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Abstract

In this thesis we use the natural equivalence zéyisubgroups studied by Murali and
Makamba [25] to characterize fuzzy subgroups ofes@imte groups. We focus on

the determination of the number of equivalencesda®f fuzzy subgroups of some
selected finite groups using this equivalence iiend its extension.

Firstly we give a brief discussion on the theoryuzzy sets and fuzzy subgroups. We
prove a few properties of fuzzy sets and fuzzy soilggs. We then introduce the
selected groups namely the symmetric gr@ymihedral grouf, , the quaternion

groupQg, cyclic p-grous = an , G= an + qu , G = an + qu +Z, and
G= an + qu +Z . where p,gandr are distinct primes and,m,sON .

We also present their subgroups structures androoh$attice diagrams of
subgroups in order to study their maximal chaing. &mpute the number of
maximal chains and give a brief explanation on tiesvmaximal chains are used in
the determination of the number of equivalencesda®f fuzzy subgroups. In
determining the number of equivalence classesza#yfsubgroups of a group, we first
list down all the maximal chains of the group. Setlg we pick any maximal chain
and compute the number of distinct fuzzy subgraepsesented by that maximal
chain, expressing each fuzzy subgroup in the fdrenkeychain. Thereafter we pick
the next maximal chain and count the number ofvedence classes of fuzzy
subgroups not counted in the first chain. We prdaeductively until all the maximal
chains have been exhausted. The total number py &ubgroups obtained in all the
maximal chains represents the number of equivalelasses of fuzzy subgroups for
the entire group, (see sections 3.2.1, 3.2.2, 33268, 3.2.9, 3.2.15, 3.16 and 3.17 for
the case of selected finite groups).

We study, establish and prove the formulae fomtim@aber of maximal chains for the
groupsG = an + qu , G = an + qu +Z, andG = an +qu +Z . wherep,q and

r are distinct primes amgm, s M . To accomplish this, we use lattice diagrams of
subgroups of these groups to identify the maxirhairts. For instance, the group
G= an + qu would require the use of a 2- dimensional rectéargliagram (see

section 3.2.18 and 5.3.5), while for the gr@up an + qu +Z . we execute 3-

dimensional lattice diagrams of subgroups (seemsebt4.2, 5.4.3, 5.4.4, 5.4.5 and
5.4.6). It is through these lattice diagrams thatidentify routes through which to
carry out the extensions. Since fuzzy subgroupesgmted by maximal chains are
viewed as keychains, we give a brief discussiothemotion of keychains, pins and
their extensions. We present propositions and pronfwhy this counting technique
is justifiable. We derive and prove formulae foe tumber of equivalence classes of
the group$ = an + qu , G= an + qu +Z, andG = an + qu +Z .where p,q

andr are distinct primes amdm, s M . We give a detailed explanation and

illustrations on how this keychain extension pnoeiworks in Chapter Five.
We conclude by giving specific illustrations on hax& compute the number of
equivalence classes of a fuzzy subgroup for thepféo= sz + .?Eqz +Z , from the

number of fuzzy subgroups of the groGp = sz + Zqz +Z, . This illustrates a
general technique of computing the number of fusadygroups of



G= an + qu +Z . from the number of fuzzy subgroups@f = an + qu +Z ...

Our illustration also shows two ways of extendirani a lattice diagram oB, to that
of G.

KEY WORDS:
Fuzzy Subgroups, normal fuzzy subgroups, maximainsh equivalent fuzzy
subgroups, keychains, node and pin extension.
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Introduction

Human beings barely comprehend quantitatively sdewntsion-making and problem-
solving tasks that are complex, hence the neeth&execution of knowledge that is
imprecise to reach definite decisions. This haddetthe advent of fuzzy set theory
thought to resemble human reasoning in its us@ofoximate data and uncertainty in
the generation of decisions. Although Fuzzy Logited back to Plato, Lukaieviz
(1900s) at some stage referred to it as Many-Valogd, it was formalized by
Pofessor Lotfi Zadeh in the 1960s. The term Fuzzgit.is embracive as it is used to
describe the likes of fuzzy arithmetic, fuzzy matfagical programming, fuzzy
topology, fuzzy logic, fuzzy graph theory and fudata analysis which are
customarily called Fuzzy set theory.

This theory of fuzzy subsets as developed by Zadélas a wide range of
applications, for example it has been used by Raddnn 1971 to develop the theory
of fuzzy groups. Other notions have been develdyaesed on this theory , these
include among others , the notion of level subgsdopP.S. Das used to characterize
fuzzy subgroups of finite groups and the notioqtiivalence of fuzzy subgroups
introduced by Makamba and Murali which will be dse this thesis. In this thesis
we use this natural equivalence to study the chenaation of some finite groups, we
compare the number of equivalence classes and rptimcalasses of these specific
groups.

It was in 1971 that Rosenfe[64] first published his work on fuzzy groups. P.S.
Das[l]], Mukherjee and Bhattachal{%'} followed a decade later. The latter
characterized fuzzy subgroups executing the notdfszzy cosets and fuzzy normal
subgroups. De{$]] introduced level subgroups and characterized fgabgroups of
finite groups by their level subgroups, he proveat they form a chain. He raised the
problem of finding a fuzzy subgroup that is repreative of all the level subgroups.
This problem was answered by Bhattach%ﬁs}y,dﬁe managed to show that given any
chain of subgroups of a finite group there existiszay subgroup of that group whose
level subgroups are precisely the members of thie fchain. An important

discovery by[5] was that this fuzzy subgroup is not unique, ireothiords two

distinct fuzzy subgroups can have the same fanfilgvel subgroups. We use this

characterization in this thesis. The same authc[ﬁi]inproves that two fuzzy



subgroups of finite groups with identical level guiups are equal if and only if their
image sets are equal. Bhattachary@ﬁ]nalso generalized
Rosenfekﬂ34,Theorem...5.10] and Das[llTheorem...S.Z].

Fuzzy normality was introduced by Bhattacharya utherjee ir{?]. Several
studies on the concept have been dorle]bya], [11] .[17] .[20] and[22] just to
mention a few. For instance Akdﬂ] studied fuzzy normality, fuzzy level normal
subgroups and their homomorphism. Makamba and Muarg22] proved that normal

fuzzy subgroups and congruence relations detereank other in a group theoretical

sense.

Sherw00(ﬂ38] introduced the concept of external direct proadid¢tizzy subgroups.
Makamba[Z]] introduced the concept of internal direct produt proved that both
are isomorphic if the fuzzy subgroups are fuzzymedr

Rosenfelcﬁ34] proved that a homomorphic image of a fuzzy subgiswa fuzzy
subgroup provided the fuzzy subgroup has a supeptgpvhile a homomorphic pre-
image of a fuzzy subgroup is always a fuzzy subgrofnthony and Sherwooh]
later proved that even without the sup-propertyitbomorphic image of a fuzzy
subgroup is a fuzzy subgroup.

Other studies on homomorphic images and pre-imafyiezzy subgroups were done
by Sidky and Mishref, Kum4t9|, Abou-Zaid1], Makamb420] and Murali[24)].

The notion of a fuzzy relation was first definedaset by Zade[l39,40], further
studies were accomplished by Rosenﬁ‘aﬂﬂi and Kaufman[lG]. Formato, Scarpati
and Gerl$14] and Zade[|40] also studied similarity relation, which we do petsue
in this thesis. Chakraborty and IZEQS;O] studied fuzzy relation in connection with
equivalence relations and fuzzy functions. Murafi MakambéZ5,26,27,28] instead

studied fuzzy relations in connection with partiscand derived a suitable natural
equivalence relation on the class of all fuzzy sé#s set. This they used to

characterize and determine the number of distigeivalence classes of fuzzy
subgroups of p-groups. Murali and Makambéﬂﬁ] characterize fuzzy subgroups of
some finite groups by use of keychains. The sarﬂmwin[Z?] introduced the

notion of a pinned flag in order to study the opieress sum, union and intersection in

relation to this natural equivalence.



There have been a number of studies involving #eeai this equivalence relation,

see for example Murali and Makan{829] and Ngcib[30].

In Chapter 1 we define a fuzzy set in general dradacterize fuzzy sets using

a — cuts.We introduce the notion of a fuzzy subgroup ane gifew properties of
fuzzy subgroups. We give the definition of a pradefduzzy subgroups as given by
Zadef{39] and Makambko]. We also study fuzzy normality, its characteriazatby
level subgroups and fuzzy points. We conlude thap®r by proving that ifu is a
fuzzy subgroup of a group then the homomorphic En&fj:)and homomorphic pre-

image are fuzzy subgroups of the same group.

In Chapter 2 the notion of a fuzzy equivalenceti@fais introduced (see Mur@]M],
Murali and MakambEQS],[26] ,[27], Ngcibi[30]). In [24] Murali defined and studied

properties, including cuts, of fuzzy equivalendatiens on a set. It is the natural
equivalence relation introduced by Murali and Makanifor more details
see[25],[26] and[27]) that we are going to extensively use in thisithé&/e give this
definition (given also by Mural and Makamba) andwthat it is indeed an
equivalence relation. We also defing¢ -anorm, characterize &—norm that is
continuous and briefly discuss the usefulness-oform. A brief discussion on the
equivalence of fuzzy subgroups and some consegsi&gesen in this chapter.
Specific examples are given on equivalent and ruivalent fuzzy subgroups.

We characterize equivalence between fuzzy subgrosipg level subgroups.We

conlude the chapter with a brief discussion on howrphic images and pre-images.

Fraleigr{lfﬂ] characterizes finite Abelian groups in the cripsec Murali and
Makamba if25], [26] and[27] studied the classification of fuzzy subgroupsinité
Abelian groups using different approaches thauidelthe number of non-equivalent
fuzzy subgroups for the groubpn andG = an +Z,where p and gare distinct
primes, ir{25]. In [26] they investigated the number of fuzzy subgroups of

G= Zpl + sz +...+ an for distinct primesp, fori = 123,...,n and also distinct fuzzy

subgroups ofG = an + qu , Where p and qare distinct primesy(J N and
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m= 12345were also studied. Ngci[ﬁio] also used the notion of equivalence of
fuzzy subgroups studied by Murali and Makamba tratterize fuzzy subgroups of
p-groups for specified primes p. The aut[B@} also did a classification of fuzzy

subgroups of Abelian groups of the foBw an +Z  and of the forn®G = an + qu

for the casesi=m andn# m.

In Chapter 3 we introduce some specific groups,ahatihe symmetric grouis,,

dihedral groupD, ,the quaternion grouy, cyclic p-groupG = an and the group
G= an + qu We present subgroups, lattice structure of sugg@nd maximal

chains. It is in this chapter that we give the mi&tin of fuzzy isomorphism given by
Murali and MakambEQS], we determine the number of distinct fuzzy subpsoand
isomorphic classes of fuzzy subgroups for theseggoComparisons are made on the
number of distinct fuzzy subgroups and the numibé&amorphic classes. Formulae
for the number of distinct fuzzy subgroups for stdd groups given by Murali and
Makamba ir[25],[26] and[27] and Ngcib[30] are also verified on these groups we
are studying.

In Chapter 4 we define a maximal subgroup of a graud demonstrate with a few
lattice diagrams the determination of the numbenakimal chains. We establish and
give proofs, in the form of lemmas and propositiafdormulae for the number of

maximal chains for thegroufs= an + qu ,G = an + qu +Z, and

G= an + qu +Z . wherep,q,r are distinct primes and,m, st N .

Chapter 5 is an extension of chapter 4. Havinginbththe formulae for the number
of maximal chains for the groups, we go furthermod introduce the notions of

keychains, pins , pinned-flag (for more see Muaalil MakambEQS],[26] and[27])

and pin extension which we exploit in the compuotaf the number of equivalence
classes of fuzzy subgroups for these groups. We @jietailed explanation of the
method of computing the number of fuzzy subgroupsgimaximal chains. This we
accomplish by stating the counting technique imgeof propositions. Specific

examples are given to illustrate how the counteahhique is applied.
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In 5.1.3.1 we include some work by Ngc[i]im] on the formulae for the distinct

number of fuzzy subgroups for the groGp= an X qu where p,q are distinct

primes andm=123We also give a proof of Ngcibi's Theorem 5.3.936] which

the author did not prove. This we do as anothestiation for the justification of our
counting technique. We list a few combinatoriallgsia definitions that are used in
this proof. (for more see Riordeﬂﬁ6]). We establish and give proof, with an aid of 3-
dimensional lattice diagrams, of formulae for thuntver of distinct fuzzy subgroups

of the groupG = an X qu xZ . where p,q,r are distinct primes and

nON,m=1s=123 and 4.
We conclude by showing how in general the numbaeligifnct fuzzy subgroups of

G= an X qu xZ , can be obtained if the number of distinct fuzzlygroups of
H = an + qu +Z ., (or an + qu,l +Z .or an,l + qu +Z ) is known, illustrating

with a specific case.
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CHAPTER ONE
Fuzzy Sets, Fuzzy Subgroups, Fuzzy Nor mal Subgroups

1.0 Introduction

In order to study fuzzy subgroups, the theory azfusets is extended and applied to
the group structural settings. In this topic weegavpreliminary discussion on the
general properties of fuzzy sets and characteuzeyfsets using alpha- cuts. The
notion of fuzzy subgroups as defined by Roser[&él}jis given and a few properties
of fuzzy subgroups proved. Zac{éﬁ] and MakambBZO] defined the product of two
fuzzy subgroups, this definition is given in thisapter. The notion of level subgroups
has been used by several researchers in the massifi of fuzzy subgroups,
including among others, D[QSI], Bhattachary[ﬁ], and Makambho]. Fuzzy

normality is studied and characterized using lsublgroups and fuzzy points. We

conclude by proving that if: is a fuzzy subgroup of a grodp then the
homomorphic imagé (¢ jand homomorphic pre- image are fuzzy subgroupleof
same group. Similar results were obtained by Rm[ﬁﬂ], Kumal{lg] and
Makambe[ZO].

1.1 Fuzzy sets

A fuzzy set is a set derived by generalizing thecept of crisp set. Unlike in crisp set
theory where there is total membership, salgelongs to a sdfi written ax U ,
fuzzy sets allow elements to partially belong &ea

A fuzzy subset of a sé&l is a function
u:U - [o1] .

If the image set is {01} then we have a crisp ¥é¢. sometimes represent the fuzzy
setu: A - [0,1] by u, whereu,(x) =t forxOA, 0<t<1. We then say is the
degree to whichx belongs to the fuzzy subget.

We observe that whenh= ,@ve mean absolute non-membership, and when, 1

absolute membership. G< u(x) < u(y) < then we sayy belongs tox more than

X belongs tq .
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1.1.1 Operations on Fuzzy sets

***Union of two fuzzy setsy, and y; called the Maximum Criterion, is defined as

Hpng = MaxX(Uy, ) = Hy O g

***Intersection of two fuzzy setg, and 4, called the Minimum Criterion, is defined

as Up,g = Min(Ly, tg) = p O g

***Complement of i, is defined as

LEAX) =1 p1,(x)

***|nclusion

Fix a setU Supposeu andv are two fuzzy setsy:U - | ,v:U - |, then by

L Ov we meanu(x) <v(x )OxOU .

