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ABSTRACT 

Organic Rankine Cycle (ORC) heat engines convert low-grade heat to other forms of 

energy such as electrical and mechanical energy. They achieve this by vaporizing and 

expanding the organic fluid at high pressure, turning the turbine which can be 

employed to run an alternator or any other mechanism as desired. Conventional 

Rankine Cycles operate with steam at temperatures above 400 ℃ 

The broad aspect of the research focussed on the generation of electricity to cater for 

household needs. Solar energy would be used to heat air which would in turn heat 

rocks in an insulated vessel. This would act as an energy storage in form of heat from 

which a heat transfer fluid would collect heat to supply the ORC heat engine for the 

generation of electricity.  

The objective of the research was to optimize power output of the ORC heat engine 

operating at temperatures between 25℃ at the condenser and 90 to 150℃ at the heat 

source. This was achieved by analysis of thermal energy, mechanical power, electrical 

power and physical parameters in connection with flow rate of working fluid and heat 

transfer fluids. 

KEYWORDS 

Organic Rankine Cycle heat engine, “ORC”, electricity, low grade heat, pressure 

differential, temperature, cycle, optimisation. 
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CHAPTER 1   

RESEARCH PROJECT PROPOSAL AND OVERVIEW 

1.1 INTRODUCTION 

The importance of researching energy sources cannot be overemphasised with the current 

escalated energy demand. Increased industrialisation and global population increases the 

demand for more energy for increased comfort and productivity. This is causing a depletion 

of non-renewable energy sources such as petroleum, coal and wood. The environment is 

threatened by use of the conventional energy sources. Deforestation, for example, has 

resulted in silting - which has made hydroelectric power unreliable. Petroleum and coal are 

increasing carbon pollution, resulting in global warming, which also alters climatic seasons 

- putting man on the verge of survival crisis. Energy cost has escalated, leading to high cost 

of living (1).Is there a way of containing the situation?  This question can be answered by 

use of renewable energy that is abundant. The research is one of the answers to that 

question. 

1.2 ORGANIC RANKINE CYCLE HEAT ENGINES 

Organic Rankine Cycle (ORC) heat engines are a variation of Rankine Cycle heat engines 

that employ organic fluids as the working substance. Rankine Cycle heat engines were 

conceptualised by a Scottish Polymath and Glasgow University Professor, William J.M. 

Rankine. 

Figure 1.1 shows the thermodynamic cycle of the ORC heat engines with a closed circuit 

(2). The fluid in liquid state, is pumped to the evaporator where it is vaporised and 

superheated after which the dry vapour is expanded in the turbine, doing the desired work. 

It proceeds to the condenser where it is liquefied to be recycled. The conventional cycles 

work with high-temperature steam in ranges above 300℃ (3), used to turn turbines at high 

pressures while generating various magnitudes of electric power. Most such plants are 

made for commercial purposes producing in the range of tens of kilowatts to hundreds of 
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megawatts of power. In most cases, the steam is rejected to the atmosphere upon usage 

(open systems). They are economically too large to suit household applications. 

Figure 1.1 ORC main components and the T-s diagram 

ORC heat engines of the same magnitudes have been successfully made since their 

introduction in 1961. Currently, many engineers are making strides in the experimentation 

of small household units such as the one-kilowatt range of products. Another challenge that 

has been taken on board is the lowering of operating temperatures of the units. Most 

Rankine cycle units operate at temperature ranges above 300℃ as already stated. Working 

in such high temperatures requires availability of steam and other high-temperature sources 

which can readily be found in industry setup rather than households. 

This is the reason exploration of low-temperature units is important. It is easier and 

affordable to achieve temperatures below 100 ℃  at household levels using simple 

technologies such as solar heat harnessing. The ORC can be suited to such environments 

since the working fluid boils at much lower temperatures and can change between phases 

under easier to achieve conditions.  
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1.3 PROBLEM STATEMENT 

The research will focus on improving the performance of a 1kW Organic Rankine Cycle heat 

engine studied by a previous scholar, Jason Humm (4) to enable it to work with lower 

temperatures in the range of 85 -140℃, while producing at least 80% of the rated power. 

Low-temperature ORCs have been successfully developed elsewhere using refrigerants 

such as R-134a (5). 

1.4 SUB PROBLEMS 

Various sub-problems will be considered in order to successfully accomplish the intended 

purpose and objective of this research project. These will include the following: 

1.4.1. Sub-problem 1 (Operating Pressures and Temperatures) 

Conditions that influence the optimum performance of the Organic Rankine Cycle heat 

engines such as pressure differential and temperature ranges and differential will be 

investigated. 

1.4.2 Sub-problem 2 (Unit Physical Structure) 

The optimum volume and weight of the Organic Rankine Cycle heat engine will be 

investigated. 

Whilst working on the performance of the machine, work will also be done to investigate the 

possible size reduction of the initial unit to reduce on material consumption and space 

occupation while increasing performance. A compact unit will be considered without 

compromising performance output. 

1.4.3 Sub-problem 3 (Cavitation) 

There is need to eliminate all possibilities for pump cavitation (a condition when the liquid 

pump fails to pump liquid due to presence of bubbles). 
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Condenser capabilities will be tested against the dryness factors of working fluid to achieve 

a cooling level where cavitation may not occur. Also, it will be tested if construction 

conditions such as Net Positive Suction Head (NPSH) and pipe diameters can contribute to 

cavitation. 

1.4.4 Sub-problem 4 (Start-up) 

A possibility for the unit to start without using the motor will be investigated by identifying 

the operational control characteristics such as the use of electromagnetic valves and 

pressure storage devices. A sprocket /chain arrangement will be tested with the two linking 

the pump and the scroll expander. 

1.5 HYPOTHESIS 

The low-temperature Organic Rankine Cycle heat engines can work efficiently with correct 

conditions of volume ratio and pressure ratio. 

1.6 DELIMITATIONS 

Since an initial prototype was developed which will have to be optimised (4), and bearing in 

mind the fact the cost of the components is high, the research will be constrained by the 

following: 

 The study will only be done on refrigerant R-134a; whose initial investigations show 

that it can provide the anticipated results besides being cheaper. This will change 

depending on the results. 

 The 1kW scroll expander will be used with a plunger pump of 138 bar maximum 

pressure capabilities as it is already available. 

 Copper pipes are preferred owing to their low cost and ease of workability whilst 

achieving the operating parameters. Copper pipes are generally compatible with      

R-134a and R-245fa (6).  

 The refrigerant will be recovered (7) for re-use (8) each time there is a need to change 

on piping circuitry.  
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1.7 SIGNIFICANCE AND FEASIBILITY OF RESEARCH 

This research will contribute towards the following: 

 The research will lead to the provision of portable sources of electricity which are 

reliable and cost effective since most of the running cost is credited to nature and 

industrial waste. This somehow takes care of the low efficiencies as the input energy 

is abundantly available so long it can be harnessed. In this particular research, the 

source of energy will be heat stored in rocks. 

 The research will enable provision of electricity to the remotest of areas where the 

national grid may not reach. This can encourage people to move to remote places 

like farm lands and rural villages with a readily available source of electricity. 

 This research will encourage the use of green energy which may be abundant and 

free to use - consequently reducing the overall depletion and degradation of nature. 

Most of such energy is clean as it does not pollute the environment. 

 This research will encourage savings on energy usage by increasing the reuse of 

waste heat energy in industries. Most energy usage audits show inefficiencies in 

excess of 50% (9) 

1.8. RESEARCH METHODOLOGY 

1.8.1 Preliminary work 

The research steps to carry out the study are discussed below: 

1.8.1.1 Literature survey 

Literature regarding the existing Organic Rankine Cycle heat engines will be reviewed 

extensively and continuously with the view to fully understand the functionalities, existing 

challenges and the solutions available.  
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1.8.1.2  Prototype construction  

The initial ORC unit will be reconstructed more than once while establishing power output, 

flow rates, fluid temperature differences, fluid pressure differentials and thermodynamic 

efficiencies.  

1.8.1.3 Analysis of results 

The results will be analysed and interpreted by use of numerical computation analysis using 

computer programs such as Excel and Genetron simulation.  

1.8.1.4 Construction of final prototype 

Based on analysis of results, adjustments and improvements will be carried out on the unit 

to curb the challenges identified and further tests carried out to establish the required 

procedures and framework for achieving optimum performance of low-temperature ORCs. 

This procedure has been chosen for the following reasons: 

 The experiment is a continuing process where improvements will be made on existing 

research done by the previous scholar, Jason Humm.  

 The unit’s components are expensive such that no control prototypes will be built.  

The summarized research methodology is illustrated in Figure 1.2 as a flow chart showing 

the critical steps that will be followed during the study. 
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Figure 1.2 ORC flow chart 
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1.9 COST ESTIMATE 

Table 1.1 shows the estimated cost of prototype and dissertation. 

Table 1.1 Estimated budget for the research project 
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1.10 RESEARCH PROJECT PLAN 

The research project activities and schedules are listed in Table 1.2. 

Table 1.2  Research project plan 
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CHAPTER 2  

LITERATURE REVIEW 

Information regarding the research was gathered by use of journals, text books and 

suppliers’ manuals. Information from internet was also considered. The findings are 

presented below. 

2.1 INTRODUCTION 

Supplying electricity to populations away from an urban setup is a challenge to many 

organisations and governments around the world. Many challenges include transportation 

cost and economic viability, especially if the location is very remote and does not have an 

economic activity to offset the cost of supply (10). Other sources of electricity that would suit 

such setups include small scale remote generation such as nuclear energy generation, fossil 

fuel generation, solar power (11), wind, biomass, biogas, (12) geothermal as well as industrial 

waste heat. (13).  

Some energy sources, though viable, have their disadvantages including pollution, technical 

challenges in maintenance and source of energy to achieve generation. This is where an 

Organic Rankine Cycle heat engine (14) fits better.  

ORC heat engines make use of fluids that require less heat energy to translate to power 

output, and ably fit remote generation with less cost on inception and during operation. They 

stand to be a solution to power supply for isolated populations. One case of success was the 

implementation of such a project at a clinic in Lesotho (15), with the result that cost of supply 

of electricity was reduced considerably.  

