

A COMPREHENSIVE EVALUATION FRAMEWORK FOR

SYSTEM MODERNIZATION:

A Case Study Using Data Services

Meredith Barnes

Supervisor: Prof. Charmain Cilliers

December 2010

Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the

Faculty of Science at the Nelson Mandela Metropolitan University

i

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Charmain Cilliers for her

continued support, encouragement and valuable advice. I would also like to thank my family

for their support through this endeavour as without them I surely would not have coped. To

Jason, dad, Aunty Meg, Aunty Diane and Kade especially: thank you from the bottom of my

heart. My life has been richly blessed with your love and support. Much appreciation for my

wonderful friends, Natalie, Philippa, Christiaan and Clayton must be expressed. Each of you

has counselled me wisely and I am very grateful to call each of you a friend. Also, many

thanks are due to Danie Venter for advising and assisting me with my statistical experiments.

Lastly, the strength and focus that I maintained to complete this research was truly a gift from

God and to Him I am eternally grateful. This scripture guided my way:

“Trust in the Lord with all your heart, and do not lean on your own understanding. In all

your ways acknowledge him, and he will make straight your paths.” Proverbs 3:5-6.

ii

iii

Abstract

Modernization is a solution to migrate cumbersome existing systems to a new architecture for

improved longevity of business processes. Three modernization approaches exist. White-box

and black-box modernization are distinct from one another. Grey-box modernization is a

hybrid of the white-box and black-box approaches. Modernization can be utilised to create

data services for a Service Oriented Architecture. Since it is unclear which modernization

approach is more suitable for the development of data services, a comprehensive evaluation

framework is proposed to evaluate which of the white- or black-box approaches is more

suitable.

The comprehensive framework consists of three evaluation components. Firstly, developer

effort to modernize existing code is measured by acknowledged software metrics. Secondly,

the quality of the data services is measured against identified Quality of Service criteria for

data services in particular. Thirdly, the effectiveness of the modernized data services is

measured through usability evaluations. By inspection of the combination of application of

each of the evaluation components, a recommended approach is identified for the

modernization of data services.

The comprehensive framework was successfully employed to compare the white-box and

black-box modernization approaches applied to a case study. Results indicated that had only a

single evaluation component been used, inconclusive results of the more suitable approach

may have been obtained. The findings of this research contribute a comprehensive evaluation

framework which can be applied to compare modernization approaches and measure

modernization success.

iv

v

Table of Contents

CHAPTER 1: RESEARCH CONTEXT

1.1. BACKGROUND ... 1

1.2. PROBLEM STATEMENT .. 4

1.3. THESIS STATEMENT .. 5

1.4. RESEARCH OBJECTIVES .. 6

1.5. RESEARCH METHODOLOGY .. 6

1.6. SCOPE AND CONSTRAINTS .. 11

1.7. DISSERTATION STRUCTURE ... 12

CHAPTER 2: MODERNIZATION APPROACHES AND TECHNIQUES

2.1. INTRODUCTION .. 15

2.2. EVOLVING LEGACY SYSTEMS ... 15

2.3. WHITE-BOX MODERNIZATION .. 18

2.4. BLACK-BOX MODERNIZATION... 22

2.5. MODERNIZATION TECHNIQUES ... 24

2.5.1. User Interface Modernization ... 24

2.5.2. Data Modernization .. 25

2.5.3. Functional Modernization ... 26

2.6. CONCLUSION ... 28

CHAPTER 3: SERVICE ORIENTED ARCHITECTURES

3.1. INTRODUCTION .. 30

3.2. SERVICE ORIENTED ARCHITECTURE AND THE WEB .. 31

3.3. SOAP SERVICES... 32

3.4. REST SERVICES ... 36

3.5. DATA SERVICES .. 38

3.6. CONCLUSION ... 39

CHAPTER 4: CASE STUDY MODERNIZATION USING DATA SERVICES

4.1. INTRODUCTION .. 42

4.2. THE STUDENT ASSISTANT SYSTEM ... 43

4.3. WHITE BOX MODERNIZATION APPROACH ... 46

4.3.1. Program Understanding .. 47

vi

4.3.2. Code Migration ... 51

4.3.3. Web Service Discovery ... 54

4.3.3.1. Data Service Architecture .. 55

4.3.3.2. Implementation of Data Services .. 57

4.4. BLACK BOX MODERNIZATION APPROACH ... 62

4.4.1. User Interface Modernization ... 62

4.4.2. Component Based Service Discovery ... 64

4.5. CONCLUSION ... 67

CHAPTER 5: COMPREHENSIVE EVALUATION FRAMEWORK

5.1. INTRODUCTION .. 69

5.2. COMPREHENSIVE EVALUATION FRAMEWORK ... 70

5.2.1. Software Metrics and Developer Effort ... 71

5.2.2. Performance Metrics and QoS .. 75

5.2.3. Effectiveness of Data Services ... 76

5.3. VALIDATION OF FRAMEWORK ... 78

5.4. CONCLUSION ... 81

CHAPTER 6: ANALYSIS OF RESULTS

6.1. INTRODUCTION .. 83

6.2. EXPERIMENTATION DESIGN .. 84

6.2.1. Developer Effort Evaluation .. 84

6.2.2. Quality of Service Evaluation ... 85

6.2.3. Effectiveness of Data Services Evaluation ... 86

6.3. RESULTS ... 89

6.3.1. Developer Effort Results .. 90

6.3.2. Quality of Service Results .. 93

6.3.3. Effectiveness of Data Services Results ... 96

6.4. CONCLUSION ... 103

CHAPTER 7: CONCLUSION

7.1. INTRODUCTION .. 106

7.2. ACHIEVEMENTS ... 107

7.3. CONTRIBUTIONS .. 110

7.3.1. Theoretical Contribution ... 110

7.3.2. Practical Contribution.. 111

7.3.2.1. Application of Modernization Approaches ... 112

vii

7.3.2.2. Application of the Evaluation Framework ... 113

7.4. LIMITATIONS ... 116

7.5. FUTURE WORK .. 118

7.6. SUMMARY .. 119

REFERENCES

 120

APPENDICES

 124

viii

List of Figures

Figure 1.1. Adapted from Emerging Technologies Hype Cycle (Fenn et al, 2009) 1

Figure 1.2. Decomposition of Hypotheses .. 9

Figure 1.3. Chapter Flow of Dissertation .. 12

Figure 2.1. Adapted from “Taxonomy of Legacy Modernization Approaches” 17

Figure 2.2. Adapted from “Risk-Managed Modernization Approach” ... 19

Figure 2.3. Comparison of White-Box Modernization Approaches ... 21

Figure 2.4. Adapted from “The architecture of the wrapper” ... 23

Figure 3.1. Adapted from “A Sample SOA Environment” ... 33

Figure 3.2. Adapted from “SMART Inputs and Outputs” .. 35

Figure 4.1. Demi System Interface ... 43

Figure 4.2. Demi System Electronic Application Form .. 44

Figure 4.3. White-Box Modernization Phases .. 46

Figure 4.4. Class Dependency Diagram .. 47

Figure 4.5. Extract from Method Dependency Diagram ... 48

Figure 4.6. Subsystem Representation .. 50

Figure 4.7. Java Print Dialog .. 52

Figure 4.8. Adapted from “J2EE Architecture” (Kachru and Gehringer 2004) 56

Figure 4.9. Java Web Service Annotations ... 56

Figure 4.10. Excerpt from Check Student Method ... 57

Figure 4.11. Successful Application Dialog ... 58

Figure 4.12. Session Selection Interface ... 59

Figure 4.13. Print Session Interface .. 61

Figure 4.14. Adapted from “.NET Architecture” (Kachru and Gehringer 2004)............................ 65

Figure 4.15. Excerpt from Session Class .. 66

Figure 5.1. Directed Graph of Cyclomatic Complexity .. 73

Figure 6.1. WMC Comparison for White-Box and Black-Box Modernization 90

Figure 6.2. Comparative Number of Methods of Client Classes .. 91

Figure 6.3. DIT Comparison for White-Box and Black-Box Modernization 93

Figure 6.4. Success Rate Comparison over All Five Tasks .. 98

Figure 6.5. Comparison of SUS Scores per Participant .. 101

Figure 7.1. Effects of Experiments on Hypotheses ... 109

ix

List of Tables

Table 1.1. Research Methods Related to Research Questions .. 7

Table 4.1. Legacy System Classes Suitable for Modernization .. 49

Table 4.2. Web Services Discovered during White-Box Modernization .. 55

Table 4.3. User Interactions with the Legacy System ... 63

Table 4.4. Web Services Discovered during Black-Box Modernization .. 64

Table 5.1. The Candidate Metrics ... 71

Table 5.2. Quality of Service Attributes .. 75

Table 6.1. Comparison of WMC and Number of Methods for White-Box Services 92

Table 6.2. CBO Comparison for White-Box and Black-Box Data Services 94

Table 6.3. Wilcoxin Matched Pairs Test on Performance ... 95

Table 6.4. Biographical Statistics of Participants .. 97

Table 6.5. Participants Familiarity with the Demi System .. 97

Table 6.6. Frequency Distribution of System Functionality ... 97

Table 6.7. Frequency Distribution of Errors across Both Systems ... 98

Table 6.8. Comparative Statistics for Task Completion Times ... 100

Table 6.9. Results Obtained from Comprehensive Evaluation Framework 104

Table 7.1. Comprehensive Evaluation Framework Metrics .. 111

Table 7.2. Detailed Results of Comparison using the Comprehensive Evaluation Framework...... 114

 1

C h a p t e r 1 : R e s e a r c h C o n t e x t

1.1. Background

Service Oriented Architecture (SOA) has been identified as an emerging technology (Fenn et

al. 2009). Research into this technology is currently on the rise and will reach maturity in a

few years (Figure 1.1). A need for current research in this field has risen to gain clarification

on the technology.

Figure 1.1. Adapted from Emerging Technologies Hype Cycle (Fenn et al. 2009)

 RESEARCH CONTEXT

2

The rising SOA awareness (Figure 1.1) implies that a need to modernize legacy systems into

web services conforming to SOA requirements will benefit organizations. Legacy systems are

often still in use in large organizations and are thus required to be modernized or migrated to

adhere to the requirements of an SOA. Legacy systems are defined as software systems that

start to oppose changes and updates during maintenance (Seacord et al. 2003).

This situation leads to a need to modernize or replace these systems as they contain

knowledge that is of utmost importance to the organization that uses the software.

Modernization is defined as changing the system in terms of structure, functionality or system

attributes, yet preserving a large fraction of the system (Seacord et al. 2003). Modernization

approaches can be used to migrate legacy systems towards service-oriented computing in an

SOA (Canfora et al. 2006).

SOA has become an accepted paradigm for an architecture that supports the development of

distributed systems that satisfy business objectives (Bianco et al. 2007). This approach allows

the core functionality of the programs to be accessed via an interface (Liegl 2007). Liegl

(2007) also states that successful interaction with this interface is achieved through XML

(eXtended Markup Language) messages.

The provision of services that provide this core functionality is the responsibility of a Service

Provider (Liegl 2007). Likewise, these programs, or services, are also required by other

services or subcontractors, who are Service Consumers. Thus the SOA is a combination of

service providers and services consumers providing and requesting services, all of whose

information is stored, and made accessible to actors, in a Service Registry.

Services can be defined as a collection of software elements, each of which can execute a

business process (Sanders et al. 2008). The definition of a service is not uniform, as more

than one organization has defined the term.

A service should be platform independent and it should be able to interface with other

services to share its self-reliant business process, which in turn should be loosely coupled

with other services (Sanders et al. 2008). A software service can be described as a

computational process with a well defined functional interface that is easily found and easily

accessible (Zhang and Yang 2004). This service must process well defined XML document

 RESEARCH CONTEXT

3

requests that it has received in adherence to certain application protocols. Services are

described as being small, loosely-coupled components of functionality that are provided,

consumed and merged with one another over a network (Canfora 2004). Services also have

the characteristic of being coarse-grained and self-contained software entities that

communicate with other services and applications via asynchronous communication in the

message-based format (Lewis et al. 2006).

The term “self-reliant” infers the service’s ability to maintain the same core functionality

when not coupled with other services (Sanders et al. 2008). Loosely coupled defines the

ability of services to interface, and access functionality, with one another without having

knowledge of the core technical functionalities of the other services. Services are thus

required to be reusable in terms of functionality in more than one application.

A data service, in particular, is described as having the core functionality of one specific

business object, such as an order or an employee (Carey 2006). This data service is composed

of service calls that can be used by an application to access and change any particular

instance of a business object (Borkar et al. 2006). It thus follows that the structure of each

data service describes the information stored for the particular business object type (Carey

2006).

The importance of quality metrics of services is stressed (Jeong et al. 2009). The functional

attributes of services, which are deciding factors for service consumers when requesting

services from service providers, need to be considered along with the non-functional Quality

of Service (QoS) attributes (Jeong et al. 2009). Considering both the functional and non-

functional attributes leads to the selection of high-quality services from the services

discovered. Bianco et al (2007) describe several quality attributes that need to be adhered to

when generating services for a SOA. These attributes include performance and availability.

QoS metrics are essential in selecting the best possible execution plan with regard to budget

and time constraints (Jeong et al. 2009). The most important quality attributes, identified as

major quality attributes, include operation cost and accessibility.

Software metrics for Object-Oriented (OO) applications are useful for the analysis of effort

required by the developer to create an application (Chidamber and Kemerer 1994). A suite of

 RESEARCH CONTEXT

4

software metrics is presented by Chidamber and Kemerer (1994) for measuring components

contributing to the size and complexity of OO design. Services fall under the OO application

category and thus, can be evaluated in terms of software metrics.

An empirical evaluation strategy with the purpose of comparing two legacy system

modernization tools using a between subjects design is presented (Colosimo et al. 2008). This

evaluation supported the determination of whether a new modernization tool was a feasible

replacement for a modernization tool already in use by an organization used as a case study.

The effectiveness of the data services developed from modernization is defined in terms of

how well the services perform the tasks that they are supposed to perform (Sharp et al. 2007).

A need to merge these various evaluation approaches is evident, as each evaluation approach

has been independently used in studies. The combination of evaluating developer effort, QoS

and effectiveness of services generated from modernization is presented to complement one

another in the determination of success of a modernization approach. The development of a

comprehensive evaluation framework for the modernization of legacy systems to web

services could provide an envisaged contribution to the body of knowledge surrounding

system modernization.

1.2. Problem Statement

There are three techniques that exist for legacy system modernization, namely white-box,

grey-box and black-box. These techniques could be applied to an existing legacy system to

generate data services for an SOA. A comprehensive evaluation framework that combines

metrics could be applied to determine the success of any single modernization approach. The

application of this evaluation framework in a comparative way could determine which

approach is more suitable for the generation of data services from system modernization.

A wrapping approach can migrate a legacy system to a web service in a SOA, based on the

black-box modernization approach (Canfora et al. 2008). This black-box approach is

presented as a successful method for migrating legacy systems to services in an SOA.

Alternatively, a white-box based methodology can be used to migrate legacy systems to

services using feature engineering and component-based software engineering for migrating

legacy code into components (Mehta and Heineman 2002). An alternative approach, namely

 RESEARCH CONTEXT

5

grey-box modernization, can be implemented based on component-based development to

generate services from legacy code more economically than black-, or white-box approaches

(Zhang and Yang 2004).

All of these approaches are presented as successful solutions to a migration problem. There

is, however, no comparison of these approaches conducted on the same domain and evaluated

using a comprehensive evaluation strategy to determine which approach may be more

suitable for data service generation. For the purposes of this research, a comparative study

and extensive evaluation of white-box and black-box modernization will be conducted to

provide a holistic comparison of the two approaches. The comparison of these two

modernization approaches will form a proof of concept for the proposed holistic evaluation

framework.

This lack of comparison leads to a need for an answer to the question: Will the application of

a comprehensive evaluation framework help to determine which modernization approach is

comparatively more appropriate for generating data services of high quality when both are

applied to the same legacy system domain?

1.3. Thesis Statement

The application of a comprehensive evaluation framework to the comparative study of two

modernization approaches, namely white-box and black-box, on a specific legacy system

domain can clarify which approach is more suitable for the provision of data services.

The black-box and white-box legacy system modernization approaches will be implemented

and applied to the same legacy system domain based on the case study used. The comparison

of the two approaches comprises of three measurement tools. The three evaluation measures

are:

 Quality of the services resulting from the legacy system modernization process will be

measured against acknowledged Quality of Service (QoS) standards;

 A measure of the effort required by the developer to apply the modernization

approach; and

 A measure of the effectiveness of the data services generated will be determined by

the use of empirical evaluations with system users.

 RESEARCH CONTEXT

6

The different metrics evaluated during the comparison are distinct and carry the same weight.

The results obtained from each of the approaches may be compared to determine the overall

success of the modernization approach. This will provide a high-level overview of which

modernization approach is more suitable for the development of data services for an SOA

through system modernization.

1.4. Research Objectives

The primary research objective for this investigation is:

 To develop a comprehensive evaluation framework for the evaluation of a

modernization approach

The secondary objectives to support the primary research objective are:

 To determine the QoS measures for data services in a SOA;

 To determine the effectiveness metrics for user evaluation of data services;

 To determine the metrics for developer’s effort in implementing the modernization

approaches;

 To apply white-box and black-box modernization approaches to a case study;

 To develop data services for an SOA through modernization of the case study; and

 To apply the comprehensive evaluation framework to the comparative analysis of the

two modernization approaches to determine which approach is most suitable.

The research objectives will be achieved by devising specific research questions to be

answered.

1.5. Research Methodology

The research questions that will guide the research during the study are listed along with the

research methodologies related to each research question. The research questions 5, 6 and 7

relate directly to the main objective of this investigation (Table 1.1). The primary research

objective (Section 1.4) is met by answering the questions regarding how to measure

developer effort of the modernization approaches, quality of the data services generated and

effectiveness of the data services. Answering research question 1 will achieve one of the

secondary research objectives, namely to understand what modernization is and what

approaches exist. Answering research question 2 will achieve the objective of understanding

data services and the SOA. After understanding these concepts, the third research question

(Table 1.1) will be answered in connection with the two research objectives that aim to apply

 RESEARCH CONTEXT

7

the modernization approaches to a cases study to develop data services. Research question 4

(Table 1.1) will be answered to achieve the secondary research objective of this investigation,

namely the application of the proposed comprehensive evaluation framework to the

comparison of modernization approaches.

 Research Question Research Method

1 What are white-box and black-box

modernization approaches and how do they

compare with one another?

Literature Review

2 What are web services in general and data

services in particular?

Literature Review

3 How do you develop data services by

modernizing legacy systems using white-box and

black-box modernization?

Literature Review (related work)

Prototyping (development of

services)

4 What measurements are used to compare the

modernization approaches?

Literature Review

Validation of comprehensive

evaluation framework

5 How do you measure the effectiveness of the

approaches in terms of the services developed?

Literature Review (related work)

Empirical evaluations (services

created)

Comparative analysis of services

generated regarding effectiveness

metrics

6 How do you measure the developer’s effort to

generate the modernization approaches?

Literature Review (related work)

Software engineering metrics

analysis of modernization approach

Comparative analysis of services

generated regarding developer’s

effort metrics

7 How do you measure the QoS of the data

services generated by the modernization

approaches?

Literature Review (related work)

Software engineering metrics

analysis of modernization approach

Comparative analysis of services

generated regarding QoS metrics

Table 1.1. Research Methods Related to Research Questions

The research methods shown (Table 1.1) are relevant to this research as it is a comparative

analysis of two legacy system modernization approaches on a single domain of a specific

case study. It is advised that a comparative analysis be conducted on two items in a focused,

 RESEARCH CONTEXT

8

detailed approach (Hofstee 2006). A case study is a useful tool to measure and observe the

effects of a study conducted in a current, real-life domain (Olivier 2004).

The use of a case study is beneficial to this research as it serves as a platform to gain a lot of

information on a specific domain. Common information collection techniques that are used

when performing research on a specific case study include participant observation and direct

measurements (Olivier 2004). These data collection techniques will serve as a means to

validate a specific hypothesis about the case study (Hofstee 2006).

A literature review will be conducted to cover the theory base for this research (Hofstee

2006). The literature review will cover legacy systems, the different legacy system

modernization approaches as well as the SOA environment and data services. These topics

cover the background theory that this research requires to build on. The literature study will

also serve to reveal the QoS, developer effort and effectiveness metrics required to compare

the services generated by the modernization tools developed.

A system development methodology involving incremental system development will need to

be chosen when applying the two modernization approaches to the legacy system. This

development will be applied directly to the case study, as the case study is the domain for the

modernization approaches. The incremental iterative development chosen for the system

development methodology will execute the development stage of the system life cycle

(Whitten et al. 2004). The development of the modernized systems will be supplemented by a

literature study to draw knowledge from extant systems related to the tools.

Finally, experiments for each of the three components of the evaluation framework will be

conducted to provide a holistic evaluation of the modernization approaches and the data

services generated by modernization. The purpose of these experiments is to test a specific

hypothesis as to which modernization approach is more suitable in the case of the data

services developed from the case study modernization (Hofstee 2006). The evaluations

performed during the experiments will compare the two modernization approaches in terms

of QoS requirement satisfaction, developer effort measures and effectiveness of the services

that the modernization approaches generate. Not all criteria are quantitatively compared

during experimentation.

 RESEARCH CONTEXT

9

The developer effort metrics are calculated and compared between the two approaches by

inspection and not using Analysis of Variance (ANOVA). Only the performance of the

modernized data services in terms of method latencies is compared for the QoS component of

the evaluation framework using a comparative statistical test. Similarly, for the data service

effectiveness component, the error rates, task completion times and SUS scores are compared

for statistically significant difference. The main hypothesis for these two components of the

framework is thus:

H0: Black-box and white-box modernized data services are not equivalent

H1: Black-box and white-box modernized data services are equivalent

Specific null hypotheses exist for the performance and effectiveness of the data services

experiments designed for the comprehensive framework (Figure 1.2).

Figure 1.2. Decomposition of Hypotheses

H0: Black-box and white-box modernized

data services are not equivalent

H0.1: QoS of black-box and white-box

modernized data services is not equivalent

H0.2: Effectiveness of black-box and

white-box modernized data services is not

equivalent

H0.1.1: Latencies of black-box and

white-box modernized data services are

not equivalent

H0.2.1: Mean task completion times of

black-box and white-box modernized

systems are not equivalent

H0.2.2: Mean error rates of black-box and

white-box modernized systems are not

equivalent

H0.2.3: Mean SUS scores of black-box and

white-box modernized systems are not

equivalent

 RESEARCH CONTEXT

10

The hypothesis for the data service performance is:

H0.1.1: Mean service method latencies for black-box and white-box modernized data

services are not equivalent

H1.1.1: Mean service method latencies for black-box and white-box modernized data

services are equivalent

A comparative analysis of the latencies will identify whether any significant difference exists

in the mean latencies for a service method, thus rejecting the null hypothesis.

The experiments for the user evaluation consist of three hypotheses (Figure 1.2). The

hypothesis for the comparison of task completion times is:

H0.2.1: Mean task times for black-box and white-box modernized data services are not

equivalent

H1.2.1: Mean task times for black-box and white-box modernized data services are

equivalent

A comparative analysis of the mean task times recorded for each task can identify if a

significant difference exists between the mean task times, therefore rejecting the null

hypothesis.

The hypothesis for the comparison of the error rates of the modernized systems is:

H0.2.2: Mean error rates for black-box and white-box modernized systems are not

equivalent

H1.2.2: Mean error rates for black-box and white-box modernized systems are equivalent

A comparative analysis of this hypothesis could indicate if a significant difference exists in

the number of errors encountered in the two modernized systems, thus rejecting the null

hypothesis.

The third hypothesis to be evaluated for the comparison of self-reported results obtained from

the System Usability Scale (SUS) is:

H0.2.3: Mean SUS scores for black-box and white-box modernized systems are not

equivalent

H1.2.3: Mean SUS scores for black-box and white-box modernized systems are equivalent

A comparative analysis of the SUS scores will reveal if any significant difference is reported

in the user’s satisfaction with the two systems.

 RESEARCH CONTEXT

11

1.6. Scope and Constraints

The research conducted and the application of the identified modernization approaches will

be related to the case study selected. The case study in question is the Nelson Mandela

Metropolitan University (NMMU) Department of Computing Sciences Student Assistant

system. This case study has been chosen as it provides the necessary functionality for the

discovery of data services. The Student Assistant System has been in use for a few years in

the department. Although the system has not been used for a very long time, it was developed

in a language that is not suitable for future maintenance in the Department of Computing

Sciences.

For the purposes of this study, two of the three modernization approaches will be compared

to one another. The modernization approaches considered are white-box and black-box. This

study excludes the grey-box modernization approach from the comparative study as it is a

hybrid of the white-box and black-box approaches (Zhang and Yang 2004). A clearer

distinction between the two modernization approaches can be made.

Thus, a comparison between two distinct and alternative approaches, namely white-box and

black-box has been chosen. The black- and white-box approaches each have various

techniques that exist to modernize existing system code and develop services for an SOA

(Comella-Dorda et al. 2000). These different techniques will be presented and a decision will

be made on which technique is most appropriate to use for each modernization approach.

A literature review on target architectures for the data services will be included in this study,

as more than one type of service style exists. Two recognised ways of building a service are

the SOAP-style service and the Representational State Transfer (REST) style service (Liu and

Connelly 2008). Only one target service architecture will be chosen, supported by findings in

literature based on which style of service is more acceptable for the development of data

services in particular.

For the evaluation of the modernization approaches, a comprehensive evaluation framework

is proposed. The three metrics considered for the comparison of the two modernization

approaches will include:

 Adherence of the data services generated to QoS metrics;

 RESEARCH CONTEXT

12

 A measure of the developer’s effort required to modernize the legacy code; and

 A measure of the effectiveness of the data services generated.

The selected modernization approaches, as well as the services that they have generated, will

be compared to one another based on these three evaluation criteria. This evaluation strategy

provides a holistic evaluation, where the results from the measurements taken can be

combined to achieve an overall evaluation outcome for each approach.

1.7. Dissertation Structure

The dissertation’s chapter flow and structure will now be explained (Figure 1.3). The chapter

structures will include explanations of what is covered by the chapter, as well as what

research questions the chapter answers.

Figure 1.3. Chapter Flow of Dissertation

Chapter 1
Research Context

Chapter 2
Modernization
Approaches &
Techniques

Chapter 3
Service Oriented

Architectures

Chapter 4
Case Study

Modernization

Chapter 5
Comprehensive

Evaluation
Framework

Chapter 6
Analysis and

Results

Chapter 7
Conclusion

 RESEARCH CONTEXT

13

Chapter one introduces the research context for this study. A brief overview of the domain

background is presented followed by the problem and thesis statements which outline the

direction of the research. The relevant research questions and methodologies are described as

well as the scope and constraints of the research.

Chapter two discusses related work in the areas of legacy systems and modernization. Here,

the two different modernization approaches are presented as well as the need for

modernization of legacy systems. Various black-box modernization techniques and white-box

modernization techniques are discussed in this chapter to help address research question 1

(Table 1.1). The conclusion of this chapter discusses which techniques will be chosen for this

research.

Chapter three presents the discussion on web services and SOA architecture in terms of

various service architectures and SOA environments. This chapter aims to address research

question 2 (Table 1.1) by examining the comparison of existing service architectures. In

conclusion, a specific target architecture is chosen for the case study.

Chapter four elaborates on the implementation and execution of the chosen modernization

approaches, thus proposing an answer to research question 3 (Table 1.1). The development of

data services through white-box and black-box modernization efforts are presented

respectively.

Chapter five presents the comprehensive evaluation framework consisting of three evaluation

strategies, thus presenting a solution to research questions 5, 6 and 7 (Table 1.1). QoS metrics

are presented, that services are required to comply with in an SOA environment as an answer

to research question 7. The elaboration on software metrics and their relation to developer

effort will also appear in this chapter, thereby discussing research question 6. The empirical

evaluation procedure used to test the effectiveness of the data services is also explained to

resolve research question 5. Results of the three-legged evaluation strategy are presented to

conclude this chapter.

Chapter six presents the experimental design and results of the application of the proposed

evaluation framework to a comparison of the two modernization approaches applied to the

 RESEARCH CONTEXT

14

case study. This chapter focuses on addressing research question 4 (Table 1.1), namely how

to compare two modernization approaches.

Finally, chapter seven will present the context of the research and conclusions drawn from

the research as well as any suggestions for future research. Achievements and contributions

are presented in this final chapter as well.

 15

C h a p t e r 2 : M o d e r n i z a t i o n A p p r o a c h e s a n d T e c h n i q u e s

2.1. Introduction

To appreciate the need to modernize legacy systems to web services that conform to SOA

requirements, it is first necessary to understand what legacy systems are (Section 2.2). The

requirement for modernization leads to the presentation of the modernization approaches that

will be considered by this research to carry out this modernization. The modernization of

these legacy systems can be categorised into two distinct approaches, namely white-box

(Section 2.3) and black-box (Section 2.4). Various techniques for the implementation of

white-box and black-box approaches exist and are discussed (Section 2.5).

