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Abstract

The study involved the predator-prey interaction of three species namely the predator

(Cheetah Acinonyx jubatus), the super-predator (Lion Panthera leo), and their com-

mon prey (Impala Aepyceros melampus). The study area is the Kruger National Park.

The predator being an endangered species, faces a survival problem. It is frequently

killed by the super-predator to reduce competition for prey. The super-predator also

scares away the predator off its kills. The prey forms the main diet of the predator. The

plight of the predator motivated the author to formulate disease and reaction-diffusion

models for the species interactions. The purpose of the models were to predict and

explain the effect of large competition from the super-predator on the predator popu-

lation. Important parameters related to additional predator mortality due to presence

of super-predator, the disease incidence rate and induced death rate formed the focal

points of the analysis.

The dynamics of a predator-prey model with disease in super-predator were investi-

gated. The super-predator species is infected with bovine Tuberculosis. In the study,

the disease is considered as biological control to allow the predator population to regain

from low numbers. The results highlight that in the absence of additional mortality

on the predator by the super-predator, the predator population survives extinction.

Furthermore, at current levels of disease incidence, the super-predator population is

wiped out by the disease. However, the super-predator population survives extinction

if the disease incidence rate is low. Persistence of all populations is possible in the case

of low disease incidence rate and no additional mortality imparted on the predator.

Furthermore, a two-species subsystem, prey and predator, is considered as a special

case to determine the effect of super-predator removal from the system, on the survival

of the predator. This is treated as a contrasting case from the smaller parks. The

results show that the predator population thrives well in the total absence of its main

competitor, with its population rising to at least twice the initial value.
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A reaction-diffusion three-species predator-prey model was formulated and analysed.

Stability of the temporal and the spatio-temporal systems, existence and non-existence

of stationary steady state solutions were studied. Conditions for the emergence of sta-

tionary patterns were deduced. The results show that by choosing the diffusion coeffi-

cient d2 > D̄2 sufficiently large, a non-constant positive solution is generated, that is,

stationary patterns emerge, depicting dispersal of species. Predators were observed to

occupy habitats surrounding prey. However, super-predators were observed to alter-

nate their habitats, from staying away from prey to invading prey habitat.

In the investigation, strategies to determine ways in which the predator species could

be saved from extinction and its population improved were devised, and these included

isolation of the predator from the super-predator.

Keywords: Predator-prey system, eco-epidemiology, local stability, global stability,

infectious disease, reaction-diffusion system, self-diffusion, instability, non-constant

positive steady state.
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Chapter 1

Introduction

1.1 Dynamics of predator-prey systems with dis-

persion

Wildlife conservation is crucial in the fight against extinction for some endangered

species. In the case of mammals in which carnivores survive on predation, their con-

servation becomes essential and paramount to that of other groups of species. An

alteration in the levels of competition between carnivores has a direct bearing on the

survival of other groups of species [1].

Several large carnivore species populations are facing negative growth [2]. The prob-

lems around their conservation can be attributed to direct conflict between humans

and predators [3, 4]. The negative growth is indicative of failing efforts in the conser-

vation of carnivores. It appears that perceptions about what is right have super-ceded

scientifically proven theories on conservation. Several initial ecological management

strategies have imposed a negative effect on species populations [5].

Protected areas are now safe havens for wildlife species. They are reserve areas for

wildlife species habitat as they keep away human activities from endangering them.
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Apart from these areas, conservation efforts need to be improved where free roaming

wildlife are found [6].

To appreciate that predators need to be conserved, there is a need to fully understand

their role in wildlife communities. Since predators must kill other animals in order to

survive, many myths about them have evolved over the centuries in many cultures.

Extinction of prey species can be attributed to excessive predation or harvesting.

Predator diet is usually not limited to one prey species. In general, prey is the com-

mon source of food to predators. Extinction of predator species is linked to large scale

competition amongst predators and subsequent loss of food. An understanding of the

prey and predator interactions is therefore vital in shaping conservation efforts.

Carnivore competition is difficult to analyse. A complementary part to conservation

of carnivores is the knowledge of why a species competes for a common resource. Such

knowledge assists conservationists to impart an effect on that competition. Carnivore

competition is an integral part to species conservation in ecology [1, 7]. It can also take

the form of intraguild predation, a common multi-trophic interaction [8, 9, 10]. With

intraguild predation, two consumer species in competition for the same resource also

involve themselves in another trophic interaction in which one species consumes the

other competitor. Such two species can only coexist if there is no dispersal involved,

as long as they show a trade-off between competition and predation. Such a trade-off

implies that the more powerful consumer makes the less powerful competitor its addi-

tional prey [8]. With intra-guild predation, predators tend to expand their prey base.

This has a subsequent effect on other trophic levels [1, 11].

Apart from the effects of competition on population densities, the occurrence of in-

fectious diseases in wild animal species has become a serious conservation issue which

cannot be ignored. Animal species are not immune to infectious diseases. It is of vital
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importance that whilst modelling the species interactions, the consequences of out-

breaks of infectious diseases need to be taken into account. The presence of a disease

in at least one species alters the way in which that species interacts with others.

When an infectious disease affects the prey species, predation tends to be inclined to-

wards infected rather than healthy prey [12]. The basic assumption is that sick prey

are easier to catch than healthy ones. This however, assumes the fact that the disease

is not passed on to the predator. In situations where the disease is passed to the preda-

tors, the dynamics differ. Infected predators tend to be too weak to hunt successfully

and rely on food provided by members of the same group. The presence of disease in

one species can be viewed as biological control to alter the population level of another

species and avoid extinction [13].

In general, species interaction is not homogeneous in any environment. Predation has

an effect on the way in which prey species interact [14, 15, 16] their density, distribution

in the environment, and the selection of preferred habitat [17, 18]. The structure of

the landscape such as hills, river confluences, and closeness to water, are essential in

determining the risk of predation [19]. Predators tend to disperse in the direction

of areas where prey density is high. On the other hand, prey tend to disperse to

areas in which predator density is low. Predators of a lower guild tend to disperse

in areas where the higher guild predators are few. As such, the species interactions

tends to be heterogeneous. It is therefore important that spatial considerations of

species interactions need to be taken into account in the modeling process. The spatio-

temporal dynamics need to be investigated. Spatial distributions can be influenced by

topography, resource availability, distribution, and disturbances [20]. The presence of

water holes also influences the distribution of wildlife [1, 21].

3



1.2 The problem in Kruger National Park

The Kruger National Park (KNP) was established in 1898 to protect the wildlife of the

South African Lowveld. It is a home to a variety of wildlife species, ranging from trees

to mammals, with species numbers estimated as: ”336 trees, 49 fish, 34 amphibians,

114 reptiles, 507 birds and 147 mammals” [22]. KNP is South Africa’s largest wildlife

reserve with an area of approximately 20,000 km2. The park consists largely of wood-

land savanna. Recent population estimates (2010-2011) of the numbers of mammals

are: lion (Panthera leo) 1620-1750; leopard (Panthera pardus) 1000; cheetah (Aci-

nonyx jubatus) 412 [23]; buffalo(Synercus caffer) 37130; impala (Aepyceros melampus)

132300-176400 and so forth [24].

The mammals include carnivores and herbivores. The big flesh-eating cats (lion, leop-

ard and cheetah) and dogs (hyaena(Crocuta crocuta) and wild dogs (Lycaon pictus))

occupy the highest positions on the list of large carnivores. Large and small predators

make up a small proportion of the entire animal kingdom in the park. In compar-

ison with the number of herbivores, predators are few. Herbivores can be grouped

under either grazers or browsers, although many species can be both. Grazers, like

buffalo, have a diet that is made up of grass while browsers, like the giraffe (Giraffa

camelopardalis), feed on leaves. Some animals, like the elephant (Loxodonta africana)

and impala, feed on both grass and leaves, depending on the ease of access of the food.

In the KNP, the impala provide 29% of lion kills and 44% of cheetah kills [25].

The lion and hyena are the dominant predators of the large predator guild in KNP.

The cheetah and wild dog are in the sub-dominant predator level of this guild, and

as such, they face immense competition from the lion and wild dog. The effects of

this competition can be explained in the way in which the species avoid, interfere and

co-exist with each other. The way in which species interfere with each other is closely

related to their relative population densities. Species in high abundance prosper at the
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expense of those occurring at low densities. This exacerbates the extinction of species

with low densities [26]. The low densities of the cheetah and wild dog in the KNP and

their failure to regain large numbers can be attributed to this. Furthermore, the low

densities can be attributed to loss of food due to large competition, where they lose

their kills to the species in the upper guild [1].

In KNP, a predator control programme meant to reduce the number of carnivores was

stopped in 1960. The programme was responsible for the death of 269 cheetah. ”Early

control schemes, and subsequent management policies such as the provision of artificial

water holes, tipped the balance in favour of lions at the expense of other predators”

[1]. Since then the cheetah population has grown marginally.

Large competition between carnivores has created a major problem for KNP conser-

vation. Lion, an intraguild predator, has a high population in comparison with the

cheetah. Due to intra-guild predation by the lions, the cheetah population is low [27].

A reduced lion population could allow the cheetah population to recover. However, an

increase in cheetah population could lead to a reduction in prey population levels [1].

1.3 Modelling the dynamics of prey, predator and

super predator systems in Kruger National Park

The order of predation of the prey species is such that the top predators usually hunt

for the large prey. Buffalo and zebra (Equus burchelli) form the main diet for the lion

species. However, the lion also hunts for the medium sized prey, which include the

impala species. Cheetah usually target medium sized species, such as the impala in

particular, occasionally large and small prey. The medium sized prey forms common

diet for the lion and cheetah. Impala are an essential source of food for predators [25].

5



Lion, cheetah and impala occupy different habitats. Lion utilises vast expanses of land

depending on prey availability. Cheetah tend to occupy grasslands [28]. Impala is

water dependent, and it usually grazes around water holes, as well as open bush land.

Prey usually are found near water holes, and predation is concentrated in areas of high

prey densities. It has been shown that lions base their territories around water holes

[29].

Over the past century, the cheetah has experienced a severe population decline, with

global population estimates falling from approximately 100,000 individuals in 1990 to

less than 15,000 by 1998, [6, 30]. The excessive decline in cheetah numbers can be at-

tributed to the breakdown of habitat, a shrinking prey base, and conflict with human

beings that has lead to huge slaughter [6, 31].

South Africa’s cheetah can be divided into either captive or free roaming populations.

Cheetah in captive areas include the KNP, Kgalagadi, smaller parks and cheetah relo-

cated to private reserves. There are approximately 357 cheetah in these reserves [32].

The KNP can be considered to fall under the High Prey Density / Competitors Present

category, with nice habitat consisting of a combination of woodland and savannah, ad-

equate prey densities, accompanied by a variety of competing large carnivore species,

and minimum threat from hunting or poaching. The large carnivore species consist of

lions which are considered to be responsible for cheetah cub mortality. It is envisaged

that species population growth will be phenomenal as long as there are insignificant

stochastic processes or added mortality. However, the presence of competitors is ex-

pected to slow down the population growth [33].

The plight of cheetahs symbolises the problems that many predators face throughout

the world. Cheetahs are endangered because of loss of habitat and prey to human

activities such as farming and development, hunting by farmers as they kill their live-

stock, and poaching. Even where reserves are able to hold a population of cheetahs,
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they fare badly in direct competition with other, more powerful large carnivores such as

lions [6, 34]. Cheetahs are less competitive in comparison with their main competitors,

hyenas and lions, which are considered to induce their low density [34]. High juvenile,

and often adult cheetah mortality within protected areas is attributed to predation by

lions [6, 35, 36]. Cheetahs often lose their kills to powerful large carnivores [6, 37].

These large competitors occur in high densities within protected areas, in such a way

that cheetah find it difficult to coexist in the same areas [6, 34].

The low density amongst the cheetah species has attracted many conservationists [36]

to focus attention on finding the underlying reasons [26]. In the work by Laurenson,

it has been established that in the Serengeti National Park, (SNP), Tanzania, juvenile

mortality was about 95%, while predation by lions and spotted hyenas contributed 73%

to the 95% [36]. This has negatively impacted on the cheetah population, which, has

experienced a decline while the lion density has increased [37]. It has been established

that predation negatively impacts on the successful reproduction of cheetah [36, 37].

As a result, it is expected that all conservation studies and activities should be tar-

geted toward saving the cheetah especially in regions where the survival of the cheetah

is possible [26].

In KNP, the term impala refers to the medium-sized antelope. The KNP is the largest

home in South Africa to more than a hundred thousand impala. Impala are generally

dominant amongst species in the savannahs. Impala generally inhabit bushland. They

are regarded as a water-dependent species, and usually feed in the vicinity of water

holes. The impala consume grass, and in the KNP, 90% of their diet consist of grasses.

They divert to other food such as flowers, fruits, pods, barks and fallen leaves if nec-

essary. Impala are an essential source of food for predators. In the KNP they provide

29% of lion kills, 28% of leopard kills, 44% of cheetah kills, 75% of wild dog kills and

15% of hyaena kills [25].
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Some landscape features enhance the risk of predation. In the case of lions, prey

vulnerability is more important to its hunting success than prey availability. The

presence of water holes works in favour of lions since water attracts prey species that

inhabit dense vegetation, such as areas in the vicinity of rivers [14, 38]. The presence of

natural water holes enhances the location of lion kills sites [39]. The spatial distribution

of cheetah, in the presence of lion, and in relation to the distribution of prey is of

importance.

1.4 Infectious diseases among predator systems

Apart from the ecological aspects there are some important epidemiological aspects

affecting animal species within the KNP. There have been persistent outbreaks of

animal diseases in the KNP and surrounding areas. Of major importance are the

Transboundary Animal Diseases (TADs). An essential TAD affecting species in KNP

is Foot-and-Mouth Disease (FMD), ”a highly contagious viral disease of cloven-hoofed

animals”[40]. Within KNP, wildlife species in which the disease has occurred include

buffalo and impala [40, 41, 42, 43].

Amongst other diseases threatening species is Bovine tuberculosis (BTB), caused by

Mycobacterium bovis. BTB is fast becoming a huge disease problem for wildlife. ”The

long-term effects of this chronic progressive disease on host populations at sustained

high prevalence rates is unknown, but preliminary evidence suggests that it may neg-

atively affect population dynamics or structure in buffalo and lion” [44].

This disease has now spread to and has become endemic in several buffalo populations

in South Africa. The lions in the KNP has been diagnosed with BTB. Mycobacterium

bovis first appeared in the southern part of the KNP some fifty years ago [45]. It

originated from the cattle in the surrounding farming area, and spread to the buffalo.

During the same period, the disease spread to the lion population in the KNP [46].
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The initial reported outbreak of BTB in lions happened in 1995, and was believed to

have originated from feeding on buffalo infected by the same disease [41, 46]. An 80 %

disease prevalence in the lion population occupying the southern part of the KNP

was reported in the year 2000 [46, 47]. There are two sources of infection within the

lion population. Firstly, there is the intrinsic infection resulting from interaction of

members within the same pride. Secondly, the extrinsic infection, which results when

members from an outside pride infect members from within a pride [48].

Since lions are the apex predators, it has been hypothesized that there may be a change

in the lion population, which will ultimately result in changes in the dynamics of other

predators, based on their interactions [48]. It is further hypothesized that BTB will

impact negatively on the lion population [49].

1.5 Statement of the problem

In this study, the dynamics of a three species population model involving a prey,

predator and super-predator corresponding to impala, cheetah and lion respectively,

are investigated. The following aspects are taken into consideration:

(a) Cheetah population is under threat of survival, due to large carnivore competition

from the lions. Lions scare away cheetah off their kills and even kill them. In

addition high cheetah cub mortality rate is due to the lions.

(b) The lion species is affected by BTB.

(c) Impala are the principal prey diet of the cheetah and secondary prey to the lions.

(d) Predation is concentrated in the vicinity of water holes.

The impala population is very large in KNP. Despite the impala providing an abundant

source of food for the cheetah, the cheetah population remains very low. The cheetah

species is confronted with serious competition from the lions. The effect of BTB disease
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in lions on cheetah population requires investigation. As the disease spreads, the

effect on additional cheetah mortality needs investigation. It is hypothesized that the

presence of disease in lions will lead to an expected recovery of the cheetah population.

The problem to be analysed consists of the lions and cheetah feeding on the impala,

but the lions inducing an additional mortality on the cheetah to reduce competition. It

is assumed that the cheetah is a specialist that feeds only upon the impala, the lion is

a generalist intraguild predator that feeds upon the impala, but kills off the cheetah to

reduce competition. As such, there is competition for impala between the cheetah and

lion. The stability of the continuous time prey-predator-super-predator model needs

to be analysed. Furthermore, the spatio-temporal dynamics of this ecosystem needs to

be explored, assuming that the population density is not homogeneous in space.

1.6 Objectives

1.6.1 General aim

The aim of this research is to determine the effective management of the impala,

cheetah and lion populations, subject to large carnivore competition and presence of

an infectious disease in the lion population within the KNP.

1.6.2 Specific objectives

The specific objectives of the study are

(a) To develop a mathematical model to determine the effect of disease infection in

the lion species on the dynamics of the system.

(b) To determine the effect of lion removal from the system on the survival of the

cheetah species.

(c) To investigate whether the underlying problem for cheetah re-population is the

10



large lion population which is responsible for additional mortality.

(d) To develop a mathematical model to study the spatio-temporal dynamics and

the dispersal processes of the system.

1.7 Justification

The cheetah population varies widely within about 32 countries where cheetahs are still

found [30]. ”All populations are classified as vulnerable or endangered by the World

Conservation Unions (IUCN) Red Data Book and are regulated by the Convention

for International Trade in Endangered Species of Wild Fauna and Flora (CITES) as

Appendix I” [28, 50]. The appendix ia available on CITES [51]. Such is the case with

regards to South Africa, and in particular, the KNP which has a low cheetah popula-

tion. Possible reasons for the drastic decline of population levels are attributed to the

carnivore competition it faces from the lion, high mortality rate of cheetah cubs by the

lion, and the dominant diet dependent on impala.

The lion population has been severely affected by the bovine tuberculosis infections.

It is of immense importance to determine if the bovine tuberculosis in the lions has an

effect on the cheetah populations. Research on the impact of BTB disease in lions on

the cheetah population is on-going, but on a low scale. This study will contribute to

an understanding of this impact.

1.8 Scope of the study

This study was carried out in South Africa, and data was collected from relevant liter-

ature on KNP. The data was used to estimate important parameters for the analysis

and simulations of the proposed models. The descriptions of the data and associated

parameters are contained in the Table 1.1.
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Table 1.1: Parameter descriptions

Species Parameter description

Impala intrinsic growth rate,

KNP carrying capacity of impala,

diffusion coefficient,

Cheetah natural mortality rate

capture rate of the impala

handling time of impala,

mortality rate by lion,

impala biomass conversion rate into cheetah biomass,

diffusion coefficient.

Lion natural mortality rate,

capture rate of the impala,

handling time of impala,

impala biomass conversion rate into lion biomass,

BTB disease induced death rate,

BTB disease infection rate,

diffusion coefficient.

1.9 Methodology

Continuous-time deterministic models were formulated and analysed.

1.9.1 Model 1

Dynamics of impala, cheetah and lion model with disease in lion population.

(a) Model formulation, consisting of a system of coupled non-linear ordinary differ-

ential equations.
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(b) Analysis of steady states.

(c) Ecological interpretation: effect of super-predator removal and the role of infec-

tion.

(d) Parameter estimation using data from literature on KNP as well as studies from

other parks with similar environmental conditions.

(e) Numerical analysis using Matlab.

(f) Discussion and conclusion.

1.9.2 Model 2

Dynamics of impala, cheetah and lion model with diffusion.

(a) Model formulation, consisting of a system of non-linear partial differential equa-

tions coupled with reaction-diffusion terms.

(b) Analysis of steady states for the corresponding ordinary differential equations

(ODE) system.

(c) Analysis of the partial differential equations (PDE) system.

(d) Turing instability.

(e) Parameter estimation using data from literature on KNP as well as studies from

other parks with similar environmental conditions.

(f) Numerical analysis using Matlab.

(g) Discussion and conclusion.
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Chapter 2

Literature review

2.1 Introduction

All animal species have two limitations to their survival, namely the availability of

resources or food, and the presence of natural enemies. In ecological systems where

species share common resources or encounter common natural rival species, the species

that constantly grows its population when resources are limited or competition from

rival species is rife, will make the rest of the other species populations disappear [52].

The interaction of species with each other as well as with the environment determines

the population sizes as well as their distribution. The interaction of carnivores with

each other can be described in terms of competition, coexistence and avoidance. In

this chapter, literature on predation and species survival in KNP is highlighted and

essential aspects of conservation dynamics relevant to the survival of these species are

identified.
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2.2 Competition and predation

Competition between species can be classified in two forms, namely, exploitative com-

petition and interference competition. ”Exploitative competition involves indirect neg-

ative interactions arising from the use of a common resource” [53]. Every consumer’s

action is to diminish the resource available to others [54]. ”Interference competition

involves direct negative interactions arising from territoriality, overgrowth, undercut-

ting, predation or chemical competition” [55]. ”Every consumer’s action is to reduce

access to available resource of other consumers irrespective of the quantity of resource

present [54, 56]. Carnivore competition is not uniform but varies with the nature of

resource for which the carnivores are competing for [26].

Competition and predation are important factors that shape the structure of terres-

trial communities and purpose. They significantly influence the way species interact,

their distribution and the form of population dynamics [57, 58, 59]. Competition and

predation have become essential elements in understanding species interaction [60]. Of

more significance is the interaction between two species that are involved in predator-

prey relationship [9, 61, 62]. Holt and Polis [62] defined intraguild predation (IGP) to

be the interaction between two species that compete for the same resources but also

consume one another [60]. Interference intraguild interactions (IGI) amongst preda-

tors often lead to the killing of one of the competitors, but this frequently happens in

cases where resources are abundant [26]. Several terrestrial ecosystems consist of two

or more higher guild carnivores competing for a number of prey species [63], which

may include lower guild carnivores. The lower guild carnivores do not form the main

diet of higher guild predators, but may be killed as a result of intensified interference

competition [59, 64, 65].

As the population size of lions increase, that of cheetah decreases [66]. In the KNP, the

lion population is high whilst the cheetah population is low. Lions act as kleptoparasites
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(species that take over and consume food captured by other species) on cheetah. Lions

drastically reduce the amount of food consumed by the cheetah. Consequently, cheetah

have to devote more energy to hunting [67]. Cheetah may fight to defend their kill or

run away but this depends on a variety of factors which include the presence or absence

of cubs. Such competition leads to high mortality of cheetah by the lion [1].

2.3 Coexistence

Coexistence between competing species depends on a number of factors. Early stud-

ies on interspecific competition suggested that if intra-specific competition is stronger

than interspecific competition, coexistence prevails. Besides that, one species often

out-competes the other species [34, 68, 69]. ”Coexistence requires species to be dif-

ferent in the way they affect, and are affected by resources and natural enemies such

that intra-specific competition is stronger than inter-specific competition.” [52]. The

distinctions between species that can coexist are based on species’ niches [70]. Conse-

quently, a basic requirement for coexistence is niche difference or creation of partitions

that enhance intra-specific competition other than inter-specific competition [52].

Species that can lead to the creation of niches have ecological distinctions that hap-

pen in three separate manners. Firstly, distinct species may concentrate on different

resources, (classical resource partitioning [69, 71]) or specialise on density dependent

predation [72]. Secondly, distinct species may be restricted by the common resources

or natural enemies, but act distinctively in terms of times to consume the resource or

react to natural enemies (temporal niche partitioning, [70, 73, 74, 75, 76]). Thirdly,

species may be distinct in terms of the place of experiencing and reacting to constrain-

ing factors (spatial niche partitioning, [70, 76, 77]). Hence, a species’ niche can be

defined as consisting of four major axes of the niche space: resources, natural enemies,

space and time. The niche can then be described as species reactions to, and their

effects on, each point at this niche space [52]. The basic fact that all animals have
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an ecological niche and as such coexistence is possible is the important consideration

within ecology [1].

Considering the decline in the cheetah population it maybe that this species had its

niche restricted to a smaller area of KNP due to human factors which include fencing

and park management practises. Cheetah have the ability to stay away from water

holes for a prolonged period of time, as they obtain water from consuming prey. On

this basis, cheetah can base their territories away from water holes [1].

2.4 Avoidance

The concept of predator refuges, where prey search for safe places to avoid predation,

is essential for the continued survival of both prey and predator. The concept is appli-

cable to interspecific competition. Furthermore, in a non-homogeneous environment,

less powerful species can survive by means of competitive refuges where competition is

on a low scale [34].

The risk of interference competition or predation has a huge impact on how a species

changes its behaviour and spatial distribution [79, 80, 81]. This risk is not uniformly

distributed in space and time. It changes with the predators’ and competitor’s spread,

density, and use of habitat [82]. The non-uniformity in risk makes species occupy areas

where there is low probability of encountering enemies, or change behaviour in response

to varying levels of risk [34, 83]. The response to risk can be described as either re-

active or predictive. ”A reactive response to risk is based on an animals knowledge

of actual, real time risk” [79]. For example, African buffalo are found at waterholes

around midday, but not during sunrise nor sunset [84]. ”A predictive response, on the

other hand, is based on a pre-emptive response to a potential for risk, derived from

previous knowledge of the competitors or predators’ whereabouts or the habitat types

intensively used by them” [79]. Impala are seldom found in areas where there was a
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extended chance of predation by lions [18].

The main consequence of competition and intraguild predation is avoidance of the

competitors and this is used by cheetah, who will actively seek out areas where lion

populations is low [1, 79]. Cheetahs have been observed to regularly avoid areas of

high lion population. They are regarded as a ’refugial species’. They use spatial avoid-

ance to minimise encounters with competitively dominant predators [34, 79]. Female

cheetahs, however, tend to inhabit areas with high prey densities [85]. In general, all

species tend to minimise competition. Since water holes attract high prey densities,

competition avoidance by predators is more pronounced there. Availability of water

is crucial in conservation efforts of animal species [1]. In the 1960s the KNP installed

artificial waterholes. In 1997, with a goal to improve biodiversity, the KNP made an

effort to simulate the natural spread of water [86]. Since artificial waterholes were

closed, the population of lion has been far higher than that of cheetah. This implied

that competition between the carnivores increased due to lack of space, to the point

where cheetah population became very low [1].

Competition effects on all animal species can be described in the form of interference,

avoidance and co-existence. Population growth is influenced by interference in such a

way that large densities grow at the expense of smaller densities, leading to possible

extinction. Cheetahs tend to avoid hunting in areas in which prey density is high,

as the risk of encountering lions is high [26]. In KNP this may probably provide an

explanation as to the failed recovery of cheetah population. Interference may be happen

around the captured resource where the lion will aggressively take over cheetah kills.

2.5 Transboundary animal diseases

Transboundary Animal Diseases, TADs, are diseases ”that are of significant economic,

trade and/or food security importance for a considerable number of countries; which
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can easily spread to other countries and reach epidemic proportions; and where con-

trol/management, including exclusion, requires co-operation between several countries”

[87]. Effective contact between domestic livestock and wildlife is essential for trans-

mission of TADs from surrounding areas to national parks such as the KNP [40]. The

diseases affect both the predator and the prey species.

In the KNP, amongst the species being considered in the model, only the lion is affected

by BTB [46, 88].

2.6 Predator-Prey interactions with an infectious

disease

A number of studies have been done in which an infectious disease runs through the

prey species only in a predator-prey model [13, 89, 90, 91, 92]. However, other studies

focus on the disease affecting the predator species only [12, 93, 94].

Arino et al. [13] proposed an eco-epidemiological model with disease in the prey popu-

lation. They used ratio-dependent functional responses. It was observed that introduc-

tion of diseased prey into the system may save the population from extinction. They

concluded that the infected prey population in a classical ratio-dependent predator-

prey system can be considered as biological control and save the prey population from

extinction. In this study, the proposed model adopts the susceptible-infective (SI)

disease dynamics, ratio-dependent predator prey system, and biological control. How-

ever, the model considers the introduction of a disease in the super-predator species

having a frequency dependent disease incidence. The disease is considered as a bio-

logical control in saving the predator from extinction, but not the super-predator itself.

Haque and Venturion [89] studied the role of transmissible diseases in a Holling-Tanner
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predator-prey model. They modified the classical Holling-Tanner model (1975), by al-

lowing a disease to spread among the prey species and investigating its effects on the

ecosystem. The disease transmission follows mass-action incidence. The prey and

predator populations grow logistically with the predator consuming prey according to

the Holling type II functional response. Their results suggest that the introduction

of a disease in a Holling-Tanner demographic model alters significantly the possible

outcomes of the ecosystem. The disease incidence plays an important role for the

persistence of the species. They deduced a threshold result to determine when the dis-

ease dies out. In this study, the proposed model adopts the same susceptible-infective

disease dynamics, but with the disease in super-predator. The disease transmission

follows standard incidence. There is no logistic growth in either the predator or super-

predator. The super-predator is involved in intra-guild predation with the predator.

Chattopadhyay and Arino [90] studied a three species eco-epidemiological system, with

disease in prey. They considered the case in which the predator mainly feeds on the

infected prey. Their study was mainly theoretical and did not address any specific sit-

uation. They derived conditions for which the populations persist and become extinct.

They deduced conditions for which the system enters a Hopf-type bifurcation. Using a

Holling-type II functional response for the predator, they deduced that the bifurcated

branches were supercritical in a certain parametric region space. In the present model,

the SI disease dynamics in predator are followed. Instead of predators targeting in-

fected prey, the infected super-predator’s hunting ability is weakened by the disease,

as well as its attacking rate on the predator.

Hethcote et al. [91] proposed a predator-prey model in which the infected prey were

more prone to predation. They investigated the epidemiological and demographic

effects of the presence of the disease in prey. The epidemiological model was of

susceptible-infective-susceptible (SIS) type, on the assumption that the micro-parasitic

infection does not induce immunity. The disease transmission followed the standard
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incidence form. It was shown that for some parameter values, the increased predation

of the infected prey allowed the disease to die out. Otherwise, without predation of

infected prey, the disease would become endemic. In the present study, the model

adopts the same standard incidence for disease transmission. The disease dynamics

follow, instead, the susceptible-infective form, since lion does not recover from BTB

without treatment and become susceptible again. The model has the disease spreading

in the super-predator species.

Saenz and Hethcote [92] considered a competing species model with an infectious

disease. The model considered was a variant from previous models for a disease in

two competing species, since it employed the frequency-dependent incidence and both

species were affected by the disease. They considered models with SIS, susceptible-

infective-recovered (SIR) and susceptible-infective-recovered-susceptible (SIRS) dis-

ease formulations. They found that the disease either dies out in both species or

remains endemic in both species. They also concluded that the form of the disease

incidence strongly affects the asymptotic behavior of a competing species model. In

this study, the model considers only the susceptible-infective disease dynamics with

disease present in the super-predator species only.