2.2 OPTIMISATION 

Generally, ORC heat engines have low efficiencies ranging within 10% of the energy       

input (16). This is the reason optimisation becomes important to get the most possible power 

output. Studies are being conducted in component performance improvement (17) as well as 

working fluid (18) and operating temperatures (19). ORC units almost always are closed circuit 
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engines such that pressure differentials are an important factor unlike open systems whose 

low pressure side is atmospheric.   

2.2.1 Fluid selection criteria 

There is need to select the best combination of the heat source and working fluids as the 

results of installing the unit range from energy efficiencies (20) to environmental issues (12). 

Many researchers have evaluated performances of different working fluids in different 

conditions while being guided by performance efficiencies, safety, and international protocols. 

Some suggestions indicate that fluids which can be used in ORC engines must be of the 

following characteristics (21): low specific volume, high efficiency, moderate pressure in heat 

exchangers, low cost, low toxicity, low Ozone Depletion Potential (ODP) and low Global 

Warming Potential (GWP) (22).  

 

Figure 2.1 GWP of common working fluids for ORCs 

From January 2015 the European Union fluorine gas regulation prohibits the production of 

new equipment that uses fluids with GWP greater than 2500 (comparing with Carbon Dioxide 

whose index is 1), and restricts services of such equipment to 2020 (23).Figure 2.1 shows 

GWP of some substances (24) including R-134a (source Danfoss). 
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2.2.2 Blends and Pure Substances 

The most active refrigerants used in ORC heat engines are R-134a (25). and R-245fa (26). 

Others include the flammable hydrocarbons like Isobutane, Isopentane (27) . Most of these 

refrigerants operate at typical temperatures of 100-3500C at evaporator outlet conditions and 

a typical 20-40 0C at the condenser. Refer to Appendix 8 (28) The higher efficiencies come in 

with a higher temperature difference between the evaporator and the condenser         

conditions (29). 

The working fluids are classified as either wet, isentropic or dry (30). Wet fluids are those that 

are saturated such that when the vapour reaches the expander some droplets will have 

formed already. Isentropic fluids have a balance of energy such that it is assumed they do 

not collect or lose heat during expansion in the expander. Most such processes are ideal. Dry 

fluids are regarded highly superheated such that they do not form liquid droplets while in the 

expander; owing to high enthalpy held by such fluids.(28) Operating the unit at supercritical 

conditions increases the power output, hence those fluids that are able to achieve this are 

preferred. 

It is claimed that use of zeotropic mixtures (31) (mixtures of different fluids which have different 

phase change temperatures at a given pressure) can considerably increase the efficiency of 

the cycle (32). They take advantage of a variation in boiling and condensing temperatures, 

known as a temperature glide (33) at evaporator and condenser respectively. Also, Whang and 

Zhao (27) observed that use of mixtures led to reduced required flow rates and expansion 

ratios, resulting in reduced turbine dimensions and cost. 

2.2.3  Scroll expanders 

There are several types of turbines that have been developed for the operation of electricity 

generators (34). It is, therefore, necessary to select suitable turbines for the desired output 

based on operating conditions. Most Organic Rankine Cycle heat engines operate at low 

temperatures, hence necessary to determine which turbines can give the best power output. 
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Axial turbines and radial turbines, also known as turbo expanders or centrifugal turbines, are 

some of those employed in generating shaft power from fluids (35). Axial turbines are used 

with higher temperature heat sources (36) and are more applicable in high energy output 

applications, while radial turbines are feasible in low energy output applications. The latter is 

smaller in physical dimensions, yet with higher efficiencies (37). On the other hand, scroll, 

screw and piston expanders are widely used in smaller ORC engines (36) due to their high 

efficiencies, simplicity, compactness, among other reasons (38). The performance of 

expanders depends on flow characteristics. Scroll expanders are an even better choice on 

smaller generators as they are more reliable with minimal moving parts and constant flow. 

They are classified as oil lubricated or dry, (not requiring oil lubrication) (39). 

2.2.4 Condensers 

A condenser is a part of the cycle where the organic fluid vapour is allowed to cool off, getting 

rid of the heat and being brought to the condensed (liquid) state (40). It is an important part of 

the cycle as it prepares the fluid for recirculation since the recirculator is a liquid pump (41). 

There are many designs of condensers defined by the following: 

 The cooling medium 

Condensers can be classified as either air cooled, water cooled or evaporative. Water 

cooled condensers work more effectively than air cooled condensers owing to the 

ability of water to collect more heat (42). Smaller load air cooled condensers depend on 

natural convection while those that extract more heat load use fans, a method known 

as forced convection. Water cooled condensers may be of any of the following designs, 

shell and tube, shell and coil, annulus or submersible (43).Evaporative condensers use 

both water and air. 
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 Physical construction 

This class ranges from bare tube to microchannel condensers. In general, 

microchannel condensers are the most effective. (44). The brazed plate type, such as 

car air conditioning condensers, are an example of micro-channel condensers (45). 

Water cooled condensers with micro-channels, such as the brazed plate heat exchangers, 

bring into play a strong combination of wide surface area and effective heat transfer between 

fluids (46).  

2.2.5 Recirculators 

Fluid recirculators for Organic Rankine Cycle heat engines are normally liquid pumps (47). 

These can be in the form of piston pumps, diaphragm pumps, centrifugal as well as plunger 

pumps, just to mention a few. Different application limits of pressure, temperature, suction 

head and flow rate determine the type of pump that suits the most.  

In ORCs, the energy generated must operate the unit and a substantial percentage remain 

for consumption by the intended users (48). This remainder is the net energy (the whole 

purpose of investing in the plant). More energy spent by the plant itself reduces the 

performance and efficiency of the unit. It is for this reason that issues to do with challenges 

of discharge and suction head management be carefully analysed before a pump can be 

selected. Another aspect is cavitation, (49) which is a phenomenon that occurs as a result of 

the following: 

 Insufficient fluid charge resulting from undercharging or loss of charge due to leakages 

leaves the fluid mostly in vapour state due to reduced pressure. This can be avoided by 

making sure the system is void of leakages by thoroughly checking for leaks and 

determining the required charge through system performance. Electronic leak detectors 

may be required for such a task. 

 Air being trapped in the system, in which case the air forms bubbles that prevent smooth 

flow and in doing so increase the compressibility of the fluid. A way of separating the air 
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from the fluid must be found to solve such a problem, such as inserting purge valves at 

highest point of fluid path. 

 When the vapour is condensed and left at saturation temperatures, a slight decrease in 

pressure causes “boiling” which forms bubbles. Such phenomenon is common at pump 

entry where pressures tend to reduce with suction and can be solved by sub cooling.  

 At constant pressures, a saturated liquid boils off with a slight increase in temperature by 

the addition of heat from the surroundings, or by virtue of friction caused by flow. A sub 

cooling of at least 5℃ solves such a problem. 

All the situations above result in cavitation, which is damaging to the pump life as referred to 

in the textbook “Cavitation and Bubbles Dynamics” by Brennen, page 27 (49). An improved 

condenser capacity must be able to sub-cool the fluid sufficiently (50), reducing chances of 

boiling off. However, some literature suggest increased Net Positive Suction Head (NPSH) 

as a solution (51). 

2.2.6 Evaporators 

Evaporators, just like condensers, are heat exchangers. The difference lies in the direction of 

heat flow. With evaporators, heat moves from the surrounding to the working fluid, causing it 

to evaporate. Studies on evaporator performance show that the type of evaporator can have 

significant effects on performance. Yuh-Ren Lee( et-al) (52) reported in their study on the 

effects of types of evaporators on ORC heat engines. They used R-245fa as a working fluid 

and noted that with plate evaporators they hardly reached 10℃ superheat while with a shell 

and tube evaporator they were able to superheat to 17 ℃ . The significance of such a 

superheat was the ability to completely phase out of the saturation zone, which resulted in 

the expander running smoothly and more efficiently. This means a higher superheat 

temperature is a goal to achieve with evaporators. The design pressures must also be taken 

into consideration when selecting the evaporator (48). The evaporator is the highest pressure 

region of the system and unrealistically high pressures may rupture it. The manufacturers of 

the brazed plate heat exchangers (53), Danfoss, limit the working pressures to 30 bar.  
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Tailu Li, et al (54) studied on evaporator options where evaporators were placed in parallel and 

efficiencies were improved. This could basically have an increase in heat transfer surface 

area and a decrease in frictional resistances to flow, with minimal pressure losses. 

2.2.7 Regenerators 

A fluid leaving the expander has substantial heat which must be extracted in the condenser. 

This heat can be used to preheat the fluid from the pump entering the evaporator (refer to 

Figure 2.2(55)) thereby reducing the evaporator duty (56). This reduces the condenser duty(57) 

on the fluid from the expander as some heat is already given up to the fluid from the pump 

thereby reducing the required condenser size and saving on cost. Consequently, the size of 

the evaporator and energy required to evaporate the fluid is reduced. Regenerators help in 

the reuse of heat energy and reduction of required evaporator and condenser capacity while 

increasing system efficiency and performance (58).  

 

Figure 2.2 ORC cycle with regenerator 
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CHAPTER 3  

TEST SET-UP 

3.1. INTRODUCTION 

This chapter provides details of the approach towards achieving optimisation of the Organic 

Rankine Cycle heat engine. This is based on extensive literature reviews and initial 

experiments on the unit which involved construction of two prototypes, refer to Figure 3.7, 

the findings of which led to construction of the current prototype as shown in Figure 4.5. In 

summary, the chapter will look into optimisation in areas that will lead to increasing power 

output. 