Legacy system modernization forms the foundation for this research, as the development of

data services for an SOA is based on the modernization of the legacy system in the case

study. Conclusions (Section 2.6) include which specific techniques of the white-box and

black-box approaches will be implemented to perform the modernization of the legacy

system to data services fit for an SOA. This conclusion aims to review the white-box and

black-box modernization approaches in comparison to one another (Section 1.5).

2.2. Evolving Legacy Systems

Since legacy systems contain functionality that is of utmost importance for business

longevity, it is necessary that they are evolved to integrate with more modern platforms and

architectures, such as SOA (Erradi et al. 2006).

 MODERNIZATION APPROACHES AND TECHNIQUES

16

There are three categories for system evolution activities (Seacord et al. 2003). These three

categories are:

 Maintenance;

 Replacement; and

 Modernization.

Continuously maintaining a system is sufficient for business needs for a period of time, but as

the system ages, the business needs are not met by maintenance any longer (Seacord et al.

2003). At this point, it may be necessary to consider replacement of the system.

Replacement is a resource intensive procedure that involves the complete rebuild of the

legacy system from first principles (Seacord et al. 2003). There is an appropriate time for this

measure, namely when the legacy system cannot perform its required business processes any

longer despite ongoing maintenance to the system. Another reason for replacement is if a

modernization approach cannot be cost-justified. Different types of replacements exist,

including an all at once, “big-bang” approach or an incremental replacement procedure.

Certain risks exist when attempting a system replacement (Seacord et al. 2003). These risks

include the unfamiliarity of maintenance procedures of the new system for the IT personnel,

as well as an extensive evaluation of the new system to determine whether the new system

can perform as well as the legacy system. There is no guarantee that a new system can retain

all of the functionality as the legacy system currently in use by the organization. This leads to

a third option that conserves the system functionality, namely modernization.

Modernization covers a broader range of changes to the existing system than maintenance

(Seacord et al. 2003). These changes could include restructuring of the system, improvement

of system functionality or modification of system attributes. Modernization must, however,

conserve a sizable portion of the existing legacy system (Comella-Dorda et al. 2000).

Legacy system modernization approaches can be split into two distinct categories (Erradi et

al. 2006), namely:

 Legacy Integration and Service Enablement; and

 Legacy Transformation.

 MODERNIZATION APPROACHES AND TECHNIQUES

17

The two categories of legacy system modernization are further decomposed into non-invasive

and invasive approaches (Figure 2.1). The non-invasive approaches tend to promote legacy

integration and service enablement and the invasive approaches are shown to result in legacy

transformation (Erradi et al. 2006).

Figure 2.1. Adapted from “Taxonomy of Legacy Modernization Approaches” (Erradi et

al. 2006)

Legacy integration uses non-invasive (Figure 2.1) wrapping of legacy systems to hide system

complexity and emphasises modern interfaces to improve interoperability (Erradi et al.

2006). This process is used to help elongate the lifetime of legacy systems by exposing the

integral functionality of these systems. Legacy wrapping reduces the cost of integration

whilst requiring less immediate planning and design. This is, however, only a temporary

short-term solution since it could actually complicate maintenance and management of the

legacy system over a longer term period (Zhang and Yang 2004).

Legacy Transformation follows an invasive (Figure 2.1) reengineering approach to transform

legacy systems and thus ease maintenance and extension (Erradi et al. 2006). This approach

involves a detailed analysis of the existing legacy code and an understanding of the system

functionality and data structure which leads to the extraction of data definitions and business

Legacy integration &

service enablement

Legacy transformation

 MODERNIZATION APPROACHES AND TECHNIQUES

18

rules. Thus, the process of componentizing the functionality can be executed to produce more

modular code.

Legacy system modernization can be classified by the degree of knowledge of system

internals required to sustain the modernization approach (Comella-Dorda et al. 2000).

Modernization that requires understanding of the functionality and structure of a legacy

system is inherently white-box, and modernization as a result of analysis of interactions with

the interface of the legacy system is black-box.

2.3. White-Box Modernization

White-box modernization requires knowledge of the legacy system code and functionality

(Seacord et al. 2003). An initial reverse-engineering process is required to gain understanding

of the legacy system internal structure and operation (Comella-Dorda et al. 2000). This

process is called program understanding and involves modelling the domain, extracting

information from the legacy code and creating representations of the system hierarchy

(Seacord et al. 2003). Program understanding is a procedure used if the internals of the

legacy system are unavailable. Program understanding may in some cases be a risky, labour

intensive process.

After program understanding is completed, the restructuring of the code, or system, can begin

to define a transformation of the system from one representation to another at the same level

of abstraction (Comella-Dorda et al. 2000). The code restructuring process should maintain

the legacy system’s external procedures, or functionality and semantics (Seacord et al. 2003).

Both Seacord et al (2003) and Comella-Dorda et al (2000) agree that this process typically

alters quality attributes of the system including maintenance and performance.

Seacord et al (2003) describe a case study which involves replacing a legacy system

incrementally using various white-box modernization techniques known as Risk-Managed

Modernization (RMM) (Figure 2.2). Knowledge of the legacy system code and functionality

is required due to the choice of a white-box modernization approach. Once the code has been

analysed and understood by using program understanding, the code restructuring step

follows. The benefit of this code restructuring step is to improve quality of the system, whilst

still maintaining the original business processes of the system.

 MODERNIZATION APPROACHES AND TECHNIQUES

19

Figure 2.2. Adapted from “Risk-Managed Modernization Approach” (Seacord et al.

2003)

The RMM approach incorporates software engineering concepts to assist with the white-box

modernization process as well as knowledge of the technologies defining the solution space

of the information system (Seacord et al. 2003). The primary goal of this approach is to

manage risk and migration successfully, thus leading to the development of a modernization

plan that minimizes risk.

No

Yes

Modernization
terminated

Portfolio analysis
completed (modernization

candidates selected)

Business case
satisfactory?

Strategy feasible?

Yes

No

Modernization plan defined.

2

3

4
5

6

7

8

9

10

1

 MODERNIZATION APPROACHES AND TECHNIQUES

20

The case study revolves around the modernization of a 30 year old Retail Supply System

(RSS) written mostly in COBOL with an infrastructure consisting of mainframe, mini-

computer and desktop applications, both centralized and distributed (Seacord et al. 2003).

Due to the size and complexity of the legacy system and the requirements of the company’s

Standard Retail Framework (SRF), an incremental componentization process was used to

modernize the system.

The ovals in the diagram (Figure 2.2) are activities and arrows are transitions between

activities (Seacord et al. 2003). The horizontal bars in the diagram (Figure 2.2) are

“synchronization bars” that force the completion of previous activities before progressing

onto the following activities. A process that begins with a legacy system modernization

project first has an undefined plan and is then complete when the integrated plan is defined.

Alternatively, a simpler two step approach to white-box modernization is defined (Comella-

Dorda et al. 2000). The first step is the process of initially reverse-engineering to achieve

understanding of the legacy system’s internal functionality (Figure 2.3). This reverse

engineering step used is equivalent to program understanding. Components of the system and

the relationships between these components are identified and a depiction of the system at a

higher level of abstraction is formed. Legacy code modelling is a critical step in the program

understanding phase (Zhang and Yang 2004). The modelling process is supplemented with

all available resources, including source code, user interfaces and documentation.

The transformation process (Step 4 in Figure 2.2) is commenced by the identification of

candidate classes and objects. The output is thus an object oriented model (Zhang and Yang

2004). In other words, the outputs from this program understanding process include the

creation of representations of the system at a higher level of abstraction that aid in

understanding of the system layout (Comella-Dorda et al. 2000).

After this program understanding process is complete, the next phase of white-box

modernization is to include some form of system or code restructuring (Comella-Dorda et al.

2000). Program slicing, or code slicing, is a commonly used technique of software

restructuring used to improve the quality attributes of the system, defined at the beginning of

this section. This restructuring process is decided upon at step 8, “Define Modernization

Strategy” in the RMM approach (Figure 2.2).

 MODERNIZATION APPROACHES AND TECHNIQUES

21

It is reported that the RMM approach is not a suitable approach for the modernization of a

system towards web service discovery for a SOA (Chung et al. 2007). The RMM approach

lacks detail on what specific software reengineering techniques should be applied to the

system in order to modernize it. Furthermore, the approach does not incorporate the use of

web services in modernization and the effects thereof.

Thus, another approach is presented which highlights four steps to achieve legacy code

transformation (Errickson-Connor 2003). The four steps are as follows:

 Clean legacy code by removal of program anomalies;

 Restructure software by identifying business rules to extract reusable services;

 Transform code from extracted business rules into components; and

 Manage these reusable components in a software environment.

This approach can be related to the approach presented by Comella-Dorda et al (2000), as

depicted (Figure 2.3).

Figure 2.3. Comparison of White-Box Modernization Approaches

Program understanding is identified as a reverse-engineering process to analyse the legacy

system in order to identify the system’s modules and relationships (Chiang and Bayrak 2006).

The high-level representation of the system can assist in the identification of anomalies in the

legacy code as well as the identification of business rules (Figure 2.3).

Clean Legacy Code

Restructure Software

Transform Code

Manage Components

Reverse Engineer to

Achieve Understanding

Code Restructuring

Errickson-Connor, 2003

Comella-Dorda et al, 2000

 MODERNIZATION APPROACHES AND TECHNIQUES

22

Legacy code related to a specific business rule may be extracted by a technique known as

program slicing (Chiang and Bayrak 2006). Software code is fragmented into slices, where

each slice consists of a subset of the original program. These slices of business logic can then

be transformed into components. Lastly, the components can be managed in a software

environment by the identification of the target architecture. The process of legacy software

modernization may be partially or fully automated depending on requirements of the system.

Alternatively to white-box modernization which considers the legacy system internal

functionality and code, another modernization approach exists which ignores the internal

complexities of the legacy system. This other modernization approach is thus black-box in

nature.

2.4. Black-Box Modernization

Black-box modernization is concerned with the evaluation of the inputs and outputs of the

legacy system during operation to gain knowledge of the interfaces (Seacord et al. 2003). It is

reported that this approach is a less complex task than white-box modernization as it

incorporates wrapping.

Wrapping involves encasing the legacy system in a software layer that masks the unnecessary

intricacies of the old legacy system whilst generating a modern interface (Seacord et al.

2003). This approach is black-box since after the legacy interface is analysed the internals are

disregarded (Zhang and Yang 2004). This solution is not always realistic and can sometimes

require knowledge of some system internals (Seacord et al. 2003).

A black-box modernization approach is presented, based on wrapping (Canfora et al. 2006).

The wrapper interfaces with the legacy system during execution of every possible interaction

instance. Thus, the interaction between the user and the legacy system is mediated by the

wrapper (Figure 2.4).

Data wrappers also provide a solution to integrity problems that are prevalent in legacy

databases (Thiran et al. 2006). The addition of a data wrapper, described as a dedicated

software component inserted between the legacy database and the modern application,

 MODERNIZATION APPROACHES AND TECHNIQUES

23

extends the lifetime of the legacy application. This is due to the advantage of the wrapper

allowing integration of the legacy database into modern distributed systems.

Figure 2.4. Adapted from “The architecture of the wrapper” (Canfora et al. 2006)

The wrapper created is required to decipher the request sent to the legacy system dynamically

for each interaction, thus allowing the required operation to be performed (Figure 2.4). The

creation of a wrapper can be achieved via observation of all possible interactions with the

interface of the legacy system (Seacord et al. 2003). To obtain a dynamic wrapper however, a

model of interaction between users and the legacy system can be created using Finite State

Automata (FSA).

An FSA created to model user interaction with the legacy system forms the primary basis of

the design of a legacy system wrapper (Canfora et al. 2006). To successfully have the

wrapper communicate with the legacy system during user interaction for all use cases, users

have to execute every possible interaction scenario so that they can be recorded for the FSA.

Once this process is complete, screen templates are recorded to provide the correct output

regarding each user interaction scenario.

There are many appealing advantages for incorporating wrappers into legacy applications

(Thiran et al. 2006). Firstly, the legacy database is not altered in any form or functionality.

Secondly, a wrapper promotes database heterogeneity by its provision of a common interface

between applications and the database. Thirdly, the wrapper allows for further functionality

to be added to existing legacy applications, such as statistics collection and performance

visualization. Lastly, wrappers allow for an incremental modernization process of complex

legacy systems.

Application Server

Web Service

Wrapper Legacy

System

Request

Response

 MODERNIZATION APPROACHES AND TECHNIQUES

24

It is suggested that another advantage of a black-box approach incorporating a wrapper is its

reusability for exporting other use cases implemented by other systems (Canfora et al. 2006).

On the other hand, the disadvantages to the black-box modernization approach are the manual

recording of interaction scenarios and screen templates. Additionally, the task of analysing

only the inputs and outputs of the legacy system during black-box modernization are not

always sufficient (Comella-Dorda et al. 2000).

2.5. Modernization Techniques

Modernization can occur at different levels, namely the interface, data or functional (logic)

level (Comella-Dorda et al. 2000). In relation to white-box and black-box modernization,

some specific implementation techniques for each approach exist. The techniques are split

into levels as follows:

 User Interface Modernization;

 Data Modernization; and

 Functional Modernization.

A white-box technique can be applied at some levels depending on the level and the amount

of code analysis required. Alternatively, a black-box technique can be employed if less

knowledge of the internal business logic and functionality is required.

2.5.1. User Interface Modernization

User interface modernization is the process of exposing aspects of the legacy system interface

to a new interface which communicates with the legacy system to execute business processes

(Stroulia et al. 2002). Common legacy system user interfaces are text-based requiring text

input from the user (Seacord et al. 2003). Due to the user interface being the most visible

part of a system, the modernization of the user interface improves usability and user

satisfaction (Comella-Dorda et al. 2000).

A widely used black-box technique for modernizing interfaces is screen scraping. Screen

scraping involves wrapping old, text-based interfaces with graphical user interfaces (GUIs)

(Comella-Dorda et al. 2000). This new GUI can be PC-based or a lightweight HTML page

running in a web browser. This is an easily extensible technique, since one new interface can

be used to wrap many legacy systems. The new GUI communicates with the old interface

using a specialised tool.

 MODERNIZATION APPROACHES AND TECHNIQUES

25

Commercial tools can often generate new screens automatically by mapping the old

interfaces. The end user will experience a new, usable modern interface and they will

interpret modernization of the legacy system as successful, whereas from a business

perspective, the new system becomes inflexible and hard to maintain.

2.5.2. Data Modernization

Data modernization allows access to a host program’s database through various data

wrapping techniques (Sneed and Sneed 2003). Data wrapping allows access to the legacy

system data via a different interface or protocol than what the data was designed for

(Comella-Dorda et al. 2000). There are two types of data wrapping techniques:

 Database Gateway; and

 XML Integration.

The benefit of both of these data modernization techniques is to improve connectivity and

allow for integration of the legacy data into modern architectures.

A Database Gateway enables access to legacy data via a specific software gateway that

translates between two or more data access protocols (Comella-Dorda et al. 2000). Many

vendor-specific access protocols are in use, but there are also industry standards such as the

Open Database Connectivity (ODBC). This is Microsoft’s interface for access to data in a

heterogeneous environment of relational and non-relational database systems. The Java

Database Connectivity (JDBC) is another standard data access interface released by Sun for

database-independent connectivity between Java applications and a large range of databases.

A database gateway usually translates a vendor-specific access protocol into one of the

industry standard protocols (Comella-Dorda et al. 2000). This gateway proves to be useful

since modern applications normally support one or more of the industry standard protocols.

This is where the improvement in connectivity occurs when applying database gateways to

access legacy data. This also leads to more seamless integration of legacy systems with

modern systems.

The eXtensible Markup Language (XML) is a widely accepted format of structuring

documents and data on the internet (Comella-Dorda et al. 2000). XML exhibits

characteristics such as simplicity and flexibility in terms of its text format. This flexibility

 MODERNIZATION APPROACHES AND TECHNIQUES

26

allows XML to be a powerful tool for business to business application integration. This

integration is the automated exchange of information between systems from different

organizations.

The main component in XML-based architectures is the XML server (Comella-Dorda et al.

2000). This server acts as the communication point between the organization’s infrastructure

and the rest of the world. The server communicates with the internal infrastructure; either the

ERP system or the databases etc. The server then exchanges information with external

organizations by exchanging XML messages. Most commercial XML servers support

numerous communication protocols that enable cost-effective integration with most common

legacy applications.

2.5.3. Functional Modernization

Functional modernization consists of various techniques designed to access business logic in

the host system (Sneed and Sneed 2003). Three techniques for logic wrapping are presented

(Comella-Dorda et al. 2000). The three techniques are:

 CGI Integration;

 Object-Oriented Wrapping; and

 Component Wrapping.

The Common Gateway Interface (CGI) is a standard for communicating with external

applications with information servers, for example web servers (Comella-Dorda et al. 2000).

If fast web access to existing assets is required, then legacy integration using CGI is

preferable. A new GUI is created, but as opposed to the screen scraping technique where the

old interface is wrapped, this technique involves the new GUI interacting directly with the

business logic or data of the existing legacy system. This technique is far more flexible than

screen scraping since the new GUI doesn’t need to match the old interface; however, it has

been shown that this procedure still does not satisfy maintenance issues.

Object-oriented wrapping involves the depiction of individual applications as objects, which

seems to be a simple concept, but this is misleading (Comella-Dorda et al. 2000).

Realistically, object-oriented wrapping involves many tasks including code analysis,

decomposition and construction of the Object-Oriented (OO) model.

 MODERNIZATION APPROACHES AND TECHNIQUES

27

Clustering analysis is used for transferring procedural code into an object-oriented model for

system understanding (Zhang and Yang 2004). Clustering analysis involves grouping

numerous entities in a dataset into clusters with regard to their relationships and similarities.

This analysis can only take place after the entities to be clustered have been defined as well

as the similarities in their relationships. The clustering algorithm to be used must then be

defined as well, dependent on the domain. This form of clustering analysis is applied during

the program understanding stage of the white-box modernization approach.

OO systems can be designed and created in such a way that they closely portray the actual

business processes that they model (Comella-Dorda et al. 2000). In addition to this, these

systems are easier to comprehend due to the OO techniques used to create them, such as

encapsulation and inheritance. The identification of objects in procedural legacy code is a

result of these clustering techniques (Zhang and Yang 2004). Translating the semantics of

procedural legacy system code to a hierarchical structure of an OO system can be a complex

task (Comella-Dorda et al. 2000). Domain-specific knowledge of the legacy system structure

is necessary to create meaningful objects.

Component wrapping bears a resemblance to OO wrapping; however, components must

conform to a component model which gives the framework of components the ability to

provide quality services (Comella-Dorda et al. 2000). Components offer a higher-level

representation of a domain and are considered more coarse-grained than traditional objects

(Lee et al. 2003).

Components encapsulate single pieces of business logic (Comella-Dorda et al. 2000). They

are installed on an application server providing a runtime environment for the component as

well as management facilities for common services such as security, transactions, state

management, amongst others. This creates an environment where the developer can focus on

the business problem requiring a solution.

The first process in component wrapping is to separate the legacy system interface into

modules comprising of logical units (Comella-Dorda et al. 2000). The next process in

wrapping business logic into components is to create a single point of contact to the legacy

system. The last process in component wrapping is to implement a wrapper for each

 MODERNIZATION APPROACHES AND TECHNIQUES

28

component of the legacy system, thus allowing the wrappers to communicate with the legacy

system by sending requests through the single connection point.

The component wrapping technique has several advantages over the other techniques

(Comella-Dorda et al. 2000). Flexibility is achieved first and foremost by wrapping pieces of

business logic. Secondly, there is a full integration and support capability on the application

server for all services generated by component-based modernization. Thirdly, this technique

paves the way for the substitution of the legacy system incrementally. Lastly, the more

sophisticated structured nature of component-based software is a solution to the complex

accumulation of classes and objects that may be difficult to manage (Lee et al. 2003).

2.6. Conclusion

Two distinct modernization approaches, white-box and black-box, are relevant to this

investigation. White-box modernization involves understanding the internals of a legacy

application and its functionalities before migrating the code to a more modern architecture

(Section 2.2). Comparatively, the black-box approach involves the analysis of user

interactions with the interface of the legacy system to gain knowledge of all inputs and

outputs.

The advantages of a white-box modernization approach include the depth of knowledge of

the functionality of the legacy system, gained from the program understanding phase (Section

2.3). Also, the understanding of the business logic of the original system leads to the

development of more modular, componentised code in the modernized system. On the other

hand, employing the white-box modernization approach can lead to certain disadvantages.

Disadvantages include complexity of analysis and re-engineering of the legacy system, due to

possible lacking system documentation. Also, operation cost in terms of time and effort are a

serious consideration when applying white-box modernization techniques.

Black-box modernization attempts to address the disadvantages discovered from the white-

box modernization approach (Section 2.4). By ignoring system internals and focusing on the

interaction with the interface of the system, black-box modernization decreases the

complexity of system analysis encountered in the white-box modernization approach. The

introduction of a wrapper to encase the legacy system has the advantage of leaving the legacy

 MODERNIZATION APPROACHES AND TECHNIQUES

29

business logic and code unchanged, but allowing a modern interface to be added onto the

front end of the new system whilst allowing communication with the original legacy code via

the wrapper. The disadvantage of this black-box approach is that it becomes a potential short-

term solution to modernization, since complications may occur after prolonged maintenance

of the modernized system. Black-box modernization is also not always a realistic solution as

it may require the incorporation of white-box techniques in some cases.

Various specific implementation techniques exist for each of the white-box and black-box

modernization approaches (Section 2.5). Data Modernization provides access to the existing

system database through various techniques (Section 2.5.2). Functional modernization

provides access to business logic through various forms of wrapping or componentising

business logic (Section 2.5.3). User interface modernization, or screen-scraping, is a

technique often used during black-box modernization (Section 2.5.1). This black-box

technique is used to develop a modern interface for the legacy system based on analysis of

the inputs and outputs of the original legacy system interface.

The white-box modernization approach adopted for this investigation incorporates steps from

the various approaches presented (Section 2.3). The white-box approach therefore includes a

program understanding phase that will require re-engineering techniques to obtain structure

diagrams of the legacy system. These system model diagrams will assist with understanding

the internal structure and functionality of the system before code migration is possible. The

second phase will be the code migration phase, which will transform the existing code into a

new language and platform. In the third and final phase, the data services will be discovered

through the application of component-based analysis of the legacy system (Section 2.5.4).

The black-box modernization approach will make use of a technique presented during

interface modernization (Section 2.5.1). This technique is chosen due to its black-box nature,

where the interface is modernized through the analysis of inputs and outputs of the legacy

system during user interaction. Component-based analysis will be applied to the existing

system in order to identify specific data service components (Section 2.5.3). The black-box

modernization approach will then incorporate web-service wrapping (Figure 2.1) of the

components identified during component-based analysis of the host program.

 30

C h a p t e r 3 : S e r v i c e O r i e n t e d A r c h i t e c t u r e s

3.1. Introduction

Service Oriented Architecture (SOA) is considered an influential development in software

evolution (Garcia-Rodriguez de Guzman et al. 2007). SOA provides system processes as

services and makes these services accessible over the web (Section 3.2). In this way, the

potential exists for legacy systems to be wrapped and offered as services.

Two types of service styles exist, namely the Simple Object Access Protocol-Remote

Procedure Call (SOAP-RPC) style and the Representational State Transfer (REST) style (Liu

and Connelly 2008). SOAP style services have tightly coupled processes and their

interactions with other parties are based on business process modelling (Section 3.3). REST

style services are handled with a common web invocation in the same architecture. REST

services are designed by identifying resource types and are implemented by remote

invocation via standard HTTP (Hypertext Transfer Protocol) protocols (Section 3.4).

The two service styles have both been used during the modernization of legacy systems.

Various approaches concerning both REST and SOAP services are elaborated upon. These

two service styles are distinct and it is necessary to understand both styles to conclude which

service architecture better suits this research. A service style that suits the provision of data as

a service is necessary for this investigation. Data services are a specific subset of web

services that focus on the provision of data as a service in an SOA (Section 3.5). Conclusions

 SERVICE ORIENTED ARCHITECTURES

31

will justify the choice of service architecture for this investigation by analysing the service

styles presented in literature and the appropriateness of these styles in terms of the data

services required by this study (Section 1.5).

3.2. Service Oriented Architecture and the Web

Provision of shared information to various clients is becoming a necessity and despite

differences in programming languages or platforms, the client applications should have

access to these shared resources (Lim et al. 2010). Web 2.0 is a term that was initiated to

describe the direction in which the World Wide Web is headed (O'Reilly 2005). Web 2.0

technologies provide a platform for the development of web applications consisting of a

combination of multiple applications (Lim et al. 2010). Some simple characteristics of Web

2.0 include:

 Exploit collective and interactive processes;

 Provide richer user experience through data sources; and

 Lightweight interfaces and an architecture that allows interaction of applications.

Service Oriented Architecture represents a model in which small, loosely-coupled software

components are deployed, requested and combined with other applications over a network

(Canfora 2004).

A web service is a practical implementation of this architectural model (Canfora 2004). These

services leave the technical internal details undefined, but communicate via a uniform set of

transfer protocols and standards. SOA is a design framework that encapsulates a piece of

business logic within a specific service (Wang et al. 2007).

The goal when integrating legacy systems into the SOA is to leverage the fast, flexible

infrastructure that the SOA provides (Wang et al. 2007). As a result, the legacy system can be

utilised by more business processes with less reuse of system functionality. Interoperability is

improved with various systems that the legacy system interfaces with as a result of

integration with an SOA.

There are various benefits of integrating legacy systems with SOA (Wang et al. 2007). These

benefits include exposing integral business logic and data through service enablement. SOA

provides a standard interface for collaboration of services with other systems. Another benefit

 SERVICE ORIENTED ARCHITECTURES

32

of exposing legacy systems as services in an SOA is functionality reuse. Functionality reuse

results in reusability of legacy functionality without rewriting of code. Lastly, the adaptability

to provide for future business processes or altered business processes is beneficial to the

longevity of legacy systems.

Various challenges also exist when integrating legacy systems into an SOA environment

(Wang et al. 2007). The first challenge is designing the services in such a way that any

proprietary data definitions are catered for if the services are required to be consumed by

various applications. Secondly, legacy systems originally contain tightly coupled business

logic and functionality. Services must therefore be designed to enable the legacy system

processes to interact with other services in a more loosely-coupled, flexible manner. Lastly,

the performance of services generated from legacy code could negatively impact on critical

business processes if not carefully considered. It is advised that the impact on performance be

researched and minimised (Wang et al. 2007).

SOA plays a major role in exposing these pieces of business logic in a reusable, loosely-

coupled manner where code complexities are hidden (Lim et al. 2010). Web 2.0 offers two

common web-based methods to provide access to data and functionality, namely REST and

Simple Object Access Protocol (SOAP). Both REST and SOAP services cater for the

exchange of structured information. The REST approach employs the use of simple HTTP

protocols whilst the SOAP approach utilises more complex message formats.

3.3. SOAP Services

In a SOAP-based architecture, messages are XML-encoded and transmitted over HTTP

(Mulligan and Gračanin 2009). SOAP Services share information amongst one another via

SOAP messages and information stored in the service registry is based on the Universal

Description, Discovery and Integration (UDDI) standard (Liegl 2007). The interface between

service providers, or consumers, and the service registry can be built based on the Web

Service Description Language (WSDL) standards.

Sets of SOAP service methods are defined in WSDL files (Mulligan and Gračanin 2009). The

WSDL files are XML documents that adhere to a W3c-specified grammar. Web service

methods that are written are defined in terms of the structure of parameters that are defined in

 SERVICE ORIENTED ARCHITECTURES

33

SOAP

Messages

WSDL

Enterprise A Enterprise B

Service B Service D

Service C Service A

UDDI

Service Registry

service requests or responses. Since the WSDL file defines the SOAP interface for a set of

web methods linked to a web service, the WSDL file maps the SOAP messages onto the

correct operations via the correct port. The WSDL file needs to be made publicly available to

all clients that require access to the web services defined within the file. Thus, the WSDL file

is made available on a SOAP-enabled application server.

The architecture of a SOA environment (Figure 3.1) depicts the relationship between the

service provider, service consumer and service registry. Enterprise A consists of two services;

Service A (consumer) and Service B (provider).

Figure 3.1. Adapted from “A Sample SOA Environment” (Liegl 2007)

Enterprise B similarly has Service C (provider) and Service D (consumer). Standards and

protocols such as SOAP, WSDL and UDDI are imposed during this service provisioning

process (Figure 3.1). The composition of services is sometimes necessary to achieve a single

business objective and this composition is possible through Business Process Execution

Language (BPEL) (Liegl 2007). BPEL is a standard which defines and controls the order in

which services can be invoked.

The WSDL and UDDI information model allows for dynamic binding of web services to

form a consolidated business process (Canfora 2004). An approach for discovering services

based on the classification of these services by pre-processing the textual information in a

WSDL document is presented. An algorithm, taking as input the goals to be achieved, such as

Consumer

Consumer Provider

Provider

 SERVICE ORIENTED ARCHITECTURES

34

the service to be found, evaluates the possibility of achieving the goal with a single service.

This algorithm identifies the possible services in the service registry and the similarity to the

goal is then calculated using an ad-hoc entity matching algorithm. This approach relies on the

standards and protocols defined in a SOAP-based architecture to classify and discover

services required.