Moreover, other models involve the disease running through the predator species and

not the prey species. Venturino [93] proposed and investigated a range of basic mod-

els for studying the dynamics of diseases among competing species. In the first case,

the disease runs through the prey species and the models were SI and SIS disease

formulations in which the disease spread is governed by both mass action incidence

and standard incidence independently. In the second case, the disease was allowed to

run through the predator species and similar models were formulated. In the model

proposed, the susceptible-infective dynamics are adopted for the disease in the super-

predator only. The disease does not spread to either the prey or predator.
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Haque [12] studied the predator-prey model where the predator is affected by an epi-

demic. The model incorporates a recovery rate and considers the stability of the

positive interior equilibrium point. The predator population is assumed to follow a lo-

gistic growth in the presence of alternative food sources. The alternative food sources

may enhance the persistence of predator-prey systems. It was shown that the infection

in the predator species may save the prey from extinction. The disease reduces the

predation rate, and so it acts as a potential method of biological control to ensure

persistence of the prey. The model proposed in this study adopts the disease in the

super-predator, but a predator free of disease. An investigation is done to determine

whether the presence of the disease is considered as biological control in reducing the

intra-guild predation and allowing the predator population to grow.

Pal et al. [94] studied the dynamics of an eco-epidemiological predator-prey model

with disease in predator. SI disease dynamics were used in the model formulation.

The mode of disease transmission followed the simple law of mass action. Suscepti-

ble and infected predators consume prey according to Holling type I and II functional

responses respectively. They carried out the stability and bifurcation analysis. They

used normal form theory and center manifold reduction to derive explicit formulae to

determine stability and direction of Hopf bifurcation periodic solution. In the model

proposed, both the susceptible and infected super-predator consume prey according to

Holling type II functional response.

Our proposed model differs from the models discussed above in some respects. Firstly,

three species are considered; prey, predator, and super-predator, in which an infectious

disease runs through the super-predator. Frequency dependent disease incidence is used

for the disease transmission in the super-predator species. Thus, the model extends

to include four species. Very little attention has been paid to prey-predator systems

involving two competing predators in which intra-guild predation and an infectious

disease prevail in one of them.
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2.7 Reaction-diffusion modeling and pattern for-

mations

Theoretical models on wildlife that investigate the use of space on several competing

predators and mobile prey indicate that higher guild predators are not restricted in

their movement and generally match prey distribution. Lower guild predators tend to

balance the trade-off between acquiring food and risk of predation [59, 95, 96]. In-

traguild competition can change the size of populations and distribution of lower guild

predators. This makes the levels of inter- and intra-specific competition to vary across

space and time [59, 97]. The relationship between dispersal and species interactions is

important in understanding species distribution in spatially structured environments

[8]. ”When competition for resources is asymmetric, a life-history trade-off between

competitive and dispersal abilities can lead to coexistence in a patchy environment”

[98].

The temporal modelling of species interactions involving three species have been stud-

ied by many authors [99, 100, 101, 102, 103, 104, 105] on the basis of a homogeneous

distribution of resources in a given region. The nonlinear system may have a number

of steady states. The bahaviour of the system over a long period of time is investigated

using the local and global stability of the steady states [106].

In reality, resources are not homogeneously spread through out a given region. The

species diffuse from one region of their habitat to another in search of food, and in

the process interact with each other and with the environment. This movement has

an effect on its interactions with other species [107]. Two types of diffusion which

influence the dynamical behaviour of a system of interacting populations are self- and

cross-diffusion. Kerner [108] proposed first that there is population pressure experi-

enced by one species as a result of the presence of another species. Self-diffusion defines

the movement of species from a region of high concentration to one of low concentra-
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tion. Cross-diffusion means the population pressure of one species due to the presence

of another species. The cross-diffusion coefficient can assume both positive or nega-

tive values. Positive cross-diffusion coefficient denotes movement of one species in the

direction of lower concentration of another species, while negative cross-diffusion coef-

ficient represents the population movement of one species towards the region of higher

concentration of the other species [109, 110].

To investigate the dynamics of spatial structures on predator-prey distributions, math-

ematical models on growth and interactions have to incorporate spatial processes in-

cluding relative motion of species as well as changes in the environment [111]. As

species interact, spatial patterns occur naturally. Spatial patterns arise as a result

of stochastic processes, environmental disturbances, or deterministic processes. ”The

deterministic process is intrinsic to the interacting species and results in population-

driven and self-organized spatial patterns” [107].

Spatio-temporal dynamics of an ecological system are represented by a system of cou-

pled nonlinear reaction-diffusion equations. The spatio-temporal dynamics of three

species with a wide range of functional responses have been studied by several authors

[106, 107, 112]. The spatio-temporal system and its corresponding temporal system

have the same steady states, but the dynamic behavior may not be the same. The

presence of diffusion may cause the stable steady state of the temporal system to lose

stability [106]. Turing patterns may form as a result of loss of stability of stable steady

state due to diffusion [107]. The existence of non-constant positive steady state and its

corresponding stability needs investigation [106, 107, 112]. For a variety of ecological

cases, complex stable pattern formations have been established [106, 107].

Gakkhar and Melese [106] investigated the existence and non-existence of non-constant

positive steady state for a diffusive three species food web system comprising of two

apparently competing prey and a predator. The prey follow logistic growth functions.
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The predator adopts modified Leslie-Gower type dynamics and consumes prey species

following Holling Type II functional response. The local stability of the constant posi-

tive steady state of the temporal system and the spatio-temporal system were discussed.

The existence of non-constant positive steady state solution were studied by using the

Leray-Schauder degree theory. In this study, the proposed diffusive three species model

consists of prey, predator and super-predator, with the super-predator involved in intra-

guild predation of the predator. Local and global stability of the steady states of the

temporal system are discussed. The local stability of the spatio-temporal system is

discussed.

Melese and Gakkhar [107] investigated the formation of patterns in a tri-trophic food

chain model with ratio-dependent Michaelis-Menten type functional response and dif-

fusion. Stability and bifurcation analysis were done for the spatially homogeneous

steady state. Conditions were derived for Hopf and Turing bifurcation, and for the for-

mation of spatial patterns. The results of numerical simulations revealed the formation

of labyrinth patterns and the coexistence of spotted and stripe-like patterns. In the

proposed model, a similar stability analysis is performed for the positive steady state

of the spatio-temporal system and conditions for the emergence of Turing patterns are

derived. However, Holling type II functional responses are employed for the predators,

and the model is not a food chain.

Lv et al. [109] investigated Turing pattern formation in a three species model involving

two prey and generalist predator, under the influence of cross-diffusion. The predator

consumes prey according to Holling type I functional response. Prey exert group de-

fense against predators. They showed that in the absence of cross-diffusion, the positive

stationary solution was globally asymptotically stable for both the ODE system and

reaction-diffusion system. Instability was only possible when cross-diffusion was intro-

duced. Furthermore, the existence and non-existence results concerning non-constant

positive steady states of the system were derived. The proposed model differs from Lv
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et al model in that the super-predator is involved in intra-guild predation. Predators

consume prey according to Holling type II functional response. The system is subject

to self-diffusion. There is no prey group defense against predation.

Hei and Yu [112] considered a predator-prey reaction-diffusion system with one resource

and two consumers. It was assumed that one consumer species follows Holling type

II functional response while the other consumer species follows Beddington-DeAngelis

functional response, as they compete for the common resource. They proved that the

unique positive constant steady state was stable for the ODE system and the reaction-

diffusion system. They derived a priori estimates of positive steady state. Conditions

for the non-existence of non-constant positive steady state, the existence and bifurca-

tion of non-constant positive steady state were derived. The proposed model differs

from Hei and Yu model in that both predators consume prey according to Holling II

functional response. There is intraguild predation involving the super-predator.

Guin [113] investigated the spatio-temporal dynamics of reaction-diffusion equations

with cross-diffusion for a ratio-dependent predator-prey model. The conditions for

diffusion-driven instability were derived. Local and global asymptotic stability results

of the unique positive homogeneous steady state without diffusion were established.

Numerical results were obtained showing different types of spatial patterns through

diffusion-driven instability. In the proposed model, the reaction-diffusion terms for

self-diffusion are adopted. However, the functional responses used are prey-dependent

Holling type II. A super-predator is included in the predator-prey model. Self-diffusion

is considered for the species interactions.

Guin et al. [114] discussed the emergence of spatial patterns through diffusion-driven

instability in a predator-prey model. They incorporated alternative food source for the

predator species in the form of logistic growth, and ratio-dependent Holling type II

functional response. They derived the conditions for existence of Turing patterns and
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stability properties of the model subject to self and cross-diffusion. Their numerical

analysis showed the significant role of self and cross-diffusion. Spatial patterns through

Turing instability were obtained. In the proposed model, the predators are specialists.

There is no additional food source provided to the predators.

The proposed model differs from the above models in the fact that two competing

predators involved. However, the existence and non-existence of non-constant positive

steady states of the three species model are investigated. The existence of non-constant

positive steady state solution is studied by using the Leray-Schauder degree theory.

Conditions for diffusion-driven instability of the steady state are derived.
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Chapter 3

Impala, cheetah and lion model

with disease in the lions

3.1 Introduction

The sizes of species populations are important in the ecological studies. They are influ-

enced by ecological and epidemiological factors. The ecological factors include species

interactions in the form of competition and predation. The epidemiological factors in-

clude the spread of infectious diseases [92]. The study of transmissible diseases within

an ecological setting is gaining momentum [12]. It is becoming biologically relevant

to include the effects of diseases in studies on the behaviour of dynamical ecological

systems [115].

The effect of disease in prey on prey-predator systems has been studied by several re-

searchers. For most such models, the paramount assumption is that predation favours

infected rather than sound prey [12]. Hethcote et al. [91] studied a predator-prey model

with SIS disease dynamics in the prey. The infected prey was more vulnerable to pre-

dation. They identified thresholds to determine when the predator population survives

extinction and when the disease becomes endemic. Mukhopadhyay and Bhattacharyya
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[115] studied the dynamics of a delay-diffusion prey-predator model with disease in

prey. For their basic model, they established that persistence of the disease depend

on the predator death rate and the basic reproduction number. Upon including delay

attributed to gestation of the predator, they found out that the predator death rate,

basic reproduction number, and equilibrium density of susceptible prey together shape

the dynamical behaviour of the system. On the role of diffusion in the delayed model,

they deduced that diffusivity coefficients for susceptible and infected prey, together

with the perturbation wave number of the general solution, determine the dynami-

cal behaviour of the system. Haque et al. [116] investigated an eco-epidemiological

predator-prey model with disease in prey. The disease transmission was of standard

incidence form from which they derived a threshold property to determine when the

disease disappears. They showed that a virulant disease in the prey may allow preda-

tors to escape extinction but destabilises a once stable system. Xiao and Chen [117]

proposed a predator-prey model with disease in prey. Their model showed that the

introduction of a time delay in the coefficient of converting prey into predators has

both stabilising and destabilising effects on the positive steady state.

Other researchers consider the situation where the disease spreads among the preda-

tor population. The predator-prey interactions are extended to include disease in the

predator species. Haque [12] studied the predator-prey model with SIS parasitic infec-

tion spreading through the predator species only. Thresholds for the disease progression

were identified. The infection in predator was considered as biological control to save

prey from extinction. Venturino [93] proposed and investigated several simple mod-

els for studying the spread of diseases among competing species. The disease spreads

through the prey species only following SI and SIS disease dynamics. The disease

spread was governed by both mass action incidence and standard incidence indepen-

dently. Similar models were formulated to account for the disease spread through the

predator species only. Pal et al. [94] investigated a predator-prey model with disease

present in predator species only. They considered the SI disease dynamics and mass
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action transmission form. They used normal form theory and center manifold reduction

to derive explicit formulae to determine the stability and direction of Hopf bifurcation

periodic solution. Han et al. [118] studied four predator prey models in which disease

spreads in both the prey and predator. The disease transmission involved both mass

action and standard incidence. They identified thresholds for disease persistence and

eradication, and established global stability results.

In this chapter, the model proposed is an extension of Haque [12] and Venturino [93]

models to include an infectious disease spreading through a super-predator species. The

prey, predator and super-predator species are the impala, cheetah and lion respectively.

It is considered that the cheetah feeds only upon the impala, the lion feeds upon the

impala but kills the cheetah to reduce competition. The impala is the most preferred

prey species amongst a host of species consumed by the cheetah [119, 120]. However, it

is the third dominant prey species consumed by the lion after zebra and wildebeest in

the KNP [121]. Despite the impala occurring in high numbers, the cheetah population

remains very low. Moreover, the IUCN (World Conservation Union) Red Data Books

listed the cheetah species as vulnerable in South Africa [122].

BTB disease is present in the lion population of KNP [46, 88]. Maas et al [46] assessed

the impact of feline immunodeficiency virus (FIV) and BTB co-infection in African

lions in KNP. They used a multivariable logistic regression model for analysis. They

found that BTB does not pose a serious conservation threat to KNP, and that a sig-

nificant spatio-temporal increase of BTB may impact on lion health.

The aim of this study is to determine whether or not the presence of the disease in the

lion population acts as biological control in weakening the lion and indirectly improving

the population of the cheetah. With the cheetah confronted with major competition

from the lion, as well as extinction, the study also determines the extent to which the

presence of the lion affects the cheetah population.
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3.2 Model formulation

3.2.1 Assumptions

In this study, the model consists of three populations, the impala, cheetah and lion

species whose populations are denoted by U(t), V (t) and N(t), respectively. The

following assumptions are considered in formulating the model.

(A1) In the presence of disease, the lion population is divided into two classes, namely

susceptible lion and infected lion denoted by W (t) and B(t) respectively. There-

fore at time t the total lion population is N(t) = W (t) +B(t).

(A2) The disease spreads among the lion population only through in-group and out-

group interactions and is not genetically inherited. The infected population do

not recover or become immune. The incidence function β(N) is assumed to be

the nonlinear function β(N) ≡ 1
N

, the standard incidence.

(A3) The cheetah and lion consume the impala, although with possibly different search

efficiencies, denoted by a and b.

(A4) The cheetah and lion have natural death rates µ and ν respectively. Furthermore,

infected lion have disease-induced death rate δ. The susceptible lion kills off the

cheetah at a rate p. Infected lions are considered too weak to kill cheetah.

3.2.2 The model

In the lion-cheetah-impala model, the cheetah and lion consume the impala according

to the nonlinear Holling type II functional response. The Holling Type II response is

the most common type of functional response for predator species [123]. The impala

are easier to catch. A solitary lion or cheetah can catch an impala as the impala do

not exhibit group defence. On the basis of the assumptions above the following model
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is proposed

dU

dt
= rU

(
1− U

K

)
− aUV

1 + eU
− bUN

1 + fU
,

dV

dt
=

lUV

1 + eU
− pV N − µV, (3.1)

dN

dt
=

mUN

1 + fU
− νN,

where U, V, and N represent impala, cheetah and lion populations.

The Susceptible-Infective dynamics are incorporated into the model (3.1) for the dis-

ease in the lions using the model proposed by Venturino [93]. The model (3.1) becomes

dU

dt
= rU

(
1− U

K

)
− aUV

1 + eU
− bUW

1 + fU
− cbUB

1 + fU
,

dV

dt
=

lUV

1 + eU
− pVW − µV, (3.2)

dW

dt
=

mUW

1 + fU
− βWB

N
− νW,

dB

dt
=

nUB

1 + fU
+
βWB

N
− νB − δB,

dN

dt
=

mUW

1 + fU
+

nUB

1 + fU
− δB − νN,

where n = cm. The parameters used in the model are explained in Table 3.1.

Let S and I denote the fractions of susceptible and infected lions defined by S =
W

N

and I =
B

N
such that S + I = 1. Since

I ′ =
(B
N

)′
=

1

N

[
B′ − B

N
N ′
]
, S ′ =

(W
N

)′
=

1

N

[
B′ − W

N
N ′
]

S ′ and I ′ can be expressed in terms of W ′ and B′ respectively. The system (3.2) is
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Table 3.1: Parameters table for systems (3.1) and (3.2)

Parameter Description

r Intrinsic growth rate of the impala

K Environmental carrying capacity of the impala

a Capture rate of the impala by the cheetah

b Capture rate of the impala by the lions;

c Efficiency of infected lions to capture impala;

e Handling time of impala by cheetah

f Handling time of impala by lions

l Conversion rate of impala biomass into new cheetah

m Conversion rate of impala biomass into new susceptible lions

n Conversion rate of impala biomass into new infected lions

p Mortality rate of cheetah by lions

β Disease standard incidence

µ Natural mortality rate of cheetah

ν Natural mortality rate of lions

δ Disease-induced mortality rate of infected lions

now rewritten as

dU

dt
= rU

(
1− U

K

)
− aUV

1 + eU
− bUW

1 + fU
− cbUB

1 + fU
,

= r1U
(

1− U

K

)
− aUV

1 + eU
− bU [W + cB]

1 + fU
,

= r1U
(

1− U

K

)
− aUV

1 + eU
− bU [(1− I)N + cIN ]

1 + fU
,

= U
[
r1

(
1− U

K

)
− aV

1 + eU
− bN [(1− I) + cI]

1 + fU

]
.

dV

dt
=

lUV

1 + eU
− pVW − µV,

=
lUV

1 + eU
− pV (1− I)N − µV,

= V
[ lU

1 + eU
− p(1− I)N − µ

]
.
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dN

dt
=

mUW

1 + fU
+

nUB

1 + fU
− δB − νN,

=
mU(1− I)N

1 + fU
+
nUIN

1 + fU
− δIN − νN,

= N
[ [m(1− I) + nI]U

1 + fU
− δI − ν

]
.

dI

dt
=

1

N

[ nUB

1 + fU
+
βWB

N
− (ν + δ)B − B

N
N
[ [m(1− I) + nI]U

1 + fU
− δI − ν

]]
,

=
1

N

[ nUIN
1 + fU

+
β(1− I)NIN

N
− (ν + δ)IN

−IN
[ [m(1− I) + nI]U

1 + fU
− δI − ν

]]
,

= I
[ nU

1 + fU
+ β(1− I)− (ν + δ)− [m(1− I) + nI]U

1 + fU
+ δI + ν

]
,

= I
[
β(1− I) +

[n(1− I)−m(1− I)]U

1 + fU
− δ(1− I)

]
,

= I(1− I)
[
β +

(n−m)U

1 + fU
− δ
]
.

Finally, the model can be written as

dU

dt
= U

[
r
(

1− U

K

)
− aV

1 + eU
− bN [(1− I) + cI]

1 + fU

]
= F1(U, V,N, I),

dV

dt
= V

[ lU

1 + eU
− p(1− I)N − µ

]
= F2(U, V,N, I), (3.3)

dN

dt
= N

[ [m(1− I) + nI]U

1 + fU
− δI − ν

]
= F3(U, V,N, I),

dI

dt
= I(1− I)

[
β − (m− n)U

1 + fU
− δ
]

= F4(U, V,N, I),

with the initial conditions 0 ≤ U0 ≤ K, 0 ≤ V0 ≤ A, 0 ≤ N0 ≤ N1 and 0 ≤ I0 ≤ 1.

Thus, the system (3.3) is studied in the region Ω = {(U, V,N, I) ∈ R4
+ : 0 ≤ U ≤

K, 0 ≤ V ≤ A, 0 ≤ N ≤ N1, 0 ≤ I ≤ 1}.
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3.3 Model analysis

3.3.1 Boundedness

All the parameters of system (3.3) are non-negative, and so the corresponding right-

hand side of the system is a smooth function of the variables (U, V,N, I) in the region

Ω. It follows that local existence and uniqueness properties hold for the solution of the

system.

Proposition 3.1 R4
+ is an invariant set.

Proof. The system (3.3) is homogeneous. It follows that the coordinate planes U = 0,

V = 0, N = 0 and I = 0 are solutions for it. By the existence and uniqueness theo-

rem, any trajectory emanating from R4
+ stays there and can not cross the coordinates

coordinate planes. Thus, R4
+ is an invariant set. 2

Proposition 3.2 Ω = {(U, V,N, I) ∈ R4
+ : 0 ≤ U ≤ K, 0 ≤ V ≤ A, 0 ≤ N ≤ N1, 0 ≤

I ≤ 1} in invariant under the flow (3.3).

Proof. Consider the system (3.3). The first equation implies that

dU

dt
≤ Ur

(
1− U

K

)
= U

r

K
(K − U)

with solution U(t) ≤ KD
D+e−rt

and lim sup
t→∞

U(t) ≤ K by the comparison principle for

ODEs. From the second equation,

dV

dt
≤ V

( lU

1 + eU
− µ

)
≤ V (l − µ)

if e > 1. The corresponding solution is V (t) ≤ Ae(l−µ)t and lim sup
t→∞

V (t) ≤ A if l < µ.

The third equation implies that

dN

dt
≤ N

[ [m(1− I) + nI]U

1 + fU
− ν] ≤ N(mK + nK − ν)

with solution N(t) ≤ N1e
[K(m+n)−ν]t and lim sup

t→∞
N(t) ≤ N1 when (m + n)K < ν. It

follows from the fourth equation that

dI

dt
≤ βI(1− I)
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with solution I(t) ≤ D
D+e−βt

and lim sup
t→∞

I(t) ≤ 1. 2

Proposition 3.3 All solutions of (3.3) starting in Ω̄ are uniformly bounded if l < a,

n < m, m < b and c < 1.

Proof. Define the function

Π = U + V +N (3.4)

Differentiating Π with respect to time along the solutions of (3.3) gives

dΠ

dt
=
dU

dt
+
dV

dt
+
dN

dt
.

dΠ

dt
= Ur

(
1− U

K

)
− aUV

1 + eU
− bNU [(1− I) + cI]

1 + fU
+

lUV

1 + eU
− p(1− I)NV − µV

+
[m(1− I) + nI]UN

1 + fU
− δIN − νN ],

= Ur
(

1− U

K

)
− (a− l)UV

1 + eU
− N [(b−m)− [(b− cb)− (m− n)]I]

1 + fU
− p(1− I)NV

−µV − δIN − νN,

≤ Ur
(

1− U

K

)
− µV − νN,

= Ur
(

1− U

K

)
+ φU − φU − µV + φV − φV − νN + φN − φN,

= U
(
r + φ− rU

K

)
− (µ− φ)V − (ν − φ)N − φΠ.

Thus,

dΠ

dt
+ φΠ = − r

K
[U2 − K(r + φ)

r
U ]− (µ− φ)V − (ν − φ)N,

= − r

K

(
U − K(r + φ)

2r

)2

+
K(r + φ)2

4r
− (µ− φ)V − (ν − φ)N,

≤ K(r + φ)2

4r
− (µ− φ)V − (ν − φ)N.

Choosing φ to be such that φ ≤ min{µ, ν} the right-hand side will be bounded. Let ϕ

be such that
dΠ

dt
+ φΠ ≤ K(r + φ)2

4r
= ϕ. (3.5)

A solution of this is

Π(t) ≤ Ce−φt +
ϕ

φ
,
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and

Π(t) ≤ Π(0)e−φt +
ϕ

φ

(
1− e−φt

)
≤ max

(
Π(0),

ϕ

φ

)
.

Moreover, lim sup Π(t) ≤ ϕ
φ

as t→∞ independent of initial conditions. 2

3.3.2 Steady states

Since the focus is on the growth of animal species, there is need for the steady states

of the system to satisfy conditions for non-negativity. Furthermore, it is realised that

the predators cannot survive in the complete absence of their prey. As such, the

steady states E(0, V,N, I), E(0, 0, N, I), E(0, 0, 0, I), E(0, V, 0, 0), E(0, 0, N, 0) and

E(0, 0, 0, I) are not feasible. However, the steady state E(0, 0, 0, 0) always exist. The

steady states in which impala are present are studied only. The system (3.3) has four

biologically feasible nonnegative steady states.

(i) E1(U 6= 0, V = 0, N 6= 0, I = 0): The first and third equations of (3.3) reduce to

r
(

1− U

K

)
− bN

1 + fU
= 0,

mU

1 + fU
− ν = 0,

with the result E1(U1, 0, N1, 0) where U1 = ν
m−fν and N1 = rm(Km−ν−fKν)

bK(fν−m)2
. The

equilibrium point E1 exists if

• m > fν, growth function of lions exceed their death and

• K(m − fν) > ν or K > ν
m−fν = U1, impala population should not exceed

the carrying capacity.

(ii) E2(U 6= 0, V 6= 0, N 6= 0, I = 0): The first, second and third equations of (3.3)

reduce to

r
(

1− U

K

)
− aV

1 + eU
− bN

1 + fU
= 0,

lU

1 + eU
− pN − µ = 0, (3.6)

mU

1 + fU
− ν = 0,
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with the result E2(U2, V2, N2, 0) and U2 = ν
m−fν , N2 = lν+fµν−mµ−eµν

p(m+eν−fν)
and V2 = D

a
,

and

D = (1 + eU2)
[
r
(

1− U2

K

)
− bN2

1 + fU2

]
.

The equilibrium point E2 exists if

• m > fν and ν(l− eµ) > µ(m− fν), that is, ν
m−fν >

µ
l−eµ , ratio of lion mor-

tality to impala biomass conversion efficiency exceeds that of the cheetah.

• r
(

1 − U2

K

)
> bN2

1+fU2
, the growth function of impala exceeds their predation

rate by lions.

• m+ eν − fν = m− fν + eν > 0, that is, m
ν
> f − e, the ratio of cheetah’s

impala biomass conversion efficiency to mortality exceeds the difference in

handling times.

(iii) E3(U 6= 0, V = 0, N 6= 0, I 6= 0): The first, third and fourth equations of (3.3)

reduce to

r
(

1− U

K

)
− bN [(1− I) + cI]

1 + fU
= 0,

[m(1− I) + nI]U

1 + fU
− δI − ν = 0, (3.7)

β − (m− n)U

1 + fU
− δ = 0,

with the result E3(U3, 0, N3, I3), where U3 = β−δ
m−n−fβ+fδ

= β−δ
(m−n)−f(β−δ) ,

I3 = mβ−mδ−mν+nν
β(m−n)

= m(β−δ)−ν(m−n)
β(m−n)

, and N3 = C
G

,

C =
1

b

[
r
(
− (m− n)δ + (m− n)2U

2
3

K
+ (m− n)

fδU2
3

K
− (m− n)2U3

−(m− n)fδU3 + (m− n)
δU3

K

)]
,

=
r(m− n)

b

[
(m− n)

U2
3

K
+
fδU2

3

K
− (m− n)U3 − fδU3 +

δU33

K
− δ
]
,

=
r(m− n)

b

[U2
3

K
[(m− n) + fδ]− U3[(m− n) + fδ] + δ[

U3

K
− 1]

]
,

=
r(m− n)

b

[
(
U3

K
− 1)[U3[(m− n) + fδ] + δ[

U3

K
− 1]

]
,

=
r(m− n)

b
(
U3

K
− 1)

[
U3[(m− n) + fδ] + δ

]
< 0,
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as long as U3 < K; and

G = nβ −mδ −mν + nν − (m− n)cβI,

= n(β + ν + cβI)−m(δ + ν + cβI),

= (n−m)(ν + cβI) + (nβ −mδ) < 0,

if nβ − mδ < 0 or β
δ
< m

n
, that is, the ratio of disease incidence to disease

induced death is less than that of the conversion rate of impala biomass into new

susceptible lions to infected ones. Hence, N3 > 0. The equilibrium point E3

exists if

• m > n, conversion rate of impala biomass into new lions for susceptible lions

exceeds that of infected ones;

• β > δ, disease standard incidence exceeds disease-induced mortality rate of

infected lions;

• (m− n) > f(β − δ), m(β − δ) > ν(m− n), that is, m
ν

(β − δ) > (m− n) >

f(β − δ) or m− fν > 0 (condition for existence of E3) and N3 > 0.

The mass of the total number of individuals in a species is often referred to as

its biomass, here the population times the unit mass.

(iv) E4(U 6= 0, V 6= 0, N 6= 0, I 6= 0): The system (3.3) becomes

r
(

1− U

K

)
− aV

1 + eU
− bN [(1− I) + cI]

1 + fU
= 0,

lU

1 + eU
− p(1− I)N − µ = 0,

[m(1− I) + nI]U

1 + fU
− δI − ν = 0,

β − (m− n)U

1 + fU
− δ = 0,

with E4(U4, V4, N4, I4) given by
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U4 =
β − δ

m− n− fβ + fδ
=

β − δ
(m− n)− f(β − δ)

> 0,

I4 =
mβ −mδ −mν + nν

β(m− n)
=
m(β − δ)− ν(m− n)

β(m− n)
> 0,

N4 =
β(m− n)(µ− lU4

1+eU4
)

p(nβ −mδ + (n−m)ν)
,

V4 =
1

a

(
r − erU2

4

K
+ erU4 −

rU4

K
− bβN4

1 + fU4

− bcβI4N4

1 + fU4

− beβU4N4

1 + fU4

−bceβI4U4N4

1 + fU4

+
bI4N4

1 + fU4

+ beβN4U4I4

)
,

=
1

a

(
r(1− U4

K
) + erU4(1− U4

K
) + beβN4U4I4

+
bN4

1 + fU4

(I4 − β − cβI4 − eβU4 − ceβI4U4)
)
,

=
1

a

(
r(1 + eU4)(1− U4

K
)

+beβN4U4I4 +
bN4

1 + fU4

(I4 − β(1 + cI4)(1− eU4))
)
.

The equilibrium point E4 exists if

• µ < lU4

1+eU4
, cheetah’s death rate is less than its growth function, and (nβ −

mδ) + (n−m)ν < 0. Hence, N4 > 0.

• U4 < K and I4 > β(1 + cI4)(1− eU4), in which case V4 > 0.

3.3.3 Analysis of steady states

The Jacobian matrix for the system (3.3) is given by

J =


j11

−aU
1+eU

− bU(1+cI−I)
1+fU

bUN
1+fU

lV
(1+eU)2

lU
1+eU

−Np(1− I)− µ −pV (1− I) pNV

(m−(m−n)I)N
(1+fU)2

0 U(m−mI+nI)
1+fU

− δI − ν − (m−n)UN
1+fU

− δN

− (m−n)I
(1+fU)2

0 0 β − (m−n)U
1+fU

− δ


where j11 = r − 2rU

K
− aV

(1+eU)2
− bN(1+cI−I)

(1+fU)2
.
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At any steady state solution, the Jacobian matrix is computed. Let Jk denote the Jaco-

bian evaluated at Ek and j
[k]
ij , i = 1, 2, 3, 4, j = 1, 2, 3, 4, k = 1, 2, 3, 4, the corresponding

entries.