3.2. THE ORGANIC RANKINE CYCLE HEAT ENGINE 

The heat engine to be optimised was built by the previous scholar, Jason Humm,(4) as seen 

in Figure 3.1. It comprised the following main components; the plunger pump, an evaporator, 

a scroll expander, a condenser and a booster pump. The unit utilised R-245fa as a working 

fluid. Literature review and test results led to an optimised design. 
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Figure 3.1 Initial set up of the Organic Rankine Cycle heat engine 

3.3.  MODELLING AND REBUILDING THE PROTOTYPE 

There was need to understand the working principle of the cycle, especially the performance 

characteristics. The first replica was constructed and tested to understand the following 

issues: 

 Cavitation 

 Pressure differentials 

 Power output 

During the rebuild, some main components such as the scroll expander and the plunger 

pump remained unchanged components around which system optimisation could be 

explored. Some components got eliminated, simplifying the unit. Pipes were changed from 

stainless steel to refrigeration grade copper pipes. This simplified the workability as brazing 
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became the most relevant joining method, cutting the cost on fittings and resulting in 

reduced occurrence of leakages. 

3.3.1 Heat exchangers 

The capacity of the unit at different stages was determined with regards to energy balances. 

A mass flow rate was determined using the volume flow rate as deduced from the energy 

balance equations from equation 3.1 to 3.6 below with the targeted power output of 1 kW 

from the scroll expander. Pressure and temperature boundaries were set by the ambient 

conditions, critical fluid temperatures’ and manufacturers specifications which together with 

results from previous experiments enabled determining enthalpies from NIST Tables of fluid 

properties. Refer to Appendices 1 to 5. Also use of Genetron Properties (a Honeywell 

refrigeration properties program) helped predict and confirm expected results as given in 

Appendices 6a, b and c. The analysis of the process started with pump working on 

incompressible liquid. From the properties chart, specific volume, vf, and enthalpy, hf across 

the pump positions 1-2 in Figure 3.2 (59) were read at given pressure and temperature. Since 

the fluid was assumed incompressible, vf remained the same and work was determined by 

the difference in a change of pressure as follows:(59)  

 𝑾𝒑𝒖𝒎𝒑 𝒊𝒏= 𝒗𝒇(𝑷𝟐-𝑷𝟏)/ ŋ𝒊𝒔𝒆          (3.1) 

The boundary temperature and pressure of the unit were used to read the enthalpies across 

the evaporator (boiler) from the NIST property charts and heat energy gained in the 

evaporator was determined by the formula:  

�̇�𝒊𝒏 𝒆𝒗𝒂𝒑 = 𝒎(̇ 𝒉𝟑- 𝒉𝟐)        (3.2) 

The mass flow rate was derived from the volume flow rate read from the flow meter. 

 As the fluid caused the turbine to spin, a drop in pressure and temperature was evident. If 

the turbine were absolutely efficient, all the drop would translate into work done by turbine. 
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Considering mechanical and thermodynamic inefficiencies, the isentropic efficiency, ŋ, of 

the turbine was taken into consideration.  

 

Figure 3.2 ORC schematic and T-s diagram for the unit 

Work by turbine was given as: 

 𝑾𝒐𝒖𝒕 𝒕𝒖𝒓𝒃= ŋ𝒊𝒔𝒆  �̇�( 𝒉𝟑- 𝒉𝟒)        (3.3) 

The fluid got to the condenser at low pressure but at almost exit temperature from turbine. 

A regenerator was not considered in the analysis, and reading the conditions of pressure 

and temperature from the charts determined the enthalpies as well as dryness factor of the 

fluid. The heat extracted from the condenser before the fluid started another cycle was given 

by: 

�̇�𝒐𝒖𝒕 𝒄𝒐𝒏𝒅= �̇�( 𝒉𝟒-𝒉𝟏)        (3.4) 

Thermal efficiency of the unit was given by 

ŋ𝒕𝒉𝒆𝒓𝒎𝒂𝒍= 1-(�̇�out / �̇�in)        (3.5) 



 

21 

 

Or ŋ𝒕𝒉𝒆𝒓𝒎𝒂𝒍 = 𝑾𝒏𝒆𝒕/ �̇�in         (3.6) 

Where 

 �̇�in  was heat absorbed by working fluid 

 �̇�out  was heat rejected by working fluid [W] 

�̇�  was mass flow rate [kg/s] 

h2  was enthalpy at exit from pump and entry to evaporator [kJ/kg] 

h3  was enthalpy, evaporator exit and expander entry [kJ/kg] 

h4  was enthalpy, scroll expander exit and pump entry [kJ/kg]  

h1  was enthalpy, condenser exit and entry to pump [kJ/kg] 

ŋ𝒊𝒔𝒆  was isentropic efficiency of turbine 

W out. turb was work done by the turbine [W] 

Wnet   was difference between turbine work and pump work. [W]   

The pump does little (negligible) work on the fluid. Refer to Table 4.1. However, the energy 

required by the pump and motor was observed to be 3.5 times more than that used by fluid. 

Pump and turbine isentropic efficiency is normally given by the supplier as such there was 

no need to calculate it. 

Carnot efficiency, which is the highest ideal efficiency the cycle can achieve was given by 

ŋ𝑻𝒉𝒆𝒓𝒎𝒂𝒍,𝑪𝒂𝒓𝒏𝒐𝒕 = 1-(𝑻𝒍𝒐𝒘/  𝑻𝒉𝒊𝒈𝒉)       (3.7) 

The Carnot efficiency is a comparison of cycle thermal performance against highest possible 

performance.  
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3.3.2 Evaporator 

The evaporator was made of a single coil 12.5 mm diameter and 10 m long copper tubing, 

refer to Figure 3.3A. This had a surface area of 3.95 m2 which could have been sufficient at 

high operating temperatures as was the case with a gas burner as a source of heat. 

However, the evaporator did not give the desired outcome hence another one was worked 

out and can be seen in Figure 3.3B.  

 

Figure 3.3 Coil evaporators, A- single coil, B- multiple coil 

Apart from low efficiency, friction losses were also experienced, which led to adjustment 

from a single coil to 3 coils in parallel, as in Figure 3.3B., thus increasing heat exchange 

surface area and achieving more heat transfer. LMTD method was used to establish 

required surface area. This was achieved using the following relationships: 

�̇� = 𝑼𝑨𝒔∆𝑻𝒍𝒎𝒕𝒅 (kW)        (3.8) 

Temperature difference between the incoming hot fluid and the outgoing cold fluid:      

  ∆𝑻𝟏 = 𝑻𝑯 𝒊𝒏 − 𝑻𝑪 𝒐𝒖𝒕 (℃)         (3.9) 
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Temperature difference between the outgoing hot fluid and the incoming cold fluid: 

∆𝑻𝟐 = 𝑻𝑯 𝒐𝒖𝒕 − 𝑻𝑪 𝒊𝒏 (℃)        (3.10) 

A logarithmic mean temperature difference is determined as follows: 

∆𝑻𝒍𝒎𝒕𝒅 =
∆𝑻𝟏−∆𝑻𝟐

𝒍 𝒏(
∆𝑻𝟏
∆𝑻𝟐

)
 (℃)         (3.11) 

Where  

�̇�  was the rate of heat transfer [W] 

LMTD  was Logarithmic Mean Temperature Difference[℃] 

U  was heat transfer coefficient [W/m2K] 

𝑻𝑯 𝒊𝒏  was entry temperature of hot fluid to heat exchanger [℃] 

𝑻𝑯 𝒐𝒖𝒕  was exit temperature of hot fluid from heat exchanger [℃]   

𝑻𝑪 𝒊𝒏  was entry temperature of cold fluid to heat exchanger [℃] 

𝑻𝑪 𝑶𝒖𝒕  was exit temperature of cold fluid from heat exchanger [℃] 

A thermal balance was determined with the knowledge of mass flow rate and coefficient of 

heat transfer as below: 

�̇� = �̇�𝑪𝒑 (𝑻𝟐 − 𝑻𝟏)    (𝒌𝑾)           (3.12) 

Thus:   �̇�𝑪𝒑 (𝑻𝟐 − 𝑻𝟏)    = 𝑼𝑨𝑺∆𝑻𝒍𝒎𝒕𝒅      (3.13)  

This heat equated to the LMTD equation gave the required surface area of the heat 

exchanger. Values of U were found from the tables as a range (2), refer to Table 3.1. The 

minimum as well as the maximum were calculated giving a range of heat exchanger surface 

area. For optimum benefit, the larger area was used for the design of the heat 

exchangers.(60) 
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The coil was immersed in a small drum provided with electric heaters that simulated the 

stored thermal energy. Improved heat transfer ensured that the scroll received sufficient 

superheat (61) so that the exit vapour remained with a little superheat to prevent 

condensation within the scroll expander. The condenser had to sub-cool the fluid at least 

5℃ (62) because such conditions would improve the performance of the recirculation pump. 

This would ensure that almost incompressible fluid was pumped by the plunger, resulting in 

increased pumping efficiencies, and would result in the elimination of cavitation; as will be 

discussed in the preceding sections.  

The modified type of heat exchanger was utilised both as evaporator and condenser.  

Table 3.1 Fluid heat transfer coefficients in heat exchangers 
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3.3.3 Condenser 

The condenser initially utilised a plate type heat exchanger which was later used as a 

recuperator. One of the coils was immersed in 220l drum supplied with tap water, thus being 

utilised as a condenser (Figure 3.7 under cavitation). 

The parallel coil setup resulted in improved heat transfer as expected. Pressure changes 

were also observed (only across the pump and the scroll expander) suggesting a reduced 

impact of friction. 

3.4. PIPES 

3.4.1 Pipe types 

Steel pipes had 10 times more frictional factors compared to copper pipes which contributed 

to energy demands required to transport the fluid. For optimisation in energy efficiency, 

comparisons of stainless steel and copper give copper a better advantage over steel in this 

application, refer to Table 3.2. 

