.
13

1.
38

F(
1;
13

)=
1.
74

2.
33

t(
14

)=
-2
.3
2

2.
11

t(
8)
=
-1
.5
7

(1
.2
5)

(0
.7
4)

p=
0.
21

0
(1
.1
1)

p=
0.

03
6*

(1
.6
9)

p=
0.
15

4
n=

8
n=

8
n=

15
n=

9
*
p
<
0.
05

**
p
<
0.
01



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 137

7.3.3.2 Evaluation of Techniques

B# creates a program solution using a flowchart (Table 7.10). Icons representing differ-
ent programming concepts are dragged into the correct position in the flow of execution.
Pascal code for the execution of a console application is automatically.

Table 7.10: B# techniques

Representation of the program solution
Text
Flowchart

Construction of programs
Assembling or positioning graphical objects

Resulting program
Text (input & output)

Support to understand programs
Debugging

Preventing syntax errors
Dropping only in valid locations

Treatment(BSharp,10&11) responses to open questions in the PAT Evaluation Questionnaire
were varied with regard to what they liked and disliked about B#. Learners indicated
that they liked the automatic generation of the Pascal code representation (n=7), with
specific mention of the automatic generation of variables by 3 learners. Two of the 7
responses indicated that the graphical representation of the flowchart explained program-
ming concepts, particularly loops and if -statements.

Learners disliked that the generated code differs from Delphi (27% of responses, n=6).
The only difference between the syntax of the supported programming concepts in B#
and Delphi are the writeln and readln functions used for output and input, respec-
tively (Section 6.2.4).

7.4 Conclusion

Three PATs -RoboMind, Scratch and B# - have been evaluated in terms of their impact on
IT learner understanding of programming concepts. Data from the multiple choice class
tests, Perceived Difficulty of Programming Questionnaire and PAT Evaluation Question-
naire have been used for the evaluations.



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 138

The first aim of this chapter has been to address RQ5: What impact do the different PATs
have on IT learner understanding of programming concepts?. ANOVA/ANCOVA analysis
results indicate that, overall, there are no statistically significant differences between the
means of control and treatment groups for the three PATs for the multiple choice class
test and end-of-year IT summative assessment mark. The null hypothesis, H1,0, could
thus not be rejected based on the assessment marks.

The overall Perceived Difficulty of Programming Questionnaire results could not reject the
null hypothesis, H1,0, for any of the PATs. There are no statistically significant results to
indicate that Scratch and B# assisted learner understanding of programming concepts.
The Perceived Difficulty of Programming Questionnaire results indicate that RoboMind
assisted with the understanding of repeat- and while-loops. The null hypothesis was re-
jected for these two programming concepts. However, the null hypothesis could not be
rejected for the remainder of the programming concepts. IT learner feedback identified
the syntax of RoboMind to be an issue. The syntax of for-loops and variables in RoboMind
differs from the Delphi programming language syntax (Section 6.2.2).

The second aim of this chapter has been to address RQ7: What techniques should PATs
implement in order to assist IT learner understanding of programming concepts?.

Table 7.11: Impact of PAT techniques on understanding of IT programming concepts

Tool Technique Impact
RoboMind Graphical environ-

ment
See what program is doing

Code next to anima-
tion

Can follow code execution

Code solution Helps with programming, but syntax different to
Delphi

Scratch Graphical representa-
tion

Easy to read

B# Flowchart representa-
tion

Explains programming concepts

Automatically gener-
ated code solution

Like that code is generated from flowchart but
differs from Delphi

The feedback received from IT learners regarding what they liked and disliked about the
PAT (PAT Evaluation Questionnaire) they used has provided an indication of the im-
pact that the different techniques used by the PAT have on IT learner understanding of
programming concepts. Table 7.11 summarises what learners liked and disliked about
the techniques with respect to understanding of programming concepts. All three PATs



CHAPTER 7. THE IMPACT OF PATS ON THE UNDERSTANDING OF PROGRAMMING
CONCEPTS 139

assist learners to read the programming solution more easily, indicating that learners can
benefit from graphical representations of code solutions and the placing of output next to
the code for more easy comparison (RoboMind).

This chapter has answered RQ5 and RQ7 and thus addressed Secondary Objective 2.2:
Evaluate the impact of the proposed PATs on IT learner understanding of programming
concepts. The evaluation of the combination of the assessment results, learner’s per-
ceived difficulty of programming and the evaluation of the usefulness of the PATs for
each programming concept concludes that, overall, the null hypothesis, H1,0, could not be
rejected. The results have indicated that use of the PATs have had no statistically signifi-
cant impact on IT learner understanding of programming concepts. Qualitative feedback
from participants has suggested that the techniques used by the PATs have supported IT
learner understanding of programming concepts. The impact of the PATs on IT learner
motivation towards programming is evaluated in Chapter 8. The impact of the techniques
used by the PATs on IT learner motivation is also evaluated.



Chapter 8

The Impact of PATs on Motivation
Towards Programming

8.1 Introduction

The evaluation of the PATs aims to determine two factors, namely the impact of the
PATs on IT learner understanding of programming concepts (Chapter 7) and the impact
of the PATs on IT learner motivation towards programming. The aim of this chapter is
to address the latter in order to achieve Secondary Objective 2.2: Evaluate the influence
of the proposed PATs on IT learner motivation towards programming.

Secondary Objective 2.2 is achieved by comparing control and treatment group responses
to the Motivated Strategies for Learning Questionnaire (MSLQ) (Section 2.5.1) and Grade
10 IT learner responses to the IT Decision Questionnaire (Section 2.5.1, Appendix B).
Results obtained from these two questionnaires are used to address RQ6:What impact do
the PATs have on IT learner motivation towards programming?.

The results are also used to test the research hypothesis H2 (Section 2.3) in order to
determine if the null hypothesis H2,0, which states that there is no difference between
the motivational strategy means of the control and treatment groups (ω1=ω2, ω1 is the
control group motivational strategy mean score, ω2 is the treatment group motivational
strategy mean score), is rejected. If H2,0 is rejected, the alternative hypothesis, H2,1:
ω1 6= ω2, is accepted.

Self-reported evaluations of the PATs by treatment group learners in the PAT Evaluation
Questionnaire (Appendix E) provide feedback related to the ease of use and learnability
of the PATs, as well as learner comments on what they liked and disliked about the PAT
that can be related to their motivation to use the PAT. Learner feedback from the PAT

140



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 141

Evaluation Questionnaire, specifically referring to the influence of techniques used by the
PAT on motivation, is used to address RQ8: What techniques should PATs implement in
order to motivate IT learners to learn programming concepts and to use a PAT?

The research process (Section 8.2) describes the methods used to collect data for the
results presented in this chapter. The results for each of the PATs provided to the par-
ticipating schools - RoboMind (Section 8.3.1), Scratch (Section 8.3.2) and B# (Section
8.3.3)- are presented. The impact, if any, of each of the PATs on IT learner motivation
towards programming and motivation to use the PATs, to address RQ6 and RQ8, are
evaluated (Section 8.4) in the conclusion.

8.2 Application of Experimental Procedure

The results related to IT learner motivation towards programming and learner willingness
to continue programming as a subject, are presented in this chapter. The PAT Evaluation
Questionnaire (Section 2.5.2, Appendix E) was administered to IT learners to evaluate
their use of the PAT they received. The items to determine the participant’s evaluation
of the PAT, in terms of factors that may motivate and techniques to motivate use of the
PAT, are reported.

The IT Decision Questionnaire (Section 2.5.1) was administered to Grade 10 learners in
the control and treatment groups as pre- and posttests (Figure 7.1). The results presented
evaluate the control and treatment group responses to the perceived difficulty of IT as
well as IT learners’ decision to select IT as a subject.

Grade 10 and Grade 11 learners in the control and treatment groups completed the Mo-
tivated Strategies for Learning Questionnaire (MSLQ) (Section 2.5.1) at the beginning
(pretest) and towards the end (posttest) of the respective academic year. Six different
motivational subscales are evaluated (Table 8.1) using two-way ANCOVA analysis to
determine if there is a main effect for the independent variable, experimental group (con-
trol/treatment), or an interaction effect (experimental group*use of the PAT).

Analysis of the effect of the experimental group on motivation (Table 8.2), regardless
of which specific PAT is used, highlighted one significant result. The Grade 10 results
indicate a small statistically significant main effect for the experimental group on test
anxiety (F(1,117)=5.00, p=0.027 d=0.37). Treatment group learners had a greater vari-
ance between the pre- (ω2=3.26, s=1.144) and posttest (ω2=3.87, s=1.352) scores, show-
ing an increase in test anxiety, compared to control group learners (pretest: ω1=3.35,



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 142

Table 8.1: Motivated Strategies for Learning Questionnaire: Motivational subscales

Subscale Description
IG Intrinsic goal orientation Participation in task for reasons such as chal-

lenge, curiosity or mastery.
EG Extrinsic goal orientation Participation in task for reasons such as

grades, performance and competition.
TV Task value How interesting, important or useful a task

is.
CLB Control of learning beliefs Belief that outcomes are as a result of one’s

own effort.
SE Self-efficacy for learning Self-appraisal of one’s ability to master a

task.
TA Test anxiety Anxiety and negative thoughts that disrupt

test performance.

s=1.234; posttest: ω1=3.51, s=1.467). The analysis of the interaction effect (PAT re-
ceived*experimental group) on test anxiety in Grade 10 was not statistically significant.
No specific PAT thus affected the increase in test anxiety of learners in the treatment
group. There were no other statistically significant differences between the control and
treatment group MSLQ results (Table 8.2).

Table 8.2: ANCOVA analysis results: Effect of experimental group on MSLQ sub-categories

Grade 10 Grade 11
MSLQ category F(df) p F(df) p
IG F(1;117)=0.06 p=0.809 F(1;63)=1.41 p=0.239
EG F(1;117)=0.04 p=0.843 F(1;64)=0.09 p=0.769
TV F(1;117)=1.09 p=0.299 F(1;63)=1.18 p=0.282
CLB F(1;117)=0.04 p=0.841 F(1;64)=0.03 p=0.871
SE F(1;117)=0.58 p=0.448 F(1;63)=0.08 p=0.780
TA F(1;117)=5.00 p=0.027* F(1;64)=0.77 p=0.383
* p<0.05

8.3 PAT Results

The results are grouped on the PATs provided to participating learners, namely Robo-
Mind (Section 8.3.1), Scratch (Section 8.3.2) and B# (Section 8.3.3). The results of the
Grade 10 IT Decision Questionnaire compare learner inclination to continue with IT as
a subject at the end of Grade 10. IT learner evaluation of the PATs in terms of motiva-
tion to use the PAT, are also presented. The results aim to evaluate the impact of each
PAT and the techniques used by the PAT on IT learner motivation towards programming.



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 143

8.3.1 RoboMind

ANCOVA analysis was used to determine any difference between the control and treat-
ment group motivational subscale means. The results indicate that there are no statis-
tically significant differences between the control and treatment group for each of the
MSQL subscales (Table 8.3).

Table 8.3: ANCOVA analysis results: Effect of RoboMind on MSLQ subscales

Grade 10 Grade 11
MSLQ category F(df) p F(df) p
IG F(1;44)=2.31 p=0.136 F(1;27)=0.00 p=0.953
EG F(1;44)=0.02 p=0.883 F(1;27)=1.58 p=0.220
TV F(1;44)=0.21 p=0.649 F(1;27)=0.00 p=0.962
CLB F(1;44)=0.09 p=0.766 F(1;27)=0.05 p=0.819
SE F(1;44)=0.27 p=0.606 F(1;27)=1.17 p=0.290
TA F(1;44)=0.16 p=0.693 F(1;27)=0.00 p=0.948

A smaller percentage (11%) of Treatment(Robo,10) learners (n=3) would not consider tak-
ing IT again if given the choice compared to 18% of Control(Robo,10) learners (n=4).
Treatment(Robo,10) learners who responded “no” considered the subject difficult and not
necessary for their career choice after school. Control(Robo,10) learners who responded “no”
believed IT to be difficult to understand and boring.

Figure 8.1: RoboMind: Learner perceptions of IT difficulty (1 = strongly disagree, 7 = strongly
agree)

Grade 10 learners rated their belief that IT is a difficult subject and that they can do well
in the IT subject, at the beginning and end of the year. ANCOVA analysis of the variance



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 144

in pre- and posttest scores for Control(Robo,10) and Treatment(Robo,10) learners indicate no
statistically significant differences for the IT is difficult (F(1;46)=0.58, p=0.451) or the
can do well in IT (F(1;46)=0.17, p=0.683) items.

Table 8.4: Learner Evaluation of RoboMind (1 = strongly disagree, 5 = strongly agree)

Item n ω s t-test p
Easy to use 29 3.28 0.92 1.61 p=0.118
Learn quickly 29 3.34 0.97 1.91 p=0.067
Need assistance 29 2.21 1.15 -3.73 p=0.001**
Confident using 29 3.14 1.06 0.70 p=0.490
** p<0.01

Treatment(Robo) learner results (Table 8.4) indicated that RoboMind is easy to use, quick
to learn to use and learners are confident using RoboMind. However, none of these results
are statistically significantly different from the neutral value, 3. Results also indicate that
learners do not need assistance using RoboMind. This result is statistically significantly,
different from the neutral value (Table 8.4).

Learner comments on what they liked (n=8) and disliked (n=2) about RoboMind can be
associated to motivation to use or not to use RoboMind. Learners liked that RoboMind
is entertaining (n=2) and makes programming more like a game, not just coding as the
robot can be programmed to move around (n=6). The microworld output technique is
thus motivating for learners.

Learners (n=4) mentioned that they disliked the fact that using RoboMind became boring
and that there was no goal or reason to keep playing (n=4). RoboMind is limited in its
functionality, only allowing the robot to be programmed to move around the map world,
pick-up/drop objects and paint.

8.3.2 Scratch

The results for two schools that evaluated Scratch are reported separately as Scratch1

(Section 8.3.2.1) and Scratch2 (Section 8.3.2.2). Circumstances at each of these schools
differed due to a change of teacher at one of the schools, Scratch1.



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 145

8.3.2.1 Scratch1

ANCOVA analysis (Table 8.5) indicates a statistically significant difference between the
Grade 10 control and treatment group means for the test anxiety subscale of the MSLQ
(Table 8.1). Control(Scratch1,10) learners had a greater variance between the pre- (ω1=2.94,
s=0.90, n=20) and posttest (ω1=3.29, s=1.4, n=20) scores, showing an increase in test
anxiety, compared to Treatment(Scratch1,10) learners (pretest: ω2=3.17, s=1.02; posttest:
ω2=3.29, s=1.38; n=9).

Table 8.5: ANCOVA analysis results: Effect of Scratch1 on MSLQ sub-categories

Grade 10 Grade 11
MSLQ category F(df) p F(df) p
IG F(1;19)=0.81 p=0.379 F(1;14)=0.36 p=0.556
EG F(1;19)=0.60 p=0.447 F(1;15)=3.16 p=0.096
TV F(1;19)=0.22 p=0.646 F(1;14)=3.57 p=0.069
CLB F(1;19)=0.01 p=0.918 F(1;15)=0.10 p=0.755
SE F(1;19)=1.53 p=0.232 F(1;14)=0.00 p=0.987
TA F(1;19)=6.55 p=0.019* F(1;15)=3.63 p=0.076
* p<0.05

Eighty-nine percent of Treatment(Scratch1,10) learners (n=9) discontinued with IT as a sub-
ject during the year or indicated that they would no longer take IT as a subject if given
the choice. The majority of Control(Scratch1,10) group learners (75%, n=20) indicated that
they would still take IT if given the choice.

Figure 8.2: Scratch1: Learner perceptions of IT difficulty (1 = strongly disagree, 7 = strongly
agree)



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 146

The pre- and posttest results (IT Decision Questionnaire) to determine if learners think
IT is difficult and if learners think they can do well in the subject (Figure 8.2) were com-
pared for Control(Scratch1,10) and Treatment(Scratch1,10) group learners. ANCOVA analysis
indicates a statistically significant main effect for the experimental group (F(1,18)=5.283,
p=0.034) on the independent variable evaluating learners’ perceived difficulty of IT. There
is no statistically significant main effect for the experimental group on learners’ belief that
they can do well in IT (F(1,18)=4.32, p=0.523).

Table 8.6: Learner Evaluation of Scratch1 (1 = strongly disagree, 5 = strongly agree)

Item n ω s t-test p
Easy to use 17 3.71 1.26 2.30 p=0.035*
Learn quickly 17 4.00 0.79 5.22 p=0.0001**
Need assistance 17 2.00 1.06 -3.89 p=0.001**
Confident using 17 3.00 1.33 0.00 p=1.00
* p<0.05
** p<0.01

Treatment(Scratch1,10&11) learners indicated (Table 8.6) that Scratch is easy to use and quick
to learn to use. Results also indicate that learners do not need assistance using Scratch.
One sample t-tests indicate that all three these results are statistically, significantly dif-
ferent from the neutral value, 3.

8.3.2.2 Scratch2

ANCOVA analysis of the MSLQ results (Table 8.7) indicate a statistically significant dif-
ference between the means of the Control(Scratch2,11) (pretest: ω1=5.10, s=1.43; posttest:
ω1=4.70, s=0.98; n=5) and Treatment(Scratch2,11) (pretest: ω2=5.28, s=1.35; posttest:
ω2=4.83, s=0.94; n=6) group learners.

Table 8.7: ANCOVA analysis results: Effect of Scratch2 on MSLQ sub-categories

Grade 10 Grade 11
MSLQ category F(df) p F(df) p
IG F(1;17)=0.04 p=0.839 F(1;7)=0.07 p=0.806
EG F(1;17)=1.81 p=0.196 F(1;7)=2.26 p=0.177
TV F(1;17)=0.43 p=0.520 F(1;7)=5.72 p=0.048*
CLB F(1;17)=0.10 p=0.753 F(1;7)=0.06 p=0.819
SE F(1;17)=0.00 p=0.972 F(1;7)=2.73 p=0.143
TA F(1;17)=0.08 p=0.786 F(1;7)=1.42 p=0.272
* p<0.05



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 147

The percentage of Grade 10 learners who would not repeat their decision to take IT as a
subject is similar in the two groups, Control(Scratch2,10) (33%, n=2) and Treatment(Scratch2,10)

(36%, n=5). Figure 8.3 indicates the Control(Scratch2,10) and Treatment(Scratch2,10) groups
pre- and posttest mean scores for their rating of the difficulty of IT and their belief
in their ability to do well in IT. ANCOVA analysis indicates no statistically significant
main effect for the experimental group on the two variables (F(1;16)=2.04, p=0.172 and
F(1;16)=1.71, p=0.209, respectively).

Figure 8.3: Scratch2: Learner perceptions of IT difficulty (1 = strongly disagree, 7 = strongly
agree)

Table 8.8: Learner Evaluation of Scratch2 (1 = strongly disagree, 5 = strongly agree)

Item n ω s t-test p
Easy to use 20 4.05 1.10 4.27 p=0.0004**
Learn quickly 20 3.70 0.92 3.39 p=0.003**
Need assistance 20 2.05 1.05 -4.05 p=0.001**
Confident using 20 3.60 1.05 2.56 p=0.019*
* p<0.05
** p<0.01

Treatment(Scratch2,10&11) learner evaluation of the PAT Evaluation Questionnaire (Ta-
ble 8.8) indicated that Scratch is easy to use and quick to learn to use. Results also
indicate that learners do not need assistance using Scratch and are confident in their abil-
ity to use Scratch. One sample t-test indicates that all four mean values are statistically
different from the neutral value, 3.



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 148

8.3.2.3 Combined Evaluation of Scratch Techniques

The evaluation of Scratch by learners at the two schools in terms of what learners liked
and disliked about Scratch have been combined. The results are combined as learner
evaluation of Scratch is independent of any influence of the IT teacher. The responses by
learners could be classified in more than one theme.

Feedback to open-ended questions related to motivation in the PAT Evaluation Question-
naire indicate that 35% of learners (n=11) liked the animation, graphics and games that
can be created in Scratch. Forty-two percent of learners (n=11) indicated that Scratch is
easy to use and fun. Scratch uses a drag-and-drop technique to create program solutions
and graphical program output.

Negative comments described Scratch as too simple (28%, n=8), limited (24%, n=7),
impractical (10%, n=3) and with no goal or purpose (10%, n=7). The negative feedback
suggests that learners may not be motivated to use Scratch. This would impact the effec-
tiveness of Scratch to assist learner understanding of programming concepts and motivate
them to program using Scratch.

8.3.3 B#

ANCOVA analysis was used to determine statistical significance between the control and
treatment group means for the MSLQ sub-scales. The results indicated that there are no
statistically significant differences (Table 8.9) between the control and treatment group
responses.

Table 8.9: ANCOVA analysis results: Effect of B# on MSLQ sub-categories

Grade 10 Grade 11
MSLQ category F(df) p F(df) p
IG F(1;34)=0.49 p=0.488 F(1;12)=1.60 p=0.230
EG F(1;34)=0.12 p=0.730 F(1;12)=0.54 p=0.475
TV F(1;34)=0.31 p=0.580 F(1;12)=0.03 p=0.865
CLB F(1;34)=0.04 p=0.843 F(1;12)=0.33 p=0.578
SE F(1;34)=0.10 p=0.749 F(1;12)=0.49 p=0.495
TA F(1;34)=0.19 p=0.662 F(1;12)=0.00 p=0.946

In the posttest of the IT Decision Questionnaire, Grade 10 learners were asked if they
would still take IT if they had the choice. Twenty-two percent of Treatment(BSharp,10)

learners (n=4) indicated that they would not take IT as a subject again compared to 5%



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 149

of Control(BSharp,10) learners (n=1). Learners indicated that they would not take IT again
because it is too time consuming (n=2) and they struggle to understand the work (n=3).

Figure 8.4: B#: Learner perceptions of IT difficulty (1 = strongly disagree, 7 = strongly
agree)

The pre- and posttest mean results for Control(BSharp,10) and Treatment(BSharp,10) to de-
termine if learners think IT is difficult and if learners think they can do well in the subject
(Figure 8.4) were compared. ANCOVA analysis evaluating learner’s perceived difficulty
of IT (F(1;31)=3.39, p=0.075) and learners’ belief that they can do well (F(1;31)=0.011,
p=0.919), indicate that there is no statistically significant difference between the control
and treatment group mean values.

Treatment(BSharp,10&11) learners were required to evaluate B# (PAT Evaluation Question-
naire) using a 5-point semantic differential scale (1=strongly disagree and 5=strongly
agree). The mean scores (Table 8.10) indicate that learners did not believe B# was quick
to learn to use and learners were not confident using B#. One-sample t-test analysis
indicates that the mean rating for these two items are statistically, significantly different
from the neutral value, 3. The mean ratings for ease of use and whether learners needed
assistance using B#, were neutral (Table 8.10).

Learner responses to open questions in the PAT Evaluation Questionnaire, where a learner
response could be classified in more than one theme, indicated that learners do not want
to use B# because it confuses their understanding of how concepts are implemented in
Delphi (22%, n=7). Learners also indicated that they were happy with their understand-
ing of Delphi and prefer using Delphi instead of B# (42%, n=14).



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 150

Table 8.10: Learner Evaluation of B# (1 = strongly disagree, 5 = strongly agree)

Item n ω s t-test p
Easy to use 25 2.72 1.46 -0.96 p=0.347
Learn quickly 25 2.44 1.26 -2.22 p=0.036*
Need assistance 25 2.72 1.40 -1.00 p=0.327
Confident using 24 1.29 0.26 -3.81 p=0.0001**
* p<0.05
** p<0.01

The techniques used by B# were also evaluated using learner responses to what they
liked and disliked about B# (PAT Evaluation Questionnaire). Learners indicated that
they liked the visual representation of the program code using the flowchart (22%, n=4).
Learners disliked that the console application output technique differs from the GUI form
created when a Delphi program is executed (32%, n=7 ).

8.4 Conclusion

An evaluation of the three PATs -RoboMind, Scratch and B# - in terms of their impact on
IT learner motivation towards programming has been concluded. Data from the MSLQ,
PAT Evaluation Questionnaire and IT Decision Questionnaire were used for the evalua-
tions.

One of the aims of this chapter has been to address RQ6: What impact do the PATs have
on IT learner motivation towards programming? There is a statistically and practically
significant main effect for experimental group (control/treatment) on test anxiety in the
Grade 10 participant group. The results indicate a statistically significant increase in test
anxiety of treatment group learners when compared with control group learners. This
result is independent of the PAT used. The test anxiety motivational subscale score is
the only result that rejects the null hypothesis, H2,0. Overall, the motivational subscale
results do not reject the null hypothesis, suggesting that the PATs did not have an impact
on IT learner motivation towards programming.

There are no statistically significant results to show that RoboMind had an impact on IT
learner motivation towards programming in terms of the MSLQ sub-categories and IT
learner perceived difficulty of the IT subject (Section 8.3.1). IT learners’ evaluation of
RoboMind indicated that no assistance is needed to use RoboMind, making it suitable for
self-study. Learner responses regarding ease of use, learnability and learner confidence
using RoboMind were neutral.



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 151

The MSLQ results (Section 8.2.2) indicate that Treatment(Scratch2,11) group learners had
improved task value after using Scratch when compared with control group learners.
Control(Scratch1,10) learner responses indicated a greater increase in text anxiety by the
end of Grade 10 when compared with treatment group learners. Treatment(Scratch1,10)

learners perceived the IT subject was more difficult by the end of Grade 10 when com-
pared with their perceptions at the start of the year.

IT learner evaluations from participants at the two schools using Scratch indicate that it
is easy to use, quick to learn to use and learners do not need assistance using it. Scratch2

results also indicate that learners are confident in their ability to use Scratch.

B# did not have an impact on IT learner motivation towards programming in terms of
the MSLQ sub-categories and IT learner perceived difficulty of the subject (Section 8.3.3).
IT learner evaluations indicate that B# is not quick to learn to use and learners are not
confident in their ability to use B#. IT learner responses indicate that the use of B#
confuses their understanding of programming concepts in Delphi.

The second aim of this chapter has been to address RQ8: What techniques should PATs
implement in order to motivate IT learners to learn programming concepts and to use a
PAT?. Treatment group learners at each of the schools evaluated the PATs using the PAT
Evaluation Questionnaire. Responses to open-ended questions indicating what learners
liked and disliked about the PAT were used to evaluate the techniques used by the PATs
(Table 8.11). RoboMind was described as entertaining and learner comments indicated
that RoboMind changes perceptions of programming, making it more like a game. The
microworld output is motivating for learners, however, learners disliked that RoboMind is
limited with no goal or purpose to programming the robot.

Table 8.11: Impact of PAT techniques on motivation to use the PAT

Tool Technique Impact
RoboMind Microworld Fun to program the robot to move

Limited functionality with no goal - eventually
becomes boring

Scratch Drag-and drop Too simple
Graphical representa-
tion (output)

Easy to use and fun

B# Flowchart Simple to understand

Scratch, which uses a drag-and-drop interface to create program solutions, is described
as easy to use and fun. Learners liked the program output, namely, the game and an-



CHAPTER 8. THE IMPACT OF PATS ON MOTIVATION TOWARDS PROGRAMMING 152

imations that can be created in Scratch. Despite these comments, learners may not be
motivated to use Scratch to assist with programming. Learners described Scratch as too
simple as solutions can be created easily by dragging objects. The program creation tech-
nique used by Scratch prevents syntax errors by allowing users to focus on planning a
solution. However, learners felt that Scratch did not give them a sense of accomplishment.

Learners liked the flowchart representation of the program solution in B#. Learners liked
that the Pascal code equivalent of the flowchart is generated automatically, however, dif-
ferences in the syntax confused learners. Learners did not like the console application
used by B# to output the program solution.

This chapter has answered RQ6 and RQ8 and thus addressed Secondary Objective 2.2:
Evaluate the influence of the proposed PATs on IT learner motivation towards program-
ming. Primary Objective 2 has thus also been addressed. This concludes the research
on the evaluation of the impact of PATs on IT learner understanding of programming
concepts and motivation towards programming. Chapter 9 presents a discussion of the
general research conclusions and future research.



Chapter 9

Conclusion

9.1 Introduction

The demand for software developers is increasing, yet the number of learners choosing
a career in Computing Science is decreasing, a trend occurring worldwide (Section 1.1).
Governments are trying to promote interest in computing professions amongst school
learners. However, several factors are affecting learner interest in computing professions
as well as in Computer Science and Information Technology subjects at school. IT learners
in SA struggle to understand introductory programming concepts (Chapter 1). Learners
have limited time available during class with the IT teacher (Section 4.2). Learners who
struggle with programming tend to lose motivation to continue with IT as a subject (Sec-
tion 1.2).

Introductory programming research (Section 5.3) has resulted in the development of Pro-
gramming Assistance Tools (PATs) designed to address the difficulties faced by novice
programmers. PATs employ techniques such as the graphical representation of program
solutions, visualisations to explain the use of programming concepts and the creation of
animations and games. Unfortunately, IT teachers are not aware of and/or do not use
PATs to support the learning of IT programming in SA schools (Section 4.2).

The purpose of this research was to evaluate the impact of PATs on IT learner under-
standing of programming concepts and motivation towards programming. The goal of
the evaluation was to identify PATs that are able to complement the learning of program-
ming concepts using the Delphi programming language and support IT learners during
self-study.

This chapter reviews the research objectives (Section 9.2) and how these objectives have
been successfully achieved (Section 9.3). The main contributions of the research are

153



CHAPTER 9. CONCLUSION 154

presented (Section 9.4) and limitations to the study and lessons learnt are highlighted
(Section 9.5). The chapter concludes with suggestions for future work (Section 9.6) and
a summary (Section 9.7).

9.2 Research Objectives

The purpose of the research objectives was to achieve the research goal of providing
IT learners with existing PATs that are suitable or can be made suitable to support the
achievement of the IT subject programming learning outcomes in South African secondary
schools. The following thesis statement guided the research towards achieving the research
objectives and answering the research questions:

Programming assistance tools can support IT learner development of program-
ming skills and influence motivation to learn programming.

The two primary objectives (POs) of this research were derived from the thesis statement
and were both achieved:

PO1: To identify existing introductory programming assistance tools (PATs) that can be
used to support learner understanding of programming concepts included in the
IT subject curriculum implemented in a case study of South African secondary
schools (Chapter 5).

PO2: To evaluate the impact of the selected programming assistance tools (PATs) on
a novice programmer’s understanding of programming concepts included in the
IT subject curriculum implemented in a case study of South African secondary
schools (Chapter 7 and 8).

The following secondary objectives (SOs) were researched in order to achieve the primary
objectives (Table 1.2):

SO1.1: Formulate selection criteria for determining the suitability of PATs to support
the achievement of programming learning outcomes in the IT subject curriculum
(Chapter 4).

SO1.2: Adapt selected PATs to make them suitable to support the achievement of pro-
gramming learning outcomes in the IT subject curriculum implemented in South
African secondary schools (Chapter 6).



CHAPTER 9. CONCLUSION 155

SO2.1: Evaluate the impact of the proposed PATs on IT learner understanding of pro-
gramming concepts (Chapter 7).

SO2.2: Evaluate the influence of the proposed PATs on IT learner motivation towards
programming (Chapter 8).

Secondary Objectives 1.1 and 1.2 address Primary Objective 1 and Secondary Objectives
2.1 and 2.2 address Primary Objective 2. A description of how the research objectives
have been achieved, together with a review of the research questions answered in order
to address the research objectives, are presented in the main findings (Section 9.3).

9.3 Main findings

The research objectives have been achieved in two phases. The first phase addresses Pri-
mary Objective 1 (Section 9.3.1) and the second phase addresses Primary Objective 2
(Section 9.3.2).

9.3.1 Primary Objective 1

The aim of Primary Objective 1 was to identify suitable PATs that could be used by IT
learners participating in the study. The PATs identified were evaluated in the second
phase of the study to address Primary Objective 2.

The suitability of PATs was determined by investigating the difficulties experienced by
novice programmers (Chapter 3) and specifically, IT learners (Chapter 4). Research Ques-
tion 1: What programming difficulties and skills do PATs need to address and develop,
respectively? was answered by completing a review of introductory programming litera-
ture (Section 3.4) and administering questionnaires to IT teachers and learners (Section
4.4). The literature review and questionnaire results (IT Teacher Questionnaires (Ap-
pendix A) and Perceived Difficulty of Programming Questionnaire (Appendix C) iden-
tified programming knowledge that IT learners need to develop, such as knowledge of
programming principles and knowledge of programming language syntax. Results showed
that novice programmers struggle to identify how the programming problem should be
solved and how to plan a solution. IT learners need assistance with debugging code and
understanding error messages. The results from IT teachers and learners confirmed the
programming difficulties identified in literature.