Local and global stability of the steady state E1

For the equilibrium point E1( ν
m−fν , 0,

rm(Km−ν−fKν)
bK(fν−m)2

, 0), the Jacobian matrix is given

by

J1 =


r − 2rU1

K
− bN1

(1+fU1)2
− aU1

1+eU1
− bU1

1+fU1

bU1N1

1+fU1

0 −µ− pN1 + lU1

1+eU1
0 0

−fmU1N1

1+fU1
+ mN1

1+fU1
0 mU1

1+fU1
− ν −δN1 − (m−n)U1N1

1+fU1

0 0 0 β − δ − (m−n)U1

1+fU1


The eigenvalues of J1 are

λ
[1]
1 = β − δ − ν + nν

m
, λ

[1]
2 = −µ− prm(Km−ν−fKν)

bK(fν−m)2
+ lν

m+(e−f)ν
; λ

[1]
3 =

−b1+
√
b21−4b0b2

2b0
and

λ
[1]
4 =

−b1−
√
b21−4b0b2

2b0
, for which λ

[1]
3 and λ

[1]
4 are the roots of

b0λ
2 + b1λ+ b2 = 0

where

b0 = Km(m− fν),

b1 = mrν − fKrmν + frν2 + f 2Krν2,

b2 = Km2rν −mrν2 + 2fKmrν2 + frν3 + f 2Krν3 + 2elrN3
1 − 2e2rµN3

1 − aKµV1.

Note that b0 > 0, that is, condition for existence of equilibrium point E1.

b1 = mrν − fKrmν + frν2 + f 2Krν2,

= rν(m+ fν)− fKrν(m− fν),

= rν[(m+ fν)− fK(m− fν)].

Thus, b1 > 0 if m+fν
m−fν > fK.
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b2 = Km2rν −mrν2 + 2fKmrν2 + frν3 + f 2Krν3 + 2elrN3
1 − 2e2rµN3

1 − aKµV1,

= Krν(m2 + 2fmν + f 2ν2)− rν2(m− fν) + 2erN3
1 (l − eµ)− aKµV1,

= Krν[(m+ fν)2 + f 2ν2)− rν2(m− fν) + 2erN3
1 (l − eµ)− aKµV1,

= rν[K(m+ fν)2 + f 2ν2)− ν(m− fν) + 2erN3
1 (l − eµ)− aKµV1.

Thus, b2 > 0 if (m+fν)2

(m−fν)
> ν

K
and 2erN3

1 (l − eµ) > aKµV3.

Lemma 3.1 The system (3.3) is locally asymptotically stable about E1 if

(a) lν
m+(e−f)ν

< µ+ prm(Km−ν−fKν)
bK(fν−m)2

, that is, the sum of the cheetah’s killing and death

rates exceeds their growth rate,

(b) β + nν
m
< δ + ν, that is, mβ + nν < m(δ + ν),

(c) b1 > 0.

Now, the global stability of E1 is discussed whenever it exists, using the Bendixson-

Dulac criterion, Theorem A.1, [124] and the Poincaré-Bendixson Theorem, Theorem

A.2, [125].

Proposition 3.4 E1 is globally asymptotically stable if 2ν > mK and m > fν.

Proof. Consider subsystem (ii) of system (3.3)

dU

dt
= Ur

(
1− U

K

)
− bN

1 + fU
,

dN

dt
=

mNU

1 + fU
− νN. (3.8)

Let Φ(U,N) = 1
UN

, h1(U,N) = Ur
(

1 − U
K

)
− bUN

1+fU
, h2(U,N) = mUN

1+fU
− µN . Now

Φ(U,N) > 0 in the interior of the UN plane. It follows that
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∆(U,N) =
∂(Φh1)

∂U
+
∂(Φh2)

∂N
,

=
∂

∂U

[ r
N

(
1− U

K

)
− b

1 + fU

]
+

∂

∂N

[ m

1 + fU
− ν

U

]
,

= − r

KN
+

bf

(1 + fU)2
,

=
bfKN − r(1 + fU)2

KN(1 + fU)2
.

Now ∆ is not identically zero in the positive quadrant of the UN plane. Thus,

∆(U,N) < 0 and does not change sign if

bfKN − r(1 + fU)2 = bfKN − r− 2rfU − rf 2U2 = −r− (2rU − bKN)f − rf 2U2 < 0

that is, if 2rU − bKN > 0. This means that at E1, we have

2rU1 − bKN1 =
2rν

m− fν
− rm(Km− ν − fKν)

(m− fν)2
,

=
2rν(m− fν)− rm(Km− ν − fKν)

(m− fν)2
,

=
2rν(m− fν)− rmK(m− fν) + νrm

(m− fν)2
,

=
r(m− fν)(2ν −mK) + νrm

(m− fν)2
> 0,

if and only if 2ν > mK and m > fν. ν
m

refers to the ratio of mortality of lions to lion’s

conversion efficiency of impala biomass to lion biomass. The carrying capacity of impala

population must be less than the output/input ratio of lion biomass. Furthermore,

the ratio of input/output of lion biomass must outweigh the time the lion spends

consuming impala. Thus, subsystem (3.8) does not have a limit cycle in Ω̄. Since E1

is locally asymptotically stable, the Poincaré-Bendixson Theorem, Theorem A.2, [125]

and Proposition 3.3 imply that the equilibrium point E1 is globally asymptotically

stable in the region Ω̄. 2
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Local and global stability of the steady state E2

For the equilibrium point E2(U2, V2, N2, 0) the Jacobian matrix is given by

J2 =


r − 2rU2

K
− bN2

(1+fU2)2
− aV2

(1+eU2)2
− aU2

1+eU2
− bU2

1+fU2

bU2N2

1+fU2

lV2

(1+eU2)2
lU2

1+eU2
− µ− pN2 −pV2 pN2V2

mN2

1+fU2
0 mU2

1+fU2
− ν −δN2 − (m−n)U2N2

1+fU2

0 0 0 β − δ − (m−n)U2

1+fU2

 .

The local stability of the disease-free equilibrium at E2 is deduced from the eigenvalues

of the Jacobian matrix J2. From the fourth row this matrix has the eigenvalue

β − δ − (m−n)U2

1+fU2
, and the remaining eigenvalues are derived from the 3 × 3 Jacobian

matrix given by

J
′

2 =


j

[2]
11 − aU2

1+eU2
− bU2

1+fU2

lV2

(1+eU2)2
lU2

1+eU2
− µ− pN2 −pV2

mN2

1+fU2
0 mU2

1+fU2
− ν

 , (3.9)

where j
[2]
12 < 0, j

[2]
13 < 0, j

[2]
21 > 0, j

[2]
23 < 0 and j

[2]
31 > 0.

The characteristic polynomial of the Jacobian of the system evaluated at this point is

given by

λ3 + a1λ
2 + a2λ+ a3 = 0, (3.10)

where

a1 = −(j
[2]
11 + j

[2]
22 + j

[2]
33 ) = −Tr(J

′

2),

a2 = j
[2]
11 j

[2]
22 + j

[2]
11 j

[2]
33 + j

[2]
22 j

[2]
33 − j

[2]
12 j

[2]
21 − j

[2]
13 j

[2]
31 ,

a3 = −j[2]
12 j

[2]
23 j

[2]
31 + j

[2]
13 j

[2]
22 j

[2]
31 + j

[2]
12 j

[2]
21 j

[2]
33 − j

[2]
11 j

[2]
22 j

[2]
33 = −DetJ

′

2.

Now, if j
[2]
11 < 0, j

[2]
22 < 0, j

[2]
33 < 0 then a1 > 0 and a2 > 0. a3 > 0 if

j
[2]
13 j

[2]
22 j

[2]
31 + j

[2]
12 j

[2]
21 j

[2]
33 − j

[2]
11 j

[2]
22 j

[2]
33 > j

[2]
12 j

[2]
23 j

[2]
31 . If at least one of these conditions is

not satisfied, then a1, a2 or a3 is negative and the characteristic polynomial will have

at least one positive real root, that is, not all eigenvalues are negative in this case.
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Furthermore,

a1a2 − a3 = j
[2]
11 j

[2]
12 j

[2]
21 − j

2[2]
11 j

[2]
22 + j

[2]
12 j

[2]
21 j

[2]
22 − j

[2]
11 j

2[2]
22 + j

[2]
11 j

[2]
13 j

[2]
31 + j

[2]
12 j

[4]
23 j

[4]
31

−j2[2]
11 j

[2]
33 − 2j

[2]
11 j

[2]
22 j

[2]
33 − j

2[2]
22 j

[2]
33 + j

[2]
13 j

[2]
31 j

[2]
33 − j

[2]
11 j

2[2]
33 − j

[4]
22 j

2[4]
33 ,

> 0.

Application of the Routh-Hurwitz criterion [126] leads to the conclusion that the char-

acteristic equation (3.10) has negative real parts. Thus, the following result can be

stated.

Lemma 3.2 The equilibrium point E2 is locally asymptotically stable if

(a) r < 2rU2

K
+ bN2

(1+fU2)2
+ aV2

(1+eU2)2
,

(b) lU2

1+eU2
< µ+ pN2,

(c) mU2

1+fU2
− ν,

(d) β < δ + (m−n)U2

1+fU2
.

To analyse global stability of the equilibrium point E2, the last equation in system

equation (3.3) is dropped to obtain the system (3.6), since the equilibrium point does

not depend on I. The Jacobian matrix of system (3.6) is given by (3.9). The system

(3.6) is not competitive and so the geometric approach to global stability problems

method is used. The framework for this method is developed in the papers of Smith

[127] and Li and Muldowney [128] and was used by Buonomo and Lacitignola [129],

Li et al. [130] and Tian and Wang [131]. This framework has been used to prove the

global stability of the equilibrium point E2.

The second compound matrix of the system (3.6) is

J
′[2]
2 =


j

[2]
11 + lU2

1+eU2
− µ− pN2 −pV2

bU2

1+fU2

0 j
[2]
11 + mU2

1+fU2
− ν − aU2

1+eU2

− mN2

1+fU2

lV2

(1+eU2)2
lU2

1+eU2
− µ− pN2 + mU2

1+fU2
− ν

 .
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The matrix function P is set by

P (U2, V2, N2) = diag
{

1,
V2

N2

,
V2

N2

}
.

Then

PF =


0 0 0

0 V2

N2

[
V ′2
V2
− N ′2

N2

]
0

0 0 V2

N2

[
V ′2
V2
− N ′2

N2

]
 , P−1 =


1 0 0

0 N2

V2
0

0 0 N2

V2

 ,
and

PFP
−1 =


0 0 0

0
V ′2
V2
− N ′2

N2
0

0 0
V ′2
V2
− N ′2

N2

 .
Now

PFJ
′[2]
2 P−1 =


j

[2]
11 + lU2

1+eU2
− µ− pN2 −pN2

bU2

1+fU2

N2

V2

0 j
[2]
11 + mU2

1+fU2
− ν − aU2

1+eU2

− mN2

(1+fU2)2
V2

N2

lV2

(1+eU2)2
lU2

1+eU2
− µ− pN2 + mU2

1+fU2
− ν

 .
The matrix Q = PFP

−1 + PFJ
′[2]
2 P−1 can be written in block form:

Q =

 Q11 Q12

Q21 Q22

 ,
with Q11 = j

[2]
11 +

lU2

1 + eU2

− µ− pN2,

Q12 =
[
−pN2

bU2

1+fU2

N2

V2

]
, Q21 =

 0

− mN2

(1+fU2)2
V2

N2

 ,
Q22 =

 j
[2]
11 + mU2

1+fU2
− ν +

V ′2
V2
− N ′2

N2
− aU2

1+eU2

lV2

(1+eU2)2
lU2

1+eU2
− µ− pN2 + mU2

1+fU2
− ν +

V ′2
V2
− N ′2

N2

 .
A norm in R3 is defined as

|u, v, n| = max{|u|, |v|+ |n|}
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for any vector (u, v, n) ∈ R3. Let m denote the Lozinskĭi measure with respect to this

norm. Then

m(Q) ≤ sup{g1, g2} (3.11)

with

g1 = m1(Q11) + |Q12|,

g2 = |Q21|+m1(Q22),

where |Q12| and |Q21| are matrix norms induced by the L1 vector norm, and m1 denotes

the Lozinskĭi measure with respect to the L1 norm. More specifically,

m1(Q11) = j
[2]
11 + lU2

1+eU2
−µ−pN2 = r

(
1− U2

K

)
− rU2

K
− (bN2)2

1+fU2
− aV2

(1+eU2)2
+ lU2

1+eU2
−µ−pN2,

|Q12| = max{−pN2,
bU2

1+fU2

N2

V2
} = a, |Q21| = mN2

(1+fU2)2
V2

N2
.

To calculate m1(Q22), the absolute value of the off-diagonal elements is added to the

diagonal one in each column of Q22 and the maximum of the two sums is taken. Thus,

m1(Q22)

= max
{
r
(

1− U2

K

)
− rU2

K
− (bN2)2

1 + fU2

− aV2

(1 + eU2)2
+

mU2

1 + fU2

− ν +
V ′2
V2

− N ′2
N2

+
lV2

(1 + eU2)2
;

lU2

1 + eU2

− µ− pN2 +
mU2

1 + fU2

− ν +
V ′2
V2

− N ′2
N2

+
aU2

1 + eU2

}
,

=
V ′2
V2

− N ′2
N2

+
mU2

1 + fU2

− ν + max
{
r
(

1− U2

K

)
− rU2

K
− (bN2)2

1 + fU2

− aV2

(1 + eU2)2
+

lV2

(1 + eU2)2
;

lU2

1 + eU2

− µ− pN2 +
aU2

1 + eU2

}
,

=
V ′2
V2

− N ′2
N2

+
mU2

1 + fU2

− ν + b,

where b = max{r
(

1− U2

K

)
− rU2

K
− (bN2)2

1+fU2
− aV2

(1+eU2)2
+ lV2

(1+eU2)2
; lU2

1+eU2
−µ− pN2 + aU2

1+eU2
}.

Therefore

g1 = r
(

1− U2

K

)
− rU2

K
− (bN2)2

1 + fU2

− aV2

(1 + eU2)2
+

lU2

1 + eU2

− µ− pN2 + a,

g2 =
V ′2
V4

− N ′2
N2

+
mU2

1 + fU2

− ν + b+
mN2

(1 + fU2)2

V2

N2

. (3.12)

Rewriting (3.3) with I = 0 leads to

V ′2
V2

=
lU2

1 + eU2

− pN2 − µ, (3.13)
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N ′2
N2

=
mU2

1 + fU2

− ν. (3.14)

Substituting (3.13) and (3.14) into (3.12) leads to

g1 =
V ′2
V2

+ r
(

1− U2

K

)
− rU2

K
− (bN2)2

1 + fU2

− aV2

(1 + eU2)2
+ a ≤ V ′2

V2

− d,

g2 =
V ′2
V2

+ b+
mN2

(1 + fU2)2

V2

N2

≤ V ′2
V2

− d. (3.15)

where d = min
{
− r
(

1− U2

K

)
+ rU2

K
+ (bN2)2

1+fU2
+ aV2

(1+eU2)2
− a,− mN2

(1+fU2)2
V2

N2
− b
}

. Therefore

m(Q) ≤ V ′2
V2

− d,

for t > T by (3.11) and (3.15). Along each solution x(t, x0) to (3.3) such that x0 ∈ K

and for t > T , we thus have

1

t

∫ t

0

m(Q)ds ≤ 1

t

∫ T

0

m(Q)ds+
1

t
log

V (t)

V (T )
− d t− T

t
,

which implies that m(Q) ≤ −d/2 < 0. Hence, the following theorem is established .

Theorem 3.1 The equilibrium E2 of the system (3.3) is globally asymptotically stable

in Ω if m > fν, ν
m−fν >

µ
l−eµ , r

(
1− U2

K

)
> bN2

1+fU2
, m−fν+eν > 0, β > δ+

(m− n)U2

1 + fU2

,

d
[2]
11 < 0, d

[2]
22 < 0 and d

[2]
33 < 0.

Local and global stability of the steady state E3

For the equilibrium point E3(U3, 0, N3, I3), the Jacobian matrix is given by

J3 =


j

[3]
11 − aU3

1+eU3
− bU3(1+(c−1)I3)

1+fU3

bU3N3

1+fU3

0 j
[3]
22 0 0

[m−(m−n)I3]N3

(1+fU3)2
0 j

[3]
33 −δN3 − (m−n)U3N3

1+fU3

− (m−n)U3

(1+fU3)2
0 0 β − δ − (m−n)U3

1+fU3

 ,

where

j
[3]
11 = r − 2rU3

K
− bN3(1+(c−1)I3)

(1+fU3)2
, j

[3]
22 =

lU3

1 + eU3

− µ− pN3(1− I3) and

j
[3]
33 = (m−(m−n)I3)U3

1+fU3
− δI3 − ν.
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The local stability of the equilibrium at E3 is established from the eigenvalues of the

Jacobian matrix J3. From the second row this matrix has the eigenvalue

lU3

1+eU3
− µ − pN3(1 − I3), and the remaining eigenvalues are derived from the 3 × 3

Jacobian matrix given by

J
′

3 =


j

[3]
11 − bU3(1+(c−1)I3)

1+fU3

bU3N3

1+fU3

[m−(m−n)I3]N3

(1+fU3)2
j

[3]
33 −δN3 − (m−n)U3N3

1+fU3

− (m−n)U3

(1+fU3)2
0 β − δ − (m−n)U3

1+fU3

 .
The characteristic polynomial of the Jacobian of the system evaluated at this point is

given by

λ3 + h1λ
2 + h2λ+ h3 = 0,

h1 = −(j
[3]
11 + j

[3]
33 + j

[3]
44 ) = −Tr(J

′

3),

h2 = j
[3]
11 j

[3]
33 + j

[3]
11 j

[3]
44 + j

[3]
33 j

[3]
44 − j

[3]
13 j

[3]
31 − j

[3]
14 j

[3]
41 ,

h3 = −j[3]
13 j

[3]
34 j

[3]
41 + j

[3]
14 j

[3]
33 j

[3]
41 + j

[3]
13 j

[3]
31 j

[3]
44 − j

[3]
11 j

[3]
33 j

[3]
44 = −DetJ

′

3,

Now, if j
[3]
11 < 0, j

[3]
33 < 0, j

[3]
44 < 0, then h1 > 0, h2 > 0 and h3 > 0. If at least one

of these conditions is not satisfied, then h1, h2 or h3 is negative and the characteristic

polynomial will have at least one positive real root, that is, not all eigenvalues are

negative in this case. Furthermore,

h1h2 − h3 = j
[3]
11 j

[3]
13 j

[3]
31 − j

2[3]
11 j

[3]
33 + j

[3]
13 j

[3]
31 j

[3]
33 − j

[3]
11 j

2[3]
33 + j

[3]
11 j

[3]
14 j

[3]
41 + j

[3]
13 j

[3]
34 j

[3]
41

−j2[3]
11 j

[3]
44 − 2j

[3]
11 j

[3]
33 j

[3]
44 − j

2[3]
33 j

[3]
44 + j

[3]
14 j

[3]
41 j

[3]
44 − j

[3]
11 j

2[3]
44 − j

[3]
33 j

2[3]
44 ,

> 0,

if

j
[3]
11 j

[3]
13 j

[3]
31 − j

2[3]
11 j

[3]
33 + j

[3]
13 j

[3]
31 j

[3]
33 − j

[3]
11 j

2[3]
33 + j

[3]
11 j

[3]
14 j

[3]
41 − j

2[3]
11 j

[3]
44 − 2j

[3]
11 j

[3]
33 j

[3]
44 − j

2[3]
33 j

[3]
44 +

j
[3]
14 j

[3]
41 j

[3]
44 − j

[3]
11 j

2[3]
44 − j

[3]
33 j

2[3]
44 > −j[3]

13 j
[3]
34 j

[3]
41 .

Thus, the following result can be stated.
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Lemma 3.3 The equilibrium point E3 is locally asymptotically stable if

(a) r < 2rU3

K
+ bN3(1+(c−1)I3)

(1+fU3)2
,

(b) lU3

1+eU3
< µ+ pN3(1− I3),

(c) (m−(m−n)I3)U3

1+fU3
< δI3 + ν,

(d) β < δ + (m−n)U3

1+fU3
.

The second compound matrix corresponding to J
′
3 is given by

J
′[2]
3 =


j

[3]
11 + j

[3]
33 −δN3 − (m−n)U3N3

1+fU3
− bU3N3

1+fU3

0 j
[3]
11 + β − δ − (m−n)U3

1+fU3
− bU3(1+(c−1)I3)

1+fU3

(m−n)I3
(1+fU3)2

[m−(m−n)I3]N3

(1+fU3)2
j

[3]
33 + β − δ − (m−n)U3

1+fU3

 .
The matrix function P is set as

P (U3, N3, I3) = diag
{

1,
N3

I3

,
N3

I3

}
.

Then

PF =


0 0 0

0 N3

I3

[
N ′3
N3
− I′3

I3

]
0

0 0 N3

I3

[
N ′3
N3
− I′3

I3

]
 , P−1 =


1 0 0

0 I3
N3

0

0 0 I3
N3

 ,
and

PFP
−1 =


0 0 0

0
N ′3
N3
− I′3

I3
0

0 0
N ′3
N3
− I′3

I3

 .
Now

PFJ
′[2]
3 P−1 =


j

[3]
11 + j

[3]
33 −δI3 − (m−n)U3I3

1+fU3
− bU3I3

1+fU3

0 j
[3]
11 + β − δ − (m−n)U3

1+fU3
− bU3(1+(c−1)I3)

1+fU3

(m−n)N3

(1+fU3)2
[m−(m−n)I3]N3

(1+fU3)2
j

[3]
33 + β − δ − (m−n)U3

1+fU3

 .
The matrix Q = PFP

−1 + PFJ
′[2]
3 P−1 can be written in block form:

Q =

 Q11 Q12

Q21 Q22

 ,
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with Q11 = j
[3]
11 + j

[3]
33 = r

(
1− U3

K

)
− rU3

K
− bN3(1+(c−1)I3)

(1+fU3)2
+ (m−(m−n)I3)U3

1+fU3
− δI3 − ν,

Q12 =
[
−δI3 − (m−n)U3I3

1+fU3
− bU3I3

1+fU3

]
, Q21 =

 0

(m−n)N3

(1+fU3)2

 ,
Q22 =

 j
[3]
11 + β − δ − (m−n)U3

1+fU3
+

N ′3
N3
− I′3

I3
− bU3(1+(c−1)I3)

1+fU3

[m−(m−n)I3]N3

(1+fU3)2
j

[3]
33 + β − δ − (m−n)U3

1+fU3
+

N ′3
N3
− I′3

I3

 .
A norm in R3 is defined as

|u, n, i| = max{|u|, |n|+ |i|}

for any vector (u, n, i) ∈ R3. Let m denote the Lozinskĭi measure with respect to this

norm. Then

m(Q) ≤ sup{p1, p2}, (3.16)

with

p1 = m1(Q11) + |Q12|,

p2 = |Q21|+m1(Q22),

where |Q12| and |Q21| are matrix norms induced by the L1 vector norm, and m1 denotes

the Lozinskĭi measure with respect to the L1 norm. More specifically,

m1(Q11) = r
(

1− U3

K

)
− rU3

K
− bN3(1+(c−1)I3)

(1+fU3)2
+ (m−(m−n)I3)U3

1+fU3
− δI3 − ν,

|Q12| = max{−δI3 − (m−n)U3I3
1+fU3

,− bU3I3
1+fU3

} = a, |Q21| = (m−n)N3

(1+fU3)2
. To calculate m1(Q22),

the absolute value of the off-diagonal elements is added to the diagonal one in each

column of Q22 and then take the maximum of the two sums. Thus,
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m1(Q22)

= max
{
r
(

1− U3

K

)
− rU3

K
− bN3(1 + (c− 1)I3)

(1 + fU3)2
+ β − δ − (m− n)U3

1 + fU3

+
N ′3
N3

− I ′3
I3

+
[m− (m− n)I3]N3

(1 + fU3)2
;
(m− (m− n)I3)U3

1 + fU3

− δI3 − ν + β − δ − (m− n)U3

1 + fU3

+
N ′3
N3

− I ′3
I3

+
bU3(1 + (c− 1)I3)

1 + fU3

}
,

=
N ′3
N3

− I ′3
I3

+ β − δ − (m− n)U3

1 + fU3

+ max
{
r
(

1− U3

K

)
− rU3

K
− bN3(1 + (c− 1)I3)

(1 + fU3)2
+

[m− (m− n)I3]N3

(1 + fU3)2
;

(m− (m− n)I3)U3

1 + fU3

− δI3 − ν +
bU3(1 + (c− 1)I3)

1 + fU3

}
,

=
N ′3
N3

− I ′3
I3

+ β − δ − (m− n)U3

1 + fU3

+ b,

where b = max
{
r
(

1− U3

K

)
− rU3

K
− bN3(1+(c−1)I3)

(1+fU3)2
+ [m−(m−n)I3]N3

(1+fU3)2
; (m−(m−n)I3)U3

1+fU3
− δI3 −

ν + bU3(1+(c−1)I3)
1+fU3

}
.

Therefore

p1 = r
(

1− U3

K

)
− rU3

K
− bN3(1 + (c− 1)I3)

(1 + fU3)2
+

(m− (m− n)I3)U3

1 + fU3

−δI3 − ν + a,

p2 =
N ′3
N3

− I ′3
I3

+ β − δ − (m− n)U3

1 + fU3

+ b+
(m− n)N3

(1 + fU3)2
. (3.17)

Rewriting (3.3) with V = 0 leads to

N ′3
N3

=
[m(1− I3) + nI3]U3

1 + fU3

− δI3 − ν, (3.18)

I ′3
I3

= (1− I3)
[
β +

(n−m)U3

1 + fU3

− δ
]
. (3.19)

Substituting (3.18) and (3.19) into (3.17) gives

p1 =
N ′3
N3

+ r
(

1− U3

K

)
− rU3

K
− bN3(1 + (c− 1)I3)

(1 + fU3)2
+ a ≤ N ′3

N3

− d,

p2 =
N ′3
N3

+
I ′3

1− I3

+ b+
(m− n)N3

(1 + fU3)2
≤ N ′3
N3

− d, (3.20)
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where d = min{−r
(

1− U3

K

)
+ rU3

K
+ bN3(1+(c−1)I3)

(1+fU3)2
)− a,− I′3

1−I3 −
(m−n)N3

(1+fU3)2
− b}. Therefore

m(Q) ≤ N ′3
N3

− d,

for t > T by (3.16) and (3.20). Along each solution x(t, x0) to (3.3) such that x0 ∈ K

and for t > T , the result is

1

t

∫ t

0

m(Q)ds ≤ 1

t

∫ T

0

m(Q)ds+
1

t
log

N(t)

N(T )
− d t− T

t
,

which implies that m(Q) ≤ −d/2 < 0. Hence, the following theorem is established.

Theorem 3.2 The equilibrium point E3 of the system (3.3) is globally asymptotically

stable in Ω if m > n, β > δ, (m − n) > f(β − δ), m(β − δ) > ν(m − n), C < 0 and

G < 0.

Local and global stability of the interior steady state E4

In this section, the stability properties of the interior steady state in the presence of

the disease in lions are studied. The local stability of E4(U4, V4, N4, I4) is established

using the Routh-Hurwitz criterion. The Jacobian matrix of the system (3.3) at E4 is

J4 =


j

[4]
11 − aU4

1+eU4
− bU4(1+(c−1)I4)

1+fU4

bU4N4

1+fU4

lV4

(1+eU4)2
j

[4]
22 −pV4(1− I4) pN4V4

(m−(m−n)I4)N4

(1+fU4)2
0 (m−(m−n)I4)U4

1+fU4
− δI4 − ν −δN4 − (m−(m−n)U4)N4

1+fU4

− (m−n)U4

(1+fU4)2
0 0 β − δ − (m−n)U4

1+fU4

 ,

where

j
[4]
11 = r − 2rU4

K
− bN4(1+(c−1)I4)

(1+fU4)2
− aV4

(1+eU4)2
and j

[4]
22 = lU4

1+eU4
− µ− pN4(1− I4).

Note that j
[4]
12 < 0, j

[4]
13 < 0, j

[4]
14 > 0, j

[4]
21 > 0, j

[4]
23 < 0, j

[4]
24 > 0, j

[4]
31 > 0, j

[4]
34 < 0 and

j
[4]
41 < 0. The characteristic polynomial of the linearized system is given by

λ4 +m1λ
3 +m2λ

2 +m3λ+m4 = 0, (3.21)
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where

m1 = −(j
[4]
11 + j

[4]
22 + j

[4]
33 + j

[4]
44 ) = −Tr(J4),

m2 = j
[4]
11 j

[4]
22 + j

[4]
11 j

[4]
33 + j

[4]
11 j

[4]
44 + j

[4]
22 j

[4]
33 + j

[4]
22 j

[4]
44 + j

[4]
33 j

[4]
44 − j

[4]
12 j

[4]
21 − j

[4]
13 j

[4]
31 − j

[4]
14 j

[4]
41 ,

m3 = j
[4]
13 j

[4]
22 j

[4]
31 + j

[4]
12 j

[4]
21 j

[4]
33 − j

[4]
11 j

[4]
22 j

[4]
33 − j

[4]
22 j

[4]
33 j

[4]
44 + j

[4]
12 j

[4]
21 j

[4]
44 − j

[4]
12 j

[4]
24 j

[4]
41 − j

[4]
12 j

[4]
23 j

[4]
31

−j[4]
11 j

[4]
22 j

[4]
44 − j

[4]
13 j

[4]
34 j

[4]
41 + j

[4]
13 j

[4]
31 j

[4]
44 + j

[4]
14 j

[4]
22 j

[4]
41 + j

[4]
14 j

[4]
33 j

[4]
41 − j

[4]
14 j

[4]
21 j

[4]
42 − j

[4]
11 j

[4]
33 j

[4]
44 ,

m4 = −j[4]
12 j

[4]
23 j

[4]
34 j

[4]
41 + j

[4]
12 j

[4]
24 j

[4]
33 j

[4]
41 + j

[4]
12 j

[4]
23 j

[4]
31 j

[4]
44 + j

[4]
13 j

[4]
34 j

[4]
41 j

[4]
22 − j

[4]
13 j

[4]
31 j

[4]
22 j

[4]
44

−j[4]
14 j

[4]
22 j

[4]
33 j

[4]
41 − j

[4]
12 j

[4]
21 j

[4]
33 j

[4]
44 + j

[4]
11 j

[4]
22 j

[4]
33 j

[4]
44 .