A service-oriented framework consisting of service providers and service requesters forms

the architecture in which the black-box modernization strategy is implemented to migrate a

GUI-based legacy system to a web service (Zhang et al. 2008). The web services are required

to be wrapped and deployed in advance. A service wrapper is involved to allow

heterogeneous applications to access the web services.

This black-box modernization approach migrates legacy systems towards SOAP services

(Zhang et al. 2008). To make the legacy system accessible as a web service, the interface is

required to be adapted to conform to the distributed paradigm of service-oriented computing.

The approach is tailored towards GUI-based systems, where the interfaces are reused and

integrated into an SOA environment. Services are combined in this architecture using the

BPEL standards. The strength of this approach is the encapsulation of heterogeneous

applications, thus promoting reusability.

The most common form of SOA is web services (Lewis et al. 2006). These services must

adhere to the following:

 Service interfaces described by WSDL;

 Requests and responses sent via SOAP over HTTP; and

 UDDI used as a directory for services.

Enabling legacy systems to operate within an SOA is sometimes as simple as parsing the

SOAP requests to invoke the legacy code and then wrap the results and send them out again

via a SOAP message.

An approach for the migration of legacy systems to an SOA environment is the Service-

Oriented Migration and Reuse Technique (SMART) (Lewis et al. 2006). This approach

collects a broad range of information regarding the legacy components, the target SOA

environment and the possible services to be created (Figure 3.2).

 SERVICE ORIENTED ARCHITECTURES

35

Figure 3.2. Adapted from “SMART inputs and outputs” (Lewis et al. 2006)

SMART also produces outputs that are valuable to the organization requiring a possible

legacy system migration (Figure 3.2). The conclusions drawn from this process include the

benefits to the customers requiring legacy migration due to the inclusion of SMART (Lewis

et al. 2006). The analysis of the inputs made it clear whether migration was a feasible option

for the organization.

SOA allows a new way to continue to use, or reuse, the business processes offered by legacy

systems (Canfora et al. 2008). This re-use potential is achieved by overcoming

interoperability restrictions by making use of web services. Form-based systems are a type of

interactive system where the interaction between user and computer is session-based,

consisting of the alternating exchange of messages between the user and the computer. Many

Stakeholder List
Characteristics List
Migration Issues List
Component Table
Service Table
SOA Description
Component Service Options
Table
Migration Alternatives Table
Service Migration Strategy

Goals and Objectives

End User Requirements

Legacy System
- Architecture
- Design
- Code
- Cost/effort data
- Engineering history

Target SOA
- Requirements and Constraints
- Architecture
- Standards
- Common Services

SMART

 SERVICE ORIENTED ARCHITECTURES

36

legacy systems fall under this classification and a migration approach is presented to

modernize these legacy systems to operate within an SOA.

A wrapping approach is presented to expose the legacy system as a web service that

conforms to SOAP service standards (Canfora et al. 2008). This black-box modernization

approach is useful in situations where access to the legacy code is not possible. The wrapper

is thus developed to translate users’ service requests into a format that the legacy system

recognises to process the results required. The result of this modernization technique allows

the legacy functionality to be migrated towards the SOA.

Software systems modernization towards SOA provides a beneficial option for the elongation

of the lifetime of legacy systems (Canfora et al. 2008). Deploying these legacy systems as

services promotes the interoperability of heterogeneous systems and this can be achieved by

wrapping techniques. The successful implementation of the wrapping approach in related

studies showed the cost-effectiveness of this type of modernization. The scalability of this

approach was still reported as being uncertain and needed to be addressed by the addition of

tools and techniques for the most expensive tasks of the migration process.

SOAP-based web services have a large variety of tool support from vendors (Lim et al.

2010). Furthermore, SOAP services are supported by other web service standards such as

WS-Security and WS-ReliableMessaging, amongst others. The support of these standards

makes SOAP web services more well-defined, providing them with security and error-

handling capabilities. Conceptually, with regard to all of the standards supported by SOAP

services, these services may be more difficult to understand and develop. With the aid of

development tools, however, these services are more simply designed. SOAP-based web

services are reported as being flexible because they address quality of service attributes such

as security (Pautasso et al. 2008).

3.4. REST Services

Services that are based on the REST philosophy are often labelled “RESTful” services (Peng

et al. 2009). It is reported that RESTful web services are more simple for the developer to

understand and create (Lim et al. 2010). REST style services are abstractions of the

architectural components within a distributed hypermedia system (Fielding and Taylor 2002).

 SERVICE ORIENTED ARCHITECTURES

37

REST focuses on the roles of components and the constraints on their interactions with other

components. REST specifically overlooks the details of the implementation of each

component and protocol syntax.

The principles of REST can be split into four characteristics (Peng et al. 2009), namely:

 Resources are used to define application state and functionality;

 Resources have a unique address defined by a universal syntax;

 A uniform interface is adopted for state transfers between a client and a resource; and

 All interactions with resources must remain stateless.

RESTful web services focus on the simple transmission of messages over HTTP, where

resources may be used or controlled using HTTP methods (Lim et al. 2010). Furthermore, it

is reported that RESTful web services are lightweight since the SOAP messaging layer is not

required. The absence of the SOAP messaging layer means that no XML wrapper is required

for REST messages, thus reducing their size.

RESTful services have a client-server architecture where communication is stateless

(Fielding and Taylor 2002). Thus, every request from the client to the server must contain all

information required to process the request. The implication of this stateless style of

communication is that the session state is solely on the client side. Scalability is therefore

positively affected, since the server is not required to store the state between requests and can

free up resources quickly. On the other hand, the disadvantage of the REST architecture is

that network performance may be decreased by the increase in repetitive data sent in a

succession of requests. Also, storing the application state on the client side implies that

server’s control over consistency of the application’s behaviour is reduced.

The core feature that sets the REST architecture apart from any other network-based

architecture is the uniform interface between components (Fielding and Taylor 2002). This

uniform interface is achieved by the software engineering principle of generality in terms of

the component interface. Implementations are decoupled from the services provided by the

components. Thus, independent evolution of components is supported. On the other hand,

this uniform interface reduces efficiency due to the fact that data is transferred in a standard

form, as opposed to a format which is specific to an application’s requirements.

 SERVICE ORIENTED ARCHITECTURES

38

A white-box reengineering process by source code analysis for migrating legacy systems to

RESTful web services is presented (Liu and Connelly 2008). The reengineering approach

includes the extraction of candidate resources by identifying entities in the legacy code.

Blend services are then created by analysing static relationships in the legacy system.

Uniform Resource Identifiers (URI’s) are designed to represent the services. This is due to

the fact that the service will be established on the resources, their constraints and their

operations. Existing operations in the legacy system are analysed to assign standard

operations to the URI’s. The service representations are then designed to create the interface

for the service on the web. The existing functionality is then wrapped by the REST service to

create the fully functional final product.

The key issue for generating RESTful web services is the identification of resources to define

URI’s (Liu and Connelly 2008). Related studies have addressed this problem by

incorporating the semi-automatic identification of informative entities in the legacy system.

This approach from the related study did not, however, consider all issues, such as

dependency relationships and their representation in URI’s. It was thus advised that these

dependencies be studied further to improve the semantics of web service dependence on other

web services.

RESTful services do not have standards that support security, reliable messaging or error

handling (Lim et al. 2010). Developers are therefore required to implement any of these

features that they require themselves. Another limitation of RESTful web services is that all

operations executed must follow the standard HTTP methods, namely GET, POST, PUT and

DELETE. This requirement of RESTful web services may not be a practical solution for all

types of applications.

3.5. Data Services

Universal interoperability is achieved by the adherence to the protocols that define web

services (Li et al. 2009). This interoperability is synonymous with performance loss due to

message serialization into the correct format for transmission. It is thus necessary to carefully

design and select services in such a way that they are interoperable in nature, yet can still

provide responses to requests quickly. These services do not necessarily have to replace an

entire application, but they may be designed to act as data stores (Selçuk Candan et al. 2009).

 SERVICE ORIENTED ARCHITECTURES

39

A data service has the core functionality of one specific business object, such as an order or

an employee (Carey 2006). Data services have a collection of read methods (Borkar et al.

2006). These methods are service calls that allow access to instances of business object types

in various ways. Similarly, data services have write methods which allow for the insertion,

updating, or deletion of different business object instances. Lastly, navigation methods are

service calls used to navigate the relationships between business objects returned via different

services, for example the relationship between a customer and an order.

These methods represent the CRUD model (Kilov 1990). The CRUD model allows Creating,

Reading, Updating or Deleting of data from a data store. Data services can conform to this

model as each data service can essentially perform one of the CRUD actions. An SOA will

thus provide the infrastructure to support these data services during data transmission

(Mulligan and Gračanin 2009).

Data security and service reusability are emphasised in the development of data services, as

shown in the AquaLogic Data Services Platform (ALDSP) (Borkar et al. 2006). It is advised

that access to the data services be controlled, as well as query processing security. Reusability

is highlighted as an important feature of data services and is achieved by encapsulation of

method call details. For example, the method getAll() can be reused with different

business object types since encapsulation hides the technical code detail of the method used

to return all attributes of an object. Latency, defined as the time taken to achieve results after

submitting a query, is another attribute of data services reported as being an important

consideration during design of these services.

3.6. Conclusion

The future of the web lies in the provision of interactive, interoperable services to fit

consumers’ needs (Section 3.2). This new direction for the web has been called Web 2.0. A

Service Oriented Architecture provides the framework for the provision and consumption of

these services. Data services in particular can be provided in this SOA framework. Two

distinct architectural styles for web services exist, namely SOAP-RPC services and RESTful

services. It is necessary to contrast and compare these two service styles to make an informed

decision on which style is more appropriate for the creation of data services in particular.

 SERVICE ORIENTED ARCHITECTURES

40

SOAP-based services follow standards and protocols such as WSDL for the interface

between consumers and the services, and SOAP for the structure and format of request and

response messages (Section 3.3). SOAP style services are far more commonly used as a

target architecture for the modernization of existing systems and exhibit better tool support

for development. SOAP services offer other benefits such as security and reliability of

messages during transmission.

Alternatively, RESTful services are more lightweight, due to the elimination of encasing

messages in a SOAP request or response (Section 3.4). This lightweight design is achieved by

using simple HTTP protocols where messages have to conform to HTTP message formats,

namely GET, PUT, POST and DELETE. RESTful services have become more popular in

recent years as they were developed to address some of the structural complexities that SOAP

services carry. Furthermore, it has been shown that both of these types of services have been

used as a target architecture for the migration of legacy systems to the SOA.

Data services encapsulate single pieces of business logic, whilst their design follows a CRUD

model and hides implementation complexities (Section 3.5). Data services must also satisfy

design requirements such as security, reusability, reliability and interoperability. Taking into

consideration the requirements of data services and the arguments presented for SOAP and

RESTful web services, the preferred service style for the purposes of the case study in this

investigation is SOAP. This is due to the fact that SOAP style services are widely accepted

and well documented in literature. SOAP services offer built in security and message

reliability (Section 3.3). Although REST services may show better performance than SOAP

services due to reduced message size, it has been reported that the true performance benefits

of REST require further investigation (Section 3.4).

It is necessary to apply the modernization approaches identified for this investigation

(Chapter 2) to a case study in order to create data services that operate within an SOA. The

services must adhere to criteria specified for data services in particular (Section 3.5), namely:

 Security;

 Performance;

 Reusability; and

 Interoperability.

 SERVICE ORIENTED ARCHITECTURES

41

Furthermore, these data services will need to conform to the SOAP standards and protocols

presented (Section 3.3). An appropriate case study has been selected for the application of

these modernization approaches to leverage the data from the existing system as a service.

 42

C h a p t e r 4 : C a s e S t u d y M o d e r n i z a t i o n u s i n g D a t a

S e r v i c e s

4.1. Introduction

The two modernization approaches, namely white-box and black-box, will be applied to a

legacy system case study for this investigation. A legacy system that is currently in use in the

Department of Computing Sciences at Nelson Mandela Metropolitan University will be

modernized (Section 4.2). The current system requires analysis at a conceptual level to

understand the domain.

These two modernization approaches will make use of appropriate specific implementation

techniques (Chapter 2). The white-box modernization approach will follow the process of

first analysing the internal functionalities of the system to form a higher level representation

of the system (Section 4.3.1). A code migration phase will follow this program understanding

phase to translate the legacy code into a more modern format (Section 4.3.2). In the last phase

of the white-box approach the specific data services are discovered and deployed to finalise

the modernized system (Section 4.3.3). The black-box modernization approach will entail the

creation of a modern interface for the existing system (Section 4.4.1). The componentization

of the original system code is necessary to divide the functionality into data services for web

service discovery. This component-based modernization technique will follow the user

interface modernization (Section 4.4.2).

 CASE STUDY MODERNIZATION USING DATA SERVICES

43

The research question regarding the application of both modernization approaches to the case

study in order to generate data services will thus be answered (Section 1.5). Conclusions will

revisit the approaches conducted on the existing system and motivate the need for evaluation

of these modernized systems to realize their merits.

4.2. The Student Assistant System

The Student Assistant System, or Demi System as it is informally known, is currently in use

by student assistants for computer-based courses in the Department of Computing Sciences at

NMMU. The Demi System was developed to reduce the paper load required for the hiring

and management of student assistants in the department (Figure 4.1).

Figure 4.1. Demi System Interface

Originally, prospective student assistants were required to fill in large paper-based

application forms and submit these forms to the administrative staff to be processed. If their

application was successful, the student assistants were then required to manually select the

courses that they wished to assist with. As the student assistants are paid for their services,

B

C

A

 CASE STUDY MODERNIZATION USING DATA SERVICES

44

they were required to sign off their attendance at each session on an attendance sheet which

was subsequently submitted to an administrative staff member for capturing purposes.

To reduce the amount of forms required, the automated Demi System was developed. The

Demi System allows prospective student assistants to apply for positions by completing an

electronic application form (Figure 4.2).

Figure 4.2. Demi System Electronic Application Form

After the form is completed, confirmation emails are sent to the relevant lecturer to make the

recommendation needed for the application to be successful. Once the student has been

accepted, the student may then log into the system to select the courses that they would like

to assist with (Figure 4.1 A). Users are able to choose specific session times from lists of

courses that they are qualified to assist. A confirmation email of the student’s choice of

session will be sent to the relevant lecturer of the course for approval. After session selections

are made, it is the student assistant’s responsibility to attend the sessions that they have been

 CASE STUDY MODERNIZATION USING DATA SERVICES

45

approved to assist. During the session they may log into the Demi System in the computer lab

in which the session is held to mark off their attendance electronically (Figure 4.1 B). Their

attendance is thus logged so that their total hours can be calculated for the correct payment of

their services. At any point in time if the student wishes to stop assisting with a specific

session, they may log into the Demi System to remove the session. This action will again

send a confirmation request to the lecturer who coordinates the course.

Student assistants who have selected sessions with which to assist may also use the Demi

System to view a tabulated list of their chosen sessions (Figure 4.1 C). The list of sessions for

a given student is available for the student to print. A student may also request to view their

total hours attended for certain periods of time, as specified by the student using a specified

date range. The total hours worked may also be printed out.

The Demi System has now been in use for two full years in the Department of Computing

Sciences. Despite the recent development of this system, it portrays characteristics of a

legacy system that allow for the modernization of the system. This system was developed in

house to suit the needs of the staff and students of the Computing Sciences department. No

system documentation exists, thus making maintenance of the system a challenge for anyone

other than the system developer. Furthermore, the system was developed in a language that is

no longer supported in the department, thus complicating future maintenance. The white-box

analysis of the Demi System has to include the generation of system representational

diagrams to understand the domain. Verbal communication with the developer of the Demi

System also proved useful in understanding the roles of the legacy system.

A more technical analysis of the legacy system included the investigation into programming

language used and the environment on which the system runs. The Demi System was

developed in an Object-Oriented programming style using Visual Basic (VB) code. The

database used by the Demi System is a Microsoft SQL Server database. The Demi System

runs within a client-server architecture with the database residing on a server in the

department to which all client computers in the computer labs have access. All functionality

is programmed on the client side and only the database remains on the server. The significant

role that data operations play in the functionality of the Demi System makes the system a

prime candidate for the modernization of the legacy system into data services.

 CASE STUDY MODERNIZATION USING DATA SERVICES

46

After a higher-level requirements and design analysis of the Demi System was completed, the

modernization approaches were ready to be applied to the system. The white-box approach

required a further, lower-level analysis of the legacy system at the code level. This more

detailed analysis prepared the way for the migration of the legacy code and functionality to a

modern architecture. The black-box approach required analysis of the inputs and outputs of

the system to design modern interfaces for the new system architecture. Component-based

analysis of the legacy system was required for both approaches to identify specific data

services.

4.3. White Box Modernization Approach

The white-box modernization approach applied to the Demi System follows the principles

identified for the approach (Section 2.3). The approach consists of three phases (Figure 4.3).

Figure 4.3. White-Box Modernization Phases

An invasive approach is used to first gain understanding of the code structure of the legacy

system as well as the system schematics. This in depth analysis of the legacy code

contributed toward the program understanding phase (Section 4.3.1). Thereafter, code

migration is necessary to modernize the internal functionality of the legacy system, whilst the

data source remains intact (Section 4.3.2). Thirdly, the discovery of the data services as a

result of component-based analysis of the legacy system concludes the modernization of the

system (Section 4.3.3).

Program

Understanding

Code

Migration

Service

Discovery

 CASE STUDY MODERNIZATION USING DATA SERVICES

47

4.3.1. Program Understanding

Before commencing code migration from the legacy code to the modernized code, it was

necessary to understand the internal code structure and functionality of the legacy system in

lower level detail. Relationships and dependencies between classes needed to be understood,

as well as what subsequent method invocations occurred on specific method calls. Diagrams

and higher level abstractions of these relationships and dependencies were created during the

program understanding phase to aid in comprehension of the system, as identified (Section

2.3).

A software program that automates the code analysis and creation of these schematics was

utilised for this phase (Salste 2008). A class-level dependency diagram was created to depict

how classes instantiate new instances of other classes during runtime of the system (Figure

4.4).

Figure 4.4. Class Dependency Diagram

The classes shaded in blue were all identified as interface classes depicting Windows forms,

each with its own functionality relating to the specific requirements of the interface (Figure

4.4). For instance, the Home class allows users to move to the other interface classes such as

Attendance or Applications. The classes shaded in green were identified as business

logic classes, each containing functionality to support the needs of the interfaces that rely on

them. Specifically, the Session class is used to store Session information retrieved from

the database for use by the SessionSelection class. The Checks class contains data

operations required by other interface classes and the pElement class contains code

Home.vb
SessionSelection.vb

Applications.vb

Attendance.vb

Details.vb

CourseSelection.vb

PrintSession.vb

Session.vb

Checks.vb

pElement.vb

 CASE STUDY MODERNIZATION USING DATA SERVICES

48

specifically for the formatting of data when printing reports. This functionality is required by

the PrintHours class. The CourseSelection class appears to be independent of the

Home class. No explanation is provided in this diagram as to how the class is used however.

A more detailed method analysis diagram was generated to view method invocations (Figure

4.5).

Figure 4.5. Extract from Method Dependency Diagram

Applications

New

ApplicationsLoad

readFirstInfo

readInfo

fillLecturers

readLastInfo

checkDetails

SaveButtonClick

storePersonalDetails

storeExtraDetails

CloseButtonClick

Details

New

DetailsLoad

fillDetails

SaveButtonClick

checkBlanks

updateDemi

CloseButtonClick

Attendance

New

AttendanceLoad

removeSymbols

getSession

getTimeSession

ConfirmClick

addHours

getHours

checkAttend

SessionSelection

New

SessionSelectionLoad

checkCourses

removeButtonClick

selectButtonClick

sendEmail

fillAvailableList

fillSelectedList

fillAvailableListTake2

SaveButtonClick

CloseButtonClick

CourseSelection

New GroupSelectionLoad

fillSelectedLists fillAvailableLists

selectButtonClick removeButtonClick

Checks

getGroups getDemiNumbers addCourse

checkInAllowed checkGroups getGroup

checkException getTakesSession

redirect CloseClick HomeLoad getMessages checkWorkshop

ChangeClick fillNoticeBoard1 fillNoticeBoard2 getStudentInfo

New

checkYear

AttendanceButtonClick checkCalendar SessionButtonClick PrintButtonClick

Home

 CASE STUDY MODERNIZATION USING DATA SERVICES

49

This diagram illustrates how the calling of certain methods instantiate new classes. From this

system representation it is clear to see that the CourseSelection class is never

instantiated from any other class in the system. Only information pertinent to the

investigation is shown in the diagram depicting method dependencies across classes (Figure

4.5). The class dependencies show the relationships between classes which is useful for

understanding how the classes relate to one another during use of the system. The diagram

does not, however, draw any attention to which classes may be insignificant due to the

existence of dead code (Figure 4.4).

Since the New method of the CourseSelection class has no arrow pointing to it, the

implication is that this method is never called (Figure 4.5). Thus, CourseSelection is

never instantiated. The other direct implication from closer examination of the diagram is that

the getGroup() method in class checks is never called, despite the arrow. This is due to

the fact that the method that invokes getGroup() is never called as it exists in the

CourseSelection class. The CourseSelection class had become obsolete after

modifications were made to the system, but it had not been removed from the project, thus

leaving behind dead code. As a result of thorough analysis of these system representations

(Figure 4.4, Figure 4.5), certain classes were found to be suitable for migration (Table 4.1).

Class Name Description

Home Interface providing welcome information and links to other actions such as

session selection, session attendance and printing lists of sessions

Details Interface providing functionality to change user information

Applications Interface providing electronic application form for student assistants

Attendance Interface allowing student assistants to mark off their session attendance

Session Selection Interface allowing addition and removal of sessions from a list of available

sessions

Checks Performs queries to validate data retrieved from data source

Print Session Interface providing printing of a user’s selected session list as well as the action

to calculate and print total hours worked in a given date range

Session Stores Session information retrieved from database regarding sessions

pElement Formats table information for printing purposes

Table 4.1. Legacy System Classes Suitable for Modernization

 CASE STUDY MODERNIZATION USING DATA SERVICES

50

Another system representation generated during the program understanding phase was the

subsystem report (Figure 4.6). This report identified file groups that formed independent

subsystems of the legacy system. These subsystems were split and listed for potential reuse

purposes as components (Section 2.5.3).

Independent subsystems are depicted in the blocks with boldface text, whilst the classes that

these subsystems depend on are included in the block (Figure 4.6). The possible subsystems

identified by the program understanding software indicate that attendance, printing sessions,

session selection, applications and details are independent of one another. These independent

subsystems and the classes that they are associated with may be suitable components for the

discovery of data services.

Figure 4.6. Subsystem Representation

Now that a much deeper investigation into the Demi System has been conducted, the process

of code migration is necessary to modernize the existing system functionality. Throughout

the entire white-box modernization approach the original Demi System data source remains

unaltered. Only the business logic and code functionality is migrated towards a modern

architecture.

Attendance Subsystem

 Session.vb

PrintSession Subsystem

 pElement.vb

SessionSelection Subsystem

 Session.vb

 Checks.vb

Independent Files

 Applications.vb

 Details.vb

 CASE STUDY MODERNIZATION USING DATA SERVICES

51

4.3.2. Code Migration

To remain true to the white-box legacy system modernization approach, it is necessary to

migrate the code away from its original language (Section 2.3). Java was chosen as the new

language that the original system code would be migrated towards, therefore seeing as the

Demi System was developed in VB code, the VB code was treated as though it were legacy

code. In addition to this, the core functionality of the modernized system is required to

remain the same as the original system.

As a result of the preservation of system functionality and the nature of the system used for

this investigation, the decision was made to maintain the same look and feel in the interfaces

of the modernized system as the original system. The adherence to these modernization rules

posed certain challenges during development due to the differences in programming

languages and native capabilities of these languages. The original Demi System, having being

developed in the .NET environment, imported native collections to provide printing and

emailing capabilities to users. The migration of the existing code to a Java environment thus

meant that the new Demi System was required to provide users with the same printing and

emailing capabilities as the original system.

To overcome this challenge, the inclusion of the JavaMail API was necessary. The JavaMail

Application Programming Interface (API) provides a platform-independent framework to

compose and send emails in an application (Rajshekhar 2005). The inclusion of this API

enabled the creation and transmission of email messages required to be sent at various stages

throughout the system. To resolve the printing challenge in the new language, the JTable

component proved a useful tool as it provides a simple API that allows the user to print tables

from the interface of a running application (Figure 4.7).

The JTable has a print() method which triggers a standard printing dialog (Figure 4.7).

The user may then specify the printer to which they wish to print as well as how many pages

and so on. The developer may use one of several overloaded print methods to define the

format of the printed table. Inclusion of a page header with a title or a footer with a page

number is simply achieved by the creation of a MessageFormat object. This

MessageFormat object may then be passed as a parameter in the JTable print method.

 CASE STUDY MODERNIZATION USING DATA SERVICES

52

Figure 4.7. Java Print Dialog

Once these challenges were overcome, the interfaces for the modernized system needed to be

designed. One major architectural change to be considered when modernizing the legacy

code would be the separation of functionality into server-side logic and client-side logic. Any

data operations would need to be processed on the server-side of the modernized application,

whereas any other system functionality could remain on the client-side. This division of

system functionality did not occur in the existing Demi System, as all functionality was

programmed into the client-side of the application.

The implication of the separation of code into data operations and client-side functionality

prepared the system for service discovery. This conceptual division of code allowed the

discovery of specific data service methods which could be grouped into distinct data service

entities. The programming of the client-side of the application would thus only include

interface and system state maintenance operations. More specifically, any functionality not

pertaining to data retrieval, modification or deletion was programmed into the client-side

application. The separation of system functionality into client-side logic and data services

reduced the amount of service requests and responses messages transmitted during runtime

 CASE STUDY MODERNIZATION USING DATA SERVICES

53

(Li et al. 2009). The data services were designed in this manner to maintain good

performance in the modernized Demi System.

The interfaces for the Home, Application, Attendance, Details,

SessionSelection, PrintSession and PrintHours classes were designed to

mimic the interfaces used in the original Demi System. The PrintHours interface in the

modernized legacy system was created as a separate class as opposed to a dialog, as it existed

in the legacy system. A dialog interface was created for the “Help” button on the Home

interface (Figure 4.1) in the modernized system for ease of development. The Help interface

provides users with an image of a button appearing on the Home interface supplemented with

a detailed description of the action that the Demi System performs on selection of the button.

Due to the Object-Oriented nature of the original Demi System code, the class structures of

the modernized system remained the same. Any methods that performed data validation of

values entered into text fields on the interfaces remained on the client-side of the application.

Methods that converted object types into the correct format for display purposes or for

service requests were developed on the client-side. Methods that populated interface

components with data retrieved from the database also remained on the client-side

implementation.

Due to the differing programming environments, a developmental challenge was

encountered. Not all components used in the original legacy system were supported in Java.

These components included:

 The data grid component; and

 The date picker component.

To allow the modernized system to maintain the same interface look and feel as the legacy

system, it was necessary to find suitable Java components that could perform the same

functions as the .NET components. The JTable was used as an alternative to the .NET data

grid component. The inclusion of the JTable meant that a Table Model was required to

populate the component during runtime of the system. The implementation of the Table

Models for the various JTables was not a direct code translation exercise, as the legacy

system data grid component did not make use of any such model.

 CASE STUDY MODERNIZATION USING DATA SERVICES

54

The Java Table Model is an interface which may be extended in the Java application to

leverage inherited methods (Flanagan 2001). The implementation of this table model

organises your data and displays it in a tabular format despite what the underlying data

actually looks like. Certain methods are required to be implemented when using the Java

table model. These methods include:

 getColumnCount();

 getRowCount();

 getColumnName(int columnIndex);

 getValueAt(int rowIndex, int columnIndex); and

 isCellEditable(int rowIndex, int columnIndex).

These methods assist in the correct formatting and display of the data in the JTable

component managed by the table model. In addition to these methods, methods to add rows,

delete rows and refresh the table after any changes were included in the implementation of

the table model.

After implementation of the interface and the client-side logic was complete, the data services

had to be developed with the specific data operations pertaining to them. The components

identified during program understanding (Figure 4.6) were a guideline for the discovery of

specific data services.

4.3.3. Web Service Discovery

Service-enabling an entire legacy system is not always a feasible option (Wang et al. 2007).

If only certain portions of functionality are required in the SOA, then it is necessary only to

deploy the relevant functionality as services. The existing system components identified

during program understanding contain the functionality necessary to be modernized into data

services. These data services are required to be developed in adherence to SOAP standards

and protocols (Section 3.6). The migration of the existing system to an SOA is thus necessary

(Section 4.3.3.1).

The services identified during component-based analysis of the Demi System each contain

the data operations related to the business process encapsulated by the service (Section

4.3.3.2). The data services identified from the analysis of the Demi system resulted in the

discovery of eight data services (Table 4.2).

 CASE STUDY MODERNIZATION USING DATA SERVICES

55

Service Description

Application Handles applications to become a student assistant

Attendance Handles marking attendance for a session

Change Details Handles any updates to a student’s personal information stored on the system

Checks Performs data validation queries to populate tables on interfaces

Login Handles student verification and notice board message collection on login

Print Hours Handles queries to view hours worked over a specified date range

Print Session Handles queries to view the student’s list of selected sessions

Session Selection Allows student assistants to add and remove sessions

Table 4.2. Web Services Discovered during White-Box Modernization

The Application, Attendance, ChangeDetails, Checks and SessionSelection services were

directly implicated during the program understanding phase. After the code migration phase,

the necessity for the Login, Print Hours and Print Session services as distinct services was

made clear.