Table 3.2 Comparison of copper and stainless steel   

PARAMETERS COPPER STAINLESS STEEL 

Absolute roughness ɛ (60) 0.0015mm 0.015mm 

Cost of 25mm diameter /m R92 R504 

Rigidity  Low High 

Method of joining Mostly soldering Unions and fittings 

Leakages Possibility Low High 

Thermal conductivity k (60) 401 W/m.K 14.2 -15.1 W/m.K 
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3.4.2 Pipe dimensioning 

Pipe diameters and lengths had a direct effect on pressure differentials (Pressure differential 

is the difference between the turbine entry pressure and exit pressure at any instance), and 

analysis of friction factors and pumping energy requirements was done based on pipe 

dimensions. Changing the setup to shorter pipe runs reduced pressure drop across piping, 

the same result was observed in the heat exchanger piping in parallel. The following was 

the method of calculation: 

A volume flow rate, Q, was determined from the flow meter readings in litres per minute. 

Q=
𝝅𝒅^𝟒

𝟏𝟐𝟖𝝁𝒍
 (Poiseuille’s equation)  (m3/s)       (3.14) 

The limiting lengths given particular diameter were determined, and examined at different 

diameters. The coefficient of dynamic viscosity,  𝝁  remained the same for a range of 

conditions of a fluid. Or alternatively: 

Q= (
𝝅𝑫^𝟐

𝟒
)�̃� (m3/s)         (3.15) 

The average velocity of a fluid in motion is denoted �̃�, which is the maximum velocity divided 

by 2 as the minimum velocity on the walls is close to zero (0). 

The expected pressure drop due to flow and pipe characteristics was given as follows: 

∆𝑷 = 𝒇
𝒍 𝒗^𝟐

𝟐𝒅
𝝆 (kPa)         (3.16) 

Reynold’s number was used to determine flow characteristics of the fluid, whether laminar 

or turbulent, with the relationship below. 

 Re= 
𝝆𝒖𝒅

𝝁
          (3.17) 
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The frictional factor f was read from the Moody’s chart, having determined the relative 

roughness, 
𝜺

𝒅
 where 𝜺 was the absolute roughness and 𝒅 the diameter of pipes for a 

particular Reynold’s number. 

In the above equations: 

∆𝑷  was the pressure differential registered across pipe sections, (kPa) 

𝒖 ̃   was the average velocity of a fluid in a pipe (m/s) 

l   was the length of a pipe under examination (m), 

f   was the frictional factor (dimensionless) 

d   was the bore diameter of a pipe. (m) 

ρ   was the density of the fluid in question (kg/m3) 

v   was the velocity (m/s) 

3.5. CAVITATION 

Another factor to be investigated was cavitation. Tests by the previous scholar registered 

this as a major challenge to be investigated further. It was noted that the liquid pump would 

run without registering a flow rate. This was due to vapour occupying the pump region, 

resulting in no significant suction. An investigation to verify whether this phenomenon was 

to do with suction head or dryness factor of working fluid was launched by the construction 

of a tall unit, about 3.5 m high (Figure 3.7) to increase the Net Positive Suction Head 

(NPSH), and installing a flow meter (Figure 3.4) along the tap water supply line to monitor 

the volume flow rates. Sight glasses were installed in different areas of interest to observe 

the condition of working fluid at different condenser flow rates. At increased condenser 

cooling fluid flow rates, it was expected that the sight glass would be full indicating all liquid 

and no vapour. A reduced condensation would show bubbles at the sight glass indicating a 
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mixture of vapour and liquid. The dryness factor regions as evident from sight glasses can 

be seen on the Genetron Simulation chart in Figure 3.6 

 

Figure 3.4 Cooling water flow meter 

The results were compared at different flow rates of the cooling water. It was observed that 

at lower flow rates, there would be no pumping and bubbles would be seen through a sight 

glass fitted at the exit of the condenser. Optimum flow rates were established, as seen in 

Figure 3.5, beyond which cavitation was eliminated and the sight glass was clear. It was 

further noted that more cooling in the condenser resulted in better pump performance as 

there was more liquid in the pump intake region.  

Plotting the refrigerant conditions on the P-h chart indicated that it was still in the saturation 

zone as a mixture, suggesting that sub cooling conditions had not been reached.  

The flow rate results and condenser performance results were recorded and presented in 

the graph in Figure 3.5  

The system was left to run with about 200 litres of water and in about 30 minutes’ 

performance had significantly dropped and the water temperature was about 40℃. This 

resulted in reduced condensation causing cavitation of system pump. Water was supplied 

in intervals of volume flow rates while observing the steady state conditions of temperature. 

An optimum range was reached where temperature of the water dropped no more and the 

unit performance improved. 
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Figure 3.5 Effect of cooling water on condenser temperature 

The same was the case with the shorter unit (Figure 3.7), resulting in the conclusion that 

cavitation was dependent on the dryness factor of working fluid. Hence, height being 

eliminated as a constraint. 

The P-h chart in Figure 3.6 shows fluid conditions at different processes in the system. The 

liquid saturation region of zero dryness fraction is the desired condition at the pump while 

the superheat region beyond 100% dryness fraction is desired at the outlet of the expander. 

The transition region which is the mixture phase occurs in the evaporator and condenser, 

the direction of which is dependent on direction of heat flow. 
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Figure 3.6 P-h Chart as simulated by Genetron ORC Simulator 

 

Figure 3.7 Prototypes used to investigate NPHS regarding cavitation 
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3.6. WORKING FLUID 

R-134a was used for development due to its lower cost, availability and low critical 

temperatures which are below 100℃. The refrigerant used water as a heat transfer fluid as 

it required a temperature just about the boiling point of water. Using the Genetron Simulation 

program, it was noted that R-245fa would produce 30% more power output compared with 

R-134a. Refer to Appendices 6a, b and c.  However, R-245fa requires about 130℃  

temperature heat source to operate efficiently. Meanwhile, heat transfer oil was used to give 

energy to R-245 fa as it requires temperatures higher than water can reach at atmospheric 

pressure. Some characteristics of the two fluids are shown in Table 3.3 below. 

Table 3.3 Properties of R-134a and R-245fa as ORC working fluids 

 

3.7. RECIRCULATION PUMP 

A recirculation plunger pump by CAT Pumps (model 2SF 30) was used which could achieve 

a flow rate up to 12 l /minute. However, driving the pump and motor required more power 

that driving the working fluid. If a pump achieving high pressures above 20 bar could be 

employed at lower energy consumption, it would be a saving to the heat engine energy 

demands. The behaviour of the feed pump can be seen in section 4.3 and Figure 4.3 where 

it was discussed further (63). Another selection in the supplier’s catalogue was a CAT pumps 

2SF 10 plunger pump with a maximum flow rate of just about 4l/minute. Unfortunately, the 

pump required to run at much higher speeds compared with the former, to achieve a 
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particular flow rate, compromising on power input. It also required that it run longer than the 

bigger pump considered above for it to achieve adequate flow. 

3.8. CHARGING THE SYSTEM 

The unit was pressurised to check for leaks using an electronic leak detector and soap 

bubbles. Once convinced that there were no leakages, the unit was evacuated from 

atmospheric pressure, 760,000 microns to about 500 microns using a vacuum pump. (See 

Appendix 7, pressure conversion table by H. Tring and T. Stec). A heat source was prepared 

to the expected operating temperatures. Working fluid was added at intervals with 

increments as shown in Table 3.4 using a weighing scale and charging gauges.  

Table 3.4 Charging working fluid with R-134a 

MASS (kg) EFFECT ON EXPANDER REVS/ MIN (NO LOAD) 

1 No response 0 

2 Runs for 8 seconds 90 

3 Runs for 23 seconds 200 

4 Runs for 2 minutes 500 

5 Runs continuously 1200 

6 Runs continuously 4000 

A 10% mass refrigerant was added to ensure sufficient charge at all times. Once the 

required mass was established, it could be used as a guide for future charging. This method 

was preferred because different working fluids would be required in different quantities for 

the same unit.  
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A refrigerant cylinder was connected to the access port with a valve via manifold gauges 

and hoses. A vacuum was pulled, cylinder opened and placed on a weighing scale such 

that liquid refrigerant was supplied. Manifold gauges were opened and closed at mass 

intervals as tabulated above. A point was reached when the cylinder pressure was equal to 

system pressure and no further transfer would occur. The cylinder was warmed with warm 

water to allow flow. This process raised the cylinder vapour pressure. CARE MUST BE 

TAKEN NOT TO EXCEED 48℃   AS EXCESS VAPOUR FORMATION MAY EXPLODE 

THE CYLINDER.(64)  

Refrigerant recovery was done by pulling vacuum on empty cylinders and connecting them 

to the unit for drainage while placed in ice. This method was capable of recovering up to 

80% of R-134a and almost 100% for R-245fa. 

3.9. PARAMETERS FOR CONSIDERATION 

Some of the parameters that were monitored included temperature and pressure at different 

points in the system as it was being operated.  

3.8.1 Pressure 

Initial pressure reading gauges were limited to 15 bar as shown in Figure 3.8 and could not 

be used on R-134a whose operating pressures were above 20 bar in the first 2 prototypes 

 

Figure 3.8 Wika pressure gauges (max 15 bar) 
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thus were replaced by the high pressure refrigeration bourdon gauges limited to 80 bar as 

in Figure 3.9. The gauges were set to read the inlet and outlet of the scroll expander as well 

as the inlet and outlet of the working fluid circulation pump.  

 

Figure 3.9 Bourdon pressure gauges 

An electronic pressure transducer was placed in comparison with the bourdon gauges. 

The areas to be monitored were at the entry and exit of the scroll expander, and entry and 

exit of the liquid circulating pump. ( Figure 3.9) 

In the first prototype setup, the unit showed significant pressure drop between expander 

outlet and pump inlet as much as 3 bar, as well as between pump outlet and expander inlet 

in the region of 5 bar. This suggested a high friction loss as a result of the length of piping. 

Moreover, most parts of the unit had steel pipes, which had higher friction factors in 

comparison with copper pipes.  

Pipe dimensioning confirmed that bigger pipes reduced friction and pumping power, as 

expected. Also, bigger heat exchangers were more effective in heat transfer processes in 

spite of their cost. Despite the recommended pressure ratio across the expander being 3.5 

to 1, the two set-ups had pressure ratios around 2 to1.  
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3.8.2 Temperature 

Temperature was monitored using K-type thermocouples whose one end was bonded to 

the pipes, and the other plugged to a TEMPpoint module as shown in Figure 3.10. Computer 

software Measurement Instruments Calibration Utility was used to calibrate the 

thermocouples with the help of a K-type thermometer, and Measurement Applications 

software read the temperatures at different positions.  