When j
[4]
11 < 0, j

[4]
22 < 0, j

[4]
33 < 0 and j

[4]
44 < 0, then m1 > 0 and m2 > 0. Furthermore,

m3 > 0 if

j
[4]
13 j

[4]
22 j

[4]
31 + j

[4]
12 j

[4]
21 j

[4]
33 − j

[4]
11 j

[4]
22 j

[4]
33 − j

[4]
22 j

[4]
33 j

[4]
44 + j

[4]
12 j

[4]
21 j

[4]
44 − j

[4]
11 j

[4]
22 j

[4]
44 − j

[4]
13 j

[4]
34 j

[4]
41

+ j
[4]
13 j

[4]
31 j

[4]
44 + j

[4]
14 j

[4]
22 j

[4]
41 + j

[4]
14 j

[4]
33 j

[4]
41 − j

[4]
11 j

[4]
33 j

[4]
44 > j

[4]
12 j

[4]
24 j

[4]
41 + j

[4]
12 j

[4]
23 j

[4]
31 ,

and m4 > 0 if

−j[4]
14 j

[4]
22 j

[4]
33 j

[4]
41−j

[4]
12 j

[4]
21 j

[4]
33 j

[4]
44 +j

[4]
11 j

[4]
22 j

[4]
33 j

[4]
44−j

[4]
13 j

[4]
31 j

[4]
22 j

[4]
44 +j

[4]
13 j

[4]
34 j

[4]
41 j

[4]
22 > j

[4]
12 j

[4]
23 j

[4]
34 j

[4]
41−

j
[4]
12 j

[4]
24 j

[4]
33 j

[4]
41 − j

[4]
12 j

[4]
23 j

[4]
31 j

[4]
44 .

Let

q = (j
[4]
11 + j

[4]
22 + j

[4]
33 + j

[4]
44 )(−j[4]

12 j
[4]
21 − j

[4]
13 j

[4]
31 + j

[4]
22 j

[4]
33 − j

[4]
14 j

[4]
41 + j

[4]
22 j

[4]
44 + j

[4]
33 j

[4]
44

+j
[4]
11 (j

[4]
22 + j

[4]
33 + j

[4]
44 ))(j

[4]
11 j

[4]
22 j

[4]
33 − j

[4]
14 j

[4]
22 j

[4]
41 − j

[4]
14 j

[4]
33 j

[4]
41 + j

[4]
11 j

[4]
22 j

[4]
44

+j
[4]
11 j

[4]
33 j

[4]
44 + j

[4]
22 j

[4]
33 j

[4]
44 − j

[4]
13 (j

[4]
22 j

[4]
31 − j

[4]
34 j

[4]
41 + j

[4]
31 j

[4]
44 )

+j
[4]
12 (j

[4]
23 j

[4]
31 + j

[4]
24 j

[4]
41 − j

[4]
21 (j

[4]
33 j

[4]
44 )))− (j

[4]
11 j

[4]
22 j

[4]
33 − j

[4]
14 j

[4]
22 j

[4]
41 − j

[4]
14 j

[4]
33 j

[4]
41

+j
[4]
11 j

[4]
22 j

[4]
44 + j

[4]
11 j

[4]
33 j

[4]
44 + j

[4]
22 j

[4]
33 j

[4]
44 − j

[4]
13 (j

[4]
22 j

[4]
31 − j

[4]
34 j

[4]
41 + j

[4]
31 j

[4]
44 )

−j[4]
12 (−j[4]

23 j
[4]
31 − j

[4]
24 j

[4]
41 + j

[4]
21 (j

[4]
33 + j

[4]
44 )))2 − (j

[4]
11 + j

[4]
22 + j

[4]
33 + j

[4]
44 )2(−j[4]

14 j
[4]
22

+j
[4]
33 j

[4]
41 + j

[4]
22 (j

[4]
11 j

[4]
33 j

[4]
44 + j

[4]
13 (j

[4]
34 j

[4]
41 − j

[4]
31 j

[4]
44 )) + j

[4]
12 (j

[4]
24 j

[4]
33 j

[4]
41 − j

[4]
21 j

[4]
33 j

[4]
44

+j
[4]
23 (−j[4]

34 j
[4]
41 + j

[4]
31 j

[4]
44 ))).

From the Routh-Hurwitz criterion for a 4 × 4 Jacobian matrix, all the real parts of

roots of (3.21) are negative if and only if the following conditions are satisfied,

m1 > 0,m3 > 0,m4 > 0 and q = m1m2m3 −m2
3 −m2

1m4 > 0 (3.22)
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Now this is true if j
[4]
11 < 0, j

[4]
22 < 0, j

[4]
33 < 0 and j

[4]
44 < 0. Thus, the following result

can be stated.

Lemma 3.4 The equilibrium point E4 is locally asymptotically stable if

(a) r < 2rU4

K
+ bN4(1+(c−1)I4)

(1+fU4)2
+ aV4

(1+eU4)2
,

(b) lU4

1+eU4
< µ+ pN4(1− I4),

(c) (m−(m−n)I4)U4

1+fU4
< δI4 + ν,

(d) β < δ + (m−n)U4

1+fU4
.

Next, the globally asymptotically stability for the interior equilibrium is discussed.

Theorem 3.3 The interior equilibrium is globally asymptotically stable if

M = aV ∗

(1+eU)(1+eU∗)
+ bN∗[(1−I∗)+cI∗]

(1+fU)(1+fU∗)
< r

K
.

Proof. A candidate Lyapunov function that has been used by Dubey and Upadhyay

[99], Hsu [133], and others is chosen. The following function is considered,

Z(U, V,N, I) = α1

(
U − U∗ − U∗ ln

( U
U∗

))
+ α2

(
V − V ∗ − V ∗ ln

( V
V ∗

))
+ α3

(
N −N∗ −N∗ ln

( N
N∗

))
+ α4

(
I − I∗ − I∗ ln

( I
I∗

))
(3.23)

Define

Z1(U) = U − U∗ − U∗ ln
( U
U∗

)
, Z2(V ) = V − V ∗ − V ∗ ln

( V
V ∗

)
,

Z3(N) = N −N∗ −N∗ ln
( N
N∗

)
Z4(I) = I − I∗ − I∗ ln

( I
I∗

)
.

Z can be rewritten as

Z(U, V,N, I) = α1Z1(U) + α2Z2(V ) + α3Z3(N) + α4Z4(I).

Differentiating Z with respect to time t along the solutions of model (3.3),

dZ

dt
= α1

(
1− U∗

U

)dU
dt

+ α2

(
1− V ∗

V

)dV
dt

+ α3

(
1− N∗

N

)dN
dt

+ α4

(
1− I∗

I

)dI
dt

(3.24)
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The linear approximations U −U∗ ∼= 1 + eU ∼= 1 + fU , V −V ∗ ∼= V , N −N∗ ∼= N and

I − I∗ ∼= I are used to compute dZ1(U(t))
dt

, dZ2(V (t))
dt

, dZ3(N(t))
dt

and dZ4(I(t))
dt

as follows:

dZ1

dt
=

(
1− U∗

U

)[
r
(

1− U

K

)
− aV

1 + eU
− bN [(1− I) + cI]

1 + fU

]
U,

= (U − U∗)[r
(

1− U

K

)
− rU∗

K
+
rU∗

K
− aV

1 + eU
− aV ∗

1 + eU∗
+

aV ∗

1 + eU∗

−bN [(1− I) + cI]

1 + fU
− bN∗[(1− I∗) + cI∗]

1 + fU∗
+
bN∗[(1− I∗) + cI∗]

1 + fU∗

]
,

= (U − U∗)
[
− rU

K
+
rU∗

K
− aV

1 + eU
+

aV ∗

1 + eU∗
− bN [(1− I) + cI]

1 + fU

+
bN∗[(1− I∗) + cI∗]

1 + fU∗

]
,

= (U − U∗)[− r

K
(U − U∗)− aV (1 + eU∗)− aV ∗(1 + eU)

(1 + eU)(1 + eU∗)

−bN [(1− I) + cI](1 + fU∗)− bN∗[(1− I∗) + cI∗](1 + fU)

(1 + fU)(1 + fU∗)

]
,

= (U − U∗)
[
− r

K
(U − U∗)− a(V − V ∗)(1 + eU∗)− aV ∗(U − U∗)

(1 + eU)(1 + eU∗)

−b(N −N
∗)[(1− I) + cI](1 + fU∗)− bN∗[(1− I∗) + cI∗](1 + fU)

(1 + fU)(1 + fU∗)

]
,

= − r

K
(U − U∗)2 − a(U − U∗)(V − V ∗)(1 + eU∗)− aV ∗(U − U∗)2

(1 + eU)(1 + eU∗)

− b(N −N∗)[(1− I) + cI](1 + fU∗)(U − U∗)− bN∗[(1− I∗) + cI∗](U − U∗)2

(1 + fU)(1 + fU∗)
,
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dZ2

dt
=

(
1− V ∗

V

)[ lU

1 + eU
− p(1− I)N − µ

]
V,

= (V − V ∗)
[ lU

1 + eU
− lU∗

1 + eU∗
+

lU∗

1 + eU∗
− p(1− I)N − p(1− I∗)N∗

+p(1− I∗)N∗ − µ
]
,

= (V − V ∗)
[ lU

1 + eU
− lU∗

1 + eU∗
− p(1− I)N + p(1− I∗)N∗

]
,

= (V − V ∗)
[ lU(1 + eU∗)− lU∗(1 + eU)

(1 + eU)(1 + eU∗)
− p[(1− I)N − (1− I∗)N∗]

]
,

= (V − V ∗) l(U − U
∗)(1 + eU∗)− lU∗(U − U∗)
(1 + eU)(1 + eU∗)

−p(V − V ∗)[(1− I)N − (1− I∗)N∗],

= − l[U∗ − (1 + eU∗)]

(1 + eU)(1 + eU∗)
(U − U∗)(V − V ∗)− p(V − V ∗)[(1− I)N − (1− I∗)N∗,

dZ3

dt
=

(
1− N∗

N

)[ [m(1− I) + nI]U

1 + fU
− δI − ν

]
N,

= (N −N∗)
[ [m(1− I) + nI]U

1 + fU
− [m(1− I∗) + nI∗]U∗

1 + fU∗
+

[m(1− I∗) + nI∗]U∗

1 + fU∗

−δI − δI∗ + δI∗ − ν
]
,

= (N −N∗)
[ [m(1− I) + nI]U

1 + fU
− [m(1− I∗) + nI∗]U∗

1 + fU∗
− δ(I − I∗)

]
,

= (N −N∗)
[ [m(1− I) + nI](U − U∗)(1 + fU∗)− [m(1− I∗) + nI∗]U∗(1 + fU)

(1 + fU)(1 + fU∗)

−δ(I − I∗)
]
,

= (N −N∗)
[ [m(1− I) + nI](U − U∗)(1 + fU∗)− [m(1− I∗) + nI∗]U∗(U − U∗)

(1 + fU)(1 + fU∗)

−δ(I − I∗)
]
,

=
[m(1− I) + nI](1 + fU∗)− [m(1− I∗) + nI∗]U∗

(1 + fU)(1 + fU∗)
(U − U∗)(N −N∗)

−δ(I − I∗)(N −N∗),

= − [m(1− I∗) + nI∗]U∗ − [m(1− I) + nI](1 + fU∗)

(1 + fU)(1 + fU∗)
(U − U∗)(N −N∗)

−δ(I − I∗)(N −N∗),

and
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dZ4

dt
=

(
1− I∗

I

)
(1− I)

[
β − (m− n)U

1 + fU
− δ
]
I,

= (I − I∗)(1− I)
[
β − δ − (m− n)U

1 + fU
+

(m− n)U∗

1 + fU∗
− (m− n)U∗

1 + fU∗

]
,

= (I − I∗)(1− I)
[
− (m− n)U

1 + fU
+

(m− n)U∗

1 + fU∗

]
,

= −(I − I∗)(1− I)
[(m− n)U(1 + fU∗)− (m− n)U∗(1 + fU)

(1 + fU)(1 + fU∗)

]
,

= −(m− n)(U − U∗)(1 + fU∗)(I − I∗)(1− I)

(1 + fU)(1 + fU∗)

+
(m− n)U∗(U − U∗)(I − I∗)(1− I)

(1 + fU)(1 + fU∗)
,

= −(m− n)
(1 + fU∗)− U∗

(1 + fU)(1 + fU∗)
(U − U∗)(I − I∗)(1− I).

Now,

dZ

dt
= α1

[
− r

K
(U − U∗)2 − a(U − U∗)(V − V ∗)(1 + eU∗)− aV ∗(U − U∗)2

(1 + eU)(1 + eU∗)

−b(N −N
∗)[(1− I) + cI](1 + fU∗)(U − U∗)− bN∗[(1− I∗) + cI∗](U − U∗)2

(1 + fU)(1 + fU∗)

]
+α2

[
− l[U∗ − (1 + eU∗)]

(1 + eU)(1 + eU∗)
(U − U∗)(V − V ∗)

−p(V − V ∗)[(1− I)N − (1− I∗)N∗
]

+α3

[
− [m(1− I∗) + nI∗]U∗ − [m(1− I) + nI](1 + fU∗)

(1 + fU)(1 + fU∗)
(U − U∗)(N −N∗)

−δ(I − I∗)(N −N∗)
]

+α4

[
− (m− n)

(1 + fU∗)− U∗

(1 + fU)(1 + fU∗)
(U − U∗)(I − I∗)(1− I)

]
,

= α1

[
− r

K
+

aV ∗

(1 + eU)(1 + eU∗)
+
bN∗[(1− I∗) + cI∗]

(1 + fU)(1 + fU∗)

]
(U − U∗)2

+
[
− α1

a(1 + eU∗)

(1 + eU)(1 + eU∗)
− α2

l[U∗ − (1 + eU∗)

(1 + eU)(1 + eU∗)

]
(U − U∗)(V − V ∗)

+
[
− α1

b[(1− I) + cI](1 + fU∗)

(1 + fU)(1 + fU∗)

−α3
[m(1− I∗) + nI∗]U∗ − [m(1− I) + nI](1 + fU∗)

(1 + fU)(1 + fU∗)

]
(U − U∗)(N −N∗)

−α2p(V − V ∗)[(1− I)N − (1− I∗)N∗]− α3δ(I − I∗)(N −N∗)

−α4

[
(m− n)

(1 + fU∗)− U∗

(1 + fU)(1 + fU∗)
(1− I)

]
(U − U∗)(I − I∗).
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Let α1 = 1 and α4 = 1, then

α2
l[(1 + eU∗)− U∗]
(1 + eU)(1 + eU∗)

= α1
a(1 + eU∗)

(1 + eU)(1 + eU∗)
,

that is,

α2 =
a(1 + eU∗)

l[(1 + eU∗)− U∗]
.

Also

α3
[m(1− I∗) + nI∗]U∗ − [m(1− I) + nI](1 + fU∗)

(1 + fU)(1 + fU∗)
= −b[(1− I) + cI](1 + fU∗)

(1 + fU)(1 + fU∗)
,

that is,

α3 =
b[(1− I) + cI](1 + fU∗)

[m(1− I) + nI](1 + fU∗)− [m(1− I∗) + nI∗]U∗
.

Hence,

dZ

dt
=

[
− r

K
+

aV ∗

(1 + eU)(1 + eU∗)
+
bN∗[(1− I∗) + cI∗]

(1 + fU)(1 + fU∗)

]
(U − U∗)2

− a(1 + eU∗)

l[(1 + eU∗)− U∗
p(V − V ∗)[(1− I)N − (1− I∗)N∗]

− b[(1− I) + cI](1 + fU∗)

[m(1− I) + nI](1 + fU∗)− [m(1− I∗) + nI∗]U∗
δ(I − I∗)(N −N∗)

−
[
(m− n)

(1 + fU∗)− U∗

(1 + fU)(1 + fU∗)
(1− I)

]
(U − U∗)(I − I∗).

The coefficient of (U − U∗)2 is strictly negative if

− r

K
+

aV ∗

(1 + eU)(1 + eU∗)
+
bN∗[(1− I∗) + cI∗]

(1 + fU)(1 + fU∗)
< 0,

that is, if

M =
aV ∗

(1 + eU)(1 + eU∗)
+
bN∗[(1− I∗) + cI∗]

(1 + fU)(1 + fU∗)
<

r

K
.

If α2 > 0 and α3 > 0, that is, e > 1 and [m(1−I)+nI](1+fU∗) > [m(1−I∗)+nI∗]U∗,

then the function Z is negative definite. Hence, the interior equilibrium E4 is globally

asymptotically stable. 2

3.3.4 Persistence of the system

A system is defined to be uniformly persistence if the minimum of each component u(t)

of a positive solution is always greater than some positive constant, i.e. lim inf
t→∞

u(t) >
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ε > 0 [134]. The persistence of a system implies that all the species continue to exist

and none of them will become extinct [99]. From Proposition 3.3 the system (3.3) has

been proved to be bounded. Now, the system is shown to be persistent. To do so, all

the boundary equilibria are shown to be repellers.

Theorem 3.4 If the following conditions hold

(i) β > δ,

(ii) lU3

1+eU3
> µ+ pN3(1− I3),

then the system is persistent.

Proof:

From the Jacobian matrix associated with E1(U1, 0, N1, 0) the following eigenvalue

λ
[1]
1 = β− δ− ν+ nν

m
= β− δ+ ν

m
(n−m) was found. But equilibrium point E3 exists if

m > n and β > δ, making λ
[1]
1 > 0. Hence, existence of E3 implies that E1 is unstable.

For the equilibrium point E2(U2, V2, N2, 0), from the Jacobian matrix J2, there is an

eigenvalue β − δ − (m−n)U2

1+fU2
= β − δ − (m − n) ν

m
. Using the same argument as above,

E2 is unstable if E3 exists.

For the equilibrium point E3(U3, 0, N3, I3), from the Jacobian matrix J3, an eigenvalue

j
[3]
22 = lU3

1+eU3
− µ− pN3(1− I3) exists. If lU3

1+eU3
> µ+ pN3(1− I3) then the eigenvalue is

positive, and E3 is unstable.

Thus, all the boundary equilibria of system (3.3) are repellers if the conditions stated

in the theorem hold. 2

3.4 Dynamics of subsystems of system (3.2)

3.4.1 The role of infection on the lion, cheetah, impala system

To observe the influence of infection in the lion-cheetah-impala system, a subsystem

with no infection is considered. Setting I = 0 in system (3.3) results in an extended
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Lotka-Volterra type super-predator, predator-prey system.

dU

dt
= U

[
r(1− U

K
)− aV

1 + eU
− bW

1 + gU

]
,

dV

dt
= V

[ lU

1 + eU
− pW − µ

]
, (3.25)

dW

dt
= W

[ mU

1 + gU
− ν
]
.

This reduced system has five nonnegative equilibria namely: Ê0(0, 0, 0), Ê2(U2, 0, 0),

Ê3(U3, V3, 0), Ê4(U4, 0,W4) and Ê5(U5, V5,W5). However, equilibrium points Ê4(U4, 0,W4)

and Ê5(U5, V5,W5) are equivalent to E3 and E4 discussed in the previous section. The

equilibrium points Ê0(0, 0, 0), Ê2(U2, 0, 0), Ê3(U3, V3, 0) are discussed in the next sec-

tion for a system in which the lions are absent.

3.4.2 The effect of lion removal on the eco-epidemiological

system

In the absence of the lions, the system (3.2) reduces to a impala-cheetah sub-system

given by

dU

dt
= U

[
r(1− U

K
)− aV

1 + eU

]
,

dV

dt
= V

[ lU

1 + eU
− µ

]
. (3.26)

This subsystem has three biologically feasible equilibria namely: (i) Ē0(0, 0), (ii)

Ē1(K, 0) and (iii) Ē2(U2, V2) where U2 = µ
l−eµ and V2 = rl(Kl−µ−eKµ)

aK(eµ−l)2 ). The first two

equilibria always exist, and Ē2 exists if l > eµ and l−eµ > µ
K

or U2 < K. The Jacobian

of the system (3.26) is given by

J(U, V ) =

 r(1− 2U
K

)− aV
(1+eU)2

− aU
1+eU

lV
(1+eU)2

lU
1+eU

− µ

 . (3.27)

(a) Ē0 is always unstable with eigenvalues r and −µ. It is a saddle point whose stable

manifold is the V -axis.
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(b) Ē1 has eigenvalues −r and Kl
1+eK

− µ. Thus, Ē1 is unstable in the V -axis if

Kl
1+eK

> µ, that is, l − eµ > µ
K

and Ē2 exists. The growth function of cheetah

when impala population is at carrying capacity, exceeds death rate. Ē1 is locally

asymptotically stable if l − eµ < µ
K

and Ē2 does not exist.

Next, the global stability of Ē1 is established. In order to do so, Theorem A.3

and Lemma A.1 that are essential in finding a candidate Lyapunov function and

proving the global stability are used. Define L : {(U, V ) ∈ Ω : U > 0} → R by

L(U, V ) =
1

2
V 2.

The time derivative of L computed along solutions of (3.26) is

L′(U, V ) = V · V ′ = V 2
[ lU

1 + eU
− µ

]
,

= V 2
[ lU − µ(1 + eU)

1 + eU

]
,

= V 2
[(l − eµ)− µ

U

U(1 + eU)

]
.

It follows that L′(U, V ) ≤ 0 if U = K, that is, l − eµ − µ
K
< 0. Hence, L is a

Lyapunov function on Ω. Substituting V = 0 in the first equation of (3.26) leads

to
dU

dt
= Ur

(
1− U

K

)
,

which shows that U → K as t → ∞. Therefore, it follows from the LaSalle’s

Invariance Principle, that every solution of the equations in the model (3.26),

with initial conditions in Ω, approaches Ē1 as t→∞. Hence, it follows that the

point Ē1 is globally asymptotically stable in Ω if l− eµ− µ
K
< 0, i.e, if µ

l−eµ > K,

impala population exceeds carrying capacity.

(c) Ē2 has eigenvalues λ1 =
−a1+
√
a2
1−4a0a2

2a0
and λ2 =

−a1−
√
a2
1−4a0a2

2a0
, the roots of the

quadratic equation

a0λ
2 + a1λ+ a2 = 0,

where a0 = Kl(l − eµ), a1 = lrµ− eKlrµ+ erµ2 + e2Krµ2 and

a2 = Kl2rµ− lrµ2 − 2eKlrµ2 + erµ3 + e2Krµ3.
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Now, a0 > 0, since it is derived from a condition for existence of Ē2.

a1 = lrµ− eKlrµ+ erµ2 + e2Krµ2,

= rµ(l + eµ)− eKrµ(l − eµ),

= rµ[(l + eµ)− eK(l − eµ)].

a1 > 0 if l+eµ
l−eµ > eK.

a2 = Kl2rµ− lrµ2 − 2eKlrµ2 + erµ3 + e2Krµ3,

= Krµ(l2 − 2elµ+ e2µ2)− rµ2(l − eµ),

= Krµ(l − eµ)2 − rµ2(l − eµ),

= (l − eµ)rµ[K(l − eµ)− µ],

= (l − eµ)r
µ

K
[(l − eµ)− µ

K
].

Thus, a2 > 0 if l − eµ > µ
K

, that is, µ
l−eµ < K, impala population is less than

their carrying capacity. The following result can be stated.

Lemma 3.5 Ē2 is locally asymptotically stable when it exists if a1 > 0, a2 > 0,

that is, l+eµ
l−eµ > eK and l − eµ > µ

K
.

Furthermore,

Tr(J(U2, V2)) = −µ− rµ

K(l − eµ)
+

elrµ(Kl − µ− eKµ)

K(l − eµ)3(1 + eµ
l−eµ)2

+
lµ

(l − eµ)(1 + eµ
l−eµ)

− lr(Kl − µ− eKµ)

K(l − eµ)2(1 + eµ
l−eµ)

+ r(1 +
µ

K(l − eµ)
),

Det(J(U2, V2)) = −rµ− 2rµ2

K(l − eµ)
−
el2rµ2(l − eµ− µ

K
)

(l − eµ)3(1 + eµ
l−eµ)2

+
lrµ(l − eµ− 3µ

K
)

(l − eµ)2(1 + eµ
l−eµ)

+
lrµ

(l − eµ)(1 + eµ
l−eµ)

.

The type of interior equilibrium point depends on the sign of

∆(Ū2, V̄2) = Tr2(J(U2, V2))− 4Det(J(U2, V2)),

=
1

K2l2(l − eµ)2

[
rµ(rµ(l + eµ)2 −K2(l − eµ)2(4l2 − 4elµ− e2rµ)

+2Kµ(l − eµ)[2l2 − e2rµ− el(r + 2µ)])
]
.
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If ∆(Ū2, V̄2) ≥ 0 then the interior equilibrium is a stable node, otherwise it is a

spiral point. The existence condition of Ē2 renders l > eµ.

Let δ(x) = d2x
2 + d1x+ d0 where d2 = −K2(4l2 − 4elµ− e2rµ), d1 = 2Kµ(2l2 −

e2rµ− el(r + 2µ)) and d0 = rµ(l + eµ)2. d0 > 0. The discriminant

d2
1−4d0d2 = 4K2rµ(l+eµ)2(4l2−4elµ−e2rµ)+4K2µ2(2l2−e2rµ−el(r+2µ))2 > 0

if 4l(l − eµ) > e2rµ.

Now, the global stability of Ē2 is discussed whenever it exists, using the Bendixson-

Dulac criterion, Theorem A.1, [124] and the Poincaré-Bendixson Theorem, The-

orem A.2, [125].

Proposition 3.5 Ē2 is globally asymptotically stable if 2µ > lK.

Proof. Consider the system (3.26). Let Φ(U, V ) = 1
UV

,

h1(U, V ) = Ur
(

1− U
K

)
− aUV

1+eU
, h2(U, V ) = lUV

1+eU
− µV . Now Φ(U, V ) > 0 in the

interior of the U − V plane. Then

∆(U, V ) =
∂(Φh1)

∂U
+
∂(Φh2)

∂V
,

=
∂

∂U

[ r
V

(
1− U

K

)
− a

1 + eU

]
+

∂

∂V

[ l

1 + eU
− µ

U

]
,

= − r

KV
+

ae

(1 + eU)2
,

=
aeKV − r(1 + eU)2

KV (1 + eU)2
.

Now ∆ is not identically zero in the positive quadrant of the U − V plane.

∆(U, V ) < 0 and does not change sign if

aeKV −r(1+eU)2 = aeKV −r−2reU−e2U2 = −r−(2rU−aKV )e−re2U2 < 0
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that is, if 2rU − aKV > 0. This means that at E2, we have

2rU2 − aKV2 =
2rµ

l − eµ
− rl(Kl − µ− eKµ)

(l − eµ)2
,

=
2rµ(l − eµ)− rl(Kl − µ− eKµ)

(l − eµ)2
,

=
2rµ(l − eµ)− rlK(l − eµ) + µrl

(l − eµ)2
,

=
r(l − eµ)(2µ− lK) + µrl

(l − eµ)2
> 0,

if and only if 2µ > lK and l > eµ. µ
l

refers to the ratio of mortality of chee-

tah to cheetah conversion efficiency of impala biomass to cheetah biomass. The

carrying capacity of impala population must be less than the output/input ratio

of cheetah biomass. Furthermore, the ratio of input/output of cheetah biomass

must outweigh the time the cheetah spends consuming impala. Thus, subsystem

(3.26) does not have a limit cycle in Ω̄. Since Ē2 is locally asymptotically stable,

the Poincaré-Bendixson Theorem and Proposition 3.3 imply that the equilibrium

point Ē2 is globally asymptotically stable in the region Ω̄. 2

3.5 Numerical analysis

It was estimated that 1684 lions lived in the KNP in 2005 and 2006 [24]. The lion

population in KNP appears to be stable at around 1700 since 2005. The KNP has

a current lion population of approximately 1700. Keet et al. [135] estimated that

about 500 of the 1700 lions reside in areas with buffalo whose BTB prevalence is

high [88]. The initial population densities for each species are chosen to be positive at

U(0) = 133, 000 [24], V (0) = 412 [23], N(0) = 1700 [24], W (0) = 1200 and B(0) = 500.

Some parameter values which were not readily available were computed on the basis

of the steady states and stability conditions, and these include impala conversion rates

into cheetah and lion biomass.
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3.5.1 Parameter estimates

The literature on the dynamics of the three species in KNP as well as studies from

other parks with similar environmental conditions (e.g. the SNP) provide the following

information:

(i) Carrying capacity for impala

The impala population was estimated to lie between 132, 300 and 176, 400 be-

tween the years 2010 and 2011, [24]. In this study,the carrying capacity was

estimated to be 200, 000.

(ii) In a study on impala in KNP, Fairall [136] deduced that fecundity lies around

95% in mature females and is drastically low in two-year old females. A sample

of 100 females studied produced 244 lambs during their lifetime. A female was

observed to produce offspring for a period of 10 years up to the age of 12 years.

At an early reproducing age of two years, approximately 45% of the mortality

had taken place. In this study, the growth rate of the impala was estimated to

be 0.01342.

(iii) Mortality rates

The life-expectancy of cheetah in protected areas is estimated at 18 years [137].

In this study the mortality rate of cheetah was estimated as the reciprocal of the

life-expectancy. Hence, µ = 1
18

= 0.0556. Once the juvenile cheetah emerge from

the lair, mortality rate due to predation by lions is estimated at 50% [33]. In

this study the cheetah mortality rate by the lions was estimated as p = 0.5. The

lifespan for lions in KNP is about 15 years [48]. The mortality rate of lions was

estimated as the reciprocal of the life-expectancy. Hence, ν = 1
15

= 0.0667.

(iv) Predation rates

In a study on feeding ecology of cheetah in south eastern KNP, Mills et.al [119]

deduced that impala were the dominant prey killed out of nine prey species se-
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lected. Seven adult cheetahs were monitored in the same region between 1987

and 1990 [138]. Kill rates were observed for different coalitions. It was deduced

that on average a cheetah consumes 1.4 kg of meat per day [138]. Out of the

total weight of an adult impala, only 60% was estimated to be consumable [119].

The body masses of adult male and female impala were estimated as 54.4kg and

40.9kg [120, 139], giving an average weight of 47.65kg. Thus, an average cheetah

eats 17.87 impala per year. The predation rate is considered as the number of

prey killed/consumed per predator per year. In this study, the cheetah predation

rate of the impala was considered as 0.0001787 after re-scaling.

The impala is the third dominant prey species consumed by the lion after zebra

and wildebeest in the KNP [121]. Between 1986 and 1995, the following impala

kill rates per lion per year were observed in the KNP: Pride females 13.0 (1986-

1989), pride females 8.7 (1992-1995), territorial males 1.3 and non-territorial

males 15.1 [140]. In this study it was estimated that the impala kill rate per lion

per year to be the average 9.525. In this study, the lion predation rate of the

impala was considered as 0.00009525 after re-scaling.

(v) Kill retention times

Kill retention times are influenced by how large the group and prey are, densities

of predators, and awareness of the presence of competing predators [119]. The

cheetah kill retention time was 165 min [119]. In this study, we estimate the

cheetah handling time as kill retention time per day, e = 165
1440

= 0.1146 per day,

or e = 165
1440×365

= 0.0003 per year. The lion is expected to have a longer retention

time as it has no competitors. In this study we estimate the kill retention time

to be 220 min, giving f = 0.1528 per day or f = 0.0004 per year.