***Equality
U=V < u(x)=v(x),0x0U .

***Null set

Is described by the membership functjgj(x) = 0,x U .

***\Whole set

Is the fuzzy sefy, (x) =1L0OxOU .

D{,uj X):j0 J} = Séjjpﬂj (x) and D{,uj xX): )0 J} = IEE U (X)
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1.1.2 Fuzzy Points

Consider a non-empty universal $ét The set of all fuzzy subsets 0f is denoted
bylY.
Definition 1.1.3(20]

A fuzzy subsetu: X - | is called a fuzzy point iju(x) = 0,0x 0 X except for one

and only one element &f .

1.1.4 Consequences of definition 1.1.3
Firstly x(x) # O for one and only one element &f

Considea [ X : u(a) # 0Then u(a) =4 ,0< A <1 by the definition ofu(x ).

Casel: If A =1thenu(x)= 1lwhenx=a and 0 whenx # a, the fuzzy set is the

crisp singleton{a}

Casell: If 0< A <1 thenu(x) =4 whenx =a and Ootherwise 1.1.3.1 (b)
Thusy is a fuzzy point and we denote it lay .
Soa’ is such that’(x) =1 if x=a and 0 ifx # a, this implies that
a'(a)=A 1.1.3.1(c)

From 1.1.3.1(c) suppose< &' < ¥ <A< thena’ Oa" Oa'

Proposition 1.1.5[20]

Let £O1% Then/J:D{a” -a’ D,u}

1.1.6On a -cuts
Consider a fuzzy set/: X — | =[0,1] and0<a<1

Definition 1.1.7 [30]
The weaka —cut of x4 denoted by, is defined as

M, :{xDX :,u(x)za}
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Definition 1.1.8[30]
The stronga —cut of 4 denoted byu“” is defined as

)7 :{xDX :,u(x)>a}

***Consequences of definitions 1.1.7 and 1.1.8
(@p=l=uy"=¢
(b =0=pu, =X

Definition 1.1.9[20]

The Support ofu is defined as follows

Suppu ={x0 X : u(x) >0}

1.1.10 Characterization of fuzzy setsusing a - cuts
A fuzzy set can be characterized usmg cuts as the following proposition shows.
Proposition 1.1.11

1
Given any fuzzy seu then i = supay, = J'a)(ﬂa dx
0

O<a<1

= U ay, = U ax,

ati(0y) aty ~H
Proof
Let u(x) =a,, thenxU u, = axX,, (X)=a, = u(x).
Now if B> u(X), thenxU u,
= ,8)(#5 (x) =0, thus u(x) = ax,, (X) = supay,, (x) = supay, (X). m

O<as<l O<asl

1
Also given any fuzzy set, u(x) = ja)(”a (x)dx
0

Proof

Let u(x) =a, thenu(x) =ay, (x)

1
=ax,. (X)j dx sincex y, .
0
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Therefore H(X ;cj'ola)(ﬂa (x)dx. 0

1.1.12 Chains of a -cuts
Supposed < a < f< thenu” O u” and alsoy, 0 U, - Consequently given a

chain of numbers

OsA, sA,s..sA, <A<l wehavey, Up, O............. U, Oy,

1.1.13 Images and pre-images of fuzzy sets [27]

ConsiderX andY to be two universal non-empty sets ahd X - Y be a function
from X toY andlety: X — | be afuzzy subset of .
By f(u) we mean a fuzzy set dfdefined by

suu(): x0f(y)

f(y)(y):{ 0,if xO f (y)

Thus the degree to which belongs tdf (¢ )is at least as much as the degree to
which x belongs to i ,[x for which f(x) = y.

Definition: 1.1.13.1[27]

Let f : X - Y be a function.
If v is afuzzy subset of then the pre-imagd (v i9 a fuzzy subset oK defined

by f 7 (v)(9) =v(f(9)), gOX.

1.2 Fuzzy Subgroups[23]
A fuzzy subsety: G - | of a groupG is a fuzzy subgroup o& if
(uOy) = min{u(x), 1(y)},0x,y O G

(iu(x) = p(x),0x0G
For the identity element0G, u(X) < u(e),0xOG

Equivalently we have
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Proposition: 1.2.0
A fuzzy subset: of G is a fuzzy subgroup d& iff

(auou < u and
(by™ = 1 where ™" is defined agr*: G - | ,0g0G, 1™ (g) = u(g™).
Before we give a proof of the above propositionfinst give two important

definitions
Definition: 1.2.1[24]

We defineuou(g) = sup(u(g,) 0x(g,))

9=0:0
Definition: 1.2.2[23]
If wis afuzzy subgroup on a gro@ and g is a map fromG onto itself, we define
amap 1°:G - [01] by

#°(9) = u(9°),0g0G

where g? is the image ofgunderd.

Proof of (a)

=)

Letg,,g, UG be arbitrary, now sincg is a fuzzy subgroup &,
#(9,9;) 2 p(9,) Ou(g,), setg = 9,9,

Taking the supremum over both sides we obtain

sup(u(g))= sup(u(g,) 0u(g,))

9=0,9 9=0:9
= u(@)> D (u(9,) Du(9,))=pop
Thereforepo u< u
(b is a fuzzy subgroup> 1(g) = x(g™),0g0G
But by definition #(g™) = #™(g),0g 0G
Thereforeu™ = 4.
(O)if oy =p andu™ = 1, we need to show that is a fuzzy subgroup.
Now 20 u(xy) < u(xy),0x, yOG and pou(xy) = XSygaE{u(a) 0 u(b)}
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> min{u(x), 4(y)}  Ox,yOG.
= p(xy) = min{u(x), (y)}
Sinceu(g) = 4 (g )0gOG andu™(g) = 4(g™ )OgOG, then it follows that
u(g) = u(g™) OgOG. Thereforeuis a fuzzy subgroup o& . 0

Definition 1.2.311]
Let G be a group ang: be a fuzzy subgroup @& . The subgroups

J7AN D[O,l] andt < (e)are called level subgroups®f

Definition 1.2.4[20]

Let x4 andv be fuzzy subsets & . The productuv :G - [O;L] is defined by
Hv(x) = stglxg(u(xl) Ov(%,)), X%,% 0G.

Proposition: 1.2.5

If u is a fuzzy subgroup of a group, theaixy) = min(u(x), u(y)) for each

X, yuG, u(x) # u(y).

Proof (see A Mustaféiz])

1.2.6 Properties of fuzzy subgroups
Utilizing the definitions given above we come uphnthe following properties of

fuzzy subgroups.

Proposition: 1.2.6.1

If u is afuzzy subset of a gro@p, then i is a fuzzy subgroup if and only if each
M, isasubgroup @&, 0<t<1

Proof

(=) u is a fuzzy subgroup. We need to show thais a subgroup d& . Let
x,yOu, thenu(x) =tand u(y) 2t = u(xy) = min(u(x), u(y)) 2t = xy O 4,

Let xO g, thenu(x) =t = p(x™) = u(x) >t, thusx™ Oy, .

Thereforey;, is a subgroup @ .
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(O) 4 is asubgroup o5 [t D[O;L]. We need to show that is a fuzzy subgroup

of G.
Letx,yOG. For xUOy and yO i, we haveu(x) =t and u(y) >t .

But since, is a subgroup @& thenxy Uy, = p(xy) =t .

Thereforeu(xy) = min(u(x), u(y)).

Casex [y, andy U ..

If s<t theny, O u,, soxOu,.Thusx, y Oy, and sincey, is a subgroup o6 this
implies thay O gz, = u(xy) = min(u(x), u(y)). Similarly ift <s.

LetxOG. For xO g, we havex O g, = p(x™) 2t = p(xh) = p(x),0x0G.

Thusu(x) = u{(x™) )2 u(x™) . Henceu(x) = u(x™ )

Therefore is a subgroup @ . This completes the proof. 0

Proposition: 1.2.6.2
Let u be a fuzzy subset & . Then i is a fuzzy subgroup

of G = Oay,b,,0p=a,(b™),0u.
Proof
(=) assumey is a fuzzy subgroup. Let,,b, [0 4 . Thenu(a) = A andu(b) = 3.
Now g(ab™) = p(a) Du(b™) = u(@) Du(b) 2 A0S
= (ab™),p; D= a,(b™), O pu
(O0) letx,yOG. We need to show thatxy) = u(x) C u(y . het pu(x) =41
andu(y) =4.1fA=0, %0 thenu(xy) =20 = u(x) C u(y ). Now we
assumel,f# 0
S0x,,Ys U= (XY) o Opt,= p(xy) 2 AL B = p(X) L u(y).
To show thatu(x™) = u(x )we proceed as follows: cagéx) =1 # . I0etu(x) = A,
thenx, D= x,(x™), Ou, thus(xx™), =e, O .Now
e, X, Ju=x, TOu= p(x™) = u(x). By symmetryu(x) = u(x™* ).Thereforeu

is a fuzzy subgroup. O
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Theorem: 1.2.6.3

Let f :G - G be a homomorphism & intoG . If x is a fuzzy subgroup &,
then f (1) is a fuzzy subgroup & .

Proof

We need to show the two conditions of section %ifice f is into therefore
supu(a) if yOf(G)
f(y) =4 atm
0 if yOf(G)
Suppose/ 0 (G )theny™ 0O f(G). Thus

f(u)(y™) = sup (u(a)= sup (u@™)) < f(u)(y),0y0G.

yi=f(a) y=f(a™)
So f(u)(y) = f()(yH™) < F)y™) = F(y) = F((y ™).
Supposg/ [ f(G ) theny™ 0 f(G )= f(L)(y™) =0=f(u)(y).
Lety, =Vy,Y,, we aim to show thalt(z)(y,) U f (£)(Y,) < fF(e)(y; )
Considerf (£)(y;) = SU(IO)(/J(a)), f(u)(y,) = sup (u(a.))

ys=f(a yi=f(a)

andf (u)(y,) = sup (u(a,)) . Takingé > 0, then

y,=f(ay)
f()(yy) O f(u)(y,) — € < p(a) Ou(a,) for
somea, ,,3, 'Yy, = f(a,),y, = f(a,),a=aa, andy, =vy,y,.
Now y, =y, = f(a)f(a,) = f(aa,) = f(a) andu(a) Uu(a,) < u(aa,) = u(a).
This implies that
f()(y) OF()(y,) =& < (@) < sup (u(@) = f(u)(ys)

ys=f(a)

= f()(y) O f()(y,) = f()(y,) -Sinceis arbitrary.
Thus f (i) is a fuzzy subgroup d& . O

Proposition: 1.2.6.4
Let f :G —» G be a homomorphism and a fuzzy subgroup of a gro®. Then
f () is a fuzzy subgroup & .

Proof

f(@™) = u(f(@™m)
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#(f(@)™" )
#(f(a ))
£ 7 (u)a)

Finally f "(ab) = u(f (ab)) = u(f (a) f (b))
2pu(f(@)Cu(fd )
= (@) Of *(ub )
Thereforef ™(w)(ab) = f *(u(a)) O f *(u(b )) 0

1.3 Fuzzy Normal subgroups
Definition: 1.3.1 [20]
If 4 is a fuzzy subgroup of a gro@p, thenu is called a fuzzy normal subgroup if

H(xy) = u(yx),0x,ytG .
Equivalently x is fuzzy normal if and only jfi(xyx™) = u(y),0x,yOG

Proof

(=) Suppose i is fuzzy normal, theru(xy) = u(yx),0x, yd G
= H(xyx) = p(X(yx ) = U(yx™X)
y),0x, yOG.
(0 ) Supposeu(xyx™) = u(y),0x,y UG
Then u(xy) = u(xyxx™) = p(yx ) 0

Proposition: 1.3.2
If u,v are fuzzy subgroups of a gro@ and u is fuzzy normal, theruv is a fuzzy

subgroup o6 .

Proof
We need to show the two conditions of definitiod. .o show that

HY(xy) = v (X) E pv(y) we let uv(x) = sup(u(x,) Ov(Xy,))

X=X Xp
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anduv(y) = sup(u(y,) Ov(Y,)). Let &> 0,0, X,, Y,, Y, - X = XX, Y = Y, Y, and

Y=%1Y2
HV() =5 < 104) DV(0) anduv(y) = < u(y,) Dv(ys) . Then

(v (x) DﬂV(y))—g = (uv(x) —gj D(uv(y) —gj < p(%) OV (%) O (yy) OV (Y,)

= H0%) DU(X,Y,%, ) Ov(%,) OV(Y,)
s /J(X1(X2Y1X2_l))DV(X2y2) < pv(xy)
(by normality ofuz) and sincexy = X,X,y,X, X, Y,
Thereforeuv(x) C uv(y) < uv(xy )sinceéis arbitrary.

Condition (b): LetxOG then pv(x™*) = sup ((u(x,) Ov(x,))

X=X

= sup (,u(xl_l) Dv(xz_l)) since i and

X=Xy 1%

v are fuzzy subgroups

= SL_Jp_l(/J(Xz_lxl_lxz)DV(Xz_l)) (by

X=X, %
normality of x4 ) < uv(x, %) = uv(x since
X2_1X1_1X2X2_l = XZ_lxl_l =X.
By symmetry we also havav(x™) = uv((x ))

Therefore equality holds. O

Proposition: 1.3.3
If 4 andv are both fuzzy normal subgroups®fthen uv is a fuzzy normal

subgroup oG .

Proof

We need to show thaw/(xyx™) = uv(y),0x,yOG.

Aavoyx™) = sup (u(a) D u(b)

= su;{,u(x‘lax) Ov(x™bx) (by normality of 4 andv)
< uv(y )sincey = xabx = x'axx'bx
Thus uv(y) = pv(x'yx),0x,yOG.

= uv(y) = uv(Xxyxx)
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< pv(xyx™ )
Thereforeuv(y) = uv(xyx™ ) = uv is a fuzzy normal subgroup &

Proposition: 1.3.4

If 4 andv are fuzzy subgroups @ and y is fuzzy normal, thepy =vu.

Proof
vu(x) = sup(v(x) Ou(x,))

X=X1Xp

:sup(,u(xlxle_l) Dv(xl)) since i is fuzzy normal.

< UV(X,%,) = (V(X) sincex = XX,%, X, .
Similarly pv(x) < vu(x).

Proposition: 1.3.5
Let x4 be a fuzzy subgroup Gf. u is fuzzy normal if and only if eacpy, is a

normal fuzzy subgroup d&, [t D[O,l].

Proof
=)
We need to show that, x ™ =y, ,0x0G
Let hOy, thenu(h)>t

= pu(h) = pu(xhx™) >t

= xhx Oy, 0x0G,h O 4, .