Selected PATs also had to be suitable to address the teaching environments experienced
in SA schools. Feedback from IT teachers and learners related to the teaching and learn-
ing environment in SA schools was used to answer Research Question 2: What factors



CHAPTER 9. CONCLUSION 156

may influence the use of PATs in SA secondary school learning environments? (Section
4.4). The results showed that short class periods and overall limited contact time between
teacher and learners meant that learners had to be able to use the PATs on their own.
The PAT had to develop programming knowledge, skills and understanding of program-
ming concepts during self-study. IT learners do not all have access after class time to a
programming environment in which Delphi programming exercises can be implemented.
A useful PAT would be able to implement programming exercises in the Delphi program-
ming language syntax.

PATs selected by this research had to address the difficulties and factors identified in
answering Research Question 1 and 2, respectively, in order for the PAT to have been of
use to IT learners and to have assisted learners to overcome the difficulties of program-
ming. A major contribution of this research study is the formulation of selection criteria
(Section 4.4) from the difficulties and factors identified to successfully achieve Secondary
Objective 1.1.

The selection criteria were categorised into three categories, namely programming con-
cepts, programming knowledge and programming skills. The programming concept cri-
teria included all programming concepts taught in the IT subject curriculum. Criteria in
each of the categories were ranked in order of difficulty (programming concepts) or im-
portance (programming knowledge and skills). The rankings were determined based on
the common identification of criteria from literature and IT teacher and learner feedback.

VARK Questionnaire (Section 5.2.3) results and a review of introductory programming
literature (Section 5.2.1) identified additional selection criteria in terms of the techniques
used by PATs to create and display a program solution. VARK results indicated that
PATs had to support all of the learning preferences, namely visual, aural, read/write and
kinaesthetic, in order to cater for the learning preferences of IT learners. In the selection
process, the techniques used by PATs to create program solutions, represent program so-
lutions, display program output and assist with debugging were used to select PATs with
different techniques. IT learner opinions regarding the different techniques on IT learner
understanding of programming concepts and motivation towards programming could thus
also be evaluated.

Existing PATs were identified to answer Research Question 3: What PATs exist that would
be suitable for use in SA secondary schools?. Ten PATs were identified and reviewed (Sec-
tion 5.3): RoboMind, BlueJ, Greenfoot, Scratch, B#, Jeliot, Ville, PlanAni, Alice and
jGRASP. The 10 PATs were evaluated using the selection criteria in order to select the



CHAPTER 9. CONCLUSION 157

most suitable for use by IT learners (Section 5.4). The PATs were ranked in order of
suitability for each of the three selection criteria categories. Only PATs that supported
the Delphi programming language syntax were considered for the final selection. Three
PATs selected for evaluation by IT learners in this study were Scratch, RoboMind and
B#. Three PATs were selected for evaluation by the four participating schools. Scratch
was selected for evaluation by the two participating schools with the smallest sample sizes
(Section 5.4).

RoboMind was selected as, even though it did not support the Delphi programming lan-
guage syntax, the source code is freely available for adaptation. The implementation of
programming concepts in RoboMind was adapted to support the Delphi syntax (Section
6.2.2). The implementation of the adaptations required an understanding of the compiler
used in the original RoboMind. The compiler was changed in this research study to accept
Delphi keywords and implement repeat-loops and variables. A major contribution of this
research is an adapted version of RoboMind suitable for use by IT learners. Adaptations
to RoboMind addressed Research Question 4: How can the selected PATs be adapted for
use by IT learners in SA secondary schools to support the understanding of programming
concepts? and thus also successfully achieved Secondary Objective 1.2. The differences
between the implementation of programming concepts in all three PATs compared to the
implementation in Delphi were also identified (Section 6.2).

9.3.2 Primary Objective 2

The goal of Primary Objective 2 was to evaluate the impact of the PATs selected with
the achievement of Primary Objective 1 on IT learner understanding of programming
concepts (Secondary Objective 2.1) and motivation towards programming (Secondary
Objective 2.2). Primary Objective 2 was achieved using a quasi-experimental approach
over a two year period. Participants in the study were sampled from Grade 10 and Grade
11 IT learners at four participating schools. Participants in the first year of the study
constituted the control group. Participants in the second year of the study received the
PAT. However, use of the PAT was not enforced and not all participants who received the
PAT, utilised it. Participants who received but did not utilise the PAT were included in
the control group, while participants who utilised the PAT were included in the treatment
group.

Control and treatment group results from multiple choice class tests (Appendix D), end-
of-year summative assessment marks, learner perceived difficulty of IT concepts (Ap-
pendix C) and IT learner evaluation of the usefulness of the PAT received (Appendix E),
were used to answer Research Question 5: What impact do the different PATs have on IT



CHAPTER 9. CONCLUSION 158

learner understanding of programming concepts?. There were no statistically significant
results (Chapter 7) to indicate that any of the evaluated PATs impact IT learner under-
standing of programming concepts supported by the PAT. Results indicate that RoboMind
may provide support for the repeat- and while-loop concepts (Section 7.3.1). Reasons for
the lack of support, identified from IT learner evaluations of the PATs, indicate that Robo-
Mind and B# (Section 7.3.2) should provide more support for the Delphi programming
language syntax. Learner responses provided no reason for the lack of support offered by
Scratch (Section 7.3.3).

The Motivated Strategies for Learning Questionnaire (MSLQ) and IT Decision Question-
naire (Appendix B) results were used to address Research Question 6: What impact do
the PATs have on IT learner motivation towards programming?. The Grade 10 results
(Section 8.2) indicated that treatment group learners, regardless of which PAT was used,
had a greater increase in test anxiety between the start and end of the year than control
group learners. No reason for the increase in test anxiety of Grade 10 treatment group
learners was evident from the learner feedback. Scratch1 results (Section 8.3.2) indicated
that Grade 10 control group learners had a greater increase in test anxiety than treatment
group learners. Grade 11 treatment group learners had a greater increase in task value
compared to control group learners as indicated by the Scratch2 results. These were the
only MSLQ results indicating that the PATs had an impact on IT learner motivation
towards programming.

Treatment group learners evaluated the PATs (Section 8.3) in terms of ease of use, learn-
ability, assistance needed to use and confidence using the PAT (PAT Evaluation Ques-
tionnaire). Analysis of learner responses indicated that no assistance was needed to
understand RoboMind and Scratch (Scratch1 and Scratch2 results). Scratch is easy to
use and learners learnt to use it quickly. Learners indicated that they could not learn
to use B# quickly and they were not confident in their abilities to use B#. The MSLQ
results and responses to the PAT Evaluation Questionnaire describe the impact of the
PATs on learner motivation towards programming. Secondary Objective 2.2 was therefore
successfully achieved.

The techniques used by PATs were also evaluated to address Research Question 7: What
techniques should PATs implement in order to assist IT learner understanding of pro-
gramming concepts? (Chapter 7) and Research Question 8: What techniques should
PATs implement in order to motivate IT learners to learn programming concepts and to
use a PAT? (Chapter 8). Feedback from the three PATs indicated that a microworld or
graphical program output such as animations or games are fun and entertaining, changing
learners’ perceptions of programming. However, to motivate learners to use the PAT, it



CHAPTER 9. CONCLUSION 159

should be challenging and with a goal or purpose for each program created. If a program-
ming language is used to represent textually the program solution as in RoboMind and
B#, the syntax must match the Delphi programming language syntax. Differences in the
syntax confuse learners and make them hesitant to use the PAT.

9.3.3 Research Hypotheses

The main hypothesis (H0) was tested using two sub-hypotheses (Section 2.3). The main
hypothesis tested for this research was the following:

H0,0: There is no difference in the performance/experience between control and treatment
groups

H0,1: There is a difference in the performance/experience between control and treatment
groups

The first sub-hypothesis (H1) evaluated the impact of the different PATs on IT learner
understanding of programming concepts. The first sub-hypothesis stated the following:

H1,0: There is no difference between the assessment means of the control and treatment
groups (µ1=µ2, µ1 is the control group assessment mean, µ2 is the treatment group
assessment mean)

H1,1: There is a difference between the assessment means of the control and treatment
groups (µ1 6= µ2)

The results of this research did not reject the null hypothesis, H1,0. The assessment means
refer to the means of the control and treatment group Perceived Difficulty of Programming
Questionnaire responses, multiple choice class test results and end-of-year IT summative
assessment marks obtained by learners.

The second sub-hypothesis (H2) evaluated the impact of the different PATs on IT learner
motivation towards programming. The second sub-hypothesis was as follows:

H2,0: There is no difference between the motivational strategy means of the control and
treatment groups (ω1=ω2, ω1 is the control group motivational strategy scores mean,
ω2 is the treatment group motivational strategy scores mean)

H2,1: There is a difference between the motivational strategy means of the control and
treatment groups (ω1 6= ω2)

The results of this research did not reject the null hypothesis, H2,0. The motivational
strategy scores are obtained from the Motivated Strategies for Learning Questionnaire
(MSLQ).



CHAPTER 9. CONCLUSION 160

9.4 Research Contributions

This research has delivered contributions to the study of IT programming in SA secondary
schools. The contributions are categorised as theoretical contributions (Section 9.4.1) and
practical contributions (Section 9.4.2).

9.4.1 Theoretical Contributions

The theoretical contributions of this research study are the research design used to select
(Section 9.4.1.1) and evaluate (Section 9.4.1.2) the PATs in SA secondary schools and
the selection criteria used to select suitable PATs (Section 9.4.1.3). Findings from the
evaluation of the PATs have identified criteria that a suitable PAT to support IT learners
should address (Section 9.4.1.4).

9.4.1.1 Research Design: Selection of PATs

The PATs evaluated by IT learners were not randomly selected. The PATs were selected
based on criteria related to the difficulties faced by IT learners in SA secondary schools.
IT learners evaluate PATs that address the difficulties faced by IT learners (Figure 9.1).
The selected PATs are identified using selection criteria formulated from the difficulties
faced by IT learners.

Figure 9.1: Process for the selection of PATs



CHAPTER 9. CONCLUSION 161

This method can be generalised for use in any study to identify PATs for novice program-
mers. PATs suitable for the particular group of novice programmers can be identified using
selection criteria derived from the difficulties faced by the particular group of novice pro-
grammers.

9.4.1.2 Research Design: Evaluation of PATs

A quasi-experimental approach for the evaluation of the PATs in SA secondary schools
was utilised by this research. A non-equivalent groups design was used as the control and
treatment group were not randomly assigned. Grade x of year y was the control group
for the study, where x ∈ {10,11}. Learners from Grade x of year y+1 received the PAT.
Learners who utilised the PAT were included in the treatment group and learners who
did not were included in the control group. Different questionnaires and multiple choice
class tests were administered to Grade 10 and Grade 11 participants. Each school par-
ticipating in the research was treated as a separate experiment as IT teachers and school
learning environments were different. One PAT was allocated to the Grade 10 and Grade
11 learners at each school.

The consecutive years IT class for each grade, that is, y and y+1, were utilised instead
of completing the study in one year as class sizes were too small to include both control
and treatment groups. There was also no way to monitor cross-contamination between
the control and treatment groups, specifically control group learners using the PATs.

The research design can be used to evaluate the impact of PATs or other treatments on IT
learner understanding of programming concepts and motivation towards programming.
Additional data collection instruments can be included as pre- and/or posttests. The
success of the application of the quasi-experimental approach is dependent on the school
at which it is applied. IT teacher work schedules, co-operation from IT learners to return
questionnaires and utilisation of the PATs by treatment group learners, will impact the
success of the study and the reliability of the results.

9.4.1.3 Selection Criteria

Selection criteria (Table 9.1) have been formulated (Section 4.4) that can be used to se-
lect suitable PATs to support IT learners. The criteria were formulated from a survey of
introductory programming literature to identify programming difficulties faced by novice
programmers. IT teacher and learner feedback were also used to identify programming
difficulties faced by IT learners.



CHAPTER 9. CONCLUSION 162

Table 9.1: Selection criteria for PATs. Criteria within each category (Programming concepts,
knowledge and skills) listed in order of priority (highest first)

C
at
eg
or
y

Criteria Li
te
ra
tu
re

T
ea
ch
er

Le
ar
ne

r

W
ei
gh

ti
ng

C
on

ce
pt
s

Two-dimensional arrays X X X 18
String handling X X X 17
One-dimensional arrays X X X 16
Procedures X X X 15
Functions X X X 14
repeat-loops X X X 13
while-loops X X X 12
Objects & classes X X 11
for-loops X X 10
if -statements X 9
Correct use of parameters X X 8
SQL statements X 7
Accessing a database X 6
case-statements X 5
File handling X 4
Variables 3
Input (getting information from the user) 2
Output (displaying information to the user) 1

K
no

w
le
dg

e

Assists with the learning of the Delphi programming
language syntax X X 5

Assists with developing knowledge of programming
principles & concepts X X 4

Constructivist to promote self-study X X 3
Assists with the application of programming knowledge X X 2
Assists with the understanding of code execution X X 1

Sk
ill
s

Promotes problem solving and planning X X X 5
Provides simple error messages to assist with debugging X X X 4
Develops code comprehension X X 3
Feedback to guide solution creation X X 2
Feedback regarding errors X 1

The selection criteria are categorised as programming knowledge, programming skills and
programming concepts. The criteria in each of the the categories have been ranked in
order of priority. The priority of the items was determined by common criteria identified
from literature, IT teacher and IT learner feedback. The research has practically demon-
strated a method of evaluating PATs using the selection criteria (Section 5.4).

The selection criteria can be used in future studies to evaluate PATs in terms of how
they can assist IT learners to develop their understanding of programming concepts or



CHAPTER 9. CONCLUSION 163

programming knowledge, or develop the programming skills of IT learners. The selection
criteria can be used to rank and compare several PATs (Section 5.4) that have been eval-
uated in terms of the programming concept, programming knowledge and programming
skills selection criteria categories. The selection criteria can also be used as a guideline
for designing and developing a new PAT to assist IT learners.

9.4.1.4 Recommendations for a Suitable PAT

The research has evaluated the impact of the selected PATs on IT learners understand-
ing of programming concepts and motivation towards programming. Feedback from IT
learners has identified positive and negative techniques used by the selected PATs. The
feedback received provides the basis upon which more suitable PATs to support the learn-
ing of Delphi programming can be identified and/or developed.

The selection criteria should be part of the minimum requirements addressed by a suitable
PAT. PATs should be fun but not too simple as IT learners want to be challenged. The
use of graphics is entertaining and changes learner perceptions of programming. Typing
textual code representations is not disliked by learners but graphical representations of
program solutions, such as flow charts, assist learner understanding of concepts. If textual
programs are used, it is important that the syntax matches Delphi so as not to confuse
learners (Section 7.4).

9.4.2 Practical Contributions

This research study has three main practical contributions. Existing PATs have been
evaluated to identify PATs suitable for use by IT learners (Section 9.4.2.1) and RoboMind
was adapted to make it suitable for supporting the Delphi programming language (Sec-
tion 9.4.2.2). The research has successfully evaluated the impact of the selected PATs on
IT learner understanding of programming concepts and motivation towards programming
(Section 9.4.2.3).

9.4.2.1 Evaluation of Selected PATs

Prior to this research, IT learners were not aware of and had not used PATs to assist their
understanding of IT programming concepts. The aim of this research was to evaluate
PATs that would be suitable for use by IT learners. No research had previously been
done to evaluate PATs in SA schools.



CHAPTER 9. CONCLUSION 164

Three PATs were selected and evaluated by IT learners. This research study has con-
tributed by providing results on the impact of each of the PATs on IT learner under-
standing of programming concepts and motivation towards programming (Section 9.3.2).
In addition, the techniques used by the PATs to create and represent programming so-
lutions were also evaluated. The techniques were evaluated in terms of the impact on
understanding of concepts and motivation to use the PAT and thus practice programming.

The new IT CAPS curriculum (Department of Basic Education, 2011) requires a PAT to
be used by IT learners in Grade 10 before using Delphi in Grade 11. The evaluation of
the PATs provides feedback for IT teachers to decide which PAT to use in Grade 10. In
addition, the evaluation of the differences in the implementation of programming concepts
in the PAT compared to Delphi (Section 6.2) allows IT teachers to be prepared for any
knowledge gaps that may need to be addressed before the use of Delphi in Grade 11.

9.4.2.2 Adapted RoboMind for Delphi

RoboMind was successfully adapted (Section 6.2.2) so that the syntax of programs written
to control the robot in the map world is equivalent to the Delphi programming language.
The adapted RoboMind includes the same functionality as the unadapted version. The
begin and end keywords are accepted in the adapted version to denote code blocks in
place of the curly brackets. The adapted version also requires semicolons to delimit code
statements.

The syntax of if -statements and while-loops were adapted to match the Delphi syntax.
The unadapted version of RoboMind provides limited support for for-loops, using a repeat
command. The command name was changed in the adapted version to for1to, although
the functionality remains the same as in the unadapted version. In addition, the adapted
version supports repeat-loops and provides limited support for variables (Section 6.2.2).

Evaluations of the adapted RoboMind indicate that learners are motivated towards pro-
gramming in terms of ease of use and learnability. Adapted RoboMind also assists with
the understanding of repeat- and while-loops. However, learners have indicated that it is
confusing that the syntax does not match Delphi syntax exactly. Variables and for-loops
do not match the Delphi syntax. Further adaptations and improvements are required
before the adapted RoboMind can support the learning of Delphi by IT learners.



CHAPTER 9. CONCLUSION 165

9.4.2.3 Research Results

The questionnaire and test results from IT learners were used to evaluate two research
hypotheses (Section 2.3). Hypothesis H1 was tested to determine the impact of the PATs
on IT learner understanding of programming concepts. Based on the research results,
the null hypothesis H1,0 was not rejected. There was no conclusive evidence suggesting
that learners using a PAT understood the programming concepts significantly better than
those learners not using a PAT. This finding supports related research evaluating the im-
pact of PATs used by novice programmers (Section 5.2.1).

The impact of PATs on IT learner motivation towards programming was evaluated by
testing hypothesis H2. The null hypothesis H2,0 was also not rejected based on the MSLQ
feedback from control and treatment group learners. The results did not provide evidence
to suggest that learners using a PAT were significantly more motivated towards program-
ming than those learners not using a PAT.

9.5 Limitations of the Research

The limitations of the research study are related to the use of IT learners in SA schools as
participants. Only four schools participated in the research study. These were the schools,
offering IT as a subject in the Port Elizabeth area, which consented to participate in the
study.

Only schools in the Port Elizabeth area were considered due to proximity. Intensive inter-
action with the participating schools with regard to the administration of questionnaires
and class tests was required, thus schools outside of the Port Elizabeth area were not
considered. The research is limited by the fact that schools were not randomly selected
provincially or nationally.

The participating schools all teach Delphi as the programming language. However, Delphi
is not the only programming language taught in SA schools. Java is taught at schools in
four of the nine provinces. The findings of this research are not generalisable to all IT
learners in SA due to geographic and programming language restrictions.

The number of participating learners was influenced by the Grade 10 and Grade 11 IT
class sizes at the participating schools. The use of the PAT by treatment group learners
was also not enforced. This resulted in small (n<10) treatment group sample sizes for two
of the PAT evaluations. The research results were further influenced by administrative



CHAPTER 9. CONCLUSION 166

issues at certain schools. Heavy teacher workloads and IT subject work schedules made
it difficult to administer questionnaires and class tests. The onus was also on learners to
return questionnaires to the IT teacher when completed.

Another problem encountered was that the research environment at the schools could not
be controlled. At three of the schools, the same IT teacher taught both the control and
treatment groups and it is thus assumed that the teaching environment was the same for
both groups. The IT teacher did change at one of the schools evaluating Scratch. The
results from this school can thus not be attributed to the use of Scratch alone.

9.6 Future Work

This research has produced several contributions in terms of the selection and evaluation
of suitable PATs for IT learners. However, more work is needed to address the difficulties
faced by IT learners. The contributions of this research form the basis for future work:

Extend the study: Limitations to the study (Section 9.5) have been highlighted with
respect to the research population. Further research should be undertaken to repeat
the study in more schools randomly selected throughout the country. The selection
of PATs to support the Java programming language can also be evaluated.

Adaptations to RoboMind: This research adapted programming concepts supported
in RoboMind to match the implementation in Delphi. The for-loops syntax was
adapted and variables were implemented but the implementation of these two con-
cepts did not match the exact implementation in Delphi. String handling and arrays
were not implemented due to the restricted functionality of the robot in the map
world. This research only implemented adaptations to the programming concepts.
Adapting the actions performed by the robot in the microworld to support the need
for input, output, string handling and/or mathematical calculations would address
the limited functionality of RoboMind. The correct implementation of for-loops and
variables, with the inclusion of data types, would address the syntax concerns of IT
learners.

Develop a PAT for IT learners: This research has evaluated existing PATs in order
to identify one suitable for use by IT learners. The IT learner feedback related to
the techniques used by the PATs to support understanding of programming concepts
and motivation towards programming, together with the selection criteria identified



CHAPTER 9. CONCLUSION 167

to assist with the understanding of programming concepts and knowledge and the
development of programming skills, can be used to develop a PAT specifically de-
signed for use by IT learners.

Usability Studies: This research did not evaluate the usability of the PATs. An evalua-
tion of the gaze patterns of users using eye tracking as well as time to task and task
completion would provide an evaluation of techniques and interfaces that support
the learning of programming concepts and learner motivation towards programming.
Eye tracking would identify specific techniques used by IT learners to improve pro-
gramming concept knowledge.

9.7 Summary

The aim of this research study was to select and evaluate PATs that could address the
difficulties faced by IT learners when learning to program. Three PATs, namely Robo-
Mind, Scratch and B#, were selected using selection criteria derived from the novice
programming difficulties and the difficulties faced by IT learners. RoboMind was adapted
to support the Delphi programming language used by IT learners participating in the
research study.

A quasi-experimental research approach was used to evaluate the selected PATs in SA
schools. Based on the results from questionnaires, class tests and summative assessments
administered to IT learners, there was no evidence to suggest that learners who used a
PAT had a significantly better understanding of programming concepts or were signifi-
cantly more motivated towards programming, than those learners who did not use a PAT.
Feedback from IT learners provides reasons why the PATs were not used and what IT
learners liked and disliked about the PATs.

The quantitative results together with the qualitative feedback from IT learners identi-
fied the shortcomings and strengths of the PATs evaluated. The evaluations of RoboMind,
Scratch and B# provide suggestions and guidelines that can be used together with the
selection criteria, to identify suitable PATs, other than the three selected and evaluated.

This research study has made several practical and theoretical research contributions.
Theoretical contributions include the research design for the selection and evaluation of
PATs, the selection criteria used to select suitable PATs for IT learners and suggested
techniques that PATs should use to improve IT learners understanding of programming



CHAPTER 9. CONCLUSION 168

concepts and motivation towards programming. The practical contributions demonstrated
by the research study include the evaluation of the suitability of existing PATs using the
selection criteria, an adapted version of RoboMind suitable for use by IT learners, and
the evaluation of the selected PATs.

The research was limited by the participating school environments such as IT teacher
workload and small IT classes, resulting in incomplete questionnaire and class test data.
In spite of these limitations, the research findings and contributions have formed the ba-
sis for future work. Extending the study by increasing the sample size of participating
schools and the inclusion of usability studies would provide additional data making the
results more generalisable. Further adaptations to RoboMind as well as the development
of a new PAT specifically designed for IT learners based on the finding of the research,
are also possible.

This research has made IT teachers and IT learners at the participating schools aware of
the existence of PATs that can be used to support the understanding of programming con-
cepts and improve learner motivation towards programming. This research has concluded
that the PATs evaluated may not address all of the programming difficulties experienced
by IT learners, however, IT teachers have been made aware of the strengths and short-
comings of these PATs. IT teachers have also been provided with a means of assessing
the applicability of any PAT to the IT curriculum. This research has contributed and
provided the basis of future work towards identifying and/or developing a PAT that IT
learners are motivated to use and that can assist with their understanding of program-
ming concepts, using the Delphi programming language.



List of References

Al-Imamy, S., Alizadeh, J. and Nour, M.A. (2006). On the development of a programming teach-
ing tool: The effect of teaching by templates on the learning process. Journal of Information
Technology Education, vol. 5, pp. 271–283.

Ala-Mutka, K. (2003). Problems in learning and teaching programming. In: Codewitz Needs
Analysis. Institute of Software Systems, Tampere University of Technology.

Areias, C. and Mendes, A. (2007). A tool to help students to develop programming skills. In:
International Conference on Computer Systems and Technologies (CompSysTech’07).

Artino, J. and Anthony, R. (2005). Review of the Motivated Strategies for Learning Question-
naire. Available at: http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/

ERICServlet?accno=ED499083 [Accessed 15 October 2009].

Baldwin, L.P. and Kuljis, J. (2000). Visualisation techniques for learning and teaching program-
ming. Journal of Computing and Information Technology, vol. 4, pp. 285–291.

Bednarik, R. and Fränti, P. (2004). Survival of students with different learning preferences. In:
Proceedings of the Fourth Finnish/Baltic Sea conference on Computing Science Education,
pp. 121–125.

Bednarik, R. and Tukiainen, M. (2006). An eye-tracking methodology for characterizing program
comprehension processes. In: Proceedings of the 2006 symposium on Eye tracking research &
applications (ETRA’06), pp. 125–132. New York, NY, USA.

Biggers, M., Brauer, A. and Yilmaz, T. (2008). Student perceptions of Computer Science: A re-
tention study comparing graduating seniors vs. CS leavers. In: Proceedings of the SIGCSE’08
Conference.

Bonar, J. and Soloway, E. (1989). Preprogramming knowledge: A major source of misconcep-
tions in novice programmers. In: Soloway, E. and Spohrer, J. (eds.), Studying the Novice
Programmer, pp. 325–353. Hillsdale, NJ: Lawrence Erlbaum Associates.

Brewer, D. (2009). Control structures in programming: An explanation of the three ba-
sic structures found in programs. Available at: http://dawn-brewer.suite101.com/

control-structures-in-programming-a96234 [Accessed 20 September 2011].

169



LIST OF REFERENCES 170

Brooke, J. (1996). SUS: A “quick and dirty” usability scale. Usability Evaluation in Industry,
pp. 189–194.

Bryant, R., Weiss, R., Orr, G. and Yerion, K. (2011). Using the context of algorithmic art to
change attitudes in introductory programming. Journal of Computing Sciences in Colleges,
vol. 27, pp. 112–119.

Byckling, P. and Sajaniemi, J. (2006). Roles of variables and programming skills improvement.
SIGCSE Bulletin, vol. 38, no. 1, pp. 413–417.

Calitz, A. (2010). A Model for the Alignment of ICT Education with Business ICT Skills
Requirements. DBA, Nelson Mandela Metropolitan University.

Chen, C. (2002). Self-regulated learning strategies and achievement in an introduction to Infor-
mation Systems course. Information Technology, Learning and Performance Journal, vol. 20,
no. 1, pp. 11–25.

Cohen, L., Manion, L. and Morrison, K. (2007). Research Methods in Education. 6th edn.
Routledge.

Cooper, S., Dann, W. and Pausch, R. (2003). Teaching objects-first in introductory Computer
Science. In: Proceedings of the 34th SIGCSE technical symposium on Computer Science
Education, pp. 191–195. ACM, New York, NY, USA.

Creswell, J.W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods Ap-
proaches. Third edition edn. SAGE Publications.

Cross, J., Hendrix, T., Jain, J. and Barowski, L. (2007). Dynamic object viewers for data
structures. SIGCSE Bulletin, vol. 39, no. 1, pp. 4–8.

Cumps, B., Viaene, S. and Dedene, G. (2010). Linking the strategic importance of ICT with
investment in business-ICT alignment: An explorative framework. International Journal on
IT/Business Alignment and Governance, vol. 1, no. 1, pp. 39–57.

de Raadt, M. (2008). Teaching Programming Strategies Explicitly to Novice Programmers. Doc-
toral dissertation, University of Southern Queensland.

Department of Basic Education (2011). Curriculum and Assessment Policy Statement Grades
10-12: Information Technology.

Department of Education (2003). National Curriculum Statement. Grades 10-12 (General).
Information Technology.

Department of Education (2008). National Curriculum Statement. Grades 10-12 (General).
Learning programme guidelines. Information Technology.

Egan, M. (2010). Recruitment of CS majors through a non-programmer’s programming contest.
Journal of Computing Sciences in Colleges, vol. 25, no. 6, pp. 198–204.



LIST OF REFERENCES 171

Fidge, C. and Teague, D. (2009). Losing their marbles: Syntax-free programming for assess-
ing problem-solving skills. In: Hamilton, M. and Clear, T. (eds.), Eleventh Australasian
Computing Education Conference (ACE 2009), pp. 75–82.

Fleming, N. (2010). VARK: A guide to learning styles. Available at: http://www.vark-learn.

com/english/index.asp [Accessed 3 October 2009].

Fleming, N. and Baume, D. (2006). Learning styles again: VARKing up the right tree! Edu-
cational Developments, UK, Staff and Educational Development Association (SEDA), vol. 7,
no. 4, pp. 4–7.

Fleming, N.D. and Bonwell, C.C. (1997). VARK–Advice to users of the questionnaire. Available
at: http://www.ntlf.com/html/lib/suppmat/74vark2.htm [Accessed 5 October 2009].

Gardner, M. and Feng, W. (2010). Broadening accessibility to Computer Science for K-12
education. In: Proceedings of the 15th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE’10), pp. 229–233. Bilent, Turkey.

Garner, S. (2007). A program design tool to help novices learn programming. In: ICT: Providing
choices for learners and learning, pp. 321–324. Ascilite Singapore 2007.

Gayo-Avello, D. and Fernández-Cuervo, H. (2003). Online self-assessment as a learning method.
In: Proceedings of the 3rd IEEE International Conference on Advanced Learning Technologies,
pp. 254–255.

Gomes, A. and Mendes, A.J. (2007). An environment to improve programming education.
In: Proceedings of the 2007 international conference on Computer systems and technologies,
CompSysTech’07, pp. 88:1–88:6. ACM, New York, NY, USA. ISBN 978-954-9641-50-9.

Greyling, J., Cilliers, C. and Calitz, A. (2006). B#: The development and assessment of an iconic
programming tool for novice programmers. In: 7th International Conference on Information
Technology Based Higher Education and Training (ITHET’06), pp. 367–375.

Gribbons, B. and Herman, J. (1997). True and quasi-experimental designs. In: Practical
Assessment, Research and Evaluation, vol. 5.

Guzdial, M. (2004). CS Education Research, chap. Programming Environments for Novices.

Haataja, A., Suhonen, J., Sutinen, E. and Torvinen, S. (2001). High school students learning
Computer Science over the web. Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning, vol. 3, no. 2.

Havenga, M. and Mentz, E. (2009). The school subject Information Technology: A South African
perspective. In: Proceedings of SACLA’09, pp. 77–83. Mpekweni Beach Resort, South Africa.

Heines, J. and Schedlbauer, M. (2007). Teaching object-oriented concepts through GUI pro-
gramming. Eleventh Workshop on Pedagogies and Tools for the Teaching and Learning of
Object Oriented Concepts, held at the 21st European Conf. on Object-Oriented Programming.
Berlin, Germany.



LIST OF REFERENCES 172

Henrikson, P. and Kölling, M. (2004). Greenfoot: Combining object visualisation with inter-
action. In: Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA’04), pp. 73–82.

Hooper, C., Carr, L., Davis, H., Millard, D., White, S. and Wills, G. (2007). AnnAnn and
AnnAnn.Net: Tools for teaching programming. Journal of Computers, vol. 2, no. 2, p. 916.

Hu, C. (2008). Just say “A class defines a data type”. In: Communications of the ACM, vol.
51(3), pp. 19–21.

Jones, R., Boyle, T. and Pickard, P. (2003). OBJECTWORLD: Helping novice programmers to
succeed through a graphical objects-first approach. In: Proceedings of 4th Annual LTSN-ICS
Conference.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Computing Surveys,
vol. 37, no. 2, pp. 88–137.

Kenny, D.A. (1975). A quasi-experimental approach to assessing treatment effects in the
nonequivalent control group design. Psychological Bulletin, vol. 82, no. 3, pp. 345–362.

Kerman, M.C. (2002). Programming and Problem Solving with Delphi. Addison-Wesley Pub-
lishing Company, Inc.

Kölling, M. (1999). The problem of teaching object-oriented programming, Part 1: Languages.
Journal of Object-Oriented Programming, vol. 11, no. 8, pp. 8–15.

Kölling, M. (2004). Bluej tutorial. Available at: http://www.bluej.org/tutorial/

tutorial-201.pdf [Accessed 10 December 2010].

Kölling, M. and Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. In:
Proceedings of the 6th conference on Information Technology in Computer Science Education
(ITiCSE 2001).

Kölling, M. and Rosenberg, J. (2002). BlueJ - The Hitch-Hikers Guide to Object Orientation.
Mærsk McKinney Moller Institute for Production, University of Southern Denmark.