(vi) Conversion rates

The cheetah and lion biomass conversion rates l and m are estimated in relation

with the bounds for existence of equilibrium points E2 and E3. For E2, we have
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l > eµ = 1.668 × 10−5. For E3, we have m > fν = 2.668 × 10−5. In this study,

it was estimated that l = 1.705× 10−5 and m = 2.7× 10−5.

(vii) Disease standard incidence and disease-induced mortality rate

”The initial frequency of diseased animals is defined as the proportion of animals

in the population that contract the disease (with or without clinical symptoms)

and are infected with the pathogen”, [48]. In a study by Keet (unpublished data

1999-2004), 16 animals tested positive and were observed for a period of five

years. Of the 16,7 out of 10 changed stage from infected to diseased, whilst one

lioness succumbed to injuries though still infectious. Thus, 80% of infected lions

became diseased within five years [47], leading to a deduction that 8 % of lions

became diseased within a period of six months. The initial frequency of diseased

animals was estimated to be 0.16 per year.

The mortality from disease at the end of infectious period was 100% . 14 diseased

lions were monitored to check the possibility of recovery. However, all succumbed

to the disease in a period of six months [48]. In this study, it was estimated that

the disease-induced mortality rate to be δ = 0.0767.

The parameters values used in the numerical analysis of model (3.2) and subsystem

(3.26) are given in Table 3.2.
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Table 3.2: Parameter Description and Values

Symbol Description Value Units Reference

r Intrinsic growth rate of the impala 0.01342 yr−2 [136]

K Environmental carrying capacity

of the impala 200 000 yr−1 Estimate

a Capture rate of the impala by

the cheetah 0.0001787 yr−1 [119]

b Capture rate of the impala by

the lion 0.00009525 yr−1 [140]

c Efficiency of infected lion to

capture impala 0.5 Estimate

e Handling time of impala by cheetah 0.0003 yr [119]

f Handling time of impala by lion 0.0004 yr Estimate

l Impala biomass conversion efficiency

into new cheetah 0.00001705 Computed

m Impala biomass conversion efficiency

into new susceptible lion 0.000027 Computed

n Impala biomass conversion efficiency

into new infected lion 0.0000135 Computed

p Mortality rate of cheetah by lion 0.5 yr−1 [33]

β Disease standard incidence 0.16 yr−1 [48]

ν Natural mortality rate of lion 0.0667 yr−1 [48]

µ Natural mortality rate of cheetah 0.0556 yr−1 [137]

δ Disease-induced mortality rate of

infected lion 0.0767 yr−1 [48]

Keeping the rest of the parameters at their fixed levels, some predation and epidemi-

ological parameters are varied, namely p, β, δ, a and b to try to understand their

influence on the dynamics of system (3.2). The re-scaled species population in relation

to its initial value, U(t)/U(0) for instance, was plotted as a function of time.
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3.5.2 The effect of lion removal on the system dynamics

In the absence of the lion, impala and cheetah populations and phase diagrams are

shown in Figure 3.1. It can be observed that the positive equilibrium Ē2 is reached

as t tends to infinity. The impala population rises rapidly to reach a plateau below

the carrying capacity, before it falls down and settle to equilibrium value above the

initial level. The cheetah population rises to more than double the initial value. The

trajectories indicate the global stability of the equilibrium point Ē2.

Figure 3.1: Global stability of the system (3.26) around the equilibrium point Ē2, (a)

scaled population, (b) trajectory tending to Ē2.

3.5.3 The effect of cheetah mortality by lion on cheetah pop-

ulation density

In this section the effect on the system of changes in the cheetah mortality by lion, p, is

described. As the mortality rate increases in the wide range 0 ≤ p ≤ 0.5, the cheetah

population becomes depressed and eventually goes extinct. For instance for p = 0,

that is, in the absence of lion kills, the cheetah population is stable. The population
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of the impala grows to below carrying capacity. However, the lion population becomes

extinct in 50 years. Increasing p from 0 to 0.00001, the cheetah population takes a slight

setback and eventually stabilises at about 350. As p takes the value 0.0001, the cheetah

population drops significantly. This shows the effect the cheetah mortality by lion has

on the cheetah population. Thus, the added cheetah mortality by lions has the potential

of eliminating the cheetah species from the system. There is only a quantitative change,

qualitatively, the system’s behaviour remains the same. This behaviour is shown in

Figures 3.2, 3.3 and 3.4. In all the three cases both lion populations decline and tend

to zero. This occurs as a result of high disease incidence rate.

Figure 3.2: (a) Variation of scaled population, (b) Phase space trajectory, when cheetah

mortality by lion, p = 0 and all other parameter values remain unchanged
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Figure 3.3: (a) Variation of scaled population, (b) Phase space trajectory, when cheetah

mortality by lion, p = 0.00001 and all other parameter values remain unchanged

Figure 3.4: (a) Variation of scaled population, (b) Phase space trajectory, when cheetah

mortality by lion, p = 0.0001 and all other parameter values remain unchanged
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3.5.4 Effect of epidemiological parameters on the system dy-

namics

In this section the effects on the system of changes in the disease-related parameters,

β and δ, are described. The system changes are considered in the absence of cheetah

kills by lions, p = 0, as the cheetah population stabilises and does not face extinction.

Disease standard incidence in lions, β

The disease standard incidence, β, is 0.16. At this value, the total lion population

does not survive long enough, but declines continuously and becomes extinct in 50

years. When the magnitude of β is decreased from 0.16 to 0.08 in the absence of

cheetah kills by lions, p = 0 and all other parameter values remaining constant, the

healthy lions survive but the infected lions becomes extinct in 150 years, twice the

initial period. Thus, the disease is eliminated. The cheetah population survives. Fewer

lions are becoming infected and as such the healthy lions survive. This behaviour is

shown in Figures 3.5 and 3.6. As such, a decrease in the disease incidence rate has

a positive effect on the lion population, negative effect on the impala population, and

has insignificant effect on the cheetah population. The effects remain the same when

β is reduced further to β = 0.02.

Disease-induced death rate, δ

The disease-induced mortality rate, δ, is 0.0767. When the value of δ is decreased from

0.0767 to 0.00767 while keeping p = 0 and all other parameters remaining constant, the

susceptible lion population are still eliminated from the system. The diseased lions sur-

vive longer. Since the rate of infection has not changed, more susceptible lions become

diseased and are eliminated from the system. A further decrease in δ to 0.000767 is

accompanied by only a marginal increase in the diseased lion population. However, the

entire lion population still becomes extinct after 100 years. This behaviour is shown

in Figures 3.7 and 3.8.
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Figure 3.5: Effect of disease incidence on (a) variation of scaled population, (b) phase

space trajectory, when β = 0.08 and p = 0 and all other parameter values remain

unchanged

Figure 3.6: Effect of disease incidence on (a) variation of scaled population, (b) phase

space trajectory, when β = 0.02 and p = 0 and all other parameter values remain

unchanged
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Figure 3.7: Effect of disease induced mortality rate on (a) scaled population, (b) phase

space trajectory, when δ = 0.00767 and p = 0 and all other parameter values remain

unchanged

Figure 3.8: Effect of disease induced mortality rate on (a) scaled population, (b) phase

space trajectory, when δ = 0.000767 and p = 0 and all other parameter values remain

unchanged
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3.5.5 The effect of predation on the system dynamics

In this section the effects on the system of changes in the predation rate parameters,

a and b, are described.

Predation of impala by cheetah, a

The predation rate of the impala by the cheetah, a, is 0.0001767. When a is increased

by a factor of 10, the impala species becomes extinct in about 75 years. This may

be attributed to over predation. The cheetah population is also eliminated due to

unavailability of food. An increase in the cheetah predation rate is accompanied by

a decrease in impala population which eventually becomes extinct. The extinction in

impala is largely due to increased predation. However, the cheetah population becomes

extinct in 150 years. When a is further increased to a = 0.01767, the impala species

becomes extinct in a much shorter time due to over predation. This behaviour is shown

in Figures 3.9 and 3.10.

Predation of impala by susceptible lion, b

The predation rate of the impala by the susceptible lion, b, is 0.00009525. An increase

of b by a factor of 10 is accompanied by reduced population levels of both the impala

and the cheetah. The impala population survives at below carrying capacity, and this

may be attributed to over-predation. The reduction in cheetah population may be as

a result of increased competition. When b is further increased to b = 0.009525, both

the impala and cheetah population eventually become extinct. As such, heavier lion

predation has a negative effect on the population levels of both the impala and the

cheetah. The lion populations also rapidly becomes extinct. This behaviour is shown

in Figures 3.11 and 3.12.
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Figure 3.9: Effect of cheetah predation rate on (a) scaled population, (b) phase space

trajectory, when a = 0.001787 and p = 0 and all other parameter values remain un-

changed

Figure 3.10: Effect of cheetah predation rate on (a) scaled population, (b) phase space

trajectory, when a = 0.01787 and p = 0 and all other parameter values remain un-

changed
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Figure 3.11: Effect of lion predation rate on (a) scaled population, (b) phase space

trajectory, when b = 0.0009525 and p = 0 and all other parameter values remain

unchanged

Figure 3.12: Effect of lion predation rate on (a) scaled population, (b) phase space tra-

jectory, when b = 0.009525 and p = 0 and all other parameter values remain unchanged
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3.6 Discussion and conclusion

In relation to cheetah mortality by the lions, p, the cheetah in KNP can only survive

in the absence of lion killings, p = 0, or killings are kept at minimum levels p = 0.0001.

It is recommended that the two species be separated to ensure that the cheetah species

does not become extinct. It appears that the current population level of the cheetah is

too low to ensure growth beyond its initial value even with a situation in which there

is no competition by lions.

The disease standard incidence, β, value is high resulting in that the susceptible lions

become extinct in about 25 years. At the same time the entire lion population becomes

diseased. The prediction is that the entire lion population disappear in 50 years. When

β = 0.08, the lion population persists but is not able to grow beyond its initial value.

Efforts must be targeted on vaccination of all healthy lions to prevent infection, and

treatment of sick lions to reduce further infection. The reduced infection rate is ac-

companied by a decline in impala population growth, as more healthy lions hunt.

The disease-induced mortality rate, δ, for lions is high. All infected lions are dying

early. At δ = 0.00767 the diseased lions stay longer but are infectious, and further

spreading the disease to the healthy lions. The reduced mortality rate leads to an

increase in diseased lion before they die.

Most notable is the conclusion that changes to the epidemiological parameter values

have an insignificant effect on the cheetah population. The increased cheetah predation

rate, a leads to the extinction of the impala population. However, with reduced impala,

the cheetah population becomes constant in the presence of impala, but disappears as

impala become extinct.

A gradual increase in the lion predation rate, b results in reduced growth of impala and
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cheetah populations. A further increase leads to extinction of all species. Increased

predation in the presence of disease does not assist increasing the lion population. As

long as the disease is present and the disease incidence is high, the lion population

remains suppressed and eventually becomes extinct.
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Chapter 4

Impala, cheetah and lion model

with diffusion

4.1 Introduction

In natural systems the distribution of resources is seldom uniform. In reality, natural

systems show some spatial variation even though it may not be apparent [141]. There

is no definite pattern in the distribution of resources in an ecosystem. The densities of

resources tend to be randomly distributed in a habitat [106]. Spatial variation is vital

as it drives the movement, distribution and continued survival of species. It influences

the interaction between interdependent species. Unlike species interact in a way that

destroy spatial homogeneity and lead to heterogeneous distributions [141]. It is vital

to consider population and ecological models when species move from one region to

another. The main examples involve ecological invasions, where one species takes over

control of another species’ habitat (as with grey and red squirrels in the UK [142]), or

modelling the outbreak and transmission of infectious diseases [143].

Modelling spatio-temporal pattern formation in natural systems has gained immense

popularity amongst researchers from biology, ecology and mathematical biology. Tem-
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poral mathematical models on prey-predator systems focus on dynamics of growth and

interactions. In order to understand dynamics in spatial structure, the temporal models

are extended to include spatial processes. The main spatial processes include the move-

ment of species as well as variations in their habitats [20]. As animal species interact

in the form of competition or predation, they disperse through the environment. The

dispersion leads to variations in population densities in their habitats. However, the

rate of dispersion varies with species, and spatial patterns of their movements emerge.

Mathematical ecological modelling of such spatio-temporal dynamics makes use of a

system of coupled nonlinear reaction-diffusion equations [106].

Several models on spatio-temporal dynamics of species interactions have been proposed

[59, 79, 144, 145]. Vanak et al. [59] built multivariate models to examine movement de-

cisions of four large mammalian carnivore species in Karongwe Game Reserve, (KGR).

The carnivores were lion, leopard, cheetah and wild-dog. They found that the strength

of intraguild interactions did not influence species distribution, as spatial movements

and survival techniques of lower guild predators varied with risk of encounter of higher

guild predators, and availability of prey. Lions were found to enjoy free movement

and positioned themselves in areas of high density of their principal prey and also of

lower guild predators. Cheetah were found to overlap with areas occupied by lions but

reduced their risk of encounter by using avoidance techniques and limiting hunting.

They also showed the spatial overlap of regions occupied by each predator and prey

using their respective relative probability of occurrence. Movement decisions were also

shown to be functions of choice of prey. In the proposed deterministic partial differ-

ential equation model, conditions for the emergence of spatial distributions of species

are deduced. The effects of the presence of lions on such distribution is also investigated.

Broekhuis et al. [79] studied the risk of predation or interference competition as main

drivers of the shape of spatial distributions. They classified an animal’s response to

risk as either reactive or predictive. They examined whether a cheetah’s response to
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the presence of lions was reactive or predictive. They built a Generalised Linear Mixed

Model, and used simultaneous Global Positioning System (GPS) data to test the hy-

pothesis that cheetah avoided areas occupied by lions; cheetahs avoided interactions

with lions; cheetahs’ choice of habitats relied on lion habitat; and that cheetahs’ re-

sponse to risk was a function of habitat type. Their results indicated that cheetahs’

response to risk was a function of nature of predator, type of habitat and urgency of

the risk. Cheetahs’ response was found to be reactive rather than predictive.

Liu and Lin [144] studied a predator-prey model with Holling type III response func-

tion under the influence of cross-diffusion and subject to the homogeneous Neumann

boundary conditions. A priori estimates of positive upper and lower bounds of positive

steady states were given. The non-existence and existence results of non-constant pos-

itive steady states were established as the cross-diffusion coefficient was varied. This

implied that cross-diffusion was responsible for the emergence of stationary patterns.

Cross-diffusion was introduced to describe the mutual interferences between individ-

uals. The proposed model is different from the Liu and Lin model in that no cross

diffusion is considered. However, the same stability analysis is performed.

Guin [145] investigated the emergence of spatial patterns through Turing instability in

a reaction-diffusion predator-prey model. The predator-prey interactions were coupled

with intra-specific competition among predators as well as self and cross-diffusion. The

intra-specific competition was found to have a significant effect on the emergence of

spatial patterns around the unique positive equilibrium.

The major objective of this work is to investigate the existence and non-existence

of non-constant positive steady state of the three species prey, predator and super-

predator model. Conditions for diffusion-driven instability of the steady state are

derived. The prey, predator and super-predator species are the impala, cheetah and

lion respectively.
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4.2 The model

Consider a impala-cheetah-lion system in which the cheetah and lion consume impala

according to the Holling type II functional response, that allows movement of differ-

ent species across the niche as they search for food. Let U(X, Y, T ), V (X, Y, T ) and

W (X, Y, T ) denote the densities of the impala, cheetah and lions respectively at time

T and position (X, Y ) in the habitat. To take into account the inhomogeneous dis-

tribution of the predators and the impala in different spatial locations within a fixed

bounded domain Ω in R2, with smooth boundary ∂Ω at any given time, and the natural

tendency of each species to diffuse to a smaller population concentration, the following

associated reaction-diffusion (PDE) system is considered:

∂U

∂T
−D1

( ∂2U

∂X2
+
∂2U

∂Y 2

)
= rU

(
1− U

K

)
− a1UV

1 + b1U
− a2UW

1 + b2U
,

∂V

∂T
−D2

(∂2V

∂X2
+
∂2V

∂Y 2

)
=

e1UV

1 + b1U
− pVW −m1V, (4.1)

∂W

∂T
−D3

(∂2W

∂X2
+
∂2W

∂Y 2

)
=

e2UW

1 + b2U
−m2W,

with the following boundary conditions

∂U

∂n
|∂Ω =

∂V

∂n
|∂Ω =

∂W

∂n
|∂Ω = 0, T > 0,

U(X, Y, 0) = U0(X, Y ) ≥ 0, V (X, Y, 0) = V0(X, Y ) ≥ 0,

W (X, Y, 0) = W0(X, Y ) ≥ 0, (X, Y ) ∈ Ω,

where the positive parameters r,K, a1, a2, b1, b2, e1, e2,m1,m2, p,D1, D2 and D3 are in-

terpreted in Table 4.1. ∂
∂n
|∂Ω is the outward normal of ∂Ω.

To reduce the number of parameters, the system (4.1) is non-dimensionalised using the

transformations u = U
K

, t = rT , v = a1V
r

, w = a2W
r

, x = X
√

r
D1

, y = Y
√

r
D1

, to obtain

the following transformed system
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Table 4.1: Parameters for system (4.1)

Parameter Description

r Intrinsic growth rate of the impala

K Environmental carrying capacity of the impala

a1 Capture rate of the impala by the cheetah

a2 Capture rate of the impala by the lion;

b1 Handling time of impala by cheetah

b2 Handling time of impala by lion

e1 Conversion rate of impala biomass into new cheetah

e2 Conversion rate of impala biomass into new lion

p Mortality rate of cheetah by lion

m1 Natural mortality rate of cheetahs

m2 Natural mortality rate of lion

D1 Diffusion coefficient of impala

D2 Diffusion coefficient of cheetah

D3 Diffusion coefficient of lion

∂u

∂t
− D1

r

( ∂2u

∂X2
+
∂2u

∂Y 2

)
= u(1− u)− a1uV

r(1 + b1Ku)
− a2uW

r(1 + b2Ku)
,

∂V

∂t
− D2

r

(∂2V

∂X2
+
∂2V

∂Y 2

)
=

e1K

r

uV

(1 + b1Ku)
− p

r
V W − m1

r
V,

∂W

∂t
− D3

r

(∂2W

∂X2
+
∂2W

∂Y 2

)
=

e2K

r

uW

(1 + b2Ku)
− m2

r
W.

The above system becomes

∂u

∂t
−
(∂2u

∂x2
+
∂2u

∂y2

)
= u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
,

∂v

∂t
− D2

D1

(∂2v

∂x2
+
∂2v

∂y2

)
=

e1K

r

uv

(1 + β1u)
− p

a2

vw − m1

r
v,

∂w

∂t
− D3

D1

(∂2w

∂x2
+
∂2w

∂y2

)
=

e2K

r

uw

(1 + β2u)
− m2

r
w.
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Finally, the system can be written as

∂u

∂t
−
(∂2u

∂x2
+
∂2u

∂y2

)
= u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
,

∂v

∂t
− d2

(∂2v

∂x2
+
∂2v

∂y2

)
=

µ1uv

1 + β1u
− νvw − δ1v, (4.2)

∂w

∂t
− d3

(∂2w

∂x2
+
∂2w

∂y2

)
=

µ2uw

1 + β2u
− δ2w,

with boundary conditions

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω =

∂w

∂n
|∂Ω = 0, t > 0,

u(x, y, 0) = u0(x, y) ≥ 0, v(x, y, 0) = v0(x, y) ≥ 0,

w(x, y, 0) = w0(x, y) ≥ 0, (x, y) ∈ Ω,

where β1 = Kb1, β2 = Kb2, δ1 = m1

r
, δ2 = m2

r
, ν = p

a2
, µ1 = e1K

r
, µ2 = e2K

r
, d2 = D2

D1
and

d3 = D3

D1
. The homogeneous Neumann boundary condition means that system (4.2) is

isolated and no population can move across the boundary of Ω.

It is necessary to investigate the temporal dynamics of the system before studying

the spatio-temporal system (4.2). In the absence of population gradient the spatio-

temporal system (4.2) is reduced to a system which is written as follows

du

dt
= u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
= G1(u, v, w),

dv

dt
=

µ1uv

1 + β1u
− νvw − δ1v = G2(u, v, w), (4.3)

dw

dt
=

µ2uw

1 + β2u
− δ2w = G3(u, v, w),

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0, w(0) = w0 ≥ 0.

Denoting u = (u, v, w)T and G(u) = (G1(u), G2(u), G3(u)), the system (4.3) can be

written as: 
du

dt
= G(u),

u(0) = u0 ≥ 0.
(4.4)

86



4.2.1 Boundedness

Since all the parameters of system (4.3) are non-negative, the right-hand side is a

smooth function of the variables (u, v, w) in the positive octant Γ̄ = {(u, v, w) : u >

0, v > 0, w > 0}. Thus local existence and uniqueness properties hold for its solution.

The following claim is made.

Proposition 4.1 Γ̄ is an invariant set.

Proof. The system (4.3) is homogeneous, so that the coordinate planes u = 0, v = 0,

w = 0 all solve it. By the existence and uniqueness theorem, any trajectory starting

in the first octant remains there and will not cross the coordinate planes. Thus, Γ̄ is

an invariant set. 2

Proposition 4.2 All solutions of (4.3) starting in Γ̄ are uniformly bounded if µ1 < 1

and µ2 < 1.

Proof. Define the function

ψ = u+ v + w. (4.5)

Differentiating ψ with respect to time along the solutions of (4.3) gives

dψ

dt
=
du

dt
+
dv

dt
+
dw

dt

or

dψ

dt
= u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
+

µ1uv

1 + β1u
− νvw − δ1v +

µ2uw

1 + β2u
− δ2w,

= u(1− u)− (1− µ1)uv

(1 + β1u)
− (1− µ2)uw

1 + β2u
− νvw − δ1v − δ2w,

≤ u(1− u)− δ1v − δ2w,

= u(1− u) + φu− φu− δ1v + vφ− vφ− δ2w + wφ− wφ,

= u[(1 + φ)− u]− (δ1 − φ)v − (δ2 − φ)w − φψ.
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Thus,

dψ

dt
+ φψ ≤ −[u2 − u(1 + φ)]− (δ1 − φ)v − (δ2 − φ)w,

= −
(
u− (1 + φ)

2

)2
+

(1 + φ)2

4
− (δ1 − φ)v − (δ2 − φ)w,

≤ (1 + φ)2

4
− (δ1 − φ)v − (δ2 − φ)w.

Choosing φ to be such that φ ≤ min{δ1, δ2} the right-hand side will be bounded. Let

ϕ be such that
dψ

dt
+ φψ ≤ (1 + φ)2

4
= ϕ. (4.6)

Solving this we obtain

ψ(t) ≤ Ce−φt +
ϕ

φ

and

ψ(t) ≤ ψ(0)e−φt +
ϕ

φ
(1− e−φt) ≤ max(ψ(0),

ψ

φ
).

Moreover, lim supψ(t) ≤ ϕ
φ

as t→∞ independent of initial conditions. 2

4.2.2 Steady states

The system (4.3) has five nonnegative equilibria

(i) E0(u = 0, v = 0, w = 0) (trivial equilibrium): E0(u0, v0, w0) = E0(0, 0, 0)

(ii) E1(u 6= 0, v = 0, w = 0) (axial equilibrium): From (4.3) the system reduces to

1− u = 0

with the result E1(u1, v1, w1) = E1(1, 0, 0).

(iii) E2(u 6= 0, v 6= 0, w = 0) (boundary equilibrium): From (4.3) the system reduces

to

1− u− v

(1 + β1u)
= 0

µ1u

1 + β1u
− δ1 = 0
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with the result E2(u2, v2, w2) = E2

(
δ1

µ1−β1δ1
, µ1(µ1−β1δ1−δ1)

(µ1−β1δ1)2
, 0
)

. The boundary

equilibrium E2 exists if µ1 > δ1(β1 + 1).

(iv) E3(u 6= 0, v = 0, w 6= 0) (boundary equilibrium): From (4.3)

1− u− w

1 + β2u
= 0

µ2u

1 + β2u
− δ2 = 0

with the result E3(u3, v3, w3) = E3

(
δ2

µ2−β2δ2
, 0, µ2(µ2−β2δ2−δ2)

(µ2−β2δ2)2

)
. The boundary

equilibrium E3 exists if µ2 > δ2(β2 + 1).

(v) The positive (interior) equilibrium point E4(u 6= 0, v 6= 0, w 6= 0) or constant

positive solution exists if there is a positive solution to the following set of non-

linear equations from the system (4.3):

1− u− v

(1 + β1u)
− w

1 + β2u
= 0 (4.7a)

µ1u

1 + β1u
− νw − δ1 = 0 (4.7b)

µ2u

1 + β2u
− δ2 = 0 (4.7c)

whose solution yields the point E4(u4, v4, w4) where
u4 =

δ2

µ2 − β2δ2

,

v4 = 1− β1u
2
4 + u4 + β1u4 −

w4

1 + u4

− u4w4

1 + u4

,

w4 =
−β1δ1δ2 + β2δ1δ2 + δ2µ1 − δ1µ2

ν(β1δ2 − β2δ2 + µ2)
=
u4(µ1 − β1δ1)− δ1

ν(β1u4 + 1)
,

(4.8)

The constant positive solution E4 exists if and only if

µ2 > β2δ2,

µ2 + β1δ2 > β2δ2,

δ2µ1 > δ1(µ2 + β1δ2 − β2δ2),

1 > β1u
2
4 +

w4

1 + u4

+
u4w4

1 + u4

,

(4.9)
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that is, 

µ2

δ2
> β2,

µ2

δ2
> β2 − β1,

µ1

δ1
− β1 >

µ2

δ2
− β2,

1 > β1u
2
4 +

w4

1 + u4

+
u4w4

1 + u4

.

(4.10)

Firstly, the ratio of input/output of lion biomass must outweigh the time the

lion spends consuming impala. Secondly, the ratio of input/output of cheetah

biomass must outweigh the difference in time the cheetah and lion spend con-

suming impala. Thirdly, the ratio of input/output of cheetah biomass less the

time the cheetah spends consuming impala exceeds that of the lion.

Furthermore, the existence of the positive solution was established using the

approach of Dubey and Upadhyay [99]. Two functions f(u, v) and g(u, v) which

intersect at the equilibrium point E4(u4, v4, w4) are deduced. Equations (4.7a)

and (4.7b) can be rewritten as

w =
(1− u− v + uβ1 + u2β1)(1 + uβ2)

1 + uβ1

, (4.11)

w =
uµ1 − uβ1δ1 − δ1

ν(1 + uβ1)
. (4.12)

From (4.7a) and (4.7c),

w =
u(1− u− v + uβ1 + u2β1)µ2

(1 + uβ1)δ2

. (4.13)

From (4.11) and (4.12),

f(u, v) =
(1− u− v + uβ1 + u2β1)(1 + uβ2)

1 + uβ1

− uµ1 − uβ1δ1 − δ1

ν(1 + uβ1)
= 0. (4.14)

From (4.11) and (4.13) define

g(u, v) =
(1− u− v + uβ1 + u2β1)(1 + uβ2)

1 + uβ1

− u(1− u− v + uβ1 + u2β1)µ2

(1 + uβ1)δ2

= 0.

(4.15)

Two functions of u and v have been obtained as a result of reducing the system

of equations. The existence of the equilibrium point is based on the existence of
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an intersection point (u4, v4) of the functions f(u, v) and g(u, v) in the positive

quadrant. The value of z4 can be deduced once the existence of (u4, v4) has been

established. From (4.14), as u→ 0, v → vf given by

vf =
ν + δ1

ν
. (4.16)

Note that vf is positive and vf > 1. In a similar way, from (4.15) as u → 0,

v → vg given by

vg = 1 (4.17)

The functions vf and vg are the points where the functions f(u, v) and g(u, v)

cross the v-axis of the uv-plane respectively. From equation (4.14),

dv

du
= −∂f

∂u
/
∂f

∂v

where

∂f

∂u
=

(1− u− v + uβ1 + u2β1)β2

1 + uβ1

− (1− β1 + 2uβ1)(1 + uβ2)

1 + uβ1

−β1(1− u− v + uβ1 + u2β1)(1 + uβ2)

(1 + uβ1)2
− µ1 − β1δ1

ν(1 + uβ1)
+
β1(uµ1 − uβ1δ1 − δ1)

ν(1 + uβ1)2
,

=
[(1 + uβ1)(u− 1) + v](1 + uβ2)[β1 − (1 + uβ1)(1 + β2 + β1(2u− 1))]ν − µ1

ν(1 + uβ1)2
,

and
∂f

∂v
= −1 + β2u

1 + β1u
< 0.

Now, dv
du

< 0 if ∂f
∂u

< 0 which are obtained by setting 2u > 1 and β1 < (1 +

uβ1)(1 + β2 + β1(2u− 1)). From equation (4.15), we can write

dv

du
= −∂g

∂u
/
∂g

∂v

where
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∂g

∂u
=

(1− u− v + uβ1 + u2β1)β2

1 + uβ1

− (1− β1 + 2uβ1)(1 + uβ2)

1 + uβ1

+
β1(1− u− v + uβ1 + u2β1)(1 + uβ2)

(1 + uβ1)2
+
u(1− β1 + 2uβ1)µ2

(1 + uβ1)δ2

−uβ1(1− u− v + uβ1 + u2β1)µ2

(1 + uβ1)2δ2

− (1− u− v + uβ1 + u2β1)µ2

(1 + uβ1)δ2

,

=
[(1 + uβ1)(u− 1) + v][(β1 − β2)δ2 + µ2]

(1 + uβ1)2δ2

+
(1 + uβ1)(1 + β1(2u− 1))[uµ2 − δ2(1 + uβ2)]

(1 + uβ1)2δ2

and
∂g

∂v
=
µ2u− δ2(1 + β2u)

δ2(1 + β2u)
.

Now, dv
du

< 0 if (a) ∂g
∂u

> 0 and ∂g
∂v

< 0 which are obtained by setting u > 1,

β1 > β2 and uµ2 > δ2(1 + uβ2); (b) ∂g
∂u

< 0 and ∂g
∂v
> 0 which are obtained by

setting u < 1 and uµ2 < δ2(1 + uβ2). If follows that f(u, v) and g(u, v) intersect

at a positive point (u, v) since for f(u, v), dv
du
< 0, vf > vg and for g(u, v), dv

du
> 0.