4.3.3.1. Data Service Architecture

The data services were developed in Java using Netbeans Integrated Development

Environment (IDE). Netbeans was chosen as the implementation tool for the data services,

since after their development they could be deployed on the GlassFish application server.

GlassFish is an open source application server which implements features from the Java

Enterprise Edition (EE) 5 platform. Netbeans allows the developer to define and create

stateless SOAP-style services.

Several libraries exist within the Java Enterprise Edition (J2EE) to support web services

(Kachru and Gehringer 2004). J2EE provides a platform-independent framework for the

development of web services. Applications developed in platform-independent environments

can be run on different operating systems without the need for any changes. Java achieves

this platform independence through the generation of byte-code instructions by the Java

compiler for the Java Virtual Machine (JVM).

Containers are provided for the developer to simplify the development of multi-tier

applications. These containers provide specific complex functionality, thus allowing

 CASE STUDY MODERNIZATION USING DATA SERVICES

56

developers to focus on creating the business logic portion of the application. The

development of the web services for this investigation is based on this framework (Figure

4.8).

Figure 4.8. Adapted from “J2EE Architecture” (Kachru and Gehringer 2004)

The Java API for XML Web Services (JAX-WS) allows the development of stateless web

services. These web service classes are created at the business logic layer (Figure 4.8). The

web services are created by providing specific annotations when creating the service classes

(Figure 4.9).

Figure 4.9. Java Web Service Annotations

Annotations are modifiers that, when inserted into a class using the specific “@” notation,

can provide the Java interpreter with additional information about the class (Sangeetha and

Chinnici 2007). Also, the correct Java WebService package must be imported into the

project (Figure 4.9). The addition of the @WebService() annotation informs the Java

interpreter that all methods in the class are intended to be published as web services (Eckstein

and Mordani 2006). The @Stateless() annotation provides metadata that declares the

web service as a stateless session. The implementation of stateless sessions means that any

package ws;

import javax.jws.WebService;

@WebService()

@Stateless()

public class SessionSelection {

 /* web service methods implemented here */

}

Presentation
and

Access

Business

Logic

Connectivity

Runtime

 Interactive
GUI

(Swing)

Web
Service
Clients

Client-side
Classes

Data
Services

JDBC SOAP

Java Runtime Engine

 CASE STUDY MODERNIZATION USING DATA SERVICES

57

state maintenance of the application is required to be handled by the developer on the client-

side. This reduces the size of service requests and responses as the state of the application is

not transmitted back and forth between the client and the server.

Each web service identified during the web service discovery phase of modernization had to

be implemented in such a manner as to provide data as a service (Table 4.1). All methods

pertaining to data creation, retrieval, updating or deletion (CRUD) were thus implemented as

web methods in their respective web service classes. The web methods were also created to

follow the GET and SET format identified in similar studies (Borkar et al. 2006). The data

services were created by the division of data operations based on the component-based

logical analysis of the legacy system code. These data services used the Java Database

Connectivity (JDBC) API for the connection to the Demi System database (Figure 4.8).

These data connections had to be migrated from the original system code due to the

difference in programming environments.

4.3.3.2. Implementation of Data Services

The Login service was created to perform all processes required on logging in to the Demi

System. The retrieval of messages for the notice boards on the Home interface is handled by

the Login service. Any queries to the database to retrieve student information to populate the

Home interface are handled by this service. The first and most important query performed by

the Login service is the check to see if a student exists in the database (Figure 4.10). If the

student does not exist in the database then it is necessary to route them to the electronic

application form.

Figure 4.10. Excerpt from Check Student Method

public boolean checkStudent(String studentNo){

 boolean found = false;

 /* Connection instantiations made here */

 try {

 /* Statement instantiation made here */

 sql = "SELECT * FROM Demi WHERE StudentNo = '"+studentNo+"'";

 ResultSet r = statement.executeQuery(sql);

 if (r.first()) {

 found = true;

 }

 } catch (Exception ex) {

 /* Exception handled here */

 }

 return found;

}

 CASE STUDY MODERNIZATION USING DATA SERVICES

58

The CheckStudent web method in the Login web service class takes the student number

as a parameter to perform a query on the database to search for the required student. If the

student is found in the database, the CheckStudent method returns a true value; otherwise

the result of the method is false. On the client-side of the application the response from the

web service is checked to determine whether the student may log in to the system if their

information exists in the database. The client application will alternatively reroute the student

directly to the application form if the CheckStudent method returns a false value.

The Application web service performs GET methods to populate some of the selection

components in the interface with data from the database such as lecturer’s email addresses.

The student is required to select from the lists of lecturers whom they wish to provide a

character reference for their application. The Demi system will send the email request to the

selected lecturer for consideration. The student’s application will be pending after submission

of this electronic form until a response is received from the lecturer.

This web service also performs the essential SET methods for the addition of a student to the

Demi System database for future login purposes. The SetPersonalDetails and

SetExtraDetails methods perform insertion queries to add the student information from

the application form to the database. These methods return a boolean value which the client

application uses to determine the success of the insertion query. The student assistant

applicant is thus informed of their successful application by means of a confirmation message

dialog (Figure 4.11).

Figure 4.11. Successful Application Dialog

The student is also informed that after their information has been saved that their application

is pending until their selected lecturer responds to the email notification sent to them. As soon

as the student has been approved by the lecturer their status is changed in the database to give

 CASE STUDY MODERNIZATION USING DATA SERVICES

59

them access to the system. After access has been gained to the system, the student assistant

may log in to the system to select their sessions which they wish to assist. The Session

Selection web service handles the session addition and removal functionality (Table 4.1). The

SessionSelection interface allows users to select their preferred sessions from a list of

all available sessions (Figure 4.12).

Figure 4.12. Session Selection Interface

The data for all the available sessions and the student’s selected sessions needs to be queried

from the database. Thus, the Session Selection data service provides GET methods to

populate the “Available Sessions” table in the interface (Figure 4.12). The “Selected

Sessions” table is populated by the GET method from the Print Session data service. After

selections or removals have been made, the user must save their changes before closing the

interface. If any sessions have been selected, the save action will invoke the data service’s

SET-style method to add the chosen session to the list of selected sessions for the current

user. The parameters required for this action are the student number of the user and the

unique session identifier for their selection.

The save action also makes use of the Checks data service to perform some validation on the

session data from the database. Each session has a limited number of student assistants that

 CASE STUDY MODERNIZATION USING DATA SERVICES

60

may attend the sessions. A query needs to be run when a session is selected to verify that

there is still space available for another student assistant. The appropriate web method from

the Checks data service is thus invoked to verify the session’s availability before the session

is booked for the user.

Once a user’s sessions have been allocated to them, they need to attend these sessions to use

the Demi System to mark off their attendance. The Attendance data service allows users to

perform this functionality. The user is required to mark off their attendance from a computer

in the lab in which the session is held. Furthermore, the student must mark their attendance

between the start and end times of the session. The Attendance data service performs GET

methods to determine the student assistant’s session for which they may mark their

attendance. For the student assistant to confirm their session attendance, the Attendance

service provides a SET method to insert their session attendance into the database.

Once the student assistant has confirmed their attendance of the session they may not attempt

to mark off the attendance for the same session again. The Attendance service provides a

method which checks if the user has already confirmed their attendance for the current

session. The Attendance service provides another method which verifies that the student

assistant does not attempt to mark off their session attendance on a public holiday or outside

of allocate term times. An appropriate error message informs the user that they have

attempted to mark off their session attendance at the incorrect time.

Student assistants may use the Demi System to view and print their list of selected sessions.

The Print Session service allows users to perform this functionality. The GET methods

provided by the Print Session service take the student number of the current user as a

parameter. These methods then query the database as to what sessions the user has selected in

order to populate a table on the interface (Figure 4.13).

The GET methods in the Print Session data service are reusable throughout the system, as

mentioned when populating the “Selected Sessions” table in the Session Selection Interface

(Figure 4.12). The reusability of these methods is a benefit of the modernization of the legacy

system which resulted in the removal of repeated code in two different classes.

 CASE STUDY MODERNIZATION USING DATA SERVICES

61

Figure 4.13. Print Session Interface

The Print Hours data service allows student assistants to request the total number of hours

that they have worked within a given date range. The GET method for this data service takes

in two Date parameters that signify the start and end of the range over which the hours are

summed. The method then queries the database for the sum of the hours within the date

range. The result of the query is then displayed in a table in the GUI for the user to view and

print if they wish.

Lastly, the Change Details data service provides the student assistant with the functionality to

update their personal information stored by the Demi System database. The GET method for

this service populates the interface with the user’s personal details, whilst the SET method

updates the changes which they have made. The SET method is initiated when the save action

is performed.

These services were clearly identified as separate logical components during analysis of the

Demi system. The program understanding phase proved useful in the generation of high-level

system representations. These system representations were of great use for the service

 CASE STUDY MODERNIZATION USING DATA SERVICES

62

discovery phase. The next modernization approach has no detailed program analysis phase,

but instead has an analysis of the inputs and outputs of the system during user interaction.

4.4. Black Box Modernization Approach

The black-box modernization approach applied to the Demi System followed the black-box

principles discussed in related studies (Chapter 2). The user interactions with the interface of

the legacy system were analysed to identify the inputs and outputs of the existing system

(Section 2.4). This knowledge of the inputs and outputs would be used to create modern

interfaces for the modernized Demi system (Section 4.4.1). The inputs and outputs of the

existing system also highlighted the request and response formats for the data services.

Thereafter, a more non-invasive approach was used to wrap the original system code as data

services. The identification of these data services, however, was performed by doing a

component-based analysis of the Demi system, which was a more invasive procedure. This

component-based analysis was necessary to identify the processes required to be transformed

into data services since not all existing system functionality could be published as services

(Section 4.4.2).

4.4.1. User Interface Modernization

Similarly to the white-box modernization approach, the interfaces for the black-box

modernization were designed to have the same look and feel as the original Demi System.

Therefore, all interfaces remained the same with the exception of the PrintHours interface

which was created as a separate JFrame class instead of a dialog, as it was in the original

Demi System. For the purposes of this investigation, to remain true to the black-box

modernization guidelines the modernized interfaces were developed in Java using the

Netbeans IDE to design the Graphical User Interface (GUI). The choice of Java as the

programming language was made to migrate the interface code away from the existing code

that the Demi System was developed in (Section 2.5.1).

The analysis of all of the inputs and outputs during interaction with the user interfaces of the

original Demi System revealed which data operations were required to perform certain

actions. These data operations would need to be split into logical components to form the data

 CASE STUDY MODERNIZATION USING DATA SERVICES

63

services. The interactions with the interfaces of the system were observed during use to

record all inputs and outputs (Table 4.3).

Interface Inputs Outputs

Home Login information Read messages on notice boards;

View name & student no. after log in;

View message if no workshop attended;

Divert to application if not found

Application Entering of all requested information List of lecturers email addresses;

Send email notification to lecturer;

Important notices regarding application

Attendance Confirm attendance of session Current session being attended;

Error notices if attendance not possible

Change

Details

Edit information to be updated View information for editing purposes

Session

Selection

Add a session to list of selected sessions;

Remove sessions from selected sessions

View list of selected sessions;

View list of available sessions;

View message if session fully booked;

Send email notification to lecturer

Print

Sessions

- View list of selected sessions;

Print list of sessions

Print Hours Specify date range to calculate total hours

worked

View total hours worked for given date

range;

Print total hours worked

Table 4.3. User Interactions with the Legacy System

The inputs and outputs recorded from this analysis could be split into data operations required

to be performed by the data services and functionality that could be performed by the client

application. Specifically, the printing functionality provided by the PrintSessions and

PrintHours interfaces would not be required to be implemented as a web service for this

investigation (Table 4.3). Similarly, the email notifications were not required to be

implemented as data services. Thus, the same challenges were met in the modernization of

the interfaces as with the white-box approach regarding email and printing (Section 4.3.2).

 CASE STUDY MODERNIZATION USING DATA SERVICES

64

In the case of the black-box modernization approach, a Java client was developed to control

the interfaces. This Java client would be required to interface with a .NET back-end which

would house the data services. The creation of the modernized system in this structure allows

for web service wrapping of the existing system code (Section 2.5.3). On the client-side of

the application, the implication of this design is the formatting of data types to transmit and

receive the correct requests and responses respectively.

4.4.2. Component Based Service Discovery

Similarly to the white-box modernization approach of the Demi System, the black-box

approach required some component-based analysis of the existing system to separate the data

operations from any other system functionality (Section 2.5.3). The classes existing in the

Demi System were organised in an Object-Oriented manner, as previously discussed. Thus

the data services were discovered by identification of logical components (Table 4.4).

Service Description

Application Handles applications to become a student assistant

Attendance Handles marking attendance for a session

Change Details Handles any updates to a student’s personal information stored on the system

Checks Performs data validation queries to populate tables on interfaces

Login Handles student verification and notice board message collection on login

Print Hours Handles queries to view hours worked over a specified date range

Session Selection
Allows student assistants to add and remove sessions;

Performs queries to retrieve selected sessions for the student logged in

Table 4.4. Web Services Discovered during Black-Box Modernization

In comparison to the J2EE environment for web service application development, the black-

box modernization approach made use of a combination of the J2EE and the .NET

frameworks (Figure 4.14). The grey-shaded blocks represent the portions of the modernized

Demi system which operate within the J2EE framework. The white blocks represent the

portions of the system operating in the .NET framework. It is thus clear to see that the data

services are controlled by the .NET environment, whilst the GUI operations are handled by

the J2EE environment.

 CASE STUDY MODERNIZATION USING DATA SERVICES

65

Figure 4.14. Adapted from “.NET Architecture” (Kachru and Gehringer 2004)

The .Net framework provides a language independent architecture in comparison to J2EE,

which is a platform-independent architecture (Kachru and Gehringer 2004). This language

independent nature of the .NET environment allowed the wrapping of original VB legacy

code in ASP.NET data services. The .NET framework is not dependent on one specific

programming language. This language integration is achieved through the common API that

is provided by the .NET framework. Compilers in the .NET framework compile source code

from all supported languages into an intermediate format. This black-box approach of

developing the services leaves all data connections to the database in their original format,

thus retaining the existing system functionality. This differs to the white-box modernization

approach, where all database connectivity had to be migrated from the existing system code

to Java code in the data services.

Similarly to the white-box approach, the data services developed from wrapping existing

system functionality were as a result of component-based analysis of the legacy system

(Table 4.4). The Login data service performed the data operations necessary for the inputs

and outputs of the Home interface (Table 4.3). The interface components were populated

with messages retrieved from the database by the GET methods of the Login service.

Furthermore, the CheckStudent method required for successful login to the system

performed similarly to that of the white-box modernized system (Figure 4.10). However, the

original Demi system code was called by the data service to perform this functionality.

For each of the rest of the data services, the Java client transmits the requests to the services

to retrieve responses required for display purposes on the GUI. The Application interface

Presentation
and

Access

Business

Logic

Connectivity

Runtime

 Interactive
GUI (Swing)

Web
Service
Clients

Client-side
Classes

ASP.NET
Services

ADO.NET SOAP

Java Runtime Engine

Common Language Runtime

 CASE STUDY MODERNIZATION USING DATA SERVICES

66

sends SOAP requests to the Application data service to retrieve the outputs required during

interaction. The ChangeDetails interface sends SOAP requests to the Change Details

data service to get student information to populate the interface. Once a user has made the

necessary changes to their information, the Change Details interface sends the SOAP request

to the service to set the user’s updated information. Similar requests and responses were

developed for the Attendance and Checks services in order for them to convey the correct

inputs and outputs required by the system user.

A difference from the white-box modernization approach occurred in the development of the

SessionSelection and PrintSession interfaces and the corresponding Session

Selection data service. The data service method which retrieves Session information from the

database was developed to return a Session object (Figure 4.15).

Figure 4.15. Excerpt from Session Class

Imports Microsoft.VisualBasic

Imports System

Imports System.Web.Services

Imports System.Runtime.Serialization

<Serializable()> _

Public Class Session

 Private SessionID As Integer

 Private CourseCode As String

 ‘Other attributes declared here

 Public Sub New()

 End Sub

 Public Property SessID() As Integer

 Get

 Return SessionID

 End Get

 Set(ByVal value As Integer)

 SessionID = value

 End Set

 End Property

 Public Property CCode() As String

 Get

 Return CourseCode

 End Get

 Set(ByVal value As String)

 CourseCode = value

 End Set

 End Property

 ‘Other properties implemented here

End Class

 CASE STUDY MODERNIZATION USING DATA SERVICES

67

A Session object is an instantiation of the Session class created in the legacy system

code. The Session class is written in the original VB code and contains properties for the

necessary attributes of a Session object (Figure 4.15). The Session class imports the

System.Runtime.Serialization namespace to allow the serialization and

deserialization of objects. Serialization of an object is the process of converting the object

into a format that is compatible for transfer over a network (Strawmyer 2003). There is more

than one format that the .NET framework provides for serialized objects, but the namespace

imported in this case serializes objects into a SOAP format. The transmission of this

serialized object as a SOAP response allows the client application to access all the object’s

properties (Figure 4.15). Thus, the Java client application that receives the Session object

as a SOAP response from a service request can access the specific Session attributes it

requires.

The benefit of implementing the data services and the client-side application using the

serialization of objects achieves interoperability between the J2EE and .NET frameworks.

The interoperability achieved is a result of using SOAP as the message transfer protocol. The

development of web services in this manner thus proves that interoperability is achievable

through the successful communication of the client application developed in one environment

and the services developed in a different environment.

4.5. Conclusion

The Demi System provides students at the Department of Computing Sciences at NMMU

with an automated system to apply to become a student assistant and if their application is

successful, the student assistant can use the system for a variety of functions (Section 4.2).

These functions include session selection and removal, session attendance, printing lists of

selected sessions and calculating total hours worked over a period of time.

The Demi System was selected as an appropriate candidate for modernization of data services

due to the fact that the language in which it was developed can no longer be supported in the

department (Section 4.2). The Demi System therefore became the subject of two

modernization approaches, namely white-box and black-box. The modernization approaches

were applied to the Demi System in order to create data services which conformed to the

 CASE STUDY MODERNIZATION USING DATA SERVICES

68

requirements of the SOA (Section 3.5). The provision of these data services required

component-based analysis of the existing system in both cases of modernization approaches.

The white-box modernization approach saw a further, more detailed investigation into the

original Demi System known as program understanding (Section 4.3.1). This analysis

provided the developer with the knowledge of system functionality and complexities for the

code migration phase. The code migration phase enabled the modernization of the existing

Demi System code into a new architecture with a modernized interface, yet still providing

users with all the same functionality and look and feel as the original system (Section 4.3.2).

The black-box modernization approach included the process of examining inputs and outputs

of the original system during user interaction (Section 4.4.1). This analysis of the user’s

interaction with the system resulted in the discovery of distinct data components. These data

components were then individually wrapped in web services as distinct data services (Section

4.4.2). As this investigation only required the modernization of data services, any original

system functionality not related to the data services was migrated to the modernized system

language (Section 4.4.1). The component-based discovery of data services and the web-

service wrapping of these identified components was effectively implemented, as identified

in similar studies (Section 2.6).

The services developed by the modernization approaches were not only developed to satisfy

structural requirements (Section 3.6), but will have to be evaluated in terms of quality metrics

for data services, effort required by the developer to modernize the services as well as the

effectiveness of the data services. Thus usability evaluation will be necessary to determine

the effectiveness of the modernized services. These measures for evaluation contribute

towards a comprehensive evaluation framework for modernization.

 69

C h a p t e r 5 : C o m p r e h e n s i v e E v a l u a t i o n F r a m e w o r k

5.1. Introduction

The application of the white-box and black-box modernization approaches to the case study

has produced two modernized systems using web services. These modernized systems

operate within an SOA where they provide data as a service. The application of a

comprehensive evaluation framework to the comparison of these two modernization

approaches can determine their equivalence. A holistic evaluation strategy based on multiple

facets is proposed in this investigation as the necessary instrument for the determination of

modernization success (Section 5.2). The comprehensive evaluation consists of three

components, each based on separate related studies.

The first branch will cover the evaluation of QoS metrics of the data services generated from

the modernization (Section 5.2.1). The second branch will evaluate the effort required by the

developer to modernize the system using a specific modernization approach (Section 5.2.2).

The third and last branch evaluates the effectiveness of the generated services based on

empirical studies (Section 5.2.3). The results of a pilot study of this evaluation framework are

presented to motivate its relevance (Section 5.2.4).

A multi-faceted evaluation framework for the modernization of systems is required to be able

to evaluate the design, process and outputs of a modernization approach in terms of its

 COMPREHENSIVE EVALUATION FRAMEWORK

70

success. The combination of three evaluation components that complement one another is

necessary to create this framework and address the research question (Section 1.5). The

application of the combination of the three evaluation strategies presented contributes to a

deeper understanding of the success of the modernization approach being studied.

5.2. Comprehensive Evaluation Framework

This investigation requires evaluation of the white-box and black-box modernization

approaches applied to the existing system to determine their suitability for the development

of data services. Data services that conform to SOA requirements were a result of legacy

system modernization efforts. It is necessary to evaluate the modernization approaches, as

well as the services generated by each of these approaches.

It is advisable to use a variety of metrics when comparing a software product to another

(Tullis and Albert 2008). A framework for the evaluation of the foundation, process and

outputs of legacy system reverse engineering has been proposed (Chiang et al. 1997). This

framework was developed to ensure the good design of a reverse engineering method as well

as validate the process of and outputs of the reverse engineering approach. This framework

consists of eight criteria related to reverse engineering methodologies. The relevance of this

framework, however, is the ability to ensure good design of the reverse engineering process

as well as ensuring quality outputs from this process. The outputs of the database reverse

engineering are measured through empirical studies.

The development of a comprehensive evaluation strategy based on three distinct evaluation

legs aims to holistically compare the modernization approaches and their outputs. The three

legs of evaluation are:

 Effort required by the developer to modernize the system (Section 5.2.1);

 Quality of Service (QoS) of the data services generated (Section 5.2.2); and

 Effectiveness of the data services measured through empirical evaluation (Section

5.2.3).

Related studies record the benefits of each of these branches of evaluation. The combination

of these studies forms the comprehensive evaluation framework which will be used to

compare the two modernization approaches. These measures have been selected to be

combined to provide a framework where the three evaluation strategies complement one

 COMPREHENSIVE EVALUATION FRAMEWORK

71

another. Each of the evaluation branches is distinct from the other; therefore no overlap of

analysis exists. The results obtained from a comprehensive evaluation utilising this

framework could provide a more detailed understanding of the success of the modernization

approach being evaluated. A pilot study investigation of the application of the comprehensive

evaluation framework is necessary to determine its validity (Section 5.3).

5.2.1. Software Metrics and Developer Effort

A suite of metrics for the measurement of complexity in object-oriented (OO) code is

proposed (Chidamber and Kemerer 1994). The metrics are based on measurement theory and

are presented as six distinct metrics created specifically for measuring components

contributing to the size and complexity of OO design (Table 5.1).

Metric Explanation

Weighted Methods per Class (WMC)
The weighted summation of the number of methods per

class

Depth of Inheritance Tree (DIT)
The height of the class in the inheritance tree of class

hierarchy

Number of Children (NOC)
Number of immediate subclasses of a class in the class

hierarchy

Response For a Class (RFC)
The set of all methods that can be invoked as a result of a

message to the object

Lack of Cohesion in Methods (LCOM)
The number of disjoint sets formed by the intersection of

sets of instance variables for methods pertaining to a class

Coupling Between Objects (CBO)
The number of non-inheritance related couples with other

classes

Table 5.1. The Candidate Metrics

The candidate metrics were developed to be independent of any programming language

(Chidamber and Kemerer 1991). The metrics were developed based on three principles

concerning the design of classes, namely:

 Definition of objects;

 Attributes of objects; and

 Communication between objects.

 COMPREHENSIVE EVALUATION FRAMEWORK

72

A useful way to understand the development of object-oriented systems is to measure the

complexities of the different objects. The metrics proposed were collected using automated

tools specifically for their research (Chidamber and Kemerer 1994). It is reported that this

suite of OO software metrics were well used after their development (Concas et al. 2010).

The number of methods per class in an OO system, as well as the complexity of these

methods (WMC), is an indication of the amount of time and effort required by the developer

to create and maintain the class (Table 5.1). If a parent class contains a larger number of

methods, a larger impact is made on the subclasses (Chidamber and Kemerer 1994). This is

due to the fact that they inherit all methods in the parent class. It is also believed that the

larger the number of methods, the more likely the class is application specific. This could

negatively impact the reusability of the class. The equation for the summation of m methods

for this WMC metric is given by equation (5.1).

(5.1)

The weights given to the methods (ci) for this investigation are determined by cyclomatic

complexity analysis of the method. The cyclomatic complexity for each method is calculated

by finding the number of independent paths through the method. This measure is based on

graph theory and was developed by Thomas McCabe in the 1970’s (McCabe 1976). The

equation used for cyclomatic complexity is given by equation (5.2).

(5.2)

In the calculation of V(G), e is the number of edges of the graph G and n is the number of

nodes of G. If G is a directed graph representing the structure of the method, then each node

in G is a block of statements where the flow is sequential, and each directed edge, or arc,

represents a branch taken by the method (Nath 2009). The arc represents the transition from

one block of statements to another, thus forming the directed graph (Gupta 2004). From the

example depicted (Figure 5.1), the calculation of the cyclomatic complexity can be computed

as 2 using equation (5.2).

V(G) = e – n + 2

 COMPREHENSIVE EVALUATION FRAMEWORK

73

Figure 5.1. Directed Graph of Cyclomatic Complexity

The deeper a class is in a hierarchy of classes (DIT), the greater the number of methods it

inherits from its hierarchy (Table 5.1). This makes behaviour of the class more complicated

to predict (Chidamber and Kemerer 1994). This greater tree depth implies larger design

complexity as more methods and classes exist. However, the deeper the class is in the

hierarchy, the greater the ability to reuse the inherited methods.

The larger the number of subclasses (NOC), the greater the reuse of methods from the parent

class, due to inheritance (Table 5.1). Incorrect parent class abstraction is another possible

implication of a large number of subclasses (Chidamber and Kemerer 1994). This could

increase the chances of misusing a subclass. The number of subclasses that a class has could

show the possible influence of that class on the design of the system. This means that if a

class has many subclasses, there may be more need for testing each of the methods of that

class.

The set of methods of a class that could possibly be invoked in response to a request received

by the object of the class is known as RFC (Table 5.1). There is also a measure of the

communication that is likely to occur between the class and other classes (Chidamber and

Kemerer 1994). If the number of methods that are invoked due to a response is large, then the

testing of the class becomes more complex due to the need for a deeper understanding of the

if x < 5

then

x = x + 1

else

x = x * 2

Next block of

statements

 COMPREHENSIVE EVALUATION FRAMEWORK

74

code. The class itself is more complex if it contains a greater number of methods that could

be invoked.

The count of pairs of methods where the similarity of these methods is zero minus the count

of method pairs whose similarity is not zero describes the LCOM (Table 5.1). The greater the

number of similar methods, the more cohesive the class is (Chidamber and Kemerer 1994).

This confirms the measure of inter-relatedness between elements of a program. The

cohesiveness of the methods in a class is a positive aspect and it implies good OO design,

such as encapsulation. This measure could thus help to identify flaws in the design of the

classes. The equation for calculating LCOM is given as equation (5.3) (Gupta 2004).

(5.3)

To calculate the LCOM for a class, consider each method pair in the class and if they access

distinct sets of attributes then increase P by 1. Otherwise, if they share at least one attribute

then increase Q by 1. A zero value indicates that the class is cohesive and well designed

(Gupta 2004). An LCOM value of greater than zero, however, implies that the class may need

to be redesigned as two separate classes.

The idea of an object being coupled to another object because it acts upon the other object

describes the CBO (Table 5.1). More specifically, an object’s method that uses the methods

or variables of the other object describes this coupling. The extensive use of coupling objects

negatively impacts the reuse and modular design of a class (Chidamber and Kemerer 1994).

The more independent a class is, the higher the possibility for reuse of that class in another

application. Coupling should be kept to a minimum to improve modularity as well as

encapsulation. This could also improve the maintainability of the code, since less change to

other parts of the design is necessary due to the reduced coupling of object classes. This

measure of CBO can imply the complexity of testing required for the various parts of the OO

design.

For the purposes of this study, the software metrics describing the weighted methods per

class (WMC) will provide a useful measure to determine effort required by the developer to

create the data services from the legacy code. The DIT and NOC metrics will prove useful in

LCOM = P – Q, if P>Q

 0 otherwise

 COMPREHENSIVE EVALUATION FRAMEWORK

75

the verification of complexity of code created by the developer. CBO metrics collected will

also prove useful in determining the reusability of classes of code in the data services

generated (Section 5.2.2), but not as a measure for developer effort. The other metrics

presented, namely LCOM and RFC will not be necessary for this study and will not be used

in the evaluation of the data service generated by the two modernization approaches.