Kumar, A. (2006). Explanation of step-by-step execution as feedback for problems on program
analysis, and its generation in model-based problem-solving tutors. Technology, Instruction,
Cognition and Learning (TICL) Journal.

Kunkle, W.M. (2010). The Impact of Different Teaching Approaches and Languages on Stu-
dent Learning of Introductory Programming Concepts. Thesis, Drexel University. Doctor of
Philosophy.

Lahtinen, E., Ala-Mutka, K. and Järvinen, H. (2005). A study of the difficulties of novice
programmers. In: Proceedings of the 10th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education, pp. 14–18. ACM, Caparica, Portugal.



LIST OF REFERENCES 173

Levy, R.B.-B., Ben-Ari, M. and Uronen, P.A. (2001). An extended experiment with Jeliot 2000.
In: Proc. First International Program Visualization Workshop, pp. 131–140. University of
Joensuu Press, Pavoo, Finland.

Lister, R., Adams, E., Fitzgerald, S., W.Fone, Hamer, J., Lindholm, M., McCartney, R.,
Moström, J., Sanders, K., Seppälä, O., Simon, B. and Thomas, L. (2004). A multi-national
study of reading and tracing skills in novice programmers. In: Working Group Reports From
ITiCSE on innovation and Technology in Computer Science Education, pp. 119–150. Leeds,
United Kingdom.

Lister, R., Simon, B., Thompson, E., Whalley, J. and Prasad, C. (2006). Not seeing the forest
for the trees: novice programmers and the SOLO taxonomy. In: Proceedings of the 11th
Annual SIGCSE Conference on innovation and Technology in Computer Science Education,
pp. 118–122.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008). Relationships between reading, tracing
and writing skills in introductory programming. In: Proceeding of the Fourth international
Workshop on Computing Education Research, pp. 101–112.

Ma, L., Ferguson, J., Roper, M., Ross, I. and Wood, M. (2008). Using cognitive conflict and
visualisation to improve mental models held by novice programmers. In: Proceedings of the
39th SIGCSE Technical Symposium on Computer Science Education, pp. 342–346.

Malan, D. and Leitner, H. (2007). Scratch for budding Computer Scientists. In: Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’07), pp.
223–227.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. and Resnick, M. (2004). Scratch: A
sneak preview. In: Second International Conference on Creating, Connecting, and Collabo-
rating through Computing, pp. 104–109.

Mannila, L. and de Raadt, M. (2006). An objective comparison of languages for teaching
introductory programming. In: Proceedings of the 6th Baltic Sea Conference on Computing
Education Research: Koli Calling 2006, vol. 276, pp. 32–37.

Medium Term Strategic Framework (2009). Together Doing More and Better: A Framework to
Guide Government’s Programme in the Electoral Mandate Period (2009-2014). SA Govern-
ment.

Mertens, D. (2004). Research and Evaluation in Education and Psychology: Integrating Diversity
with Quantitative and Mixed Methods. Second edition edn. SAGE Publications.

Moreno, A., Myller, N. and Bednarik, R. (2005). Jeliot 3, an extensible tool for program
visualization. In: Proceedings of the Koli Calling 2005: 5th Annual Finnish / Baltic Sea
Conference on Computer Science Education.



LIST OF REFERENCES 174

NACE (2011). Spring 2011 salary survey report. Available at: http://www.naceweb.org/

Press/Releases/Top-Paid_Majors_for_the_Class_of_2011.aspx [Accessed 11 October
2011].

NMMU (2011). Nelson Mandela Metropolitan University: Admission requirements. Available
at: http://www.nmmu.ac.za/default.asp?id=5888\&bhcp=1 [Accessed 21 October 2011].

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M. and
Paterson, J. (2007). A survey of literature on the teaching of introductory programming.
In: Working group reports on ITiCSE on Innovation and technology in computer science
education, ITiCSE-WGR ’07, pp. 204–223. ACM, New York, NY, USA.

Pendergast, M. (2006). Teaching introductory programming to IS students: Java problems and
pitfalls. Journal of Information Technology Education, vol. 5, pp. 491–515.

Phillips, D.C. and Burbules, N.C. (2000). Postpositivism and Educational Research. Rowman
& Littlefield Publishers, Inc.

Pintrich, R., Smith, A., Garcia, T. and McKeachie, W. (1991). A Manual for the Use of the
Motivated Strategies for Learning Questionnaire (MSLQ). National Center for Research to
Improve Postsecondary Teaching and Learning, Ann Arbor, MI: University of Michigan Press.

Porta, M., Maillet, K. and Gil, M. (2010). Dec-CS: The Computer Science declining phe-
nomenon. In: Proceedings of the World Congress on Engineering and Computer Science 2010
(WCECS’2010), vol. 2. San Francisco, USA.

Putnam, R., Sleeman, D., Baxter, J. and Kuspa, L. (1989). A summary of misconceptions of
high-school BASIC programmers. In: Soloway, E. and Spohrer, J. (eds.), Studying the novice
programmer, pp. 301–314. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rajala, T., Laakso, M., Kailo, E. and Salakoski, T. (2007). VILLE: A language-independent pro-
gram visualization tool. In: Conferences in Research and Practice in Information Technology,
vol. 88.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Silver, J., Silverman, B. and Kafai, Y. (2009). Scratch: Programming for
all. In: Communications of the ACM, vol. 52, pp. 60–67.

Robins, A., Rountree, J. and Rountree, N. (2003). Learning and teaching programming: A
review and discussion. In: Computer Science Education, vol. 13, pp. 137–172.

RoboMind (2009). RoboMind website. Available at: http://www.robomind.net/en/index.

html [Accessed 13 March 2010].

Rogerson, C. and Scott, E. (2010). The fear factor: How it affects students learning to program
in a tertiary environment. Journal of Information Technology Education, vol. 9, pp. 141–171.



LIST OF REFERENCES 175

Rongas, T., Kaarna, A. and Kalvianen, H. (2004). Classification of computerized learning tools
for introductory programming courses: Learning approach. In: Proceedings of the IEEE
International Conference on Advanced Learning Technologies (ICALT’04), pp. 678–680.

Saunders, M., Lewis, P. and Thornhill, A. (2006). Research Methods for Business Students.
Fourth edition edn. Pearson Education Limited.

Seaton, C.G. (2007). A Programming Language Where the Syntax and Semantics Are Mutable
at Runtime. Doctoral Dissertation, Department of Computer Science, University of Bristol.

Shuhidan, S., Hamilton, M. and D’Souza, D. (2009). A taxonomic study of novice programming
summative assessment. In: Proceedings of the Eleventh Australasian Conference on Com-
puting Education - Volume 95, ACE ’09, pp. 147–156. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia. ISBN 978-1-920682-76-7.

Slater, J., Lujan, H. and DiCarlo, S. (2007). Does gender influence learning style preferences of
first-year medical students? In: Advances in Physiology Education, vol. 31, pp. 336–342.

Slonneger, R. and Kurtz, B. (1995). Formal Syntax and Semantics of Programming Languages.
Addison-Wesley Publishing Company, Inc.

Strieber, A. (2011). The 10 best jobs of 2011. Available at: http://www.careercast.com/

jobs-rated/10-best-jobs-2011 [Accessed 10 August 2011].

SUN (2011). Stellenbosch University: Admission requirements. Available at: http:

//sun025.sun.ac.za/portal/page/portal/Maties/English/Admission\_requirements

[Accessed 26 October 2011].

Teague, D. and Roe, P. (2008). Collaborative learning - towards a solution for novice pro-
grammers. In: Simaon and Hamilton, M. (eds.), Conferences in Research and Practice in
Information Technology, vol. 78.

Tew, A.E., McCracken, W.M. and Guzdial, M. (2005). Impact of alternative introductory courses
on programming concept understanding. In: Proceedings of the first international workshop
on Computing education research, ICER ’05, pp. 25–35. ACM, New York, NY, USA. ISBN
1-59593-043-4.

Trochim, W. (2006). Research methods knowledge base. Available at: http://

socialresearchmethods.net/kb/index.php [Accessed 6 May 2010].

UCT (2011). University of Cape Town: Admission requirements. Available at: http://www.

uct.ac.za/apply/criteria/nsc/ [Accessed 24 October 2011].

Utting, I., Cooper, S., Kölling, M., Maloney, J. and Resnick, M. (2010). Alice, Greenfoot, and
Scratch - A discussion. ACM Transactions on Computing Education, vol. 10, no. 4.

Vainio, V. and Sajaniemi, J. (2007). Factors in novice programmer’s poor tracing skills. In:
ITiCSE’07, pp. 236–240. Dundee, Scotland.



LIST OF REFERENCES 176

Vickers, P. (2009). How to Think Like a Programmer. Cengage Learning EMEA.

Wehrwein, E., Lujan, H. and DiCarlo, S. (2007). Gender differences in learning style preferences
among undergraduate physiology students. In: Advanced Physiology Education, vol. 31, pp.
153–157.

Williams, L., Wiebe, E., Yang, K., Ferzli, M. and Miller, C. (2002). In support of pair program-
ming in the introductory computer science course. Computer Science Education, vol. 12, pp.
197–212.

Wilson, C., Sudol, L., Stephenson, C. and Stehlik, M. (2010). Running on empty: The failure
to teach K-12 Computer Science in the digital age. Tech. Rep., ACM.

Wood, D., Bruner, J. and Ross, G. (1976). The role of tutoring in problem solving. Journal of
Child Psychology and Psychiatry and Allied Disciplines, vol. 17, pp. 89–100.



Appendices

177



Appendix A

Questionnaires to IT Teachers

A.1 Open Questionnaire to IT Teachers

178



Questionnaire to IT Teachers 

Teaching Environment and Challenges 

 
The aim of this questionnaire is to gain a better understanding of current IT teaching 
environments and the difficulties currently faced by IT teachers.  Please complete the 
following questions as honestly as possible to provide us with a better understanding of 
IT teaching environments and how future research may be of assistance.  Where 
possible please explain your answers. 

 

Teacher:  

 
1. There is currently a debate amongst IT teachers.  The following are some of the 

points raised: 

 IT is aimed at producing programmers – most of the time is spent trying 
to cover the programming content while skimming over most of the 
other content 

 IT learners are not exposed to many other of the latest technologies and 
fields related to computers.  Web applications, mobile applications and 
graphics are just some of the topics that learners should be exposed to.  
Learners should also get a better idea of the different professions and 
careers related to computing – that it is not all about programming. 

 IT is about development, therefore programming is important. 

 If the amount of content detail is reduced but learners are exposed to 
more concepts/topics, learners will only end up with a superficial 
knowledge and not have adequate skills in a particular concept area.  

 The main question that needs to be answered is:  What knowledge 
should an IT learner at the end of Grade 12 have? 

 
Considering the statements above, what are your views on the current IT 
curriculum?  Are a few minor changes sufficient? 

 
 
 
 

 
 

2. In your opinion, what are the challenges you face as an IT teacher that other 
subject teachers may not have to deal with? 

 

 

 

 

 

 

 



3. What is easier for you as the IT teacher compared to other subjects? 

 

 

 

 

 

4. How would you compare IT to other subjects in terms of difficulty and amount of 
content that needs to be covered? 

 

 

 

 

 

 

5. What do you consider to be the most challenging topic/concept/learning 
outcome with regards to IT? 

 

 

 

 

 

 

6. What do you consider to be the easiest topic/concept/learning outcome with 
regards to IT? 

 
 
 
 

 
 

7. What is your opinion with regards to IT textbooks or support material?  (Do you 
use one or several textbooks when presenting IT?  Do the textbooks/study 
guides available support the teaching of IT?) 

 
 
 
 

 
 

8. Do you believe that the allocated school periods (time available) and timetable 
affects the teaching of IT (yes/no)?  If yes, please explain?  Do you think IT is 
more affected than other subjects? 

 

 

 

 

 



 

 

9. What strategy do you use during practical programming lessons to assist learners 
and determine which learners are struggling? 

 

 

 

 

 

 

10. Do you believe that learners have enough practical programming time in class to 
gain a basic but thorough understanding of the concepts being covered?  Please 
feel free to explain your answer. 

 
 
 
 

 
 

11. Do you believe that IT adequately prepares learners for a career in the 
Computing field? 

 
 
 
 

 
 

12. Any other related comments/opinions/suggestions? 

 
 
 
 

 
 
 
 
Thank you for time and assistance. 



APPENDIX A. QUESTIONNAIRES TO IT TEACHERS 182

A.2 Questionnaire to IT Teachers



Questionnaire to IT Teachers 

Teaching methods and use of Programming Assistance Tools 

 
The aim of this questionnaire is to gain a better understanding of current IT teaching 
environments and the difficulties currently faced by IT teachers.  Please complete the 
following questions as honestly as possible to provide us with a better understanding of 
IT teaching environments and how future research may be of assistance. 

 

Teacher:  

School:  

Province:  

Programming language used: 

(mark with X) 
Delphi Java 

 

Number of years teaching IT (or Computer Science HG):   

0-5 years 6-10 years More than 10 years 

 

1. Provide a rating to describe how difficult it is to teach each of the 

following programming concepts.  Choose a value from 1 (extremely easy) 

to 7 (extremely difficult). Indicate with 0 if you have never taught the 

concept before. 

 

 Concept Rating 

1 Variables         
2 Input (Getting information from the user)         
3 Output (Displaying information to the user)         
4 If statements         
5 Case (Delphi) or switch(Java) statements         
6 For Loops         
7 While loops         
8 Repeat (Delphi) or do While (Java) loops         
9 String handling         
10 One dimensional arrays         
11 Two dimensional arrays         
12 File handling         
13 Accessing a database          
14 SQL statements         
15 Procedures         
16 Functions         



17 Correct use of parameters         
18 Objects & classes         
19 Problem solving         
20 Algorithms         
21 Planning (use of pseudocode to plan solution 

before coding) 
        

22 Debugging (finding errors in the code)         
 

 

2. Provide a rating to describe how difficult it is for learners to understand 

each of the following programming concepts.  Choose a value from 1 

(extremely easy) to 7 (extremely difficult). Indicate with 0 if you have 

never taught the concept before. 

 

 Concept Rating 

1 Variables         
2 Input (Getting information from the user)         
3 Output (Displaying information to the user)         
4 If statements         
5 Case (Delphi) or switch(Java) statements         
6 For Loops         
7 While loops         
8 Repeat (Delphi) or do While (Java) loops         
9 String handling         
10 One dimensional arrays         
11 Two dimensional arrays         
12 File handling         
13 Accessing a database          
14 SQL statements         
15 Procedures         
16 Functions         
17 Correct use of parameters         
18 Objects & classes         
19 Problem solving         
20 Algorithms         
21 Planning (use of pseudocode to plan solution 

before coding) 
        

22 Debugging (finding errors in the code)         
Teaching Style: 



 

3. My teaching style is very constructivist1 in nature.   
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

4. 

 

I introduce new concepts to learners by providing learners with a reading 

assignment to first read about the new concepts themselves. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

5. I provide learners with and explain several (more than 4) code examples 

demonstrating the new concepts before learners code themselves 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

6. I introduce all variations/aspects of a concept to the learners before any exercises.  

For example, if teaching If statements, I will explain if, if-else, nested if and the 

use of logical operators, all before the first exercise. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

Programming Concept Exercises: 

 

7. Most of the programming exercises that learners must complete are for homework. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

8. I provide learners with solutions to exercises 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

9. I check learners’ exercise solutions only if asked to by the learner 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 

 

 

10. Most of the programming section class time is allocated for programming exercises 
                                                
1 A “constructivist” teaching style allows learners to be responsible for building their own 

knowledge.  The teaching environment and lessons plans promote learner interaction and 

participation as opposed to the traditional “lecturing” teaching style. 



1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

11. I make sure learners understand the theoretical background of a concept before 

they begin with exercises. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

12. Most learners that struggle do understand the concepts  
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

13. Most learners that struggle have difficulty applying concepts to different problems  
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

14. There is enough time in class to ensure that each learner understands the concepts 

satisfactorily 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

15. Many learners that understand the concepts struggle in examinations/tests 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 

Debugging: 

 

16. Most learners understand the compiler error messages  
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

17. Most learners know how to use compiler error messages to debug their code. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 

 

18. I teach learners how to use the debugging features of the IDE such as breakpoints 

and stepping over and into code, to find syntax and logical errors in their code. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 



 

19. I know how to use the debugging features of the IDE such as breakpoints and 

stepping over and into code. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

20. Many learners that struggle have difficulty with the programming language syntax  
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

Programming Assistance Tools / Software 

 

Definition:  A programming assistance tool is an additional software 

program (not the programming IDE eg. Netbeans or Delphi 6/7) that 

demonstrates to learners how code executes, how variable values change, 

identifies syntax errors in a simple manner or allows learners to code using 

graphical elements.  Some of programming tools use animations to explain 

concepts.  Examples are programming assistance tools are Alice 3D, Jeliot 

2000, GreenFoot, Ville, JGrasp, LOGO, etc. 

 

21a. Have you used or are you currently using programming assistance tools to help 

students understand the programming concepts? 

Yes No 

 

21b. If yes, which programming assistance tool(s) have you used or do you currently 

use? 

 

 

 

 

If you answered Yes to 21a, please continue with question 24, else also 

answer questions 22 and 23. 

 

 

22. I would like to use a programming assistance tool to help students understand the 

concepts better 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 



23 I don’t personally have experience with any programming assistance tools that can 

be used 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 

24 There is enough time in class for students to learn how to use a programming 

assistance tool to improve their understanding of programming concepts. 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 
Not Applicable 

 

 

 

Thank you for time and assistance. 



Appendix B

IT Decision Questionnaire

B.1 Pretest Questionnaire

189



General Questionnaire to IT Learners (Grade 10)  
Please complete the following questions regarding your decision to take IT.  We would 
like to gather more information about learner interest in IT.  We would appreciate your 
co-operation by completing the following questions.  Remember that these are your 
honest views; there are no right or wrong answers.   

 

Learner:  

Grade:  School:  

Programming Language (Mark with an X): Delphi Java 

 

1. Which of the following statements reflect factors present in your 

decision to take IT as a subject (you may select more than one): 

 

1 IT was one of my first choice subjects  

2 I had to decide between IT and another subject  

3 Taking IT was my own decision  

4 IT was recommended/suggested by someone else  

5 If IT was taught by another teacher I might not have selected it  

6 I enjoy working on a computer (e.g. games, typing, creating 

documents) 

 

7 I have some knowledge of programming or what it is all about  

8 I am interested in programming  

 

2. Do you enjoy Mathematics? 

 

3. Do you enjoy solving problems or puzzles? 

 

4. Did anyone influence your decision to take IT? 

 

If yes, please select one or more people who influenced your decision from 

the list below: 

1 IT teacher  

2 Guidance teacher  

3 Friends deciding to take IT  

4 Friends/siblings already doing or have done IT  

5 Parents/guardians  

6 IT professional (someone you know or have seen in the IT 

industry) 

 

Yes  No  

Yes  No  

Yes  No  



7 Other:  (please specify) 

 

 

 

  

 

5. My main reason for selecting IT is (please select only one): 

1 To understand more about the different aspects and topics 

related to computing in general 

 

2 To be able to understand how a computer works (hardware)  

3 To improve my understanding and use of different computer 

programs or application 

 

4 To be able to develop my own software programs  

5 To play LAN games with friends in class  

6 To have more access to a computer at school  

7 Other:  (please specify) 

 

 

 

  

 

6. I think IT is a difficult subject if compared to other school subjects 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

7. I think I can do well in IT 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

8. I am considering a career in computers after school? 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

9. At the moment, what is your first choice career when you leave school?  

 

Tick here if you have do not currently have one definite career in mind:    

 
 
Thank you.   



APPENDIX B. IT DECISION QUESTIONNAIRE 192

B.2 Posttest Questionnaire



General Questionnaire to IT Learners (Grade 10)  
Please complete the following questions regarding your decision to take IT.  We would 
like to gather more information about learner interest in IT.  We would appreciate your 
co-operation by completing the following questions.  Remember that these are your 
honest views; there are no right or wrong answers.   

 

Learner:  

Gender (M/F):  School:  

Programming Language (Mark with an X): Delphi Java 

 

1. If you could choose your Grade 10 subjects again, would you still choose IT? 

 

 

Please motivate your answer: 

 

 

 

 

 

 

 

 

2. I think IT is a difficult subject if compared to other school subjects 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

3. I think I can do well in IT 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

4. I am considering a career in computers after school? 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

5. At the moment, what is your first choice career when you leave school?  

 

Tick here if you have do not currently have one definite career in mind:    

 
Thank you.   

Yes  No  



Appendix C

Perceived Difficulty of IT
Questionnaire (Grade 11)

194



General Questionnaire to IT Learners 
Please complete the following questions regarding programming in IT.  We would like to 
gather more information about the difficulties faced by IT learners.  We would 
appreciate your co-operation by completing the following questions.  Remember that 
these are your honest views on IT programming; there are no right or wrong answers.   

 

Learner:  

Grade:  School:  

Programming Language (Mark with an X): Delphi Java 

 

1. Provide a rating for each of the following programming concepts.  Choose 

a value from 1 (extremely easy) to 7 (extremely difficult). Indicate with 

0 if the concept has not been covered or taught yet. 

 

 Concept Rating 

1 Variables         
2 Input (Getting information from the user)         
3 Output (Displaying information to the user)         
4 If statements         
5 Case (Delphi) or switch(Java) statements         
6 For Loops         
7 While loops         
8 Repeat (Delphi) or do While (Java) loops         
9 String handling         
10 One dimensional arrays         
11 Two dimensional arrays         
12 File handling         
13 Accessing a database          
14 SQL statements         
15 Procedures         
16 Functions         
17 Correct use of parameters         
18 Objects & classes         
19 Problem solving         
20 Algorithms         
21 Planning (use of pseudocode to plan solution 

before coding) 
        

22 Debugging (finding errors in the code)         



 

2. Choose one concept from the list above that you find the most difficult to 

understand (Give the number only, eg. 4 for If Statements): 

 

3. I am able to do simple exercises for a programming concept 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

4. I understand simple examples explaining how to apply a programming concept 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

5. I understand solutions provided for simple exercises 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

6. Most times I understand the theory explaining a programming concept 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

7. I am able to combine different programming concepts to solve a complex problem 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

8. I am able to apply programming concepts in larger, more complex exercises 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

9. I understand solutions provided for complex exercises 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

10. I am able to apply solutions from simple exercises to more complex exercises 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

11. I understand compiler error messages 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

 

 

 

 



12. I use compiler error messages to find syntax errors in my code 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

13. I use showmessage or similar to display variable values at critical points in my 

program to determine if the program is processing the data correctly 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

14. I use breakpoints in my code to evaluate variable values to determine if the program 

is processing the data correctly 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

15. I use different input values to test that my program will work for all possible user 

inputs 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

16. Most times I understand what is required for a particular programming question i.e. 

what the program is supposed to do 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

17. I am able to write the code required for to solve the programming questions i.e. 

write the solution in a way that the computer can understand it 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

18. I work out a solution (in any form) to a problem before coding 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

19. I write down a non-code solution before trying to write the code 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

20. I use comments in my program code to describe what different sections of the code 

are doing 
1 

Strongly Disagree 
2 3 4 5 6 

7 

Strongly Agree 

 

Thank you.  Please complete the MSLQ questionnaire. 



Appendix D

Multiple Choice Tests

D.1 Grade 10: if -statements

198



If Statement Questions 

The following properties of if statements are to be evaluated: 

Marking Sheet: 

1 b 
2 a 
3 d 
4 b 
5 a 
6 a 
7 a 
8 d 
9 d 
10 b 
11 e 
12 d (3marks)  



If-Statements  
Grade 10 

Multiple Choice Class Test  
25 Marks 

Name: 
 

Please write your answer in the space provided on the right.  Use the following responses if you are unable to 
select an answer: 
 
 

 
 

1. Consider the following code fragment: 
iNum1 := 5; 

iNum2 := 0; 

if iNum1 > 0 then 

  iNum2 := 1; 

 

What  value is in the variable iNum2 after the code is executed? 

a) 0  b)  1  c)  2  d)  5 
 

2. Consider the following code fragment: 
iNum1 := 0; 

iNum2 := 4; 

if iNum2 > 4 then 

begin 

  iNum1 := iNum1 + 1; 

  iNum2 := iNum2 * 2; 

end;   

 

After the above code segment executes the values of iNum1 and iNum2 will be: 
a) iNum1 = 0;  iNum2 = 4 b) iNum1 = 1;  iNum2 = 4 
c) iNum1 = 0;  iNum2 = 8 d) iNum1 = 1;  iNum2 = 8 

 
3. Consider the following code fragment: 
iNum := 1; 

if iNum <= 10 then 

  iNum := iNum + 10; 

 

After the above code segment finishes the value of iNum will be: 
a) 1 b)  9  c) 10  d)  11   

 
4. Consider the following code fragment: 
iNum := 21; 

if iNum < 21 then 

  memOut.lines.add(‘underage’) 

else 

  memOut.lines.add(‘adult’); 

 

What will be printed in the memobox component? 
a) underage  b) adult 

 

 

 

 

X Do not understand question 

Y Concept not covered in class 

Z Just don’t know the answer 

1 

2 

3 

4 



5. Consider the following code fragment: 
iNum1 := 5; 

iNum2 := 7; 

if ((iNum1+10) > (iNum2*2)) then 

  memOut.lines.add(‘greater than’) 

else 

  memOut.lines.add(‘less than’);   

 

What will be printed in the memobox component? 
a) greater than  b)  less than 

 
6. The following code segment should check whether the number n is even or odd: 
if (?????????) then 

  memOut.lines.add(‘Odd’) 

else 

  memOut.lines.add(‘Even’); 

 

The ???????? in the above code should be replaced by: 
a) (iNum mod 2 = 1) b) (iNum mod 2 = 0) 

c) (iNum div 2 = 0) d) (iNum div 2 = 1) 

 
7. Consider the following code fragment: 
if (iNum > 40) and (iNum <= 50) then 

  memOut.lines.add(‘Invalid’); 

 

Which one of the following values of iNum will not print “Invalid”: 
a) 40 b)  41  c) 50  d)  None of the above 

 
8. Consider the following code fragment: 
if (iNum > 40) or (iNum <= 50) then 

  memOut.lines.add(‘Invalid’); 

 

Which one of the following values of iNum will not print “Invalid”: 
a) 40 b) 41  c)  50  d)  None of the above 

 
9. The following code segment should take a number iNum and calculate the value that is half of iNum.  The code 

should print “Even” if the value half of iNum is even and “odd” if the value half of iNum is odd. 
if (?????????) then 

  memOut.lines.add(‘Even’) 

else 

  memOut.lines.add(‘Odd’); 

 

The ????????? in the above code should be replaced by: 

a) (iNum mod 2 = 0) b) (iNum div 2 = 0) 

c) ((iNum div 2) mod 2) d) ((iNum div 2) mod 2 = 0) 

 

 
 
 
 
 
 

5 

6 

9 

8 

7 



10. Consider the following code fragment: 
if (iNum > 100) then 

begin 

  if (iNum < 200) then 

    memOut.lines.add(‘A’) 

  else 

    memOut.lines.add(‘B’); 

end 

else 

  if (iNum > 50) then 

    memOut.lines.add(‘C’) 

  else  

    memOut.lines.add(‘D’); 

 

If the value of iNum is 200, what will be printed in the memobox component: 
a) A b)  B  c)  C  d)  D 

 
11. Consider the following code fragment: 
if (iNum >= 100) then 

begin 

  if (iNum < 200) then 

    memOut.lines.add(‘A’) 

  else 

    memOut.lines.add(‘B’); 

end; 

  if (iNum > 50) then 

    memOut.lines.add(‘C’) 

  else  

    memOut.lines.add(‘D’); 

 

If the value of iNum is 100, what will be printed in the memobox component: 
a) A b)  B  c)  C  d)  D  e)  A 

             C 
 

12. Code is required that will use an integer value iNum (where  0<=iNum<=100) and print a message based on the 
value of iNum in a memobox: 

iNum Message 

0 – 49 Below average 

51-100 Above average 

50 Average 

 

Which one of the following code segments will NOT print the correct messages: 

a) if (iNum <= 49) then 
  memOut.lines.add(‘Below average’) 

else 

  if (iNum=50) then 

    memOut.lines.add(‘Average’) 

  else   

    memOut.lines.add(‘Above average’); 

 

 

 

 

11 

10 



b) if (iNum > 50) then 
  memOut.lines.add(‘Above average’) 

else 

  if (iNum < 50) then 

    memOut.lines.add(‘Below average’) 

  else 

    memOut.lines.add(‘Average’) 

 

c) if (iNum=50) then 
  memOut.lines.add(‘Average’) 

else 

  if (iNum > 50) then 

    memOut.lines.add(‘Above average’) 

  else 

    memOut.lines.add(‘Below average’) 

 

d) if (iNum >= 50) then 
  memOut.lines.add(‘Average’) 

else 

  if (iNum < 50) then 

    memOut.lines.add(‘Below Average’) 

  else 

    memOut.lines.add(‘Above Average’); 

 

 

 
 

 

12 



APPENDIX D. MULTIPLE CHOICE TESTS 204

D.2 Grade 10: for-loops



For Loops  

Marking Sheet: 

1 d 
2 d 
3 c 
4 c 
5 d 
6 c 
7 a 
8 c 
  



For Loops  
Grade 10 

Multiple Choice Class Test  
16 Marks 

Name: 
 

Please write your answer in the space provided on the right.  Use the following responses if you are unable to 
select an answer: 
 
 

 
 

1. Consider the following code fragment: 
for iCounter := 1 to 5 do 

  iNumber := iCounter; 

 

What  value is in the variable iNumber after the code is executed? 
a) 1 b)  3  c)  4  d)  5   

 
2. Consider the following code fragment: 
iSum := 0; 

for iCounter := 2 to 8 do 

begin 

  iSum := iSum + iCounter; 

  iNum := iCounter; 

end;   

 

After the above code segment finishes the values of iSum and iNum will be:  
a) iNum = 2;  iSum = 8 b) iNum = 8;  iSum = 8 
c) iNum = 2;  iSum = 35  d) iNum = 8;  iSum = 35 

 
3. Consider the following code fragment: 
for iCounter := 3 to 9 do 

  memOut.lines.add(‘hello’); 

 

How many times will “hello” be printed in the memobox component? 
a) 3  b)  6  c)  7  d) 9   

 
4. Consider the following code fragment: 
for iStep1 := 1 to 5 do 

  for iStep2 := 1 to 3 do 

    memOut.lines.add(intToStr(iStep1) + ‘x’ + intToStr(iStep2)); 

 

What will the last line printed in the memobox component be? 
a) iStep1 x iStep2 b) iStep1 + x + iStep2 

c) 5 x 3  d) 15 

 

 

 

 

 

 

 

 

 

 

X Do not understand question 

Y Concept not covered in class 

Z Just don’t know the answer 

1 

2 

3 

4 



5. Consider the following code fragment: 
for iStep := 0 to 5 do 

  memOut.lines.add(‘apples’); 

memOut.lines.add(‘oranges’); 

 

How many times are the words “apples” and “oranges” printed in the memobox component respectively? 
a) apples = 5; oranges = 5 b) apples = 6; oranges = 6 
c) apples = 5; oranges = 1 d) apples = 6; oranges = 1 

 
6. The following pattern should be printed in a memobox component: 
4x2=8 

3x3=9 

2x4=8 

1x5=5 

The following code segment is intended to print the pattern in the memobox component: 
for a := 4 downto 1 do 

  for ???????? 

    memOut.lines.add(intToStr(a)+’x’+intToStr(b)+’=’+intToStr(a*b)); 

 

The ???????? in the above code should be replaced by: 
a) b := 1 to 5 do b) b := 1 to 4 do 

c) b := 2 to 5 do d) b := 2 to 4 do 

 
7. Consider the following code fragment: 
iNumA := 10; 

iNumB := 3; 

iNumC := 4; 

for iStep := iNumA to iNumB do 

  iNumC := iNumC + 1; 

 

After the above code segment finishes the value of iNumC will be: 
a) 4 b)  10  c) 11  d)  12 

 
8. The following code segment should print all the even numbers from 100 to 200 in a memobox component: 
for iCounter := ???????? do 

begin 

  iEvenNumber := iCounter * 2; 

  memOut.lines.add(intToStr(iEvenNumber)); 

end; 

 

The ???????? in the above code should be replaced by: 

a) 100 to 200 b) 1 to 100 

c) 50 to 100 d) 1 to 200 

 

 

 
 

 

8 

7 

6 

5 



APPENDIX D. MULTIPLE CHOICE TESTS 208

D.3 Grade 10: repeat- and while-loops



Repeat and While Loops  

Marking Sheet: 

1 a and b 
2 c 
3 d 
4 a 
5 a 
6 b 
7 d 
8 d 
9 d 
10 c 
11 c 
12 c 
 
  