4.2.3 Analysis of steady states

The dynamical behaviour of the system can be studied by computing the Jacobian

corresponding to each equilibrium point. The Jacobian is given by

J =


j11 − u

1+uβ1
− u

1+uβ2

vµ1

1+uβ1
− uvµ1β1

(1+uβ1)2
µ1u

1+uβ1
− νw − δ1 −νv

wµ2

1+uβ2
− uwβ2µ2

(1+uβ2)2
0 µ2u

1+uβ2
− δ2

 ,
where j11 = 1− 2u+ uwβ2

(1+u)2
− w

1+uβ2
+ uvβ1

(1+uβ1)2
− v

1+uβ1
.

Denote by Jk = J the Jacobian evaluated at Ek and similarly for j
[k]
ij = jij, i = 1, 2, 3,

j = 1, 2, 3, k = 1, 2, 3, 4. The Jacobian matrix is evaluated at each equilibrium point

and then used to determine the stability of that point.
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Local stability of E1

For the axial equilibrium point E1(1, 0, 0), the Jacobian is given by

J1 =


−1 − 1

1+β1
− 1

1+β2

0 µ1

1+β1
− δ1 0

0 0 µ2

1+β2
− δ2

 .
The corresponding eigenvalues are −1, −δ1 + µ1

1+β1
and −δ2 + µ2

1+β2
. Thus, the axial

equilibrium point is unstable, a saddle point, since −δ1+ µ1

1+β1
> 0 (or µ1−δ1−δ1β1 > 0,

condition for existence of E2) and −δ2 + µ2

1+β2
> 0 (or µ2− δ2− δ2β2 > 0, condition for

existence of E3). Thus, whenever E1 is asymptotically stable, the equilibrium points

E2 and E3 do not exist.

Local and global asymptotic stability of E2

For the boundary equilibrium E2(u2, v2, 0) the Jacobian is given by

J2 =


1− 2u2 − v2

(1+u2β1)2
− u2

1+u2β1
− u2

1+u2β2

v2µ1

(1+u2β1)2
µ1u2

1+u2β1
0− δ1 −νv2

0 0 µ2u2

1+u2β2
− δ2

 ,
where u2 = δ1

µ1−β1δ1
and v2 = µ1(µ1−β1δ1−δ1)

(β1δ1−µ1)2
. The corresponding eigenvalues are λ1 =

−δ2 + µ2u2

1+u2
= −δ2 − µ2δ1

(β1δ1−µ1)(1− β2δ1
β1δ1−µ1

)
, and the roots of

a0λ
2 + a1λ+ a2 = 0

where a0 = β1δ1µ1−µ2
1, a1 = −β1δ

2
1−β2

1δ
2
1−δ1µ1+β1δ1µ1 and a2 = −β1δ

3
1−β2

1δ
3
1+δ2

1µ1+

2β1δ
2
1µ1 − δ1µ

2
1. Thus λ2 =

−a1−
√
a2
1−4a0a2

2a0
and λ3 =

−a1+
√
a2
1−4a0a2

2a0
. The conditions so

that the system has a stable equilibrium point E2 are deduced. Since a0 < 0, stability

is ensured by requiring that a1 < 0, and δ2 >
µ2δ1

(β1δ1−µ1)(1− β2δ1
β1δ1−µ1

)
. Furthermore, the

equilibrium point E2 is a stable node if a2
1−4a0a2 > 0 and a stable spiral a2

1−4a0a2 < 0.

Now the global stability of E2 is established using the Bendixson-Dulac criterion, The-

orem A.1, [124] and the Poincaré-Bendixson Theorem, Theorem A.2, [125].
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Proposition 4.3 E2 is globally asymptotically stable if 2δ1 > µ1.

Proof. Consider subsystem (i) of system (4.3)

du

dt
= u(1− u)− uv

(1 + β1u)
,

dv

dt
=

µ1uv

1 + β1u
− δ1v. (4.18)

Let Φ(u, v) = 1
uv

, h1(u, v) = u(1− u)− uv
1+β1u

, h2(u, v) = µ1uv
1+β1u

− δ1v. Now Φ(u, v) > 0

in the interior of the u− v plane. Then

∆(u, v) =
∂(Φh1)

∂u
+
∂(Φh2)

∂v
,

=
∂

∂u

(1− u
v
− 1

1 + β1u

)
+

∂

∂v

( 1

1 + β1u
− δ1

u

)
,

= −1

v
+

β1

(1 + β1u)2
,

=
β1v − (1 + β1u)2

v(1 + β1u)2
.

Now ∆ is not identically zero in the positive quadrant of the u − v plane. A claim is

made that ∆(u, v) < 0 and does not change sign if

β1v − (1 + β1u)2 = β1v − 1− 2β1u− u2 = −1− (2u− v)β1 − u2 < 0

that is, if 2u− v > 0. This means

2u− v =
2δ1

µ1 − β1δ1

− µ1(µ1 − β1δ1 − δ1)

(µ1 − β1δ1)2
,

=
2δ1(µ1 − β1δ1)− µ1(µ1 − β1δ1) + µ1δ1

(µ1 − β1δ1)2
,

=
(µ1 − β1δ1)(2δ1 − µ1) + µ1δ1

(µ1 − β1δ1)2

> 0,

if and only if 2δ1 > µ1. Thus, subsystem (4.18) does not have a limit cycle in Γ̄. Since

E2 is locally asymptotically stable, the Poincaré-Bendixson Theorem, Theorem A.2,

[125] and Proposition 4.2 imply that the equilibrium point E2 is globally asymptotically

stable in the region Γ̄. 2
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Local and global asymptotic stability of E3

For the boundary equilibrium E3(u3, 0, w3) the Jacobian is given by

J3 =


1− 2u3 − w3

(1+u3β2)2
− u3

1+u3β1
− u3

1+u3β2

0 µ1u3

1+u3β1
− νw3 − δ1 0

w3µ2

(1+u3β2)2
0 µ2u3

1+u3β2
− δ2

 ,
where u3 = δ2

µ2−β2δ2
and w3 = µ2(µ2−β2δ2−δ2)

(β2δ2−µ2)2
. The corresponding eigenvalues are λ1 =

−δ1 + µ1u3

1+u3
− νw3 = −δ1 − µ1δ2

(β2δ2−µ2)(1− β2δ2
β2δ2−µ2

)
− νµ2(µ2−β2δ2−δ2)

(β2δ2−µ2)2
, and the roots of

b0λ
2 + b1λ+ b2 = 0,

where b0 = β2δ2µ2 − µ2
2, b1 = −β2δ

2
2 − β2

2δ
2
2 − δ2µ2 + β2δ2µ2 and b2 = −β2δ

3
2 − β2

2δ
3
2 +

δ2
2µ2 + 2β2δ

2
2µ2− δ2µ

2
2. Thus λ2 =

−b1−
√
b21−4b0b2

2b0
and λ3 =

−b1+
√
b21−4b0b2

2b0
. Conditions so

that the system has a stable equilibrium point E3 are deduced. Since b0 < 0, stability

is ensured by requiring that b1 > 0 and δ1 + νw3 >
µ1u3

1+u3
. Further, the equilibrium

point E3 is a stable node if b2
1 − 4b0b2 > 0 and a stable spiral b2

1 − 4b0b2 < 0.

As with E2 the global stability of E3 is established using the Bendixson-Dulac criterion,

Theorem A.1, [124] and the Poincaré-Bendixson Theorem, Theorem A.2, [125].

Proposition 4.4 E3 is globally asymptotically stable if 2δ2 > µ2.

Proof. Consider subsystem (ii) of system (4.3)

du

dt
= u(1− u)− uw

(1 + β2u)
,

dw

dt
=

µ2uw

1 + β2u
− δ2w. (4.19)

Let Ψ(u,w) = 1
vw

, g1(u,w) = u(1−u)− uw
(1+β2u)

, g2(u,w) = µ2uw
1+β2u

−δ2w. Now Ψ(u,w) >

0 in the interior of the u− w plane. Then
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∆(u,w) =
∂(Ψg1)

∂v
+
∂(Ψg2)

∂w
,

=
∂

∂u

(1− u
w
− 1

1 + β2u

)
+

∂

∂w

( 1

1 + β2u
− δ2

u

)
,

= − 1

w
+

β2

(1 + β2u)2
,

=
β2w − (1 + β2u)2

w(1 + β2u)2
.

Now ∆ is not identically zero in the positive quadrant of the u− w plane. A claim is

made that ∆(u,w) < 0 and does not change sign if

β2w − (1 + β2u)2 = β2w − 1− 2β2u− u2 = −1− (2u− w)β2 − u2 < 0,

that is, if 2u− w > 0. This means

2u− w =
2δ2

µ2 − β2δ2

− µ2(µ2 − β2δ2 − δ2)

(µ2 − β2δ2)2
,

=
2δ2(µ2 − β2δ2)− µ2(µ2 − β2δ2) + µ2δ2

(µ2 − β2δ2)2
,

=
(µ2 − β2δ2)(2δ2 − µ2) + µ2δ2

(µ2 − β2δ2)2
,

> 0,

if and only if 2δ2 > µ2. Thus, subsystem (4.19) does not have a limit cycle in Γ̄. Since

E3 is locally asymptotically stable, the Poincaré-Bendixson Theorem, Theorem A.2,

[125] and Proposition 4.2 imply that the equilibrium point E3 is globally asymptotically

stable in the region Γ̄. 2

Local and global asymptotic stability of interior equilibrium E4

The eigenvalues for the positive equilibrium E4(u4, v4, w4) are not available in explicit

form. The Jacobian matrix is given by

J4 =


1− 2u4 − v4

(1+u4β1)2
− w4

(1+β2u4)2
− u4

1+u4β1
− u4

1+u4β2

µ1v4
(1+β1u4)2

µ1u4

1+β1u4
− νw4 − δ1 −νv4

w4µ2

(1+u4β2)2
0 µ2u4

1+u4β2
− δ2

 , (4.20)
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where

j
[4]
11 = 1 − 2u4 +

u4v4β1

(1 + u4β1)2
− v4

1 + u4β1

+
u4w4β2

(1 + β2u4)2
− w4

1 + u4β2

, j
[4]
12 = − u4

1 + u4β1

,

j
[4]
13 = − u4

1 + u4β2

, j
[4]
21 =

v4µ1

1 + β1u4

− u4µ1β1v4

(1 + β1u4)2
, j

[4]
22 =

µ1u4

1 + β1u4

−νw4−δ1, j
[4]
23 = −νv4,

j
[4]
31 =

w4µ2

1 + β2u4

− u4β2w4µ2

(1 + u4β2)2
and j

[4]
33 =

µ2u4

1 + u4β2

− δ2.

We note that j
[4]
12 < 0, j

[4]
13 < 0, j

[4]
21 > 0, j

[4]
23 < 0, j

[4]
31 > 0.

The characteristic equation of the Jacobian matrix about E4 is given by

λ3 + A1λ
2 + A2λ+ A3 = 0,

where
A1 = −(j

[4]
11 + j

[4]
22 + j

[4]
33 ) = −Tr(J4),

A2 = j
[4]
11 j

[4]
22 + j

[4]
11 j

[4]
33 + j

[4]
22 j

[4]
33 − j

[4]
12 j

[4]
21 − j

[4]
13 j

[4]
31 ,

A3 = −j[4]
12 j

[4]
23 j

[4]
31 + j

[4]
13 j

[4]
22 j

[4]
31 + j

[4]
12 j

[4]
21 j

[4]
33 − j

[4]
11 j

[4]
22 j

[4]
33 = −detJ4.

(4.21)

According to Routh-Hurwitz criterion, the necessary and sufficient conditions for local

stability of equilibrium point E4 are

A1 > 0, A2 > 0, A3 > 0 and A1A2 − A3 > 0. (4.22)

Now, j
[4]
12 < 0, j

[4]
13 < 0, j

[4]
21 > 0, j

[4]
23 < 0 and j

[4]
31 > 0. Thus, A1 > 0 and A2 > 0 if

j
[4]
11 < 0, j

[4]
22 < 0 and j

[4]
33 < 0. A3 > 0 if j

[4]
13 j

[4]
22 j

[4]
31 + j

[4]
12 j

[4]
21 j

[4]
33 − j

[4]
11 j

[4]
22 j

[4]
33 > j

[4]
12 j

[4]
23 j

[4]
31 .

The last condition of (4.22) will be satisfied provided that

j11j12j21 − j2
11j22 + j12j21j22 − j11j

2
22 + j11j13j31 − j2

11j33 − 4j11j22j33 − j2
22j33 + j13j31j33

−j11j
2
33 − j22j

2
33

> 2j13j22j31 − j21j23j31 + 2j12j21j33.

Thus, the feasible equilibrium point E4 is locally asymptotically stable if the conditions

(4.22) are satisfied.

To show the local asymptotic stability of the equilibrium point E4(u4, v4, w4), the

method of first approximation [89] is used.
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Proposition 4.5 The system (4.3) around the interior equilibrium E4 is asymptoti-

cally stable if

(a) 1 + u4v4β1

(1+u4β1)2
− v4

1+u4β1
+ u4w4β2

(1+u4β2)2
+ µ1u4

1+β1u4
< 2u4 + 2w4ν + δ1,

(b) 1 + u4v4β1

(1+u4β1)2
+ u4w4β2

(1+u4β2)2
+ µ2u4

1+u4β2
< 2u4 + 2v4

1+u4β1
+ w4

1+u4β2
+ δ2,

(c) u4µ1

1+u4β1
+ u4

v4
(− u4v4β1µ1

(1+u4β1)2
+ v4µ1

1+u4β1
) + u4µ2

1+u4β2
+ u4

w4
( u4w4β2µ2

(1+u4β2)2
+ w4µ2

1+u4β2
)

< w4φ+ δ1 + δ2,

(d) j
[4]
11 < 0, j

[4]
22 < 0 and j

[4]
33 < 0.

Proof. The Method of First Approximation [89] is used. In this method it is shown

that (a) the second compound matrix J [2](E4) of J4 is stable and (b) detJ4 < 0.

The second compound matrix J [2](E4) = (cij)3×3 of J4 is given by

J [2](E4) =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 =


j

[4]
11 + j

[4]
22 j

[4]
23 −j[4]

13

j
[4]
32 j

[4]
11 + j

[4]
33 j

[4]
12

−j[4]
31 j

[4]
21 j

[4]
22 + j

[4]
33

 .
Now for E4(u4, v4, w4) and the diagonal matrix D = diag(u4, v4, w4), the matrix J [2](E4)

is similar to DJ [2](E4)D−1 = (aij)3×3, where a11 = c11, a12 = c12
w4

v4
, a13 = c13

w4

u4
,

a21 = c21
v4
w4

, a22 = c22, a23 = c23
v4
u4

, a31 = c31
u4

w4
, a32 = c32

u4

v4
, a33 = c33. The matrix

J [2](E4) is stable if and only if DJ [2](E4)D−1 is stable. Since the diagonal elements

of the matrix DJ [2](E4)D−1 are negative, the matrix will be stable if it is diagonally

dominant in rows. Set µ∗ = max{g1, g2, g3}, where

g1 = a11 + a12 + a13 = 1− 2u4 − 2w4ν +
u4v4β1

(1 + u4β1)2
− v4

1 + u4β1

+
u4w4β2

(1 + u4β2)2

+
µ1u4

1 + β1u4

− δ1,

g2 = a21 + a22 + a23 = 1− 2u4 +
u4v4β1

(1 + u4β1)2
− 2v4

1 + u4β1

+
u4w4β2

(1 + u4β2)2
− w4

1 + u4β2

+
µ2u4

1 + u4β2

− δ2,

g3 = a31 + a32 + a33 = −w4φ− δ1 − δ2 +
u4µ1

1 + u4β1

+
u4

v4

(− u4v4β1µ1

(1 + u4β1)2
+

v4µ1

1 + u4β1

)

+
u4µ2

1 + u4β2

+
u4

w4

(
u4w4β2µ2

(1 + u4β2)2
+

w4µ2

1 + u4β2

).
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Now when the above conditions hold true then µ∗ < 0, which implies the diagonal

dominance and thus verifies the first condition. Again, since j
[4]
12 < 0, j

[4]
13 < 0, j

[4]
21 > 0,

j
[4]
23 < 0, j

[4]
31 > 0, the determinant of J4 is given by

|J4| = j
[4]
11 j

[4]
22 j

[4]
33 + j

[4]
12 j

[4]
23 j

[4]
31 − j

[4]
12 j

[4]
21 j

[4]
33 − j

[4]
13 j

[4]
22 j

[4]
31

=
(
− u4w4µ2β2

(1 + u4β2)2
+

w4µ2

1 + u4β2

)( u4v4ν

1 + u4β1

− u4w4ν

1 + u4β2

+
u2

4µ1

(1 + u4β1)(1 + u4β2)

− u4δ1

1 + u4β2

)
+ (

µ2u4β2

1 + u4

− δ2)
((

1− 2u4 +
u4v4β1

(1 + u4β1)2
− v4

1 + u4β1

+
u4w4β2

(1 + u4β2)2
− w4

1 + u4β2

)
(

µ1u4

1 + β1u4

− νw4 − δ1)

+
u4(− u4v4β1µ1

(1+u4β1)2
+ v4µ1

1+u4β1
)

1 + u4β1

)
< 0,

if j
[4]
11 < 0, j

[4]
22 < 0 and j

[4]
33 < 0. 2

Next, the global stability of E4 basing on Theorem A.3 and Lemma A.1 that are

essential in finding a candidate Lyapunov function.

Theorem 4.1 The interior equilibrium is globally asymptotically stable if β1 > 1 and

M = v∗

(1+β1u)(1+β1u∗)
+ w∗

(1+β2u)(1+β2u∗)
< 1.

Proof. A candidate Lyapunov function that has been used by Dubey and Upadhyay

[99], Hsu [133], and others is chosen. The following function is considered,

V (u, v, w) = α1(u− u∗ − u∗ ln(
u

u∗
)) + α2(v − v∗ − v∗ ln(

v

v∗
))

+α3(w − w∗ − w∗ ln(
w

w∗
)). (4.23)

Defining

V1(u) = u−u∗−u∗ ln(
u

u∗
), V2(v) = v−v∗−v∗ ln(

v

v∗
) and V3(z) = w−w∗−w∗ ln(

w

w∗
),

then V can be rewritten as

V (u, v, w) = α1V1(u) + α2V2(v) + α3V3(w).

Differentiating V with respect to time t along the solutions of model (4.3),

dV

dt
= α1

(
1− u∗

u

)du
dt

+ α2

(
1− v∗

v

)dv
dt

+ α3

(
1− w∗

w

)dw
dt
. (4.24)
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The linear approximations u − u∗ ∼= 1 + β1u ∼= 1 + β2u, v − v∗ ∼= v and w − w∗ ∼= w

are used to compute dV1(u(t))
dt

, dV2(v(t))
dt

and dV3(w(t))
dt

as follows:

dV1

dt
=

(
1− u∗

u

)[
1− u− v

1 + β1u
− w

1 + β2u

]
u,

= (u− u∗)[1− u+ u∗ − u∗ − v

1 + β1u
+

v∗

1 + β1u∗
− v∗

1 + β1u∗

− w

1 + β2u
+

w∗

1 + β2u∗
− w∗

1 + β2u∗

]
,

= (u− u∗)[−u+ u∗ − v

1 + β1u
+

v∗

1 + β1u∗
− w

1 + β2u
+

w∗

1 + β2u∗

]
,

= (u− u∗)[−(u− u∗)− v(1 + β1u
∗)− v∗(1 + β1u)

(1 + β1u)(1 + β1u∗)

−w(1 + β2u
∗)− w∗(1 + β2u)

(1 + β2u)(1 + β2u∗)

]
,

= (u− u∗)[−(u− u∗)− (v − v∗)(1 + β1u
∗)− v∗(u− u∗)

(1 + β1u)(1 + β1u∗)

−(w − w∗)(1 + β2u
∗)− w∗(u− u∗)

(1 + β2u)(1 + β2u∗)

]
,

= −(u− u∗)2 − (v − v∗)(u− u∗)(1 + β1u
∗)− v∗(u− u∗)2

(1 + β1u)(1 + β1u∗)

−(w − w∗)(u− u∗)(1 + β2u
∗)− w∗(u− u∗)2

(1 + β2u)(1 + β2u∗)
,

dV2

dt
=

(
1− v∗

v

)[ µ1u

1 + β1u
− νw − δ1

]
v,

= (v − v∗)[ µ1u

1 + β1u
− µ1u

∗

1 + β1u∗
+

µ1u
∗

1 + β1u∗
− νw + νw∗ − νw∗ − δ1

]
,

= (v − v∗)[ µ1u

1 + β1u
− µ1u

∗

1 + β1u∗
− νw + νw∗

]
,

= (v − v∗)[µ1u(1 + β1u
∗)− µ1u

∗(1 + β1u)

(1 + β1u)(1 + β1u∗)
− ν(w − w∗)

]
,

= (v − v∗)[µ1(u− u∗)(1 + β1u
∗)− µ1u

∗(u− u∗)
(1 + β1u)(1 + β1u∗)

]
− ν(v − v∗)(w − w∗),

=
µ1[(1 + β1u

∗)− u∗](u− u∗)(v − v∗)
(1 + β1u)(1 + β1u∗)

− ν(v − v∗)(w − w∗),

= −µ1[u∗ − (1 + β1u
∗)](u− u∗)(v − v∗)

(1 + β1u)(1 + β1u∗)
− ν(v − v∗)(w − w∗),
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and

dV3

dt
=

(
1− w∗

w

)[ µ2u

1 + β2u
− δ2

]
w,

= (w − w∗)[ µ2u

1 + β2u
− µ2u

∗

1 + β2u∗
+

µ2u
∗

1 + β2u∗
− δ2

]
,

= (w − w∗)[ µ2u

1 + β2u
− µ2u

∗

1 + β2u∗

]
,

= (w − w∗)[µ2u(1 + β2u
∗)− µ2u

∗(1 + β2u)

(1 + β2u)(1 + β2u∗)

]
,

= (w − w∗)[µ2(u− u∗)(1 + β2u
∗)− µ2u

∗(u− u∗)
(1 + β2u)(1 + β2u∗)

]
,

= −µ2[u∗ − (1 + β2u
∗)](u− u∗)(w − w∗)

(1 + β1u)(1 + β1u∗)
.

Now,

dV

dt
= α1

[
− (u− u∗)2 − (v − v∗)(u− u∗)(1 + β1u

∗)− v∗(u− u∗)2

(1 + β1u)(1 + β1u∗)

−(w − w∗)(u− u∗)(1 + β2u
∗)− w∗(u− u∗)2

(1 + β2u)(1 + β2u∗)

]
+α2

[
− µ1[u∗ − (1 + β1u

∗)](u− u∗)(v − v∗)
(1 + β1u)(1 + β1u∗)

− ν(v − v∗)(w − w∗)
]

+α3

[
− µ2[u∗ − (1 + β2u

∗)](u− u∗)(w − w∗)
(1 + β1u)(1 + β1u∗)

]
,

= α1

[
− 1 +

v∗

(1 + β1u)(1 + β1u∗)
+

w∗

(1 + β2u)(1 + β2u∗)

]
(u− u∗)2

+
[
− α1

(1 + β1u
∗)

(1 + β1u)(1 + β1u∗)
− α2µ1

[u∗ − (1 + β1u
∗)]

(1 + β1u)(1 + β1u∗)

]
(u− u∗)(v − v∗)

+
[
− α1

(1 + β2u
∗)

(1 + β2u)(1 + β2u∗)
− α3µ2

[u∗ − (1 + β2u
∗)]

(1 + β2u)(1 + β2u∗)

]
(u− u∗)(w − w∗)

−α2ν(v − v∗)(w − w∗).

Let α1 = 1, then

−α2µ1
[u∗ − (1 + β1u

∗)]

(1 + β1u)(1 + β1u∗)
=

α1

1 + β1u
,

that is,

α2 =
1 + β1u

∗

µ1[(1 + β1u∗)− u∗]
.

Also

α3µ2
[(1 + β2u

∗)]− u∗

(1 + β2u)(1 + β2u∗)
=

α1

1 + β2u
,

101



that is,

α3 =
1 + β2u

∗

µ2[(1 + β2u∗)− u∗]
.

Hence,

dV

dt
=

[
− 1 +

v∗

(1 + β1u)(1 + β1u∗)
+

w∗

(1 + β2u)(1 + β2u∗)

]
(u− u∗)2

− 1 + β1u
∗

µ1[1 + u∗(β1 − 1)]
ν(v − v∗)(w − w∗).

The coefficient of (v − v∗)(w − w∗) is strictly negative if β1 > 1 and the coefficient of

(u− u∗)2 is strictly negative if

−1 +
v∗

(1 + β1u)(1 + β1u∗)
+

w∗

(1 + β2u)(1 + β2u∗)
≤ −1 +M < 0,

where

M =
v∗

(1 + β1u)(1 + β1u∗)
+

w∗

(1 + β2u)(1 + β2u∗)
< 1.

If α2 > 0 and α2 > 0, that is, β1 > 1 and β2 > 1, then the function V is negative

definite. Hence, the interior equilibrium is globally asymptotically stable. 2

4.3 Stability of the constant positive steady state

for the reaction-diffusion system

In this section, the local stability of the constant positive steady state u of the spatio-

temporal system (4.2) is investigated. Let 0 = µ0 < µ1 < µ2 < µ3 < . . . be

the eigenvalues of the operator −∆ on Ω with the homogeneous Neumann bound-

ary condition, and dimE(µi) be the eigenspace corresponding to µi in C1(Ω). Let

X = {u ∈ [C1(Ω)]3|∂u
∂n

= 0 on ∂Ω}, {φi,j; j = 1, . . . , dimE(µi)} an orthonormal basis

of E(µi), and Xi,j = {cφi,j|c ∈ R3. Then,

X =
∞⊕
i=1

Xi and Xi =

dimE(µi)⊕
j=1

Xij (4.25)

Theorem 4.2 Assume that the parameters in (4.3) satisfy (4.8) and (4.22). Then

the constant positive steady state u∗ of the spatio-temporal system (4.2) is uniformly

asymptotically stable.
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Proof. Let D = diag(1, d2, d3), L = D∆ + Gu(u∗). The linearisation of the system

(4.2) about the constant positive steady state u∗ is given by

ut = Lu.

The eigenspace Xi, i > 0, is invariant under the operator L. λi is an eigenvalue of L on

Xi if and only if it is an eigenvalue of the matrix −µiD + Gu(u∗). The characteristic

polynomial of −µiD + Gu(u∗) is

ψi(λ) = λ3 + A1iλ
2 + A2iλ+ A3i,

with

A1i = µi(1 + d2 + d3) + A1,

A2i = µ2
i (d2 + d3 + d2d3)− µi((j[4]

22 + j
[4]
33 ) + d2(j

[4]
11 + j

[4]
33 ) + d3(j

[4]
11 + j

[4]
22 )) + A2,

A3i = µ3
i (d2d3) + µ2

i (d2j
[4]
33 − d3j

[4]
22 − d2d3j

[4]
11 ) + µi((j

[4]
22 j

[4]
33 )

+d2(j
[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 ) + d3(j

[4]
11 j

[4]
22 − j

[4]
12 j

[4]
21 )) + A3,

where the j
[4]
ij , A1 are as given in (4.20) and (4.21). From the condition (4.22), it follows

that

A1i > 0, A2i > 0, A3i > 0.

An algebraic calculation of Ei = A1iA2i − A3i > 0 yields

Ei = B1µ
3
i +B2µ

2
i +B3µ+ A1A2 − A3,

where

B1 = d2 + d2
2 + d3 + 2d2d3 + d2

2d3 + d2
3 + d2d

2
3 > 0,

B2 = −(j
[4]
22 + j

[4]
33 )− (j

[4]
11 + j

[4]
33 )d2

2 + (d2 + d3 + d2d3)A1 − (j
[4]
11 + j

[4]
22 )d2

3

+(d2 + d3 + d2d3)A2 > 0,

B3 = −j[4]
22 j

[4]
33 + (j

[4]
13 j

[4]
31 − j

[4]
11 j

[4]
33 )d2 + (j

[4]
12 j

[4]
21 − j

[4]
11 j

[4]
22 )d3 + (1 + d2 + d3)A1

−((j
[4]
22 + j

[4]
33 ) + (j

[4]
11 + j

[4]
33 )d2 + (j

[4]
11 + j

[4]
22 )d3)A2 > 0
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Note that Ei > 0 as A1A2 − A3 > 0 under the given conditions. From the Routh-

Hurwitz criterion it follows that, for each i ≥ 0, all the three roots λi,1, λi,2, λi,3 of

ψi(λ) = 0 have negative real parts. There exists a positive constant σ such that

Re{λi,1},Re{λi,2},Re{λi,3} ≤ −σ, ∀i ≥ 1. (4.26)

Thus, the spectrum of L, which consists of eigenvalues, lies in {Reλ ≤ −σ}. The local

stability of u∗ is concluded by applying Theorem 5.1.1 of Henry [146].

The proof of (4.26) is given below. Let λ = µiξ, then

ψi(λ) = µ3
i ξ

3 + A1iµ
2
i ξ

2 + A2iµiξ + A3i = ψ̃1(ξ),

Since µi →∞ as i→∞, it follows that

ψ̃1(ξ)

µ3
i

= ξ3 +
A1i

µi
ξ2 +

A2i

µ2
i

ξ +
A3i

µ3
i

,

and

lim
i→∞
{ ψ̃1(ξ)

µ3
i

} = ξ3 + (1 + d2 + d3)ξ2 + (d1d2 + d1d3 + d2d3)ξ + d1d2d3 = ψ̄1(ξ).

Upon applying the Routh-Hurwitz criterion, it follows that the three roots ξ1, ξ2, ξ3 of

ψ̄1(ξ) = 0 all have negative real parts (S1 = 1 + d2 + d3 > 0, S2 = d2 + d3 + d2d3 > 0,

S3 = d2d3 > 0) and

S1S2 − S3 = (1 + d2 + d3)(d2 + d3 + d2d3)− d2d3

= 2d2d3 + (d2 + d3) + d2
2(1 + d3) + d2

3(1 + d2) > 0

Thus, there exists a positive constant σ̄ such that Re{ξ1},Re{ξ2},Re{ξ3} ≤ −σ̄. Con-

tinuity implies that there exists i0 such that the three roots ξi,1, ξi,2, ξi,3 of ψ̄1(ξ) = 0

satisfy

Re{ξi,1},Re{ξi,2},Re{ξi,3} ≤ −σ̄, ∀i ≥ i0.

In turn, Re{λi,1},Re{λi,2},Re{λi,3} ≤ −µiσ̄ = −κi for all i ≥ i0.

The inequality (4.26) holds for

σ = min{κi}.
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This completes the proof. 2

As a consequence of Theorem 4.2, problem (4.2) has no non-constant positive steady

state in some neighbourhood of u∗ if (4.8) and (4.22) hold.