 

Figure 3.10  TEMPpoint temperature module with K-type thermocouples 

Pressure and temperature relations were used to plot the process on the P-h or T-s chart 

from which enthalpies could be read or calculated respectively. These values were 

interpreted as work input and output as well as the heat that was transferred to and from the 

fluid. Thermodynamic efficiencies were also analysed.  

3.8.3 Working fluid flow rate 

A flow meter was included in the circuit to read the volume flow rate which was translated 

to a mass flow rate with the knowledge of specific fluid conditions of temperature and 

pressure to determine density. The flow meter in Figure 3.11 shows a liquid flow rate of 2.44 

litres per minute. It was noted that beyond certain limits of flow, pressure and scroll rotational 

speeds could not be increased with increasing flow rates. This established the optimum flow 

rate of the ORC unit to be 3.2 l/min for prototype 1 and 2.  
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Figure 3.11  Picture of a flow meter for working fluid 

3.8.4.  Shaft power 

Two methods were used to measure shaft power. The first one employed an electric 

generator with the speed of 3600 revs/min. The second one used a dynamometer that 

measured mechanical shaft power. 

Whilst using an electricity generator, a minimum speed of 1500 revs/min was required for it 

to switch to current supply. The highest scroll speed of 2200 revs/min was reached with 

prototype 2, an increase from the previous 1650 from the first prototype. Multimeters were 

used to measure current and voltage which was translated to power using the following 

equation: 

PWR= V x I [W]         (3.18) 

Where V is voltage and I is current. 

Maximum voltage recorded from the high setup was 78 Volts, translating to 180 W power. 

The preceding setup produced a maximum of 142 Volts with an average of 120V. This 

translated to 320 W of power. 
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A dynamometer was set up and the results were calculated as shaft power using the 

following relationships:(65) 

PWR= T ω [W]         (3.19) 

T = F x r [Nm]          (3.20) 

And ω = 𝟐𝝅
𝒓𝒆𝒗𝒔/𝒎𝒊𝒏

𝟔𝟎
 radians.       (3.21) 

Where T  was torque which was a product of force and pulley radius 

ω was the angular velocity in radians 

Force was determined by use of a spring balance and brake rope, with a dead weight on 

the other side. The difference between spring balance reading and dead weight gave the 

applied force on the shaft. while reducing the speed of the expander. The effect was 

interpreted to shaft power output using the above formulation. Refer to Figure 3.12 for the 

plot of the power output. Whilst maintaining the feed pump flow rate, the expander was 

allowed to accelerate to a maximum rotational speed and a gradual increase in dead weight 

increased braking force.  

 

Figure 3.12  Shaft power for prototype 2 
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3.9. SUMMARY 

In summary, the heat source power requirements were established to be 16 kW for the unit 

to produce 1 kW. The capacity of heat exchangers was found to be in the range of 15 kW. 

Flow rates of cooling water and working fluid were established as well. the unit required not 

more than 4l/ min of working fluid while the condenser optimum coolant flow rate was about 

23l/ min of tap water. 

Power output for the first and second prototype was determined to be lower than the pump 

power intake. 
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CHAPTER 4  

RESULTS AND DISCUSSIONS 
 

4.1 INTRODUCTION 

This chapter summarises the results obtained from the experiments and their impact on the 

remodelling of the new unit. The model was studied in two stages to compare the 

performances at different heights. A three-metre-high and a one-and-a-half-meter unit were 

tested and a comparison of results was made. Refer to Figure 3.7. Test areas included 

pressure differential, cooling water volumes, fluid circulation pump behaviour, evaporator 

and condenser temperatures, power input, and power output of the unit. Thermal 

efficiencies were also analysed and used for the design of the current prototype. 

4.2 COMPARISON OF HEAT SOURCE AND EXPANDER INLET PRESSURE 

Evaporator temperatures were varied at the source and the unit operated. It followed that 

the expander inlet pressure indicated higher limits with increased temperature, as well as 

lower with low evaporator temperatures. Boiler temperature was observed to have a direct 

impact on the achievable speed of the expander. It was observed that at low temperature 

the sight glass to and from the scroll expander revealed presence of liquid in the working 

fluid. This suggested that the fluid could well be below saturation conditions. This resulted 

in reduced power output and vulnerability of the scroll expander to damage. significantly. It 

was noted that the temperature of the working fluid was in many cases 15℃  less than the 

heat source temperature referred to in the graph. The left hand part of the graph in         

Figure 4.1 shows saturated liquid whose pressure did not significantly change with a change 

in temperature. The right hand part illustrates a highly superheated vapour, whose increase 

in temperature did not change the pressure  

These results suggested that the fluid was not superheated as required to a point around 

18 bar on the graph indicating a temperature of 80℃. Increasing beyond 80℃, no evidence 

of liquid was detected in sight glasses, indicating that the fluid was superheated. It is desired 

of the expander that the exiting vapour should be slightly superheated to eliminate chances 
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of droplets forming in the expander. It was noted from the results that, at some higher 

temperature range, the pressure did not have a significant change. This compared with the 

fluid properties, Appendices 1 to 5, in regions of high superheat such that the properties did 

not change significantly with increasing temperatures. Operating the ORC unit with R-134a 

at heat source temperatures beyond 100℃ did not contribute substantially to power output 

or pressure differential. Better unit performance occurred at temperatures within 80 and 

100℃. 

 

Figure 4.1 Pressure temperature relationship for prototype 2 

4.3 COMPARISON OF PUMP AND SCROLL SPEEDS 

Increased pump speed automatically increased the flow rate of the working fluid. An 

optimum flow rate was reached at about 3.5 litres per minute, at which the scroll expander 

reached the highest speed of 2200 revs/min. Figure 4.2 illustrates the comparison between 

pump and scroll speed. As was observed, the scroll speed was dependent on pump speed, 

which related to fluid flow. However, the expander speed reduced at flow rates beyond 

3.5l/min.  
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Figure 4.2 Comparison of pump and scroll speeds of prototype 2 

Optimum flow rate was determined and used as a basis for fluid pump design as indicated 

in Figure 4.2. At 4 litres per minute, the fluid arriving at the scroll was very wet, suggesting 

that it did not collect much heat from the evaporator. This was a possible reason for decline 

in performance as this trend kept repeating in subsequent tests. This might also be the 

reason any increase in pump speed did not increase the efficiency of the unit.  

From the above observations, improved results were expected with slightly bigger heat 

exchangers and 15 kW heat exchangers were proposed. It was found that the nearest on 

the range were 20 kW heat exchangers. 

4.4 FEED PUMP BEHAVIOUR 

It was noted that pump work was significant in the cycle such that the power output was in 

some cases less than the input. Simulations showed insignificant energy demand by the 

fluid across the pump. A study was done on pump behaviour with a full charge of working 

fluid and without working fluid. 

Results indicated that the difference of power consumption between the two was 

consistently small through a set of speeds. Refer to Figure 4.3.  
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Figure 4.3 Feed pump power with and without load 

This agreed with Genetron simulation results that did not take into account power demands 

of the motor or the pump, but of the fluid alone as observed in Table 4.1. The results are 

also consistent with the thermodynamic property results plotted on NIST charts in this report. 

Again it was observed that a constant power demand by the working fluid was maintained 

across a set of pump speeds. This raised the question if flow rates did not have significant 

effect on the power consumption of the fluid in a given setup of the unit. It also suggested 

that the pump performance curves be understood before deciding on the pump to employ, 

as most of the input energy was spent on driving pump rather than working fluid. 
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Table 4.1 Genetron Simulation results 

 

4.5 THERMODYNAMIC PERFORMANCE OF PROTOTYPE 1 AND 2 

Two cycles, one over 3 metres high and the other about half the height, were examined. 

The pressure patterns on the continuous cycle points 2 - 3 and 4 -1, in Figure 4.4, showed 

a reduction across pipes, indicative of frictional factors. The shorter construction with dotted 

lines in the same Figure 4.4 had comparisons B to C and D to A, which did not show a 

pressure differential at a precision of 0.1bar on the gauges. The shorter unit had more 

restrictions removed by setting the evaporator and condenser tubing in 3 parallel passes. 

Shorter routes were achieved which reduced the friction losses. Pipe diameters remained 

the same.  

Despite operating at lower pressure of 16 bar, the second unit had an increased power 

output of 320 W compared with 180 W for the first and achieved a higher scroll speed. 

Both units had an unexpected behaviour of gradually increasing the suction as well as 

discharge pressure when running, as opposed to the expected decrease of suction and 

increase of discharge pressures. This phenomenon was not readily understood.  
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It must be mentioned that the second unit was built primarily to find out if cavitation would 

be a setback in the final design, and if the pipe characteristics could affect pressure loss. 

Hence it was built with mostly recycled material from parent prototype for the purpose of 

cost reduction. 

Figure 4.4 P-h diagram showing cycle 1 and 2 

Figure 4.4 shows two notable results from the two set ups. Firstly, pressure losses were 

tremendously reduced in the system. Secondly, a small pressure differential yielded more 

power output at the scroll, the horizontal scale connecting C and D, compared to that 

connecting 3 and 4 on the enthalpy scale.  
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With regards to cavitation as discussed in section 3.5, both units behaved the same in 

response to flow rate of cooling fluid from the tap. Increased flow rate saw improved pump 

performance. Sight glasses reported similar expectations. It was thus concluded that the 

dryness factor of the fluid had a bearing on the pump performance, hence the working fluid 

had to be of zero (0) dryness factor. To be sure of this, a slight sub cooling had to be made 

in ranges not exceeding 5℃, by use of more efficient heat exchangers. Limiting factors were 

the cost of large heat exchangers and the lowest temperature achievable which was the 

ambient temperature. 

4.6 SUMMARY OF PROTOTYPE 1 AND 2 

From the experimental results, the first two prototypes were summarised as follows: 

 Despite the high flow rates, the units could not produce more power output due to a 

limited pressure differential. 