Repeat and While Loops  
Grade 10 

Multiple Choice Class Test  
24 Marks 

Name: 
 

Please write your answer in the space provided on the right.  Use the following responses if you are unable to 
select an answer: 
 
 

 
 

1. Consider the code to print all numbers which are smaller than 40 in the following sequence:  4,9,14,19,24,..  
 

iNum := 4; 

while (____________) do     

begin 

  memOut.lines.add(intToStr(iNum)); 

  iNum := iNum + 5; 

end; 

 

Which while do statement will result in the sequence printed correctly? 
a) While (iNum < 40) do b) While (iNum <= 40) do 

c) While (iNum = 40) do  d) While (iNum = 39) do 

 
2. Consider the following sequence:  50,38,26,14,.. .  Complete the code below to print the first 15 numbers of this 

sequence. 
 

iNum := 50; 

iCounter := 1; 

repeat 

  memOut.lines.add(intToStr(iNum)); 

  iNum := iNum – 12; 

  inc(iCounter); 

until (___________);  

 

Which until line statement will result in the sequence printed correctly:  
a) until (iCounter = 15); b) until (iCounter >= 15); 

c) until (iCounter > 15); d) until (iCounter <= 15); 

 
3. Consider the following sequence: 1,3,9,27,81,.. . Complete the code below to print all numbers in the sequence 

that are smaller than 200. 
iNum := 1; 

while(iNum < 200) do 

begin 

  memOut.lines.add(intToStr(iNum)); 

  ??????????????? 

end; 

 

The line ?????????????? above should be replaced by: 
a) iNum := iNum + 3; b) iNum2 := iNum * 3; 

c) iNum := 3 * 9; d) iNum := iNum * 3; 

 
 
 

X Do not understand question 

Y Concept not covered in class 

Z Just don’t know the answer 

1 

2 

3 



4. Consider the following sequence: 1,2,4,8,16,32,.. .  Complete the code below to print the first 10 numbers of this 
sequence. 

iNum := 1; 

iCount := 0; 

while (_____________) do 

begin 

  memOut.lines.add(intToStr(iNum)); 

  iNum := iNum * 2; 

  inc(iCount); 

end; 

   

Which while do statement below will result in the sequence printed correctly:  
a) while (iCount < 10) do b) while (iNum < 10) do 

c) while (iCount > 10) do d) while (iNum > 10) do 

 

5. If a person invests an initial (start) amount of R 100 in a bank account and the amount in the bank account 
increases by 12% per annum, how much money will be saved after 4 years?  Consider the code below to 
calculate the amount: 

rSavedAmt := 100; 

iYears := 1; 

repeat 

  ???????????????? 

  inc(iYears); 

until (iYears > 4); 

memOut.lines.add(‘Amount saved after 4 yrs is R ‘ + FloatToStr(rSavedAmt)); 

 

The line ?????????????? above should be replaced by: 
a) rSavedAmt := rSavedAmt * 1.12; b) rSavedAmt := rSavedAmt * 100; 

c) rSavedAmt := 100 * 12; d) rSavedAmt := rSavedAmt * 0.12; 

 
6. Consider the following code fragment: 
n := 5; 

m := 1; 

while (m < n) do 

begin 

  memOut.lines.add(intToStr(m*m)); 

  inc(m); 

end; 

 

What number sequence is printed by the above code? 
a) 1,4,9,16,32 b) 1,4,9,16 

c) 1,4 d) 1,2,3,4,5 

 
7. Consider the following sequence: 1,8,15,22,.. . Complete the code below to print all numbers smaller than 40. 
iNum := 1; 

repeat 

  memOut.lines.add(intToStr(iNum)); 

  iNum := iNum + 7; 

until (_____________); 

 

Which until line statement will result in the sequence printed correctly:  
a) until (iNum < 40); b) until (iNum = 40); 

c) until (iNum <= 40); d) until (iNum >= 40); 

4 

7 

5 

6 



 
8. Consider the following sequence:  1,2,4,7,11,16,.. .  Complete the code below to print the first 20 numbers of the 

sequence. 
iNum := 1; 

iCounter := 0; 

repeat 

  ????????????????? 

  inc(iCounter);  

  memOut.lines.add(intToStr(iNum)); 

until (iCounter >= 20); 

 

The line ?????????????? above should be replaced by: 
a) iNum := iNum + 1; b) iNum := iNum + 2; 

c) iNum := iNum * 2; d) iNum := iNum + iCounter; 

 
9. Consider the following code fragment: 
iNum := 1; 

while (iNum < 30) do 

begin 

  memOut.lines.add(intToStr(iNum)); 

  iNum := iNum * (-2); 

end; 

 

What number sequence is printed by the above code? 
a) 1,-2,-4,-6,-8,-10,-12,-14 b) 1,2,4,6,8,10,12,14 

c) 1,-2,4,-8,16 d) 1,-2,4,-8,16,-32 

10. A certain plant grows by 2cm every month in the first two years.  Thereafter, it grows by 0.5cm each month.  
Complete the code below to determine how tall (in cm) the plant will be after 5 years: 

iYears := 1; 

rGrowth := 0; 

while (iYears <= 5) do 

begin 

  ??????????????? 

  inc(iYears); 

end; 

memOut.lines.add(‘The plant will be ‘+ floatToStr(rGrowth) + ‘ cm tall’); 

 

The line ?????????????? above should be replaced by: 
a) rGrowth := rGrowth+(12*2); b) rGrowth := rGrowth + (iYears * 2); 

c) if (iYears <= 2) then 

  rGrowth := rGrowth + 24 

else 

  rGrowth := rGrowth + 6; 

d) if (iYears <= 2) then 

  rGrowth := rGrowth + (12*2); 

 

 

 

 

 

 

 

 

 

 

 

 

   

8 

9 

10 



 

11. Consider the following code fragment: 
iNum1 := 0; 

iNum2 := 1; 

iCount := 0; 

 

n := strToInt(edtNumTimes.text); 

 

while (n > iCount) do 

begin 

  memOut.lines.add(intToStr(iNum2)); 

  temp := iNum1 + iNum2; 

  iNum1 := iNum2; 

  iNum2 := temp; 

  inc(iCount); 

end; 

 

If the user types in 8 (n=8), what sequence will be printed by the code above: 
a) 1,2,3,5,8,13,21,34 b) 1,2,3,4,5,6,7,8 

c) 1,1,2,3,5,8,13,21 d) 1,3,5,7,9,11,13,15 

    

12. Consider the following code fragment that should print the sequence:  3,2,5,6,9,14,.. .   
iMax := strToInt(edtCount.text); 

iNum := 3; 

iCount := 0; 

 

repeat 

  memOut.lines.add(intToStr(iNum)); 

  if (iNum mod 2 = 0) then 

    iNum := iNum + 3 

  else 

    iNum := iNum * 2 – 4; 

until (iCount = iMax); 

 

iMax is a value typed in by the user to indicate how many numbers to print in the sequence.  The code above causes 
an infinite loop.  Which of the options below will fix the problem? 

a) The memOut line should move to after the else line 
b) Until (iCount = iMax); should be replaced by until (iCount > iMax); 
c) The code is missing the line:  inc(iCount); 
d) The repeat  loop should be replaced by a while loop 

 

 

 
 

 

11 

12 



APPENDIX D. MULTIPLE CHOICE TESTS 214

D.4 Grade 11: One-dimensional Arrays



Array (One Dimensional)  

Marking Sheet: 

1 b 
2 b 
3 c 
4 c 
5 a 
6 b 
7 c 
8 d 
9 c 
10 b  



Arrays (One-Dimensional)  
Grade 11 

Multiple Choice Class Test  
20 Marks 

Name: 
 

Please write your answer in the space provided on the right.  Use the following responses if you are unable to 
select an answer: 
 
 
 
 
The following represents an integer array: 

3 4 7 2 1 

 
The array is declared as follows:   

var myArray : array[0..4] of integer; 

 
Use this array information to answer Questions 1-9 below. 
 

1. What is the value of x (integer variable) after the following line of code is executed: 
x := myArray[1]; 

 

a) 3 b)  4  c)  2  d)  1 
   

2. What is the value of y (integer variable) after the following lines are executed: 
 

var a, y : integer; 

begin 

  a := 5; 

  y := myArray[a-1]; 

end;   

 

a) 2 b)  1  c)  0  d)  3 
 

3. Which one of the following lines of code will change the value 7 in myArray to an 8? 
 

a) myArray[7] := 8; b) myArray[3] := 8; 

c) myArray[2] := 8;  d) myArray[7] := myArray[8]; 

 
4. What values will the array myArray contain after the following code is executed? 

 
var i : integer; 

begin 

  for i := 1 to 5 do 

    myArray[i-1] := myArray[i-1]-1; 

end; 

 

 
 
 
 
 

X Do not understand question 

Y Not done in class 

Z Just don’t know the answer 

a) -1 -1 -1 -1 -1 b) 3 4 7 2 1 

c) 2 3 6 1 0 d) 0 1 2 3 4 

1 

2 

3 

4 



 
5. What values will the array myArray contain after the following code is executed? 

 
var i : integer; 

begin 

  for i := 0 to 4 do 

    myArray[i] := i; 

end; 

 

 
 
 
 
 

 
6. The following code segment should add all the numbers in the array: 

 
var iCounter, iSum : integer; 

begin 

  iSum := 0;   

  for iCounter := 0 to 4 do 

    ????????? 

  memOut.lines.add(‘The total is ‘ + intToStr(iSum)); 

end; 

 

The ???????? in the above code should be replaced by: 
 
a) iSum := iSum + iCounter; b) iSum := iSum + myArray[iCounter]; 

c) iSum := myArray[iCounter]; d) iSum := icounter; 

 

7. The following code segment should count the number of values in the array that are greater than 2: 
 

var iStep, iCount : integer; 

begin 

  iCount := 0;   

  for iStep := 0 to 4 do 

    ????????? 

  memOut.lines.add(‘Greater than 2: ‘ + intToStr(iCount)); 

end; 

 

The ???????? in the above code should be replaced by: 
a) iCount := iCount + 1; b) iCount := myArray[iStep] + 1; 

c) if (myArray[iStep] > 2) then  

  iCount := iCount + 1; 

d) if (myArray[iStep] >= 2) then 

  iCount := iCount + 1; 

 

 

 

 

 

 

a) 0 1 2 3 4 b) 3 4 7 2 1 

c) i i i i i d) 1 2 3 4 5 

5 

6 

7 



 

 

8. What values will the array myArray contain after the following code is executed? 
 

var i : integer; 

begin 

  for i := 0 to 3 do 

    if (myArray[i] > myArray[i+1]) then 

      myArray[i+1] := myArray[i]; 

end; 

 
 
 
 
 
 

 
9. The following line of code should display the first value in the array: 

memOut.lines.add(intToStr(????????????)); 

 

The ???????? in the above code should be replaced by: 
a) myArray[1] b) 1 

c) myArray[0] 

 

d) 0 

 

10. Which of the following lines of code declares an array that can contain 15 string variables? 
a) var myArray : array[0..15] of string; 
b) var myArray : array[0..14] of string; 
c) var myArray : string; 
d) var myArray : array[0..15] : string; 

 
 

a) 3 4 7 2 1 b) 1 2 3 4 7 

c) 3 4 2 1 7 d) 3 4 7 7 7 

 

8 

9 

10 



APPENDIX D. MULTIPLE CHOICE TESTS 219

D.5 Grade 11: Procedures and Functions



Procedure/Function Questions 

Marking Sheet: 

1 c 
2 a 
3 b 
4 d 
5 b 
6 d 
7 c 
8 d 
9 b 
10 c 
  



Procedures and Functions 
Grade 11 

Multiple Choice Class Test  
20 Marks 

Name: 
 

Please write your answer in the space provided on the right.  Use the following responses if you are unable to 
select an answer: 
 
 

 
 

 Use the following procedures and functions to answer the questions: 
  

 function myFunction1(iVal : integer) : integer; 

 begin 

   result := 2*iVal; 

 end; 

 

 function myFunction2(iVal1, iVal2 : integer) : string; 

 begin 

   result := ‘The answer is ‘+ intToStr(iVal1+iVal2); 

 end; 

 

 procedure myProcedure1(iNum : integer; sTxt : string); 

 var iCounter : integer; 

 begin 

   for iCounter := 1 to iNum do 

     memOut.lines.add(sTxt); 

 end; 

 

 procedure myProcedure2(sTxt : string; iNum : integer); 

 var iCount : integer; 

     sTemp : string;  

 begin 

   sTemp := ‘’; 

   for iCount := 1 to length(sTxt) do 

     sTemp := sTemp + sTxt[iCount] + intToStr(iNum); 

   lblOutput.caption := sTemp; 

 end; 

 

 procedure myProcedure3(iNum1, iNum2 : integer); 

 begin 

   lblOut.caption := ‘The answer is ‘ + inttoStr(a+b); 

 end;  

 
 
 
 
 
 
 
 
 
 
 

X Do not understand question 

Y Concept not covered in class 

Z Just don’t know the answer 



1. Consider the following code fragment: 
var iValue1, iValue2, iSum : integer; 

begin 

  iValue1 := strToInt(edtNum1.text); 

  iValue2 := strToInt(edtNum2.text); 

  iSum := getSum(iValue1, iValue2); 

  lblOutput.caption := intToStr(iSum); 

end; 

 

Which of the following is the correct declaration of getSum? 

a) procedure getSum(iNum, iOtherNum : integer); 

b) procedure getSum(iNum, iOtherNum : integer) : integer; 

c) function getSum(iNum, iOtherNum : integer) : integer; 

d) function getSum(iNum, iOtherNum : integer); 

 
2. Consider the following code fragment: 
var iN1, iN2 : integer; 

begin 

  iN1 := 6; 

  iN2 := 3; 

  printProduct(iN1, iN2); 

end; 

 

Which of the following is the correct declaration of printProduct? 

a) procedure printProduct(iNum, iOtherNum : integer); 

b) procedure printProduct(iNum, iOtherNum : integer) : integer; 

c) function printProduct(iNum, iOtherNum : integer); 

d) function printProduct(iNum, iOtherNum : integer) : integer; 

 
3. Which of the following code segments correctly uses myProcedure1 (see page 1)? 

a) iN := 1; 
sTemp := ‘abc’; 

myProcedure1(sTemp, iN); 

 

b) iN := 1; 
sTemp := ‘abc’; 

myProcedure1(iN, sTemp); 

 

c) iN := 1; 
sTemp := ‘abc’; 

sTextOut := myProcedure1(iN, sTemp); 

lblOut.caption := sTextOut; 

 

d) iN := 1; 
sTemp := ‘abc’; 

myProcedure1(iNum, sTxt);   

 

 

 

 

 

 

 

 

 

1 

3 

2 



4. If a string variable sSomeStr and an integer variable iANumber are assigned values as follows: 
sSomeStr := ‘xyz’; 

iANumber := 9; 

?????????? 

 
Which of the following lines will replace the ?????????? line and correctly use myProcedure2 (see page 1)? 

a) myProcedure2(iANumber, sSomeStr); 

b) myProcedure2(sTxt, iNum); 

c) anotherStr := myProcedure2(sTxt, iNum); 

d) myProcedure2(sSomeStr, iANumber); 

 
5. Consider the following code fragment: 
 var iNum, iNum2 : integer; 

 begin 

   iNum := strToInt(edtIn.text); 

   ???????????? 

 end; 

 

Which of the following lines will replace the ?????????? line and correctly use myFunction1 (see page 1)? 
a) myFunction1(iNum); 

b) iNum2 := myFunction1(iNum); 

c) myFunction1(iVal); 

d) iNum2 := myFunction1(iVal); 

 
6. The following code segment should print the sum of two numbers: 
iNum1 := 5; 

iNum2 := 6; 

?????????? 

memOut.lines.add(‘The sum is ‘ + intToStr(iNum3)); 

 

The ???????? line in the above code should be replaced by (refer to page 1): 
a) iNum3 := myFunction2(iNum2, iNum1); 

b) iNum3 := myFunction2(iVal1,iVal2); 

c) myProcedure3(iNum1,iNum2); 

d) None of the above 

 
7. If you have to write a program that takes a string value and an integer value, eg. ‘computer’ and 5 respectively, 

and then inserts the integer value between each character of the string , e.g.  c5o5m5p5u5t5e5r5 
 

Which one of the following lines will do this (refer to page 1)? 
a) myProcedure1(5,’computer’); 

b) myProcedure1(‘computer’,5); 

c) myProcedure2(‘computer’,5); 

d) myProcedure2(5,’computer’); 

 
 
 
 
 
 
 
 
 
 

4 

6 

7 

5 



8. Consider the following procedure/function: 

  procedure/function header 

  var iFact, iCounter : integer; 

  begin 

    ifact := 1; 

    for iCounter := 1 to iNum do 

      iFact := ifact * iCounter; 

    result := iFact; 

  end; 

 

If iNum is an input parameter, which of the following  will replace procedure/function header for this code: 
a) procedure Factorial (iNum : integer); 

b) function Factorial (iFact : integer) : integer; 

c) function Factorial (iFact : integer); 

d) function Factorial (iNum : integer) : integer; 

 
9. Consider the following procedure/function: 

  procedure/function header 

  var iCounter1, iCounter2 : integer; 

      sTemp : string; 

  begin 

    for iCounter1 := 1 to iSize do 

    begin 

      stemp := ‘’; 

      for iCounter2 := 1 to iCounter1 do 

        sTemp := stemp + sPattern; 

      memOut.lines.add(sTemp); 

    end; 

  end; 

 

If sPattern and iSize are input parameters, which of the following  will replace procedure/function header for this 
code: 
a) procedure printPatterns(sPattern, iSize : integer); 

b) procedure printPatterns(sPattern : string; iSize : integer); 

c) procedure printPatterns(sPattern, iSize : string); 

d) procedure printPatterns(iSize : integer); 

 
10. You are required to write a procedure/function that takes two integer input parameters and returns the biggest 

(largest) of these two values.  Which one of the following would be the most appropriate procedure/function 
declaration?  

a) function theBiggest(iNum1 : integer); 

b) function theBiggest(iNum1, iNum2 : integer); 

c) function theBiggest(iNum1, iNum2 : integer) : integer; 

d) procedure theBiggest(iNum1, iNum2 : integer); 

 
 

 

8 

9 

10 



Appendix E

PAT Evaluation Questionnaire

E.1 RoboMind Questionnaire

225



Name:  Grade:  

Please complete the following questions.  We would like to determine the usefulness of RoboMind.  We would appreciate 
your co-operation.  Remember that these are your honest views; there are no right or wrong answers.  Mark the 
appropriate number or response with an X. 
 

1. Have you installed RoboMind? Yes No 

2. How many times do you use RoboMind per week? 0 – 1 times 2-3 times 4 or more times 

3. RoboMind has helped me with my understanding of: 

 Strongly Disagree    Strongly Agree  

a. Variables 1 2 3 4 5 Not done yet 

b. If Statements 1 2 3 4 5 Not done yet 

c. For Loops 1 2 3 4 5 Not done yet 

d. Repeat Loops 1 2 3 4 5 Not done yet 

e. While Loops 1 2 3 4 5 Not done yet 

f. Procedures (Gr11) 1 2 3 4 5 Not done yet 

 

4. I think RoboMind is easy to use. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

5. I think most people would learn to use RoboMind very quickly. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

6. I think I need assistance to be able to use RoboMind. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

7. I feel very confident using RoboMind. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

 

8. What do you like about RoboMind? 

 
 
 
 

9. What do you not like about RoboMind? 

 
 
 
 

10. What changes or improvements to RoboMind would you recommend? 

 
 
 
 

11. If you are not using RoboMind, why not?  

 
 
 
 
 

Would you be interested in additional help installing or using RoboMind?  Yes / No 



APPENDIX E. PAT EVALUATION QUESTIONNAIRE 227

E.2 Scratch Questionnaire



Name:  Grade:  

Please complete the following questions.  We would like to determine the usefulness of Scratch.  We would appreciate 
your co-operation.  Remember that these are your honest views; there are no right or wrong answers.  Mark the 
appropriate number or response with an X. 
 

1. Have you installed Scratch? Yes No 

2. How many times do you use Scratch per week? 0 – 1 times 2-3 times 4 or more times 

3. Scratch has helped me with my understanding of: 

 Strongly Disagree    Strongly Agree  

a. Variables 1 2 3 4 5 Not done yet 

b. Input 1 2 3 4 5 Not done yet 

c. Output 1 2 3 4 5 Not done yet 

d. If Statements 1 2 3 4 5 Not done yet 

e. For Loops 1 2 3 4 5 Not done yet 

f. Repeat Loops 1 2 3 4 5 Not done yet 

g. While Loops 1 2 3 4 5 Not done yet 

h. String Handling 1 2 3 4 5 Not done yet 

i. Arrays (Gr11) 1 2 3 4 5 Not done yet 

j. Procedures (Gr11) 1 2 3 4 5 Not done yet 

 

4. I think Scratch is easy to use. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

5. I think most people would learn to use Scratch very quickly. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

6. I think I need assistance to be able to use Scratch. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

7. I feel very confident using Scratch. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

 

8. What do you like about Scratch? 

 
 
 
 

9. What do you not like about Scratch? 

 
 
 
 

10. What changes or improvements to Scratch would you recommend? 

 
 
 
 

11. If you are not using Scratch, why not?  

 
 
 
 
 

Would you be interested in additional help installing or using Scratch?  Yes / No 



APPENDIX E. PAT EVALUATION QUESTIONNAIRE 229

E.3 B# Questionnaire



Name:  Grade:  

Please complete the following questions.  We would like to determine the usefulness of B#.  We would appreciate your co-
operation.  Remember that these are your honest views; there are no right or wrong answers.  Mark the appropriate 
number or response with an X. 
 

1. Have you installed B#? Yes No 

2. How many times do you use B# per week? 0 – 1 times 2-3 times 4 or more times 

3. B# has helped me with my understanding of: 

 Strongly Disagree    Strongly Agree  

a. Variables 1 2 3 4 5 Not done yet 

b. Input 1 2 3 4 5 Not done yet 

c. Output 1 2 3 4 5 Not done yet 

d. If Statements 1 2 3 4 5 Not done yet 

e. Case Statements 1 2 3 4 5 Not done yet 

f. If Statements 1 2 3 4 5 Not done yet 

g. Repeat Loops 1 2 3 4 5 Not done yet 

h. While Loops 1 2 3 4 5 Not done yet 

 

4. I think B# is easy to use. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

5. I think most people would learn to use B# very quickly. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

6. I think I need assistance to be able to use B#. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

7. I feel very confident using B#. 

Strongly Disagree  1 2 3 4 5  Strongly Agree 

 

8. What do you like about B#? 

 
 
 
 

9. What do you not like about B#? 

 
 
 
 

10. What changes or improvements to B# would you recommend? 

 
 
 
 

11. If you are not using B#, why not?  

 
 
 
 
 

Would you be interested in additional help installing or using B#?  Yes / No 



Appendix F

Determination of PAT Rankings
Based on Selection Criteria

F.1 Introduction

The selection criteria (Section 4.4) are used to evaluate the PATs and select the PATs
most suitable for use by IT learners. The PATs are evaluated on three categories of se-
lection criteria: programming concepts, programming knowledge and programming skills.
Criteria in each of these categories are listed in order of priority with the most important
criteria listed first. A method of determining the overall ranking of PATs was required
based on the evaluation of the PATs in the three categories.

PATs should be ranked based on the number of selection criteria that are addressed by the
PAT taking into consideration the priority of the selection criteria that are addressed. In
each of the three categories, the selection criteria are weighted according to their priority
ranking. The ranking of the PATs based on selection criteria for programming knowledge
(Section F.2), programming skills (Section F.3) and programming concepts (Section E.4)
are provided. The overall ranking of PATs is obtained by combining scores for each of the
three categories (Section F.5).

F.2 Programming Knowlege Rankings

The first knowledge criteria item has a weighting of five (Table F.1). The priority weight-
ing values decrease by one for the criteria that follow. Only PATs that support the Delphi
programming language meet the first criteria to assist with programming language syntax.

The PAT scores are calculated by summing the weighting value multiplied by the value
for the PAT. A value of one (1) indicates that the PAT meets the criteria. A blank cell is

231



APPENDIX F. DETERMINATION OF PAT RANKINGS BASED ON SELECTION CRITERIA 232

equivalent to zero and indicates that the PAT does not meet the selection criteria.

Table F.1: Calculation of PAT ranking score based on programming knowledge criteria

Criteria W
ei

gh
ti

ng

R
ob

oM
in

d

B
lu

eJ

G
re

en
fo

ot

Sc
ra

tc
h

B
#

Je
lio

t

V
ill

e

P
la

nA
ni

A
lic

e

jG
R

A
SP

Assists with the learning of the Delphi
programming language syntax 5 1 1 1

Assists with developing knowledge of
programming principles & concepts 4 1 1 1 1 1 1 1 1 1 1

Constructivist to promote self-study 3 1 1 1 1 1 1 1 1 1 1
Assists with the application of
programming knowledge 2 1 1 1

Assists with the understanding of code
execution 1 1 1 1 1 1 1 1 1 1 1

Total score 13 8 8 8 13 10 10 15 8 8

F.3 Programming Skill Rankings

The programming skill criteria are also weighted from five for the first priority item to
one for the last (Table F.2). The calculation of the total PAT scores are the same as
for the programming knowledge rankings. Half values (1

2) are assigned to PATs that do
not cater for the the selection criteria due to the techniques used by the PAT (Section 5.4).

Table F.2: Calculation of PAT ranking score based on programming skill criteria

Criteria W
ei

gh
ti

ng

R
ob

oM
in

d

B
lu

eJ

G
re

en
fo

ot

Sc
ra

tc
h

B
#

Je
lio

t

V
ill

e

P
la

nA
ni

A
lic

e

jG
R

A
SP

Promotes problem solving & planning 5 1 1 1
Provides simple error messages to
assist with debugging 4 1 1

2 1 1
2

1
2

Develops code comprehension 3 1 1 1 1 1 1
Feedback to guide solution creation 2 1 1 1
Feedback regarding errors 1 1 1 1 1

2 1 1 1 1
2

1
2 1

Total score 5 1 1 12.5 15 4 4 3 12.5 1

F.4 Programming Concept Rankings

The programming concept criteria are weighted from 18 to 1 based on the ranking of the
criteria (Table F.3). The calculation of the total score is the same as for the programming



APPENDIX F. DETERMINATION OF PAT RANKINGS BASED ON SELECTION CRITERIA 233

knowledge and programming skills scores.

Table F.3: Calculation of PAT ranking score based on programming concept criteria

Criteria W
ei
gh

ti
ng

R
ob

oM
in
d

B
lu
eJ

G
re
en

fo
ot

Sc
ra
tc
h

B
#

Je
lio

t

V
ill
e

P
la
nA

ni

A
lic
e

jG
R
A
SP

Two-dimensional arrays 18 1 1 1 1
String handling 17 1 1 1 1 1 1
One-dimensional arrays 16 1 1 1 1 1 1 1
Procedures 15 1 1 1 1 1 1 1 1
Functions 14 1 1 1 1
repeat-loops 13 1 1 1 1 1 1 1 1 1 1
while-loops 12 1 1 1 1 1 1 1 1 1 1
Objects & classes 11 1 1 1 1 1 1
for-loops 10 1 1 1 1 1 1 1 1 1 1
if -statements 9 1 1 1 1 1 1 1 1 1 1
Correct use of parameters 8 1 1 1 1 1 1
SQL statements 7 1 1 1
Accessing database 6 1 1 1
case-statements 5 1 1 1 1 1
File handling 4 1 1 1
Variables 3 1 1 1 1 1 1 1 1 1 1
Input 2 1 1 1 1 1 1 1 1 1
Output 1 1 1 1 1 1 1 1 1 1
Total score 72 171 171 109 55 154 104 66 76 171

F.5 Overall Rankings

The overall rankings are obtained by calculating a total score based on the scores obtained
in the three different selection criteria categories (Table F.4). The formula to calculate
the total score for a PAT is:

PAT Overall Score = Knowledge score + Skill score + 0.1*Concept score

Only one tenth of the concept score is considered to minimise the effect of the number
of criteria items (18) in the programming concept category compared to the five items in
each of the programming knowledge and programming skill categories. Only the PATs
that support Delphi have been considered for evaluation by participating IT learners in
the study.



APPENDIX F. DETERMINATION OF PAT RANKINGS BASED ON SELECTION CRITERIA 234

Table F.4: Overall PAT rankings

PAT Knowledge Skills Concepts*0.1 Total Delphi

1. Jeliot 10 4 15.4 29.4
1. Greenfoot 8 1 17.1 26.1

BlueJ 8 1 17.1 26.1
jGRASP 8 1 17.1 26.1

4. B# 13 15 5.5 33.5 X
5. Scratch 8 12.5 10.9 31.4 X
6. Alice 8 12.5 7.6 28.1 X
7. RoboMind (Adapted) 14 5 7.2 26.2 X
8. PlanAni 15 3 6.6 24.6 X
9. Ville 10 4 10.4 24.4



Appendix G

PAT Supporting Documentation

G.1 RoboMind

235



 

http://www.robomind.net/en/index.html 

RoboMind is a programming tool that allows you to program a robot to move through a map 

world.   

Install: 

The files are included on the CD.  Simply copy the RoboMind folder to your hard drive.  First 

install the Java Runtime Environment (jre-6u24-windows-i586 is the install file in the 

RoboMind folder – just double-click).  This is the only file you need to install.  To run the 

program, open the prjRobo folder (inside RoboMind folder) and double-click the prjRobo.jar 

file. 

Support: 

Several example programs are included to help you learn how to use RoboMind.  Click on 

open file and select a program.  

You can also find information on the RoboMind website. 

Concepts: 

You can implement the following IT programming concepts in RoboMind: 

 Variables (integer) 

 If-statements (nested) 

 Looping (RoboMind does not implement a normal for-loop like Delphi.  You must 

use for1to( ) where for example, for1to(8) repeats something 8 times.  Repeat..until 

and while..do loops are also included. 

 Procedures 

RoboMind has additional commands to control the robot such as movement, turning, 

grabbing beacons and painting lines.  The robot can also see (to check if the path is clear) 

and flip a coin (to make a decision). 

Several different maps are included in RoboMind.  Instructions are included to explain how 

you can create your own maps. 

 

 



 

The screenshot above is the interface you will work with when using RoboMind. 

 The code to control the robot is typed in the editor (Window A). 

 To run the code, click on the green arrow  below the editor.  If there are no 

errors in the code the program will run and the robot will move through the world. 

 Error messages will appear in the blue window at the bottom (C).  

 There are several example exercises which can be accessed by opening a file .  

The ITLearner folder has additional exercises.   

 RoboMind has several built-in commands for movement and to check whether or 

not there are obstacles around it.  Use the Edit -> Insert menu to see which 

commands are available or look at the exercises.  The website can also be used for 

more information.   

 Please note: There are differences between the concepts provided on the website 

and in the exercises.  This is because the version you have received has been 

adapted to make the code look similar to Delphi.  Use the exercises to find out more 

about using variables, the different loops and procedures. 

 There are several maps available (See File->Open Map).  You can also create your 

own maps.  If no map is specified in the code, it will use the one currently viewed in 

window B.  To specify a map, at the top of the code type the name of the map file 

you want to use, for example, #default.map where default.map is the name of the 

map file.  The file RoboMapFormat.pdf has been included and explains how you can 

create your own map. 

A B 

C 



APPENDIX G. PAT SUPPORTING DOCUMENTATION 238

G.2 Scratch



 

http://scratch.mit.edu/ 

Scratch is a programming tool that allows you to easily create your own interactive stories, 

animations, games, music and art.  You can also post your projects on the web or download 

projects that other people have created.  

Install: 

The install file is included on the CD.  Simply double-click the ScratchInstaller1.4.exe file to 

begin the installation. 

Support: 

In the Scratch Help menu, use the Scratch Help Page and Help Screens to learn more about 

using Scratch. 

Scratch installs several Example projects for you to use.  An ITLearner folder is included on 

the CD with projects that show you how to use Scratch for programming concepts you will 

learn about in your IT classes. 

You can also find tutorials and example projects on the Scratch website. 

Concepts: 

You can implement the following IT programming concepts in Scratch: 

 Variables (integer) 

 Input from the user including text or number input to answer a question or using 

the keyboard arrow keys, etc. to control characters (called sprites) on the screen 

 Output to the user 

 If-statements 

 Looping (Scratch does not implement a normal for loop like Delphi.  Instead you 

would use a repeat 10 for example to repeat something 10 times.   

 Simple string handling such as joining words, getting the length of a word, finding a 

specific character in a word. 

 Arrays (lists in Scratch) 

 

 

 



 

Using Scratch: 

The screenshot above is what you will work with when using Scratch.  

 To create a “program”, drag items from window A to window B.  The statements can 

lock together (you will know they are locked when they all move around together).  

 If you want to remove statements, either right-click on the statement and click 

Delete or simply drag from window B to window A. 