4.4 A priori estimates of positive steady state

The corresponding steady-state problem of (4.2) is

−∆u = u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
= G1(u),

−d2∆v =
µ1uv

1 + β1u
− νvw − δ1v = G2(u),

−d3∆w =
µ2uw

1 + β2u
− δ2w = G3(u),

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω =

∂w

∂n
|∂Ω = 0, t > 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), w(x, y, 0) = w0(x, y), (x, y) ∈ Ω.

(4.27)

For convenience, let Λ represent the collective constants (β1, β2, µ1, µ2, δ2, δ2, ν).

In this section a priori positive upper and lower bounds for the positive solutions of

(4.27) are deduced on the basis of two important results, Proposition A.1 ( Maximum

Principle [147]), and Proposition A.2 (Harnack Inequality [148]). The result for upper

bounds is contained in the following theorem.

Theorem 4.3 (Upper bounds) For any positive solution (u, v, w) of (4.27),

max
Ω

u ≤ 1, max
Ω

v ≤ µ1(4d1(νC1 + δ1) + d2)

4(νC1 + δ1)
, max

Ω
w ≤ µ1 − β1δ1

ν(β1 + 1)
. (4.28)

Proof. Since

u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
≤ u(1− u),

application of the Maximum Principle Proposition A.1(i) gives max
Ω

u ≤ 1. From (4.8)

w =
u(µ1 − β1δ1)− δ1

ν(β1u+ 1)
≤ u(µ1 − β1δ1)

ν(β1u+ 1)
≤ u(µ1 − β1δ1)

ν(β1u+ u)
=
µ1 − β1δ1

ν(β1 + 1)
.
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Hence, max
Ω

w ≤ µ1 − β1δ1

ν(β1 + 1)
. Let φ = µ1u+ d2v, then

−∆φ = µ1∆u+ d2∆v = µ1u(1− u)− µ1uw

1 + β2u
− νvw − δ1v, x ∈ Ω

∂vφ = 0, x ∈ Ω.

Let φ(u0) = maxΩ φ(u), then an application of the Maximum Principle Proposition

A.1 (i) yields

(νw + δ1)v(u0) ≤ µ1u(1− u)− µ1uw

1 + β2u
≤ µ1u(1− u) ≤ µ1

4
,

that is,

v(u0) ≤ µ1

4(νw + δ1)
≤ µ1

4(νC + δ1)
,

where C < minw. It follows that

d2 max
Ω

v(u) ≤ max
Ω

φ(u) = φ(u0) = µ1u(u0) + d2v(u0) ≤ µ1 +
d2µ1

4(νC + δ1)
.

Hence,

max
Ω

v(u) ≤ µ1(4(νC + δ1) + d2)

4(νC + δ1)
.

2

For the lower bounds, the following theorem is considered.

Theorem 4.4 (Lower bounds) Let Λ and d be fixed positive constants such that d ≤

min{1, d2, d3}. Then there exist positive constants C∗i , i = 1, 2, 3, which are dependent

on Λ and d, such that every positive solution (u, v, w) of (4.27) satisfies

min
Ω
u(x) ≥ C∗1 , min

Ω
v(x) ≥ C∗2 , min

Ω
w(x) ≥ C∗3 . (4.29)

Proof. Let u(x0) = min
Ω
u(x), v(y0) = min

Ω
v(x), w(z0) = min

Ω
w(x) and w(y1) =

max
Ω

w(x), then applying the maximum principle yields

(1− u(x0))− v(x0)

(1 + β1u(x0))
− w(x0)

1 + β2u(x0)
≤ 0,

µ1u(y0)

1 + β1u(y0)
− νw(y0)− δ1 ≤ 0,

µ2u(z0)

1 + β2u(z0)
− δ2 ≤ 0,

µ1u(y1)

1 + β1u(y1)
− νw(y1)− δ1 ≥ 0.

(4.30)
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The second inequality gives

w(y0) ≥ 1

ν
(

µ1u(y0)

1 + β1u(y0)
− δ1). (4.31)

The fourth inequality in (4.30) gives

w(y1) ≤ 1

ν
(

µ1u(y1)

1 + β1u(y1)
− δ1) ≤ 1

ν
(µ1u(y1)− δ1)) ≤ 1

ν
(µ1 max

Ω
u− δ1) ≤ 1

ν
(µ1 − δ1).

(4.32)

The first inequality in (4.30) imply

1− u(x0) ≤ v(x0)

1 + β1u(x0)
+

w(x0)

1 + β2u(x0)
,

that is,

1− u(x0) ≤ v(x0) + w(x0). (4.33)

Define,

c1(x) =
(

1− u− v

(1 + β1u)
− w

1 + β2u

)
,

c2(x) = d−1
2

( µ1u

1 + β1u
− νw − δ1

)
,

and c3(x) = d−1
3

( µ2u

1 + u
− δ2

)
.

Now, (4.28) implies that there exists a positive constant C(d,Λ) such that ‖c1‖∞, ‖c2‖∞, ‖c3‖∞ ≤

C, if 1, d2, d3 ≥ d. Thus, as u, v, w satisfy

∆u+ c1(x)u = 0,

∆v + c2(x)v = 0,

∆w + c3(x)w = 0, u ∈ ∂Ω;

∂u

∂n
= 0,

∂v

∂n
= 0,

∂w

∂n
= 0, u ∈ ∂Ω.

The Harnack Inequality in Proposition A.2 shows that there exists a positive constant

C∗ = C∗(Λ, d) such that

max
Ω

u(x) ≤ C∗min
Ω
u(x), max

Ω
v(x) ≤ C∗min

Ω
v(x), max

Ω
w(x) ≤ C∗min

Ω
w(x). (4.34)
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From (4.33), it follows that

1− u(x0) ≤ v(x0) + w(x0),

1− u(x0) ≤ v(y0) + w(y1),

1− u(x0) ≤ v(y0) +
µ1

ν
max

Ω
u(x)− δ1

ν
,

1 +
δ1

ν
− µ1

ν
max

Ω
u(x)− u(x0) ≤ v(y0),

1 +
δ1

ν
− µ1

ν
max

Ω
u(x)− 1

C∗
max

Ω
u(x) ≤ v(y0).

From (4.28) max
Ω

u ≤ 1. Hence, it follows that

C∗2 =
(
1 +

δ1

ν
− µ1

ν
− 1

C∗

)
≤ min

Ω
v(x).

Furthermore, from (4.33), it follows that

1− u(x0) ≤ v(x0) + w(y1),

1− u(x0) ≤ v(x0) +
µ1

ν
max

Ω
u(x)− δ1

ν
,

1 +
δ1

ν
− v(x0) ≤ u(x0) +

µ1

ν
max

Ω
u(x),

1 +
δ1

ν
− v(x0) ≤ min

Ω
u(x) +

µ1

ν
C∗min

Ω
u(x),

1 +
δ1

ν
− C∗2 ≤ (1 +

µ1

ν
C∗) min

Ω
u(x).

Hence, it follows that

C∗1 =
1 + δ1

ν
− C∗2

1 + µ1

ν
C∗

≤ min
Ω
u(x).

From (4.31),it follows that

min
Ω
w(x) = w(z0) ≥ w(y0) ≥ 1

ν
(

µ1u(y0)

1 + β1u(y0)
− δ1) ≥ 1

ν
(

µ1C
∗
1

1 + β1C∗1
− δ1) = C∗3 .

2

108



4.5 Non-existence of non-constant positive solution

In this section the energy method is used to deduce the results of non-existence of

nonconstant positive solution of (4.27). Let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues

of the operator −∆ with the homogeneous Neumann condition. The following result

is used to prove the subsequent theorem. For any ϕ ∈ L1(Ω), let

ϕ̄ =
1

|Ω|

∫
Ω

ϕdx. (4.35)

Theorem 4.5 Let d∗2 and d∗3 be positive arbitrary constants that satisfy α1d
∗
2 ≥

µ1

1 + β1

,

α1d
∗
3 ≥

µ2

1 + β2

. Then there exists a positive constant D1 = D1(Λ, d∗2, d
∗
3) such that when

1 > D1, d2 ≥ d∗2 and d3 ≥ d∗3 problem (4.27) has no non-constant positive solution.

Proof. Let (u, v, w) be a positive solution of (4.27) and (ū, v̄, w̄) be the average of

(u, v, w) over Ω. Multiplying the equations of (4.27) by (u − ū), (v − v̄) and (w − w̄)

respectively, and integrating over Ω gives∫
Ω

{|∇u|2 + d2|∇v|2 + d3|∇w|2}dx

=

∫
Ω

{(G1(u, v, w)−G1(ū, v̄, w̄))(u− ū)}dx

+

∫
Ω

{(G2(u, v, w)−G2(ū, v̄, w̄))(v − v̄)}dx

+

∫
Ω

{(G3(u, v, w)−G3(ū, v̄, w̄))(w − w̄)}dx,

=

∫
Ω

{[u(1− u)− uv

(1 + β1u)
− uw

1 + β2u
]

−[ū(1− ū)− ūv̄

(1 + β1ū)
− ūw̄

1 + β2ū
]}(u− ū)dx

+

∫
Ω

{[ µ1uv

1 + β1u
− νvw − δ1v]− [

µ1ūv̄

1 + β1ū
− νv̄w̄ − δ1v̄](v − v̄)}dx

+

∫
Ω

{[µ2uw

1 + u
− δ2w]− [

µ2ūw̄

1 + ū
− δ2w̄](w − w̄)}dx,
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=

∫
Ω

{[1− (u+ ū)](u− ū)2 − v(u− ū)2 + (ū+ β1uū)(v − v̄)(u− ū)

(1 + β1u)(1 + β1ū)

−w(u− ū)2 + (ū+ β2uū)(w − w̄)(u− ū)

(1 + β2u)(1 + β2ū)
}dx

+

∫
Ω

{µ1v(u− ū)(v − v̄) + µ1(ū+ β1uū)(v − v̄)2

(1 + β1u)(1 + β1ū)

−νw(v − v̄)2 − νv̄(v − v̄)(w − w̄)− δ1(v − v̄)2}dx

+

∫
Ω

{µ2w(u− ū)(w − w̄) + µ2(ū+ β2uū)(w − w̄)2

(1 + β2u)(1 + β2ū)
− δ2(w − w̄)2}dx.

To proceed with the proof the ε-Young Inequality, Proposition A.3, is used. Then using

Proposition (4.3) and the ε-Young Inequality∫
Ω

{|∇u|2 + d2|∇v|2 + d3|∇w|2}dx

≤
∫

Ω

{(1 + C)(u− ū)2 + (
µ1(ū+ β1uū)

(1 + β1u)(1 + β1ū)
+ ε1)(v − v̄)2

+(
µ2(ū+ β2uū)

(1 + β2u)(1 + β2ū)
+ ε2)(w − w̄)2}dx

≤
∫

Ω

{(1 + C)(u− ū)2 + (
µ1

1 + β1

+ ε1)(v − v̄)2

+(
µ2

1 + β2

+ ε2)(w − w̄)2}dx (4.36)

for some positive constant C = C(Λ, d∗2, d
∗
3, ε1, ε2) where ε1, ε2 are the arbitrary small

positive constants arising from Young’s inequality. Using the Poincare Inequality,

Proposition A.4 [144], where ḡ is similar to ϕ̄ in (4.35), it follows from (4.36) that

α1

∫
Ω

{(u− ū)2 + d2(v − v̄)2 + d3(w − w̄)2}dx,

≤
∫

Ω

{(1 + C)(u− ū)2 + (
µ1

1 + β1

+ ε1)(v − v̄)2

+(
µ2

1 + β2

+ ε2)(w − w̄)2}dx. (4.37)

If ε1, ε2 > 0 are chosen very small such that

α1d
∗
2 ≥

µ1

1 + β1

+ ε1, α1d
∗
3 ≥

µ2

1 + β2

+ ε2,

then (4.37) implies that v = v̄ = constant, w = w̄ = constant, and u = ū = constant

if 1 > D1 , α−1(1 + C). 2
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4.6 Existence of non-constant positive solution

In this section the main aim is to discuss the existence of non-constant positive solu-

tions to the system (4.27) by using Leray-Schauder degree theory [149]. In the last

section, Theorem 4.5 implies that when the assumptions of the theorem hold then

(4.27) will not have non-constant positive solution. In addition to this, as a conse-

quence of Theorem 4.2 the system (4.2) will not have a non-constant positive steady

state in some neighborhood of u∗ if the existence condition (4.9) holds. However, by

properly choosing the parameters and contradicting the condition (4.22), it is possible

to obtain a non-constant positive solution for (4.27) and hence a non-constant positive

steady state of (4.2). The existence of non-constant positive classical solutions to the

system (4.27) is discussed when the diffusion coefficient d2 vary while the parameters

Λ, d3 are kept fixed. In view of this reason, this discussion is restricted to the case where

Λ satisfy (4.9) and j
[4]
11 > 0, j

[4]
22 > 0, j

[4]
33 > 0. This ensures that stationary patterns can

arise as a result of diffusion.

The linearization of (4.27) is studied at u∗. Let X be as given in Section 4.3, and define

X+ = {u ∈ X|u, v, w > 0 on Ω̄},

B(C) = {u ∈ X|c−1 < u, v, w < c on Ω̄}, c > 0,

where c is a positive constant that is guaranteed to exist by Theorems 4.3 and 4.4.

Then (4.27) can be written as −D∆u = G(u), x ∈ Ω ,

∂nu = 0, x ∈ ∂Ω .
(4.38)

Applying the fixed point index method [106, 112], it is seen that finding positive solu-

tions of (4.27) is equivalent to finding positive solutions of the equation

F(u) , u− (I−∆)−1{D−1G(u) + u} = 0 in X+,

where I is the identity map from C1(Ω) to itself and (I−∆)−1 is the inverse of I−∆

in X subject to Neumann boundary condition. As F(·) is a compact perturbation of

111



the identity operator, for any B = B(C), the Leray-Schauder degree deg(F(·), 0, B) is

well-defined if F(u) 6= 0 on ∂B.

Moreover,

DuF(ũ) = I− (I−∆)−1{D−1G(ũ) + u}.

Suppose that DuF(ũ) is invertible, then the index of F at ũ is defined as index(F(·), ũ) =

(−1)γ , where γ is the total number of eigenvalues with negative real parts (counting

multiplicities) of DuF(ũ) [150].

The decomposition of (4.25) is referred to in the ensuing discussion of the eigenvalues of

DuF(ũ). Firstly, note that, for each integer i ≥ 1 and each integer 1 ≤ j ≤ dimE(µi),

Xij is invariant under DuF(ũ), and λ is an eigenvalue DuF(ũ) on Xij if and only if it

is an eigenvalue of the matrix

I− 1

1 + µi
[D−1Gu(u) + I] =

1

1 + µi
[µiI−D−1Gu(ũ)].

Thus, DuF(ũ) is invertible if and only if, for all i ≥ 1, the matrix I− 1
1+µi

[D−1Gu(u)+I]

is non-singular. Writing

H(µ) = H(ũ;µ) , det{µiI−D−1Gu(ũ)} =
1

d2d3

det{µD−Gu(ũ)}. (4.39)

Note, furthermore, that if H(µi) 6= 0, then for each 1 ≤ j ≤ dimE(µi), the number of

negative eigenvalues of DuF(ũ) on Xij is odd if and only if H(µi) < 0. In conclusion,

the following result is stated which can also be found in [151].

Proposition 4.6 Suppose that, i ≥ 1, the matrix µiI − D−1Gu(ũ) is non-singular.

Then

indexF((·), ũ) = (−1)γ, where γ =
∑

i≥1,H(µi)<0

dimE(µi).

To facilitate the computation of index(F(·), ũ), consider carefully the sign H(µi). The

direct calculation gives

det{µD−Gu(ũ)} = A3(d2)µ3 +A2(d2)µ2 +A1(d2)µ− det{Gu(ũ)} , A(d2;µ) (4.40)
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with 
A3(d2) = d2d3,

A2(d2) = −(j
[4]
33d2 + j

[4]
22d3 + j

[4]
11d2d3),

A1(d2) = j
[4]
22 j

[4]
33 − j

[4]
13 j

[4]
31d2 + j

[4]
11 j

[4]
33d2 − j[4]

12 j
[4]
21d3 + j

[4]
11 j

[4]
22d3,

where j
[4]
ij are as given in (4.20).

Consider the dependence of A on d2. Let µ̃1(d2), µ̃2(d2) and µ̃3(d2) be the three roots

of A(d2;µ) = 0 with Re{µ̃1(d2)} ≤ Re{µ̃2(d2)} ≤ Re{µ̃3(d2)}. Then

µ̃1(d2)µ̃2(d2)µ̃3(d2) =
det{Gu(ũ)}
A3(d2)

.

Since det{Gu(ũ)} < 0 from (4.21) and (4.22), and A3(d2) > 0, one of µ̃1(d2), µ̃2(d2),

µ̃3(d2) is real and negative, and the product of the other two is positive. For a suffi-

ciently large d2, i.e d2 →∞, consider the following limits:

lim
d2→∞

A3(d2)

d2

= d3, lim
d2→∞

A2(d2)

d2

= −j[4]
33−j

[4]
11d3, lim

d2→∞

A1(d2)

d2

= j
[4]
11 j

[4]
33−j

[4]
13 j

[4]
31 ,

lim
d2→∞

A1(d2)

d2

= d3µ
3 − (j

[4]
33 + j

[4]
11d3)µ2 + (j

[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 )µ

= µ[d3µ
2 − (j

[4]
33 + j

[4]
11d3)µ+ j

[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 ].

Note that j
[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 > 0. If the parameters Λ, d2, d3 satisfy j

[4]
33 + j

[4]
11d3 > 0, the

following proposition can be established.

Proposition 4.7 Assume that (4.9) holds, and j
[4]
11 > 0, j

[4]
22 > 0, j

[4]
33 > 0. Then there

exists a positive constant D̄2 such that when d2 ≥ D̄2, the three roots µ̃1(d2), µ̃2(d2),

µ̃3(d2) of A(d2;µ) = 0 are all real and satisfy

lim
d2→∞

µ̃1(d2) =
j

[4]
33 + j

[4]
11d3 −

√
(j

[4]
33 + j

[4]
11d3)2 − 4d3(j

[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 )

2d3

, µ̂,

lim
d2→∞

µ̃2(d2) = 0,

lim
d2→∞

µ̃3(d2) =
j

[4]
33 + j

[4]
11d3 +

√
(j

[4]
33 + j

[4]
11d3)2 − 4d3(j

[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 )

2d3

, µ̌.

(4.41)
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Moreover, if j
[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 < 0, then

−∞ < µ̃1(d2) < 0 < µ̃2(d2) < µ̃3(d2),

A(d2;µ) < 0, when µ ∈ (−∞, µ̃1(d2)) ∪ (µ̃2(d2), µ̃3(d2)),

A(d2;µ) > 0, when µ ∈ (µ̃1(d2), µ̃2(d2)) ∪ (µ̃3(d2),+∞, ).

(4.42)

The following theorem proves the existence of non-constant positive solutions of (4.27)

for some fixed positive constants Λ, d3, when d2 is sufficiently large.

Theorem 4.6 Assume that the parameters Λ, d3 are fixed, j
[4]
11 > 0, j

[4]
22 > 0, j

[4]
33 > 0,

(4.9), (4.29) hold, and j
[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 < 0, µ̌ ∈ (µn, µn+1) for some n ≥ 1, and the

sum γn =
∑n

i=1 dimE(µi) is odd. Then there exists a positive constant D̄2 such that,

if d2 ≥ D̄2, the system (4.27) has at least one non-constant positive solution.

Proof. If j
[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 > 0, from Proposition 4.7, it follows that there exists a

positive constant D̄2, such that when d2 ≥ D̄2, (4.42) holds and

0 = µ0 < µ̃1(d2) < µ2, µ̃3(d2) ∈ (µn, µn+1) (4.43)

Now it is established that for any d2 ≥ D̄2, (4.27) admits at least one non-constant

positive solution. To develop the proof, the homotopy invariance of the topological

degree is invoked to generate a contradiction. Suppose the assertion is not true for some

d2 = d̃2 ≥ D̄2. Fix d2 = d̄2. By Theorem 4.5, a positive constant D1 = D1(Λ, d∗2, d
∗
3) is

obtained such that

d∗2 ≥
µ1

α1(1 + β1)
, d∗3 ≥

µ2

α1(1 + β2)
.

Fix d̂2 ≥ d∗2, d̂3 ≥ max{d∗3, d3}, 1 > D1, For t ∈ [0, 1], define

D(t) = diag(1, d2(t), d3(t)) with di(t) = tdi(t) + (1 − t)d̂i(t), i = 2, 3 and consider the

problem  −D(t)∆u = G(u), x ∈ Ω,

∂nu = 0, x ∈ ∂Ω.
(4.44)

Thus, u∗ is a non-constant positive solution of (4.27) if and only if it is a positive

solution of (4.44) for t = 1. Hence, ũ∗ is the unique constant positive solution of (4.44)
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for any 0 ≤ t ≤ 1. For any 0 ≤ t ≤ 1, u∗ is a positive solution of (4.27) if and only if

it is a solution of the following problem

F(t; u) , u− (I−∆)−1{D−1(t)G(u) + u} = 0 in X+.

Note that F(1; u) = F(u). But from Theorem 4.5 it is deduced that F(0; u) = 0 has

only the positive solution ũ∗ in X+. It follows that

DuF(t; u) , I− (I−∆)−1{D−1(t)Gu(u) + I}.

In particular,

DuF(0; ũ) = I− (I−∆)−1{D̂−1Gu(ũ) + I},

DuF(1; ũ) = I− (I−∆)−1{D−1Gu(ũ) + I} = DuF(ũ),

where D̂ =diag(1, d̂2, d̂3). From (4.39) and (4.40)

H(µ) =
1

d2d3

A(d1;µ). (4.45)

For t = 1, it follows from (4.42) and (4.43) that
H(µ0) = H(0) > 0,

H(µi) < 0, 1 ≤ i ≤ n ,

H(µi) > 0, i ≥ n+ 1.

Hence, 0 is not an eigenvalue of the matrix µiI−D−1Gu(ũ) for all i ≥ 0, and

∑
i≥1,H(µi)<0

dimE(µi) =
n∑
i=1

dimE(µi) = γn,

which is odd. By Proposition 4.6

index(F(1; ·), ũ) = (−1)γ = (−1)γn = −1. (4.46)

There is need to prove that

index(F(0; ·), ũ) = (−1)0 = 1. (4.47)
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From (4.9), we fix 0 < β0 < β2 such that

µ2 > β2δ2 > β0δ2. (4.48)

Define β2(s) = sβ2 + (1 − s)β0 for s ∈ [0, 1], and consider problem (4.27) where

(1, d2, d3) and β2 are replaced by (1, d̂2, d̂3) and β2(s), respectively. This problem is

relabeled as (4.27s), and denoting the corresponding non-linear term G(u) by G(s; u).

As β2(s) ≤ β2 for all s ∈ [0, 1], Theorem 4.3 holds for the problem (4.27s). Similar to

the proof of Theorem 4.5, ũ is the only positive solution of (4.27s) for all s ∈ [0, 1]. In

the same way as done above, define

F̂(s; u) , u− (I−∆)−1{D̂−1(t)G(s; u) + u} = 0 in X+.

Then F̂(1; ·) = F(0; ·), and ũ is the only positive solution of F̂(s; u) = 0 for all s ∈ [0, 1].

The homotopy invariance of the topological degree asserts that

index(F̂(1; ·), ũ) = index(F(0; ·), ũ). (4.49)

Since β2(0) = β0 and β0 satisfies (4.48), j
[4]
11 (β0) < 0, j

[4]
33 (β0) < 0, then det(µiD̂ −

Gu(0; ũ)) > 0, for all i ≥ 1. Consequently, by Proposition 4.6, index(F(0; ·) = (−1)0 =

1 because, in this case, the corresponding γ = 0. Applying F̂(1; ·) = F(0; ·) and (4.49)

we see that (4.47) holds.

Since the positive solution is bounded, Theorems 4.3 and 4.4, there exists a positive

constant c such that, for all 0 ≤ t ≤ 1, the positive solutions of (4.43) satisfy 1/c <

u, v, w < c. Therefore, F(t; u) 6= 0 on ∂B(C) for all 0 ≤ t ≤ 1. By the homotopy

invariance of the topological degree,

deg(F(1; ·), 0,B(C)) = deg(F(0; ·), 0,B(C)). (4.50)

Besides, on the basis of our assumption, the two equations F(1; u) = 0 and F(0; u) = 0

are satisfied by one positive solution ũ in B(C), and hence, by (4.46) and (4.47),

deg(F(0; ·), 0,B(C)) = index(F(0; ·), ũ) = 1,

deg(F(1; ·), 0,B(C)) = index(F(1; ·), ũ) = −1.

This yields a contradiction to (4.50) and the system has one non-constant positive

solution. 2

116



4.7 Turing instability

A reaction-diffusion system exhibits diffusion-driven instability, generally known as

Turing instability, when the homogeneous steady state remains stable under small per-

turbations in the absence of diffusion but becomes unstable under small spatial pertur-

bations in the presence of diffusion [153]. In this section the necessary and sufficient

conditions for diffusion-driven instability of the steady state and the development of

spatial pattern for the general system (4.2) are derived. Consider the two-dimensional

domain defined by 0 < x < p, 0 < y < q whose rectangular boundary is denoted by

∂Ω. Linearising the spatio-temporal system (4.2) at the spatially homogeneous steady

state E4 for small space and time-dependent fluctuations leads to

u(x, y, t) = u4 + u(x, y, t); |u(x, y, t)| � u4,

v(x, y, t) = v4 + v(x, y, t); |v(x, y, t)| � v4,

w(x, y, t) = w4 + w(x, y, t); |w(x, y, t)| � w4.

Let u = (u, v, w), then the linearised system becomes

ut = Au + D∇2u. (4.51)

To solve this system of equations subject to the boundary conditions (4.2), firstly

U(x, y) is defined to be the time-independent solution of the spatial eigenvalue problem

defined by

∇2U + k2U = 0, (n · ∇)U = 0 for (x, y) on ∂Ω, (4.52)

where k is an eigenvalue. The corresponding eigenfunctions are

Uk(x, y) = αi cos(kxx) cos(kyy).

Assume solutions of the form

u =
∑
i

eλ(k2)tUk(x, y) =
∑
i

αie
λ(k2)t cos(kxx) cos(kyy), (4.53)
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i.e.

u(x, y, t) = α0e
λt cos(kxx) cos(kyy)

v(x, y, t) = α1e
λt cos(kxx) cos(kyy)

w(x, y, t) = α2e
λt cos(kxx) cos(kyy)

where λ is the growth rate of perturbation in time t, αi(i = 0, 1, 2) represent the

amplitudes, kx =
nπ

p
and ky =

mπ

q
are the wave numbers of the solutions, and

k2 = k2
x + k2

y. This form of solution satisfies zero flux conditions at x = 0, x = p, y = 0

and y = q. Substituting this form (4.53) into (4.51) and cancelling eλt yields

λU = JU +D∇2U

= JU−Dk2U

The corresponding linearised system has the characteristic equation

|J − k2D − λI| = 0 (4.54)

that is, with J = J4,∣∣∣∣∣∣∣∣∣
j

[4]
11 − k2 − λ j

[4]
12 j

[4]
13

j
[4]
21 j

[4]
22 − k2d2 − λ j

[4]
23

j
[4]
31 0 j

[4]
33 − k2d3 − λ

∣∣∣∣∣∣∣∣∣ = 0.

or

(j
[4]
11−k2−λ)(j

[4]
22−k2−λ)(j

[4]
33−k2−λ)+j

[4]
12 j

[4]
23 j

[4]
31−(j

[4]
33−k2−λ)j

[4]
12 j

[4]
21−(j

[4]
22−k2−λ)j

[4]
13 j

[4]
31 = 0

The characteristic equation corresponding to E4 is

λ3 + h2(k2)λ2 + h1(k2)λ+ h0(k2) = 0, (4.55)

with

h2(k2) = k2(1 + d2 + d3)− (j
[4]
11 + j

[4]
22 + j

[4]
33 ),

h1(k2) = j
[4]
11 j

[4]
22 + j

[4]
11 j

[4]
33 + j

[4]
22 j

[4]
33 − j

[4]
12 j

[4]
21 − j

[4]
13 j

[4]
31 − j

[4]
23 j

[4]
32

−k2(j
[4]
22 (1 + d3) + j

[4]
33 (1 + d2) + j

[4]
11 (d2 + d3)) + k4(d2 + d3 + d2d3),
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h0(k2) = −j[4]
11 j

[4]
22 j

[4]
33 − j

[4]
12 j

[4]
23 j

[4]
31 − j

[4]
13 j

[4]
21 j

[4]
32 + j

[4]
11 j

[4]
23 j

[4]
32 + j

[4]
12 j

[4]
21 j

[4]
33 + j

[4]
13 j

[4]
22 j

[4]
31

−k2((j
[4]
23 j

[4]
32 − j

[4]
22 j

[4]
33 )d1 + (j

[4]
13 j

[4]
31 − j

[4]
11 j

[4]
33 )d2 + (j

[4]
12 j

[4]
21 − j

[4]
11 j

[4]
22 )d3)

−k4(j
[4]
33d2 + j

[4]
22d3 + j

[4]
11d2d3) + k6d2d3.

Reaction-diffusion systems are associated with instabilities or bifurcations. The Hopf

and Turing bifurcations are two types of symmetry-breaking bifurcations that lead to

the formation of patterns. Hopf bifurcation is space-independent and collapses the

temporal symmetry of a system leading to oscillations that are uniform in space and

periodic in time. Turing bifurcation collapses spatial-symmetry giving rise to the emer-

gence of patterns that are stationary in time and oscillatory in space [107, 154, 155].

Equation (4.55) is the dispersion relation. The conditions under which the real parts

of λ are negative are investigated. When the conditions are satisfied for all k, the

homogeneous steady state (4.3) is stable to small perturbations.

According to the Routh-Hurwitz criteria Re(λ(k)) < 0 if and only if

h0(k2) > 0, h2(k2) > 0, h1(k2)h2(k2)− h0(k2) > 0. (4.56)

If at least one of the conditions above is violated, then the implication is that there

exists an eigenvalue with positive real part, which is instability. Turing instability hap-

pens if the homogeneous steady state is stable when there is no diffusion (k2 = 0) but

becomes unstable in the presence of diffusion (k2 > 0). Therefore, conditions which

support a Turing instability are deduced. These are such that the spatially uniform

steady state remains stable when subjected to small perturbations, that is, all λ(k2) in

equation (4.55) have Re(λ(k2 = 0)) < 0, and that, only patterns of a particular spatial

extent, that is, patterns within a definite range of wave length k, can begin to form,

with Re(λ(k2 6= 0)) > 0 [107].