 Higher flow rates were achieved by running pump at high speeds, which resulted in 

high power input to the pump yet with low power output from the expander. 

 Pump power demand was determined by the speed at which the pump was operated, 

more than any other factor. 

 Poor evaporation resulted in reduced pressure differential and liquid flowing into the 

expander. 

 Suction pressures had a tendency of increasing with running time thereby narrowing 

the pressure ratio and pushing the discharge pressure up. 

The properties of refrigerants used can be found in Appendices 1 to 5. 

4.7 FINAL PROTOTYPE 

This section will discuss the experimental results of the final prototype shown in Figure 4.5, 

having been tested with both R-134a and R-245fa. The first part of this discussion will base 

on R-134a as a working fluid.  
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Figure 4.5 The final prototype 

Comparisons of results with previous prototypes are also presented in areas of 

thermodynamic performances, mechanical power and electrical power. Scroll and pump 

speeds will also be discussed. 

The speed of the feed pump was varied by a controller scaled 0 to 50 Hz., linearly 

representing 0 -1500 revs/min synchronous speed. This had a direct flow rate proportion 

ranging from 0 to about 4 litres per minute. 

The specifications of the main components that form this prototype are presented in the 

Table 4.2. Note that a few other auxiliary components that make up this prototype have not 

been included in the table. These include the variable speed drive for the feed pump motor, 

the flow meters, pipes, unidirectional valves, flow control solenoid valves and pressure 

gauges.  
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Table 4.2 Specifications of main components 

 

4.7.1 Tests with R-134a 

4.7.1.1 Thermal Efficiency 

Thermodynamic performance of three cycles was compared in a P-h (Mourrier) chart for     

R-134a in Figure 4.6. The plot areas were obtained from the pressure reading and k- type 

thermocouple readings through a Data Acquisition module. Results were displayed as in 

Figure 4.7. All the three cycles operated under sub-critical conditions. 
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Figure 4.6 Thermodynamic performance of 3 prototypes tested with R-134a 

TEMPpoint results were used to assist in plotting the cycles in Figure 4.6. The channels 

shown in Figure 4.7 with a temperature reading were a display of different positions in the 

cycle as read by thermocouples. For example, channel 10 which reads 47.53℃ Figure 4.7) 

is the expander outlet temperature, while channel 21 shows an expander inlet temperature 

of 95.58℃. Observations on the P-h chart suggested that increasing the inlet temperature 

while maintaining the pressure could result in increased scroll thermodynamic power as 

∆𝒉𝟑−𝟒 increased. 

 A summary of the results of thermodynamic performance from the plots in Figure 4.6 is 

presented in Table 4.3 The third cycle displayed a lower expander inlet pressure limit closing 

in to the recommended inlet pressure of 13 bar compared with the first two, which could 
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start at a pressure of 20 bar and gradually rise to as high as 23 bar. In the previous two 

setups it was also noted that the suction pressure was higher than expected under particular 

conditions and was increasing with running time. This caused a rise in condensation 

temperatures resulting in reducing performance. Later it was discovered that the expander 

exit port had a 12.5 mm union which was smaller than the required 25 mm outlet union. This 

meant that for every cycle there was residual pressure remaining which was gradually 

accumulating consequently reducing the pressure ratio. This might have contributed to low 

power output as it resulted in lowered expander speed. 

 

Figure 4.7 Temperature conditions at different positions in the cycle 

A 25 mm fitting cleared the restriction and solved the problem resulting in low and 

maintained suction pressures as long as condensation was available. Also, to maintain 

required pressure ratio, a turbine inlet of 12 mm pipe diameter and an outlet of 35 mm were 

derived. 
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Table 4.3 Thermodynamic performance data for prototype 1,2 and3 (R-134a) 

PARAMETERS PROTOTYPE 1 PROTOTYPE 2 PROTOTYPE 3 UNITS

Volume flow (vf) 2 2 2 [l/min]

Mass flow 0.046 0.046 0.046 [kg/s]

Work in, pump 0.455 0.471 0.459 [kW]

Heat in, evaporator 9.555 10.238 10.465 [kW]

Work out, turbine 1.229 1.684 1.365 [kW]

Heat out, condenser -8.782 -8.645 -9.555 [kW]

Thermal efficiency 0.081 0.156 0.087

Carnot thermal efficiency 0.162 0.159 0.182  

As observed in the charts in Figure 4.6, the suction pressure of the third cycle was much 

lower, at 6 bar, giving sufficient pressure differential. The low pressure corresponded with 

the expected pressure at ambient temperature conditions of the fluid in use. The suction 

conditions remained unchanged as long as condensation was supplied, maintaining steady 

performance. 

However, the results from Table 4.3 showed that prototype 2 had the highest turbine thermal 

work output followed by prototype 3 whilst prototype 1 had least power output with more 

frictional losses as evident by pressure drop. Some of the energy may have been used to 

overcome friction losses. 

The 3rd prototype had more heat transfer to evaporator and from condenser suggesting that 

the heat exchangers were more efficient than those used in the first two prototypes. This 

was the only prototype with sub-cooling.  

The second prototype had a higher thermal efficiency which was a result of operating at 

much higher pressure. This was in contrast with the electrical and mechanical power outputs 

of the prototypes. Carnot efficiency was observed to be greatest in prototype 3 possibly 

because the unit was able to operate at much lower temperatures on the suction side. 

All units were compared at a flow rate of 2l/min but at different times of the year which had 

effect on the ambient conditions therefore the lowest possible operating temperature. 
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The method of analysing thermal power helped in deciding the component thermal 

capacities but could not be reliable in predicting the system mechanical and electrical power 

output in this research. 

4.7.1.2 Mechanical, thermodynamic and electrical power 

Shaft power was determined by making use of a setup as shown in Figure 4.8. In the 

arrangement, prototype 2 and 3 were compared while running on R-134a. The shaft power  

outputs in Figure 4.9 were compared with the thermodynamic power in Table 4.3. Prototype 

2 gave 1.68 kW thermodynamic power while giving 182 W of shaft power, representing a 

difference of over 900%. Prototype 3 gave 1.365 kW of thermal power against 693 W of 

shaft power, representing a 196% difference. Refer to Table 4.4. 

   

Figure 4.8 Apparatus for measuring shaft power 
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A further investigation was required to determine the correct interpretation, hence a 

comparison with electrical power. 

 

Figure 4.9 Comparison of shaft power - prototype 2 and 3 (R-134a) 

 

Figure 4.10  Electrical power input and output (R-134a). 

Electrical power was compared for the two prototypes running on R-134a. Results are 

shown in Figure 4.10. Regions of optimal performance for both units are indicated A for 

prototype 3 and B for prototype 2 in the figure. Prototype 2 produced less than pump intake 
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while prototype 3 produced more. A comparison with shaft power showed a close 

relationship, unlike thermal performance, refer to Table 4.4. Therefore, it was suggested 

that thermodynamic efficiencies would not be a reliable way of suggesting unit performance 

in the case of this research. A comparison of all power outputs and inputs is presented in  

Table 4.4  

Table 4.4 Expander power outputs and pump power inputs (R-134a) 

 

4.7.1.3 Turbine speed 

Figure 4.11 shows a comparison of generator power output and speed in relation to fluid 

flow rate. The engine displayed that flow rates about 2 litres per minute were optimum for 

system efficiency. At this flow rate, the working fluid effectively vaporised giving optimum 

power and highest rotational speeds. It was noticed that beyond this flow rate the sight glass 

at the inlet to turbine indicated passage of liquid/ vapour mixture instead of superheated 

vapour. This resulted in a drop in turbine inlet pressure, reducing the pressure differential 

which consequently resulted in a drop in speed and power. 

The rated inlet-outlet pressure ratio for the expander was 3.5 to 1 in order to give an optimum 

power output. The best ratio that R-134a could provide was 3 to 1 since the recommended 

expander inlet pressure, by supplier Air Squared, was 14 bar and ambient pressures were 

about 5 bar. Operating at 16 bar gave the required pressure ratio. The first and second 

prototypes saw an increase in both suction and discharge pressure and could run at inlet 
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conditions higher than 22 bar when the exit pressures were 10 bar. The consequence was 

developing a lower pressure ratio, hence less rotational speed and less power. 

  

Figure 4.11  Power output and generator rotational speed (R-134a) 

The new prototype had eliminated the rise of low pressure by increasing the expansion 

volume at the exit of the expander. 

4.7.1.4 Relationship of pumping speed with scroll rotational speed 

It was observed earlier in section 4.7.1.3 that the expander speed did not depend entirely 

on the flow rate. A comparison with the pump speed showed that increasing the pump speed 

did not necessarily increase the scroll speed even though it increased the flow rate as shown 

in Figure 4.12. More fluid flow reduced the performance of the expander.  

This particular setup showed that a controller frequency of 30Hz which translated to            

865 revs/ min for pump speed and 2200 revs/ min for expander, was optimal for the 

operation of the scroll expander as it gave the maximum speed and optimum power 
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(comparison with graph in Figure 4.11). Figure 4.12 shows that increasing pump speed 

increased the demand for power by the pump. This suggested that being able to run the 

pump at low speeds could increase system efficiency if optimum power was obtained. 

 

 

Figure 4.12  A comparison of pump and expander speeds (R-134a) 

 

4.7.1.5 Effect of pressure differential 

Section 4.7.1.3 suggested that a lapse in turbine performance with increased flow rate was 

linked to a reduction in pressure differential. Figure 4.13 shows the relationship between 

pump speed and pressure differential. The optimal zone was at 10.5 bar at which point the 

pumped fluid was able to evaporate and superheat sufficiently hence expanding adequately.  
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Figure 4.13  Effect of fluid feed on pressure differential (R-134a) 

A gradual increase in pump speed revealed an increase in pressure and eventually a 

decrease, which narrowed the turbine pressure differential. The fluid flowed faster past the 

evaporator at high feeds, collecting less heat and leaving in a mixture phase. This resulted 

in the fluid not expanding sufficiently and less power output resulted. 