5.2.2. Performance Metrics and QoS

Seven quality attributes need to be adhered to when generating services for a SOA (Bianco et

al. 2007). QoS metrics are essential in selecting the best possible service development

execution plan with regard to budget and time constraints (Jeong et al. 2009). These QoS

attributes are similar and can be related to one another (Table 5.2).

Seven Quality Attributes (Bianco et al. 2007) Major Quality Attributes (Jeong et al. 2009)

Performance Performance

Operation Cost

Availability Availability

Accessibility

Security Security

Testability -

Interoperability Interoperability

Modifiability -

Reliability Reliability

Table 5.2. Quality of Service Attributes

Performance is measured in terms of time taken for responses to be returned after a request to

the service (Bianco et al. 2007). This measure of latency is indicative of the operation cost of

invoking the service (Jeong et al. 2009). Availability is defined as a service’s ability to be

available despite server maintenance or system overload (Bianco et al. 2007). The availability

of a service thus determines its accessibility at any point in time (Jeong et al. 2009).

Security is defined in terms of confidentiality and protection of the data being accessed by a

service. Services are also required to be testable for new or updated versions (Bianco et al.

2007). The service is required to be interoperable with various platforms and other services

that it interfaces with. The service’s modifiability is measured with respect to its reusability.

 COMPREHENSIVE EVALUATION FRAMEWORK

76

The reliability of a service is defined in terms of the amount of system errors and the

recovery of the system as a result of these errors (Jeong et al. 2009).

Data security and service reusability are emphasised for the development of data services

(Borkar et al. 2006). Access to the data services must be controlled, as well as query

processing security. The reuse of data services is an important characteristic to adhere to and

is achieved by encapsulation of method call details. Latency, the time taken to achieve results

after submitting a query, is also emphasised as a quality attribute that is required for data

services. Improved latency leads to improved performance.

For the purposes of this investigation, a consolidated list of QoS attributes needs to be

identified to measure data services specifically. The comprehensive evaluation framework

will thus include specific quality of data service metrics on which to measure the outputs of a

modernization approach. The QoS metrics that are emphasised and commonly used for data

services include:

1. Performance;

2. Interoperability;

3. Security;

4. Reliability; and

5. Modifiability/Reusability.

Testability has been excluded from the consolidated list of metrics as it is reported as being a

minor quality attribute (Jeong et al. 2009). Availability and accessibility are reported as a

result of ensuring the security of data services (Borkar et al. 2006), thus only security is

considered for this investigation. Operation cost is implicated by the measurement of

performance of a service. The five QoS metrics listed will form the basis of the evaluation on

quality of the data services generated by the white-box and black-box modernization

approaches.

5.2.3. Effectiveness of Data Services

Numerous design and quality guidelines for the development of services have been suggested

to assist the developer in the modernization of legacy systems. After these services have been

deployed, the user requires an effective and efficient means of carrying out the functionality

provided by these services. Effectiveness is defined as a general goal as to how well a

product performs the task that it is supposed to (Sharp et al. 2007). Empirical research will be

 COMPREHENSIVE EVALUATION FRAMEWORK

77

conducted in the form of a usability evaluation to determine the effectiveness of the data

services generated by the modernization approaches. Usability testing is defined as the

evaluation approach that involves measuring users’ performance and analyzing their

satisfaction with the system under evaluation in a formal controlled environment (Tullis and

Albert 2008). Usability testing is conducted in real-world laboratory conditions under the

supervision of the evaluator who collects data from the evaluation (Miller and Jeffries 1992).

It is stated that empirical research aims to explore, describe and forecast natural, social or

cognitive occurrences using data collected during observation or experimentation (Sjøberg et

al. 2007). Approaches to empirical studies include both qualitative and quantitative methods.

Quantitative methods are explained as collecting numerical data and analysing it by statistical

procedures. On the other hand, qualitative data is collected as text or images from

observations, interviews or questionnaires (Sjøberg et al. 2007). Lastly, it is explained that

there are also design components that may be used to reinforce the empirical research with

regard to reducing the occurrence of internal threats to validity.

Empirical evaluations are used to support the comparative analysis between an existing

legacy system modernization tool and MELIS, the legacy system migration tool (Colosimo et

al. 2008). The hypothesis of the evaluation stated that MELIS significantly reduced the effort

required to migrate legacy code in comparison to existing tools. The experiment was

designed to allow two groups of users to test the new tool, MELIS, and the original

modernization tool. The experience of the users was under investigation in the hopes that the

new modernization tool could bridge the gap between software engineers with differing

experience levels. Counterbalancing was used to remove bias of group ability.

Analysis of the data collected included a two-way Analysis of Variance (ANOVA) test to

validate the effects of other variables on a dependent variable (Colosimo et al, 2008). The

dependent variable included both effort required to perform the migration tasks and effort

required to understand the original program. The ANOVA tests revealed that the effort

required to perform the migration tasks was significantly reduced. The Multifactorial

ANOVA test has also been used to analyse the relationship between time taken to complete a

task and other experimental variables (Turpin and Scholer 2006).

 COMPREHENSIVE EVALUATION FRAMEWORK

78

5.3. Validation of Framework

To validate the comprehensive evaluation framework designed for this investigation, a pilot

study (Appendix A
1
) was conducted (Barnes and Cilliers 2010). The white-box

modernization approach was applied to a subsystem of the Demi System (Section 4.2) as a

proof of concept. The validation of the evaluation framework was conducted using the

identified three legs of evaluation. The experiment was designed to allow seven participants

to perform three tasks on the modernized components of the Demi System. The participants

gathered for this evaluation were all required to be existing student assistants so that they

would have access to the system as well as have selected sessions. There were one female

and six male participants for this study. The developer effort and QoS metrics, with the

exception of performance metrics, were gathered separately from the user study metrics.

The QoS evaluation of the data services generated was derived from the QoS metrics

identified (Section 5.2.2). The QoS evaluation was conducted using four metrics, namely:

 Performance;

 Reliability;

 Interoperability; and

 Reusability.

Performance metrics were gathered for each web service method called during use with the

system. Latency of the service calls were measured as the amount of time the service took to

send a response to a service request. The latency was obtained by using the current system

time in milliseconds at the time of the service request to determine the start time. The elapsed

time was then calculated as the start time subtracted from the current system time in

milliseconds after the response from the service. The measurement of performance in this

way has been applied in similar experimental studies (Mulligan and Gračanin 2009).

The reliability of the data for the Demi system could not be measured quantitatively, but was

catered for in the design of the system. Validation of data entered into the interfaces occurred

on the client-side of the application ensuring that only valid data was entered into the

database by the data services. The retrieval of data from the database made use of methods

from the Checks data service (Section 4.3.3) to ensure that only reliable data would be

displayed.

1
 Published in the proceedings of the South African Telecommunications Network and Applications Conference

(SATNAC), 2010

 COMPREHENSIVE EVALUATION FRAMEWORK

79

Interoperability was another design consideration during the development of the data services

and the client application. Interoperability through platform independence was ensured

through the use of the J2EE framework for the development of the modernized Demi System

(Section 4.3.3). The use of SOAP requests and responses for communication with the data

services also ensured the interoperability of the modernized system. Reusability of these web

services on any platform is a result of the interoperability of the system. Software metrics

were also used to measure the reusability of the code in the web service client (Barnes and

Cilliers 2010). Low reusability was measured in the client-side classes due to the migration

of data operations to data services. The lack of reusability was implicated by the values

calculated for the DIT and NOC metrics (Section 5.2.1). The other consequence of low DIT

and NOC measures, however, is the reduced complexity and increase in prediction of

behaviour of the class.

With regard to the measure of developer effort in modernizing the existing system code,

complexity of the code is a serious consideration. The low complexity of the classes implied

by the DIT and NOC metrics are not the only means to calculate complexity of code. The

WMC measure provides a more detailed analysis of methods written by the developer. Each

method is calculated in terms of its cyclomatic complexity. The sum of these complexities of

all the methods for a class reveals the WMC (Section 5.2.1). The developer effort evaluation

revealed that the Home, Details and PrintHours classes (Section 4.3.3) showed the

highest values for WMC. The indication is therefore that these classes required more effort to

develop than the other classes. Due to the white-box approach used for this pilot study, both

the client-side application as well as the data services required code migration (Section 4.3.2).

The implication of this approach is that more effort was required by the developer to create

the data services as well as migration of the client-side functionality.

For the effectiveness of the data services branch of the evaluation framework, both

quantitative and qualitative data was gathered during user tests (Section 5.2.3). The seven

participants performed three tasks on the system in a lab environment under observation by

the evaluator (Barnes and Cilliers 2010). Several metrics were collected during user testing,

namely:

 Time taken per task;

 Task success;

 COMPREHENSIVE EVALUATION FRAMEWORK

80

 Task completion;

 Error rates per task; and

 Self-reported metrics.

The time on task, task success, task completion and error rates metrics measure performance

of the system (Tullis and Albert 2008). The satisfaction of the user is gauged by the

collection of self-reported metrics from instruments such as a questionnaire.

The performance metrics collected during the pilot study revealed that all participants (n = 7)

were able to complete all three tasks (Appendix B). This positive result for task completion

indicates the ability of the services to effectively perform the tasks required by the users.

Furthermore, the task success results yielded that all seven participants completed all three

tasks successfully. High error rates were observed for the third task despite the completion

and success rates. The cause of the high error rates was identified as a navigation issue and a

recommendation for improved ease of navigation was made.

The times taken to complete each task were recorded for all seven participants. The nature of

the second task resulted in a lower mean time. The second task involved the users printing

their list of selected sessions. No input was required from the users for this task, thus the

results could be retrieved from the system quickly. The first task, which requested users to

update their personal information, obtained a higher mean time than the second task. The

third task, which requested users to print their total hours worked over a specified date range,

also resulted in a higher mean time than the second task. Both the first and third tasks

required participants to enter information into the interfaces, thus resulting in higher mean

task times than the second task. The data services were able to effectively provide the results

that the users required in consistently low times for all tasks.

Lastly, the self-reported metrics to determine user satisfaction of the system were collected

by means of a recognised instrument, namely the System Usability Scale (Tullis and Albert

2008). The System Usability Scale (SUS) is a post-session questionnaire consisting of ten

statements, each with a 5-point Likert scale of agreement. The odd numbered statements are

worded positively whilst the even numbered statements are worded negatively. This

instrument has shown more consistent ratings at relatively small sample sizes (Tullis and

Stetson 2004). Due to the alternating positive and negative statements, normalization of the

 COMPREHENSIVE EVALUATION FRAMEWORK

81

score for each statement of this questionnaire is necessary to sum the scores and achieve an

overall result. Consistently high SUS scores were observed for all seven participants with a

mean score of approximately 87% (Barnes and Cilliers 2010).

For this investigation, the QoS standards were catered for during design of the data services,

as well as during use of the modernized system. Software metrics used to determine

developer effort required to modernize the system showed that significant effort was required

by the developer to migrate existing system code to a new architecture (Barnes and Cilliers

2010). The results of the modernization approach were then evaluated by means of user

studies. The data services generated through modernization performed their tasks effectively.

Usability issues were identified during this evaluation and recommendations were made.

Furthermore, user satisfaction with the modernized system was observed.

If only the evaluation of developer’s effort were applied to the modernization of this system,

the results would indicate that the modernization approach was effort intensive. A high

developer effort result could indicate that the modernization approach may not be favourable.

The developer’s effort evaluation was combined with the user evaluation, however, where

positive feedback in terms of user satisfaction and performance was achieved. Furthermore,

the adherence to QoS guidelines for the development of data services resulted in successful

development of the modernized system. After consideration of all results obtained from

evaluation, the benefits of the applied modernization approach outweigh the negatives, thus

indicating successful modernization.

5.4. Conclusion

The development of a comprehensive evaluation framework has been presented to evaluate

the success of a modernization approach (Section 5.2). The framework consists of three

distinct evaluation strategies. The evaluation strategies are not weighted in the framework,

but complement one another in the determination of modernization success.

The first evaluation strategy contributing to the evaluation framework is developer effort to

modernize a system (Section 5.2.1). Software metrics such as WMC, NOC and DIT can be

used to describe complexity of code, and thus indicate the time and effort required by the

developer to create a class of code. The second evaluation strategy that the evaluation

 COMPREHENSIVE EVALUATION FRAMEWORK

82

framework consists of is Quality of Services generated by modernization (Section 5.2.2).

Various quality attributes of web services exist and those pertaining to data services in

particular should be adhered to in the generation of data services through modernization. The

third and final evaluation strategy branch of the comprehensive framework involves user

evaluation to the modernized system (Section 5.2.3). Performance and user satisfaction

results can be obtained from user evaluation to measure effectiveness of the data services

generated from modernization.

The outcome of the validation of the comprehensive evaluation framework shows how the

combination of differing evaluation strategies is beneficial to judging modernization success

(Section 5.3). The evaluation framework was applied to the white-box modernization of a

small subsystem of the existing Demi System. This pilot study was conducted to validate

whether the comprehensive evaluation framework would be beneficial in the evaluation of

success of a modernization approach. Results from the validation showed that when only one

evaluation strategy is applied a single, perhaps misleading, result is obtained. When results

from the three evaluation strategies of the comprehensive framework were combined, a

clearer understanding of whether the modernization was a success was achieved. This

framework will be applied to the comparison of the two different modernization approaches

used for the Demi System case study to determine which approach, if any, is more suitable

for the generation of data services.

 83

C h a p t e r 6 : A n a l y s i s o f R e s u l t s

6.1. Introduction

A comprehensive evaluation framework consisting of three distinct evaluation strategies has

been presented to determine the success of a modernization approach. The application of this

evaluation framework to the white-box and black-box modernization approaches will form

the comparative analysis of the two approaches.

Experiments must be designed for each of the three evaluation strategies in the

comprehensive evaluation framework (Section 6.2). The experiment to measure developer

effort is designed using software metrics (Section 6.2.1). The experiment to measure QoS of

the data services generated from modernization is designed using the QoS guidelines for data

services (Section 6.2.2). The experimental design for effectiveness of the modernized system

is presented in terms of empirical studies (Section 6.2.3). The results of each of these

experiments combined intend to determine which of the white-box or black-box

modernization approaches is more suitable for the provision of data services from

modernization (Section 6.3). The application of each of these evaluation components to

evaluate the case study modernization in terms of the developer’s effort, the QoS and the

effectiveness of the data services addresses its own research question on how this evaluation

is conducted (Section 1.5).

 ANALYSIS OF RESULTS

84

6.2. Experimentation Design

The metrics chosen for a comparative analysis are product dependent. The development of

the comprehensive evaluation framework combines three distinct metrics to evaluate the

design, process and outputs of a modernization approach. The experiments for each of the

three branches of the evaluation framework must be designed to suit the gathering and

analysis of data regarding the metrics.

The application of software metrics to the modernized code will provide an indication as to

how much effort was required by the developer to modernize the existing system (Section

6.3.1). These software metrics as well as other design guidelines must be adhered to for the

production of high quality data services (Section 6.3.2). Empirical studies can provide insight

into user satisfaction and effectiveness of the data services generated by the modernization

approaches (Section 6.3.3). The empirical study will follow the guidelines dictated for user

testing.

6.2.1. Developer Effort Evaluation

Developer effort can be measured quantitatively by the calculation of certain code complexity

metrics with regard to the code written by the developer (Chidamber and Kemerer 1991). The

specific metrics useful in the investigation to compare the white-box modernization approach

to the black-box approach are as follows:

 Weighted Methods per Class (WMC);

 Depth in Inheritance Tree (DIT); and

 Number of Children (NOC).

Each of these metrics is collected by analysis of the classes of code developed. For the

purposes of the comparative investigation these metrics will be calculated on all the

modernized code that the developer was required to migrate.

Thus, in the case of the white-box modernization approach all client-side functionality classes

(Section 4.3.2) will be analysed as well as all the data service classes (Section 4.3.3). In terms

of the black-box modernization approach all the classes modernized during user interface

modernization (Section 4.4.1) will be analysed. The data service classes will not be analysed

for the black-box modernization as the methods used in this case contain the original system

code, according to the black-box modernization approach (Section 4.4.2).

 ANALYSIS OF RESULTS

85

The WMC metric will be calculated for each class by summing the cyclomatic complexities

of all the methods in the class (Equation 5.1). The cyclomatic complexity can be calculated

for each method by identifying the number of independent paths in the method (Equation

5.2). The DIT and NOC metrics are both calculated by the analysis of class hierarchy. The

DIT metric is calculated as the depth of the class in the inheritance tree, whereas the NOC

metric is calculated by summation of the number of children that a class has.

The results for the three metrics presented here will be compared to one another for the

white-box and black-box approaches to determine which approach required less effort by the

developer. After the complexity and effort measurements of the modernized code, it is

necessary to determine the quality of the services generated during both modernization

approaches.

6.2.2. Quality of Service Evaluation

The data services generated by both modernization approaches need to be evaluated in terms

of the quality requirements identified for data services (Section 5.2.2). The resulting

comparison in these quality metrics will be used to determine if one of the modernization

approaches produces higher quality data services than the other. The QoS metrics that need to

be adhered to are:

 Performance;

 Interoperability;

 Security;

 Reliability; and

 Modifiability/Reusability.

Not all of these characteristics can be measured quantitatively. In the case of the Security,

Reliability and interoperability metrics, guidelines are met for the development of services

that adhere to these characteristics. Security and Reliability are characteristics of SOAP

services which is a reason why they were chosen for implementation of the data services

(Chapter 3).

Interoperability was considered in the design of the modernized applications. The white-box

modernization approach made use of the J2EE framework which is platform-independent,

thus promoting interoperability of the services (Section 4.3.3). The black-box modernization

 ANALYSIS OF RESULTS

86

approach used a hybrid of the J2EE and .NET frameworks for the provision of data services

(Section 4.4.2). The ability of the Java client to communicate with the .NET web services is a

result of the protocols that the SOAP-style data services adhere to (Chapter 3). The black-box

services therefore exhibit interoperability through this protocol-enabled communication

between the differing client and web service environments.

The measurement of the performance of the data services can be conducted by using an

approach identified in similar experimental studies (Section 5.3). The difference in the

current system time before the service request is sent and after the response is retrieved can

determine latency (Mulligan and Gračanin 2009). The values for the elapsed time can be

calculated in milliseconds and recorded in a log file during runtime of the modernized

system. The captured performance data for each service method can then be compared for the

services generated from the different modernization approaches. The comparison of mean

latencies can determine whether the following null hypothesis (Section 1.5) can be rejected:

H0.1.1: Mean service method latencies for black-box and white-box modernized data

services are not equivalent

H1.1.1: Mean service method latencies for black-box and white-box modernized data

services are equivalent

Reusability can be measured by analysis using software metrics. The CBO metric provides a

good indication of code modularity and reusability (Chidamber and Kemerer 1994). The

CBO measurement will be determined for each of the data services created from the white-

box and black-box modernization approaches. The CBO metric is a measure of the

relationship between classes. This metric is calculated for a class A by counting the number

of classes that A references as well as the number of classes that reference A. If, however

another class, B, is referenced by A and A references B then B is only counted once. If

differences exist in these results, it could indicate that the data services of one approach are

more reusable than the other.

6.2.3. Effectiveness of Data Services Evaluation

The effectiveness of the data services generated by the two modernization approaches will be

determined through user testing. The user evaluations will be conducted in a formal,

controlled lab environment under the supervision of an evaluator (Section 5.2.3). This

experiment has been designed to gather performance and self-reported metrics to determine

 ANALYSIS OF RESULTS

87

the effectiveness of the data services as well as user satisfaction with the modernized

systems. Each modernized system needs to be evaluated, thus allowing the design of the

system to be the independent variable during analysis of the results.

The experiment will be conducted using a within-subjects design (Tullis and Albert 2008).

The within-subjects design implies that each participant will evaluate both modernized

systems. To reduce bias in the data gathered, counterbalancing will ensure that the order in

which the systems are used will be alternated between the users. Specifically, half of the

participants will first test the system generated by the white-box modernization approach

followed by the black-box system and in reverse order for the other half of the participants.

The participants for this experiment are all required to have had experience using the original

Demi System. The sample population, despite being a sample of convenience, must be

representative of the actual population. Therefore, both male and female students from a

variety of ethnic groups must be selected. Furthermore, both undergraduate and postgraduate

student assistants must be included in the sample.

Background information such as system experience and biographical information will be

collected to understand the demographics of the sample population. The comparative

evaluation will consist of five tasks to be completed on each modernized system (Appendix

C). The five tasks include:

 Application to be a student assistant using a provided user persona;

 Selection of sessions to assist;

 Removal of a session;

 Viewing the current list of selected sessions after additions and removals; and

 Updating personal information on the system.

These five tasks will be repeated with slightly different information for the modernized

system second in order.

The NMMU Department of Computing Sciences has a formal usability lab fitted with

observation and eye-tracking hardware. The participants will evaluate the two modernized

systems in this lab so that usability data can be gathered throughout the evaluation. The

performance metrics that will be gathered include:

 ANALYSIS OF RESULTS

88

 Time on task;

 Task completion;

 Task success; and

 Error rates.

The times recorded per task are captured by the eye-tracking software on the usability lab

machine. Screen recordings of all of the participants’ actions are performed by the eye-

tracking software. The task completion, success and error rates are gathered by the

evaluator’s observation of these screen recordings.

To determine a participant’s satisfaction with a software product, self-reported metrics need

to be collected (Tullis and Albert 2008). The participants will complete the System Usability

Scale (SUS) questionnaire after the use of each modernized system (Appendix C). The SUS

will therefore be used as a post-task questionnaire.

After both modernized systems have been evaluated by the participant and each system’s

SUS questionnaire has been completed, a modified SUS post-test questionnaire will be given

to the participant (Appendix D). This modified instrument consists of the same ten statements

as the original instrument. The difference, however, is the alteration of the agreement scale.

The purpose of this post-test SUS is to ask the participants to compare the first system to the

second system. The results of these post-task and post-test questionnaires can be normalised

and compared to one another for both the white-box and black-box modernized systems.

Combining the results from all three evaluation components will suggest the most suitable

modernization approach for the generation of data services in this case study.

Descriptive statistics will be applied to the biographical information gathered from the

participants to describe the sample population. The data collected during the usability

evaluation will need to be compared for the two modernized systems. Comparative statistics

such as the Analysis of Variance (ANOVA) test will be used to validate the null hypothesis

that the effectiveness of the modernized data services are equivalent (Devore and Farnum

2005).

To compare the two modernization approaches in terms of task completion times during use

of the modernized systems, the ANOVA test will aid in testing a null hypothesis of the form:

 ANALYSIS OF RESULTS

89

H0,2,1: Mean task completion times for black-box and white-box modernized data services

are not equivalent.

H1,2,1: Mean task completion times for black-box and white-box modernized data services

are equivalent.

Similarly, when comparing the number of errors observed during use of the white-box

modernized and black-box modernized data services the null hypothesis will take the form:

H0,2,2: Mean error rates for black-box and white-box modernized data services are not

equivalent.

H1,2,2: Mean error rates for black-box and white-box modernized data services are

equivalent.

Lastly, the scores obtained from the SUS questionnaires will be compared with regard to the

following null hypothesis:

H0,2,3: Mean SUS scores for black-box and white-box modernized data services are not

equivalent.

H1,2,3: Mean SUS scores for black-box and white-box modernized data services are

equivalent.

ANOVA will be used to compare all performance and user satisfaction metrics collected

during the user evaluation. The results of each of these hypotheses will be analysed in order

to determine whether the following null hypothesis (Section 1.5) can be rejected:

H0.2: Effectiveness of black-box and white-box modernized data services is not equivalent

H1.2: Effectiveness of black-box and white-box modernized data services is equivalent

6.3. Results

The analysis of the data gathered during the application of the comprehensive evaluation

framework to the modernized Demi systems is necessary to formulate results. The framework

was applied in a comparative analysis of the two modernization approaches to determine

which approach is more suitable for the generation of data services in the case of the Demi

System.

The developer effort results are discussed after analysis by the use of software metrics on the

modernized code of the two resulting systems (Section 6.2.1). The generation of good quality

data services is analysed for each modernization approach (Section 6.2.2). The performance

of the data services is compared for the two modernized systems using a sample of calls to

 ANALYSIS OF RESULTS

90

each data service method. Lastly, the results of the user studies on each modernized system

are compared to one another to determine if there is a significant difference in perception or

performance between the two systems (Section 6.2.3). The results of the usability evaluation

give rise to the effectiveness of the data services created from modernization.

The combination of results from the three branches of the evaluation framework will be

interpreted to determine if one modernization approach is more suitable than the other for

modernization of a system to data services. The use of more than one metric to evaluate the

comparison of the modernization approaches aims to provide a more holistic understanding

of the entire modernization approach and its success (Section 5.2).

6.3.1. Developer Effort Results

Software metrics to measure code complexity were applied to the white-box and black-box

modernized systems. The WMC, DIT and NOC metrics were calculated for all client and

service classes for the white-box modernized code. The WMC metrics for the client classes

of the white-box and black-box modernized systems may be compared (Figure 6.1).

Figure 6.1. WMC Comparison for White-Box and Black-Box Modernization

 ANALYSIS OF RESULTS

91

The implementations of the white-box and black-box client classes differed slightly. The

number of methods for the client classes was also calculated for both the white-box and

black-box modernized systems (Figure 6.2). The increase in the WMC metric for the black-

box SessionSelection class implies that the class required more effort to develop

(Figure 6.1). The WMC value was larger due to an extra method required during

development of the class (Figure 6.2). The extra method was created to process the data

retrieved from the Session Selection service as the data was packaged as a serialized

Session object in the SOAP response (Section 4.4.2).

Figure 6.2. Comparative Number of Methods of Client Classes

Similarly for the PrintHours white-box class, the increase in number of methods initiated

an increased WMC value. The code migration phase in the white-box modernization

approach applied the migration of code from VB to Java and certain implementation

challenges were met (Section 4.3.2). The development of methods to capture the selected date

from the Java date picking tool resulted in the increased methods and increased WMC values

for the PrintHours class in the white-box modernized system. The same functionality was

catered for differently in development of the black-box modernized system and this had a

positive impact on the developer effort for the PrintHours class (Figure 6.2).

The rest of the classes in both the white-box and black-box modernized client-side code

showed the same results for number of methods and WMC. The invasive code migration of

 ANALYSIS OF RESULTS

92

the interface functionality was the cause for the similar class structures and complexities in

the two modernized systems. The calculation of effort required by the developer to modernize

the black-box system by measuring WMC was not necessary for the data service classes. The

data service classes for the black-box modernization were simply wrappers for original

legacy methods (Section 4.4.2). The migration of existing system code to data services for the

white-box modernization approach, however, resulted in the collection of complexity metrics

for these classes (Table 6.1).

 Login Checks PrintSession PrintHours SessionSelection Attendance Details Application

WMC 30 20 12 12 24 42 20 31

#Methods 6 4 2 2 5 6 4 6

DIT 0 0 0 0 0 0 0 0

NOC 0 0 0 0 0 0 0 0

Table 6.1. Comparison of WMC and Number of Methods for White-Box Services

The complexity of the web methods in the white-box modernized data service classes is

evident (Table 6.1). The migration of the data operations from original system code to Java

code resulted in the development of Java database connectivity code. This migration of data

access from the original Demi System to the modernized system increased the effort required

by the developer to modernize the system in the white-box approach. The recreation of these

data operation methods was not necessary for the black-box modernization approach.

The interpretation of NOC and DIT metrics also provides insight into the design complexity

of the classes being analysed. Similarly to the WMC metric, the NOC and DIT metrics are

applied to the classes containing modernized code only to show evidence of developer effort

required during modernization. The NOC metric analysis of the client-side classes on both

the white-box and black-box system revealed that none of the classes had any subclasses.

Furthermore, all of the data service classes developed during white-box modernization also

yielded values of zero for NOC. The DIT metric values for the white-box and black-box

modernized client classes are compared (Figure 6.3).

The Java table model classes, namely HoursModel, SessionModel, SelectedModel

and AvailableModel showed a DIT value of one for all the white-box and black-box

client classes (Figure 6.3). This DIT value is a result of the table model implementing the

 ANALYSIS OF RESULTS

93

abstract Java Table Model interface. The PrintHours class implements the abstract Java

Dialog interface and thus also has a DIT value of one. All other classes developed during

both modernization approaches showed DIT values of zero.

Figure 6.3. DIT Comparison for White-Box and Black-Box Modernization

Low NOC and DIT values indicate reduced complexity of the classes and easier prediction of

the behaviour of classes (Chidamber and Kemerer 1994). This indication is beneficial in the

argument that modernization to generate data services results in the development of classes

whose behaviour is easy to predict. The developer would benefit from this result when testing

of code is required. Both the DIT and NOC metrics analysis of the white-box developed data

services yielded zero values for all classes (Table 6.1). Thus, the complexity in behaviour

prediction of these data services is perceived as being low.

6.3.2. Quality of Service Results

Not only were software metrics used to measure developer effort required to modernize the

legacy code, but the CBO metric was a useful measure for code reusability. The CBO

analysis was applied to both the white-box and black-box data services to measure the

relationships between services. The CBO for the data services developed by the two

modernization approaches were then compared (Table 6.2).

The data services developed for the white-box and black-box modernization differed slightly.

The white-box data services did not make use of a Session class (Table 5.6). The black-

 ANALYSIS OF RESULTS

94

box modernization approach did not lead to the generation of the Print Session data service.