= 4, O x*ux Thereforey, O xu x™

Let yOxu,x™". Now y = xhx™ for somehO x4, . Then u(y) = pu(xhx™) = u(h) > t,
since u is normal. This implies that(y) >t = y O g, .Thereforexu, x™ O 4, .
Thus xu x™ = 4,
(O0) Let x,yOG , also set(x) =t . ThenxO g, = yu, y™ since g, normal.
Thereforey™xy 0 i, = p(y™*xy) =t = u(x ) Ox,yOG . This implies that

Ly ™) 2 p(x). Then u(x) = uly ™ (yxy™)y)= p(yy™).
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Thereforeu(x) = u(yxy™),0x,yOG . Thus u is a fuzzy normal subgroup &. [
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Chapter Two

FUZZY EQUIVALENCE RELATION AND FUZZY
ISOMORPHISM

2.0 Introduction

Relating objects that are perceived equal reqtimesiotion of equivalence relations.
Studies on the implications of this equivalencatieh on fuzzy subsets of a set were
accomplished by a number of authors, for examp[ézﬂb Murali defined and studied

properties, including cuts, of fuzzy equivalendatiens on a set. In this chapter we
first give a definition of an equivalence relationgeneral and secondly that of a
fuzzy equivalence relation (for more see ML[I’ZM] Murali and MakambéZS],[%]

and [27], Ngcibi[BO]). We study the natural equivalence relation iniiceti by
Murali and Makamba (for more details %E'é],[ZG] and[27]) and show that it is

indeed an equivalence relation. We study the etprica of fuzzy subsets of a set as a
foundation to the study of equivalence of fuzzygohips of a grou@ . This we
accomplish by assigning equivalence classes ttuttey subgroups of that group.

The definition of an equivalence class of an elenoéa set is given in 2.3.2. Some
consequences of equivalence of fuzzy subgroupgieea. We also define a

t —norm, characterize &—norm that is continuous and briefly discuss the usefssn
of t —norms.

2.1 An Equivalence Relation

Definition: 2.1.0
A relationd, on X is a subseD of X x X and we writex(ly < (x,y)OD .
Now [ is an equivalence relation ok if 0x,y,zO X :

(@0x, OxO X (Reflexive law)

(bxOy = yOx (Symmetric law)

(cxy and yl1z = xz (Transitive law)

2.2 Fuzzy Relations

Definition: 2.2.1

A fuzzy relation i between elements of two sexs andY is a fuzzy subset of
X xY given byu: X xY 5 1,(XYy) - u(xy).

Note:u(x,y) is thought as the degree to whighs related to/ . The i defined

above is a binary relation and is said to be:
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(a) Reflexive jli(x,x) =1,0x 0 X

(b) Symmetric fi(x,y) = u(y,x),0x, y O X

(c) Transitive jfio u < 4 where tio i is defined by
o p(%,y) = %’xd”(x’ 2)0u(z,y)).

Any fuzzy relation that satisfies (a), (b) andigctalled a fuzzy equivalence relation
on X.

2.3 Fuzzy Equivalencerelation
We define an equivalence relation bfi as follows:
Definition: 2.3.1[25]
Let 4 andv be two fuzzy subgroupg. is fuzzy equivalent tov denoted byu = v
if and only if u(x) > u(y) = v(x) >v(y)and u(x) =0 = v(x) = Q
Claim : Definition 2.3.1 is an equivalence relation.
We have to check (1) Reflexive law: (Clear frominigibn)

(2) Symmetric law e@d to show thati =v = v = u
Now pu=v < u(x)>u(y) = v(x) >v(y)andu(x)=0 < v(x)= 0 23.1.a
Interchanging the roles g andv in 2.3.1.a we obtain:
U=v.

(3) Transitive lalWeed to show that far,v, 3,01°¢, u=v and
v=pB=>u=p.
Now using 2.3.1.a and the fact that S = v(X) >v(y) = B(X) > L(y and
V(x) =0 = B(x) =0 we obtainu(x) > u(y) = B(x) > B(y )and

HU(X)=0 < B(X)=0 < u=p therefore 2.3.1 defines an equivalence relatioon

Definition: 2.3.2

Let A be a set and an equivalent relation on A, then the equivaleriass of all A
is a sefx 0 A: allx}.



27

Proposition: 2.3.3

Let G be a finite group ang: be a fuzzy subgroup @5 . If t;, t; are elements of
the image set of/ such that 4, = My, s thent, =t;.
Proof[6]

Proposition: 2.3.4
L=V =>Imu=Imv

Proof [20]

Definition: 2.3.5

LetT: [O;L]2 - [O;L] be a binary operation , thdnis called a triangular norm
(t—norm) if (a)T is associative
(bY is commutative

(cY is non-decreasing for both variables
(dF (x2) = x,0x O[04

2.3.6 Consequences of definition 2.3.5.
***A t—norm T is called count if it preserves the least uppemiab

***A t—norm T is called Archimedean it (x,x) < x for anny[O,l].

2.3.7 Characterization of an equivalenceby at-norm T that is

continuous.

An equivalence can be defined as follows:

X< 1Y =T((6=1y), (Y= X))
This is so because the implication is defined by:
X- Y= ma>{z|T(x, 2) < y}.
Similarly
y-.x=max{z|T(y,2) <%}
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2.3.8 Usefulness of t —norms

Although the min, union, product and bounded suerafors belong to a class of

t —norms, there are unique definitions for the intersec{and) and union (=or) in
dual logic, traditional set theory and fuzzy setdty. This is so because most
operators only behave exactly the same if the @sgrémembership are restricted to
the values 0 and 1. This shows that there are athgs of aggregating fuzzy sets
besides the min and union.

A t—norm T as given in Definition 2.3.5 defines an intersactand union of two

fuzzy setgz, and u, as follows :

(i) Intersection T[/JA(X), Uy (x)] = U5 (X),OxOG.

(i) Union  T[u,(X), g (9] = o5 (¥) ,OxOG.

So using this definition we note that (b) and (@3we that a decrease of the degree of
membership to set A or set B will not involve anrgmase to the degree of

membership to the intersection. Symmetry is algwessed by (b), and (a) guarantees
that the intersection of any number of fuzzy sets lse performed in any order.

Apart from the already mentioned usd,-anorm can be used to define a notion of

isomorphism.

2.4 Fuzzy | somor phism
Researchers, amongst them Makar{ﬁdand Murali and Makamt{ﬁS], studied the

number of distinct fuzzy subgroups of a group g€in equivalence relation and
compared with the notion of isomorphism. They retdithat the notion of fuzzy
equivalence is finer than the notion of fuzzy isepism. We therefore define fuzzy
isomorphism as a generalization of the equivalealzion presented in section 2.3.
This will enable us to establish a technique tawake the number of isomorphic
classes of fuzzy subgroups of finite groups wetasgtudy in chapter three. We start

with defining a homomorphism for the sake of cortgatess.

Definition: 2.4.1Let (G,£) and(G ¢ ) be groups. A mapping :G — G such
that f(alCb) = f(a)o f(b),la,bdG is called a homomorphism.
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Definition: 2.4.2
A homomorphism that is alsola-1 correspondence is called an isomorphism. Such

a mapping is said to preserve the group operation.

We will denote two group§& andG' that are isomorphic bl =G .

Theorem: 2.4.3
Isomorphism is an equivalence relation on the abdsdl groups.
Proof[30]

Definition: 2.4.4
Let 4 and v be two fuzzy subgroups of groupsandG respectively. Then we say

4 is fuzzy isomorphic te, denotedu Cv = C anisomorphismf :G — G such

that p(x) > u(y) = v(f(x) >v(f(y))and u(x) =0 < v(f(x) = 0.

2.4.5 Homomor phism and Equivalence
Equivalence classes of homomorphic images andnpages of fuzzy subgroups were
investigated by Murali and Makamba{iﬁ] , they discovered that subgroup property

is transferred to images and pre-images by a horrnsmm between groups. They
also noted that inequivalent fuzzy subgroups mas legjuivalent images under a
homomorphism.

We recall that iff : G - G ‘is a homomorphism, by (# Wwe mean the image of a
fuzzy subsetu of G and is a fuzzy subset @ defined by

(f(1))(g") =sudu(g): 90G, f(g) =g} if f7(g")# @ and f(u)(g") = Oif

f (g") = O for g'OG". Similarly if vis a fuzzy subset @& , the pre-image o#,

f (v)is a fuzzy subset o& and is defined b§f *(1))(g) =v(f(g ))

In propositions 2.4.6 and 2.4.7 we suppose thaG - H is a homomorphism from
a groupG toH.

Although a proof of Proposition 2.4.6 is given bydli and Makamba ir[127] we
give a different proof using the definitioh(x)(x) = sup u(a).

x=f(a)
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Proposition: 2.4.6 [27]
If u=v thenf(u)=f~f).

Proof

Let f (L)(f(a)) > f(u)(f(b)). We need to show tha(v)(f (a)) > f(v)(f (b )Now
since f is an isomorphism, thef(x,) = f(a) = x, =a

andf () =f(®) = x, =b

So f(u)(f(a)) > f()(f(b)= SfU(p)ﬂgzq)) > Sfl'l(p/)'l(f)((bz)) thereforeu(a) > u(b )

But u=v=v(a)>v(b).

Thereforesupr(x,) >supv(x,) thatis f(v)(f(a)) > f(v)(f (b ))and conversely.

f(a)=f(x) f(b)=f (%)

If f(w)(f(x))=0 thensupu(a)=0=u(x) thisimpliesthav(x) = Gince

f ()= (x)

L=V .This implies thasupv(a) =0= f (v)(f(x)) =0 Thus f(u) = f (v Jand

f(a)=f (x)
conversely. 0

Proposition: 2.4.7[27]

If u=v inH thenf ™ (u)=f*(v)inG.

Proof . Straightforward.
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Chapter Three

ON EQUIVALENCE OF FUZZY SUBGROUPSAND ISOMORPHIC
CLASSESOF FUZZY SUBGROUPS OF SELECTED FINITE GROUPS

3.0lntroduction

Characterization of finite groups has been stutlied number of researchers, for
example FraleiglﬁlB] and Baumslag and Chanc[l@r. Murali and MakambEQS],[ZG]
and [27] looked into equivalence of fuzzy subgroups in otdesharacterize fuzzy
subgroups of finite abelian groups. Ng(ﬁﬂﬂ] also employed the equivalence relation

used by Murali and Makamba to determine the nurabdrstinct fuzzy subgroups of
some specific p-groups. In this chapter we usedtjisvalence to study the

characterization of the following groups: the synmeegroupS;, dihedral grou, ,
the quaternion grou@,, cyclic p-groupG = an and the grou = an X qu .We

begin by presenting their subgroups, lattices bfjsoups and maximal chains. We
also use the definition of isomorphism given intiea two to determine the number
of equivalence and isomorphic classes of fuzzy suljgs of these groups. We then
compare the number of equivalence and isomorphgsek for the groups.

3.1 Equivalent Fuzzy Subgroups

Definition: 3.1.1
Two fuzzy subgroups andv are said taiistinct if and only iff ] # [v], where[]
and [V] are equivalence classes containggandv respectively.

3.1.2 Examples of equivalent and non-equivalent fuzzy subgroups

Example: 3.1.2.1
Let S, ={e,a,a% b,ab,a?} wherea® = e=b? andeis the identity element. Define

1 if Xx=e 1 if Xx=e
fuzzy set/(x) =11 if x=aa® andv(x) =4 |if x=h
< if otherwise < if otherwise

Here supgu = supp = S; and u(a) > u(b ) butv(a) # v(b) thereforeu # v .

Example: 3.1.2.2
Let S, ={e,a,a% b,ab,a%} wherea® = e=b? andeis the identity element. Define

1 if X=e

fuzzy setsu(x) =43 if x=ab
3 if otherwise
1 if X=e
andv(x) =414 if x=ab
0 if otherwise



32

Clearly p(ab) > p(a) iff v(ab) >v(a) but suppe # suppv thereforeu is not
equivalent to .

3.2 Classification of Fuzzy Subgroups of Finite Groups

The examples given above demonstrate the import@inaiethe conditions in
definition 2.3.1. In order to enumerate the nundfedistinct fuzzy subgroups and
isomorphic classes of specific groups in the sastto follow, we begin by
explaining how in general, distinct fuzzy subgroeps be identified from a fixed
maximal chain of subgroups. The chain is said tsmbgimal if it cannot be refined.
The definitions of a keychain, pin and pinned-féag given in section 5.1.0.
Now given any maximal chain of subgroups

{ofoG,0G,0..0G,, 0G,...3.2a,

we say that the maximal chain has ler(gth , vilhich is the number of components
in the maximal chain. A fuzzy subgroyp can be represented by the following
ordered symboldA A,.. A, A, where thel.'s are real numbers i[O,l] that are in
descending order. Th&'s are called pins. We observe that there(are  pid} for
this maximal chain. If we identify eadB, with A, we have the fuzzy subgroup

1 if x=0

A, if xO0G,\{0}

A, if  xOG,\G,

H(X) =

A, it xOG,\G,
MNA,.. A, A, is called a keychain gf . We sometimes writg =14,4,..4,,4,,, thus
we identify 4 with its keychain when the underlying maximal chaf subgroups is

known. EachG, is a component of the maximal chain.

Example: 3.2.0
(a) The maximal chz{'m} 0 Z, has two components (levels). We

therefore have the following distinct fuzzy subgesdor this chairt1, 14 and10.
(b) The maximal chdig 0 B, O S, has three components (levels).

Corresponding to this maximal chain there are seN&mct fuzzy subgroups
represented by the keychalrid,114 ,110 144 115 ,110,100.

3.2.1 Fuzzy Subgroups of the symmetric group S,

The group of symmetries of three objects has ddderd is defined as

S, ={e.a,a% b,ab,a%} wherea® = e = b?.
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Its subgroups ar®, ={e,a,a%} ,B, ={e,b} ,B, ={e.ab},B, ={e.a’%} , {¢} ands,.
It has four maximal chains viz
{dog,0s,.{d0BO0S,{¢0B 0Sandg 0B, 0S, 3.2.1a
From equation 3.2.1a each chain is of length thwééch means that we can represent
each fuzzy subgroup using a keychaiwith three pins”, for exampleu =113

wherel> A > S # 0on the first chain.

1 if Xx=e
Thus u(x)={A if x0OB,\{g 3.2.1b
B if xOS,\B,
1 if X=e

If v(X) =44, if xDBO\{e}for1>/11>,81¢0thenpzv,thusyzl/]ﬂ is
B, if xOS,\B,

actually a class of fuzzy subgroups.

The definitions of a keychain™ and pin”™~ are given in section 5.1.0. and 5.1.1
respectively.

Now in computing the number of distinct equivalentzsses of fuzzy subgroups for

the entire group, we consider all the maximal chais follows:

1 if Xx=e
Let: 4 =144 on the first chain, that ig/(x) =< A if x0OB, \{e}
B it xUOS\B,
1 if Xx=e
v =11 on the second chain, thatugx) =< A if x0OB; \{e}
B if xUOS\B,

1 if X=e
& =18 on the third chain, that i§(x) ={ A if x0B,\{d
B if xOS\B,
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1 if X=e
r =1Ap on the fourth chain, that 5(x) =44 if xOB, \{e}
B it xUOS\B,

From the above discussion we are able to idertdyt,v, fand r are distinct

fuzzy subgroups when considering these four distihains.