4.7.2  Tests with R-245fa 

As was suggested in the earlier section, R-245fa was charged into the system once it was 

assured that there were no leakages in the system and tests with R-134a had been 

concluded. The fluid was tested against two conditions. First it was tested under temperature 

ranges for R-134a test conditions of 100℃, then under raised conditions of 130℃ which are 

a recommendation for R-245fa (16).  

4.7.2.1 Pressure differential (R-245fa) 

Figure 4.14 shows that increasing temperature also increased the pressure differential by 

increasing the upper limit pressure and maintaining the low pressure with a constant supply 

of condensing fluid. Performance was compared as labelled in working zones L for low 
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temperature and H for high temperature in the graph in Figure 4.14 and results are 

discussed in the following sections.  

 

Figure 4.14  Pressure differential pattern with varying temperatures (R-245fa) 

Increased evaporator temperature had a direct impact on the power output of the turbine as 

it was dependent on pressure differential. Zone H in the graph in Figure 4.14 shows that at 

high temperatures the pressure differential was greater and the pump could be run faster 

whilst maintaining sufficient evaporator performance. This suggested that the pump could 

be run at half speed and produce a differential about 11 bar. It was noted that at lower 

temperature increased flow rate resulted in reduced vaporisation and flooding of the turbine. 

It is evident in zone L in the graph that at 100℃ the maximum pressure differential was       

7.5 bar with 2/5 of the pump speed. Increasing pump speed beyond these limits had an 

effect of reducing power output as the evaporator was not able to evaporate most of the 

fluid. 
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4.7.2.2  Effect of temperature on scroll rotational speed 

Under the same load, the scroll expander maintained an increase in speed which 

corresponded to an increase in power output under conditions of increased temperature, as 

presented in Figure 4.15. The scroll conditions were measured with a load attached to the 

expander, in this case a generator.  

It was noted that at lower temperatures of 100℃  the scroll expander rotational speed 

reduced increasingly compared to higher temperature conditions of 130℃. 

Comparison of results in Figure 4.15 shows that optimal flow rate of 1.72l/min was required 

at low temperature to produce a maximum turbine speed of 2200 revs/ min while 2.3l/min 

produced 2570 rpm of turbine speed with load.  

 

Figure 4.15  Variation in speed patterns with temperature (R-245fa) 

4.7.2.3 Effect of temperature difference on power output 

In Figure 4.16, a comparison of power output under different temperature conditions is 

shown. At lower temperatures the working fluid power output declined at lower pump speeds 

as compared to that at higher temperatures. For instance, the power curve started declining 
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at just about 20 Hz for lower temperature after reaching a maximum of 435 W, and at about 

30 Hz and a power output of 650 W for the higher temperature conditions. This suggested 

that at lower temperature the evaporators could only transfer enough heat for lower flow 

rates resulting in less power. Sight glass observation showed that liquid refrigerant started 

entering the expander at the decline conditions, (Figure 4.10 - Figure 4.17) suggesting 

insufficient evaporation. 

Comparison of R-245fa and R-134a revealed a slow reaction to input parameters for the 

former and a quick response for R-134a. As such it took a while to reach steady conditions 

with R-245fa. At higher temperatures, R-245fa reached higher limits of power output 

compared to R-134a. Also, at no load, R-245fa operated the expander to speeds as high as 

8000 revs/min, compared to 4000 revs/min reached by R-134a. A considerable reduction in 

rotational speed occurred with R-245fa to ranges below 2600 revs/min while with R-134a 

the speed dropped to about 2600 revs/min. This observation suggested that R-134a had a 

steady power output in comparison with the other fluid. 

 

Figure 4.16  Power output curves at different temperatures.  (R-245fa) 

The reason R-245fa reached high speeds is the great pressure differential achieved during 

operation which exceeded ratios of 1:10. The most pressure differential reached by R-134a 
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was 1:3. Figure 4.17 shows a comparison of power output of the two working fluids, each 

one at its best temperature range. It was noted in the Figure that R-245fa gave the optimum 

power output of 740 W with the pump consumption of 250 W at 25 Hz which represented 

half the speed of the feed pump. Running pump at low speeds reduced the power 

consumption of the unit. 

 

Figure 4.17  A comparison of power outputs (R-245fa) 

R-134a was run optimally at 20 Hz and pump power of 215W which produced 667W. 

Figure 4.18 shows a comparison of pressure differential with the flow rate for R-245fa. It 

was observed that the difference increased sharply to a maximum at pump speed of 25 Hz 

corresponding to pressure differential of 12.5 bar (Point A) and a flow rate of 2l/ min (Point 

B), beyond which the pressure differential declined.  
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Figure 4.18  Effect of flow rate on pressure differential. (R-245fa) 

Pressure differential, therefore, had a direct impact on performance, just as was observed 

with R-134a. It was noted that with sufficient condensation conditions, the minimum 

condenser pressure was 6 bar for R-134a and 1 bar for R-245fa while the recommended 

inlet pressure was 14 bar. The unit could be run to 16 bar. 

4.7.2.4.  Shaft power 

A rope brake dynamometer was set up to measure shaft power as shown in Figure 4.19. 

Shaft power for R-245fa was compared at different flow rates. At much lower flow rates it  

was noted that the shaft simply stopped when dead weight was increased. When flow was 

increased, it still produced an increasing power output for increased dead loads. However, 

further increases in dead weight reduced the speed of the output shaft until it stopped and 

the magnetic coupling slipped. As shown in Figure 4.19, it was not possible to measure shaft 

power with more dead weights at 25 Hz as it had exceeded the capacity of the dynamometer 

which resulted in burning the rope or an instant slip at the magnetic coupling 
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.  

Figure 4.19  Shaft power output at different weights and flowrates (R-245fa) 

 It can be ascertained that the highest shaft power output was achieved by R-245fa which 

produced a value of 1.3 kW at 25 Hz and    942 W at 20Hz, both at 130℃. 

4.7.2.5  Thermal efficiency 

Lastly, a thermodynamic efficiency for R-245fa was investigated at temperatures of 100℃ 

and 130℃. Thermal efficiencies were compared with those of R-134a. The P-h chart in 

Figure 4.20 was used to plot the cycles. The low temperature cycle showed less power 

output compared with the high temperature cycle. This was expected since increasing 

temperature increased thermal efficiency (66) and performance of the cycle (67).                   

Table 4.5 shows a summary of results as obtained from the Mourrier Chart in Figure 4.20. 

The work output from a high temperature cycle was significantly high, deducing that the 

cycle was capable of producing more power than the low temperature one. As suggested 

earlier on, the low temperature cycle was observed to flood liquid into the expander. It is 

evident on the chart as the expander conditions are very close to the vapour saturation line 

and exit conditions are inside the vapour/ liquid mixture. This condition did not only reduce 

power output, but also would damage the expander internal components. 
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The high temperature cycle had a comparatively high power output - about 25% more than 

the low temperature one, and 6.4 % thermal efficiency. Refer to Table 4.5. Both situations 

gave thermal power output from turbine, which was much higher than that produced by        

R-134a, being 1.182 KW. This represented performance of 130% for similar temperature 

ranges and 188% for R-245fa at higher temperature. Refer to Appendix 6 for Genetron 

simulation results. 

 

Figure 4.20  P-h diagram for R 245fa 

Genetron simulation for the two working fluids predicted similar results in their proportions. 

However, other power output indicators did not agree with thermal power outputs as they 

were lower than the thermal power outputs.  
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Table 4.5 Thermal performance of low and high temperature cycles on R-245fa 

UNITS

PARAMETERS LOW HIGH 

Volume flow (vf) 2 2 [l/min]

Mass flow 0.046 0.046 [kg/s]

Work in pump 0.228 0.228 [kW]

Heat in evaporator 10.238 12.285 [kW]

Work out turbine 2.503 3.185 [kW]

Heat out condenser -7.963 -9.328 [kW]

Thermal efficiency 0.222 0.241

TEMPERATURE

 

 

A TEMPpoint display of results is shown in Figure 4.21 from which the cycle temperatures 

were obtained for use in the plotting of the Mourrier chart in Figure 4.20. The cycle 

thermodynamic plot was determined from the highlighted temperatures. The channels were 

presented as follows: 

Inlet to expander  channel 21 at 129.67℃ (from evaporator) 

Outlet from expander channel 10 at 55.44 ℃ (to condenser/recuperator) 

Exit condenser  channel 8 at 16.98℃ (to pump)  

Enter evaporator  channel 19 at 42.45℃ 
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Figure 4.21  TEMPpoint display for R 245fa at high temperature 

In Figure 4.22 are the performance charts of the system tested on R-245fa at varying 

temperatures of the heat source. This was tested under two pump speeds of 20 Hz and 

25Hz. It was noted that the power curve and expander rotational speed were stable for 

slower pump speed with changes in temperature. This could suggest that lesser amounts 

of working fluid were fully vaporised for a wide range of temperature though giving less 

power, while at 25Hz there was a drop in performance with a drop in temperature as 

increased fluid mass flow rates required more heat to convert to vapour. This suggested 

that maintaining the heat source conditions at high temperatures would guarantee 

performance of ORC heat engines.  
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Figure 4.22  Power output and expander speeds for R-245fa 

4.8 START UP  

Investigations on start up without a motor were done with the recirculation pump coupled to 

a scroll expander through a chain /sprocket mechanism. The pump was cranked manually 

and when the expander reached a required power output, it started operating the pump. A 

load was attached to the turbine which measured the net shaft power output and electrical 

power by supplying different loads. The set-up is shown in Figure 4.23  

An electrical generator was centrally fixed to the shaft from the turbine and one side of the 

bracket freely attached to a spring balance with a rigid connection. The three cables as 

shown in Figure 4.23 (blue) were attached to a variable load. As the scroll operated the 

pump, load in form of a variable resistor was altered which affected the rotational speed of 
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Figure 4.23  Manual start self-sustenance unit with power measuring devices 

the output shaft and the reactional force was read from the spring balance in Figure 4.23. 