The functionality for the Print Session data service was obsolete as the method to retrieve

selected sessions was catered for by the Session Selection data service during black-box

modernization (Section 4.4.2). In the case of the white-box modernization approach, the data

operation to retrieve selected sessions was developed in the Print Session data service

(Section 4.3.3).

 Login Details PrintHours SessionSelection Attendance Application Checks Session PrintSession

Black 0 0 0 1 1 0 0 2 No service

White 0 0 0 0 0 0 0 No Class 0

Table 6.2. CBO Comparison for White-Box and Black-Box Data Services

The SessionSelection and Attendance classes showed coupling relationships with

the Session class in the black-box modernized services. This coupling was due to the

existence of the serializable Session class used to retrieve session data from the database to

send in a serialized format by SOAP response to the black-box service client (Section 4.4.2).

The Session class itself was not a data service, but an auxiliary class existing in the

original Demi System to make data access simpler. As a result, none of the data services

couple with one another in either the black-box or white-box data services. These low CBO

values promote code modularity and reusability (Chidamber and Kemerer 1994). The data

services generated by both modernization approaches have been successful in terms of

reusability. This result is encouraging as reusability of the web methods in data services is

one of the QoS guidelines to which should be adhered.

The measurement of the data service performance was the next QoS metric to be analysed.

The performance was measured in terms of latency. Latency was defined as the difference in

system time from the transmission of the service request to the retrieval of the service

response (Section 6.2.2). The latency was measured in milliseconds using the Java

System.currentTimeMillis() method. Each data service method invoked by the

modernized client application was analysed in terms of its latency. The same data service

methods existed for both white-box and black-box developed services. There were 22 service

methods to be analysed. The latencies of the service responses were gathered during use of

 ANALYSIS OF RESULTS

95

the system by 30 participants in the user evaluation (Section 6.2.3). The results of the

latencies were recorded in a log file during runtime of the systems.

A network issue was encountered during the first six participants’ evaluations. This network

problem was a result of a faulty network port in the switch. As a result of this network

problem, the recorded latencies for the first six participants had to be omitted from the

investigation. These omitted results were identified as clear outliers during data pre-

processing. The network issue was resolved and the evaluations continued for the remaining

24 participants. Due to a sample size of less than thirty, the Analysis of Variance (ANOVA)

test could not be used to compare the performance results for the white-box and black-box

data services. The non-parametric Wilcoxin matched pairs test was used to compare the

performance results for the two modernization outputs (Table 6.3).

Method Valid n T Z p-value Better Approach

fillNoticeBoard1 23 1.00 4.17 .000** White

fillNoticeBoard2 12 23.00 1.26 .209 Black

getMessages 20 62.50 1.59 .113 Black

checkStudent 15 27.50 1.85 .065 White

getStudentInfo 14 49.50 0.19 .851 White

checkWorkshop 11 17.50 1.38 .168 Black

readFirstInfo 24 27.00 3.51 .000** White

readInfo 11 30.00 0.27 .790 Black

readLastInfo 24 2.50 4.21 .000** Black

getLecturers 16 67.00 0.05 .959 Black

storePersonalDetails 22 36.00 2.94 .003** White

storeExtraDetails 16 31.50 1.89 .059 White

getSelectedSessions 24 19.00 3.74 .000** White

getSelectedColumns 21 62.50 1.84 .065 Black

getAvailableDetails 24 0.00 4.29 .000** Black

getAvailableColumns 23 24.00 3.47 .001** Black

getDemis 23 22.50 3.51 .000** White

addSession 20 48.00 2.13 .033* Black

insertIntoChanges 23 82.00 1.70 .089 Black

removeSession 13 40.50 0.35 .727 Black

getDetails 24 3.00 4.20 .000** White

setDetails 16 47.50 1.06 .289 White

Legend: * Significant where p=0.05

 ** Significant where p=0.01

Table 6.3. Wilcoxin Matched Pairs Test on Performance

 ANALYSIS OF RESULTS

96

The difference between the latency recorded for each method was calculated by subtracting

the black-box method latency from the white-box method latency. The valid n represents how

many non-zero differences were tested, as the Wilcoxin test only considers differences of a

non-zero value (Table 6.3). The p-values highlighted in bold indicate significant differences

identified in the service method latencies.

The mean value determines whether the white-box or the black-box data service performed

better (Table 6.3). Six methods, namely storePersonalDetails, getDetails,

readFirstInfo, fillNoticeBoard1, getDemis and getSelectedSessions

performed significantly better for the white-box developed web services, whilst four

methods, namely readLastInfo, getAvailableSessions, addSession and

getAvailableColumns performed significantly better for the black-box developed

services. Since six methods for white-box modernized services and four methods for black-

box modernized services performed significantly better than their counterparts, the null

hypothesis for mean latencies could be rejected (Section 6.2.2). The null hypothesis for the

mean latencies is (Section 1.5):

H0.1.1: Mean service method latencies for black-box and white-box modernized data

services are not equivalent

The alternate hypothesis is therefore accepted, namely:

H1.1.1: Mean service method latencies for black-box and white-box modernized data

services are equivalent.

6.3.3. Effectiveness of Data Services Results

A within-subjects design for the usability evaluation was conducted with a sample of 30

participants. Each participant used both white-box and black-box modernized systems, but

the order of the systems was counterbalanced (Section 6.2.3). That is, fifteen participants

evaluated the black-box modernized system first followed by the white-box modernized

system. The other fifteen participants evaluated the systems in reverse order.

The participants involved in the usability evaluation were required to be familiar with the

existing Demi System (Section 6.2.3). The participants selected consisted of both male and

female students from undergraduate and postgraduate levels of study (Table 6.4). All

participants had completed at least one year of undergraduate studies.

 ANALYSIS OF RESULTS

97

 Gender Home Language

Study Level Count Male Female Sum English Afrikaans Xhosa Other Sum

Undergraduate 16 13 3 16 8 2 3 3 16

Postgraduate 14 11 3 14 9 5 0 0 14

Total 30 24 6 30 17 7 3 3 30

Table 6.4. Biographical Statistics of Participants

Participants were selected from a variety of ethnic groups, as indicated by the various home

languages spoken (Table 6.4). The participants were surveyed on their level of familiarity

with the Demi System and how often they use the system per week (Table 6.5).

Occurrences per Week Students Assisting Sessions Students Using System

Less than Once 0 2

Once 7 7

Twice 8 7

More than Twice 15 14

Total 30 30

Table 6.5. Participants Familiarity with the Demi System

The breakdown of familiarity with the system in relation to the amount of sessions the

students assist with per week is reported (Table 6.5). It is evident that some students do not

use the system every week, despite the fact that all students have at least one session every

week. In terms of specific functionalities that the system provides, participants were asked to

select the functionalities for which they used the system. The count of participants using a

certain system process is tabulated in Table 6.6. The most well used system process is session

attendance. Printing one’s list of selected sessions is the least used system functionality.

System Functionality Students

Application 15

Attendance 30

Session Selection 21

Session Removal 19

Print Session List 11

Change Details 15

Table 6.6. Frequency Distribution of System Functionality

 ANALYSIS OF RESULTS

98

During the usability evaluation, participants were each given five tasks (Appendix C) to

complete for each system (Section 6.2.3). The participants did not know which system was

modernized by the white-box approach or the black-box approach. The systems were

identified as System 1 and System 2. The performance metrics collected for each task in

System 1 and System 2 need to be compared. Task completion results indicated that one

participant was unable to complete the fourth task for the white-box modernized system and

one participant was unable to complete the fourth task for the black-box modernized system.

Task success results indicated that a slightly higher task success rate was achieved for the

white-box modernized system than the black-box system (Figure 6.4).

Figure 6.4. Success Rate Comparison over All Five Tasks

Three tasks were unsuccessfully completed for the black-box modernized system, whereas

only one task was unsuccessfully completed for the white-box modernized system (Figure

6.4). Error rates were recorded per task and totalled for each system that the users evaluated

(Table 6.7).

Number of Errors Black-Box System White-Box System

0 Errors 12 13

1 Error 14 15

2 Errors 3 1

3 Errors 1 1

Table 6.7. Frequency Distribution of Errors across Both Systems

 ANALYSIS OF RESULTS

99

The error rates for each system were compared using the ANOVA test (Section 6.2.3). The

result yielded from this analysis was that no significant difference existed (p = 0.092). Since

no significant difference was determined between the two modernized systems for error rates,

the respective null hypothesis H0.2.2 (Section 1.5) can be rejected:

H0.2.2: Mean error rates for black-box and white-box modernized systems are not

equivalent

The alternate hypothesis H1.2.2 is therefore accepted:

H1.2.2: Mean error rates for black-box and white-box modernized systems are equivalent

An overall task time performance test was conducted to see which system obtained better

results. The task times were calculated for each of the five tasks for the two systems. The

time values for each task were normalised to a z-score (Kranzler and Moursund 1999). The z-

scores for each task were then averaged for the five tasks to obtain a total z-score for task

times for each modernized system. An ANOVA test was applied to the total z-scores to

assess if a significant difference in system performance existed between the two systems. A

p-value of 0.051 was obtained for this test, indicating that no significant difference between

the two systems exists. The p-value, however, does tend towards a significant difference.

When assessing the mean of the total z-score value (M=-0.19), it signifies that the white-box

modernized system performed faster than the black-box modernized system.

A more detailed analysis of each task time (Appendix E) compared between the two systems

shows which tasks achieved better performance for each system (Table 6.8). The times

recorded for all participants for Task 1 were compared using ANOVA. A significant

difference in means was determined. The further analysis of the mean value indicates that the

white-box modernized system performed better than the black-box modernized system for the

first task.

Analysis of Task 2 completion times revealed that a significant difference was calculated in

the task times of the two systems. Similarly, on analysis of the mean, Task 2 performed better

in the white-box modernized system. Thus, the results achieved for task completion times for

both Tasks 1 and 2 cannot reject the null hypothesis (Section 1.5):

H0.2.1: Mean task times for black-box and white-box modernized data services are not

equivalent

 ANALYSIS OF RESULTS

100

Task Mean p-Value Better Times Achieved

Task 1 -20.83 .003 White-box system

Task 2 -8.00 .038 White-box system

Task 3 2.40 (white-box first)

-5.73 (black-box first)
.033 Both systems

Task 4 9.60 (white-box first)

-18..60 (black-box first)
.004 Both systems

Task 5 -4.53 (white-box first)

14.67 (black-box first)
.008 Both systems

Table 6.8. Comparative Statistics for Task Completion Times

The analysis of Task 3 times using the ANOVA test illustrated that the order in which the

participants used the systems made a significant difference in task times recorded (Table 6.8).

Analysis of the means showed that when the white-box modernized system was used first,

participants took longer to complete the task using the white-box system than the black-box

system. Similarly, when participants used the black-box system first they took longer to

complete the third task in the black-box system than the white-box system. The better

performance of the task in the system used second in order is an indication that the

participants had familiarised themselves with the task and were able to complete it in a

shorter time using the second system.

A similar significant difference in the order in which the systems were used was obtained

from the ANOVA test when applied to Task 4 (Table 6.8). The same observation applies to

the fourth task as the third task. Participants obtained better task times on the second system

they used as they had learned from completing the task on the first system.

The analysis of Task 5 revealed a significant difference in the order in which the systems

were used (Table 6.8). The analysis of the means showed this time, however, that when

participants obtained better tasks times on the first system used than on the second system.

This result was achieved for both the cases when the white-box modernized system was used

first and when the black-box modernized system was used first. This result appears

incongruent with the results obtained from analysis of Tasks 3 and 4. Clearly, the learning

effect was not the cause of the worsened task times on the second system used. Further

inspection of the tasks conducted revealed that the nature of the fifth task itself was the cause

of the worsened performance using the second system. The fifth task for the second system

 ANALYSIS OF RESULTS

101

required participants to enter more information into the system than the fifth task for the first

system. Thus, the times taken to complete the task on the second system were greater.

The conclusion drawn from the comparative analysis of the third, fourth and fifth task is that

the null hypothesis H0.2.1 (Section 1.5) can be rejected for each of these tasks:

H0.2.1: Mean task times for black-box and white-box modernized data services are not

equivalent

No significant difference in the overall mean times for these three tasks between the two

modernized systems could be found. Only the order in which they were performed affected

the mean task completion times of the two systems. Thus, the alternative hypothesis is

accepted for Tasks 3, 4 and 5:

H1.2.1: Mean task times for black-box and white-box modernized data services are

equivalent

Not only was the performance data analysed by comparative statistics to compare the two

modernized systems, but the self-reported metrics collected were compared as well. The

results gathered from the SUS questionnaire completed by each participant for each

modernized system were summed to achieve overall SUS scores for each system. The SUS

scores for the white-box and black-box modernized systems were compared for each

participant (Figure 6.5).

Figure 6.5. Comparison of SUS Scores per Participant

 ANALYSIS OF RESULTS

102

A comparative analysis using ANOVA was conducted to determine whether a significant

difference exists in the user’s satisfaction of the two systems. This further analysis supports

the calculation of the SUS scores and provides a more detailed understanding of the user

satisfaction with the two systems. The positive statements of the SUS questionnaire were

grouped together and compared over the two systems by performing the ANOVA test on the

difference between scores for the white-box and black-box systems. The black-box scores for

the positive statements were subtracted from the white-box scores for the positive statements.

The ANOVA test presented a significant difference between the two systems in terms of the

positive statements (p=0.016). The analysis of the mean (M=-0.05) indicated that the

participants answered the SUS more positively for the black-box system.

Similarly, the negative statements of the SUS were grouped together and their scores summed

for each of the two systems. The difference between the negative statements scores were

calculated by subtracting the black-box scores from the white-box scores. ANOVA revealed

that no significant difference between the two systems existed in the comparison of the

negative statements scores of the SUS. Finally, the overall SUS scores for the two

modernized systems were compared to one another. The ANOVA result for this comparison

yielded a significant difference in overall SUS scores (p=0.033). The mean indicated that the

preference was towards the black-box modernized system (M=-0.18). Thus, overall, the

participants showed a higher level of satisfaction with the black-box modernized system.

These results can therefore not reject the null hypothesis (Section 1.5):

H0.2.3: Mean SUS scores for black-box and white-box modernized data services are not

equivalent

The results obtained during the usability evaluation indicated no significant difference

between the two modernized systems in terms of error rates. The task times compared to each

other between the two modernized systems showed that two of the tasks (Task 1 and 2) were

performed faster in the white-box modernized system than the black-box modernized system.

This increased performance was observed regardless of the order in which the systems were

used. Two of the tasks, when compared (Task 3 and 4), indicated that the order in which they

were completed affected the time the participants took to complete the tasks. The task

completed on the first system took longer to complete than the task completed on the second

system. The fifth task took longer to complete on the system used second in order than on the

system used first due to the nature of the task. Lastly, upon comparative analysis of the SUS

 ANALYSIS OF RESULTS

103

scores obtained from the participants, the black-box modernized system received better

satisfaction ratings than the white-box system.

6.4. Conclusion

The comprehensive evaluation framework has been applied to the comparison of the black-

box and white-box modernization approaches used to modernize the existing Demi System.

The experiments devised for each branch of the comprehensive evaluation strategy were

executed to gather data for a comparative analysis (Section 6.2).

The experiment to measure developer effort to modernize the systems was conducted by

analysing the code created by the developer during modernization (Section 6.2.1). The code

analysis was performed using identified software metrics (Section 5.2.1). The results yielded

from this experiment indicated that far more effort was required by the developer to apply the

white-box modernization approach to the existing system than the black-box approach

(Section 6.3.1).

The experiment to measure QoS metrics was conducted by analysis of the code of the data

services generated as well as measurement of the performance of the data services (Section

6.2.2). The quality of the data services was evaluated based on the identified QoS metrics

specifically relevant to data services (Section 5.2.2). The comparative analysis of service

latency showed that in six methods the white-box data services outperformed the black-box

data services whilst in four methods the black-box data services outperformed the white-box

data services (Section 6.3.2). The null hypothesis H0.1.1 (Section1.5) could therefore be

rejected. Since the hypothesis H0.1.1 was rejected and no other significant differences in QoS

were discovered by inspection, the more general hypothesis H0.1 could be rejected as well:

H0.1: QoS of black-box and white-box modernized data services is not equivalent.

The experiment to measure the effectiveness of the data services was performed through user

studies (Section 6.2.3). The user studies were carried out in a formal controlled environment

where usability data was gathered through recognised techniques (Section 5.2.3). Results

showed that high completion and success rates were achieved for both modernized systems

(Section 6.3.3). The results of the usability evaluation yielded a similarity in the number of

errors made by participants in both systems, thus rejecting the null hypothesis H0.2.2.

 ANALYSIS OF RESULTS

104

Comparative analysis of the task completion times showed that participants completed two of

the five tasks more quickly using the white-box modernized system, thus unable to reject the

null hypothesis H0.2.1 for these two tasks. Analysis of the SUS ratings of each modernized

system showed, however, that the participants preferred the black-box modernized system to

the white-box modernized system, thus unable to reject the null hypothesis H0.2.3.

The more general hypothesis for the data service effectiveness component of the evaluation

framework H0.2 (Section 1.5) could therefore be rejected as a result of the rejection of two of

its sub-hypotheses. The rejected hypothesis for data service effectiveness is:

H0.2: Effectiveness of black-box and white-box modernized data services is not equivalent.

The results of these three evaluation components are tabulated in Table 6.9.

Evaluation Component White-Box Approach Black-Box Approach

QoS

Developer Effort

Effectiveness of Data Services

Table 6.9. Results Obtained from Comprehensive Evaluation Framework

The rejection of the hypotheses H0.1 and H0.2 for the comparison of modernized data services

in terms of QoS and effectiveness therefore indicate that neither modernization approach is

preferable in these two evaluation components as they appear to perform equivalently. The

overall hypothesis regarding the comparison of modernized data services (Section 1.5) could

therefore be rejected, namely:

H0: Black-box and white-box modernized data services are not equivalent.

It can be seen that if only one of the evaluation branches had been used to compare the two

modernization approaches a different result would have been achieved for each evaluation

(Tabl 6.9). The independence of the evaluation strategies of the three branches allows them to

be combined (Chapter 5). The combination of the three strategies has supplied an

understanding of the comparison of modernization approaches from different perspectives.

 ANALYSIS OF RESULTS

105

For the purposes of determining which modernization approach is more suitable for the

production of data services, it seems that the black-box modernization approach is favourable

(Table 6.9). This selection is made by inspection, due to the fact that the developer effort

results showed significantly reduced effort than the white-box approach (Section 6.3.1).

Furthermore, the satisfaction of the users with the modernized system was higher than with

the white-box system (Section 6.3.3). In addition to these results, the QoS evaluation showed

that the black-box data services were of no less quality than the white-box data services

(Section 6.3.2). Thus, the combination of the three identified evaluation branches of the

comprehensive framework has produced a more holistic comparison of the two

modernization approaches.

 106

C h a p t e r 7 : C o n c l u s i o n

7.1. Introduction

Systems which have begun to resist maintenance require modernization. Various

modernization approaches exist, each with different characteristics. This investigation applied

the white-box and black-box modernization approaches to a case study to obtain data services

for an SOA. It was unclear how to compare these two modernization approaches in order to

determine which approach was more appropriate for the creation of data services from an

existing system.

This investigation has proposed a comprehensive evaluation framework for the evaluation of

a modernization approach that generates data services (Section 1.3). The comprehensive

evaluation framework presented consists of three distinct evaluation branches derived from

existing evaluation strategies. The framework evaluates the developer effort to modernize a

system, the quality of the data services developed through modernization and the

effectiveness of these data services.

Each of these evaluation strategies exists independently, but the need for a combination of

these approaches when evaluating the modernization of a system to data services has arisen.

The framework developed for this investigation required an understanding of system

modernization and the various modernization approaches that exist (Chapter 2). An

 CONCLUSION

107

understanding of SOA and data services in particular was also required to formulate the

evaluation framework (Chapter 3). The modernization approaches were required to be

applied to a case study to generate data services (Chapter 4). The outcomes of these

modernization attempts provided a platform on which to apply the proposed evaluation

framework as a comparison tool (Chapter 6).

The comprehensive evaluation framework (Chapter 5) aims to provide a specific evaluation

tool to address the need to evaluate modernization approaches for the development of data

services (Section 1.2). It was proposed that the combination of three evaluation strategies

could provide a more detailed understanding of the modernization approach in terms of its

design, process and outputs.

7.2. Achievements

The development of a comprehensive evaluation framework first required an understanding

of modernization approaches and the target architecture for data services. Modernization is an

alternative to system maintenance or system replacement (Section 2.2). Two modernization

approaches were identified to be applied to the case study in this investigation, namely white-

box modernization and black-box modernization. These two modernization approaches form

the basis for the use of the proposed evaluation framework as a comparison tool as they are

opposite in nature. The comparison of these two approaches at a conceptual level was

required in order to apply each of them to the case study. The use of these approaches on the

case study achieved the research objective (Section 1.4).

White-box modernization is an invasive approach requiring knowledge of the existing system

code and functions (Section 2.3). On the other hand, black-box modernization is reported as

being a non-invasive approach where only the inputs and outputs of the system require

analysis (Section 2.4). Various implementation techniques exist for each of these

modernization approaches (Section 2.5). The most appropriate techniques were selected to be

applied to the case study for each modernization approach.

The outcome of the modernization approaches required the development of web services that

provide data as a service to achieve another research objective (Section 1.4). Various service

architectures exist for the development of these data services. The SOA was identified as the

 CONCLUSION

108

target platform in which to develop the data services. SOA is recognised for its provision of

software as a service to consumers as opposed to specific tailor-made applications (Section

3.2). Two well-known service architectures were reviewed for use in this investigation.

SOAP style web services use specific standards and protocols in a XML based

communication environment (Section 3.3). Alternatively, REST style web services are more

lightweight and rely on HTTP for transmission of responses and requests (Section 3.4). When

comparing the advantages and disadvantages of each of these service styles, it was discovered

that SOAP services would be preferable for the development of data services due to their

secure and reliable transmission of messages (Section 3.5).

The primary research objective for this study was the development of a comprehensive

evaluation framework to evaluate a modernization approach (Section 1.4). This research

objective was met through the investigation of existing independent evaluation strategies,

namely:

 Quality of Service guidelines for data services;

 The measure of a developer’s effort from software metrics; and

 The measure of effectiveness of a modernized system by user studies.

The investigation of each of these existing evaluation strategies achieved further secondary

research objectives to understand the metrics derived from each strategy (Section 1.4). These

existing evaluation strategies formed the three components of the comprehensive evaluation

framework proposed for this investigation (Chapter 5). The evaluation framework required

validation, thus it was applied to a white-box modernization approach (Section 5.3). The

modernization approach was evaluated in terms of the three evaluation components. Results

of the validation showed how the results of each evaluation leg complemented the results of

each of the other evaluation legs (Section 5.4). The combination of results from all three

evaluation components lead to the determination of modernization success.

The final secondary research objective included the application of this evaluation framework

to the comparison of the two modernization approaches applied to the case study (Section

1.4). This comparison involved the development of experiments to compare each of the

modernization approaches on the metrics for each component of the evaluation framework

(Section 1.5). Specific hypotheses were devised for each of the quantitative comparative

experiments. Each of these hypotheses for QoS and for effectiveness of the modernized data

 CONCLUSION

109

services were designed to support a more general hypothesis for the comparison of

modernized data services, namely:

H0: Black-box and white-box modernized data services are not equivalent

H1: Black-box and white-box modernized data services are equivalent.

The specific sub-hypotheses for each of the experiments conducted in the other two

components of the evaluation framework (Section 6.3.2, Section 6.3.3) were tested in order to

determine if they could be rejected or not (Figure 7.1).

Figure 7.1. Effects of Experiments on Hypotheses

The evaluation component for measuring developer effort did not contain a hypothesis based

on statistical significance. The results of this evaluation component, however, yielded that far

more effort was required by the developer to apply the white-box modernization approach to

the case study (Section 6.3.1). The proposal and application of this comprehensive evaluation

framework formed the theoretical and practical contributions, respectively, of this research.

H0: Rejected due to rejection of sub-

hypotheses

H0.1: Rejected since sub-hypothesis

rejected and supporting service design

criteria equivalent for both approaches

H0.2: Rejected due to inconclusive results

from sub-hypotheses

H0.1.1: Rejected since 6 white-box and 4

black-box service methods had better

latencies than their counterparts

H0.2.1: Not rejected, since white-box

modernized system achieved better task

completion times for 2 tasks

H0.2.2: Rejected since error rates not

significantly different, thus black-box and

white-box systems equivalent

H0.2.3: Not rejected since black-box

modernized system obtained higher user

satisfaction scores from SUS

 CONCLUSION

110

7.3. Contributions

The contributions of this study may be divided into theoretical contributions and practical

contributions. The theoretical contribution involved the proposal of a comprehensive

evaluation strategy for modernization of systems to data services (Section 7.2.1). The

practical contributions include the application of two modernization approaches to the case

study as well as the application of the evaluation framework to the comparison of the

modernization approaches (Section 7.2.2).

7.3.1. Theoretical Contribution

The proposed comprehensive evaluation framework for modernization towards data services

consists of three recognised evaluation strategies (Section 5.2). The three evaluation branches

of the framework are:

 Quality of the services resulting from the legacy system modernization process will be

measured against acknowledged Quality of Service (QoS) standards;

 A measure of the effort required by the developer to create the modernization

approach; and

 A measure of the effectiveness of the data services generated will be measured by the

use of empirical evaluations with system users.

The quality attributes of web services were identified and cross referenced to determine

which attributes were most appropriate for data services (Section 5.2.2). Five QoS attributes

were selected as the guideline for the development of high quality data services in particular

(Table 7.1). For the measurement of effort required by the developer, a well known suite of

object-oriented software metrics were analysed to determine which metrics measure

complexity of code (Section 5.2.1).

It was determined that three of the software metrics could be used to measure code

complexity of developed code by analysis of the methods in the code and the hierarchy of the

class (Table 7.1). To measure the effectiveness of the data services generated by

modernization, usability studies were presented (Section 5.2.3). The collection of

performance and self-reported metrics through user evaluation in a formal controlled

environment were reported as an appropriate measure for the effectiveness of software (Table

7.1).

 CONCLUSION

111

QoS Component

Security

Reliability

Interoperability

Reusability

Performance

Developer Effort Component

Weighted Methods per Class (WMC)

Number of Children (NOC)

Depth in Inheritance Tree (DIT)

Service Effectiveness Component

Task Completion

Task Success

Time on Task

Error Rates

Self-Reported Feedback (SUS)

Table 7.1. Comprehensive Evaluation Framework Metrics

This validated framework was composed of the combination of these three independent

evaluation strategies (Section 5.3). Each strategy, when applied on its own, produces a result

as to the success of a modernization attempt. The combination of the three evaluation

branches to form a comprehensive framework used these complementary evaluation

strategies to obtain a deeper understanding of the success of the modernization approach.

7.3.2. Practical Contribution

To support the development of the comprehensive evaluation framework, it was necessary to

apply two modernization approaches to a case study in order to compare these two

approaches. The practical contributions of this investigation thus are:

 CONCLUSION

112

 Application of the white-box and black-box modernization approaches to the case

study; and

 Application of the comprehensive evaluation framework to the two modernization

approaches applied to the case study.

The white-box and black-box modernization approaches were applied to the Demi System to

generate data services for a SOA (Chapter 4).

7.3.2.1. Application of Modernization Approaches

The Demi System was the existing system suitable for modernization by the two identified

approaches. The system was developed for use in the Department of Computing Sciences at

NMMU (Section 4.2). The Demi System was developed in a programming language that is

no longer suitable for future maintenance in the department. The modernization of this

system to expose data as a service in a SOA would elongate the lifespan of the system.

Therefore, this system was selected as a suitable case study to investigate the effects of the

two modernization approaches applied to the system.

 The white-box modernization approach applied techniques discovered in related studies,

such as program understanding and code migration (Section 2.3). The program understanding

phase aided in gaining system understanding through diagrammatic representations of the

existing system where documentation was missing (Section 4.3.1). The knowledge of the

existing system gained through program understanding brought about the discovery of

components for the identification of data services. The next white-box modernization phase,

code migration, enabled the migration of existing system code to a new, more maintainable

language (Section 4.3.2). Existing VB code was therefore migrated to Java code. Certain

challenges were encountered during code migration, where existing system functionalities

were not easy to replicate in the new language. These challenges were overcome through the

discovery of specific Java API’s and components which allowed the same functionality to be

catered for.

The component-based analysis (Section 2.5) of the system through program understanding as

well as analysis of the existing system classes enabled web service discovery (Section 4.3.3).

Eight components were discovered which were each developed as a data service during

white-box modernization. All data operations performed on the database following the

 CONCLUSION

113

CRUD model were developed as individual data service methods within the appropriate data

service. The data services were developed using the J2EE platform for communication

between the data services and the web service client application. All data operations were

migrated from the .NET database connectivity to Java’s JDBC. The web service client

application was then able to be connected to the data services to perform any data operations

on the system’s database.

The black-box modernization approach applied to the Demi System consisted of two phases,

namely interface modernization and component-based service discovery. The user interface

modernization phase allowed the analysis of inputs and outputs of the existing system

(Section 4.4.1). This analysis of the inputs and outputs of the system was accomplished

during interaction with the system, as an application of the user interface modernization

technique (Section 2.5). Through the analysis of the inputs and outputs of the system, the

components for data service generation were identified.