The homogeneous steady state E4 is locally asymptotically stable if and only if h0(0) >

0, h2(0) > 0 and h1(0)h2(0)−h0(0) > 0. However, it becomes unstable due to diffusion

if at least any one of the conditions in equation (4.56) is violated. Note that instability
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due to diffusion cannot happen by contradicting h2(k2) > 0 since the trace of the

matrix J4 is negative for stability. Conditions which can reverse the sign of the other two

conditions in equation (4.56) are sought. Each expression for h0(k2) and h1(k2)h2(k2)−

h0(k2) is a cubic function of k2 that takes the form [107]:

P (k2) = P3k
6 + P2k

4 + P1k
2 + P0, P3 > 0, P0 > 0. (4.57)

The coefficients Pi(i = 0, 1, 2, 3) are given in Tables 4.2 and 4.3.

Table 4.2: Values of Pi(i = 0, 1, 2, 3) for h0

h0

P3 d2d3

P2 −j[4]
11d2d3 − j[4]

22d3 − j[4]
33d2

P1 (j
[4]
22 j

[4]
33 − j

[4]
23 j

[4]
32 ) + d2(j

[4]
11 j

[4]
33 − j

[4]
13 j

[4]
31 ) +d3(j

[4]
11 j

[4]
22 − j

[4]
12 j

[4]
21 )

P0 h0(0)

Table 4.3: Values of Pi(i = 0, 1, 2, 3) for h1h2 − h0

h1h2 − h0

P3 (1 + d3)(d2 + d3)(1 + d2)

P2 −j[4]
11 (2d2 + d2

2 + 2d3 + 2d2d3 + d2
3) −j[4]

22 (2d2 + 2d3 + 2d2d3 + 1 + d2
3)

−j[4]
33 (1 + 2d2 + d2

2 + 2d3 + 2d2d3)

P1 j
[4]
11

2
(d2 + d3) + j

[4]
22

2
(1 + d3) + j

[4]
33

2
(1 + d2) −j[4]

13 j
[4]
31 (1 + d3) −j[4]

12 j
[4]
21 (1 + d2)

−j[4]
23 j

[4]
32 (d2 + d3) +2(1 + d2 + d3)(j

[4]
11 j

[4]
22 + j

[4]
11 j

[4]
33 + j

[4]
22 j

[4]
33 )

P0 h1(0)h2(0)− h0(0)

Theorem 4.7 The spatio-temporal system (4.2) will experience Turing instability at

the homogeneous steady state E4 if the following two conditions are met:

1. P1 < 0 or (P2 < 0 and P 2
2 > 3P1P3)

2. 2P 3
2 − 9P1P2P3 + 27P 2

3P0 − 2(P 2
2 − 3P1P3)3/2 < 0
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Proof. If for some strictly positive real number k2, P (k2) is negative, then the as-

sociated minimum must be negative. The minimum is located at a positive zero of

P ′(k2) = 0, i.e.

3P3(k2)2 + 2P2(k2) + P1 = 0,

given by

k2 = k2
c =
−P2 + (P 2

2 − 3P1P3)
1
2

3P3

. (4.58)

Now k2
c is real and positive if

P1 < 0 or (P2 < 0 and P 2
2 > 3P1P3). (4.59)

It follows that

k4 = (k2
c )

2 =
2P 2

2 − 2P2(P 2
2 − 3P1P3)

1
2 − 3P1P3

9P 2
3

,

and

k6 = (k2
c )

3 =
−4P 3

2 + (4P 2
2 − 3P1P3)(P 2

2 − 3P1P3)
1
2 + 9P1P2P3

27P 3
3

.

Thus,

P (k2
c ) =

−4P 3
2 + (4P 2

2 − 3P1P3)(P 2
2 − 3P1P3)

1
2 + 9P1P2P3

27P 2
3

+
2P 3

2 − 2P 2
2 (P 2

2 − 3P1P3)
1
2 − 3P1P2P3

9P 2
3

+
−P1P2 + P1(P 2

2 − 3P1P3)
1
2

3P3

+ P0

=
−4P 3

2 + (4P 2
2 − 3P1P3)(P 2

2 − 3P1P3)
1
2 + 9P1P2P3

27P 2
3

+
6P 3

2 − 6P 2
2 (P 2

2 − 3P1P3)
1
2 − 9P1P2P3

27P 2
3

+
−9P1P2P3 + 9P1P3(P 2

2 − 3P1P3)
1
2

27P 2
3

+
27P 2

3P0

27P 2
3

,

which reduces to

Pmin = P (k2
c ) =

2P 3
2 − 9P1P2P3 + 27P 2

3P0 − 2(P 2
2 − 3P1P3)3/2

27P 2
3

. (4.60)

Hence, P (k2
c ) < 0 if

2P 3
2 − 9P1P2P3 + 27P 2

3P0 − 2(P 2
2 − 3P1P3)3/2 < 0. (4.61)
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The condition for bifurcation occurs is Pmin = 0. The inequality (4.61) reduces to an

equation given by

2P 3
2 − 9P1P2P3 + 27P 2

3P0 − 2(P 2
2 − 3P1P3)3/2 = 0. (4.62)

2

4.8 Numerical analysis

It was estimated that 1684 (95 % CI:1617 - 1751) lions lived in the Kruger National

Park (KNP) in 2005 and 2006 [48]. The initial population densities for each species are

chosen to be positive at U(0) = 133, 000 [24], V (0) = 412 [23], W (0) = 1700 [48]. The

parameters values used in the numerical analysis of model (4.1) are given in Table 4.4.

Some parameter values which were not readily available were computed on the basis

of the steady states and stability conditions, and these include prey conversion rates

into predator biomass.

4.8.1 Parameter estimates

Conversion rates

The cheetah and lion biomass conversion rates µ1 and µ2 are estimated in relation

with the bounds for existence of equilibrium points E2 and E3. For E2, we have

µ1 > β1δ1 = 298.2. For E3, we have µ2 > β2δ2 = 331.44. In this study, it was

estimated that µ1 = 320 and µ2 = 340.

Table 4.4: Parameter values

Symbol Description Value Reference

D1 Diffusion coefficient of impala 0.5 estimate

D2 Diffusion coefficient of cheetah 1.0 estimate

D3 Diffusion coefficient of lion 0.8 estimate
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Based on the parameter values given in Tables 3.2 and 4.4, the non-dimensional pa-

rameter values used in the simulations were calculated and are given in Table 4.5 .

Table 4.5: Parameters for system (4.2)

Parameter Description Values

d2 Diffusion coefficient of impala 2.0

d3 Diffusion coefficient of cheetah 1.6

β1 Handling time of impala by cheetah 60

β2 Handling time of impala by lion 80

µ1 Conversion rate of impala biomass into new cheetahs 320

µ2 Conversion rate of impala biomass into new lions 340

δ1 Natural mortality of cheetah 4.97

δ2 Natural mortality of lion 4.143

ν Mortality rate of cheetah by lion 0.525

4.8.2 Population variations

The population distributions for impala, cheetah and lion in the ODE system cor-

responding to system (4.1) are plotted. The initial values used are U0 = 133, 000,

V0 = 412, and W0 = 1700. In the absence of lion kills, p = 0, all the species pop-

ulations persist as shown in Figure 4.1. However, when the lion kills are present,

p = 0.0005, the cheetah will be extinct in about forty years as shown in Figure 4.2.

The point in time of extinction is a function of rate of cheetah kills. The more cheetah

are killed in a given time, the quicker will they become extinct.
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Figure 4.1: (a) Variation of scaled population, (b) Phase space trajectory, when p = 0

Figure 4.2: (a) Variation of scaled population, (b) Phase space trajectory, when p =

0.00005
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4.8.3 Spatio-Temporal Pattern Formation

For the numerical simulations, a MATLAB code adapted from Schneider [156] was

used on a two dimensional square grid. Two sub-systems corresponding to the spatio-

temporal system (4.2) were separately solved numerically in two-dimensional space us-

ing a second-order finite difference approximation for the spatial derivatives and a For-

ward Euler method for the time integration. A 100×100 grid points and grid size of 4×4

were used. Four tests were run at 31250 time steps per run where ∆t = 0.08. The initial

conditions were generated randomly as u(x, y, 0) = 0.5+ rand[0, 2], v(x, y, 0) = 0.5+

rand[0, 2] and w(x, y, 0) = 0.5+ rand[0, 2].

Consider the impala-cheetah subsystem

∂u

∂t
−
(∂2u

∂x2
+
∂2u

∂y2

)
= u(1− u)− uv

(1 + β1u)
,

∂v

∂t
− d2

(∂2v

∂x2
+
∂2v

∂y2

)
=

µ1uv

1 + β1u
− δ1v, (4.63)

with boundary conditions

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω = 0, t > 0,

u(x, y, 0) = u0(x, y) ≥ 0, v(x, y, 0) = v0(x, y) ≥ 0,

(x, y) ∈ Ω.

The patterns are shown in Figures 4.3 to 4.6. It is observed that cheetah tend to

be located around areas occupied by impala. Where impala are densely populated,

cheetah are also densely populated but surrounding impala. Where impala are sparsely

populated, cheetah are not found there.

125



Figure 4.3: Spatial distribution of impala and cheetah at T = 2500.

Figure 4.4: Spatial distribution of impala and cheetah at T = 5000.
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Figure 4.5: Spatial distribution of impala and cheetah at T = 7500.

Figure 4.6: Spatial distribution of impala and cheetah at T = 10000.
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For the impala-lion subsystem

∂u

∂t
−
(∂2u

∂x2
+
∂2u

∂y2

)
= u(1− u)− uw

1 + β2u
,

∂w

∂t
− d3

(∂2w

∂x2
+
∂2w

∂y2

)
=

µ2uw

1 + β2u
− δ2w, (4.64)

with boundary conditions

∂u

∂n
|∂Ω =

∂w

∂n
|∂Ω = 0, t > 0,

u(x, y, 0) = u0(x, y) ≥ 0,

w(x, y, 0) = w0(x, y) ≥ 0, (x, y) ∈ Ω.

The patterns are shown in Figures 4.7 to 4.10.

It can be observed that lions tend to change location with time. Initially, they are

found in areas with low impala density. Later, they occupy areas with high impala

density. Thus, lions’ habitat selection alternates between high impala density and low

impala density areas.

Figure 4.7: Spatial distribution of impala and lion at T = 2500.
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Figure 4.8: Spatial distribution of impala and lion at T = 5000.

Figure 4.9: Spatial distribution of impala and lion at T = 7500.
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Figure 4.10: Spatial distribution of impala and lion at T = 10000.

4.9 Discussion and conclusion

The temporal system (4.3) corresponding to the reaction diffusion system (4.2) was

analysed. Equilibrium points were identified and their corresponding global stability

results derived. In particular, the positive steady state was globally asymptotically

stable for the ODE system. The time series plots of the temporal system indicate that

cheetah become extinct with time.

However, the temporal system became unstable when diffusion was taken into account.

The implication is that self-diffusion can lead to the disappearance of stability and the

emergence of patterns. The reaction-diffusion system (4.2) was analysed to establish

conditions for existence and non-existence of non-constant stationary points. Further-

more, Turing instability conditions were derived for the positive steady state having

been perturbed. The patterns indicate that both lions and cheetah follow impala but

somehow in different ways. Cheetah tend to surround impala always. Lions spend time

away from impala and also within areas occupied by impala. Lions and cheetah do not

necessarily occupy the same territories.
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Chapter 5

Discussion, conclusions and

recommendations

5.1 Methods employed

The deterministic mathematical modelling techniques employed in this study provide

a framework for describing the interactions between the three species involved. How-

ever, this is neither a unique way of representing such interactions, nor the best way.

The representation of interactions has largely been based on theoretical explanations

from ecology and epidemiology. Mathematical models have been formulated to explore

effects of presence of disease in one species on the other species, as well as spatial

considerations to account for species distributions.

Mathematical analysis of the models to establish stability conditions relied on a number

of theorems and basic concepts of species interactions. These included linearisation,

Lyapunov, Lasalle Invariance Principle, Routh-Hurwitz stability criterion, Bendixson-

Dulac, Poincare-Bendixson, Geometric approach to global stability problems, Maxi-

mum Principle, Harnack Inequality, Energy method, Young Inequality, Poincare In-

equality, Leray-Schauder degree theory and Turing Instability.
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The numerical analysis was done in MATLAB. Some in-built MATLAB functions were

employed to solve the systems for time-series and phase plots.

5.2 Results of the study

In Chapter 3 the interactions between impala, cheetah and lion were modelled in the

presence of a disease in the lion population. The key aspects of the study were to exam-

ine the effects of the presence of disease in lions and added cheetah mortality by lions

on cheetah population. Possible biologically feasible steady states for the main disease

model (3.3), and for the subsystem (3.26) involving absence of lions were deduced. The

respective global stability results were derived. Numerical simulations were performed

for both systems.

In Chapter 4, spatio-temporal dynamics between impala, cheetah and lions were dis-

cussed. The study involved establishing stability conditions of the steady states of

the temporal system, as well as positive steady state of the spatio-temporal system.

Analysis of the spatio-temporal system involved establishing a priori estimates, the ex-

istence and non-existence of the stationary steady state solutions, and the conditions

for Turing instability to occur.

5.2.1 On the role of additional mortality on cheetah by the

lion

In the presence of the lion species in the system, it is worthwhile noting that the added

cheetah mortality due to the lions ensured that cheetah become extinct in a very short

period. When added mortality can be reduced to very low or is absent, cheetah survive

and avoid extinction. This is shown in Figures 3.2 and 3.3. Cheetah and lion can co-

exist as long as added mortality is very low, though the cheetah population declines
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slowly over time.

5.2.2 On the role of disease in the lion

The disease infection rate ensured that when it is low, extinction of lions is not possi-

ble. Cheetah and lion co-exist as long as disease infection rate assumes very low values.

Cheetah population persists, but grows marginally with time. Furthermore, the pres-

ence of disease in lions reduces the pressure lions exert on cheetah, resulting in cheetah

able to survive longer, but only as long as added mortality is kept very low. This

is shown in Figures 3.2, 3.5 and 3.6. The equilibrium point E4 for the system (3.3)

was found to be locally asymptotically stable, using Routh Hurwitz criterion. Fur-

thermore, the global asymptotic stability was established using the Lyapunov method.

Conditions were established when the Lyapunov function would be negative definite.

The model without disease in lion, temporal system, studied in chapter 4 can be com-

pared with the model with disease in lion covered in chapter 3. As in Proposition 4.5,

the interior equilibrium E4 for the system (4.3) is locally asymptotically stable if the

Routh Hurwitz conditions are satisfied. Moreover, as stated in Theorem 4.1, the inte-

rior equilibrium is globally asymptotically stable on the basis of a Lyapunov function.

From Figure 4.1, it was shown that with no added cheetah mortality due to the lions,

the cheetah population declines, though slowly over a long time. It does not recover,

until it becomes extinct.

Comparing Figures 3.2 and 4.1, it can be observed that the presence of the disease in

lion keeps the population of the cheetah steady, though the lion population is driven to

extinction. However, the impala population reaches a reduced level of about 1.4 times

the initial level. In the absence of disease, the cheetah population slowly declines over

a long time.

As such, the presence of disease in lions, when infection rate is high, drives the lion
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population to extinction. The cheetah population grows. Unlike Maas et al. [46] who

in their paper found out that disease in lion does not pose a serious conservation issue,

in this study, the disease cannot be ignored as the lion is driven to extinction at the

current levels of infection.

5.2.3 On the effect of lion removal from the system

In the absence of lion in the system (3.3), the cheetah population in subsystem (3.26)

recovered from low value. Whenever the equilibrium point Ē1 was found to be stable,

Ē2 did not exist. Ē1 was locally and globally stable when l− eµ− µ
K
< 0. The impala

population grew to carrying capacity. However, as in Lemma 3.5, equilibrium point Ē2

is locally asymptotically stable if l+eµ
l−eµ > eK and l− eµ > µ

K
, that is, µ

l−eµ < K, and Ē1

does not exist. Stability is assured if impala population is less than carrying capacity.

Furthermore, as in Proposition 3.5, the global asymptotic stability of Ē2 is assured if

2µ > lK.

Thus, the absence of lion in the system allowed the cheetah population to rise signif-

icantly to more than double the initial value. The equilibrium point Ē2 is reached as

shown in Figure 3.1. The results indicate that cheetah thrives very well in the absence

of large competition from the lion. These findings are in agreement with the studies

by Linnell and Strand [26]. Removal of large predators from an ecosystem may allow

small to medium predator density to improve. However, accompanied by this is the

enhanced predation of prey populations [26, 157, 158]. The impala population rises

to about 1.18 times the initial value, lower than the 1.4 times the initial value in the

presence of the lion. This can be seen upon comparing Figures 3.1, 3.2 and 3.3.

5.2.4 The spatio-temporal system

Analysis of the temporal system was based on establishing stability conditions of the

steady states. The steady state E2 was globally asymptotically stable if 2δ1 > µ1 as
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stated in Proposition 4.3. Furthermore, the steady state E3 was globally asymptoti-

cally stable if 2δ2 > µ2 as stated in Proposition 4.4. For the interior equilibrium, global

stability was established using a Lyapunov function and Lasalle Invariance Principle.

Analysis of the reaction-diffusion system was based on the positive steady state. As

stated in Theorem 4.2, the constant positive steady state was uniformly asymptotically

stable. The stability was based on linearisation of the system and use of Routh Hur-

witz criterion. A priori estimates of the positive steady state were deduced, that is,

upper and lower bounds for the species populations. The non-existence of non-constant

positive solution was established in Theorem 4.5 using the Poincare Inequality. The

existence of non-constant positive solution was established in Theorem 4.6 using the

Leray-Schauder degree theory. Keeping all other parameters fixed and allowing d2 to

vary, together with some conditions satisfied, there exists a positive constant D̄2 such

that, if d2 ≥ D̄2, the system (4.27) has at least one non-constant positive solution as

stated in Theorem 4.6.

Patterns showing species distributions were plotted on a square lattice. These were

done for sub-systems involving impala and cheetah, and impala and lion respectively.

For the impala cheetah subsystem, it was deduced that cheetah always track impala

habitats but always surrounding them. Cheetah would not be found within impala

territories. However, for the impala-lion subsystem, lions behaved in two different

ways. Firstly, lions infiltrated impala habitats. Secondly, they showed a tendency to

stay away form impala habitats. As such, a conclusion that cheetah and lions did not

occupy the same territory was reached. This supports the notion that cheetah avoid

lion territories at all costs.
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5.3 Recommendations of the study

It has been found that cheetah thrive well in the absence of the lion. It is recom-

mended that the cheetah be separated from the lion to ensure their continued survival

and persistence. In the presence of the lion, cheetah will become extinct, though the

population decline is dependent on the intensity of the added cheetah mortality due to

lions. Predation by lions is a major contributor to the decline of the cheetah population.

The presence of disease in lions has insignificant effect on the cheetah population.

However, the disease affects the lion species. At high levels of disease incidence, lion

population becomes extinct quickly. The continued survival of the lions depend on

the levels of the disease incidence and the disease-induced mortality rates. Without

human intervention, the study showed the lions becoming extinct. Urgent treatment

of disease is essential to save the lion from possible extinction.

5.4 Extensions of the study

The study offers insights into the survival of cheetah in the presence of their main

competitor, the lion. However, there are a number of improvements to the proposed

models to bring them closer to reality.

Logistic growth can be factored in for the lion species since impala is not their primary

prey. Model (3.3) can be extended to include spatial considerations. This enables a

clearer understanding of the effects of disease in lion on spatial distribution of the chee-

tah. There is need to incorporate water holes in the model. These are predation prone

areas for impala. Simulating distribution of species would possibly show the location

of cheetah relative to lion. Expectations are that cheetah occupy different areas from

lion’s territory, with some overlapping regions.
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There is need to consider provision of additional food to cheetah, to compensate for

loss of kills to the lions. The food can be in the form of slaughtered prey made available

at some selected feeding places within their habitat. This can be incorporated into the

model and an optimal control problem formulated. The problem to be solved involve

seeking optimal strategy to increase the population of cheetah to desired level using

quantity and quality of additional food as control variables.

It appears to be economically unviable to create patches within KNP to separate the

cheetah from the lion. The results for the subsystem (3.26) which involve removal of

lion suggest that cheetah survive well in the absence of their main competitor. The

model can be extended to become a patchy model where lions are separated from chee-

tah.

There is urgent need to provide treatment to sick lions to reduce transmission rate

and possibly eradicate the disease. The results show that even the cheetah survive

extinction if the rate of disease infection in lion is low as supported by the Figures 3.5

and 3.6. If the infection rate remains as it is, the results suggest that in the long term,

the infection has the potential to drive the lion population to extinction. As such,

treatment of sick lions can be factored in the model.

The disease model can be extended to include susceptible-exposed-infective (SEI) dy-

namics. This enables the analysis to identify the class between the exposed and infective

that can be used as biological control to improve the cheetah population.
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Appendix A

A.1 Auxiliary and standard results of the theory of

Ordinary Differential Equations

Theorem A.1 (Bendixson-Dulac criterion)

Let h1(u, v), h2(u, v) and Φ(u, v) be C1 functions in a simply connected domain D ⊂ R2

such that
∂(Φh1)

∂u
+
∂(Φh2)

∂v

does not change sign in D and vanishes at most on set of measure zero. Then the

system

du

dt
= h1(u, v),

dv

dt
= h2(u, v),

has no periodic orbits in D.

Theorem A.2 (Poincaré-Bendixson)

Let the functions h1 and h2 have continuous first partial derivatives in a domain D

of the uv-plane. Let D1 be a bounded sub-domain in D, and let R be the region that

consists of D1 plus its boundary (all points of R are in D). Suppose that R contains
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no critical point of the system

du

dt
= h1(u, v),

dv

dt
= h2(u, v).

If there exists a constant t0 such that x = φ(t), y = ψ(t) is a solution of the system

that exists and stays in R for all t ≥ t0, then either x = φ(t), y = ψ(t) is a periodic

solution (closed trajectory), or x = φ(t), y = ψ(t) spirals toward a closed trajectory as

t→∞. In either case, the system has a periodic solution in R.

Theorem A.3 [132] Let E be an open subset of Rn containing x0. Suppose that f ∈

C1(E) and that f(x0) = 0. Suppose further that there exists a real valued function

V ∈ C1(E) satisfying V (x0) = 0, and V (x) > 0 if x 6= x0. Then (a) if V̇ (x) < 0 for

all x ∈ E, x0 is stable; (b) if V̇ (x) < 0 for all x ∈ E ∼ {x0}, x0 is asymptotically

stable; (c) if V̇ (x) > 0 for all x ∈ E ∼ {x0}, x0 is unstable.

Lemma A.1 (Lasalle Invariance Principle)[133] Assume that V is a Lyapunov func-

tion of the dynamical system ẋ = f(x) on E. Define S = {x ∈ Ḡ ∩ E : V̇ (x) = 0}.

Let M be the largest invariant set in S. Then every bounded trajectory (for t ≥ 0) of

ẋ = f(x) that remains in G approaches the set M as t→∞.

A.2 Auxiliary and standard results of the theory of

Partial Differential Equations

Proposition A.1 (Maximum Principle (Lou and Ni [147])) Suppose that g ∈ C(Ω̄×

R1).

(i) Assume that φ ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆φ(x) + g(x, φ(x)) ≥ 0, x ∈ Ω; ∂nΩ ≤ 0, x ∈ ∂Ω

If φ(x0) = maxΩ̄ φ, then g(x0, φ(x0)) ≥ 0.
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(ii) Assume that φ ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆φ(x) + g(x, φ(x)) ≤ 0, x ∈ Ω; ∂nΩ ≥ 0, x ∈ ∂Ω

If φ(x0) = minΩ̄ φ, then g(x0, φ(x0)) ≤ 0.

Proposition A.2 (Harnack inequality (Lin et.al [148])) Assume that c ∈ C(Ω̄) and

let φ ∈ C2(Ω) ∩ C1(Ω) be a positive solution to

∆φ(x) + c(x)φ(x) = 0, x ∈ Ω; ∂nΩ = 0, x ∈ ∂Ω

Then there exists a positive constant C∗ = C∗(Ω, ||c||∞) such that

max
Ω̄

φ ≤ C∗min
Ω̄
φ

Proposition A.3 (Young inequality) For any ε > 0, a, b ≥ 0 and m,n > 1

ab ≤ εm/n
am

m
+

1

ε

bn

n
,

1

m
+

1

n
= 1.

Proposition A.4 (Poincare Inequality) [144]

α1

∫
Ω

(g − ḡ)2dx ≤
∫

Ω

|∇(g − ḡ)|2dx
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Matlab Programs used for numerical simulations

A1: Disease code 1

1 function pdot=DiseasePPSPf(t,p)

2 % This is the ODE program for the Disease model problem

3 a=0.0001787;

4 b=0.009525;

5 c=0.5;

6 e=0.0003;

7 f=0.0004;

8 l=0.00001705;

9 m=0.000027;

10 n=0.0000135;

11 q=0.0;

12 r=0.01342;

13 mu=0.0556;

14 nu=0.0667;

15 delta=0.0787;

16 beta=0.16;

17 K=200000;

18 pdot(1,:)=r.*p(1).*(1-p(1)./K)-a.*p(1).*p(2)./(1+e.*p(1))

19 -b.*p(1).*p(3)./(1+f.*p(1))-c.*b.*p(1).*p(4)./(1+f.*p(1));

20 pdot(2,:)=l.*p(1).*p(2)./(1+e.*p(1))-q.*p(2).*p(3)-mu.*p(2);

21 pdot(3,:)=m.*p(1).*p(3)./(1+f.*p(1))-beta.*p(3).*p(4)./p(5)-nu.*p(3);

22 pdot(4,:)=n.*p(1).*p(4)./(1+f.*p(1))+beta.*p(3).*p(4)./p(5)

23 -nu.*p(4)-delta.*p(4);

24 pdot(5,:)=m.*p(1).*p(3)./(1+f.*p(1))+n.*p(1).*p(4)./(1+f.*p(1))

25 -nu.*p(5)-delta.*p(4);
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A2: Disease code 2

1 %This is a program to use the disease ODE 'DiseasePPSPf'

2 clear all

3 t0=0;

4 tf=300;

5 p0=[133000,412,1200,500,1700];

6 tspan=[t0 tf];

7 [t,p]=ode45(@DiseasePPSPf,tspan,p0);

8 subplot(1,2,1)

9 plot(t,p(:,1)/133000,t,p(:,2)/412,t,p(:,3)/1200,t,p(:,4)/500,'k-','LineWidth',2);

10 grid on

11 xlabel('Time (years)');

12 ylabel('Population');

13 legend('Impala','Cheetah','Total Lion','Infected Lion','Location','Best');

14 axis( [0, 300, 0, 1.2] )

15 subplot(1,2,2)

16 plot3(p(:,1)/133000,p(:,2)/412,p(:,3)/1200,'k-','LineWidth',2)

17 grid on

18 title('Phase Portrait')

19 xlabel('Impala')

20 ylabel('Cheetah')

21 zlabel('Total Lion')

22 axis( [0, 1, 0, 1, 0, 1.2] )

23 % plot(p(:,2)/412,p(:,3)/1200,'k-','LineWidth',2)

24 % grid on

25 % title('Phase Portrait')

26 % xlabel('Cheetah')

27 % ylabel('Susceptible Lion')

159



B: Diffusion code

1 %Solve a Reaction-Diffusion Predator Prey system of equations in 2-D space

2 %over time. Apply Forward Euler's Method for time integration and second-order

3 %central difference approximation to evaluate the spatial derivatives.

4

5 %clear all

6

7 %Grid size

8 Tf=10000;

9 a=0; % Right boundary

10 b=4; % Upper boundary

11 M=100; % M is the number of spaces between a and b.

12 dx=(b-a)/M; %(b-a)/M; % dx is delta x

13 dy=(b-a)/M; %(b-a)/M;

14 x=linspace(a,b,M+1); % M+1 equally spaced x vectors including a and b.

15 y=linspace(a,b,M+1);

16

17 %Time stepping

18 dt=0.08; %100*(dxˆ2)/2; % dt is delta t the time step

19 N=Tf/dt; % N is the number of time steps in the interval [0,1]

20

21 %Constant Values

22

23 d2=0.01; % d2 is the Diffusion coefficient Dv/Du

24

25 alpha=0.0021;

26 mu1=320;

27 beta1=60;

28 delta1=4.97;

29

30 %pre-allocation

31 unp1=zeros(M+3,M+3);

32 vnp1=zeros(M+3,M+3);

33
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34 %Initial Conditions

35 un=0.5+rand(M+3,M+3); %Begin with a random point between [0,2]

36 vn=0.5+rand(M+3,M+3);

37

38 for n=1:N

39

40 for i=2:M+2

41 un(i,1)=un(i,3); %Boundary conditions on bottom flux is zero

42 un(i,M+3)=un(i,M+1); %Boundary conditions on top

43 vn(i,1)=vn(i,3);

44 vn(i,M+3)=vn(i,M+1);

45 end

46 for j=2:M+2

47 un(1,j)=un(3,j); %Boundary conditions on left

48 un(M+3,j)=un(M+1,j); %Boundary conditions on right

49 vn(1,j)=vn(3,j);

50 vn(M+3,j)=vn(M+1,j);

51 end

52

53 for i=2:M+2

54 for j=2:M+2

55

56 %Force function for u and v

57 frcu=un(i,j)*(1-un(i,j))-un(i,j)*vn(i,j)/(1+beta1*un(i,j));

58 frcv=mu1*un(i,j)*vn(i,j)/(1+beta1*un(i,j))-delta1*vn(i,j);

59

60 Lapu=(un(i-1,j)+un(i+1,j)+un(i,j-1)+un(i,j+1)-4*un(i,j))/dxˆ2;

%Laplacian u

61 Lapv=(vn(i-1,j)+vn(i+1,j)+vn(i,j-1)+vn(i,j+1)-4*vn(i,j))/dxˆ2;

%Laplacian v

62

63 unp1(i,j)=un(i,j)+dt*(alpha*Lapu+frcu);

64 vnp1(i,j)=vn(i,j)+dt*(d2*alpha*Lapv+frcv);

65

66 end
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67 end

68 un=unp1;

69 vn=vnp1;

70

71 %Graphing

72 if mod(n,31250)==0

73

74 subplot(1,2,1)

75 hdl = surf(x,y,un(2:M+2,2:M+2));

76 set(hdl,'edgecolor','none');

77 axis([0, 4, 0, 4]);

78 title('u - Impala');

79 %caxis([-10,15]]);

80 view(2);

81 colorbar;

82 subplot(1,2,2)

83 hdl = surf(x,y,vn(2:M+2,2:M+2));

84 set(hdl,'edgecolor','none');

85 axis([0, 4, 0, 4]);

86 title('v - Cheetah');

87 %caxis([-10,15]]);

88 view(2);

89 colorbar;

90 fprintf('Time t =%f\n',n*dt);

91 ch = input('Hit enter to continue :','s');

92 if (strcmp(ch,'k') == 1)

93 keyboard;

94 end

95 end

96

97 end
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