If the number of distinct equivalence classes afkfusubgroups is computed for each
maximal chain, then the total number of equivaleriasses of fuzzy subgroups for
the group can be calculated. The following sectiemonstrates how this fact is used

to calculate the number of equivalence classeszzyfsubgroups @&, .

3.2.2 Techniquefor calculating the number of equivalence classes of
fuzzy subgroupsof S;:
Consider the chail{e} 0B, 0S; in3.2.1a. The number of distinct classes of yuzz

subgroups was found to be equal to sevenhiz 114 110 144 144 140 100.

Each one of the keychains above is used for eagimméchain in the enumeration
of the total number of fuzzy subgroups of the whyleup. These results are tabulated

in the table below.

Distinct Keychains # of ways each counts if allioka
considered

111 1

114 4

110 4

1A 1

14 4

10 4

100 1

Total # of distinct equivalence classes 0f19

fuzzy subgroups

Thus the number of distinct equivalence classdszzy subgroups for the group
G=S; is 19.
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Now looking at the table above, the class of fuzzlggroup represented by the
keychainll11 has a count one because if we consider each ¢harkeychain

represents the same fuzzy subgro@ =1, 0x S, in all the chains of subgroups.

The fuzzy subgroufp14 counts four times because for the sammia all the four

chainsxOB, \e or xUUB, \e or xIB, \e or xIB, \ e which are different sets.

What this means is that the same keych®nrepresents a different class of
equivalent fuzzy subgroups on different maximalicb®f subgroups.

From the construction of fuzzy subgroups in secldhl with1AS replaced with
111 we have:
p(a) = p(@*) > p(b) = p(ab) = u(@’b )
v(b) >v(a) =v(a®) =v(ab) =v(a’b )
{(ab) > é(a)=¢(a”) =¢(b)=<¢(@°b )
r(a’b)>r(a)=r(@®)=r(b)=r(ab )

From the argument above it is clear thav ,{ andr are distinct equivalence classes

of fuzzy subgroups under the equivalence we areutixey, hence the count of four.
Similarly the keychains 11014 and1A Owill give a count of four.

3.2.3 The Dihedral group D,

The group of symmetries of a square or the octs,drder eight.
To identify the subgroups of this group we consitternumber of permutations
corresponding to the ways that two copies of agwith vertices 1, 2, 3 and 4 can

be placed, one covering the other. If we basiaadly o, for rotationsy; for mirror
images in perpendicular bisectors of sides, &rfdr diagonal flips we obtain the

following permutations

(12 3 4 (123 4 (12 3 4 (123 4
PoZl1 234/ 2341 73412 la12 3
(12 3 4 _12345_12345_1234
FiZlo 1 43/ a3 2 1% 3 214 %271 432

Alternatively it can be thought of as a group gatent by two elements andr such

thatr* =1, s? =1 ands =r*s. ThusD, ={Lr,r?r% srsrsr’s}
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3.2.4 Subgroupsof D,

The ten subgroupsb, are listed below:

{Loh {05, 01{05.0,3{ 05, 02} 00 1} 00, 11406, 212 03, 3305, 0 11, 11,3{ 05, 2,61, 5, }
andD, .

In view of the discussion given on subgroups ofdbic we are able to construct

maximal chains for this group in section 3.2.5.

3.2.5Maximal Chainsfor D,

There are seven maximal chains for this group.

{00} 04,8, 0{05.0,.6,,5,} O D,

{00} 0{ps. 6} 0{p5.0,.6,.6,} O D,

{0o} 005, £2} 045, 2,,0,,8,} O D

{00} {00, 0.} O{p5. 1. ,, 05} O D,

{05} 0{05, 0.} 05, 0. 14, 11,} O D,

{00} 0{05, 1} 005, 0. 141, 11,} O D,

{0.} 005, 16} O{00. 0, 111, 11,} O D, 3.35a

Each chain in 3.3.5a is of length four. A keychafirD, is of the formlABa where
12A=28=a.

3.2.6 The number of equivalence classes of fuzzy subgroupsfor D, .

In all the chains the distinct fuzzy subgralfil1 counts once, that is it represents
only one fuzzy subgroup(x) =1,0x D,. The following table below lists a

keychain and the number of distinct fuzzy subgratipspresents.

Distinct Keychaing Number of counts in all chains

1111

1111

1110

113

1
3
3
1144 5
7
7

1110
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1100

UAA

1A

1110

nGps

W La

1150

1100

= gl N N o] W W] k| ¢,

1000

(o)}
w

Total Number

We obtain the above number of equivalence cladsiezzny subgroups for each
keychain as follows :

Using the maximal chains in 3.3.5a consider thekain 1114
L =1110 on the first chain gives

H(3,) > (p,) = 1(0y) > p(py) = 1(p5) = () = p(ihy)

v =11A4 on the second chain gives

v(d) >v(p,) =v(d;) >v(p) =v(ps) =V (1) =V (i)

& =1114 on the third chain gives

$(p;) > 6(0)) = 6(0,) > ¢(p1) = ¢(ps) = (1) = (1)
¢ =114 on the fourth chain gives

W(p,) >y (o) = (0s) > (i) = (1,) =4 (0,) =Y(0,)
w =11A4 on the firth chain gives

@(p,) > (1) = ¢ (1) > @(p,;) = @(p,) = @(3,) = @(J,)
r =11A4 on the sixth chain gives

(1) > 1(1) = 7(0,) > 1(p3) = 7(0,) = 7(0,) = 7(J,)

¢ =11A4 on the seventh chain gives

¢(ty) > ¢(p,) = (1) > ¢(py) = ¢(p5) = 6(3,) =6(9,)
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From the preceding discussion it is clear thav, &, ¢, @, 1 and ¢ represent

different equivalence classes of fuzzy subgroupsnadonsidering all the seven
maximal chains hence the count of seven.
Now in the above construction if we replace theckeyn 1115 with 1155 we have

L =1ALBL on the first chain gives

H(S,) > p(p,) = u(Sy) = p(py) = p(ps) = pth) = p(is,)
v =1185 on the second chain gives

v(d) >v(p,) =v(3,) =v(p,) =Vv(ps) =V (1) =V(K,)

& =146 on the third chain gives

$(p,) > 4(0y) =4(9,) = 4(01) =<(p5) = (1) = $(w)
¥ =1A[6 on the fourth chain gives

W(p,) >y(p) = (ps) =y () = (1) =() =¢(3,)

w =1ABL on the firth chain gives

@(p,) > (i) = $(1,) = @(ps) = w(p,) =@ (9,) = @(J,)

r =1ABL on the sixth chain gives

T((p) > T(1y) = 1(0,) = 1(p5) = 1(0,) = 7(0,) =7(3,)

¢ =1163 on the seventh chain gives

¢(t) > €(p2) = ¢(1,) = €(py) = €(p3) = €(3y) = ¢(S,)

It is clear thaf ,¢/, w represent the same equivalence class of fuzzygupdnence
will count once. The fuzzy subgroups representethbyour;x,v, r and¢ are all

distinct, thus we have a total of five counts fastkeychain.

Similarly for other cases.

3.27 The Quaternion group Q,

Q; is formed by the quaternionslti,+j andtKk.

Q| =8

The group is generated iyand j with i* =1, j% =i? and ji =i%j

Its subgroups are,

{B.{-13.{-1n-i,i}.{-12-j, ji}{- 12k k} and{-11-i,i,~], j,~kk}. All the
subgroups are normal and contain the subgl{eulp} , except the trivial groub}.



39

3.2.8 Maximal Chainsfor Q,

There are three maximal chains for this group. &laes:
@o{-1o{-1-}o{-1-i-j j-kk
o{-wof-u-j}ol-n-ii-ji-kK

Bo{-1o{-11-k Kk O{-11-,i,-j,j-kk} 3.332a

There are four components for each chain. TherefdeychainlfAa on the
maximal chain{l} 0 {- 11} O{- 12,-i,i} O{-11-i,i,-i,i,~k,k} represents a fuzzy

subgroupu as follows:

1 if X=e
_|B it xO{- 11 \{e}
HOO=V 3 i x0{- 11,1, {- 11}

a if xO{-11-i,i,-j, )~k k\{-12-,i}

Since there are four components in this chain, ave 5 distinct fuzzy subgroups on
this chain, represented by the keychains
1111 1110 1488

1114 1100 U\Bo
1110 LA1 11BO
1144 VA8 1400
1145 110 1000

Using this counting technique to determine the nemab fuzzy subgroups for the

entire group, we obtain the following table:

Distinct Keychaing Number of counts in all chains
1111 1
1111 3
1110 3
1144 1
11443 3
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1110

1100

UAA

1Ag

1110

nGp

W La

1150

1100

al Pl W w k| W W P e W

1000

w
[

Total Number

Thus Q, has 31 distinct fuzzy subgroups.

329Thegroup z , for n=2 and 3
A cyclic p- group is of the fori oo O0Z", p aprime.
3.2.10 Maximal chains for an
an ,n0Z" has only one maximal chain of the
fomz ,02,02,0..0Z2,02,0 {0} and if the cyclic grouZ ,,n0Z"

contains the cyclic subgroul’)pk of orderp®, we write an O Zpk ,fork<n.

(@ Thecase n=1
We have the chai@ , [J {o} 3.2.9a

In 3.2.9a any fuzzy subgroup &, is equivalent to any of the following:

11, 11, 10 wheré>A1> 0

Lot |1 if x=0
ot HX= it xoz,\{o

|1 if x=0
YOIZ it xoz,\{o}
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1 if x=0

0 it xoz,\{g M

f(X)={

u=11,v=11 £ =10. Itis clear thatu # v, because by constructid>A> 0
Now u(x) = u(y)for x=0,yOZ, \{O} while v(x) >v(y) and &(x) > &(y ) for the
samexand y. Itis clear thaty is not equivalent tv and é. We also observe that
v(X) >v(y) = &(X) >£&(y) but the supp #suppé, thereforev is not equivalent to
&. Since there is only one chain, each keychain tsoomce on the maximal chain,

resulting in three distinct equivalence classesinty subgroups for this group.

(b) Thecase n=2
We have the maximal chath, 0 Z, [ {0} with seven distinct classes of fuzzy

subgroups viZ11,114 ,110 144 , 145,11 0and100.

From the above it is clear that using the equivaestated in section 2.0

4 =111landv =111 are not equivalent as
u(x) = u(y) for x0z \{o},yO Z,\Z, butv(x) >v(y) for the samex
and y because by assertibr A .

Now we observe that=2*"- .1
A similar argument can be used to show that theimalxchain

z,0z,02,0 {0} of the groupz »» has 15 distinct fuzzy subgroups

andl5=2*" - 1 This suggests theorem 3.2.11.

Theorem: 3.2.11

For anynON there are2™* —1 distinct equivalence classes of fuzzy subgroups

onZ ,.
p

Proof (See Proposition 3.@25] )
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32120nthegroupG=2 , +z, where p and g aredistinct primes

and nON.
Theorem: 3.2.13

The number of maximal chains for the gro@p=Z , +Z, is (n+1) forn>1.
P

Proof

Straightforward. (See illustrations, Figures Bn2l 3 under list of figures)

3.2.14 The number of fuzzy subgroupsof thegroupG=2 , +Z, where

p and g aredistinct primesand nON

In this section we want to determine a general tdanfior the number of distinct
fuzzy subgroups for the group = an +Z, where p andq are distinct primes (also

derived ir{25]). We advance a few values of n to motivate theddetrl 8. Although
a proof of the same theorem was given by Murali iaétamba irﬁZS], we give a

different version of the proof as a way of illusing how our method of pin-extension
is used.

3.215Thecase n=1thatis G = Zp +Zq

From theorem 3.2.13 with= ,G =2 +Z, has (1+1) =2 maximal chains and these

are:

ooz, +{oj0z, +2,

oo{gj+z, 02, +2,

Each maximal chain has three components, thusspmneling to each maximal chain
there are seven distinct equivalence classes a¥/fsizbgroups given by the keychains
111, 110 Y5 ,100 114 ,144 andA Q

If the two chains are considered, we obtain a twialeven non-equivalent fuzzy
subgroups as explained below:

The keychaind 11,2144 ,100 each represents the same fuzzy subgrouphif bo
maximal chains are considered, thus giving a witéhree non-equivalent fuzzy
subgroups. The keychaidda , 110,148 andA (each behaves as a unique fuzzy
subgroup with reference to each maximal chain, @e&ach counts twice giving a

total of eight non-equivalent fuzzy subgroups. Tdiiges a total of eleven non-
equivalent fuzzy subgroups for the group.
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Below we explain how we arrive at this number afiruts:
Suppose we take for example the keycHdif, it gives a count of one in both chains

because it is the same fuzzy subgroup in both casest is 4(x) =1,0x0Z, xZ ).
We observe that if we lett =114 andv =114 for the first and second chains
respectively, thep(x) > u(y Jputv(y) >v(x) for the samex0Z ) x{0} and

y 0{0} x Z, , therefore the same keychain represents diffeguivalence classes of

fuzzy subgroups when observed in the context di ehain, thus the count two. A

similar argument holds for the double count of ridxst.

3.2.16 Thecase n=2 thatisthegroup Z , xZ
p q

For this groupn = 2therefore we havg2+1) = #aximal chains by Theorem

3.2.13 and these are:
z,+2,02,+2,02, +{0}0{0}

z,+2,02,+2,0{c}+z, 0{0}

z.+2,02,+{d0z,+{c}0{d}

There are four levels for each chain. Thus cornedpg to the chain

z,+2,02 ,+{0}0z, +{0} 0{0} for example we have 15 distinct equivalence
classes of fuzzy subgroups as listed below

1111 1110 188

1114 1100 UABa

1110 1444 1480

1144 A8 1100

114 11410 1000, wherel>A>p>a> 0

Considering all the chains it can be shown usingdbunting technique that there are
31 distinct equivalence classes of fuzzy subgroups.

Remark:This is how the counting technique goes: for exXartipe keychairi11]
counts once in all the maximal chains becausetlitasame fuzzy subgroup in all

cases (that ig(x) =1,0x0 Z 0 % Z,).

The keychairl114 counts twice if all chains are considered bgeaiuwe let

#=1111, v =1114 andé =111 be three keychains corresponding to the first,
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second and third chains respectively, they aréndistuzzy subgroups since for the

samexUZ xZ, andyUZ xOwe havey(x) > u(y )butv(y) <v(x) and
&(X) <é(y) forexamplex= (01 y=(p,0). In other words the keychailllld on

the first and second maximal chains representaheduzzy subgroup while it
represents a different equivalence class on tiné thaximal chain.
Now using this counting technique, we have theofeihg table which completes the

entire count

Distinct Keychaing Number of counts in all chains

1111

1124

1110

1114

115

1110

1100

S

1140

nGp

W La

1150

1100

1
2
2
2
3
3
2
UNAA 1
2
2
2
3
3
2
1

1000

Total Number of 31

Therefore the groufs = sz xZ, has 31 distinct fuzzy subgroups. We observe that

31=8(4)-1=2%"(2+2)-1.