 There are many different statements available to you.  You will find them by 

selecting the different categories listed at the top left (E). 

 Use to perform actions when the user clicks the green flag – 

so this will be the start event. 

 To change the sprite, use the New sprite options in window C. 

 You can also move or rotate the sprite in the main window D 

 At the top of window B are 3 tabs.  Scripts are the programs that will control the 

sprite.  Costume allows you to change the appearances of a sprite, for example, to 

make it look like it is walking.  You can also associate sounds with the sprite. 

A 

B 

C 

D 

E 



 Remember, the different sprites are listed in window C.  You can have more than 

one.  Each sprite in window C can have its own script or program, that is, what to do 

when the flag is clicked or the user uses the arrow keys. 

 



APPENDIX G. PAT SUPPORTING DOCUMENTATION 242

G.3 B#



 

B# is a programming tool developed at by the NMMU Department of Computing Sciences.  

B# allows you to create a program simply by creating a flowchart. The flowchart is created 

by dragging appropriate items into the flowchart area in a specific order and indicating how 

variables and values are calculated and what is displayed.   

Install: 

The files are included on the CD.  Simply copy the B# folder to your hard drive.  In the folder, 

double-click the B#.msi file to install the program.   

Support: 

Several example programs are included on the CD to help you learn how to use B#.  Open 

any of these file in B# to see the flowchart, the corresponding code and to see what 

happens when the program runs. 

Concepts: 

You can implement the following IT programming concepts in B#: 

 Variables (integer) 

 If-statements (nested) 

 case statements 

 Looping (for, repeat..until and while..do loops) 

 User input and output 

B# creates Pascal code which is the same code used in Delphi.  However, B# uses a console 

application (black command line interface) and not a graphical user interface like Delphi.  

The only difference in the code generated by B# is when input is received from the user or 

output is displayed to the user.   

When using B#, write/writeln are used to display text to the user, while readln is used to get 

input from the user.  the following lines will get a number from the user and assign it to the 

integer variable num: 

write(‘Enter a number’); 

readln(num); 

This would be similar to having a label with caption ‘Enter a number’ and an edit box 
(edtNum), then when the user clicks a button (for example) the following code will be used 
to assign the number entered in the edit box to num: 

num := strToInt(edtNum.text);  



Note that when using a console interface the user needs to be asked a question 
(write/writeln), the program must wait for the answer and assign it to an appropriate type 
variable (readln). 

Similarly, to display output to the user, write or writeln is used: 

writeln(‘The user entered’, num);    //B# 

lblOutput.caption := ‘The user entered’ + intToStr(num);  //Delphi 

 

Notice that in the writeln automatically combines a string and integer variable, while in 

Delphi the integer variable type must be converted to a string.   

Please remember these conversions with regards to input and output if first doing exercises 

using B# and copying the generated code to Delphi. 

 

The screenshot above is the interface you will work with when using B# 

 To create a program, create a flowchart by dragging icons from the left hand side (B) 

to the flowchart work area (A) in the correct order. 

 The code for the program is generated on the right hand side (C) 

A 

B 

C 

D 



 Before assigning values to variables or using variables, the variable must be created.  

Variables that can be used are listed in D.  New variables can be created here and 

existing variables can be edited or removed. 

 Remember to use the single quotes when typing messages to display to users. 

 The program can be executed to check if it is working properly. 

 The trace tool goes through the program step by step so that each step can be 

checked to see if it is correct. 



Appendix H

Papers Originating from this
Research Study

H.1 E-Skills 2010 Conference

246



The Impact of IT at Schools on E-Skills 

Development 

Melisa KOORSSE
1
, André P. CALITZ

2
, Charmain B. CILLIERS

3  

Nelson Mandel Metropolitan University (NMMU), P.O. Box 77000, Port Elizabeth, 6031, 

South Africa 
1
Tel: +27 41 372 2193, Fax: +27 41 504 2831, Email: Melisa.Koorsse@nmmu.ac.za  
2
 Tel: +27 41 504 2639, Fax: +27 41 504 2831, Email: Andre.Calitz@nmmu.ac.za 

3
 Tel: +27 41 504 2235, Fax: +27 41 504 2831, Email: Charmain.Cilliers@nmmu.ac.za 

Abstract: Attention and resources are focused on the development and upliftment of 

e-skills in South Africa.  Business development, government and education have 

been identified as categories where the shortage of ICT skills requires urgent 

attention.  The objective of this paper is to report on the impact of the current 

Information Technology (IT) subject in South African secondary schools on e-skills 

developments.  This paper presents feedback indicating that the IT subject is having 

a direct impact on the number of future ICT professionals.  The number of Grade 9 

learners selecting IT as a subject is decreasing.  The number of learners that start IT 

in Grade 10 but drop the subject before Grade 12 is increasing.  Very few Grade 12 

IT learners decide to study further in a Computer Science or Information Systems 

degree programme after matriculating or pursue a career in a computer related field.  

This paper considers research related to the current IT curriculum and ICT skills in 

South Africa, as well as the opinions of IT teachers and subject advisors.  Issues that 

need to be addressed are the relevance and scope of topics in the current learning 

outcome guidelines.  Plans for e-skills development in South Africa may not have 

the desired impact if the Information Technology subject and its role in e-skills 

development are not addressed by all stakeholders.         

Keywords:  E-skills, ICT skills shortage, Information Technology, Education in 

Secondary School 

1. Introduction 

The importance of Information and Communication Technology (ICT) skills and 

professionals for business and the economy is generally accepted [4, 8, 14].  The South 

African government identified the importance of e-skills development in 2007 and a council 

was tasked to address this issue [13].  However, unless the content framework of the current 

Information Technology (IT) subject presented in South African secondary schools is 

addressed, e-skills development initiatives may be in vain.  Pilot research in schools 

supported by the views of educators that problems exist with the subject guidelines and 

implementation of the IT subject indicate that the implementation of IT in South African 

secondary schools could have serious negative impacts on the future of e-skills 

development in South Africa. 

 The term e-skills refers to a range of knowledge, skills and competences which 

incorporates three main categories [15]: ICT practitioner skills, ICT user skills and e-

business skills.  Together these three categories allow the term e-skills to encompass the 

capabilities required to develop, design, manage, maintain, support, install and service ICT 

systems, effectively apply ICT systems and devices as tools to support the work, such as 

business functions within industry, of individual users and to identify and exploit the 

opportunities provided by ICT to improve the efficiency and performance of organisations. 



 In 2007, then President of South Africa, Thabo Mbeki, stated that it would be futile to 

improve South Africa‟s ICT infrastructure if there was a shortage of skilled people to use 

the technology [14].  Statistics presented by Oracle supported this statement by indicating 

that “the skills shortage in the manufacturing sector alone will lag by 14 000 ICT specialists 

in 2010” [14].  The reason for this shortage needs to be addressed. 

 The European Forum [15] identified three deficiencies in terms of e-skills:  a lack of 

skilled ICT professionals, a gap between the current and required levels of competence of 

ICT staff within organisations and a mismatch between the competence of graduates and 

the competence level required by business due to course misalignment.  A report by the 

ACM describes the global trend in the decline of interest in computer related professions 

[1].  Job opportunities still exist yet there is a shortage of qualified computer and ICT 

specialists.    Surveys and interviews with students are being administered to determine the 

reason and to find ways of encouraging students to consider computer related fields as a 

profession.  Schools and universities worldwide are trying to determine the reason for the 

lack of interest.   

 This paper addresses the following research question:  What impact is IT at 

secondary school having on the development of e-skills in South Africa?  Evidence is 

presented of the negative impact that IT in schools is having on the future career choice of 

learners.  Related research on the reasons for the decrease in the number of people choosing 

Computer Science or Information Systems as a profession will be presented.  The main 

purpose of this paper is to initiate discussions and debates amongst key stakeholders 

regarding the problems and way forward for IT as a subject in South African schools. 

 This paper presents a background of e-skills development in South Africa (Section 2), 

the methodology used to gather and present information (Section 3), a description of the IT 

subject at school (Section 4), a summary of educators‟ opinions on the current issues 

regarding IT in schools (Section 4), suggested action to ensure that the problems can be 

addressed (Section 6) and concluding remarks (Section 7).  

2. Background 

Computers and the Internet play a very important role in social, economic and cultural 

aspects of our everyday lives.  ICT infrastructure provides industries with a competitive 

edge if properly leveraged.  The impact of ICT on health care, education, government 

provisioning and service delivery, to name but a few, is the reason why countries around 

the world are calling for initiatives and focus on the development of e-skills.   

 The past 10 years has recorded an increase followed by a decrease in interest in 

computing as a profession [2, 11, 12].  At the turn of the century interest in the computing 

industry was increased [2].  However, after 2001 interest in computing professions started 

to decrease due to several negative factors [2].  Countries across the world are facing 

another challenge with regards to the Baby Boom generation which is set to retire within the 

next 10 to 15 years.  Results have indicated that the number of Computer Science (CS) and 

Information System (IS) graduates from tertiary education institutions is not sufficient to 

replace them [2].  This is in contradiction to the increase in demand for skilled ICT 

professionals.  The computing profession currently has a very low unemployment figure 

that is indicative of a labour market under pressure. 

 Research by Babin, et al. [2] and Biggers, et al. [3] have focused on identifying the 

reasons for the lack of interest in computing as a career choice particularly at tertiary level.  

Survey results have indicated that students are uninformed or misinformed about the actual 

job descriptions of a computing professional.  In many cases the curriculum or subject 

content is not presented correctly and the result is that students perceive a career in 

computing as being asocial, only focused on programming with little connection to the 

outside world [3].  Students have also been misinformed about certain industry business 



practices.  In the USA, for instance, a misconception about outsourcing of positions has 

lead many students to question job security in the IT field [2].     

 South Africa is no exception to the global trend of the skilled IT professional shortage.  

The South African Government has formulated a medium term strategic plan [16] to guide 

the process to achieve strategic objectives that will result in a democratic, non-racial, non-

sexist and prosperous society.  The development of ICT skills and infrastructure are key 

goals in several strategic priorities including the speeding up of economic growth and the 

creation of decent work and sustainable livelihoods, the building of economic and social 

infrastructure and the improvement of the delivery and quality of public services.  These 

strategic priorities may not be achieved successfully if there is a shortage of properly 

trained ICT skilled professionals.  

 A problem which will influence the achievement of the strategic priorities outlined in 

[16] is that fewer learners in South African secondary schools are selecting the Information 

Technology subject at school.  Of the learners that take the subject, very few continue with 

Computer Science (CS) or Information Systems (IS) courses at tertiary level.  South Africa 

has the opportunity to foster an interest in ICT at school level where learners can be 

exposed to the socio-economic importance of ICT and the different career opportunities it 

will provide.  However, research results seem to indicate that IT at school is having the 

opposite effect – after being exposed to the IT curriculum students then decide not continue 

a career in computing [11].  Careful consideration needs to be given to what the IT 

curriculum is exposing or not exposing learners to that they lose interest in the ICT 

profession at the end of their secondary schooling.  

 The research presented in this paper is important as it plays a role in making 

government, business stakeholders, tertiary institutions and curriculum decision makers 

aware of the impact that the IT subject in South African schools is having on the future of 

the ICT profession and the national growth and development plans of South Africa.  It is 

important for this research to raise awareness and encourage further investigation into 

secondary school learners‟ lack of interest in IT, shortcomings of the current IT subject 

framework and learning programme guidelines and positive changes that should be 

implemented to renew interest in ICT careers. 

3. Methodology  

The research approach is ethnographic using interpretivist methods [5].  There has been 

growing concern amongst all involved with IT at secondary schools that the subject 

curriculum is having a negative impact on the future of skills development.  These concerns 

have emerged at various forums including computer studies mailing groups, meetings with 

IT educators to address concerns, Computer Science education conferences and interviews 

with IT teachers.     

 An ethnographic approach has been adopted as it is a method where the world view of 

participants is investigated and represented.  The ethnographic approach to this study 

allows the views of people involved with IT to be interpreted.  IT educators have „insider 

knowledge‟ of the shortcomings of the current curriculum and how it is affecting the future 

of e-skills development in South Africa.   

 The primary source of data for this study was unstructured interviews with IT teachers.  

The interviews took place during December 2009 and February 2010.  Qualitative content 

analysis was used to analyse the interview data.   

4. IT in South Africa 

Information Technology (IT) is one of the 29 subjects included in the National Curriculum 

Statement of the South African Department of Education [6] offered at secondary school 



level for Grades 10 to 12.  The IT subject is defined in the National Curriculum Statement 

(NCS) for South African schools [6] as follows:   

“Information Technology focuses on activities that deal with the solution of problems 

through logical thinking, information management and communication.  It also 

focuses on the development of computer applications using current development 

tools.  The subject develops awareness and an understanding of the social, economic 

and other implications of using computers.” 

The purpose of IT, as described in the Learning Programme Guidelines [7] is to afford 

learners the opportunity to learn about and work with ICTs.  IT is designed to develop 

higher-order thinking skills, technology skills, information skills, problem-solving skills, 

creative skills, collaborative skills and lifelong learning skills.  IT learners will gain a 

deeper understanding of the concepts and principles of ICT hardware and software, be 

taught to use digital technology to solve problems and learn about programming as a 

process of designing, developing and implementing software solutions.  IT at school has 

four learning outcomes as specified in the IT National Curriculum Statement [6] to meet 

these ideals: 

 Learning Outcome (LO) 1 : Hardware & System Software 

 Learning Outcome (LO) 2 : e-Communication 

 Learning Outcome (LO) 3 : Social & Ethical Issues 

 Learning Outcome (LO) 4 : Programming and Software Development 

These learning outcomes originate from the broader knowledge domain of ICTs. 

 The general vision for IT and the skills it will teach learners incorporates valuable 

skills and knowledge that could be considered core and the basic principles to a computer 

related curriculum.  However, IT teachers are struggling to implement this vision in their 

classrooms due to the depth of content that needs to be covered for the concepts and topics 

constituting the four learning outcomes.  The result is that the majority of Grade 12 IT 

learners on completing their final year lack the skills and knowledge outlined in the 

learning programme guidelines.  Furthermore, very few are motivated to pursue a career in 

a computing related field.   

 Research studies in the Western Cape and Grahamstown (Eastern Cape) by Seymour et 

al. (2005) [in 11] and Jacobs and Sewry (2008) [11] respectively, were done to determine 

Grade 12 learners‟ inclinations to study Computer Science and Information Systems at 

tertiary level.  It was found that a student‟s previous experience with computers affected 

their attitudes toward any future use [11].  Both studies found that learners with no access 

to computers at school were more inclined to study Computer Science than those with 

access to computers.  The studies also found that learners that have negative perceptions of 

IT jobs available are less inclined to study Information Systems or Computer Science.  Both 

studies found that learners do not know what Information Systems as a field of study is 

about although the perceptions of Computer Science were more accurate.  Jacobs and 

Sewry (2008) [11] conclude that educational institutions need to promote accurate 

representations of IT related subjects and career fields to learners.  

 This paper analyses IT educator views to identify the problems faced by IT teachers 

and the reasons for the lack of interest in computing at tertiary level.     

5. Findings 

The lack of interest in IT as a subject at secondary school and as a degree course at tertiary 

education level has been noticed by IT educators, Department of Education subject co-

ordinators and academics at universities across the country.  In addition, industry is feeling 

the impact of this lack of interest in IT careers.  Many industries have great difficulty filling 

ICT related positions and the demand for ICT professionals is increasing. 



 In an attempt to address this lack of interest and ensure the continued existence of IT as 

an FET subject within the National Curriculum Statement of South Africa, stakeholders are 

attempting to identify and address the current problems with the subject curriculum.  

Meetings for concerned IT educators are being arranged to discuss the issues and suggested 

short and long term solutions for the IT subject.  However, in many cases, the meetings 

only contain a small representative sample of IT educators as the location and time of the 

meetings make it impossible for the majority of stakeholders, situated in all corners of the 

country, to attend. 

 Some success has been achieved through a computer studies mailing group where issues 

currently affecting IT can be discussed and debated in a public forum.  Many more IT 

educators can participate in this mailing group as location and time are not an issue.   

 Interviews with IT teachers as part of a case study have highlighted many of the same 

comments and concerns raised on the mailing list and at various informal meetings with IT 

educators.  The opinions, comments and suggestions of IT teachers have been considered 

and summarised for presentation in this paper in an attempt to highlight the impact the 

current IT subject at school is having on the future of ICT skills development. 

 Interviews with IT teachers have identified factors that are contributing to the lack of 

interest in IT as a subject at school and the current situation where many IT learners are 

struggling to cope with the subject content.   A contributing factor to the lack of interest in 

IT as a subject choice in Grade 9 and the difficulties experienced by some IT learners after 

selecting the subject is that IT is a new subject in Grade 10 – many IT learners are not 

exposed to the content earlier.  There are schools that do not provide computer skills classes 

to their Grade 8 and Grade 9 learners.  These learners, at the end of Grade 9 are not exposed 

to any of the topics covered in IT.  The result is that Grade 9 learners do not have a proper 

understanding of the content and learning outcomes of the IT subject and this may result in 

an uninformed decision to take or not to take IT.   

 Another factor that may deter Grade 9 learners from selecting IT as a subject is the lack 

of trained IT teachers.  Younger teachers find better jobs in industry while the more 

experienced teachers are retiring.  There is a shortage of suitably trained replacements for 

these teachers.  Universities are experiencing a lack of interest by student FET teachers to 

become IT teachers.  Qualified IT teachers capable of teaching the content in the current IT 

subject curriculum are hard to come by.  The result of all these issues is that the IT teacher 

may not remain at the school for an extended period of time.  A constantly changing subject 

teacher may make Grade 9 learners hesitant to select the IT subject.   

 Similarly, due to the lack of qualified FET teachers, teachers are appointed as IT 

teachers without the necessary qualifications or knowledge of the subject content.  This is 

to the detriment of IT learners.  A teacher without the required level of knowledge for the 

IT subject will also be a deterrent for Grade 9 learners and may result in learners who 

selected IT to drop the subject during Grade 10 or Grade 11. 

 Another very important factor deterring Grade 9 learners and causing IT learners to 

drop the subject is that IT is difficult.  The majority of IT teachers believe that the current 

IT curriculum is overloaded or that too much is expected.  However, there is no agreement 

on what topics are important and what content should be included in the curriculum.   

 Certain IT teachers have admitted to focusing mainly on Learning Outcome 4 which 

includes spreadsheets, databases and programming (either Java or Delphi is used as the 

programming language, depending on the province in which the school is located).  Content 

in the other 3 learning outcomes, mainly theory, are covered very briefly if not left as a 

reading assignment or self-study.   The programming content takes up most of the 

teaching time in the school year due to the amount of topics that need to be covered and the 

nature of the concepts.  Many of the concepts are abstract and new to learners requiring IT 



teachers to dedicate much time to ensure that learners develop a proper understanding of the 

programming concepts and principles. 

 A suggestion by several IT teachers is to reduce the level of programming and provide 

more variety in the content.  There is agreement that IT learners‟ perception is that IT is 

programming.  Thus a Grade 12 learner considering studying further is deciding whether or 

not to continue programming as a career.  This is a misconception created by the IT subject 

– due to the time spent on the programming content, learners are not properly exposed to all 

ICT related topics and career fields.  The suggestion to reduce the level of programming by 

only focusing on basic programming principles and provide more variety, is aimed at 

exposing learners to other areas of computing such as ERP systems, business analysis, 

robotics, 3D graphics, etc.  This should allow Grade 12 learners to make a better informed 

decision on whether or not to pursue a career in Computer Science or Information Systems 

(BSc or BCom).   

 A counter argument to reducing the level of programming and including other computer 

topics is that the subject content will still be overloaded and the result will be a grade 12 

learner with a shallow knowledge of many different topics as the topics would not be able 

to be covered in great depth.   If IT should be made easier – by how much?   If the content 

of the IT subject and/or the level of difficulty are reduced, does this benefit the learners?  

Most IT teachers will state that learners either have an aptitude or motivation for IT – “they 

just get it” – or they don‟t.  However, after taking IT as a subject a Grade 12 learner should 

be able to decide whether or not to follow a career in computing based on the content 

matter and whether or not it is appealing to them.  Currently, Grade 12 learners finishing IT 

never want to experience programming again and this is the basis of their decision. 

 During the interviews and meetings with IT teachers, one positive factor was the 

determination and passion displayed by IT teachers toward the improvement of IT as a 

subject.  IT teachers want to ensure that IT is a subject that will teach learners valuable and 

useful skills and knowledge that they can apply long after they have left school.  It is 

important for business and government to realise that IT should prepare learners for and 

excite them about a career in ICT.  However, steps need to be taken soon to stop the current 

decline in interest in IT as a subject in school and ICT as a career.   

6. The Way Forward 

A question posed by a mailing list contributor to guide the forum towards finding a solution 

is:  What is the purpose of IT at school?  The task team that originally compiled the IT 

subject curriculum intended for IT to give the learner a view of IT and what it is all about; 

exposure to different developmental platforms and how these interact with the real world.  

This is what an IT curriculum in school should do.  However, this is currently not the result.  

Either the curriculum is not being implemented as intended or the curriculum cannot be 

implemented as intended and thus needs to be revised. 

 The findings summarised above indicate that IT teachers recognise the problems related 

to the IT subject.  It is accepted that the IT subject curriculum needs to change and clear 

implementation guidelines need to be formulated to ensure a common understanding of 

implementation by IT teachers.  However, no agreement on exactly what needs to change – 

what to remove and what to include – can be reached.  The purpose of IT in school and the 

role of the subject in relation to business skills required and level of knowledge required by 

tertiary institutions as well as meeting the strategic objectives of Government, need to be 

clearly identified.   

 It is accepted that a revision of the IT subject curriculum is urgently required.  It may, 

however, not be possible to implement curriculum changes in the very near future (next five 

years).  Several short term solutions are suggested by related literature and based on the 

views and opinions of IT teachers.  Firstly, the shortage of skilled IT teachers needs to be 



addressed and this should be a key objective in any plan or framework to develop e-skills in 

South Africa.   Industries need to be made more aware of the importance and benefit of 

skilled and qualified IT teachers on the number and quality of IT learners pursuing a career 

in ICT.  Funding and financial support for IT teacher training would provide incentives for 

FET teachers to train as IT teachers.  This would increase the number of qualified IT 

teachers able to teach IT in schools.   

 IT teacher skills and knowledge can also be improved through workshops where IT 

teachers can meet and brainstorm different aspects of the curriculum that are problematic.  

This would allow IT teachers to form a common understanding of what is required, provide 

support for younger, inexperienced teachers and provide a knowledgebase of ideas and 

suggestions on ways of presenting and assessing different topics within the subject 

curriculum.  The support provided for IT teachers in this way would have a positive effect 

on the presentation of subject content in class and hopefully motivate learners‟ interest in IT 

as a subject. 

 The workshops however will have to be arranged in areas accessible to teachers.  The 

result would be many workshops for different clusters (possibly several within one city or 

town area) across the country.  Each workshop group may formulate their own 

understanding of the curriculum and implementation thereof.  Curriculum problems and 

lack of interest to study Computer Science among students in the US prompted the 

development of programs to tackle the problems [9].  The Computer Science Teachers 

Association (CSTA) is one such program that was launched by the ACM in 2005 to support 

Computer Science teaching.  A similar association for IT educators in South Africa could 

ensure common objectives and provide IT educators with an official representative to voice 

their concerns and ensure wider participation and involvement of all IT educators in 

addressing IT subject concerns.     

 In addition to creating more interest in the IT subject amongst learners, the IT subject 

curriculum content should provide IT learners with the skills to meet the strategic 

objectives identified by the South African Government [16] to ensure national 

development.  Appropriate ICT skills training within the IT subject curriculum should 

provide IT learners with appropriate e-skills, namely ICT practitioner skills, ICT user skills 

and e-business skills, in order to meet the socio-economic goals of the country.  IT learners 

should be provided with knowledge and skills of how ICT can contribute to infrastructure 

development in terms of manufacturing and the transmission and processing of information 

as well as the use of economic and social infrastructure that will provide applications and 

services, such as e-government, to meet the needs of the country and people.      

7. Conclusions 

IT in South African secondary schools is having a negative impact on Computer Science 

and Information Systems degree choices after school [2, 11].  The skills and knowledge the 

IT subject tries to provide Grade 12 IT learners is decreasing their motivation to pursue a 

computer-related career and creating misconceptions about what different computer-related 

career fields entail.  This, in turn, is contributing to an ICT skills shortage – impacting the 

development of ICT skills in South Africa.  The difficulties faced by and lack of motivation 

of current IT learners, together with a shortage of skilled IT teachers, are deterring Grade 9 

learners from selecting IT as a subject in Grade 10.   

 The skill level of learners entering IT at Grade 10 is not consistent, especially across 

schools.  Schools are not offering learners in the lower grades a standard background 

knowledge that would assist a better understanding of IT concepts in Grade 10.  The 

shortage of trained IT teachers is another serious negative impact on IT at school.  The 

current situation in schools – overloaded curriculum and dwindling learner numbers – is 

worsening the situation.  Student teachers are hesitant to train as IT teachers due to lack of 



learner interest in IT as a subject and the level of difficulty of teaching the subject due to its 

abstract nature. 

 The most important problem facing IT is the subject content matter.  The subject must 

provide an IT learner with important skills and knowledge based on the four learning 

outcomes.  However, there is a limit to the amount of time available in which this can be 

done.  The current curriculum seemingly attempts to include too much content within the 

three FET phase years (Grade 10-12) – to the detriment of learners and the subject.  There 

is no consensus amongst IT teachers as to the depth and breadth of the topics that should be 

included, especially with regards to the software development learning outcomes.   

 The IT curriculum needs to be addressed as a matter of urgency.  A more structured 

approach is required where representatives of all stakeholders – IT educators, IT subject 

advisors, tertiary institutions, industry and Government – come together to discuss the way 

forward.  The role of the IT subject in relation to industry and tertiary institutions and the 

skills required by a Grade 12 learner need to be clearly defined before the content can be 

revised.  The shortage of skilled IT teachers also needs to be addressed.  Incentives are 

needed to attract teachers to train as IT subject teachers.   

 The inclusion of ICT skills education at secondary school level through the IT subject 

will provide learners with work opportunities and quality of life due to the ICT skills and 

knowledge which they will obtain from the IT subject.  If more learners have the 

opportunity and interest to develop and improve their ICT skills and knowledge at 

secondary school level it will contribute to a “digitally literate” workforce [15] and a future 

generation where the digital divide will be smaller.      

 The following question was posed by a mailing list contributor:  Should IT remain a 

subject at school?  Considering the impact IT is currently having on the future of ICT skills 

development in South Africa, perhaps the answer is no.  On the other hand, the IT subject 

should be an opportunity to improve a learner‟s skills and knowledge in different areas of 

computing and the three categories included as e-skills [15] for a future career in computing 

or simply to improve their quality of life, opportunities and benefits as a citizen of South 

Africa.  It is in the interest of ICT skills development and the economic growth and 

development of South Africa, to ensure that the subject IT not only equips learners with 

valuable skills and knowledge but exposes learners to the opportunities that ICT skills and 

career fields can offer. 

 The development of e-skills in South Africa will not be a simple task and should be 

addressed on several fronts.  Further research and investigation into the IT subject at 

schools as well as the need for structured, consistent programme to develop e-skills in 

learners earlier than Grade 10, should be addressed.  Difficulties as well as gaps in the 

knowledge provided to IT learners need to be identified.  Infrastructure to support and train 

IT teachers should be in place to ensure quality education.  Tertiary institutions and 

industry should be consulted to identify the required e-skills competence level of Grade 12 

IT learners.  The knowledge, skills and competences required to meet the strategic 

objectives outlined by Government [16] should also be woven into the IT curriculum.  The 

development of a National e-skills action plan for South Africa would need to address these 

different issues, as well as learn from the approaches of other countries [15], in order to 

fulfil the role of e-skills in the development of South Africa.     

References 

[1] ACM, Computer Science Curriculum 2008: An Interim Revision of CS 2001. December 2008.  

[2] R. Babin, K. Grant, L. Sawal, Identifying Influencers in High School Student ICT Career Choice. 2008. 

[3] M. Biggers, A. Brauer, T. Yilmaz, Student Perceptions of Computer Science: A Retention Study 

Comparing Graduating Seniors vs. CS Leavers. SIGCSE‟08, 2008.   

[4] N.G. Carr, IT Doesn‟t Matter. Harvard Business Review, Vol. 81 No. 5, 41, 2003. 



[5] L. Cohen, L. Manion, K. Morrison, Research Methods in Education. 6
th

 Edition, Published by Routledge. 

ISBN 978-0-415-36878-0, 2007. 

 [6] Department of Education (DoE), National Curriculum Statement Grades 10-12: Information Technology. 

Pretoria: Government Printers, 2003. 

[7] Department of Education (DoE), Learning Programme Guidelines: Information Technology. January 

2008.    

[8] N. Evans, Leading Information Technology in South Africa:  A Unique Challenge.  SIGMIS-CPR‟06, 

2006.  

[9] O. Hazzan, J. Gal-Ezer, L. Blum,  A Model for high School Computer Science Education:  The Four Key 

Elements That Make IT!.  SIGCSE‟08, USA, 2008. 

[10] E. Henning, Finding Your Way in Qualitative Research.  Van Schaik, 2004. 

[11] C. Jacobs, D.A. Sewry, Learner Inclinations to Study computer Science or Information Systems at 

Tertiary Level.  Submitted to SACJ, 2009.  

[12] L.E.C. Potter, L.A. von Hellens, S.H. Nielsen, Childhood Interest in IT and the Choice of IT as a Career:  

The Experiences of a Group of IT Professionals.  SIGMIS-CPR‟09, Ireland, 2009.  

[13] SouthAfrica.Info [website], South Africa pushes „e-skills‟.  Online article, 27 August 2007.  Available 

online:  http://www.southafrica.info/business/economy/development/skills-270807.htm (Accessed on 25 

February 2010).  

[14] J. Tandeur, J. van Braak, M. Valcke, Curricula and the use of ICT in Education:  Two worlds apart?  In: 

British Journal of Educational Technology, 2006. 

[15] The European E-Skills Forum. E-Skills for Europe: Towards 2010 and Beyond. Synthesis Report, 

September 2004. 

[16] The Presidency, RSA. Medium Term Strategic Framework: A Framework to Guide Government‟s 

Programme in the Electoral Mandate Period (2009-2014).  Issued by Minister in the Presidency, June 2009.   

 

 

 



APPENDIX H. PAPERS ORIGINATING FROM THIS RESEARCH STUDY 256

H.2 SAICSIT 2010 Conference



Motivation and Learning Preferences of Information 
Technology Learners in South African Secondary Schools 

Melisa Koorsse 
Nelson Mandela Metropolitan 

University 

P.O. Box 77000 

Port Elizabeth, 6031 

+27 41 372 2193 

Melisa.Koorsse@nmmu.ac.za 

Charmain B. Cilliers 
Nelson Mandela Metropolitan 

University 

P.O. Box 77000 

Port Elizabeth, 6031 

+27 41 504 2235 

Charmain.Cilliers@nmmu.ac.za 

André P. Calitz 
Nelson Mandela Metropolitan 

University 

P.O. Box 77000 

Port Elizabeth, 6031 

+27 41 504 2639 

Andre.Calitz@nmmu.ac.za 

 
 

ABSTRACT 
The Information Technology (IT) subject presented in South 
African secondary schools is considered to be a difficult subject.  
The programming component of IT is believed to be the main 
cause of this difficulty.  Learners who struggle with programming 
are unable to obtain above average marks in IT, as the 
programming component has the largest weighting in the IT 
subject framework.  The aim of the research upon which this 
paper is based is to identify factors related to learner achievement 
in programming and the IT subject.  The two areas that this paper 
investigates are learner motivation towards programming and the 
learning preferences of IT learners.  The Motivated Strategies for 
Learning Questionnaire (MSLQ) is used to determine learner 
motivation and the Visual, Aural, Read/Write and Kinesthetic 
(VARK) Questionnaire is used to determine the learning 
preferences of IT learners.  Both questionnaires provide 
interesting results and observations.  The self-efficacy for learning 
and performance and control of learning beliefs motivational 
subscales seem to influence the performance of learners at the 
different schools.   The VARK questionnaire results for this study 
indicate that the learning preferences of IT learners may influence 
understanding of programming concepts and also that it is best to 
present content to IT learners using a balance between all four 
modal groups (visual, aural, read/write and kinesthetic) to ensure 
that the learning preferences of all learners are met.  The findings 
of this research indicate the impact that motivation and learning 
preferences possibly have on the understanding of programming 
concepts and overall achievement in programming and the IT 
subject.  The contribution of this paper is the identification of the 
MSLQ and VARK questionnaires as methods that can be used to 
improve teaching strategies in South African secondary schools. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 
Science Education – Computer science education, Curriculum.  