Seven components suitable for development as data services were identified through

interaction with the existing system. All existing system functionality not related to these data

service components was then migrated from the existing VB code to Java code, similarly to

the white-box modernization approach. Only the data service components were wrapped as

web services due to the specific need to modernize only data services from an existing system

(Section 1.3). The component-based web service discovery phase enabled the creation of data

services which wrapped the original system’s data operation code (Section 4.4.2). This web

service wrapping of components was identified as an appropriate non-invasive technique for

applying black-box modernization to a system (Section 2.6).

The research objective to apply the white-box and black-box modernization approaches to the

case study using the techniques identified in literature was thus achieved (Section 1.4).

Furthermore, the development of data services through the application of the two

modernization approaches to the case study obtained the respective research objective.

7.3.2.2. Application of the Evaluation Framework

A further practical contribution was the application of the proposed comprehensive

evaluation framework (Chapter 5) to the comparison of the modernization approaches. This

practical contribution addressed the research objective to perform a comparative analysis of

 CONCLUSION

114

two distinct modernization approaches (Section 1.4). The comprehensive evaluation

framework proposed for this investigation was applied to the white-box and black-box

modernization approaches implemented on the case study (Section 6.2). Specific experiments

were designed to conduct each of the three evaluation components of the comprehensive

framework. The results of the experiments conducted in the comprehensive evaluation are

tabulated in Table 7.2.

 White-Box Black-Box

QoS Component

Security SOAP Design SOAP Design

Reliability SOAP Design SOAP Design

Interoperability
J2EE Design .NET and J2EE

Design

Reusability High High

Performance
6 methods

significantly faster
4 methods

significantly faster

Developer Effort Component

Weighted Methods per Class
(WMC)

High Low

Number of Children (NOC) Low Low

Depth in Inheritance Tree (DIT) Low Low

Service Effectiveness
Component

Task Completion 99% 99%

Task Success 99% 98%

Time on Task
2 out of 5 tasks

significantly faster
No tasks faster

Error Rates Low Low

Self-Reported Feedback (SUS)
No significant

preference
Significantly more

positive

Table 7.2. Detailed Results of Comparison using the Comprehensive Evaluation

Framework

The application of the comprehensive evaluation framework to measure effort required by the

developer to modernize the Demi System involved the analysis of the code developed during

modernization using identified software metrics (Section 6.2.1). The results of the code

complexity analysis conducted during the comparative evaluation of the two modernization

 CONCLUSION

115

approaches yielded that the white-box modernization approach required far greater effort

from the developer than the black-box modernization approach (Table 7.2).

A second experiment was designed to compare the data services developed through

modernization in terms of their quality (Section 6.2.2). Five guidelines for high quality data

services were identified in the comprehensive evaluation framework to be adhered to (Section

5.2.2). Three of the quality attributes were unable to be measured quantitatively, but were

catered for in the design of the data services during both modernization approaches. The

performance and reusability of the data services were measured, however, by quantitative

methods (Section 6.2.2). The results of the comparative analysis of the data services

performance and reusability (Table 7.2) showed that the data services developed via both

modernization approaches could not be proved significantly different (Section 6.3.2). The

hypothesis for data service performance (H0.1.1) was thus rejected (Figure 7.1). As a result of

the equivalence of the modernized data services in terms of their QoS attributes, the more

general hypothesis H0.1 was also rejected.

A third experiment was designed to evaluate the effectiveness of the data services by

conducting user studies on the two modernized systems (Section 6.2.3). The user evaluation

was designed to collect performance and self-reported data. Results obtained from the

analysis of these performance metrics gathered showed that the two modernized systems both

obtained high task completion and success rates. No significant difference could be found in

a comparative analysis of the error rates for each of the modernized systems, thus the

hypothesis H0.2.2 was rejected (Figure 7.1). The comparative analysis of task completion

times yielded that two out of the five tasks were completed significantly more quickly using

the white-box modernized system than the black-box modernized system (Section 6.2.3).

Thus the null hypothesis H0.2.1 could not be rejected (Figure 7.1). The comparison of the other

three task completion times did not exhibit a preference to any particular system. For these

three tasks, the order in which the systems were used indicated a significant difference in task

completion times.

The self-reported data was gathered using a recognised instrument, the SUS (Section 6.2.3).

Analysis of the results gathered from the SUS questionnaires for each system indicated an

overall preference towards the black-box modernized system (Table 7.2). Furthermore, a

detailed analysis of the positively phrased statements in the SUS revealed that participants

 CONCLUSION

116

were more positive about the black-box modernized system than the white-box modernized

system. Thus the hypothesis H0.2.3 could not be rejected (Figure 7.1).

The conclusions drawn from this experiment indicated that the white-box modernized system

obtained preferable task completion time results, but the black-box modernized system was

preferred in terms of user satisfaction. In terms of the effectiveness of the data services,

quicker task time completion of two out of the five tasks indicates that the white-box

modernized system is favourable. Similarly, the satisfaction of the participants with the

black-box modernized system indicates that the users find the black-box modernized system

more effective in performing the tasks they require it to perform. Thus, the more general

hypothesis, H0.2 was rejected due to the inconclusive results obtained from the usability

evaluation for effectiveness of the data services (Figure 7.1). The overall hypothesis for the

comparison of white-box modernized data services to black-box modernized data services, H0

was rejected as a result of the results obtained from the sub-hypotheses for the two evaluation

components, namely QoS and effectiveness of data services. Despite the equivalent

performance of the data services in terms of quality and effectiveness, the inclusion of the

results obtained from the developer effort evaluation show that the black-box modernization

approach is more suitable due to the reduced effort in comparison to the white-box approach.

The combination of the results obtained from the comprehensive evaluation framework leads

to a deeper understanding of each modernization approach from the three perspectives

evaluated (Section 6.4). The comparison of which approach is more suitable for each

evaluation component made it possible to determine which modernization approach was

more suitable for the task of data service development. It was therefore discovered, as a result

of inspection of results from the three components of the framework, that the black-box

modernization approach was most suitable approach for this case study (Table 6.9).

7.4. Limitations

This investigation was focused on the application of the white-box and black-box

modernization approaches only. A hybrid of the two approaches, namely the grey-box

modernization approach was identified, but excluded from this investigation in order to

clarify the comparison of two distinct and independent approaches (Section 1.6).

 CONCLUSION

117

To apply these two modernization approaches to a real-world scenario a case study was used

(Section 1.5). The case study chosen for this investigation was the Demi System for the

Department of Computing Sciences at NMMU (Section 4.2). The Demi System did not

exhibit the main characteristic of a legacy system, which is its difficulty to maintain after use

for a long time (Section 2.2). The Demi System was, however, developed in a language that

is not supported by the Department of Computing Sciences and would thus become difficult

to maintain for future use. Consequently, the Demi System was selected as the most

appropriate system on which to practice the identified modernization approaches.

The application of the modernization approaches to the case study produced the outcome of

these modernization approaches, namely data services for a SOA. Two service-styles were

contrasted and compared to decide in which service-style the data services would be

implemented (Chapter 3). This study was only concerned with the development of one

common service-style for the outputs of both modernization approaches, thus SOAP services

were chosen.

The primary objective of this investigation was to develop a comprehensive evaluation

framework for the analysis of a modernization approach that enables data service discovery

(Section 1.4). The evaluation framework was limited to the inclusion of three evaluation

strategies, namely:

 Quality of the services resulting from legacy system modernization measured against

acknowledged QoS standards;

 A measure of the developer’s effort required to apply the modernization approach;

and

 A measure of the effectiveness of the data services generated by modernization

through user evaluations.

Each of these components of the evaluation framework were limited to specific metrics

suitable for the evaluation of the black-box and white-box modernization approaches as well

as the evaluation of data services in particular.

The QoS metrics chosen for this investigation consisted of only the quality attributes related

to data services in particular (Section 5.2.2). The measurement of effort required by the

developer to modernize the existing system consisted only of software metrics concerned

 CONCLUSION

118

with code complexity (Section 5.2.1). The metrics chosen were selected from a recognised

suite of object-oriented metrics. Other code complexity metrics exist, but were not included

in this investigation. The measure of effectiveness of the data services was conducted by the

application of user evaluations on the modernized systems (Section 5.2.3). Well known user

testing techniques were utilised to combine the collection of performance and self-reported

metrics to measure the effectiveness of the modernized systems.

The three evaluation components of the comprehensive framework were equally weighted

and not triangulated for this investigation. Instead, the results of each modernization approach

were compared for each evaluation component to determine the most suitable modernization

approach for that component. Consequently, the most suitable approach was determined by

inspection of the overall results of the modernization approaches for the three evaluation

components.

7.5. Future Work

The proposed comprehensive evaluation framework consisting of three components was

applied to two modernization approaches applied to a case study. Due to the limitations of

this framework and its application, the recommendations for future research include:

 The comparison of the object-oriented software metrics with more modern

alternatives to refine the measurement of developer effort to modernize systems;

 Discovery of quantitative measures for security, reliability and interoperability of data

services to provide a deeper comparative analysis of QoS;

 Weighting and triangulation of the results of the evaluation components to allow

ranking of modernization approaches;

 Application of the comprehensive framework to the three modernization approaches,

namely white-box, black-box and grey-box modernization; and

 Application of the evaluation framework to more than one case study to further

validate its effectiveness.

These recommendations for future research aim to create a more robust and flexible

evaluation framework. The application of this framework to more than one case study would

obtain more results concerning the effectiveness of the framework independently of the case

study used. These future research recommendations aim to address the limitations

encountered in this investigation.

 CONCLUSION

119

7.6. Summary

Research identified the lack of a comprehensive evaluation tool for the evaluation of

modernization approaches that generate data services for an SOA. This investigation

proposed an evaluation framework combining established evaluation components, namely:

 Quality of services resulting from legacy system modernization measured against

acknowledged Quality of Service (QoS) standards;

 A measure of the effort required by the developer to apply the modernization

approach; and

 A measure of the effectiveness of data services generated by the process of empirical

evaluations with system users.

The comprehensive evaluation framework was applied to a case study on which two distinct

modernization approached had been executed. The two modernization approaches considered

for this investigation were the white-box and black-box modernization approaches.

The evaluation framework was used as a tool for the comparison of these modernization

approaches to determine which approach was more suitable for the generation of data

services. The comparative analysis revealed that had only one of the evaluation components

of the framework been applied to the case study, possible inconclusive results may have been

obtained. The combination of the results, however, from the components of the evaluation

framework revealed that black-box modernization was the more suitable approach for the

generation of data services.

In future, further research into the components of this framework and the triangulation of

results from each of the three components will serve to refine the framework. Furthermore,

the application of this framework to more case studies will serve as a validation of the

framework in terms of its effectiveness to determine the suitability of a modernization

approach in the generation of data services.

 120

R e f e r e n c e s

Barnes, M. and Cilliers, C. (2010): A Comprehensive Evaluation Strategy for the

Modernization of Legacy Systems. South African Telecommunications Network and

Applications Conference. Stellenbosch.

Bianco, P., Kotermanski, R. and Merson, P. (2007): Evaluating a Service-Oriented

Architecture. Carnegie Mellon University.

Borkar, V., Carey, M., Lychagin, D., Westmann, T., Engovatov, D. and Onose, N. (2006):

Query Processing in the AquaLogic Data Services Platform. International Conference

on Very Large Data Bases (VLDB'06).

Canfora, G (2004): Software Evolution in the Era of Software Services. International

Workshop on the Principles of Software Evolution.

Canfora, G., Fasolino, A., Frattolillo, G. and Tramontana, P. (2006): Migrating Interactive

Legacy Systems to Web Services. Conference on Software Maintenance and

Reengineering.

Canfora, G., Fasolino, A., Frattolillo, G. and Tramontana, P. (2008): A Wrapping Approach

for Migrating Legacy System Interactive Functionalities to Service Oriented

Architectures. Journal of Systems and Software, 81 (4):463-480.

Carey, M (2006): Data Delivery in a Service-Oriented World: The BEA AquaLogic Data

Services Platform. International Conference on Management of Data.

Chiang, C. and Bayrak, C. (2006): Legacy Software Modernization. International Conference

on Systems, Man and Cybernetics. Taipei, Taiwan.1304 - 1309.

Chiang, R.H.L., Barron, T.M. and Storey, V.C. (1997): A Framework for the Design and

Evaluation of Reverse Engineering Methods for Relational Databases. Data and

Knowledge Engineering, 21:57-77.

Chidamber, S. and Kemerer, C. (1994): A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20:476 – 493.

Chidamber, S.R. and Kemerer, C.F. (1991): Towards a Metrics Suite for Object Oriented

Design. In Proceedings of the Conference on Object-Oriented Programming Systems,

Languages, and Applications, 26.

 REFERENCES

121

Chung, S., Byung Chul An, J. and Davalos, S. (2007): Service Oriented Software

Reengineering: SoSR. In Proceedings of the 40th Annual Hawaii International

Conference on System Sciences. IEEE Computer Society Washington.

Colosimo, M., De Lucia, A., Scanniello, G. and Tortora, G. (2008): Evaluating legacy

system migration technologies through empirical studies. Information and Software

Technology, 51:433-447.

Comella-Dorda, S., Seacord, R.C., Wallnau, K. and Robert, J. (2000): A Survey of Black-

Box Modernization Approaches for Information Systems. International Conference

on Software Maintenance.

Concas, G., Marchesi, M., Murgia, A., Pinna, S. and Tonelli, R. (2010): Assessing traditional

and new metrics for object-oriented systems. In Proceedings of the 2010 ICSE

Workshop on Emerging Trends in Software Metrics:24-31.

Devore, J. and Farnum, N. (2005): Applied Statistics for Engineers and Scientists. Second

Edn, Thomson Brooks/Cole.

Eckstein, R. and Mordani, R. (2006): Introducing JAX-WS 2.0 With the Java SE 6 Platform,

Part 1 [online]. Available at

http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/. [Accessed on 18

November 2010].

Erradi, A., Anand, S. and Kulkarni, N. (2006): Evaluation of Strategies for Integrating

Legacy Applications as Services in a Service Oriented Architecture. International

Conference on Services Computing.

Errickson-Connor, B. (2003): Truth or Consequences: Legacy Application Modernization.

Z/Journal:38-43. August/September 2003. Bob Thomas.

Fenn, J., et al. (2009): Hype Cycle for Emerging Technologies, 2009.

Fielding, R.T. and Taylor, R.N. (2002): Principled Design of the Modern Web Architecture.

ACM Transactions on Internet Technology, 2 (2):115-150.

Flanagan, D. (2001): Java™ Foundation Classes in a Nutshell, O'Reilly & Associates.

Available at http://docstore.mik.ua/orelly/java-ent/jfc/ch03_20.htm. [Accessed on 18

November 2010].

Garcia-Rodriguez de Guzman, I., Polo, M. and Piattini, M. (2007): An ADM Approach to

Reengineer Relational Databases towards Web Services. Working Conference on

Reverse Engineering. Vancouver.90-99.

Gupta, S. (2004): Metrics for Object Oriented Software Development [online]. Available at

http://javaboutique.internet.com/tutorials/codemetrics/. [Accessed on 19 November

2010].

Hofstee, E. (2006): Constructing a Good Dissertation: A Practical Guide to Finishing a

Master's, MBA or PhD on Schedule. Johannesburg, EPE.

Jeong, B., Hyunbo, C. and Choonghyun, L. (2009): On the Functional Quality of Service

(FQoS) to Discover and Compose Interoperable Web Services. Expert Systems with

Applications, 36:5411-5418.

Kachru, S. and Gehringer, E.F. (2004): A Comparison of J2EE and.NET as Platforms for

Teaching Web Services. In Proceedings of Frontiers in Education, 3.

Kilov, H. (1990): From Semantic to Object-Oriented Data Modeling. In Proceedings of the

First International Conference on Systems Integration:385-393.

Kranzler, G. and Moursund, J. (1999): Statistics for the Terrified. Second Edn, Prentice-Hall.

0-13-955410-6.

Lee, E., Lee, B., Shin, W. and Wu, C. (2003): A Reengineering Process for Migrating from

and Object-oriented Legacy System to a Component-based System. International

Computer Software and Applications Conference.

http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2/
http://docstore.mik.ua/orelly/java-ent/jfc/ch03_20.htm
http://javaboutique.internet.com/tutorials/codemetrics/

 REFERENCES

122

Lewis, G., Morris, E. and Smith, D. (2006): Analyzing the Reuse Potential of Migrating

Legacy Components to a Service-Oriented Architecture. Conference on Software

Maintenance and Reengineering (CSMR '06).

Li, F., Qian, C., Liu, W. and Chi, C. (2009): N-to-1 SOAP Requests Bundling for Efficient

Software Service Delivery. World Conference on Services. Los Angeles.539-545.

Liegl, P. (2007): The Strategic Impact of Service Oriented Architecture. International

Conference and Workshops on the Engineering of Computer-Based Systems.

Lim, N., Majumdar, S. and Nandy, B. (2010): Providing Interoperability for Resource Access

Using Web Services. Communication Networks and Services Research Conference.

Montreal.236 - 243.

Liu, Y. and Connelly, K. (2008): Realizing an Open Ubiquitous Environment in a RESTful

Way. IEEE International Conference on Web Services.96-103.

McCabe, T. (1976): A Complexity Measure. IEEE Transactions on Software Engineering,

2:308-320. IEEE.

Mehta, A. and Heineman, G. T. (2002): Evolving Legacy System Features into Fine-Grained

Components. International Conference on Software Engineering (ICSE'02).

Miller, J.R. and Jeffries, R. (1992): Usability Evaluation: Science of Trade-Offs. IEEE

Software, 9 (5):97-98,102.

Mulligan, G. and Gračanin, D. (2009): A Comparison of SOAP and REST Implementations

of a Service Based Interaction Independence Middleware Framework. Winter

Simulation Conference.1423-1432.

Nath, Y. (2009): Calculation of Cyclomatic Complexity & understanding of its Properties

[online]. Available at http://www.scribd.com/doc/16095618/Calculation-of-

Cyclomatic-Complexity-understanding-of-its-Properties. [Accessed on 25 November

2010].

O'Reilly, T. (2005): What is Web 2.0. Design Patterns and Business Models for the Next

Generation of Software [online]. Available at

http://oreilly.com/pub/a/Web2/archive/what-is-Web-20.html. [Accessed on 12

November 2010].

Olivier, M.S. (2004): Information Technology Research: A Practical Guide for Computer

Science and Informatics. Pretoria, 2 Edn, Van Schaik. 0627025765.

Pautasso, C., Zimmermann, O. and Leymann, F. (2008): RESTful Web Services vs. 'Big'

Web Services: Making the Right Architectural Decision. In Proceedings of the Fifth

International Conference on World Wide Web, Beijing:805-814.

Peng, Y., Ma, S. and Lee, J. (2009): REST2SOAP: a Framework to Integrate SOAP Services

and RESTful Services. International Conference on Service-Oriented Computing and

Applications. Taipei.1-4.

Rajshekhar, A.P. (2005): Java Mail API: Getting Started [online]. Available at

http://www.devarticles.com/c/a/Java/Java-Mail-API-Getting-Started/. [Accessed on

10 August 2010].

Salste, T. (2008): Aivosto Project Analyzer Ver. 9.0.

Sanders, D., Hamilton, J. and Macdonald, R. (2008): Supporting a Service-Oriented

Architecture. Spring Simulation Multiconference.

Sangeetha, S. and Chinnici, R. (2007): Using Annotations on the Java EE 5.0 Platform

[online]. Available at http://today.java.net/article/2007/05/18/using-annotations-java-

ee-50-platform. [Accessed on 18 November 2010].

Seacord, R. C., Plakosh, D. and Lewis, G. (2003): Modernizing Legacy Systems Software

Technologies, Engineering Processes, and Business Practices. Addison-Wesley.

Selçuk Candan, K., Li, W., Phan, T. and Zhou, M. (2009): Frontiers in Information and

Software as Services. International Conference on Data Engineering.1761-1768.

http://www.scribd.com/doc/16095618/Calculation-of-Cyclomatic-Complexity-understanding-of-its-Properties
http://www.scribd.com/doc/16095618/Calculation-of-Cyclomatic-Complexity-understanding-of-its-Properties
http://oreilly.com/pub/a/Web2/archive/what-is-Web-20.html
http://www.devarticles.com/c/a/Java/Java-Mail-API-Getting-Started/
http://today.java.net/article/2007/05/18/using-annotations-java-ee-50-platform
http://today.java.net/article/2007/05/18/using-annotations-java-ee-50-platform

 REFERENCES

123

Sharp, H., Rogers, Y. and Preece, J. (2007): Interaction Design: Beyond Human-Computer

Interaction. John Wiley & Sons.

Sjøberg, D.I.G., Dybå, T. and Jørgensen, M. (2007): The Future of Empirical Methods in

Software Engineering Research. Future of Software Engineering (FOSE ‘07).

Sneed, H. M. and Sneed, S. H. (2003): Creating Web Services from Legacy Host Programs.

International Workshop on Web Site Evolution (WSE'03).

Strawmyer, M. (2003): Serialization/Deserialization in.NET [online]. Available at

http://www.developer.com/net/csharp/article.php/3110371. [Accessed on 23

November 2010].

Stroulia, E., El-Ramly, M. and Sorenson, P. (2002): From Legacy to Web Through

Interaction Modeling. In Proceedings of the International Conference on Software

Maintenance:320 - 329.

Thiran, P., Hainaut, J., Houben, G. and Benslimane, D. (2006): Wrapper-based Evolution of

Legacy Information Systems. ACM Transactions on Software Engineering and

Methodology:329-359.

Tullis, T. and Albert, B. (2008): Measuring the User Experience. Morgan Kaufmann.

Tullis, T.S. and Stetson, J. (2004): A Comparison of Questionnaires for Assessing Website

Usability. In Proceedings of the Usability Professionals Association Conference,

Usability Professionals Association.

Turpin, A. and Scholer, F. (2006): User Performance versus Precision Measures for Simple

Search Tasks. In Proceedings of the 29th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval:11-18. ACM.

Wang, X., Hu, S.X.K. and Garton, H. (2007): Integrating Legacy Systems within the Service

Oriented Architecture. Power Engineering Society General Meeting.1-7.

Whitten, J.L., Bentley, L.D. and Dittman, K.C. (2004): Systems Analysis and Design

Methods. Sixth Edn, McGraw Hill/Irwin. 0-07-247417-3.

Zhang, B., Bao, L., Zhuo, R., Hu, S. and Chan, P. (2008): A Black-Box Strategy to Migrate

GUI-Based Legacy Systems to Web Services. IEEE International Symposium on

Service-Oriented System Engineering.

Zhang, Z. and Yang, H. (2004): Incubating Services in Legacy Systems for Architectural

Migration. Asia-Pacific Software Engineering Conference (APSEC'04).

http://www.developer.com/net/csharp/article.php/3110371

 124

A p p e n d i c e s

 APPENDIX A

125

A Holistic Evaluation Strategy for the Modernization of

Legacy Systems
Meredith A. Barnes and Charmain Cilliers

Department of Computing Sciences

Nelson Mandela Metropolitan University

P.O. Box 77000, Port Elizabeth, 6031

Tel: +2741 – 504 2094, +2741 – 504 2235

email: MeredithAnne.Barnes@nmmu.ac.za; Charmain.Cilliers@nmmu.ac.za

Abstract-Service Oriented Architecture has developed

into a current paradigm for business application

solutions. This development calls for a need to modernize

legacy systems which store the fundamental business

procedures for large organisations. The primary goal of

this paper is to present a holistic evaluation strategy

which can be used to assess the end product of a

modernization process applied to a legacy system,

specifically a data service in an SOA. The evaluation

strategy is comprised of a three-legged approach. The

first evaluation leg consists of the analysis of the quality

of service of the data service generated by the

modernization process. The second leg investigates the

effort required by the developer to modernize the

original legacy code, depending on the type of

modernization approach selected. The third leg

measures the efficacy of the data services generated by

empirical testing upon completion of the modernization

process. The envisaged contribution is the development

of an evaluation strategy that ensures successful

modernization of legacy systems by assessing each of the

major components of the modernization process.

Index Terms – Quality of service (QoS), Software

evaluation, Modernization

I. INTRODUCTION

 Service Oriented Architecture (SOA) has been identified

as an emerging technology that is currently on the rise and

will reach maturity within a few years (Figure 1).

Consequently, a need for current research in this field has

emerged in order to gain enlightenment on the technology.

 Legacy systems are used by many organizations because

of the data pertinent to the organizations’ business processes

that are still maintained by them. These legacy systems

become outdated after years of use and require more than

maintenance to keep them relevant [16]. The modernization

of these legacy systems becomes necessary, therefore

allowing organizations continued access to their core

business functionalities in a more modern architecture.

The current technology climate (Figure 1) implies that a

need to modernize legacy systems into web services

conforming to SOA requirements will benefit organizations.

Services typically consist of a collection of software

elements, each of which executes a particular business

process [13].

Figure 1. Adapted from Emerging Technologies Hype

Cycle [10]

The development of services for an SOA involves

adherence to certain protocols and guidelines defined for the

specific architecture (Figure 2). The provision of services

that provide core business functionality is the responsibility

of a Service Provider.

Figure 2. Adapted from “A Sample SOA

Environment” [12]

These services are also required by other services or

subcontractors, who are Service Consumers (Figure 2). Thus

the SOA is a combination of service providers and services

consumers providing and requesting services, for which all

information is stored, and made accessible to actors in a

Service Registry. The architecture of an SOA environment

depicts the relationship between the service provider, service

SOAP

Message

s

WSDL

Enterprise A Enterprise B

Service B Service D

Service C Service A

UDDI

Service

Registry

Consumer

Consumer

Provider

Provider

mailto:MeredithAnne.Barnes@nmmu.ac.za
mailto:Charmain.Cilliers@nmmu.ac.za

 APPENDIX A

126

consumer and service registry (Figure 2). Services share

information amongst one another via Simple Object Access

Protocol (SOAP) messages and information stored in the

service registry is based on Universal Description,

Discovery and Integration (UDDI). The interface between

service providers, or consumers, and the service registry can

be built based on the Web Service Description Language

(WSDL) standards.

The functional attributes of services are deciding factors

for service consumers when requesting services from service

providers [11]. These attributes need to be considered along

with non-functional Quality of Service (QoS) attributes.

QoS metrics are essential when selecting the best possible

execution plan for legacy system modernization with respect

to budget and time constraints. QoS metrics define a useful

measure for service comparison during the service

provisioning process. During the development of services,

the effort required by the developer to modernize legacy

code to conform to SOA requirements is a useful measure.

Software metrics for Object-Oriented (OO) applications are

useful for the analysis of the developer’s effort to create the

service [6].

The modernization of a legacy system into services that

perform the same business functionality, but operate in a

modern architecture leads to another possible metric for

evaluation. Services need to be assessed as a feasible

replacement option for the legacy system [5]. An empirical

approach can be used to study users’ interactions with the

services to determine their efficacy [18].

The combination of the QoS evaluation, developer effort

evaluation and end product efficacy evaluation leads to a

holistic evaluation strategy. The outcomes of the application

of this comprehensive evaluation strategy potentially

provide results that can be correlated to provide evidence for

successful legacy system modernization.

II. BACKGROUND

Understanding the process of and necessity for migrating

legacy code to a more modern service-related architecture

requires the recognition of concepts such as legacy system

modernization and data services. Data is provided as a

service, thereby increasing the longevity of the core

functionalities of the legacy system.

A. Legacy System Modernization

 Since legacy systems contain functionality that is of utmost

importance for business longevity, it is essential that they

are evolved to integrate with modern platforms and

architectures, such as SOA [9]. Modernization covers a

broader range of changes to an existing system than the

process of system maintenance and is a possible solution for

the elongation of a legacy system’s lifespan [16]. These

changes include restructuring the system, improving system

functionality or modifying system attributes. Modernization

must, however, conserve a sizable portion of the existing

legacy system to conserve the original business rules

contained in the system [8]. Modernization approaches

typically fall into two distinct categories [9], namely:

 Legacy Integration and Service Enablement; and

 Legacy Transformation.

Legacy integration uses non-invasive wrapping of legacy

systems to hide complexity and emphasises modern

interfaces to improve interoperability (Figure 3). This

category of modernization is used to lengthen the lifetime of

legacy systems by exposing the integral functionality of

these systems. Consequently, legacy wrapping reduces the

cost of integration whilst requiring less immediate planning

and design.

Figure 3. Adapted from “Taxonomy of Legacy

Modernization Approaches” [9]

Legacy transformation follows an invasive re-engineering

approach to convert legacy systems (Figure 3). A detailed

analysis of the existing legacy code and an understanding of

the system functionality and data structures lead to the

extraction of data definitions and business rules.

Modernization can be classified by the degree of

knowledge of system internals required to sustain the

modernization approach [8]. Modernization that requires

understanding of the functionality and structure of a legacy

system is known as white-box modernization, and

modernization that only requires knowledge of the legacy

system interfaces is called black-box modernization.