Shaft power was determined as shown in Figure 4.24. The highest registered power output 

with this set up was 512 W at 7kg and 1500 revs/min. 
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Figure 4.24  Results from a self-sustaining system 

4.9 OVERALL EFFICIENCY 

A heat source of 15 kW was supplied to heat the refrigerant and a pump power of 280 W 

was used to circulate the working fluid. A circulation pump for oil consumed 250 W. Other 

components were allocated 100 W. Total system consumption was 15630 W and an 

average of 850 W was realised from the system. Overall efficiency was therefore 
𝟖𝟓𝟎∗𝟏𝟎𝟎

𝟏𝟓𝟔𝟑𝟎
, 

expressed as a percentage, which represented 5.44% 

This efficiency looked lower compared to other power producing machines but bearing in 

mind that the heat source could be solar energy, industrial waste heat or geothermal energy, 

a 15 kW heat source may not be considered This may bring the consumption to “630 W” 

raising the unit’s overall efficiency to as high as 
𝟖𝟓𝟎∗𝟏𝟎𝟎

𝟔𝟑𝟎
 which results to135%  “in economic 

sense” (if the heat source was not paid for by anyone), depending the technologies involved 

to harness the heat source.  
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4.10 SUMMARY OF RESULTS 

 In most experiments, R-134a produced 750 W of power at a temperature of about         

90 ℃ and pump speed of 30 Hz, representing input power of 292 W. (Figure 4.3 and 

Figure 4.10) R-245fa produced 850 W at a temperature of 130℃ and pump speed of 

25Hz, representing 250 W. 

 R-134a started flooding the expander with liquid at speeds beyond 30 Hz while R-245fa 

did that beyond 25 Hz. 

  R 245fa running at 25 Hz produced 880 W in one experiment at 140℃ and reduced 

gradually to 500 W with a declined source temperature of 115℃, at which point liquid 

flooded into the expander. And the same was repeated at 20Hz where the power output 

was stable averaging 600 W, until at 115℃ when liquid was observed entering the 

expander. This suggested that the fluid could only be effective at temperatures above 

115℃ (Figure 4.22) even though it had a steady power output at a lower flow rate  of 

20 Hz. 

All the properties for refrigerants including Mourrier diagrams were taken from the 

ASHRAE booklet for refrigerant properties (68). 

A short clip can be watched on YouTube by following the link: 

 https://youtu.be/PrPiu23EdSw 

 

 

https://youtu.be/PrPiu23EdSw
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CHAPTER 5  

OBSERVATIONS 

5.1 INTRODUCTION 

In this chapter the major observations regarding the main issues encountered, observed 

and resolved during the research are highlighted.  

5.2 FLOW RATE 

A flow rate of 3.5 litres per minute was successfully achievable at the expense of more 

power input of about 330 W to the pump with power output in ranges of 300 W. The copper 

coil evaporators were able to vaporise fluid at such a flow rate despite the minimal power 

output in prototype 2. Condensation too was generally acceptable at cooling water flow rate 

of about 25 litres per minute. The third prototype, however, averaged 2 litres per minute of 

fluid flow rate for optimum evaporation. This was enough to produce power in ranges of   

800 W or more with pump power of 280 W. 

5.3 PRESSURE RISE 

Initially a pressure build-up in the suction side was observed in both prototype 1 and 2, 

which was not an expected phenomenon. When the scroll outlet was upgraded to 25 mm, 

this situation was rectified. As long as adequate condensation was achieved, suction 

pressure remained constant and lower than static pressure. The volume ratio for the 

expander was therefore maintained by maintaining the pressure ratio. This condition 

allowed increase of high pressure without increasing low pressure resulting in a wider 

pressure differential which resulted in high power output. 

5.4 SUCTION VOLUME 

Increasing the suction volume increased the liquid stowage capacity, resulting in lower 

condensation pressures which corresponded to lower condensation temperatures. The best 

condensation temperatures achieved were same as atmospheric ambient temperatures of 

the time, which corresponded with pressure.  
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5.5 HEAT SOURCE 

The heat source was observed to affect pressure differential making it a driving fuel of the 

Organic Rankine Cycle heat engine. Observation showed that a reduction in source 

temperature reduced the unit’s power output. Also it encouraged incomplete evaporation, 

which resulted in less energised fluid entering the scroll expander. It was noted that at lower 

temperature, increased flow rate resulted in flooding the turbine. 

5.6 TYPE OF WORKING FLUID 

A comparison was done between R-134a and R-245fa, which revealed a 1:3 pressure ratio 

for the former and 1: 12 for the latter. However, mechanical and electrical power was in the 

same range. R-245fa, however, required more energy in the form of a high temperature 

heat sources. This gave R-134a an advantage that it could be utilised at much lower heat 

sources, in the range of 90-100 ℃. Observation showed a very high speed for an unloaded 

generator of up to 4000 revs/min with R-134a, and 8000 revs/min for R-245fa. Both fluids 

operated at around 2600 revs/min or less when under load. This suggested that R-134a 

produced more power than R-245fa. 

5.7 CAVITATION 

It was observed that cavitation was a factor of condensation more than Net Positive Suction 

Head. Reducing cooling fluid resulted in cavitation for all the 3 prototypes, as tested with   

R-134a, and increasing the cooling water flow rate improved the performance of the unit. 

However, R-245fa had more tolerance to adverse conditions since completely closing off 

coolant showed no cavitation, despite the low power output from the turbine. Improvements 

in the final prototype included placing the reservoir above the pump which assured that the 

pump was always flooded with liquid, even under conditions of poor condensation, hence 

eliminating cavitation. It was found that the system required 6 kg for R 134a and 5 kg for   

R-245fa. 
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5.8 SELF-STARTING 

A possibility for self-starting was investigated and was inconclusive. However, a manual 

start was achievable by cranking the pump to circulate the fluid manually to operate the 

expander which in turn took over running the pump. The expander kept accelerating until it 

slipped on the magnetic clutch. Control looked promising in the areas of regulating 

condensing water flow and working fluid flow. 
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CHAPTER 6  

CONCLUSIONS AND SUMMARY 

In conclusion, the results of the investigation can be summarised as follows: 

6.1 THE PROBLEM 

The research was to investigate factors that affected performance of the Low Temperature 

ORC Heat Engine and to optimise them. The following areas were investigated and 

optimised: 

Working fluids R-134a and R-245fa were tested under various conditions and it was found 

that despite the good thermal efficiency of the latter, the mechanical and electrical power 

outputs were within the same range. R-134a was more prone to cavitation under poor 

condenser conditions than R-245fa, which was easier to condense as it boils at 15℃ at 

atmospheric pressure compared with R-134a which boils at -26 ℃  at same pressure. 

However, R-245fa was more expensive as it cost R11,000 per full unit charge, compared to 

R600 for R-134a. 

Three types of heat exchangers were tested. The first was a 12.5 mm copper pipe which 

with inclusion of connecting pipes, resulted in significant friction. This was replaced by a set 

of parallel coils, increasing condensation as well as evaporation capacity and reducing 

friction losses. To further improve heat exchange capacity, a set of 20 KW soldered plate 

heat exchangers were employed. 

Pressure build up in the system increased the suction pressures steadily reducing the 

pressure differential and consequently reduced power output of the heat engine. This was 

resolved by increasing the suction volume right from the exit of the expander. The result 

was that no partial pressure build ups occurred. The system maintained the suction pressure 

low and constant while increasing the discharge pressures to gain more power. 
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6.2 ISSUES RESOLVED 

Several issues were resolved in this research. The first one was power output of the unit 

which increased from 200 W to an average of 800 W. This was due to improved pressure 

ratio which stood at 3:1 for R-134a and 12:1 for R-245fa. Initially it was hard to achieve a 

ratio of 2:1 for R-134a. Three methods were used to determine and confirm power output 

namely the rope brake dynamometer, Wattmeter, and a voltage and current reading. All 

indicated similar ranges of results. 

Use of copper pipes reduced leakages and the cost of piping dropped significantly. Several 

fittings were removed from the previous unit reducing restrictions and cost. 

Also a reduction and possible elimination of cavitation by allowing the pump to draw from 

the reservoir above it improved reliability. With adequate charge, the reservoir was 

guaranteed liquid refrigerant as long as adequate condensation was available. 

A reduction in input power of about 50% was also achieved by running the feed pump at 

half the speed to achieve optimum flow rate, hence more power output.  

6.3 FUTURE WORK 

 There is need to investigate a way of reducing power input to the feed pump further 

as lowering power input increased the net power output. Thus far the smaller pump 

shows that it requires high rotational speed to achieve sufficient flow rates demanding 

more power, which defeats the purpose of saving on power input. 

 An investigation on start-up without external source was inconclusive. A few options 

such as cranking the pump and use of a separate photovoltaic panel battery inverter 

set for start-up may be investigated. Cranking as suggested earlier on is possible 

with a challenge in controlling the unit, which requires further investigation. 

 The ORC heat engine can be compressed further and redesigned to improve 

aesthetics since NSPH has been found not to affect performance. 

  The issue of noise reduction may be considered. 



 

75 

 

 Automation can also be considered to monitor and control power and other 

associated parameters such as temperature, pressure and fluid flow. Fault 

identification and coding may also be considered in this arrangement. 
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8. APPENDICES 

Appendix 1: Properties of saturated refrigerant R-134a 
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Appendix 2: Properties of superheated refrigerant R134a 
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Appendix 2: Properties of superheated refrigerant R134a (cont.…) 

 

 



 

87 

 

Appendix 3: Mourrier (P-h) chart for R-134a  
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Appendix 4: Properties of saturated refrigerant R-245fa 
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Appendix 5: Mourrier (P-h) chart for R-245fa 
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Appendix 6a: Simulation of thermal performance of R-245fa at low temperature 
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Appendix 6b: Simulation of thermal performance of R-245fa at high temperature 
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Appendix 6c: Simulation of thermal performance of R-134a 
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Appendix 7: Pressure conversion tables 
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Appendix 8: Properties of ORC heat engine working fluids 

 

 