General Terms 
Performance, Human Factors 

Keywords 
Information Technology, Introductory Programming, Motivated 
Strategies for Learning Questionnaire (MSLQ), VARK 
Questionnaire. 

1. INTRODUCTION 
The Information Technology (IT) subject in South African 
schools has earned a reputation as a difficult subject because of 
the difficulty IT learners experience in understanding 
programming [8, 9].  The negative impression created amongst 
learners and their lack of interest in the subject affects the number 
of learners wishing to pursue a career in IT related professions 
[8].   

IT learners, as novice programmers, are faced with similar 
difficulties to other novice programmers worldwide who are 
learning introductory programming concepts. The abstract nature 
of programming concepts, application of programming concept 
knowledge and the correct mental model of program code 
execution are a few of the factors that contribute to the difficulty 
faced by novice programmers [4, 5, 10, 11].  Learners that 
struggle to understand programming concepts become frustrated 
and are more likely to change to another “easier” subject [7, 17].  

Motivation towards a subject plays an important part in 
influencing learner understanding of subject knowledge and their 
achievement in the subject [13].  Motivated learners are more 
eager to attempt challenging tasks, overcome any difficulty and 
enjoy their achievement.  Learners with positive attitudes are also 
more likely to put more effort into their learning and involvement 
in learning tasks. 

Different learning preferences of learners may also influence their 
understanding of subject knowledge [2].  A learner’s preference 
for a particular learning modality is an indication of how a learner 
should learn, process and integrate information in different 
situations.  If teachers are not able to deliver subject content 
knowledge in a format appropriate to cater for the different 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAICSIT ’10,  October 11–13, 2010, Bela Bela, South Africa. 
Copyright 2010 ACM 978-1-60558-950-3/10/10…$10.00 



learning preferences of learners, it could impact learner 
performance in the subject. 

The determination of the influence of motivation and learning 
preferences on subject achievement is important in order to 
distinguish different factors that may be responsible for lack of 
learner performance in the subject. 

This study determines the motivation of IT learners towards 
programming in particular using the Motivated Strategies for 
Learning Questionnaire (MSLQ) [15].  The motivational subscale 
values for different achievement groups (top 25%, middle 50% 
and bottom 25%) are compared and analysed to determine 
whether or not certain motivational subscales have an influence 
on learner achievement in the subject IT. 

This study also determines the learning preferences of IT learners 
using the Visual, Aural, Read/Write and Kinesthetic (VARK) 
questionnaire [6].  The learners are ranked based on their final IT 
grade and divided into four different achievement groups (top 
25%, upper middle 25%, lower middle 25%, bottom 25%).  The 
average learning preferences for the four groups are compared to 
determine whether or not the learning preference of IT learners 
impacts their achievement in the subject IT. 

The methodology used to investigate these issues is presented in 
the next section (Section 2).  Section 3 presents the results of the 
MSLQ followed by a discussion and interpretation of the results.  
The findings and an interpretation of the results of the VARK 
Questionnaires completed by IT learners are presented in Section 
4.  The paper is summarised and future work is presented in 
Section 5. 

2. METHODOLOGY 
The main aim of this study is to investigate the contribution that 
can be made by determining the motivation and learning 
preferences of IT learners with regards to programming in South 
African secondary schools.  The results presented are important to 
demonstrate how the MSLQ and VARK Questionnaire 
instruments can be used to provide information in addition to 
normal assessment of knowledge using formal assessment 
methods.   

This paper sought to address the following primary research 
question: 

How does IT learner motivation towards programming 
and learning preferences relate to performance in the IT 
subject? 

In order to answer this research question the research focused on 
answering the following two secondary research questions: 

1. How does IT learner motivation toward programming 
compare to their performance in the IT subject? 

2. How do IT learner learning preferences compare to their 
performance in the IT subject? 

The research approach adopted by this study, which includes a 
discussion of the MSLQ and VARK Questionnaire instruments, is 
presented in the next section (Section 2.1).  This is followed by an 
overview of the participants selected for this study (Section 2.2). 

2.1 Research Approach 
The results of the MSLQ and VARK questionnaires administered 
to IT learners are presented and the researcher’s interpretations of 

the results are discussed in this paper (Section 3 and 4). The 
questionnaires used in the research study are not included with 
this paper due to their length; however, copies of the 
questionnaires can be obtained from the authors. 

2.1.1 Motivated Strategies for Learning 
Questionnaire (MSLQ) 
The Motivated Strategies for Learning Questionnaire (MSLQ) 
[15] is used to determine IT learner motivation toward 
programming.  This questionnaire is designed as an instrument 
that can be used to investigate the nature of learner motivation 
and use of learning strategies.  The questionnaire consists of 81 
items divided into two sections: motivation and learning 
strategies.  Items are rated using a 7-point Likert scale where 1 
represents “not at all true of me” and 7 represents “very true of 
me”.  Only the motivation section which consists of 31 items was 
administered to IT learners participating in this study (Section 
2.3).   

The items in the motivation section of the MSLQ can be 
categorised according to six subscales:  

• Intrinsic goal orientation (IG) – degree to which learner 
perceives participation in programming tasks for 
reasons such as challenge, curiosity and mastery. 

• Extrinsic goal orientation (EG) – degree to which 
learner perceives participation in programming tasks for 
reasons such as grades, rewards, performance and 
evaluation by others. 

• Task value (TV) – learner evaluation of how interesting, 
important and useful programming tasks are. 

• Control of learning beliefs (CB) – learner belief that 
their own efforts to learn will result in positive 
outcomes. 

• Self-efficacy for learning and performance (SLP) – 
learner expectancy for success and self-appraisal of their 
ability to master a task. 

• Test anxiety (TA) – measure of learners’ worry or 
emotionality component that could result in 
performance decrement. 

The mean value of the ratings provided for the items in each of 
the six subscales, are calculated for each IT learner.   

2.1.2 VARK Questionnaire 
The VARK Questionnaire, designed by Neil Fleming [6] is used 
to identify preferred modes of learning of IT learners.  A person’s 
learning preference is the manner in which they most efficiently 
and effectively perceive, process, store and recall information 
about what they are attempting to learn [18].  The acronym 
VARK originates from four different learning preferences 
identified by Fleming [6]: Visual (sight), Aural (hearing), 
Read/Write and Kinesthetic (doing).  The VARK questionnaire 
identifies learning preferences, which is unrelated to learning 
strategies or methods of learning (e.g. in groups or individually, 
at home or school). 

The VARK Questionnaire administered to IT learners is the 
Younger version, which includes questionnaire items aimed at 
young participants such as learners.  The questionnaire consists of 



16 multiple-answer questions presenting everyday situations and 
participants can indicate one or more answers for each item. 

2.2 Participant Selection 
The research study took place in schools offering IT as a subject 
and the results of three of the participating schools are presented 
in this paper.  The results for each of the schools were analysed 
independently due to the different school environments and IT 
teachers.   

 

Table 1 indicates the number of Grade 11 IT learners who 
participated from each school.  The number of learners 
participating was dependent on the class size and voluntary 
consent from learners and their parents/guardians. 

3. IT LEARNER MOTIVATION TOWARDS 
PROGRAMMING 
3.1 Findings 
This section presents the findings of the MSLQ [15] that was 
administered to IT learners at the three participating schools.  The 
discussion of the MSLQ results from IT learners is aimed at 
highlighting how the MSLQ may be used to provide possible 
explanations for learner performance in IT based on their 
motivation towards programming.   

The motivational subscales of the MSLQ are analysed using 
exploratory data analysis.  The final Grade 10 IT marks obtained 
by learners (now Grade 11) were divided into three groups, 
namely top 25%, middle 50% and bottom 25%.  The bottom 25% 
group includes all marks below the lower quartile (quartile 1), the 
middle 50% group includes all marks equal to and above the 
lower quartile but below the upper quartile (quartile 3) and the top 
25% group includes all marks equal to and above the upper 
quartile (quartile 3).  For each subscale, the mean of the subscale 
values obtained by learners in each group were calculated as 
specified in the MSLQ manual [15].  Figure 1, Figure 2 and 
Figure 3 represent these mean values for each school as well as 
the overall mean value for each subscale.   

 

Figure 1. Mean Values for Motivational Subscales at School A 

 

Figure 2. Mean Values for Motivational Subscales at School B 

 

Figure 3. Mean Values for Motivational Subscales at School C 

For the mean values of two of the subscales, namely extrinsic goal 
orientation and self-efficacy for learning and performance from 
all three schools, the bottom 25% had the lowest mean value 
while the top 25% had the highest mean value. The middle 50% 

Table 1.  Learner Distribution in Schools 

School No. Grade 11 learners 

School A 11 

School B 14 

School C 16 

Total 41 



group at all the schools had the highest mean value for the control 
of learning beliefs subscale.  The middle 50% group at School A 
(Figure 1) and School C (Figure 3) also had the highest mean 
value for the task value subscale.  The middle 50% group at 
School A had a higher test anxiety value than the lower 25% 
group.   

Self-efficacy for learning and performance is the subscale with 
the highest mean value for the top 25% group in both School A 
(Figure 1) and School C (Figure 3) and the second highest mean 
value for the top 25% group in School B (Figure 2).  It is also the 
category with the highest and second highest mean value for the 
middle 50% group in School C and School A, respectively.  This 
category has the lowest mean value for the bottom 25% group 
from School B and School C.  

Control of learning beliefs is the subscale with the highest mean 
value for the middle 50% group in School B and the second 
highest mean value in School A and School C. Intrinsic goal 
orientation is the subscale with the highest mean value for the 
bottom 25% group in School B and the second highest mean 
value for the bottom 25% group in School A and School C.  

 

Figure 4. Top 25% Motivational Subscale Mean Values 

Figure 4 indicates interesting trends in the lines representing 
motivational subscale mean values for the top 25% group at each 
of the three schools.  Intrinsic goal orientation is rated higher 
than extrinsic goal orientation.  Excluding test anxiety, control of 
learning beliefs is the lowest rated motivational subscale.  Task 
value is also rated above extrinsic goal orientation and control of 
learning beliefs.   

The trend lines representing the motivational subscale mean 
values for the middle 50% group at each of the three schools 
(Figure 5) do not indicate the lower mean value of control of 
learning beliefs as it appears for the top 25% group.  The 
difference in mean values between the intrinsic and extrinsic goal 
orientation subscales is also smaller. 

 

 

Figure 5. Middle 50% Motivational Subscale Mean Values 

The trend lines representing the motivational subscale mean 
values for the bottom 25% group indicate a clear difference in 
mean values from the other two groups for specific subscales at 
each of the three schools.  At School A (Figure 1) the bottom 25% 
group’s mean value for the task value subscale differs greatly 
from the other two groups.  At School B (Figure 2) and School C 
(Figure 3) the bottom 25% group’s mean value for the self-
efficacy for learning and performance subscale differs greatly 
from the other two groups.  In addition, the intrinsic goal 
orientation subscale mean for the bottom 25% group at School C 
differs greatly from the other two groups.   

 

Figure 6. Bottom 35% Motivational Subscale Mean Values 

The trend lines representing the motivational subscale mean 
values for the lower 25% group at each of the three schools 
(Figure 6) differ from each other unlike the trend lines of the top 
25% group (Figure 4) and the middle 50% group (Figure 5).  The 
lower SLP subscale value for School B and School C is, however, 
evident. 

3.2 Discussion 
The results of the MSLQ provide interesting analysis with regards 
to the different schools as well as the motivational subscale values 
of the three performance groups at each school.   

The top 25% group at each of the three schools had self-efficacy 
for learning and performance as the motivational subscale with 
the highest (School A and School C) or second highest (School B) 
mean value. The middle 50% group at the three schools also had 
high mean values for the self-efficacy for learning and 
performance motivational subscale.  Grade 11 IT learners with a 
final IT assessment mark in Grade 10 in the top 25% or middle 



50% generally indicated a high expectancy for success and had a 
high regard of their own ability to master a task. 

However, the top 25% group, unlike the middle 50% group, 
indicate less belief that their own efforts to learn will achieve 
success as control of learning beliefs was rated the lowest after 
the test anxiety subscale for the top 25% group but was the 
subscale with the highest mean value for the middle 50% group in 
School B and second highest mean value in School A and School 
C.   

Control of learning beliefs is an indication of the belief by a 
learner that their own efforts to study will make a difference in 
their academic performance, as opposed to external factors such 
as the teacher.  This could indicate that, although top 25% and 
middle 50% learners have confidence in their own abilities to 
achieve success, top 25% learners believe that good performance 
in IT is dependent on other factors beyond their own efforts to 
study unlike the middle 50% learners who believe that they alone 
control their academic performance.   

The bottom 25% group at School B and School C had the lowest 
mean value for the self-efficacy for learning and performance 
motivational subscale which may indicate less belief in their 
abilities to master content knowledge than the other two groups.  
The bottom 25% group indicates a strong belief that their own 
efforts to study will impact their academic performance as 
indicated by the mean value for control of learning beliefs which 
is similar to that of the middle 50% group. 

Table 2. 

Group SLP (Confidence in 
own abilities) 

CB (Own efforts to study 
will impact performance) 

Top 25% � � 

Middle 50% � � 

Bottom 25% � � 

 

Table 2 summarises the preceding discussion with respect to the 
belief by each group of the impact of self-efficacy for learning 
and performance (SLP) and control of learning beliefs (CB) on 
academic achievement.   

A possible explanation for the results (Table 2), however, 
indicating that the top 25% and middle 50% learners have strong 
confidence in their own abilities but that bottom 25% learners 
have less confidence in their own abilities is that programming is 
a difficult task that requires learners to understand abstract 
concepts [11, 12].  A lack of confidence in their own abilities to 
master programming concepts and skills could also be interpreted 
as frustration and dissatisfaction at not being able to master the 
programming content which could lead to a decline in interest for 
the subject [7].   

Inability to get programs to “run” (compile and execute) 
successfully also decrease learner confidence in their own 
programming abilities.  Learners unable to debug their programs 
[3, 12] or formulate the correct solutions to solve the problems [1] 
will have a lesser chance of obtaining the correct program 
solutions.  IT learners also use programming development 
environments intended for use by professional programmers.  
These development environments make it very difficult for IT 

learners as novice programmers to successfully find errors in their 
code or assist in the development of proper code solutions [2]. 

Related to the lower confidence indicated by the bottom 25% IT 
learners is that the bottom 25% and middle 50% learners indicate 
a strong belief that their performance in IT is based on their own 
efforts to study, whereas the top 25% learners do not.  A possible 
explanation for this result is that the top 25% learners may believe 
that they require the teacher’s assistance and explanations to 
understand the abstract programming concepts presented and they 
may be more likely to ask questions in class and request the 
teacher’s assistance more frequently when working on 
programming exercises.  The middle 50% and bottom 25% 
learners may possibly be hesitant to ask the teacher for assistance, 
possibly due to a need to master the task or problems themselves, 
a slower work pace compared to the higher achievers thus running 
out of time to request the teacher’s assistance or hesitance to 
indicate their lack of understanding to the teacher or their peers.  
If this is the case, a possible solution to this problem is the use of 
programming assistance tools.   

Programming assistance tools are software programs designed 
specifically to assist novice programmers to understand 
introductory programming concepts.  These tools can include 
features such as animations or step by step code execution to 
improve a novice programmer’s understanding of programming 
concepts.  If IT learners accept that they do not have to struggle to 
master the programming concepts and skills themselves but 
should use assistance, either in the form of the teacher, 
programming assistance tools or other self-instruction resources 
such as online tutorials, their understanding of programming and 
performance in IT may improve. 

Another difference identified between the top 25% and middle 
50% groups is the difference between the intrinsic and extrinsic 
goal orientation mean values.  Intrinsic goal orientation has a 
definite higher mean value than extrinsic goal orientation for the 
top 25% group (Figure 4) whereas the difference is much smaller 
between these two subscales for the middle 50% group.  Intrinsic 
goal orientation is on average rated higher by the top 25% 
learners compared to the middle 50% learners.   

The top 25% group thus indicates a greater belief than the middle 
50% group that their participation in the subject is for reasons 
such as it being challenging (IG) rather than for academic 
achievement, awards or acknowledgment (EG).  A possible reason 
for this result is that the top 25% group has a greater confidence 
in their own abilities to master the content knowledge and 
perform well in the IT subject.  This group may therefore be more 
confident to accept more challenging problems to test their 
programming knowledge and skills without it impacting their 
performance in the subject.  The middle 50% group also indicate a 
strong confidence in their own abilities to master the 
programming concepts; however, they may possibly want to 
achieve better performance marks in the subject in order to 
achieve the level of the top 25% group. 

The results from the different schools for the bottom 25% group 
differ with regards to intrinsic and extrinsic goal orientation.  The 
intrinsic and extrinsic goal orientation relationship for the bottom 
25 % group at School A is similar to the middle 50% group, while 
at School B the intrinsic and extrinsic goal orientation 
relationship for the bottom 25% group is similar to the top 25% 
group.  At School C, however, extrinsic goal orientation is rated, 



on average, higher than intrinsic goal orientation by the bottom 
25% group.  A possible explanation is that better academic 
performance and achievement in the IT subject may be more 
important for the bottom 25% group at School C. 

The MSLQ has provided interesting data with regards to 
performance and IT learner motivation.  The significance of the 
differences between the top 25%, middle 50% and bottom 25% 
groups and the similarities of the of the top 25% and middle 50% 
groups at all three schools is not clear at this stage and not enough 
data exists from the results to determine learner performance 
based on their motivational subscale profile.      

Further research would include increasing the sample size and 
administering the MSLQ to IT learners at other schools to 
determine whether or not the same similarities occur.  Feedback 
from participants of this study to determine the accuracy of the 
MSLQ results and explore possible explanations for the 
similarities would increase the value of the contribution of this 
research. 

4. LEARNING PREFERENCES OF IT 
LEARNERS  
4.1 Findings 
The presentation and interpretation of the VARK questionnaire 
results aims to indicate how the VARK questionnaire can be used 
to provide possible explanations for learner performance in IT 
based on their learning preferences.    

Each item of the VARK questionnaire has four possible responses 
and respondents can select one or more of the responses.  Each of 
the four responses describes one of the four learning preferences 
(visual, aural, read/write and kinesthetic).  The number of 
selections for each learning preference is accumulated providing a 
total value for each.  The learning preference of the IT learners, in 
this case, is thus indicated by the examining the totals for each 
learning preference.   

 

Figure 7. Learning Preference Profile for Grade 11 learners at 
each school 

Figure 7 indicates the overall learning preference profile for each 
school.  The scores obtained by IT learners for each learning 
preference were totaled to obtain an overall profile for IT learners 
at each school.  The responses to the VARK Questionnaire 
indicate that IT learners at School A have a preference for visual, 
read/write or kinesthetic learning modes although the aural 
learning preference is not extremely weak.   

The learning preference profiles of IT learners at School B and 
School C are evenly balanced.  IT learners at School B have a 
slight preference toward the kinesthetic learning mode, while at 
School C there is a preference toward the kinesthetic and aural 
learning modes.   

 

Figure 8. Learning Preference Profiles at School A 

Figure 8, 9 and 10 provide further analysis of the IT learner 
learning preferences at each of the three schools.  The IT learners 
are divided into four groups based on their final mark for the IT 
subject at the end of Grade 10.  The learning profiles for each of 
these groups are calculated by adding the scores for each modality 
for all the learners in the group.  The learning profiles for each 
group can then be compared (Figure 8, 9 and 10).   

At School A (Figure 8), the learning preference profile of the top 
25% group is balanced compared to the other three groups.  The 
top 25% group does indicate a preference toward the visual and 
kinesthetic modalities.  Group 2 indicates a strong preference for 
the read/write modality.  Group 3 indicates a strong preference for 
the visual modality, while the aural modality is not strongly 
preferred.  The bottom 25% group has a strong preference for the 
kinesthetic modality while the aural modality is also not strongly 
preferred.  There is also a definite decline in the preference of the 
aural modality from the top 25% through to the bottom 25% 
group. 

It would seem from Figure 8 that a preference for the aural 
modality is strongly related to better achievement (top 25%).  A 
weaker preference for the aural modality but a strong read/write 
preference would still ensure above class average performance 
(group 2).  A stronger visual preference with some preference 
toward the read/write modality characterises learners in group 3.  
The bottom 25% learners have a stronger preference toward the 
kinesthetic modality with aural and read/write preferences, which 
are strong for the top two groups, being the lesser modalities for 
this group. 



 

Figure 9. Learning Preference Profiles at School B 

Figure 9 indicates the learning preference profiles of IT learners at 
School B.  The top 25% group is generally balanced except for a 
slight preference for the kinesthetic modality, followed by the 
visual and aural modalities.  Group 2 indicates a preference for 
the visual and kinesthetic modalities while the read/write modality 
is not preferred.  Group 3 is also generally balanced but with 
stronger preferences for the read/write and kinesthetic modalities.  
The bottom 25% group indicates a strong preference for the aural 
modality. 

At School B it would seem that a stronger preference for the 
visual and kinesthetic modalities as opposed to the read/write 
modality impacts performance.  The teacher learning preference 
profile could not be obtained before the write-up of these results. 

 

Figure 10. Learning Preference Profiles at School C 

The learning preference profiles of learners at School C are 
presented in Figure 10.  The top 25% group indicates a preference 
for the visual and kinesthetic modalities although the other two 
modalities are also strong.  Group 2 indicates a balanced learning 
profile with slight preference for kinesthetic and read/write 
modalities.  The aural and kinesthetic modalities are preferred by 
Group 3 with the visual modality being weaker than the other 
three.  The bottom 25% group is also balanced with slight 
preference for the kinesthetic and aural modalities.   

Group 3 and the bottom 25% group do have a preference for the 
aural and kinesthetic learning modalities.  Neither the aural 
modality nor the kinesthetic modality is strongly preferred above 
any other modality in the bottom 25% group. 

4.2 Discussion 
The use of the VARK questionnaire to identify learning 
preferences of learners can be beneficial for learners and teachers.  
Learners that are aware of their learning preferences can make use 
of their preferred learning modality to better understand concepts 
and recall information for IT tests and examinations [6].  Teachers 
that are aware of the preferred learning preferences of different 
learners would be able to explain programming concepts and 
assist learners more effectively by using their preferred learning 
modalities [6].   

The teacher at School A (Figure 8) would be advised to explain 
subject content using all four modalities with more emphasis on 
graphics (visual), demonstration (kinesthetic) and activities in the 
textbook (read/write), while lecturing or oral presentation (aural) 
should still be used.  This may assist the lower three groups to 
improve their understanding of programming concepts and 
improve their performance in the IT subject.   

At School B (Figure 9), the top two groups indicate a strong 
preference for the visual and kinesthetic learning modalities, 
group 3 indicates a strong preference for the read/write and 
kinesthetic modalities and the bottom 25% indicates a very strong 
preference for the aural followed by the read/write modality.  The 
read/write and aural preferences of the last two groups may 
possibly be an indication that language may be a factor.   

Learners who prefer reading information or listening to someone 
explain concepts to them but are struggling with IT may possibly 
be having difficulty understanding the English terms or their own 
language equivalent, used throughout the subject.  Teachers 
would be encouraged to identify whether or not learners, who do 
not have English as their home language, are struggling with the 
English terms, particularly in the programming section.  
Alternatively, these learners may simply require more oral 
explanations of subject concepts.  A possible method to overcome 
a learner’s difficulty in understanding the English terms would be 
the use of the kinesthetic or visual modalities, depending on 
which is more strongly preferred.  Demonstrations of how 
programming examples are solved and coded using an overhead 
projector together with animations to explain different 
programming concepts such as looping or the use of arrays would 
are possible kinesthetic methods that can be used.  Programming 
assistance tools that provide animated explanations of how code is 
executed may also be useful to improve learner performance (e.g. 
Jeliot 2000 [2], Ville [16]). 

At School C (Figure 10), a comparison of the learning profiles of 
all four learner groups does not seem to indicate an association 
between learning preferences and a learner’s performance.  
However, if the bottom 25% profile, which is fairly evenly 
balanced, is ignored and only the first three groups are compared, 
two observations can be made.  The first is that the preference of 
the visual modality is strong for the top 25% group and decreases 
in preference for group 2 and group 3.  The second observation is 
that the aural modality is the least preferred for the top 25% group 
and is the preferred modality for group 3.  The kinesthetic 
modality is also a strong preference for all four groups.  The 
teacher at School C would thus be encouraged to use 
demonstrations of solving coding problems to explain 
programming concepts together with oral presentations of 
programming concepts to assist group 2 and group 3 learners 
improve their performance in IT.   



The bottom 25% group at School C indicated a fairly balanced 
learning preference profile.  This group should thus have no great 
difficulty understanding programming concepts no matter which 
modality is used by the teacher to explain the concepts to the 
learners.  A possible conclusion is that the learning modality used 
will have no impact to improve the performance of learners in this 
group and that these learners and the teacher would need to focus 
on other factors which may be affecting achievement in the IT 
subject. 

There will possibly be cases when the learning preference of 
learners does not have an impact on their performance.  If all four 
groups of learners at a school all have balanced learning 
preference profiles then a change in the learning modality or 
combination of learning modalities used by the teacher or learner 
may not influence the learner’s achievement in the subject.  
Instead, other issues such as learning strategies or motivation in 
the subject may need to be addressed.  A similar case may exist if 
there is no significant correlation between a particular modality or 
combination of modalities and learner performance. 

Further research to understand and explain the results of the 
VARK questionnaire would include administering additional 
questionnaires to IT learners to determine factors that may 
influence their performance such as home language.     

5. CONCLUSION 
This research study has focused on two secondary research 
questions to compare the performance of MSLQ and the VARK 
questionnaire results to IT learner performance in programming.  
These two research questions aim to answer the primary research 
question: How does IT learner motivation towards programming 
and learning preferences relate to performance in the IT subject?  
The discussion of the results of the MSLQ and VARK 
questionnaires in Sections 3.2 and 4.2, respectively, address these 
research questions. 

The MSLQ provided results that may explain the influence of 
motivation towards programming on IT learner performance.  In 
order to improve their performance with regards to programming, 
possible conclusions from the results indicate that IT learners 
should have a strong belief in their own ability to learn and 
understand programming concepts.  IT learners also need to gain 
knowledge and insight from the IT teacher and other resources 
such as programming assistance tools to develop a better 
understanding of programming concepts.  These findings address 
secondary research question 1, indicating that the MSLQ 
questionnaire can be used to compare IT learner motivation to 
performance in the subject.  Further investigation is required to 
determine the significance of the difference in results obtained for 
the three performance groups. 

The VARK Questionnaire results for each of the three 
participating schools have also provided interesting observations.  
Comparisons of the learning profiles of learners in different 
performance groups have identified possible reasons for learner 
performance based on the learning preferences of each group.  
Possible suggestions for improving learner performance have also 
been discussed.  Generally, it is noted that the use of all four 
learning modalities by the teacher and learners is best to ensure 
proper understanding of programming concepts.  

The findings indicate that the VARK questionnaire can be used by 
teachers to compare the performance of top learners to those who 

are struggling and devise teaching strategies accordingly.  The 
findings have therefore addressed secondary research question 2. 

This study has shown how the MSLQ and VARK questionnaires 
can be used to identify possible reasons for the difference in 
performance between IT learners other than the difficulty related 
to learning abstract programming concepts.   

Shortcomings in the research exist, however, these have helped to 
identify areas for further research.  The similarities in the 
motivational mean values between top learners and the differences 
between bottom learners can not accurately be explained.  The 
accuracy of the findings of this research will be investigated by 
trying to increase the sample size and collecting data from IT 
learners at other schools.  Additional biographical information 
and feedback from IT learner participants in this study would 
provide more insight into the results of the questionnaires.  

The contribution of this investigation is to encourage IT teachers 
at these schools to be more aware of how to assist their IT learners 
to improve learner achievement in IT.  In addition, other 
researchers are encouraged to use the MSLQ and VARK 
questionnaires in their research to investigate the impact of 
motivation and learning preference on subject or course 
achievement. 

6. ACKNOWLEDGMENTS 
We would like to thank the schools, teachers and learners who 
participated in this research study for their valuable contributions.  
We would also like to thank the National Center for Research to 
Improve Postsecondary Teaching and Learning, Ann Arbor, MI, 
for granting permission to use the MSLQ for this research. 

7. REFERENCES 
[1] Al-Imamy, S. Alizadeh, J. and Nour, M.A. 2006. On the 

Develoment of a Programming Teaching Tool: The Effect of 
Teaching by Templates on the Learning Process.  Journal of 
Information Technology Education, Vol. 5, pp 271-283. 

[2] Bednarik, R. and Fränti, P. 2004. Survival of Students with 
Different Learning Preferences.  In Proceedings of the 
Fourth Finnish/Baltic Sea conference on Computing Science 
Education, Koli, Finland, October 1-3. 

[3] Bednarik, R. and Tukiainen, M. 2006. An Eye-Tracking 
Methodology for Characterizing Program Comprehension 
Processes. In Proceedings of the 2006 Symposium on Eye-
Tracking Research Applications, San Diego, California, 
March 27-29. 

[4] Ben-Ari, M., Levy, R. and Uronen, P.A. 2000. An Extended 
Experiment with Jeliot 2000.  In Proc. Of the Program 
Visualization Workshop, Porvoo, Finland. 

[5] De Raadt, M. 2008. Teaching Programming strategies 
explicitly to Novice Programmers. Doctoral dissertation. 
University of Southern Queensland.   

[6] Fleming, N. and Baume, D. 2006. Learning Styles Again: 
VARKing up the right tree! Educational Developments, 
SEDA Ltd., Issue 7.4, pp 4-7, November 2006.  

[7] Gomes, A. and Mendes, A. J. 2007. An environment to 
improve programming education. In Proceedings of the 2007 
international Conference on Computer Systems and 
Technologies (Bulgaria, June 14 - 15, 2007). B. Rachev, A. 



Smrikarov, and D. Dimov, Eds. CompSysTech '07, Vol. 285. 
ACM, New York, NY, pp 1-6. 

[8] Havenga, M. and Mentz, E. 2009. The School Subject 
Information Technology: A South African Perspective.  In 
the Proceedings of the SACLA’09 Conference, Mpekweni 
Beach Resort, South Africa, June 29-July 1, 2009. 

[9] Jacobs, C. and Sewry, D.A.  2009. Learner Inclinations to 
Study Computer Science or Information Systems at Tertiary 
Level.  Submitted to South African Computer Journal.  

[10] Kumar, A.N. 2006. Explanation of step-by-step execution as 
feedback for problems on program analysis, and its 
generation in model-based problem-solving tutors.  In 
Proceedings of Technology, Instruction, Cognition and 
Learning (TICL) Journal. 

[11] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study 
of the difficulties of novice programmers. In Proceedings of 
the 10th Annual SIGCSE Conference on innovation and 
Technology in Computer Science Education (Caparica, 
Portugal, June 27 - 29, 2005). ITiCSE '05. ACM, New York, 
NY, pp 14-18. 

[12] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and 
Prasad, C. 2006. Not seeing the forest for the trees: novice 
programmers and the SOLO taxonomy. In Proceedings of 
the 11th Annual SIGCSE Conference on Innovation and 
Technology in Computer Science Education (Bologna, Italy, 
June 26 - 28, 2006). ITICSE '06. ACM, New York, NY, pp 
118-122. 

[13] Liu, M. 2005. Motivating Students Through Problem-based 
Learning. NECC. 

[14]  Mannila, L. and de Raadt, M. 2006. An objective 
comparison of languages for teaching introductory 
programming. In Proceedings of the 6th Baltic Sea 
Conference on Computing Education Research: Koli Calling 
2006 (Uppsala, Sweden, February 01 - 01, 2006). Baltic Sea 
'06, Vol. 276. 

[15] Pintrich, R., Smith, A., Garcia, T. and McKeachie, W.J. 
1991. A Manual for the Use of the Motivated Strategies for 
Learning Questionnaire (MSLQ).  National Center for 
Research to Improve Postsecondary Teaching and Learning. 
Ann Arbor, MI: University of Michigan Press.  

[16] Rajala, T. Laakso, M-J., Kailo, E. and Salakosi, T. 2007. 
Ville-A Multi-language Tool for Teaching Novice 
Programming. TUCS Technical Report No. 827, June 2007. 

[17] Shuhidan, S., Hamilton, M. and D’Souza, D. 2009. A 
Taxonomic Study of Novice Programming Summative 
Assessment. In Eleventh Australasian Computing Education 
Conference (ACE2009), (Wellington, New Zealand, January 
2009).  Conferences in Research and Practice in Information 
Technology (CRPIT), Vol. 95.  M. Hamilton & T. Clear, 
Eds. 

[18] Wehrwein, E.A. Lujan, H.L. and DiCarlo, S.E. 2007. Gender 
Differences in Learning Style Preferences among 
Undergraduate Physiology Students. In Advanced 
Physiology Education, Vol. 31, pp. 153-157, June 2007. 