White-box modernization requires an initial reverse-

engineering process to gain understanding of the legacy

system internal structure and operation [8]. This process is

called program understanding and involves modelling the

domain, extracting information from the legacy code and

creating representations of the system hierarchy [16]. After

program understanding, restructuring of the system defines a

transformation from one representation of the system to

another at the same level of abstraction [8]. This process

typically alters quality attributes of the system including

maintenance and performance. White-box modernization is

beneficial for simplified future maintenance and extension

[9].

Alternatively, black-box modernization is concerned with

the evaluation of the inputs and outputs of the legacy system

during operation to gain knowledge of the interfaces [16].

Black-box modernization is usually a less complex task than

white-box modernization as all it involves is the wrapping of

the original system. Wrapping entails encasing the legacy

Legacy integration &

service enablement

Legacy

transformation

 APPENDIX A

127

system in a software layer that masks the unnecessary

complexities of the legacy code whilst generating a modern

interface. The wrapper interfaces with the legacy system

during execution of every possible interaction instance [3].

A wrapping approach is termed black-box since after the

legacy interface is analysed, the internals are disregarded

[16].

There are many advantages for incorporating wrappers

into legacy applications [17]. Firstly, the legacy database is

not altered in any way. Secondly, the wrapper allows for

more functionality to be added to existing legacy

applications, such as statistics collection and performance

visualization. Lastly, wrappers allow for an incremental

modernization process of complex legacy systems.

Alternatively, a disadvantage of black-box modernization is

the manual recording of interaction scenarios and screen

templates [3]. A black-box solution is not always realistic as

it sometimes requires knowledge of some system internals

by use of white-box techniques [8].

Each of the modernization approaches has benefits in

specific domains. However, there is a lack of a

comprehensive evaluation of the modernization process that

identifies which approach is successful in the modernization

of a legacy system into data services.

B. Data Services

Services that provide data in a uniform structure are

known as Data Services [4]. These data services have the

essential functionality of a distinct business object. Thus, the

structure of the data service is determined by and describes

the information stored within it for its specific business

object type.

Data services have a collection of read methods which are

calls to the service to request access to instances of business

object types in various ways [2]. Similarly, data services

have write methods which allow for the insertion,

modification, or deletion of different business object

instances. Data services also have navigation methods which

are service requests to navigate the relationships between

business objects returned via different services.

Importance of quality metrics of services, such as

reusability and performance, is stressed for improved service

discovery [11]. Several quality attributes are described in

existing evaluation strategies that need to be adhered to

when generating services for an SOA [1]. These non-

functional attributes serve as a guideline for the

development of high quality services. Software metrics are

used to quantitatively measure quality attributes [6].

III. EVALUATION STRATEGIES

Numerous evaluation strategies exist in the form of

guidelines for the development of services for an SOA as

well as for the evaluation of the end products of

development. These strategies include the adherence to QoS

requirements [1], measurement of software metrics to assess

code complexity and developer effort [6], and empirical

evaluation to gauge the acceptance of the end product with

users of the software [18].

A. Quality of Service Attributes

QoS metrics are essential in selecting the best possible

execution plan for service discovery and composition within

budget and time limitations [11]. A number of quality

attributes are relevant to the evaluation of the end product of

the modernization process of a legacy system [1, 11],

namely:

 Performance;

 Availability;

 Security;

 Testability;

 Interoperability; and

 Reliability.

Performance is measured as the time taken for responses

to be generated from requests sent to a service [1], and is

indicative of the cost of invoking a service [11]. Availability

is defined as a service’s ability to be available despite server

maintenance or system overload. Security is defined in

terms of the confidentiality and protection of data when

accessed by a service. A service is required to be testable for

modified versions of the service. A service is required to be

interoperable on various platforms, the level of

interoperability being defined in terms of its reusability.

Software metrics can be used to measure reusability of code

in a system [6]. The reliability of the service is measured by

the amount of system errors encountered and the recovery of

the system as a result [11].

B. Object-Oriented Software Metrics

A suite of metrics for object-oriented (OO) code exist

based on measurement theory [6]. These metrics were

developed to be high level and therefore independent of any

programming language. The metrics that will be focused on

for the purposes of this study include:

 WMC (Weighted Methods per Class);

 DIT (Depth of Inheritance Tree);

 NOC (Number of Children); and

 CBO (Coupling Between Objects).

The use of these candidate metrics provides insight into

the complexity of the code, the effort required by the

developer to create and maintain the OO system, as well as

effects on quality attributes pertaining to the system.

The effort required by the developer to create and maintain

a class is described by the WMC metric [6]. The number of

methods per class in an OO system, combined with the

complexity of these methods is a clear indication of the

amount of time and effort required by the developer to

create the class. With regard to the DIT metric, the deeper a

class is in a hierarchy of classes, the greater the number of

methods it inherits from its hierarchy [6]. This inheritance

factor increases the complexity of the class and decreases

the ability to predict the behaviour of the class.

Alternatively, a greater depth in the inheritance tree implies

better reusability of methods.

The NOC metric measures the number of subclasses

inheriting the methods of a parent class, namely the scope of

 APPENDIX A

128

its properties [6]. The greater the number of subclasses, the

better the reuse of methods from the parent class due to the

inheritance property.

The CBO metric provides an indication of the

comprehension of the actions of one object on another

object due to the former object’s calls or references to the

latter [6]. If the CBO measure is too high, the reusability and

modularity of the class is negatively affected. By

minimizing coupling, it is possible to improve

maintainability of the code. Thus, reduced changes are

required to other sections of the system code.

C. Efficacy of Data Services

Many guidelines for the development of high quality

services have been suggested in order to assist the developer

in the conversion process associated with the modernization

of legacy systems. Once the service has been deployed,

however, the user requires an effective and efficient means

of carrying out the core functionality for which they require

the service. Effectiveness is defined as a general goal as to

how well a product performs the task for which it has been

created [14].

Empirical research in the form of usability studies [14] can

be used to determine the efficacy of a service, since the

service is software with which the user interacts. This

strategy is apparent in the case where empirical evaluations

are used to support the comparative analysis between an

existing legacy system modernization tool and MELIS, a

proposed legacy system migration tool [7]. Usability testing

is defined as the evaluation approach that involves

measuring users’ performance and analysing their

satisfaction with the system being tested in a formal

controlled environment [18].

Quantitative methods are defined as collecting numerical

data and analysing it by statistical procedures [15].

Qualitative data is collected as text or images from

observations, interviews or questionnaires. Results from

statistical analysis of data collected from usability

experiments are combined with the participants’ feedback to

validate the results, seen in similar studies [7].

IV. COMPREHENSIVE EVALUATION STRATEGY

Various evaluation strategies exist and are employed to

measure the quality of software produced [1, 5, 6, 11] as

well as the satisfaction that the end product provides the

customer [18]. A comprehensive evaluation strategy is

proposed. The approach evaluates the design,

implementation and outputs of a modernization process to

aid in the assurance of a thorough modernization process

and the precise performance of the outputs after

modernization [5]. The holistic modernization evaluation

strategy is comprised of three different criteria:

1. QoS attributes of the services generated;

2. Developer effort required to modernize legacy

system; and

3. Efficacy evaluation of the service generated.

To validate this evaluation strategy, the three evaluation

legs will be applied to a case study. The legacy system in the

case study allows student assistants at a university to

maintain their information, select courses to assist and mark

their attendance for sessions in the courses they assist. This

legacy system went through a white-box modernization

process to expose the data as a service, using the design

principles shown in similar studies [2]. The data services

were created to retrieve data from the database with read

methods such as getStudentInfo and fillDetails (Table 1).

Data services also contained write methods such as

updateDemi (Table 1).

A consolidated list of QoS attributes can be drawn from

combining those presented (Section III). The most

appropriate and frequently used QoS metrics are used as a

guideline for service generation from the modernization

approach [1, 2, 11]:

6. Performance;

7. Reliability;

8. Interoperability; and

9. Reusability.

Testability is excluded from the four final attributes as it is

identified as a minor quality attribute [11]. Security and

availability are excluded from the elected QoS metrics due

to the nature of the case study. The student assistant system

operates within a closed network where data security is not a

necessity. The availability of the services despite server

overload is not a concern in this study as it is not likely that

the data services would be queried simultaneously by

several users.

Table 1. Mean Response Times for Service Calls

Performance of the data services created during

modernization was measured in seconds as each service

method was called by the client application. The service

methods were tested by seven participants and the mean and

standard deviations were recorded (Table 1). Considering

that the services are called with a SOAP request, perform a

SQL query to retrieve data and finally return the data via a

SOAP response to the client, the performance results are

consistently low, with the exception of the checkStudent

method. This method is called first during login to the

system and the connection to the data source is first made

here, explaining the excess time taken for the service to

respond. Participants noted that the response times of the

data services were no different than the performance of the

legacy system (n = 3).

 APPENDIX A

129

Reliability of the data sent to and retrieved by the services

was dealt with in the service client. Checks are performed

on all data to ensure that it is meaningful and the system

provides users with responsive feedback for the actions

which they perform. Finally, the interoperability of the

services describes the reusability of the services on any

platform. To ensure reusability of the services generated

from modernization, the services were written with Java and

deployed on a Glassfish application server using SOAP

standards. The nature of SOAP services is inherently

platform independent due to the exchange of messages in

SOAP format using XML. The service client classes

maintain the states of the interface during the application’s

execution (Table 2), whilst the data services contain the

methods to access and modify data and the service methods

are called by the service client classes as needed.

Table 2. Metrics for Classes in the Service Client

The DIT and NOC metrics are useful measures for the

verification of code reusability. The calculation of the depth

of a class in a class hierarchy reveals the level of method

reuse due to inheritance [6]. The reusability of code in the

client application classes is low; however, low DIT and

NOC values also indicate reduced complexity and increased

prediction of behaviour of the classes (Table 2). The CBO

metrics collected also prove useful in determining the

reusability of classes of code in the application. The Home

and PrintSession classes show the highest values for

coupling, thus increasing their reusability slightly.

The WMC metric provides a measure of effort required by

the developer to create the data services from the legacy

code during modernization. Thus, the number of methods

per class and their perceived complexity provides an

indication of the time and effort to create and maintain the

code [6]. The WMC metrics for the classes as well as the

number of methods per class are indicated in Table 2. The

complexities of the methods are relatively low amongst the

classes in comparison to the number of methods per class,

thus improving the quality of the system. This reduced

complexity of the service client is due to the incorporation

of data services for any data retrieval or insertion (Table 1).

Reverse-engineering rules applied to legacy systems

require validation by empirical research [5]. The

modernization of legacy systems of various designs

produces various end results. Empirical research performed

in a similar environment to which the results will be applied

with realistic subjects is relevant [15]. Admittedly, this form

of research may be time-consuming and costly, but the

industrial benefit lies in the implication of the results. After

modernization and software metric evaluations were

completed, a usability study was performed to obtain

quantitative and qualitative feedback from representative

users of the system. To identify any usability issues, a

sample of seven participants was selected to perform three

tasks on the modernized student assistant service. The

participants consisted of six male and one female student

assistant, who were familiar with the legacy system as they

had used it at least once a week previously (n = 7).

Participants’ times taken per task were recorded to assess

the efficiency of the data services. The times per task were

consistently low for all tasks, at less than one minute (Table

3). The mean times per task are an indication of the

efficiency of the services to provide timely responses to the

users.

Table 3. Participants Mean Times per Task

Table 4. Error Rates per Task

The effectiveness of the system to provide users with the

data they requested was assessed by retrieving task success

and task completion measures. All participants were able to

complete each of the three tasks, although task three

produced high error rates (Table 4). Whilst executing task

three, participants struggled to navigate to the interface to

print the total hours of service. During modernization, the

interface was directly translated from the legacy system,

thus indicating design flaw in the original system as well. A

recommendation from this observation is to improve the

visibility of the option to print the total hours of service, thus

improving navigability of the modernized system.

Lastly, a post-test System Usability Scale (SUS) was

performed to determine system acceptance as a whole by

participants, identified by unique participant ID’s (Table 5).

The scores for each of the 10 questions were normalized and

collated into a final score.

Table 5. SUS Scores per Participant

Consistently high scores were given by each of the

participants, indicating a high acceptance rate for the

modernized system. Combined with encouraging user

comments and the system’s efficiency and effectiveness to

provide users with the data they requested, it can be seen

that the data services are a feasible replacement for the

legacy system.

V. CONCLUSION

Due to the growing enlightenment on SOA technologies

[10], there is an opportunity for organisations to use these

emerging technologies as a platform to modernize legacy

systems. The benefit of the modernization process is the

lengthened lifespan of core business processes within

existing legacy systems. Once data services have been

 APPENDIX A

130

generated by modernization, it is necessary to evaluate these

services. A holistic evaluation strategy for legacy system

modernization consisting of three evaluation legs is

proposed. Firstly, QoS attributes are defined as a guideline

for development of data services. The second leg involves

the prediction effort required by the developer to generate

the data services during modernization. Thirdly, the data

services must be evaluated by empirical studies to gauge

performance of the service as well as user satisfaction.

Existing evaluation strategies include the service’s

adherence to QoS guidelines by the identification of major

quality attributes of services for an SOA [11]. Also, the use

of software metrics during the development process to

ensure software of a high quality is identified [6]. Lastly,

user studies have been performed to assess performance

metrics as well as gain feedback regarding qualitative

measures of software end products [7]. By combining these

existing evaluation strategies to produce a comprehensive

evaluation framework, the overall success of a

modernization approach can be gauged.

The application of this evaluation approach to the case

study in this paper demonstrated how to use QoS metrics as

a guideline for the development of high quality data

services. The extent to which the guidelines were met was

measured by the use of software metrics (Section IV). These

analytical metrics validated the proper design of the

modernized data services. These metrics alone, however,

don’t give an overall view of the usefulness of the new

system. To measure the effectiveness of the data services,

usability tests were conducted. The results obtained from the

usability tests indicated a high acceptance rate by

participants. The combination of the analytical evaluation

results and the usability testing results illustrate the success

of the modernization approach applied to the case study.

Perceived benefits of this combined modernization

evaluation approach include the collection of data

throughout all phases of development. Guidelines have been

recognised that need to be adhered to. These guidelines

provide rules for the development of high quality services.

Software metrics provide a quantitative measure for the

evaluation of the modernization outputs. The developer’s

effort measure could be beneficial in the determination of

which modernization approach is more suitable for the

migration of legacy code to data services. Lastly, user

studies of the services generated allow for the assessment of

the final product’s efficacy and the user’s satisfaction. This

holistic evaluation approach aims to ensure the successful

outcome of legacy system modernization.

The comprehensive evaluation strategy was applied to a

white-box modernization case study. The results from this

pilot study were feasible, showing that the modernization of

the legacy system into data services was an efficient and

acceptable process. The analytical evaluation of the software

metrics and quality of the service also yielded positive

results regarding the design of the data services. The success

of the modernization effort has served as a validation of the

selection of the criteria for this evaluation strategy.

REFERENCES

[1] Bianco, P., Kotermanski, R. & Merson, P. (2007).

Evaluating a Service-Oriented Architecture. Carnegie

Mellon University.

[2] Borkar, V., Carey, M., Lychagin, D., Westmann, T.,

Engovatov, D. & Onose, N. (2006). Query Processing in

the AquaLogic Data Services Platform. International

Conference on Very Large Data Bases (VLDB'06).

[3] Canfora, G., Fasolino, A., Frattolillo, G. & Tramontana, P.

(2006). Migrating Interactive Legacy Systems to Web

Services. Conference on Software Maintenance and

Reengineering.

[4] Carey, M. (2006). Data Delivery in a Service-Oriented

World: The BEA AquaLogic Data Services Platform.

International Conference on Management of Data.

[5] Chiang, R.H.L., Barron, T.M., Storey, V.C. (1997). A

Framework for the Design and Evaluation of Reverse

Engineering Methods for Relational Databases. Data and

Knowledge Engineering, 21, 57-77.

[6] Chidamber, S., Kemerer, C. (1994). A Metrics Suite for

Object Oriented Design. IEEE Transactions on Software

Engineering, 20, 476 – 493.

[7] Colosimo, M., De Lucia, A., Scanniello, G. & Tortora, G.

(2008). Evaluating legacy system migration technologies

through empirical studies. Information and Software

Technology, 51, 433-447.

[8] Comella-Dorda, S., Seacord, R.C., Wallnau, K., Robert, J.

(2000). A Survey of Black-Box Modernization Approaches

for Information Systems. International Conference on

Software Maintenance.

[9] Erradi, A., Anand, S., Kulkarni, N. (2006). Evaluation of

Strategies for Integrating Legacy Applications as Services

in a Service Oriented Architecture. International

Conference on Services Computing.

[10] Gartner Group. (2009). Hype Cycle for Emerging

Technologies, 21 July 2009.

[11] Jeong, B., Hyunbo, C., Choonghyun, L. (2009). On the

Functional Quality of Service (FQoS) to Discover and

Compose Interoperable Web Services. Expert Systems with

Applications, 36, 5411-5418.

[12] Liegl, P. (2007). The Strategic Impact of Service Oriented

Architecture. International Conference and Workshops on

the Engineering of Computer-Based Systems.

[13] Sanders, D., Hamilton, J. & Macdonald, R. (2008).

Supporting a Service-Oriented Architecture. Spring

Simulation Multiconference.

[14] Sharp, H., Rogers, Y., Preece, J. (2007). Interaction

Design: Beyond Human-Computer Interaction, John Wiley

& Sons.

[15] Sjøberg, D.I.G., Dybå, T., Jørgensen, M. (2007). The

Future of Empirical Methods in Software Engineering

Research. Future of Software Engineering (FOSE ‘07).

[16] Seacord, R. C., Plakosh, D. & Lewis, G. (2003).

Modernizing Legacy Systems Software Technologies,

Engineering Processes, and Business Practices, Addison-

Wesley.

[17] Thiran, P., Hainaut, J., Houben, G., Benslimane, D., (2006)

Wrapper-based Evolution of Legacy Information Systems.

ACM Transactions on Software Engineering and

Methodology. 329-359.

[18] Tullis, T., Albert, B. (2008). Measuring the User

Experience, Morgan Kaufmann.

Meredith A. Barnes received her BSc and BSc (Hons) in Computer

Science and Applied Mathematics from Nelson Mandela Metropolitan

University (NMMU). She is currently pursuing a MSc in Computing

Sciences at NMMU.

 APPENDIX B

131

Demi Service Task List (Framework Validation)

Task 1

Log in to the Demi System using your student number

Select the “Change Details” Option

Increase the value for your year level by one

Select the “Save” button and follow the prompts to save your changes

Once back on the Home interface, reopen the “Change Details” interface to see if your

changes were saved

Select the “Close” button

Task 2

Select the “Print Session List” button

Select the option to print your session list and follow the prompts to use the default printer

Task 3

Select the “View Total Hours” button

Change the first date to 1 May 2009 and view the total hours for your date selection

Select the option to print your table and follow the prompts to use the default printer

Close the Page and return to the Home page

Close the homepage

 APPENDIX C

132

Nelson Mandela Metropolitan University

Department of Computing Sciences

This questionnaire is part of research towards a MSc in
Computing Sciences
Contact Information: Email: Meredith.Barnes@nmmu.ac.za; Phone: 041 504 2094

SYSTEM 1 Task List

Task 1 : Student number is 209012345

1.1
Use the Demi System to complete the Demi Application Form (Use the provided
information below)

 ID Number 8701010083980

 Title Mr

 Name Peter

 Surname Smith

 Phone number 083 123 4567

 Address
123 Green Street
Parkville
Port Elizabeth

 Correspondence language English

 Can speak fluently English

 Qualification BSc

 Year level 3

 Period available Entire Year

 Previous experience None

 Have you applied for SI leader? No

 What courses? Leave blank

 Comments Leave blank

1.2
Once the application form is complete, send the verification email to:
charmain.cilliers@nmmu.ac.za

1.3 Save your application and close the form

1.4 Close the Demi System

1.5 Press F10 to move to the next task

mailto:charmain.cilliers@nmmu.ac.za

 APPENDIX C

133

Task 2 : Student number is 209012345

2.1 Use the Demi System to select the WRFE101 session from the list of available sessions

2.2 Select the WRA102 session from the list of available sessions

2.3 Save the session selection

2.4 What labs are your chosen sessions held in?

 WRFE101 Answer:

 WRA102 Answer:

2.5 Close the Demi System

2.6 Press F10 to move to the next task

Task 3 : Student number is 209012345

3.1 Use the Demi System to remove the WRFE101 session from your list of selected sessions

3.2 Save the session removal

3.3 What lab is your remaining session held in?

 WRA102 Answer:

3.4 Close the Demi System

3.5 Press F10 to move to the next task

Task 4 : Student number is 209012345

4.1 Use the Demi System to view your list of selected sessions

4.2 From the list of sessions please answer the following questions:

4.2.1
What session are you registered to
demi?

Answer:

4.2.2
What day do you need to demi this
session?

Answer:

4.3 Close the Demi System

4.4 Press F10 to move to the next task

 APPENDIX C

134

Please complete this section after you have completed the tasks for System 1

Put a cross [X] in the appropriate block
1. I think that I would like to use System 1 frequently

Strongly
disagree

1 2 3 4 5
Strongly

agree

2. I found System 1 unnecessarily complex

Strongly
disagree

1 2 3 4 5
Strongly

agree

3. I thought System 1 was easy to use

Strongly
disagree

1 2 3 4 5
Strongly

agree

4. I think that I would need the support of a technical person to be able to use System 1

Strongly
disagree

1 2 3 4 5
Strongly

agree

5. I found the various functions in System 1 were well integrated

Strongly
disagree

1 2 3 4 5
Strongly

agree

6. I thought there was too much inconsistency in System 1

Strongly
disagree

1 2 3 4 5
Strongly

agree

7. I would imagine that most people would learn to use System 1 very quickly

Strongly
disagree

1 2 3 4 5
Strongly

agree

8. I found System 1 very cumbersome to use

Strongly
disagree

1 2 3 4 5
Strongly

agree

9. I felt very confident using System 1

Strongly
disagree

1 2 3 4 5
Strongly

agree

10. I needed to learn a lot of things before I could get going with System 1

Strongly
disagree

1 2 3 4 5
Strongly

agree

11. Please list any features that you liked the most about System 1 and explain why:

12. Please list any features that you liked the least about System 1 and explain why:

 APPENDIX C

135

SYSTEM 2 Task List

Task 1 : Student number is 209055667

1.1
Use the Demi System to complete the Demi Application Form (Use the provided
information)

 ID Number 8701010084680

 Title Miss

 Name Mary

 Surname Miller

 Phone number 083 765 4321

 Address
10 Long Street
Greenfields
Port Elizabeth

 Correspondence language English

 Can speak fluently English, Afrikaans

 Qualification BComm

 Year level 3

 Period available Entire Year

 Previous experience None

 Have you applied for SI leader? No

 What courses? Leave blank

 Comments Leave blank

1.2
Once the application form is complete, send the verification email to:
jean.greyling@nmmu.ac.za

1.3 Save your application and close the form

1.4 Close the Demi System

1.5 Press F10 to move to the next task

mailto:jean.greyling@nmmu.ac.za

 APPENDIX C

136

Task 2 : Student number is 209055667

2.1 Use the Demi System to select the WRFC102 session from the list of available sessions

2.2 Select the WRA202 session from the list of available sessions

2.3 Save the session selection

2.4 What labs are your chosen sessions held in?

 WRFC102 Answer:

 WRA202 Answer:

2.5 Close the Demi System

2.6 Press F10 to move to the next task

Task 3 : Student number is 209055667

3.1
Use the Demi System to remove the WRA202 session from your list of selected
sessions

3.2 Save the session removal

3.3 What lab is your remaining session held in?

 WRFC102 Answer:

3.4 Close the Demi System

3.5 Press F10 to move to the next task

Task 4 : Student number is 209055667

4.1 Use the Demi System to view your list of selected sessions

4.2 From the list of sessions please answer the following questions:

4.2.1
What session are you registered to
demi?

Answer:

4.2.2
What day do you need to demi this
session?

Answer:

4.3 Close the Demi System

4.4 Press F10 to move to the next task

 APPENDIX C

137

Please complete this section after you have completed the tasks for System 2

Put a cross [X] in the appropriate block
1. I think that I would like to use System 2 frequently

Strongly
disagree

1 2 3 4 5
Strongly

agree

2. I found System 2 unnecessarily complex

Strongly
disagree

1 2 3 4 5
Strongly

agree

3. I thought System 2 was easy to use

Strongly
disagree

1 2 3 4 5
Strongly

agree

4. I think that I would need the support of a technical person to be able to use System 2

Strongly
disagree

1 2 3 4 5
Strongly

agree

5. I found the various functions in System 2 were well integrated

Strongly
disagree

1 2 3 4 5
Strongly

agree

6. I thought there was too much inconsistency in System 2

Strongly
disagree

1 2 3 4 5
Strongly

agree

7. I would imagine that most people would learn to use System 2 very quickly

Strongly
disagree

1 2 3 4 5
Strongly

agree

8. I found System 2 very cumbersome to use

Strongly
disagree

1 2 3 4 5
Strongly

agree

9. I felt very confident using System 2

Strongly
disagree

1 2 3 4 5
Strongly

agree

10. I needed to learn a lot of things before I could get going with System 2

Strongly
disagree

1 2 3 4 5
Strongly

agree

11. Please list any features that you liked the most about System 2 and explain why:

12. Please list any features that you liked the least about System 2 and explain why:

 APPENDIX D

138

Nelson Mandela Metropolitan University
Department of Computing Sciences
This questionnaire is part of research towards a MSc in
Computing Sciences

Post-Test Questionnaire

Put a cross [X] in the appropriate block

1. Which system would you prefer to use more frequently?

System 1 1 2 3 4 5 System 2

Why would you prefer to use this system more frequently?

2. Which system did you find more complex?

System 1 1 2 3 4 5 System 2

Why did you find this system more complex?

3. Which system did you find easier to use?

System 1 1 2 3 4 5 System 2

Why was this system easier to use?

4. Which system do you think you would need support of a technical person to use?

System 1 1 2 3 4 5 System 2

Why did you feel you needed the support of a technical person for this system?

5. Which system’s various functions did you find were better integrated?

System 1 1 2 3 4 5 System 2

Why did you feel this system was better integrated?

6. Which system did you think was more inconsistent?

System 1 1 2 3 4 5 System 2

Why did you think this system was more inconsistent?

7. Which system do you think most people would learn to use more quickly?

System 1 1 2 3 4 5 System 2

Why do you think people will learn this system more quickly?

8. Which system did you find more cumbersome to use?

System 1 1 2 3 4 5 System 2

Why did you find this system more cumbersome?

9. Which system did you feel more confident using?

System 1 1 2 3 4 5 System 2

Why did you feel more confident using this system?

10. Which system did you feel required you to learn a lot more before you started?

System 1 1 2 3 4 5 System 2

Why did you feel that you needed to learn more about this system first?

 APPENDIX E

139

Task 1 ANOVA
 SS D.F. MS F p

 Intercept 13020.83 1 13020.83 10.46 .003

 BW 1140.83 1 1140.83 0.92 .347

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -20.83 35.24 -33.99 -7.68

BW W-B 15 -14.67 31.35 -32.03 2.70

BW B-W 15 -27.00 38.83 -48.50 -5.50

Task 2 ANOVA
 SS D.F. MS F p

 Intercept 1920.00 1 1920.00 4.73 .038

 BW 1228.80 1 1228.80 3.03 .093

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -8.00 20.84 -15.78 -0.22

BW W-B 15 -14.40 24.26 -27.84 -0.96

BW B-W 15 -1.60 14.93 -9.87 6.67

Task 3 ANOVA
 SS D.F. MS F p

 Intercept 83.33 1 83.33 0.85 .365

 BW 496.13 1 496.13 5.04 .033

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -1.67 10.59 -5.62 2.29

BW W-B 15 2.40 7.57 -1.79 6.59

BW B-W 15 -5.73 11.82 -12.28 0.81

Task 4 ANOVA
 SS D.F. MS F p

 Intercept 607.50 1 607.50 1.00 .326

 BW 5964.30 1 5964.30 9.80 .004

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -4.50 28.16 -15.02 6.02

BW W-B 15 9.60 21.50 -2.30 21.50

BW B-W 15 -18.60 27.47 -33.81 -3.39

 APPENDIX E

140

Task 5 ANOVA
 SS D.F. MS F p

 Intercept 770.13 1 770.13 2.26 .144

 BW 2764.80 1 2764.80 8.13 .008

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 5.07 20.59 -2.62 12.75

BW W-B 15 -4.53 14.45 -12.54 3.47

BW B-W 15 14.67 21.72 2.64 26.69

Positive SUS
ANOVA

 SS D.F. MS F p

 Intercept 3.01 1; 28 3.01 6.62 .016

 BW 0.01 1; 28 0.01 0.02 .893

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -0.3167 0.6628 -0.5642 -0.0692

BW W-B 15 -0.3000 0.5278 -0.5923 -0.0077

BW B-W 15 -0.3333 0.7943 -0.7732 0.1065

SUS ANOVA
 SS D.F. MS F p

 Intercept 1.01 1; 28 1.01 5.06 .033

 BW 0.03 1; 28 0.03 0.17 .686

 Level n Mean S.D. 95%CI.lo 95%CI.hi

Total 30 -0.1833 0.4401 -0.3477 -0.0190

BW W-B 15 -0.1500 0.3510 -0.3444 0.0444

BW B-W 15 -0.2167 0.5250 -0.5074 0.0741