3.2.17 Thecasewhen n=3 that is Zp3 XZq

For the groupG = Zp3 xZ, we haven= 3thus we have 4 maximal chains for this

group. These are:
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,+Ho}0z,+2,02,+2,02 ,+2, (a)
ooz, +{doz, +{oj0z,+2,0b)
oqoz,+{oj0z . +{dd0z,+2,02,+2,(c)
ofo{o}+z,02,+2,02,+2,02,+2,(d)

There are five levels for each maximal chain. Gspomding to each maximal chain
we have 31 distinct fuzzy subgroups, given by tiygckains:

111171,1111 111101144 1118 ,111 0, 1110011444 1UA8 1UA0
18 1185 11450,11400 ,11000 4441 UAAAB LAAA0 LB 1AABS
14A0,10100,14888 14853 1A 550,185 1Ay ,10350,14500,11000and
10000.

If all these distinct fuzzy subgroups are takenviadially for all the four chains we

get 79 non-equivalent fuzzy subgroups for the gmupr3 +Z,. We also observe

that 2**(3+2) —1=2*(5)-1=80-1= 79.

This motivates theorem 3.2.18.

Theorem: 3.2.18

The number of distinct fuzzy subgroups for the giGL= an +Z,is 2™ (n+2)-1

fornOMN.
Proof

We prove by induction om. The formula holds fon = 12nd 3 as shown above.

Suppose the statement is true for k , that isG = Zpk +Z, has2*'(k+2)- 1

distinct fuzzy subgroups. We are going to makeaigbe lattice diagram of

subgroups oZ , +Z, and extend from the two nodgs andpXqto the lattice

diagram of subgroups d[p“1 +Z,.The subgrouﬂ!pk +Z, is written asp“q or

simply p*q.
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o)
k+1

We show that the theorem is true for k + . The number of fuzzy subgroups of

Zpk +Z ,that end with a nonzero pin is one more than thioseend with a zero pin.

(@ k+2)-+1|_29(k+2)

Thus the node (subgroupp“q has >

k+1
equivalent fuzzy subgroups ending with a nonzenp @nd there arw 1

fuzzy subgroups ending with a zero pin. Each offthener yields three distinct fuzzy
subgroups in the subgroup**'q as follows: A keychain inp*qis of the form

loa,..a, . Now for a, # O, we can only extend ttr,a,..0,0,, 1o,a,..a, 5 and

2k+1(k + 2)
2

lo,a,..a, 0 keychains inp“*'q for 0< B <a, . Therefore yields

2k+1(k + 2) 2k+1(k + 2)

x3 fuzzy subgroups ip“q and -1 remains the same

because on zero we can only attach a zero. The pbdeas 2" -1 non-equivalent

[(2k+l l)+1] 2k+l
2 2
subgroups that will give rise to new fuzzy subgmwien applied to extensions.

fuzzy subgroups from theorem 3.2.11. Similarly ¢hare

fuzzy

Supposda,a,..a, is a keychain inp* with a, # 0. Extendingp® to p**'q we
obtain seven keychains vixa,a,..0,0,.0, ,10.a,..0.a, 6 1a,0,..a,a,0,
oa,.a. 66, l0.a,.0 p0aq, la.a,..a, 0 and 1a,0,..a, 0Gor 0< B<a, and
O<a<p.

Three have been counted before laza,..a,a,a, ,10.0,..a, 66 , la.a,..a, 00,

k+1 k+1

through p"q.ThusZ2 yields 5 x 4 keychains inp**q.
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Similarly keychains inp* ending with zero do not contribute new fuzzy sulogs as

these have been counted when extending fpfiqp to p*“q.
k+1
Summing up we g (12<+2) x3

k+1
L2 (k+2)
2

=2Y2(k +3) —1=2""?((k +1) + 2) - 1. This completes the proof. O

2k+l
+

1 ; x4=2"(k +2) =1+ 3x 2" (k +2) + 2

3.3 Isomor phic Classes of Fuzzy Subgroups

A mathematical object usually consists of a setsomde mathematical relations and
operations defined on the set. A collection of reathtical objects that are

isomorphic form an isomorphism class. In definisgmorphism classes therefore the
properties of the structure of the mathematicadctogre studied and the names of the
elements of the set considered are irrelevant.

Definition: 3.3.1
An isomorphism class is an equivalence class ®etfuivalence relation defined on

a group by an isomorphism.
We are going to use the definition of isomorphisweg in section 2.4.4. The notion
of equivalence is a special case of fuzzy isomarphthat is if two fuzzy subgroups

are equivalent then they are isomorphic but na viersa.
Definition: 3.3.2

Two or more maximal chains are isomorphic if thergths are equal and the

corresponding components are isomorphic subgroups.

3.3.3 Number of I somor phic classes for selected finite groups:
3.3.3.1 Thesymmetric group S,(see section 3.2.1)

S, has the following maximal chains. (3.1.2 a)

{gog0s M
{goBOS )i
{doB,0s, (iii)
{goBOs, (iv)
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We observe that chain (i) is not isomorphic todtieer chains (ii) and (iii) which are
isomorphic to each other , therefore will be vievasdlistinct from others. But (i)

and (iii) will be viewed as one chain. So calculgtthe number of isomorphic classes
of fuzzy subgroups we obtain the following in tadouiorm:

Distinct Keychains Number of ways each Keychainntsu

111

114

110

iy

g

10

R NN R N NP

100

Total number of isomorphic classes 11

Comments
For the groupS, we have fewer isomorphic classes of fuzzy subgdbgan

equivalence classes.

3.3.3.2 The Quaternion group Q,

This group has the following maximal chains as @nésd in chapter three.

Go{-wol-u-io{-1-i-jj-kk ok
gol-wol-n-i}o{-u-ii-j -k
g o{-1o{-11-k K 0{-10-,i-), &K}

(**), (***) and (****) are all isomorphic since byconstructioni® = j> =k*=- 1
they are viewed as one chain when computing theébeuwf isomorphic classes. In
section 3.3.0 we established that each chain hasidfquivalent fuzzy subgroups
that can be represented by the following symbols:

1111 1110 1488 1111 1100 1480 1110 A UABO1UA UAB 100

1144 1440 1000

Since all chains count as one, there are 15 isdmmgtasses of fuzzy subgroups

for Q.
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Note: There are fewer isomorphic classes of fuzibgsoups than equivalence

classes.

3.33.3Thegroup G=2,+2,

This group has the following maximal chains

{doz, +{ojoz, +z,

{dofo+z, 02, +2,

The two chains are not isomorphic, thus each dmutees to the number of isomorphic
classes. We established in chapter three that #neré distinct fuzzy subgroups for

each chain, these are:
111 110144 100114 144 110.
First we present a table of keychains and the nuwiieomorphic classes

represented by each keychain. We count theseths itase of equivalence classes

and obtain the following table:

Distinct Keychains Number of ways each Keychainntsu

111

114

110

iy

ns

10

R NN R N NP

100

Total number of isomorphic classes 11

We observe that the number of equivalent fuzzy saulggs is equal to the number of
isomorphic classes for this group.

3334 ThegroupG=2 . +2,

There are three maximal chains for this group asvahbelow:
z,+2,02,+2,02, +{0}0{0} 0

z,+2,02,+2, 0{c}+z, 0{0} (ii)
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z.+2,02,+{oj0z, +{00{d (iii)
We observe that chain (jii) contains a cyclic suhgpZ +{0}, therefore is not
isomorphic to either (i) and (ii). Also (i) and)(are not isomorphic becaugeand
gare different primes. Thus the number of isomorglasses of fuzzy subgroups is

equal to the number of equivalence classes fomttasp.

So for the grouﬁpn +2,, the number of isomorphic classes of fuzzy subgsas

equal to the number of equivalence fuzzy subgramgsis given by the formula

2" (n+2) -1. (See theorem 3[25])

Now if we investigate the groug =2 +Z , we start with for exampl&, +Z,
which has the following maximal chains

oz, +{ojoz,+z,

{odo{o}+z,02,+2,

{do(ayoz,+z,

they are all isomorphic thug, + Z, has2® -1 isomorphic classes but has

3
2° —1+27>< 2 equivalence classes of fuzzy subgroups.

In generalG =2, +Z  has only proper subgroups of ordgrand 1. All subgroups

of order p are isomorphic, hence all the maximal chains ssebrphic which
impliesthatG=2,+2, has2® —-1= 7Jsomorphic classes of fuzzy subgroups for all
primesp.

For the grous = Z, +Z, we have the following maximal chains
{doz,+{ojoz,.+{doz,+z,

ooz, +{ojo(ay)nz, +z,

{ofo{o+z,02,+2,02,+2,

{fo(ey)oz,+z,02,+2,

The last two maximal chains are isomorphic and belliviewed as one chain while

the first two are also isomorphic

So the number of isomorphic classes of fuzzy sulgsdorG =2, +Z, is
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4

2 - :
2° —1+7 = 23. Similarly it can be shown that the gro@=Z , + Z, has

5
2° —1+% X (2) =63 isomorphic classes of fuzzy subgroups.
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Chapter Four
ON THE MAXIMAL CHAINSOF THE GROUPS G=Z , +Z_, AND

G=2  +2  +2.
p q r

4.0 Introduction

Since the concept of maximal chains plays a cruolalin facilitating the
characterization of fuzzy subgroups of particul@ugs, in this section we wish to

determine a formula for the number of maximal chdor the

groupG = an + qu +Z, and possibly conjecture on the formula for theugr
G= an + qu +Z _for all values ofn,m,s0Z" and for allp,q andr distinct
primes.To accomplish this we first begin with stundythe groupG = an + qu .
Ngcibiin [30] studied the classification of abelian groups efftrmG =2  +Z,

and obtained the following results which we put dawthe form of lemmas without

proof.

4.1 Maximal Chainsof =2 ,+z,

Lemma: 4.1.0

G=Z,+Z, hasp+ lmaximal chains.
Proof [30]

Lemma: 4.1.1

G= sz +Z has2p+ 1maximal chains.
Proof [30]

Lemma: 4.1.2

G= Zp3 +Z, has 3p+ 1maximal chains.
Proof [30]

Lemma: 4.1.3

G= an +Z has(n-1)(p-1)+(p+ L)maximal chains.

Proof [30]
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We also include the following definition that wide used in the decomposition of

groups when determining the number of maximal chafrthese selected groups.

Definition: 4.1.4

A maximal subgroufG  of a groupG is a proper subgroup @ such that no proper
subgroupG~ of G strictly containsG .
4.1.5Maximal Chainsof G=2 , +Z,

Since our ultimate goal is to establish the fornfatahe number of maximal chains

for the grous = an + qu , we accomplish this by fixingn and for that particular

value of m, values ofn are advanced to identify a pattern.

Whenm= 1we haves = an +Z, and advancing a few values ofsayn= 1234

we observe that here afgn+ rhaximal chains (see tree diagrams of subgroups for

n=1, 2, 3 and 4(Figures One, Two and Three)) ansybymetryG =2, + qu has

(m+1) maximal chains.
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We denote the groug =Z , +Z , by p"q"

Figure One

n=1 Number of maximal chains

Number of maximal chains
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Figure Two

Number of maximal chains

4
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Figure Three

Number of maximal chains

3
q
& 5

Proposition: 4.1.6

G= an +Z, has(n+ 1)maximal chains.

Proof
From the tree diagrams above the formula is truenfe 1,234. We assume the

formula is true fom =k, that isZpk +Z, has (k+ ) maximal chains. Now we need
to show thathk+1 +2, has(k+ 2)maximal chainsZpk+1 +Z, has the following
maximal subgroups (ijk +Z, and (i) Zpkﬂ. Now (i) by assumption hak + 1)

maximal chains and (ii) from section 3.2.10 has m@&imal chain. Summing we

have (k + 1+1= (k + 2) maximal chains as required. O
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Furthermore, continuing with the process we obtianfollowing number of maximal

chains for different values of .

M | Group Number of Maximal chains
2 an + Zqz (n+2)!
ni2!
3 an + qu (n+3)!
n'3
4 an + Zq4 (n+4)!
ni4!
S an + qu (n+5)!
nis!

The above observation motivates the following psjan.

Proposition: 4.1.7

(n+m)!

JforallnmOzZ".
nm

The number of maximal chains far= an + qu is

Proof
We prove by inducting on the sum of the exponehtp and g that isn+m. Now if
we let s =n+m, the formula is true fos= because we have eithe= afd

m=0 orn=0andm= 1 G is isomorphic to the group, or Z,which has one

. . 0+1)!
maximal chain an =

1. Fors= 2, we may haven= Zandm= (or n= 2and

m =0, makingG isomorphic to the groupZp2 or Zqz with one maximal chain and

(0+2)!
20

=1. We may also have= 4d4ndm= 1, thusG is isomorphic to the group

@L+1)!

Zp + Zq which has 2= maximal chains, therefore the formula holds for

s=2.
Now we assume the formula holds ®rk = n+m=k = m=k -n so that

4 K
nk-n)  ni(k-n)!

G= an + qu_n has maximal chains. We need to show that
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(n+k-n+1)!  (k+1)!
nk-n+1)! ni(k-n+1)

maximal chains. The

whenG = an + qu_m there are

maximal subgroups o , +Z .. areZ . +Z .. (@) andZ , +Z .. (b)

From (a) and (b) using assumption, we have mpal; + qu,w has

(n-1+k-n+1)! _ Kl . .
(n-Di(k-n+1)!  (n-1)!(k—n+1)! maximal chains and , +Z ., has
(n+k-n)t_ K

= maximal chains.
n(k-n)! ni(k—-n)!

Adding we obtain K + K = k() +Ki(k=n+1)
(n-)'(k-n+1)! nl(k-n)! nl(k —n+1)!
Kln+k-n+1] _ Ki(k+D) _ (k+1)

= . This completes
nl(k —n)! n(k-n+1)! ni(k-n+1)!

the proof. O

4.2Maximal Chainsof G=2 ,+Z,+2,

Utilizing the tree diagram of subgroups below ardaaiting a similar technique like

above, we obtain the number of maximal chain fergroupG = an +Z,+Z ,in

tabular form for anynJZ".

The groupG =2, +Z +Z, has the following maximal chains:
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G=2,+2,+2,

Number of maximal chains=6

_(1+1+1D)
T
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The groupG = sz +Z,+Z, has the following maximal chains:

AN

pigr

/]

f

N\
N\

/

G=Z,-Z +Z
P 7 r

O

rPqg
- 4
7 ik )
P
z *
o=
~0

.

]
T~
7]
8- el
@
N
~©
B
0
ia
S ©
B
~o

n|zZ.+Z +2
p a r

Number of Maximz| Chains

\*2J

11z,+2,+2,

6=(1+1)(1+2)

2 | 2,+2 +2
p q r

12=(2+1)(2+2)

3 Zp3 +Z,+Z,

20=(3+1)(3+2)

k|lZ, +2Z +2
p a r

k? +3k+2=(k+1)(k+2)

Number of Maximal chains =12

_@2+1+1)
Y
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From this table we can deduce that the number afma chains for

G= an +Z,+Z, is apolynomial inn and we state this as a lemma that follows.