 



APPENDIX H. PAPERS ORIGINATING FROM THIS RESEARCH STUDY 266

H.3 SACLA 2010 Conference



Programming in South African Schools:  The Inside Story 
Melisa Koorsse 

Nelson Mandela Metropolitan 
University 

P.O. Box 77000 
Port Elizabeth, 6031 

+27 41 372 2193 

Melisa.Koorsse@nmmu.ac.za 

André P. Calitz 
Nelson Mandela Metropolitan 

University 
P.O. Box 77000 

Port Elizabeth, 6031 
+27 41 504 2639 

Andre.Calitz@nmmu.ac.za 

Charmain B. Cilliers 
Nelson Mandela Metropolitan 

University 
P.O. Box 77000 

Port Elizabeth, 6031 
+27 41 504 2235 

Charmain.Cilliers@nmmu.ac.za 

 

 

ABSTRACT 

The Information Technology (IT) subject presented in South 

African schools is considered a difficult subject.  The number of 

Grade 9 learners opting to take IT as a subject in Grade 10 is 

decreasing and the number of learners continuing with IT to 

Grade 12 is declining.  The main cause of the difficulty of the IT 

subject is the programming component.  The programming 

component has the largest weighting in the IT subject framework 

resulting in learners who struggle with programming unable to 

obtain above average marks for the subject.  The subject 

workload and lack of teacher support makes it difficult for IT 

teachers to present the programming content.  The allocated class 

time for IT is not sufficient to ensure that learners grasp the basic 

concept knowledge required to develop a proper understanding of 

programming.  This paper reports on the reasons why Grade 10 

IT learners decided to choose IT as a subject.  The programming 

concepts that Grade 11 learners find difficult and their 

approaches to programming are also presented in this paper.  The 

research presented by this paper aims to identify problems faced 

by IT learners with regards to programming in South African 

secondary schools as the first phase of a study to assist IT 

learners to understand and apply programming concepts. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – Computer science education, Curriculum.  

General Terms 

Performance, Human Factors 

Keywords 

Information Technology, Novice Programmers, Introductory 

Programming. 

1. INTRODUCTION 
Information Technology (IT) is one of the 29 school subjects 

included in the National Curriculum Statement of the South 

African Department of Education, offered at secondary school 

level from Grade 10 to 12 [5].  IT includes problem solving 

activities that require logical thinking, information management 

and communication.  Computer application development using 

current object-oriented, net-centric development tools is also an 

important area of focus in IT [6].   

IT in South African secondary schools has earned a reputation as 

a difficult subject because of the difficulty learners experience in 

understanding programming [9, 10].  Learners either avoid the 

subject IT or many learners that do attempt the subject change to 

another, “easier” subject such as Computer Applications 

Technology (CAT) before Grade 12 (their final year).  The lack 

of interest in the subject and the negative impression created 

amongst learners affects the number of learners wishing to 

pursue a career in computer science or IT related professions [9].   

This follows the trend of a decline in interest in computing 

professions recorded globally over the past 10 years [1, 10, 16]. 

The IT subject content is categorised into four main learning 

outcomes, as indicated in Table 1.  The weighting for Learning 

Outcome 4 (Programming and Software Development) is the 

highest weighting of the four learning outcomes.  

 

A learner’s understanding and application of programming 

concepts impacts the learner’s achievement in the IT subject [9].  

Learners unable to understand programming concepts are 

frustrated and more likely to change to another subject [8, 18]. 

South African IT learners are faced with the same difficulties 

when compared to novice programmers worldwide.  Studies have 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. 

Conference’10, Month 1–2, 2010, City, State, Country. 

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 

 

Table 1. Learning Outcome Time Allocation [6] 

Learning Outcome Weighting 

Learning Outcome 1:  Hardware & Systems 

Software 
20% 

Learning Outcome 2: E-Communication 10% 

Learning Outcome 3:  Social & Ethical Issues 10% 

Learning Outcome 4:  Programming & Software 

Development 
60% 



indicated that novice programmers may understand the syntax of 

programming concepts, but struggle to apply the concept 

knowledge when solving problems [4, 12].  The abstract nature 

of programming results in novice programmers struggling to 

develop the correct mental model of how a computer executes 

code.  This has also been identified as a contributing factor to 

programming difficulty [2, 11].  A result of this 

misunderstanding is that code instructions are not written in the 

correct order [17]. 

Another important contributing factor to the inability to write 

code to solve a programming problem is the difficulty novice 

programmers have in reading and understanding code.  A novice 

programmer, who is unable to read and understand code, will not 

be able to learn from examples or solutions, and thus be unable 

to generate code solutions to new problems [12, 16].  Teachers 

need to develop additional skills such as code comprehension 

techniques and not simply programming concept knowledge. 

The difficulties faced by IT learners are worsened by the school 

teaching environment which differs from tertiary education 

facilities [9].  Four hours per week is the recommended time 

allocation for IT in the school timetable as indicated in the IT 

Learning Programme Guidelines [6].  This time is allocated for 

the entire programming subject content – not just Learning 

Outcome 4 (Table 1).  IT teachers find it difficult to teach all the 

subject content in the required depth within the allocated time 

[9]. 

The IT teacher is usually the only “assistant” available to 

learners during practical programming sessions.  IT teachers 

struggle to assist all learners who are having difficulty during a 

class period, which usually lasts 45-50 minutes and this includes 

time taken for learners to enter the class and prepare for the 

lesson.  Learner involvement in sport and cultural activities after 

school make it difficult for IT teachers to arrange a time for 

learners to practice programming exercises with the teacher’s 

assistance.  Currently, school subject timetables do not cater for 

the time required by programmers to master programming 

content [9]. 

People involved with the IT subject at school, Computer Science 

and Information Systems lecturers at universities across the 

country and businesses requiring skilled computer professionals 

are concerned about the lack of interest in IT as a subject at 

school.  There are concerns with respect to the impact a shortage 

of skilled computer professionals may have on the South African 

economy and the country’s ability to remain competitive in the 

global market [14].  

It would only be possible to implement any revisions to current 

IT subject content in five years time [informal meeting to address 

IT subject concerns, 29 October 2009, Pretoria, South Africa].  In 

the interim, ways of assisting IT learners to cope with and 

understand the current curriculum are needed to ensure that 

interest in IT as a subject at school can be maintained until 

improvements can be implemented. 

The problems investigated in this study are the decline in interest 

in IT as a subject and the difficulty of the IT subject, mainly due 

to the programming component.  The methodology used to 

investigate these problems is presented in the next section 

(Section 2).  Section 3 presents the results of the IT learner 

surveys followed by a discussion and interpretation of the results 

in Section 4.  The paper is summarised and future work is 

presented in Section 5. 

2. METHODOLOGY 

2.1 Purpose of the Study 
The main aim of this study is to investigate the factors 

influencing the learning of IT programming in South African 

secondary schools.  The results presented are important to 

identify ways of assisting IT learners to understand programming 

concepts within the South African secondary school environment. 

This research sought to explore 2 primary questions: 

1. What are the reasons why learners decide to take IT? 

2. What do IT learners find difficult with regards to 

programming? 

2.2 Research Approach 
The research approach adopted by this study was influenced by 

the research methodology of the overall doctoral study of which 

this study forms a part.  The doctoral study is focused on 

providing South African IT learners with techniques and tools to 

assist their understanding of programming concepts. 

Close-ended surveys using questionnaires were used to gather 

information from IT learners.  Grade 10 IT learners were 

approached to complete a close-ended questionnaire aimed at 

identifying factors influencing learners’ decisions to take IT.  

The questionnaire was designed by the researcher based on 

questions used by Biggers et al. [3] in a similar study to 

investigate university student perceptions of Computer Science 

(CS) and the reason why students decided to major in CS.  Grade 

10 learner perceptions of programming were not investigated in 

this research study as the survey was done in the beginning of the 

academic year.  IT is selected as a subject for three years from 

Grade 10 to Grade 12 and Grade 10 IT learners generally have 

no prior programming experience. 

A close-ended questionnaire to determine learner perceptions of 

different aspects of programming was designed by the researcher 

and completed by Grade 11 IT learners based on their experience 

of programming in Grade 10.  The questions in this questionnaire 

were designed to investigate learner perceptions of the difficulty 

of different programming concepts, their comprehension of 

programming examples and exercise solutions, and the 

application of solutions for simple problems to similar, but more 

complex problems.  Another aim of the questionnaire was to 

determine learners’ ability to debug errors in code solutions and 

to plan solutions to programming problems.  The results are 

presented and the researcher’s interpretations of the results are 

discussed in this paper.   

The questionnaires used in the research study were not included 

with this paper due to their length; however, copies of the 

questionnaires can be obtained from the authors. 

2.3 Sample 
The research study is conducted in schools offering IT as a 

subject that are situated in the Port Elizabeth metropolitan area, 

Eastern Cape Province, South Africa.  The amount of interaction 

required by the researcher with schools participating in the 



doctoral study has restricted the selection of schools participating 

to the Port Elizabeth area, due to the proximity to the researcher.  

In South Africa, two programming languages are used to teach 

programming to learners taking IT, namely Java and Delphi.  The 

programming language used is determined by the province the 

school is situated in.  In the Eastern Cape, Delphi is the 

programming language used. 

The results of three of the participating schools are presented in 

this paper.  The results for each of the schools were analysed 

independently due to the different school environments and IT 

teachers as these may influence learner perceptions and the 

generalisability of certain of the results. 

 

  

 

 

 

 

Table 2 indicates the number of learners who participated in 

each grade from each school.  The number of learners 

participating was dependent on the class size and voluntary 

consent from learners and their parents/guardians.  

Unfortunately, no schools from disadvantaged communities in 

the Port Elizabeth metropolitan area could be included in the 

study as none of these schools offered IT as a subject. 

3. FINDINGS 

3.1 Why Learners Selected IT as a Subject? 
Learners were asked to indicate factors influencing their 

decisions to select IT as a subject.  Learners could select more 

than one option from a list provided (Table 3).  The frequency 

distribution graph in Figure 1 summarises the learner responses.  

It is clear from the graph (Figure 1) that learners are responsible 

for their own subject choice although others may provide input 

into the decision making process.  Most learners indicated an 

interest in computers and in programming. 

Table 3. List of Possible Factors Influencing the Decision to 

Take IT (more than one could be selected) 

IT was one of my first choice subjects 

I had to decide between IT and another subject 

Taking IT was my own decision 

IT was recommended/suggested by someone else 

If IT was taught by another teacher I might not have selected it 

I enjoy working on a computer (e.g. games, typing, creating 

documents) 

I have some knowledge of programming or what it is all about 

I am interested in programming 

   

 

Figure 1. Factors Influencing Learner Decision to Take IT  

 

Table 4.  List of Possible Main Reasons for Taking IT 

   

 

Figure 2. Main Reason for Selecting IT 

The frequency distribution graph in Figure 2 summarises the 

main reason why learners selected IT as a subject.  Table 4 

provides the list of possible reasons provided to learners. It is 

clear from Figure 2 that most learners selecting IT did so in order 

to learn how to develop their own software programs. 

Learners were also asked to indicate, using a 7-point Likert scale 

where 1 is “Strongly Disagree” and 7 is “Strongly Agree”, the 

perceived difficulty of IT when compared to other subjects and 

whether they believed they would do well in IT.  It should be 

remembered that, in general, Grade 10 learners have no 

Table 2. Learner Distribution in Schools 

School Grade 10 Grade 11 

School A 23 11 

School B 18 16 

School C 18 14 

To understand more about the different aspects and topics related 

to computing in general 

To be able to understand how a computer works (hardware) 

To improve my understanding and use of different computer 

programs or applications 

To be able to develop my own software programs 

To play LAN games with friends in class 

To have more access to a computer at school 

Other 



experience of programming.  Figures 3 and 4 are the frequency 

distribution graphs for the perceived difficulty of IT and expected 

success in IT, respectively, as indicated by Grade 10. 

 

Figure 3. Perceived Difficulty of IT 

A comparison of the perception of the difficulty of IT at each of 

the three schools indicates a different profile for each school 

(Figure 3).  If each school is analysed individually it is noted that 

participants from School A tend to perceive IT as difficult 

compared to other subjects.  Participants from School B did not 

strongly agree or disagree, with responses clustering around 

being undecided.  Participants from School C indicated mixed 

responses with two “spikes” in the results.  Quite a few students 

tended to strongly disagree with the statement that IT is difficult 

compared to other subjects, while other students tended towards 

agreeing with the statement but not as strongly as the 

disagreements.  If the number of participants from School C 

selecting a value less than 4 is compared with the number 

selecting a value greater than 4, slightly more participants tended 

to agree with the statement (9 participants as opposed to 6 

disagreements).   

 

Figure 4. Perceived Success in IT 

The results of the participants’ perceived success in IT indicates 

a general trend amongst participants from all three schools.  

Except for 4 participants disagreeing with the statement, most 

participants agreed with the statement that they could do well in 

IT.  Participants from two of the schools indicated this very 

strongly while participants from School A seemed to be more 

apprehensive.   

3.2 What Aspects of Programming are 

Difficult? 
Learners were asked to rate the difficulty of 22 different 

programming concepts (Table 5) and skills derived from the IT 

Learning Programme Guidelines [6] using a 7-point Likert scale 

where 1 is “Extremely Easy” and 7 is “Extremely Difficult”.  

Each participant was also asked to indicate the concept that they 

perceived as the most difficult.  Most learners indicated that 

procedures is the most difficult concept to understand.  

Debugging of code was also indicated as difficult by the learners.  

Table 5.  Programming Concepts Rated by Grade 11 

Learners   

 

The remaining questions were formulated in such a way as to 

determine the degree to which learners were able to understand 

simple code exercises and solutions, apply their understanding of 

simple solutions to more complex problems, debug errors in code 

and plan solutions to programming problems.  Participants had to 

rate their responses using a 7-point Likert scale where 1 is 

“Strongly Disagree” and 7 is “Strongly Agree”. 

Table 6 summarises the results for the three schools by providing 

mean and mode values.  It is clear that participants believe they 

are able to do simple exercises and understand provided 

solutions for simple exercises.  In general, participants indicated 

a positive belief in their abilities to combine programming 

concepts to solve complex problems.  As would be expected, the 

ability to apply simple solutions to complex problems was rated 

less than the ability to understand simple exercises; however, 

there is only a slight difference.  Further investigation is needed 

to determine how significant the difference is.   

Variables 

Input (Getting information from the user) 

Output (Displaying information to the user) 

If statements 

Case (Delphi) or switch (Java) statements 

For loops 

While loops 

Repeat (Delphi) or do While (Java) loops 

String handling 

One dimensional arrays 

Two dimensional arrays 

File handling 

Accessing a database 

SQL statements 

Procedures 

Functions 

Correct use of parameters 

Objects & classes 

Problem solving 

Algorithms 

Planning (use of pseudocode to plan solution before coding) 

Debugging (finding errors in the code) 



 

The mode and median results describing the ability to debug 

errors in code showed varied responses from participants.  The 

analysis of results for specific questions used provided more 

insight.  Two of the questions related to debugging were:  I 

understand compiler error messages and I use compiler error 

messages to find syntax errors in my code.  The mean and mode 

values of the ratings provided for these two questions were 

generally higher for the second question than the first.  It can be 

deduced that participants attempt to use compiler error messages 

to debug code but this is difficult if they are not able to 

understand the message. 

The two questions related to debugging that were on average 

given the lowest ratings were related to the use of output to 

display variable values at critical points in the program and the 

use of breakpoints to step through code.  Both these questions 

investigate methods that novice programmers can use to find 

errors in the logical processing of their code.   

Planning of solutions has also been identified as a factor 

influencing novice programmer ability to program successfully 

[7, 17].  In the feedback received learners indicated that most of 

the time they understood what the expected program was 

required to do and that they were then able to write code to solve 

the programming problem.  However, most participants 

disagreed with the statement I write down a non-code solution 

before trying to write code and they disagreed with the statement 

I use comments in my program code to describe different 

sections of code. 

4. DISCUSSION 

4.1 Selecting IT as a Subject 
An important result of the questionnaire to Grade 10 learners 

regarding their choice of IT as a subject, is that learners make the 

subject choice decision.  Input may be provided by parents, 

teachers and friends but the final decision is made by the learner.  

Campaigns to advertise IT as a subject for Grade 9 learners 

during the subject choice process should be focused on the 

learners.  If learners are motivated to take IT as a subject and 

have a clear understanding of what the subject entails, chances 

are good that the learner will choose IT as a subject.  The impact 

of programming on the IT subject choice decision is quite clear.  

Learners exposed to programming before Grade 10 may be more 

inclined to select IT as a subject 

The indication of learners wanting to develop their own software 

as the main reason for IT being selected as a subject raises two 

points.  The first point to consider is that the choice of IT for 

software development is fueled mainly by future career fields, 

including programming and mechatronics.  For others, a 

computing career may not be their first choice at present but they 

are keeping their options open.  Learners who end up struggling 

with IT and programming will then think twice about pursuing a 

career in programming or a computer related field. 

The second point that needs to be considered is that the interest 

in developing their own programs as the main reason for 

selecting IT clearly indicates the learners’ association of IT with 

programming.  The high weighting of programming in the 

presentation and assessment of IT means that learners struggling 

with programming would be struggling with IT.  If learners are 

struggling with or are no longer interested in programming, there 

is not enough focus or time spent on other aspects of computer 

related topics in the IT subject to allow the leaner to find another 

area of interest within the computing field as well as maintaining 

the same level of achievement as is expected of the learner.  

Learners struggling with programming thus have very few 

options but to discontinue the subject, especially if academic 

achievement is affected [9]. 

Participants’ perceptions of the difficulty of IT as a subject when 

compared to other subjects, is varied.  This is to be expected as 

the questionnaire was completed in the first quarter of the 

academic year.  The learners do not have any experience in the 

subject and are only starting with programming concepts such as 

input and output methods and variables.  The results of this 

question will be compared to the results of the same question at 

the end of Grade 10.  The difference in learners’ perceptions of 

difficulty can then be compared to what they have experienced in 

the subject during the year. 

Similarly, Grade 10 learners’ perceptions of their success in the 

subject will be compared to their actual success (assessment 

marks) and self-reported evaluation of their success at the end of 

the academic year.  These results would provide insight into the 

impact that IT and programming have on learners’ motivation 

and interest in the subject.   

4.2 Difficulty of Programming 
An interesting result from the questionnaire survey to Grade 11 

learners is the indication by learners that procedures (or methods 

in Java) is a difficult programming concept to understand.  In the 

results of this research study it was indicated to be the most 

difficult concept.  Procedures and functions together with the use 

of parameters have traditionally been difficult concepts to grasp 

for learners in South African schools.  

Initially, this result was interesting as the work schedule of the 

IT teachers indicated that procedures and functions would only 

be taught after the questionnaire was given to learners.  There 

was doubt as to whether or not learners had been taught this 

concept and, if not, whether learners then misinterpreted the 

meaning of procedures on the questionnaire.  The questionnaire 

Table 6. Results of Questionnaires to Grade 11 Learners 

 Understand-

ing of simple 

code 

Application to 

complex 

problems Debugging Planning 

Median 

School A 5.70 4.82 4.03 5.73 

School B 5.90 5.36 5.2 4.3 

School C 6.05 5.84 4.85 4.51 

Mode 

School A 6 5 1 5 

School B 6 5 6 5 

School C 7 7 7 7 



only provided the commonly used term procedures and no 

description was provided.   

Grade 11 learners at two of the participating schools identified 

procedures as difficult.  After analysing the results of the 

questionnaire, the respective teachers were consulted about 

whether or not they had already taught procedures to their 

learners.  School B indicated that the learners were busy with the 

concept of procedures when the questionnaire was completed, 

while School C indicated that learners were introduced to 

procedures and functions at the end of Grade 10 in preparation 

for a more thorough presentation of the concepts in Grade 11.  

The feedback from the schools thus clarified that learners were 

referring to the procedures programming concept as intended by 

the questionnaire. 

Procedures and functions require learners to change from coding 

in an event handler (such as a button click or form create) to 

creating their own methods and calling these methods when 

needed.  A proper understanding of procedures and functions 

requires learners to have an understanding of code reusability 

and modular code.  These are concepts that can be extended 

further in object oriented programming.  Further investigation is 

needed to identify whether the difficulty in understanding 

procedures and functions is related to the actual implementation 

of these concepts in a programming language or a lack of proper 

understanding of the purpose of these concepts. 

A more definite indication by participants with regards to 

difficult concepts or programming skills was that participants 

regarded debugging code as difficult.  Programming knowledge 

and debugging ability are important factors determining whether 

or not a programmer would be able to correct any code errors [2].  

Inability to debug code could lead to frustration on behalf of the 

learner and lower their motivation and interest in the subject 

[18].  Learners thus need assistance or techniques to find errors 

in their code.   

One form of assistance is when the learner uses techniques and 

tools to identify the errors themselves.  Compiler error messages 

assist programmers to find syntax errors.  Logical errors can be 

determined using strategic outputs of variable values or 

breakpoints to step through or into the code.  However, if 

learners are unable to understand the compiler error messages or 

are unable to use breakpoints or output variable values, as 

indicated by their responses in the questionnaire, they will be 

unable to solve many of these errors successfully without other 

forms of assistance.  The software development tools used in the 

schools are designed for use by professional programmers.  The 

compiler error messages and the functions provided to assist 

programmers to debug their code are often too complicated for 

novice programmers to understand or use [2, 15, 17].         

The second form of assistance which learners turn to is the 

teacher or their peers.  If too many learners in the class are 

unable to solve the problems themselves, the result is the teacher 

spending the lesson moving from one learner to the next 

identifying and explaining errors.  Assisting learners in the class 

does provide teachers with an opportunity to identify what 

different learners are struggling with and assess their knowledge 

of the concepts.  However, teachers would need to beware of 

assisting learners too quickly with simple errors such as missing 

semicolons.  Without a strategy of assisting learners to debug 

code themselves, teachers are not enabling learners to develop 

their debugging skills.  

It is also sometimes impossible for the IT teacher to assist all 

learners within the class lesson which is usually less than an 

hour long.  Many learners tend not to continue with the exercises 

if they are struggling to find errors.  The teacher is also 

sometimes not able to go through all the solutions with the class 

and it is thus left to the learners to ensure that they understand 

the solutions and attempt to complete the exercises again on their 

own.  The time allocated to the subject and the large amount of 

content that needs to be covered thus makes it very difficult for 

IT teachers to ensure that learners have enough practice doing 

programming examples and exercises. 

Regarding the planning of programming solutions, most 

participants indicated that they did not first formulate non-code 

solutions.  The fact that learners do not use non-code solutions 

can not be interpreted as an indication that those learners are 

struggling with programming.  Research studies have discussed 

the impact of planning on programming success [7, 17]; however, 

the results in this research study would need to be correlated 

with assessment marks to determine the impact that not using 

non-code solutions has on programming ability.  The formulation 

of non-code solutions to plan the solution to a programming 

problem can assist struggling novice programmers to decompose 

a problem into simpler parts which may then be easier to solve.  

The planning of programming solutions is a critical problem 

solving step that many novice programmers tend to omit [17, 18] 

and skill that IT teachers cover very briefly when introducing 

programming to Grade 10 learners. 

5. CONCLUSION 
This research study has focused on two research questions, 

namely, to identify the reasons for learners deciding to take IT as 

a subject and the difficulties with regards to programming 

concepts experienced by IT learners.  The questionnaire 

responses received from Grade 10 and Grade 11 participants 

provided preliminary findings to answer these questions. 

An interest in programming and software development was 

identified as the main reason why learners decided to take IT.  A 

possible follow up study would be to identify whether the 

number of learners taking IT would increase or decrease if 

programming was not the main focus.  The learners who 

participated in this research study will be surveyed again towards 

the end of the year to analyse the effect that exposure to the 

programming content has had on their interest in the subject and 

their perceptions of the difficulty of IT compared to other 

subjects. 

The use of procedures and finding bugs in code were identified 

as two of the three most difficult issues in programming by 

respondents in a survey conducted by Lahtinen et al. [12].  These 

results are supported by our research where procedures and 

debugging were identified as difficult programming concepts by 

participants.    Further investigation will be conducted into the 

reason why procedures are identified as difficult by learners.   

Debugging is a skill that is essential to ensuring that the correct 

programming solutions are produced.  This study has highlighted 



that this debugging needs to be focused on and learners can be 

assisted by providing techniques and tools that can be used to 

evaluate code and find errors. 

Grade 12 learners may be approached to complete the 

questionnaire provided to the Grade 11 learners.  The Grade 12 

learners would be able to report on their experiences of 

programming in Grade 10 and Grade 11 and thus provide more 

insight into the programming difficulties experienced.  

It is hoped that this study has produced interesting and useful 

results which will help IT teachers to be more aware of how IT 

learners experience and approach programming and be better 

able to assist learners.  In addition, it is hoped that this study has 

made others aware of the difficulties related to the teaching of IT 

in South African secondary schools and encourages further 

research on this topic. 

6. ACKNOWLEDGMENTS 
We would like to thank the schools, teachers and learners who 

participated in this research study for their valuable 

contributions. 

7. REFERENCES 
[1] Babin, R., Grand, K. and Sawal, L. Identifying Influencers 

in High School Student ICT Career Choice, 2008. 

[2] Ben-Ari, M., Levy, R. and Uronen, P.A. An Extended 

Experiment with Jeliot 2000.  In Proc. Of the Program 

Visualization Workshop, Porvoo, Finland, 2000. 

[3] Biggers, M., Brauer, A. and Yilmaz, T. Student Perceptions 

of Computer Science: A Retention Study Comparing 

Graduating Seniors v. CS Leavers.  In Proceedings of the 

SIGCSE’08 Conference, 2008. 

[4] De Raadt, M. Teaching Programming strategies explicitly 

to Novice Programmers. Doctoral dissertation. University of 

Southern Queensland, 2008.   

[5] Department of Education. National Curriculum Statement. 

Grades 10-12 (General). Information Technology, 2003. 

[6] Department of Education. National Curriculum Statement. 

Grades 10-12 (General). Learning Programme Guidelines. 

Information Technology, 2008. 

[7] Fidge, C. and Teague, D. Losing Their Marbles: Syntax-

Free Programming for Assessing Problem-Solving Skills. In 

Proc. Eleventh Australasian Computing Education 

Conference (ACE 2009), Wellington, New Zealand. CRPIT, 

95. Hamilton, M. and Clear, T., Eds. ACS, pp 75-82, 2009.  

[8] Gomes, A. and Mendes, A. J. An environment to improve 

programming education. In Proceedings of the 2007 

international Conference on Computer Systems and 

Technologies (Bulgaria, June 14 - 15, 2007). B. Rachev, A. 

Smrikarov, and D. Dimov, Eds. CompSysTech '07, Vol. 

285. ACM, New York, NY, pp 1-6, 2007. 

[9] Havenga, M. and Mentz, E. The School Subject Information 

Technology: A South African Perspective.  In the 

Proceedings of the SACLA’09 Conference, Mpekweni 

Beach Resort, South Africa, June 29-July 1, 2009. 

[10] Jacobs, C. and Sewry, D.A.  Learner Inclinations to Study 

Computer Science or Information Systems at Tertiary Level.  

Submitted to South African Computer Journal, 2009.  

[11] Kumar, A.N. Explanation of step-by-step execution as 

feedback for problems on program analysis, and its 

generation in model-based problem-solving tutors.  In 

Proceedings of Technology, Instruction, Cognition and 

Learning (TICL) Journal, 2006. 

[12] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. A study of 

the difficulties of novice programmers. In Proceedings of 

the 10th Annual SIGCSE Conference on innovation and 

Technology in Computer Science Education (Caparica, 

Portugal, June 27 - 29, 2005). ITiCSE '05. ACM, New York, 

NY, pp 14-18, 2005. 

[13] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and 

Prasad, C. Not seeing the forest for the trees: novice 

programmers and the SOLO taxonomy. In Proceedings of 

the 11th Annual SIGCSE Conference on Innovation and 

Technology in Computer Science Education (Bologna, Italy, 

June 26 - 28, 2006). ITICSE '06. ACM, New York, NY, pp 

118-122, 2006. 

[14] Merkofer, P. and Murphy, A. The E-Skills Landscape in 

South Africa.  In Zeitschrift für Politikberatung. Published 

by VS Verlag für Sozialwissenschaften. ISSN: 1865-4789, 

2010. 

[15] Pendergast, M.O. Teaching Introductory Programming to IS 

Students: Java Problems and Pitfalls. In Journal of 

Information Technology Education, Vol. 5, pp 491-515, 

2005. 

[16] Potter, L.E.C., von Hellens, L.A. and  Nielsen, S.H. 

Childhood Interest in IT and the Choice of IT as a Career: 

The Experiences of a Group of IT Professionals.  In the 

Proceedings of the SIGMIS-CPR’09 Conference, Ireland, 

2009. 

[17] Rongas, T., Kaarna, A. and Kalviainen, H. Advanced 

Learning Technologies. In Proceedings of IEEE 

International Conference on Advanced Learning 

Technologies (30 Aug.-1 Sept, 2004) ICALT’04, pp 678 – 

680, 2004. 

[18] Shuhidan, S., Hamilton, M. and D’Souza, D. A Taxonomic 

Study of Novice Programming Summative Assessment. In 

Eleventh Australasian Computing Education Conference 

(ACE2009), (Wellington, New Zealand, January 2009).  

Conferences in Research and Practice in Information 

Technology (CRPIT), Vol. 95.  M. Hamilton & T. Clear, 

Eds, 2009. 

 

 

 

 



APPENDIX H. PAPERS ORIGINATING FROM THIS RESEARCH STUDY 274

H.4 SACLA 2011 Conference



Programming Assistance Software Tools to Support the 

Teaching of Introductory Programming 
Melisa Koorsse 

Nelson Mandela Metropolitan 
University 

P.O. Box 77000 
Port Elizabeth, 6031 

+27 41 372 2193 
Melisa.Koorsse@nmmu.ac.za  

André P. Calitz 
Nelson Mandela Metropolitan 

University 
P.O. Box 77000 

Port Elizabeth, 6031 
+27 41 504 2639 

Andre.Calitz@nmmu.ac.za 

  

Charmain B. Cilliers 
Nelson Mandela Metropolitan 

University 
P.O. Box 77000 

Port Elizabeth, 6031 
+27 41 504 2235 

Charmain.Cilliers@nmmu.ac.z

a 

 

ABSTRACT 

Novice programmers find learning to program difficult and 

debugging has also been identified as a difficult task for novice 

programmers. Novice programmers struggle to develop accurate 

mental models of programming concepts and processes, have 

difficulty understanding how a computer executes instructions 

and struggle to apply the syntax rules of high-level programming 

languages.  Different programming assistance software tools have 

been developed to assist novice programmers with their 

understanding of programming concepts.  Programming 

assistance tools use different techniques to assist novice 

programmers, including visualisation and animation techniques, 

and drag and drop interfaces.  A number of programming 

assistance tools has shortcomings, for example, not supporting all 

introductory programming concepts.   

This paper identifies several different programming assistance 

software tools that are freely available for use by novice 

programmers.  The programming assistance tools are evaluated 

using selection criteria that can be used to select programming 

assistance software tools for use in introductory programming 

courses.  The selection criteria are formulated from a literature 

review of introductory programming as well as research 

conducted with Information Technology (IT) learners in South 

African secondary schools.  The research presented in this paper 

aims to provide IT teachers and introductory programming 

lecturers with a list of programming assistance software tools 

that are freely available for introductory programming courses 

and subjects, selection criteria that can be used to evaluate the 

programming assistance tools and a discussion of some of the 

shortcomings of programming assistance tools that need to be 

considered when selecting tools for introductory programming 

courses. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – Computer Science education, Curriculum.  

 

General Terms 

Performance, Human Factors, Languages. 

Keywords 

Introductory Programming, Novice Programmers, Information 

Technology, Programming Assistance Tools. 

1. INTRODUCTION 
Expert or professional programmers possess problem solving 

abilities [1, 2] that are essential for developing software that is 

fast and scalable.  These abilities are developed from 

programming experience gained over an average of 10 years [30]. 

Novice programmers, including Information Technology learners 

at South African secondary schools, find learning to program to 

be a difficult task [32].  The reason for this is that novice 

programmers need to learn how to understand and solve a 

problem, formulate a solution in a structured form (algorithm) 

and then write the algorithm in a specific programming language 

[34].  Programming can be a difficult task if programmers are 

unable to plan solutions [31], lack understanding of programming 

concepts due to the abstract nature of these concepts [23] and 

lack understanding of how a computer executes code [5]. 

The teaching and learning of programming concepts can be 

supported with programming assistance tools.  Research in 

novice programming has suggested and developed programming 

tools [26] to enhance comprehension of algorithms and computer 

programs, assist with code debugging and assess programming 

knowledge and skills.  The programming assistance tools use 

different techniques such as visualisation, animation or drag-and-

drop interfaces to improve the conceptual understanding of 

programming concepts [2].   