Lemma: 4.2.1
|
The groupG = an +Z,+Z has(n+}(n+2) = w maximal chains for
nx=1.
Proof

We induct onn. From the illustration on tree diagrams and thertchbove we

observe that the formula holds for= 12Row we assume that the formula holds

for n=Kk that isG = Zpk +Z,+Z has (k+)(k+ 2)maximal chains. We have to
show thatG = me +2Z,+Z has(k+2)(k+ 3)ymaximal chains.
Now G = me +Z,+Z, has the following maximal subgroups
Z,+2,+1 (a)
Z2,.+2,+{0} (b)
z,.+{0}+2, (o)

From assumption, (a) h@st+1)(k+ ,Qb) and (c), from previous result 4.1.7 have

| |
(k+1+1)! and (k+1+1)!

maximal chains respectively.
(k +1)! (k +1)!
Summing up the number of maximal chains for (a) afix (c) we obtain

- (k +1+1)! N (k +1+1)!
(k +1)! (k +1)!

(K+D)'(k +D(k +2) + (k +2)1+(k +2)!
(k +1)!

_(k +1)![(k +D)(k+2)+(k+2)+(k+ 2)]
- (k +2)!

= (k +2)[k +1+1+1]

(k+D(k+ 2

=(k+2)(k+ 3). This establishes the result. 0
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4.2.2 Thegroup Z,+2,+1Z

Fixing the value ofm to bem= 2and advancing a few values ofwe obtain the

following table

n zpn + Zq2 +Z, | Number of Maximal Chains

1[z,+2,+2, [12=2.3+33

2 sz +Zqz +2 | 30=3.4+3.4+3.4

3|2z.+2,+Z, |60=45+56+35

4 ZD4+ZQZ+Zr 105=5.6+3.5.7+3.7

k Z,+2,+2,
p q

k(k +D(k +2) N (k+D(k +2) _ (k+1)(k+2)(k+3)
2

(k+D(k+2)+ )

From the above observation we have lemma 4.2.3.

Lemma: 4.2.3

The number of maximal chains for the grdUpp + Zqz +Z, is

(n+H(n+2)(n+3) _ (n+2+1)!

2 n'2
Proof
Formula holds fom = 1,234as shown by the tree diagrams. We assume the lf@rmu
is true forn =k that is.Zpk + Zq2 +Z, has (k+ Dk ; 2A(k+3) maximal chains.

(k+2)(k+3)(k+4)
2

maximal chains.

We need to show thitpm + Zq2 +Z, has

Now me + .?[qz +Z, has the following maximal subgroups

Zpk +Zqz +Z, (a)
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Z,.+2,+{0} (b)

Zpk+1 + Zq + Zr (C)

From assumption (alpk + Zq2 +Z, has (k+ 3k ;2)0( ) maximal chains.
|
From Proposition 4.1.5 (b} ., +Z , +{0} hasM maximal chains. From
P g 2!(k +1)!

Proposition 4.1.7 we also know thatlcp)+1 +Z,+2, has(k+2)(k+ 3)maximal

chains.

Taking the sum of all the number of maximal chabtained for (a),(b) and (c) we

get
(k+D(k+2)(k+3) _ (k+1+2)! r(k+2)(k+3)
2 2!(k +1)!
(k+D(k+2)(k+3) + (k+3)(k+2) N 2(k+2)(k +3)
2 2 2
Lk +3(k+ 2)[k tivi+ 2] = (k+2)(k+3)(k +4) which establishes the
2 2
result. O

It can be easily noticed that if we continue irstfashion we will obtain the formulae

of the number of maximal chains for the groﬂg + qu +Z, for m= 34 and these

we list as lemmas without proof.

Lemma: 4.2.4

(n+H(n+2)(n+3)(n+4) _(n+3+1)!
3 - ni3

maximal chains for

G=2,+Z.+1Z has

n=1.
Lemma: 4.2.5

(n+H(n+2)(n+3)(n+4)(n+5) _(n+4+1)!
4 B ni4!

G=2,+Z,+Z has maximal

chains foralln=> 1
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In view of the lemmas 4.2.4 and 4.2.5 we can tloeeeflive a general formula for the

number of maximal chains for the grodp, xZ , x Z, which we state in the

proposition to follow.

Proposition: 4.2.6
(n+m+1)!

There are————— maximal chains for the gro@= Z +Z +Z, were
ntm!

mnZ" andp,gandr are distinct primes.

Proof
We prove by inducting on the sum of the exponehtp g, andr thatisn+m+ 1

Let s=n+m+1, the formula holds fos = 1because we have=m= dhd this

gives the groupZ, with one chain. The formula holds fer= sihce we either have

n=1m=0 or n=0,m=1in which case we have essentially the two groZips-Z,

|
andZ, +Z, respectively, and from proposition 4.1.7 theseehg%]% =2 and

|
% = 2 maximal chains respectively.
The formula holds fos= decause we eithar=m= hich gives the group

=3=6

|
Z,+2,+2, and by proposition 4.2.1, we hage+1)(1+2) = % _

maximal chains or secondly we may have O,m=orh = 2, m= 0 which

essentially gives the grouﬂsqz +Z, andeZ +Z, respectively, and from proposition

4.1.7 these each hag— 3a (2+1 0 _ = 3 respectively. Now we assume

210
that the formula is true fos=k =>n+m+1=k=m=k-n- ,1hatis
|
Z +Z,..+Z haSL maximal chains. We need to show that
P d n(k-n-1)!

Z +Z,, +2Z, hasM maximal chains. NOV\Z +Z g +Z, has the
P a nl(k —n)!

following maximal subgroups
Z . +Z,.+Z (3)
p q
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Z.+2,...+Z (b)
z,+2,..+{0} (0
In (@) s=n-1+k-n+1=k therefore by assumptior?!r}n,l + qu,n +Z, has

k!

TM maximal chains. In (b} =n+k-n-1+1=k therefore
n-1)!(k - n)!

an + qu_n_l +Z, has maximal chains by assumption. Finally

ni(k - n —1)!

-n)! |
2, +2,, +{0) has WTKWE_ K
P a n(k-n)! ni(k—n)!

maximal chains by Proposition 4.1.5

Summing up we obtain
k! k! k!
+ +
(n=-D!(k-n)! ni(k-n-1)! ni(k-n)!
_K(n)+K((k-n)+k _K[n+k-n+1 _ (k+1)!
- n(k —n)! T onk-n!  ni(k-n)

. This completes the proof.

0

Our discussion above enables us to conjectureegeheral formula for the number

of maximal chains foan +qu +Z , for p,qg,r distinct primes andn,m st Z*.

This is given as a proposition that follows.

Proposition: 4.2.7

+m+s)!
There arew maximal chains for the groufbpn +qu +Z . for p,q,r
nimi gl

distinct primes andn,m,sdZ".
Proof

We prove by inducting on the sum of the powergof] andr thatisn+m+s.
Letj =n+m+s, the formula holds forj = 1because this implies that
n=m=0,s=1 so we have essentially the grodp with one chain. The formula
holds for j = 2 that is we either have=1m=0,s= drn=0,m=1s=1and
n=1m=1s=0 in which case we have the three grodps+Z,, Z, +Z, and

Z, +Z respectively, and the result is true from proposi#.1.7.
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We assume that the formula holds ferk, thusj =n+m+s=k=m=k-n-s
!
n(k-n-9)!d

(k +1)!
n(k-n-s+1)!d

that is an + qu,n,s + er has maximal chains. We need to show that

an + qu,wl + er has maximal chains. NOV\Zpn + qu,n,sﬂ + er

has the following maximal subgroups,
Z n-1 + Z k-n-s+1 + Z s (a-)
p q r

an + qu—n—s + er (b)
an + qufnfsﬂ + erfl (C)
In(@) j=n-1+k-n-s+1+s=Kk thereforean,1 + qu,wl +Z . has

ki
(n-DI(k-n-s+1)!d

maximal chains by assumption. In (b)

|
j=n+k-n-s+s=k thereforeZ ,+Z .. +Z . has; maximal
P a ' n(k-n-s)!d
chains. In(c)j =n+k-n-s+1+s-1=k thereforeZpn +qu,n,s+l +Z ., has
k!
n(k-n-s+1)!(s-1)!

maximal chains.

Summing up all these we get

k! k! k!
+ +
(n-D!(k-n-s+1)!d ni(k-n-9s)!d ni(k-n-s+1)!(s-1)!
_Ki(n) +Ki(k=n-s+1) +ki(s) _Kl[n+k-n-s+1+s] _  Ki(k+1)
n(k-n-s+1)!d n(k-n-s+1)!d n(k-n-s+1)!d
|

= (k+1): . This establishes the proof. O
n(k—-n-s+1)!d

Remark
It can be shown that in the stage of establishiegriduction in 4.2.6 if we

(k +1)!

interchange the roles of andm, we have that , ., +Z , +Z has—————
P d mi(k —m)!

|
(k+1) maximal chains. It can be shown that

whileZ ,+Z ., +Z, has———
P d nl(k —n)!
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I I [
(kD _ K*D'  Similarly with 4.1.132 . +2,.. +Z. has—
m((k-m)! nl(k-n)! P a ' n(k-n-s)!d
[
maximal chains an(Zpk_m_1 +qu +er will have K maximal chains.

m((k-m-g)!d

From the above observation we can generalize timeul@a of the number of maximal

chains for the grou@ = Zplnl + Zp p Tt Zp . - This we give as a proposition that
2 k

follows below.

Proposition: 4.2.8
The groupG = Zplnl +Z ,+.+tZ

po" P ™™
m
( X > n!
n+n,+n,+...+n_)! = : :
has—+—2——3 me = = maximal chains, whereg,

n'n,!n;t..n.! n!n,tn;t.n!
1<i<m are distinct primes.
Proof

We prove by inducting om, +n, +n; +...+n,, =s. Let s= 1then we have either

[
which has& =1lor
(ny)!

G=2

Pt

OrG:Z n m
P2

orG=2Z ,or..orG=Z2
P3 Pm

()t

n,)! n,)! ! : . .
()} _ orﬁzl or...or =1maximal chains respectively.

(n,)! (ny)! (n;,)!

Now we assume the formula is true for

s=k=n+n,+..+n,=n =k-n,—-n,—...—n_ thatis
G=2Z yonytL ,, +..+2Z , has
Py P2 Pm
(k-n,-ny—..-n)+n, +n;+...+n)! _ ki
(k=n,-n;—...—n)In,In!.n_! (k=n,-n;—..n)n,!Int..n_!

maximal chains.

We need to show that the formula holds $ork +1=n, +n,...+n_, that is

G=2Z yyutd ., +..+Z | has
Py p: Pm

n2
2
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(k-n,-n;—..=n )+n,+n,+..+n_ ) (k +1)!
(k=n,-n;—...—n_+1)In,!n,!.n_! (k=n,-n;—...—n_+L)In,!Int.n_!
maximal chains. We observe that= Zplk,nz,ny_,,,w1 + Zp n Tt Zp w ot Zp ., has the

following maximal subgroups,
1 e F + +...+
( )Zplk np-n3-..—Nm sznz Zp3n3 menm

(2) Z plkfn27n3f..rnm+1 + Z P + Z p3n3 + e + Z pmnm

n2-1
2

(3) Z plkfn27n3f..rnm+1 + Z p2n2 + Z p3n371 + e + Z P

m

+Z ., t.+Z +Z

ny Nm-1-1 n
P2 P3 Pm-1 m Pm m

(m-l) Zplkfngfny..,—nmﬂ + Z

(m) Z k=np-nz-..-npm+1 + Z np + Z nz-1 + + Z Nm-1 + Z nm-1
Py Ps m-1 Pm

P2

Now by assumption each maximal subgroup has th@fig maximal chains:
(1) has:

(k-n,-n,—..=n )+n,+n,+..+n_) _ k!
(k=n,-n;—...—=n)n,Int.n_! (k=n,-n;—...—=n)n,Int.n_!
(2) has:
(k-=n,—..=n_ +D+(n, - +n, +..+n )} _ k!
(k=n,—...—n, +D!(n, =D!nl..n | (k=n,—...—=n, +D!(n, -D!n,l..n!
(3) has:
((k=n, —.mn +D+n, + (g D +...+n, ) ki
(k=n,—...—n, +D!In,!(n, -D'..n_ ! (k=n,—...—n,+D!In,!I(n, = D!...n_ !
(m-1) has:
((k=n, —.mn, +D+n, +..(n,, ~D+n, ) ki
(k=n,—...—n_ +DIn,!...(n,, ~D'n_ (k=n,—...—=n_ +D!In!...(n._, —D'n_|

(m) has:
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(k=n,—..=n_ +D+n,+n,+..+(n, -D) _ ki
(k=n,—...—=n, +DIn,!In,!...(n, -1)! (k=n,—...—=n, +DIn,!In,!...(n, —1)!
Summing all of these we obtain

k! k!
+
(k=n,-n,—..—n)n,t.n! (k-n,-n,—..—n +D(n, -l..n_!
k!
+ +
(k=n,-n,—...—n_+D)In,!(n; -YL..n_!
k!
(k=n,-n,—...—n_ +D)In,!...(n,_, -Din!
k!
(k=n,-n,—...—n_+1)In,l..n__'(n, —1)!

_kKi(k=-n,-n;—...—n_ +D+kli(n,)+..kKI(n,)

(k-=n,-n,—...—n_ +1)In,l..n_,'n_!
_K(k-n,-n;—..-n +1+n, +n, +..+n,)
(k=n,-n;—...—n_+1)In,!Intl.n_!
_ kl(k +1)
(k=n,-n,—...—n_+)In,!Inl.n_!
|
= (k+1) ; which establishes the result. O

(k=n,-n,—..—n_ +1)In,l..n_,'n_!
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Chapter Five

ON THE NUMBER OF EQUIVALENCE CLASSESOF FUZZY SUBGROUPS
FOR THE GROUPS G = an + qu AND G = an + qu +Z,

5.0 I ntroduction

[20], [25],[26], [26],[27], [28],[29]and [30] were very useful in the compilation of
this background information on the notions of kegyiol, pins (already mentioned in
chapter 3), pinned-flag (for more see Murali anaikuran{ZS],[ZG] and[27]) and

pin extension which we exploit in the computatidnhee number of equivalence
classes of fuzzy subgroups for these selected gréugetailed explanation to justify
the method of computing the number of fuzzy subgsausing maximal chains is
given in section 5.2.0. We also give specific exspo illustrate how the counting
technique is applied.

In 5.1.3.1 we include some work by Ngc[[B:(D] on the formulae for the number of

distinct fuzzy subgroups for the gro@p= an X qu where p,q are distinct primes

andm= 123. With the aid of a few combinatorial analysisideions (for more see
Riordan[36]), we give a proof of Ngcibi's Theorem 5.3.3[B0| which the author did

not prove. This we do as another illustration fa justification of our counting

technique.

5.1 Keychains and Pin-extensions

Definition: 5.1.0

A set of real numbers oh= [0,1] of the forml>A, >A, >..>A ,>A , > A,
where A, may or may not be zero, is called a finitechain. This chain is customarily
written in descending order as follou#A,..A,_,A,. 6.1.0..a

The real number§ A, 4,,....4,,, A, are called pins. The finita — chain becomes a

keychainifl2A, 24,2..24 ,24_,24, 20

n-2 =

An increasing maximal chain af+ dubgroups of5 starting with the trivial

subgroup{0} is called a flag orG .
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Definition: 5.1.1

A pinned-flag is the pai{c, é} where¢ is the flag ol and/ is a keychain.

We customarily write this to suit fuzzy subgroupdwmG = G, as follows
0'0GHD0G O...0G OG

Associated to the keychain 6.1.0.a with thés not all necessarily different, a fuzzy
subgroupu on G can be constructed that corresponds to the pinrfiegd onG as
follows

1 if x=0
A, if xOG,\{0}
A, if  xOG,\G,
H(X) =

A, if x0G,\G,,

whereG, is the whole groufis . 1 defined above is a fuzzy subgroup®f
Theorem: 5.1.2
Let G be a finite group. A fuzzy subsgt of G is a fuzzy subgroup of G if there
exists a maximal chain of subgrous <G, <...<G, =G such that for the numbers
Ay, Apse0A, belonging tolm u with A, > A, >...> A, we haveu(G,) = A,,
UG =A,... . u(G',)=A,, whereG', =G, \G,_,,1<i<n
Conversely, any fuzzy subgroup of G satisfies szamfdition.
Proof ([6])

Where a fuzzy subgroup has been represented mnagi-flag say

for example

(of O(oxoxz,) O(z,x0xz,f 0(z,x0x2,.) Olz, x0xZ,.)
pin-extension can be carried out on this and ook sitension is given by
(of O(oxoxz,) O(z,x0xz,f 0(z,x0x2,) Olz, x0xZ,.)
0(z,.x2,xZ,.f where9=¢ or0<9<¢ oré=0.
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Definition: 5.1.3

An extension of OO G, O G, O...0 G, is a maximal chain
OoO0G UG, 0..0G, UG,,, having the chain

O0G, UG, O...0G, as a subchain.
Since we identify a fuzzy subgroyp with its keychain when the underlying

maximal chain is known, an extension of a maxinmalic also results in a new
keychain associated with that chain. Below we wattriefly explain how we carry
out this pin-extension principle.

For a fixed maximal chain with two components weehaeen that there are three

distinct fuzzy subgroups which can be represensatithe following tree diagram:

Now when extending in the diagram above, to thelpive may attach a 4,0or 0 with
1>A>0,tothe pinA we may attachad, £ orOwith1>A> > 0 We get seven

distinct equivalence classes of fuzzy subgrouphas/n in the next tree diagram.
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o [=]

[B] o[y]

whereA=1,Aor S andB=A,8 or y # 0, to a zero we attach azero ,we obtain

fifteen distinct fuzzy subgroups.
So in general if we have a fixed maximal chain of

subgroupsO U0 G, G, O...0 G, =G, a keychain associated with chain is of the
form lo,a,..a, forl1>a, >a, >...>a, 2 0. If we extend to

onG UG, 0..0G, 0G,,, =G, the keychaida,a,..a, for a, # Ocan only
extend tola,a,..a,a, orlaa,..a,a,,, orla,a,..a,0.If a, =0, we can only

attach a zero.
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5.2 0 Justification of the Counting technique of Fuzzy Subgroups
Our goal is to make use of this pin-extension ppiecand the counting technique
introduced earlier to establish a formula for tkenber of equivalence classes of

fuzzy subgroups for the groumgn +Z,+1,, an + qu +Z, and an +Z,+Z .and
possibly establish the general formula for the grcmpn + qu +Z . for distinct

primes p,q andr, nmsOZ".
To achieve this we first give a detailed explamabo the counting technique of
distinct equivalence classes of fuzzy subgroupsiighaximal chains of the group

play a pivotal role.

LetOUG, UG, U...0G, =G be a maximal chain d& . The number of
equivalence classes of fuzzy subgroup&otan be computed by considering how
many each maximal chain contributes in any sequence

Suppose we start with a maximal ch@inl G, UG, U...0 G, =G (a). There are
2™ —1 distinct equivalence classes of fuzzy subgroupgrituted by this chair[Q].
Now if another maximal chain is considered €ay! J, 0 J, U...0J, =G (b)

where only oneJ, # G, for somei 0{123,...,n} the number contributed by this chain

excluding those counted in chain (a) is given by fnoposition.

Proposition: 5.2.1

The number of fuzzy subgroups Gf obtained from (b) only excluding those

obtained from (a) is%l forn= 2.
Proof
We prove by inducting om. For n = 2 we have the following maximal chains
00G, 0G,=G(1)

00J,0J,=G(2)
From previous result (1) contribut@$™ -1= dstinct fuzzy subgroups as follows.
Since there are three levels such distinct fuzbgsaups can be represented by the
keychains111 114 110144 145 140 100 wherel> A > 5> 0The keychains
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111 1214 100 cannot be counted again in (2) as they woyldtesent precisely the
same fuzzy subgroups counted using (1)

1Lx=0

To illustrate this we observe that for instarddd is u(x) = .
A, otherwise

This shows tha, and J; play no role in the determination of .
So if these keychains are removed we remain with fd@his is the number
contributed by (2) distinct from those of (1).

On the other handiAg is distinct in (2) from the one counted in (1rdease

1x=0 1Lx=0
in (1) 18 is u(x) =44, x0G, \{0} while in (2) isv(x) ={A,x0J, \{0}
B, xOG\G, B, x0G\J,

Now there exisk G, \ J,. Since chain (1¥ (2) thenJ, # G,. So for thisx

2+1

U(x)=A while v(x)=#A = uzv.Thus (2) contributed = 2* = 22 fuzzy

subgroups. So the proposition is true for . 2

Now we assume the proposition is true for k >  that is (1) contribute@*** -1

k+1
and (2) contributes% = 2% distinct fuzzy subgroups not counted in (1).

Let n=k +1and letl) A,.. A, be a keychain of (2) in the case wher k> . 2

We consider two cases:

Casel, # Q Extending this keychain to a keychain in the casek +1, we have the
following possibilitiedA,A,.. A A, N A, .. A A, , TN A,..A, 0.
Casel, = Q There is only one way of extending to the casek + and that is to

attach a zero, that 1,1,...00. The two cases give four keychains for k+ frdm

k+1 k
the one keychain fon=k > 2Now there are%{zz } = 27 keychains of (2) for

n=k>2 ending withA, # Oand the rest are keychains endingwlth= . 0

2k 2k 2k 2k+2
Thus (2) forn =k + 1contributes 3><? +1><? = 4><7 =2kt = — distinct

fuzzy subgroups not counted in (1). This complétesproof. 0
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Example: 5.2.1.1
On the number of fuzzy subgroups®f= 2, + Z . This group has the following
maximal chains{0} O Z, +{0} O Z,+Z,=G (i)
{odofot+z, 02, +2, =G (i)
Here (i) contribute2® -1=@istinct fuzzy subgroups. Since there are threelse

fuzzy subgroups here are represented by the fallpweychaing 11 114 110 144
1S 110 100 wherel> A > > 0The keychaind11 144 100 cannot be counted
again in (ii) as they would represent preciselysame fuzzy subgroups counted
using (i). So we remain with four which are thezyuasubgroups contributed by (ii).

These are distinct from those counted in (i) fer fibllowing reasonslAfS in (i) is

1x=0 1x=0
u(x) =44,x02 +{op\{o} while in (ii) itis v(x) = {4, x0{0} + Z, \{0}. Itis clear
B, x0G\Z, +{0} B, x0G\{0}+2,

that {0} + Z,#21, +{0} therefore there exists 1{0} + Z,\Z, +{0}= u#v.For

such anx v(x) =A and u(x) = g # A. Therefore the number of fuzzy subgroups
contributed by (ii) distinct from those of (i) = %[23]. The total number of distinct
fuzzy subgroups for the group st 4 =11

n+l
Note From now on we assume each chain (2) yieglgs fuzzy subgroups even if (2)

has two or more subgroups distinct from those pf (1

Proposition: 5.2.2

SupposeG has the following maximal chair@ UG, UG, O...0G, =G (a)
o0J,0J,0..0J,=G (b)and a third maximal chain

O0K, 0K, O..O0K, =G (c) distinct from (a) and (b), and suppdseé] N such

thatJ, ZG,, K, #J, andK, # G, , then when computing the number of fuzzy

subgroups ofG, the number contributed by (b) is equal to the benof fuzzy
subgroups contributed by (c) for> .2
Proof

We prove by inducting om. If n=2 we have the following maximal chains
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000G, 0G, =G (i)
00J,03,=G (i
00K, 0K, =G (iii) with G, # J, # K,. ClearlyK, #G,.

3
By proposition 5.2.1 chain (i) ha® -1 fuzzy subgroups. (i) hagz— = 2% fuzzy

subgroups distinct from those counted in (i).

Similarly as in proposition 5.2.1 the fuzzy subgrswf (i) can be represented by the
keychainsl1l 114 110144 148 140 100 wherel> A > 5> Oltis clear that the
keychainsl11l 114 100 represent the same fuzzy subgroups in athtlee maximal
chains thus they are not included in chain (iileTemaining keychains atd1 110
NS 110.

SinceG, # J; # K, and K, # G,, these four keychains will represent distinct fuzz
subgroups in all the three maximal chains. Theestiain (iii) has four fuzzy
subgroups not counted in maximal chains (i) arjd Tinus the number of fuzzy
subgroups contributed by (iii) is equal to the nemdf fuzzy subgroups contributed
by (ii) for n=2.

Now we assume the proposition is true for k > . [2we consider a keychain

U, A,.. A, of the maximal chain (ii) fon =k > 2nd extending it to the case when
n=k+1 as in proposition 5.2.1 we obtain the numbemak{ subgroups

k
contributed by maximal chain (ii) to b@xz? =2 This number is equal to the

number of fuzzy subgroups contributed by maximaileliii) because the number of
fuzzy subgroups contributed by maximal chain {or) n =k > 2 is the same as that

contributed by maximal chain (ii) fan=k > .2ZI'his completes the proof. 0

Proposition: 5.2.3
In the process of computing the number of fuzzygsoiyps using maximal chains

suppose there are three maximal chains as follows
o0G 0G,0..0G, =G (a)
OOK, 0K, O..0K, =G (b)

o0J,0J,0..0J3,=G (c)taken strictly in the given sequence.
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Suppose there existsj LIM,i # j such thalG, # J;,K, =G, ,K,; #G; andK, #J;.
Then the number of fuzzy subgroups for the maxichain (b) is equal to the number
of fuzzy subgroups for the maximal chain (c) foe . 3

Proof

We prove by inducting om. Let n = 3 and consider the following maximal chains
ouG UG, UG, =G @)

O0K,0K,=G,0K,=G (b)

00J,0J,0J,=G (C)WithK, 2G, K, #J,,J, 2G, = K, #J,.
(&) contributes2* —1 distinct fuzzy subgroups. We list them as keychain

1111 1140 1468

1114 1100 UNBo

1110 1444 1480

1114 1AL 1400

118 1UA0 1000

4
By proposition 5.2.1 (b") hasz5 =8 distinct fuzzy subgroups.

SinceK, =G,, the keychaind1111114 11101444 1448 1440 and 1000

represent the same fuzzy subgroups in both (a’ id hus to find keychains of
(c’) not counted in (a’) we look at those listed (b’).
SinceK, # J,, the keychains of (b’) represent different fuzapgroups in (c’). For

Lx0J, . L .
in (c’) while in (b’) the same keychain is

examplelldA is u(x) :{/1 <0G\ J
' 1

Lx0OK, ,
V(X) = .Sinced, ZK,,uzv.
A, xOG\K;

CaseG, # J,
The keychaind 144 1144 1141011002188 1ALBo 110 1100 on (¢’) represent
fuzzy subgroups that have not appeared before $nce J,,G, # J, andK, # J,.

All other keychains not listed here represent fugalggroups that have been counted

4
elsewhere. Thus (c’) contributes precisSIy% fuzzy subgroups.
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CaselJ, =G,

The seven keychairisl 11, 1444, 1000,1144 , 1100 1456 and14 00of (¢’)
represent the same fuzzy subgroups in (&) sithce G, . This leaves us with the
keychainsl114 , 1110 1148 ,114 0,145, 1AA0, ABo andIAf O which represent
fuzzy subgroups of (¢’) that have not appeare@ingr (b’).

Thus (c¢’) contributes eight distinct fuzzy subgreuNow assume the proposition is
true forn =k > 3 Extending the keychains to the case k + as in propositions
5.2.1 and 5.2.2 yields the required results. O
Example: 5.2.3.1

G= sz +Z, has the following maximal chains,

{doz,+{oz,+z,02 . +7,

{dof{d+z,02,+2, 02, +2,

{doz,+{doz,+{ojoz . +z,

All the maximal chains are distinct. The first amgields 2* —1 fuzzy subgroups

while the last two each yield%[z“] = 2%fuzzy subgroups by Proposition 5.2.3. The

total number for the group @* -1+ 2(23) = 31 fuzzy subgroups.

Proposition: 5.2.4
In the process of counting distinct fuzzy subgrougtsthe first maximal chain have
2™ -1 fuzzy subgroups. A chain (k) in the process witiab precisely one subgroup

J that has not appeared in the previous maximahchai

n+l

@), fori=223...,k—-1, contributesT distinct fuzzy subgroups not counted in

the chainsi()for n> 3.

Proof . This is essentially Proposition 5.2.2.

Note:
In the process of computing the number of distinzkzy subgroups, we start with any

maximal chain (1). This chain is assign2t" -1 fuzzy subgroups. Any second

n+l
maximal chain (2) is assigneelz7 fuzzy subgroups. Clearly (2) has at least one
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subgroup not appearing in (1). If a maximal ch&nhas at least one subgroup H of
G not appearing in (1) or (2), then the number akzfusubgroups contributed by (3)
is equal to that contributed by (2) when computed particular sequence. Now
suppose the two subgroups of (2) H and K do npeapin (1). Then H may be
assigned to (3) as new and K is assigned to (B¢as We will also say H and K are
distinguishing factors of (3) and (2) respectivétythe first chain (1) all subgroups
are distinguishing factors. This process ensurasgaich chain other than (1) is

n+l

assignedz—m (for m<n+1) fuzzy subgroups even if it has one or more sulgsou

n+l

distinct from those of (1). In this case we simgdy (1) contributesZT fuzzy

subgroups. Thus the ordering of flags becomesweasit. 0

We may rephrase Proposition 5.2.4 as follows:

Proposition: 5.2.5

In the process of counting distinct fuzzy subgrougtsthe first maximal chain have
2™ -1 fuzzy subgroups. Suppose chain Kgs a distinguishing factor, then the

n+l

number of fuzzy subgroups of maximal chain,{ ¥ 1 is equal tOT forn> 3

Proposition: 5.2.6
In the process of counting fuzzy subgroups, lebg}he maximal chain
ODK, UK, O...0K, =G such that all thé<,'s have appeared in some previous

maximal chaini( jor i =12........ k and have been used as distinguishing factors.

n+l
Then the number of fuzzy subgroups of (k) is edma%zT for n= 3.