Educators and students may be unaware of the different 

programming assistance tools that can be used to support 

understanding of programming concepts.  Certain tools have 

educational deficiencies and do not support all of the content 

presented in an introductory programming course.     

This paper discusses the difficulties novice programmers 

experience when learning to program (Section 2). Criteria that 

can be used to select programming assistance tools to support 

novice programmers are formulated (Section 3) and used to 

evaluate several programming assistance tools freely available 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. 

Conference’10, Month 1–2, 2010, City, State, Country. 

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 

 



for use by novice programmers (Sections 4 and 5). The paper is 

concluded and future work is presented in Section 6. 

2. PROGRAMMING DIFFICULTIES 
Programming is a complex activity that requires a novice to learn 

non-trivial facts, skills and concepts that are new to them [2].   

 

Figure 1. Knowledge and skills required by programmers. 

Figure 1 summarises the relationship between code 

comprehension and generation and the different types of 

knowledge a novice programmer requires.   

Code generation involves 3 main steps (Figure 1): 

1. A given problem statement or requirements set must be 

considered in order to decide upon the programming 

strategy to use. 

2. An algorithm to solve the problem should be 

formulated, often using pseudocode. 

3. The algorithm is translated into the code of the 

programming language being used.  The program is 

tested and changed as necessary until the original set of 

requirements to solve the problem, are met.   

The three steps outlined above can only be achieved by a 

programmer who is able to apply programming knowledge and 

strategies and who has the ability to comprehend as well as 

generate code [8, 30]. 

2.1 Programming Knowledge 
Programming knowledge includes knowledge of programming 

concepts and principles, knowledge of computers and knowledge 

of programming language syntax (Figure 1) [26].  Knowledge of 

programming concepts and principles is an understanding of how 

different concepts are implemented and why.  For example, how 

a for-loop works or the purpose of a variable.  Knowledge of 

computers includes an understanding of how computer events 

occur and can be handled by the code (for example a mouse-click 

or button press).  Knowledge of syntax is required in order to 

implement a solution in a particular programming language.  

All three of the above knowledge areas are important for code 

generation.  If a programmer is unaware of the different 

programming concepts it would be difficult to plan a suitable 

solution.  A well designed solution will not run successfully if 

the syntax used is incorrect.  Code not executed in the correct 

order or when certain events occur will result in an incorrect 

program solution, regardless of whether there are no syntax 

errors or if the correct programming concepts have been 

implemented.  

2.2 Programming Strategies 
A programming strategy is the way in which programming 

knowledge is applied to solve a particular problem [8, 30].  A 

suitable programming strategy is required for the first step of 

code generation (Figure 1).  A programmer who has an 

understanding of programming knowledge, but who is unable to 

use their knowledge to solve or transfer solutions from simple 

problems to more complex problems, lacks an understanding of 

programming strategies [8, 23].  Similarly, a programmer lacks 

programming strategy or problem solving ability if the programs 

compile and run yet do not solve the problem due to logic errors 

[1]. 

In general, more time is spent teaching programming language 

knowledge than programming strategy [1, 26].  Novice 

programmers tend to combine the steps of the code generation 

process (Figure 1) as they attempt to write the algorithm in a 

particular programming language [11, 31]. 

2.3 Code Comprehension and Generation 
A novice programmer should have adequate knowledge in all 

three programming knowledge areas (Section 2.1) to be able to 

comprehend and generate code successfully (Figure 1).  A novice 

programmer that lacks ability in one or more of the knowledge 

areas will struggle to generate a code solution.   

Program comprehension is described as a “cognitively complex 

skill” [3, 24].  Novice programmers reading code should be able 

to identify the knowledge such as concepts used in the solution 

and the strategy applied to produce the solution [8].   

A correlation has been shown to exist between code 

comprehension and code generation [8, 25].  Code 

comprehension is regarded as an important skill required for 

successful programming [3].  Novice programmers that are not 

able to read and understand code are unable to write similar code 

[25].  This can be a problem as new concepts are explained to 

novice programmers using practical examples.  If a novice 

programmer is unable to read and understand code solutions, 

they will be unable to build their knowledge of programming 

concepts and strategies to solve real-world problems [24, 25].  

The ability to read and understand code is moreover an important 

skill required for finding logical errors in code [25].   

2.4 Other Contributing Factors 
Other factors that can contribute to make learning to program 

difficult include the teaching approach used, the programming 

language and environment and specific programming concepts 

that are difficult to understand. 

2.4.1 Teaching Approach 
A novice programming student is guided by the teacher 

presenting the programming course when learning to program.  

Teachers need to present the course with a balance between the 

“how to” and “why” explanations.  Overemphasising “how to”, 

for example, how to use an if-statement in a particular problem, 

may result in students being unable to transfer what they have 

learnt.  Their underlying skills and concept knowledge would be 

lacking [2].  Overemphasising “why” would provide students 



with a theoretical knowledge of the underlying programming 

principles.  However, the theory would need to be accompanied 

by practical experience demonstrating how the principles are 

applied. 

Teachers also need to assist novice programmers to create a 

proper mental model of different programming concepts, 

especially the more abstract concepts [32].  Each person has a 

preferred learning style, differing abilities, learning speeds and 

attitudes or motivations toward the subject [22, 23] which would 

need to be taken into consideration by the teacher when assisting 

individual students.  However, many teachers use one teaching 

approach for all students [1] thus not catering for the learning 

requirements of individual students.   

2.4.2 Programming Language and Environment 
The programming language and development environment tool 

used by novice programmers when learning to program can also 

contribute to the difficulties experienced [26].  Certain 

programming languages are too complex to use to explain or 

teach introductory programming concepts [5, 17, 27].  If a novice 

programmer is having difficulty understanding a programming 

concept, an explanation of the concept using a code example 

should not be further confusing.  Professional programming 

environments may also overwhelm novice programmers by 

presenting them with functionality and interfaces that are only 

used by professional programmers [5, 17, 27].  

2.4.3 Specific Programming Concepts 
Certain programming concepts are more abstract than others and 

are thus more difficult for novice programmers to understand 

[16].  Abstract concepts have no related explanation in real life, 

making it difficult for novice programmers to develop an accurate 

mental model of these concepts. 

A literature survey has identified several specific programming 

concepts which novice programmers struggle to understand.  

Recursion is identified by three different research studies [14, 

23, 32] as a difficult concept for novice programmers to 

understand.  Abstract data types such as arrays are identified by 

two separate research studies [14, 23].  Novice programmers also 

seem to have difficulty understanding and using methods or 

procedures and functions [12, 14]. 

Another concept that teachers specifically find difficult to teach 

is object-oriented programming (OOP).  The difficulty related to 

OOP has been associated with the paradigm shift from structured 

methods and not the actual concepts [17].  Two approaches have 

been recommended for teaching OOP: “objects first” and 

“objects last”.  The “objects last” approach is the most common 

instruction method.  This approach starts with simple concepts 

and programs and gradually advances to more difficult concepts 

[7].  This provides a gentle learning curve which allows novice 

programmers to incrementally build their programming 

knowledge.   

A problem with teaching OOP last is that a paradigm shift is 

needed for students to switch from the procedural style of 

programming to the OOP style of programming.  This shift has 

been identified as the cause of the difficulties related to teaching 

OOP last [7, 17].  The solution is the “objects first” approach.  

The “objects first” approach introduces concepts such as string 

handling and looping within the OOP environment. However, a 

novice programmer‟s first experience of programming is a 

difficult mental challenge because they are faced with learning 

the basic programming concepts and syntax together with the 

complexities of OOP [7].    

A review of the literature has indicated greater support for the 

“objects first” approach [7, 17, 18, 20].  This is evident from 

many tools that have been developed to promote “objects first” 

and ensure that students are not impacted by the difficulties of 

“objects first” highlighted earlier.           

3. SELECTION CRITERIA 
Table 1 lists selection criteria that can be used to select a 

programming assistance tool to support novice programmers 

learning to program.  All items followed by an asterisk are 

derived from the programming difficulties identified in Section 2.  

The remaining items are derived from the results of surveys 

administered to Information Technology (IT) learners and 

teachers in South African secondary schools [21, 22].   

The left hand column (Table 1) lists programming concepts that 

an introductory programming course should include.  This list is 

derived from the list of programming concepts that Information 

Technology (IT) learners in South African secondary schools are 

required to learn [9]. The bold items in the list are programming 

concepts that have been identified as difficult to understand 

based on the results of a survey administered to IT teachers and 

IT learners [21].   

The programming skills and knowledge items in the right hand 

column of Table 1, originate from the programming skills 

required by novice programmers identified in the literature 

survey presented in Section 2.  Programming assistance tools 

should allow novice programmers to develop code 

comprehension skills, promote problem solving ability using 

appropriate strategies, assist understanding of code execution and 

allow syntax knowledge and knowledge of programming 

principles and concepts to be improved. 

Every person has a preferred learning preference.  Four learning 

preferences are identified by Fleming and Baume [10], namely 

visual, aural, read/write and kinesthetic.  A persons learning 

preference could be only one or a combination of the four.  The 

IT teacher/learner survey results indicated that programming 

assistance tools should cater for at least 2 of the learning 

preferences to assist individual users.  

A programming assistance tool should be constructivist to allow 

a novice programmer to “build” their knowledge of programming 

concepts using the tool and promote self-study.  Novice 

programmers also need assistance to formulate a code solution 

before actually writing the program code.   

A tool that uses visualisation and/or animation techniques can 

increase interest and motivation [29].  Error handling refers to 

whether or not a tool can detect errors in code, that is, compile a 

code solution.  Simple errors messages and/or suggestions to 

correct errors refer to the way in which the tool assists novice 

programmers to detect and correct errors in the code. 

Novice programmers also struggle to apply programming 

strategies used to solve simple exercises, to solve more complex 

exercises.   



Table 1. Selection criteria for Programming Assistance Tools.  

 

The programming assistance tools should be able to assist novice 

programmers with the syntax of whichever programming 

language the novice programmer is learning to program in.  Care 

should be taken to select a tool which implements code or can be 

adapted to implement code that is the same or similar to that of 

the programming language being used by the novice 

programmers.  Differences in syntax or the manner in which 

concepts are implemented can be confusing and result in making 

the learning process more difficult. 

4. PROGRAMMING ASSISTANCE TOOLS 
Programming assistance tools (PATs) are specifically designed to 

support novice programmers learning to program [26].  PATs can 

assist novice programmers to develop their understanding of 

programming concepts.  [31] states that the ideal PAT would be 

able to support several features including problem solving, 

algorithm design, assist with learning syntax for a particular 

programming language, and partial compiling to quickly check 

output and operation of a code block. 

PATs can also make use of visualisation and animation 

techniques.  Most programming concepts, data structures and 

algorithms are abstract [31].  Visualisation techniques can be 

used to help novice programmers develop an accurate mental 

model of programming concepts (Section 2).   

Several PATs have been identified from literature and will be 

discussed briefly. 

4.1 RobotProg 

 

Figure 2. Execution of RobotProg flowchart. 

RobotProg is a PAT in which the user creates a flowchart (Figure 

2) by dragging and dropping icons representing programming 

concepts.  When the program created is executed, it controls a 

robot to perform specific tasks (Figure 2). 

Different levels of difficulty can be specified in RobotProg.  The 

simple programming concepts are available in the lowest level.  

Selection Criteria 

Concepts Programming skills & knowledge: 

Variables Code comprehension* 

Input (getting information from the user) Promotes problem solving using strategies* 

Output(displaying information to the user) Code execution* 

If-statements Syntax knowledge* 

Switch statements Knowledge of programming principles & concepts* 

For-loops Teaching/Learning approach: 

Repeat-until/do-while loops Constructivist (promote self-study) 

While-do loops Feedback to guide solution creation 

String handling Learning Preferences: 

Procedures* Visual 

Functions* Aural 

One-Dimensional Arrays* Read/Write 

Two-Dimensional Arrays* Kinesthetic 

File handling Other: 

Accessing a database Simple & complex examples (scaffolding) 

SQL statements Error handling 

Correct use of parameters Simple error messages/suggestions to correct errors 

Objects & classes* Visualisation/Animation 

Problem solving* Programming Language (e.g. Java, C#, Delphi (Pascal), etc.) 

Debugging*  



More complex programming concepts are available for use in the 

flowchart as the level is increased.   

Users are also challenged to complete tasks such as finding a 

corner or picking up a ball.  The RobotProg tool is able to detect 

whether or not the task has been completed successfully. The 

RobotProg interface can be complicated for novice programmers 

to understand in the beginning.  Users are not able to view any 

code generated by the flowcharts.     

4.2 BlueJ 

 

Figure 3. Creating UML-like class diagrams in BlueJ. 

BlueJ is a tool that uses an objects first approach (Section 2.4) to 

introduce novice programmers to the concept of objects and 

classes.  In BlueJ, the objects and classes concepts are 

demonstrated without the user having to write any code [17, 19]. 

The advantages of BlueJ are that it is interactive and simple to 

use.  It uses visualisation to help novice programmers understand 

objects and classes.  UML-like class diagrams are used to 

provide a graphical overview of project structures (Figure 3).  A 

disadvantage is that exercises would need to be designed by the 

teacher, based on the functionality provided by BlueJ. 

BlueJ generates code in Java.  If users want to view the 

corresponding code implementations associated with the objects 

and classes visualisations, an understanding of the Java 

programming language is required.  BlueJ also does not provide 

assistance with the understanding of other programming concepts 

such as conditional statements or looping, although they can be 

implemented. 

4.3 Greenfoot 

 

Figure 4. Greenfoot main screen with objects. 

Greenfoot is a PAT that is used to teach object-oriented 

programming to secondary school learners [15].  Users can easily 

create different microworlds that are visually appealing and easy 

to interact with.   

Users can interact with Greenfoot objects directly (Figure 4).  

Changes in the position and appearance of objects can be 

observed directly.  Classes associated with Greenfoot objects are 

visible on the main screen (Figure 4) and code for the different 

objects can also be modified by the user.  The coding language 

used is Java.  Similar to BlueJ, Greenfoot only assists with the 

understanding of the implementation of objects and classes.   

4.4 Ville 

 

Figure 5. Execution of program in Ville with question being 

posed to user. 

Ville is a language-independent programming tool [28].  Code 

execution is demonstrated using visualisation techniques.  Ville 

has the syntax rules for several programming languages built in, 

including Java, Python, PHP, javascript, C++ and pseudocode.  

New languages can be added using the syntax editor. 

A user can control the speed of execution as well as step forward 

or back through the program code.  Explanations for program 

lines are provided and Ville can be set up to ask the user 

questions about the current code being executed (Figure 5).  

4.5 Jeliot 

 

Figure 6. Visualisation of program execution using Jeliot.  

Jeliot animates programs to assist novice programmer 

understanding of introductory programming concepts.  Jeliot is 

capable of animating most of the Java language, including object 

allocation [4]. 



Visualisation and animation techniques are used in Jeliot to 

assist novice programmers to develop an accurate mental model 

of programming concepts during code comprehension [4].  The 

current line of execution is indicated to users during execution of 

the program (Figure 6).  Four areas in the animation are used to 

indicate current variable values, expression evaluations, value of 

constants and the allocation of and reference to objects and 

arrays. 

The standard Jeliot program assists novice programmers with the 

understanding of Java programs [4].  Jeliot 3 has been redesigned 

to separate the interpretation and animation of Java programs.  

This means that Jeliot 3 can be used to animate programs written 

in another programming language. 

4.6 RoboMind 

 

Figure 7. RoboMind program executing. 

RoboMind has been designed as a tool that can be used as a first 

introduction to programming without any prerequisites.  User 

program a robot to move around and interact with objects in a 

map world using a simple educational programming language 

called ROBO (Figure 7). 

The RoboMind environment is freely available and the 

RoboMind 2.2 development environment is available as open 

source.  RoboMind can thus be adapted to change the 

implementation of programming concepts to suit a particular 

programming language or to add additional functionality. 

4.7 Scratch 
The purpose of Scratch is to provide children with a tool that will 

allow them to start programming earlier [33].  Scratch allows 

people of different backgrounds and interests to easily create 

their own interactive games, animations, stories and simulations 

[29, 33]. 

In Scratch a building block metaphor is used whereby graphical 

blocks are combined to build scripts (Figure 8).  This allows 

novice programmers to focus on finding problem solutions as 

syntax errors are eliminated.  Scratch is also visually appealing 

and promotes active learning.   

A problem that novice programmers using Scratch may encounter 

is that it will be difficult for them to move directly to a 

traditional programming environment after using Scratch.  The 

use of an intermediate software tool to provide a link between 

the concepts introduced in Scratch and the methods of 

implementing these concepts in a programming language is 

suggested [29]. 

 

Figure 8. Scratch main screen with code area in the middle. 

4.8 Additional Programming Assistance Tools    
Several other PATs were also identified by this research study.  

PlanAni [6], for example, is a tool that uses animation to 

demonstrate the roles of variables.  Alice [7, 15] is a tool similar 

to Scratch that can be used to create 3D animations and games by 

dragging object properties and methods to build the program 

code.  In B# [13], users create a program by dragging and 

dropping icons to create a flowchart.  The program can be 

executed and equivalent Pascal code is generated.  jGrasp [17] 

automatically generates UML class diagrams to allow users to 

visualise objects, data structures and primitive variables.  

5. EVALUATION OF PATS 
This section demonstrates how the selection criteria formulated 

in Section 3 can be used to evaluate programming assistance 

tools.  The programming assistance tools presented in Section 4 

are evaluated.  Table 2 and Table 3 provide an indication of 

which selection criteria each of the tools meet.   

BlueJ, Greenfoot, BlueJ and Jeliot allow users to write programs 

in Java code, while B# generates Pascal code from the flowchart 

created by the user.   The remaining tools are not programming 

language specific.  Scratch, Alice and RobotProg can be used to 

teach any programming languages even though none of the tools 

explicitly teaches syntax for these languages.  All three tools 

allow users to learn about different programming concepts using 

a drag-and-drop interface.  The statements used are similar to the 

statements used by most programming languages even though 

they do not conform to the syntactical rules of any particular 

language.  RoboMind can be adapted to compile code in any 

programming language. 

BlueJ, Greenfoot, jGrasp and Jeliot allow the user to implement 

all of the programming concepts listed in Table 2.  These are 

Java tools that are able to open and compile any java source files.  

The remaining tools allow users to implement certain of the 

programming concepts. 

 



Table 2.  Evaluation of programming assistance tools using selection criteria: Programming Concepts. 

 

B#, Jeliot, PlanAni, Ville and RobotProg can assist users with 

code comprehension and code execution through the use of 

visualisation and animation (Table 3).  All of the tools, except 

Alice and Scratch, can assist users to improve their knowledge of 

programming language syntax.  The statements used by the 

original RoboMind are similar to Java but the editor can be 

adapted to compile statements that users are more accustomed to 

using in a particular programming language.  All of the tools 

have been developed to support user understanding of 

programming principles and concepts.  The tools also all promote 

self-study and self-exploration by users.    

Scratch and Alice help users to create a solution correctly.  In 

Scratch and Alice the statements used indicate to users where 

conditions or variables must be inserted or if other statements 

must be included within a loop or control structure.  RobotProg 

allows users to create a solution using a flowchart diagram.  

Users are able to visualise and compare the execution of the 

solution using the flowchart with the actions of the robot. 

All of the tools except PlanAni allow users to code or create a 

solution within the tools, thus catering for the kinesthetic 

learning preference.  In PlanAni, users can only run built-in 

examples to understand how the code is executed.  None of the 

tools cater for the aural learning preference.  Jeliot, Ville and 

PlanAni include functionality to ask users questions regarding 

the code or provide explanations when the code is executed.  

This may assist users that prefer the read/write learning 

preference.  All of the tools address the visual learning 

preference by using visualisation when building the code solution 

or during code execution.   

All of the tools can be used to assist users to apply their 

understanding of simple exercises to more complex exercises.  

None of the tools explicitly scaffold the learning.  In all the tools, 

the example exercises provided should include simple as well as 

complex examples of different programming concepts to assist 

user understanding.   

The error handling item is greyed out for Scratch and Alice 

(Table 3).  These tools do not require error handling or error 

messages to be displayed to users.  The use of the drag-and-drop 

interface ensures that users can only use the correct statements 

and syntax.  Error handling and compiler messages are also not 

applicable for PlanAni as built-in examples are used which 

cannot be edited by the user.   

 

 

 = tool meets the criteria 

 = tool can be adapted to meet the criteria 

R
o
b

o
M

in
d

 

B
lu

eJ
 

G
re

en
fo

o
t 

S
cr

a
tc

h
 

R
o
b

o
tP

ro
g

 

B
#
 

J
el

io
t 

V
il

le
 

P
la

n
A

n
i 

A
li

ce
3
D

 

J
G

ra
sp

 

Programming Language (s=specific, n=non-specific) n s s n n s s n n n s 

Concepts 

Variables            

Input (getting information from the user)            

Output(displaying information to the user)            

If-statements            

Case (Delphi)/Switch(Java) statements            

For-loops            

Repeat loops            

While loops            

String handling            

Procedures            

Functions            

One-Dimensional Arrays            

Two-Dimensional Arrays            

File handling            

Accessing a database            

SQL statements            

Correct use of parameters            

Objects & classes            

Problem solving            

Debugging            



Table 3.  Evaluation of programming assistance tools using selection criteria: Programming skills and knowledge. 

 

Only B# and RoboMind use simple error messages that try to 

inform users of syntax errors in the code using language and 

terms that are easier for novice programmers to understand.  

BlueJ, Greenfoot, jGrasp and Jeliot – use the standard Java 

compiler.  The error messages are the same messages that expert 

programmers would receive in professional programming 

environments such as Netbeans or Eclipse. All of the tools that 

have been evaluated are freely available for use and can be 

downloaded, without charge, from their respective websites.  The 

source-code of RoboMind and B# are available for modification 

and adaption.  Ville can be set up to convert code examples into 

other programming languages that are not included with the 

initial installation.  In PlanAni, although the examples are built-

in, it is possible to extend these examples using a special file 

format.  A programmer with understanding of programming 

concepts and principles and who is able to work with these 

different tools will be able to adapt these tools to cater for more 

programming concepts and/or different programming languages.   

6. CONCLUSION 
Teaching novice programmers to program requires an 

understanding of the difficulties of learning to program.  This 

research study has discussed the difficulties novice programmers 

face when learning to program and highlighted reasons for some 

of these difficulties.  Figure 1 and Section 2 explain the 

knowledge and skills required to program successfully.   

Novice programmers can be assisted by the programming 

environments or tool in which they learn to program, especially if 

the programming tool is specifically designed to assist novice 

programmers.  Before selecting a tool, however, it is important to 

identify what knowledge and skills a novice programmer is trying 

to develop.  Table 2 and Table 3 (Section 5) indicate that 

programming assistance tools do not meet all the criteria that 

have been identified to assist novice programmers.  It is 

recommended that skills and knowledge that are most important 

for the novice to develop (for example, problem solving, 

understanding of code execution, or syntax knowledge) should 

first be identified in order to guide the tool selection. 

One should also be aware of how difficult it may be to use a tool 

if no explicit instruction or assistance will be provided before 

providing or recommending a programming assistance tool to 

novice programmers.  A brief document describing the main 

interface of the tool together with sources where additional help 

can be found is recommended.  Including simple and complex 

example exercises with the tool may also assist users to 

understand how different programming concepts can be 

implemented. 

The selection criteria (Table 1) presented in this paper has been 

used in a research study to select tools for IT learners in South 

African secondary schools.  The selection criteria will be 

 = tool meets the criteria 

 = tool can be adapted to meet the criteria 

R
o
b

o
M

in
d

 

B
lu

eJ
 

G
r
ee

n
fo

o
t 

S
cr

a
tc

h
 

R
o
b

o
tP

ro
g

 

B
#
 

J
el

io
t 

V
il

le
 

P
la

n
A

n
i 

A
li

ce
3
D

 

J
G

ra
sp

 

Programming skills & knowledge: 

Code comprehension            

Promotes problem solving using strategies            

Code execution            

Syntax knowledge            

Knowledge of programming principles & concepts            

Teaching/Learning approach: 

Constructivist (promote self-study)            

Feedback to guide solution creation            

Learning Preferences: 

Visual            

Aural            

Read/Write            

Kinesthetic (user actually codes)             

Other: 

Simple & Complex examples (scaffolding)            

Error handling            

Simple error messages/suggestions to correct errors            

Visualisation/Animation            

Can Adapt?            



 

evaluated and changed, where necessary, based on the findings of 

the research. 

7. ACKNOWLEDGMENTS 
We would like to thank the schools, teachers and learners who 

participated in this research study for their valuable 

contributions. 

8. REFERENCES 
[1] Al-Imamy, S. Alizadeh, J. and Nour, M.A. 2006. On the 

Development of a Programming Teaching Tool: The Effect 

of Teaching by Templates on the Learning Process.  Journal 

of Information Technology Education, Vol. 5, 271-283. 

[2] Baldwin, K. and Kuljis, J. 2000. Visualisation Techniques 

for Learning and Teaching Programming.  In Journal of 

Computing and Information Technology - CIT 8, Vol. 4, 

285-291. 

[3] Bednarik, R. and Tukiainen, M. 2006. An eye-tracking 

methodology for characterizing program comprehension 

processes. In Proceedings of the 2006 symposium on Eye 

tracking research & applications (ETRA '06). ACM, New 

York, NY, USA, 125-132.  

[4] Bednarik, R., Moreno, A. and Myller, N. 2005. Jeliot 3, an 

Extensible Tool for Program Visualisation.  In Proceedings 

of the Koli Calling 2005: 5th Annual Finnish / Baltic Sea 

Conference on Computer Science Education. 

[5] Ben-Ari, M., Levy, R. and Uronen, P.A. 2000. An Extended 

Experiment with Jeliot 2000.  In Proc. Of the Program 

Visualisation Workshop, Porvoo, Finland. 

[6] Byckling, P. and Sajaniemi, J. 2006. Roles of Variables and 

Programming Skills Improvement.  SIGCSE Bulletin, Vol. 

38(1), March 2006, 413-417. 

[7] Cooper, S., Dann, W. and Paush, R. 2003. Teaching 

Objects-first in Introductory Computer Science.  In 

Proceedings of the 34th SIGCSE technical symposium on 

Computer science education (SIGCSE '03). ACM, New 

York, NY, USA, 191-195. 

[8] De Raadt, M. 2008. Teaching Programming strategies 

explicitly to Novice Programmers. Doctoral dissertation. 

University of Southern Queensland.   

[9] Department of Education. 2008. National Curriculum 

Statement. Grades 10-12 (General). Learning Programme 

Guidelines. Information Technology. 

[10] Fleming, N. and Baume, D. 2006. Learning Styles Again: 

VARKing up the right tree! Educational Developments, 

SEDA Ltd., Issue 7.4, 4-7, November 2006. 

[11] Garner, S. 2007. A program design tool to help novices 

learn programming. In ICT: Providing choices for learners 

and learning. Proceedings Ascilite Singapore 2007, 321-

324. 

[12] Gayo-Avello, D. and Fernández-Cuervo, H. 2003. Online 

Self-Assessment as a Learning Method.  In Proceedings of 

the 3rd IEEE International Conference on Advanced 

Learning Technologies, 2003. Published 9-11 July 2003, 

254-255, ISBN: 0-7695-1967-9. 

[13] Greyling, J.H., Cilliers, C.B. and Calitz, A.P. 2006. B#: The 

Development and Assessment of an Iconic Programming 

Tool for Novice Programmers.  In 7th International 

Conference on Information Technology Based Higher 

Education and Training (ITHET'06), 367-375. 

[14] Haataja, A., Suhonen, J., Sutinen, E. and Torvinen, S. 2001.  

High School Students Learning Computer Science Over the 

Web.  Interactive Multimedia Electronic Journal of 

Computer-Enhanced Learning.  Wake Forest University.  

Vol. 3(2), October 2001.   

[15] Henriksen, P. and Kölling, M. 2004. Greenfoot: Combining 

object visualisation with interaction.  In Companion to the 

19th Annual ACM SIGPLAN Conference on Object-oriented 

Programming Systems, Languages, and Applications 

(OOPSLA), pp. 73-82, Vancouver, BC, CANADA, 

November 2004. 

[16] Hu, C. 2008. Just Say „A Class Defines a Data Type‟.  In 

Communications of the ACM, Vol. 51(3), 19-21. 

[17] jGRASP 2009.  Overview of jGRASP and the Tutorials.  

DOI= http://www.jgrasp.org/tutorials187/00_Overview.pdf.  

[18] Kölling, M. 1999. The Problem of Teaching Object-

Oriented Programming, Part 1: Languages.  Journal of 

Object-Oriented Programming, Vol. 11(8), 8-15. 

[19] Kölling, M. and Rosenberg, J. 2001. Guidelines for 

Teaching Object Orientation with Java. In Proceedings of 

the 6th conference on Information Technology in Computer 

Science Education (ITiCSE 2001), Canterbury, 2001. 

[20] Kölling, M. and Rosenberg, J. 2001.  BlueJ - The Hitch-

Hikers Guide to Object Orientation. 

[21] Koorsse, M., Calitz, A.P. and Cilliers, C.B. (2010). 

Programming in SA Secondary Schools: The Inside Story. 

SACLA, 2010. 

[22] Koorsse, M. Cilliers, C.B. and Calitz, A.P. (2010). 

Motivation and Learning Preferences of Information 

Technology Students in South African Secondary Schools. 

SAICSIT, 2010.  

[23] Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study 

of the difficulties of novice programmers. In Proceedings of 

the 10th Annual SIGCSE Conference on innovation and 

Technology in Computer Science Education (Caparica, 

Portugal, June 27 - 29, 2005). ITiCSE '05. ACM, New York, 

NY, 14-18. 

[24] Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, 

J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, 

K., Seppälä, O., Simon, B., and Thomas, L. 2004. A Multi-

National Study of Reading and Tracing Skills in Novice 

Programmers. In Working Group Reports from ITiCSE on 

innovation and Technology in Computer Science Education, 

Leeds, United Kingdom, June 28-30, 2004. ITiCSE-WGR 

'04, 119-150. 

[25] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and 

Prasad, C. 2006. Not seeing the forest for the trees: novice 

programmers and the SOLO taxonomy. In Proceedings of 

the 11th Annual SIGCSE Conference on Innovation and 

Technology in Computer Science Education (Bologna, Italy, 



 

June 26 - 28, 2006). ITICSE '06. ACM, New York, NY,  

118-122. 

[26] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., 

Bennedsen, J., Devlin, M., and Paterson, J. 2007. A survey 

of literature on the teaching of introductory programming. In 

Working Group Reports on ITiCSE on innovation and 

Technology in Computer Science Education (Dundee, 

Scotland, December 01 - 01, 2007). J. Carter and J. Amillo, 

Eds. ITiCSE-WGR '07, 204-223. 

[27] Pendergast, M.O. 2005. Teaching Introductory Programming 

to IS Students: Java Problems and Pitfalls. In Journal of 

Information Technology Education, Vol. 5, 491-515. 

[28] Rajala, T., Laakso, M., Kaila, E. and Salakoski, T. 2007.  

VILLE – A Language-Independent Program Visualisation 

Tool. Seventh Baltic Sea Conference on Computing 

Education Research (Koli Calling 2007), Finland.  

[29] Resnick, M., Malone, J., Monroy-Hernández, A., Rusk, N., 

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., 

Silver, J., Silverman, B. and Kafai, Y. 2009. Scratch: 

Programming for All. In Communications of the ACM, Vol. 

52(11), 60-67. 

[30] Robins, A., Rountree, J. and Rountree, N. 2003. Learning 

and Teaching Programming: A Review and Discussion. In 

Computer Science Education, Vol. 13(2), 137–172. 

[31] Rongas, T., Kaarna, A. and Kalviainen, H. 2004. Advanced 

Learning Technologies. In Proceedings of IEEE 

International Conference on Advanced Learning 

Technologies, ICALT’04, 678–680. 

[32] Shuhidan, S., Hamilton, M. and D‟Souza, D. 2009. A 

Taxonomic Study of Novice Programming Summative 

Assessment. In Eleventh Australasian Computing Education 

Conference (ACE2009), (Wellington, New Zealand, January 

2009).  Conferences in Research and Practice in Information 

Technology (CRPIT), Vol. 95.  M. Hamilton & T. Clear, 

Eds. 

[33] Utting, I., Cooper, S., Kölling, M., Maloney, J. and Resnick, 

M. 2010. Alice, Greenfoot, and Scratch - A Discussion.  

ACM Transactions on Computing Education, Vol. 10(4), 

Article 17, Pub. Date: November 2010. 

[34] Vickers, P. 2009. How to Think Like a Programmer.  

Cengage Learning EMEA.  ISBN: 978-1-84480-903-5. 

 

 