Proof
We induct onn. Let n = 3, then we have (k) bein@ -K, -K, - K, =G.

Assume without loss of generality the following rmaal chains ofG
oG UG, 0G;=G (a)

00J,0J3,0J,=G (b)

ooLOLOL=G (¢
and (k) as above such that=G,,J, #G,, K, =L, #J,, L, #G,,K, =7, ,
andL, =G,.

4
(b) contributes% =8 keychains as followslAA8 11410 1114 1110

1145 UNpGo 1440 1110
SinceK, =J,, the keychainsliAg8 14140 1114 1110 of (b) represent precisely the

same fuzzy subgroups as in the maximal chain (I tNérefore do not count these
fuzzy subgroups in (k).
It is also clear that111 1444 and 1000 cannot be counted in (k).
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This leaves us with eight keychains thatids 1140 1ABo 1440 from (b) and
1144 11001454 1400 from (a).
But sinceK, = L, the keychaind114 11001156 1100 have been counted in (c).

3+1

Thus (k) has only four fuzzy subgroups not coumte@) ,(b) and (c), an4 = 222 .

Note: The least number of distinct fuzzy subgroups ancban have is four.

So the proposition is true for= .3

Now we assume the proposition is true for k >  ar®l then use extensions of
keychains to show that it is true far=k + . This completes the proof. O

Remark:The arguments of Propositions 5.2.5 and 5.2.@earontinued inductively.
In fact if there is no distinguishing factor (neubgroup) in a maximal chain (Hut

there is a new pair or a distinguishing pair (meed in the — Xhains) then the

n+l

number of fuzzy subgroups of the maximal chains(equal to? .

Inductively , if there is no distinguishing pair sdibgroups but there is a
distinguishing triple of subgroups im (%hen the number of fuzzy subgroups

n+l

contributed by the maximal chain i§)equal to?. Thus this argument continues

inductively.
Example: 5.2.6.1
The groupG = Zp3 x Z, has the following number of fuzzy subgroups

2° —1+%[25]+%[25]+%[25] =79. These are computed using the above arguments as

follows. Firstly we consider the four maximal chainf G :

Z,+2,02,+2;02,+z; 0z,+{o} 0{d
@2z2,+z,02,+{cf 0z ,+{o}0z,+{0}0{}
®z,+2,02,+2,02,+{cf 0z, +{o0{0}
#z,+2,02,+2,02,+2, 0{c}+2; 0{c}

Maximal chain (1) contribute®® —1 fuzzy subgroups and all nontrivial subgroups

are a distinguishing factor.
5

(2) contributes% since the subgrouﬁp3 +{O}is a distinguishing factor (does not

appearin (1))
5
3) contributes% since the subgrouﬁpz +{O}is a distinguishing factor.

5
And finally maximal chain (4) contribute%z— fuzzy subgroups because the subgroup

{0} + 2, distinguishes it from the other three maximalica
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In examples 5.2.6.1 and 5.2.6.2 we use asterikdicate the distinguishing factors in
each chain.

Example: 5.2.6.2
Let G=Z,,.G has the following maximal chains

(1Hooz, 0z, 02, 02, 027,

(o02z,02,02, 02,02,

3yo0z, 02,02,02,02,

(4o0z,02, 02,02, 02,

(55002,02,02,02, 027,

(002, 02, 02,02,02,

(nooz,02, 02, 02,02,

(8o0z, 0z, 02,02,.02,

(9onz, 02,02, 02, 027,

(10o0z,02, 02,02,02,

We have used stars to denote distinguishing fachotse maximal chain (6) there is
no single distinguishing factor, but there is didguishing pairZ, and Z,, implying
that (6) yieldsg—i =16 fuzzy subgroups

Now using the propositions 5.2.4, 5.2.5, 5.2.6 tedarguments raised before, we
have the fuzzy subgroups contributed by each maxhwn as follows

Maximal Chain Number of Fuzzy subgroups

(1) 2°-1

(2) ,(3),(4); (5),(7) and (10) Each yield 32_26 e

(6),(8) and (9)

6
Each yieldsz—2 =2*
2

Thus the total number of fuzzy subgroupsZof is 2° —1+6x2° +3x 2* =303,

Further justification of the process of countingZy subgroups o6 = Zplkl xZ
Let(1)OUOG, UG, UG, =G and

(2)OU0H,0H,0H,; =G with H, #G, andH, # G, be maximal chains.
Clearly there is another maximal chain besideé®jng H, or H, as a subgroup.
For instance ifG, n H, =0, then the chai® 0 H, O H, 0(g,) 0 G is maximal and
not equal to (1) or (2) wherg, UG, \ H,.
SupposeG, n H, 20, thenG, n H, =G, or H, gives eitherOC H, G, O G,or
00 G, OH, O H,; as a new maximal chain containiiy orH,. If G, n H, # G,

o -
P22



83

andG, nH, #H,,then00G, n H, O H, OH, is a new maximal chain
containingH,.

Thus limiting a chaini(, = 2, to one distinguishing subgroup or one distingigh
pair or triple etc, is justifiable and sensible floe ease of counting , since other
subgroups not used in one chain will be used ierathains. So all fuzzy subgroups
will be counted. Obviously the above justificatiextends to any chains of length
n+1l,n=3.

Thus the result of this section holds even wenZ ot Zp + Zp where p,, p,

k2 k3
2 3

and p, are distinct primes.

5.3 Classification of fuzzy subgroupsof G=2 , +2 ,

Authors 0f[25] ano[30] studied the classification of fuzzy subgroupshef t

G= an + qu . We list this preliminary work in the form of lemsdor proofs refer

to references

Lemma: 5.3.1

G=2,+2 has 2" (n+ 2) — 1fuzzy subgroups.

Proof [25]

Lemma: 5.3.2

r=0

2 n \2
G=Z,+Zhas My 2 (n - r](r} — ldistinct fuzzy subgroups forati> 2
Lemma: 5.3.3

3 n \3
G=Z,+1Zhas My 2T [n rj{rj — 1distinct fuzzy subgroups for ati> .2
r=0 -

The above discussion motivates proposition 5.3.Bmwvas given if30] . Our next
aim is to provide a proof for Proposition 5.3.5 batore we embark on that we define
a few combinatoric statements that we are goings#in this proof. We again make
use of a general lattice diagram of subgroups amy out extensions from the

resultant nodes.
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Definition: 5.3.4

We define (a{nj = Oforr>n
r

0
(b) (O] = 1. From the fact thad!'= .1

o g2 (LT

m=n-1r=0

(e)[ n j=(n_1j+(n_2j+,,,+(n_(Zn_k)j+(k_njfor n=r+1.
r+1 r r r r+1

“1) (n-1
(f)( " J:(n j{n Jfrom (d) above fom-12r + 1
r+1 r r+1

(g)(k -n +1] - (k N nj +(T ::j from (d) above.

r r

Proposition 5.3.5 below was given without proofiycibi in[lO], we provide a proof
as a way of demonstrating how our counting techaigarks. As stated above we
make use of the lattice diagram of subgroups aptl/ggn-extension to the given

nodes.

Proposition: 5.3.5

m n \(m
G=2Z,+2,,n2m hasZ”*m*lzZ‘r[ j[ ]—1fuzzy subgroups.
p q ' = — r

Proof

We induct onm+n. If we assumen= &ndm= 0thenG = Zp + Zqo DZp, and this

group from previous result h&8™ -1=  dsstinct fuzzy subgroups. Using the

formula with these values oh= @&ndn= 1we have

0 1\0 1
210y 27 (O](O] -1= 22(20(0)(1)J —1= 4(1) -1=23 distinct fuzzy subgroups. It is
r=0
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clear that if the roles ofm andn are interchanged, the same will be true. Therefore
the formula holds fom+n= 1
Now we assume the formula is true for+ n=k,(k >1) = m=k —n that is
G=2,+2, ,has 2”*"‘”*15? 27 (nj{k h nj - Xuzzy subgroups.

P ppr r r
We need to show that the formula is truefiot n=k + , thhtisG=2 , +Z,., ,

K&t L (n)k+1-n K&t L (nk-n+1
has2m ) 2"( j( j—lz 22y 2‘( j( j—ldistinct fuzzy
r=0

o r r r r

subgroups.
The lattice diagram of subgroups given below ersabteto identify the subgroups

from which to carry out the extensions. In thisecag& are going to extend from nodes

nk-n n-1~k-n n-2 yk-n k-n-1k-n

p"g“™", p"g“ ™", p" g ",..., P9 .., PP, pg* " and g " .

k+1-n

As before we denote a gro@=2 ., +Z ..., by simply p"*q

k=n+l1 k—n+l n=2 _ k-n+l =1 k= i
q rq D q pn q n+l pnqA n+l

" q p'q"
|

l I

i |

i |

P"q

We know that the number of distinct keychains #rat with a non-zero pin is one
nk-n

more than the number of those that end with zeroThus the nodep”q

contributes

ko nyk-n k=0 nyn-k
3x1{2”+"‘”+1z 2‘{ j( j —1+1} = E{Z””‘”ﬂz 2‘{ j( H non- equivalent
2 prd r r 2 = r r

fuzzy subgroups corresponding to keychains endiitly amnon-zero pin plus

k-n - k
%{2”*"’”*12 2" (?In r H —1fuzzy subgroups corresponding to keychains ending
r=0

with a zero pin. This number equals
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k — k-n k —
{ka n+1z o ( j( nj} x4-1= 2k+22 27" (nJ( nJ —1distinct fUZZy
e r r

subgroups in the subgropdg**™". (##)

Similarly the nodep"'g“™" contributes

k-n _1 k_ k-n
%{2”‘”‘”“22"(“r j( rnﬂ 2k+122 ( j(krnj because when
r=0

—1kn n k—-n+1

extending throughp" to p'q on the diagram given we observe that there

are two routes that can be followed namely,

n ~k+1-n

(1)pnl k-n pnqkn pq

(2) pn 1yk-n pn 1qk+1 n pnqk+1—
We do not extend using route (1) because we haviedaut extensions through

node p"'q*™". Now keychains in the subgroup™'g“™ are of the forri,..A, ,.
Now for A,_, # Owe can only extend tdA A,.. A, A, A, WA, A A A
NA, A AA WA A AA G WA, A LA, 0, WA, A, 44,0 and
MnA,..4,,00.

The three extensions given by the keychbdps,.. A, A, A, U A,.. A A A and
1, A,..A,,00 have already been counted above when extendiagghrp"g*

We are left with the following keychaité A,.. A, A A, AN A, A A AL
MA,.. A AL0 andliA,. A _ A, Oin p"g<'™

The first two will give rise to new fuzzy subgroupmile to the last one we can only

n k+ln

attach a zero therefore do not result in any funtiesv fuzzy subgroups inp"q
Therefore to calculate the contribution of nopl&e*q*™, we multiply by four , half
the number of fuzzy subgroups of the grdap- an_l + qu_n that end with nonzero

pin.
Thus p"*g“"yields

1 kN n-1\k-n kN n-1\k-n
- 2n—1+k—n+1 2—r -1+1|x4= 2k+1 2—r
e R o g L

subgroups in

n kn+1

pPq
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Extending from the subgroup"2g*™" we know that keychains on this node are of

the formaAA,..A,_, . Now for A,_, # Owe can only extend to

N, A A oA Ay WA A oA A oA A A oA oA A

N, A A A AL WA A oA LA GAG LA, A A A A

N, A oA AL 0,4, A A A, 0,44, A, LA AA A, A LA A
MA,..A,.,000,14,1,.. 4, ,A, _,A0,04A,..A,_,A,_,00,41,..A, ,A,_,A,0,
MNA,..A_,A,.,00

We observe that this can be carried out througlhiee routes,

e A I A R €

P P - P - P ()

PP~ p™ ™ - P - g (3)

We observe that routes (1) and (2) cannot be usexlds they have been used before
when extending fronp"™"q*™" and p"g*™" respectively. We also note that each of the
keychaindAA,.. A, A A A A, A, 000, N A,.. A, A A A, represents
the same fuzzy subgroup in all three maximal chdis (2) and (3) above.

Listing down all the keychains and comparing, welfihat the following seven
distinct equivalence classes of fuzzy subgroupsetkbas keychains have been
counted before when extending fropig“™ and p"*q*™", viz

N, A A A AL A A AL A LA A, A A LA O,

NA, A A oA Ay WA A A A A WA, A, A LA, ., 0 and
11,1,..4,_,000.

n-2 k-n

Thus the nodep™“q“™" contributes

Sy n-2\k-n kn n-2\k-n
1{2“‘“‘“*12 2" ( j( ﬂ x8=2"" 2‘“( j( j distinct fuzzy
2 = r r = r r

subgroups.
Continuing with the process, we get the followingnber of distinct fuzzy subgroups

for each node:
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The nodep" g™
k=n n-3\k-n ko n-3\k-n
has{Z” ey 2 ( ]( me: 21y 2’r( J( J distinct fuzzy
2 ppr r r e r r
subgroups.

r r
E k-n+1)k-n
r=0 r
k-n k — k _
The nodep“"g*™" hasl{zk‘”k—nﬂz 2-( ”]( ”H x 920kt
2 r=0 r r
1 -nYk-n
2N
)
k-n-1 —_Nn — _
The nOdQQk_n_lqk_n hasl|:2k—n—1+k—n+l z 2 (k n 1J(k nJ:| ><22n—k+2
2 r=0 r r

o o

k=0 k-n+1\k-n
The nodep*™g*™" has%{zk‘““k‘””z o ( j( ﬂ x 92k
r=0

k—n
The nodep®g“™" has> {2” ”*122 ( j( ﬂxzn-z
3 3Yk-n
2k+1 2—r
= ()
2 2V k—-n
The nodep?®g“™" has%{Z"ZZ" j( ﬂxzn-l
r=0
2 2\ k-n
2(-'»1 2—r
22 (7]

1Y k-
The nodepg“™ has —{2“" ”*122 ( J( nﬂxzn

r
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e
The nodeq*™ has— [2°+k n+122—r( J(k ”sznﬂ

5

Now to sum up these we consider three classesubiagnt fuzzy subgroups

precisely those that are obtained by making exbeissirom
(a) nodesp™'g“™" to p* g™
(b) nodesg“™ to p* " g™
(c) node p"g“™"

(@) yields 23S 27 (” r_l](k - ”J

()
o
w2z
=S5 (77
T
Al e

sl

m=0 r=0
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:2k+1 ki—lk—ﬂ—lz_r m k -n
r= m=0 r r

(©) yields 25 2 [?}(k ; ”j ~1 (from(##))

Now (a), (b) and (c) will give the following sum

k=n k-n — k-=n-1k-n-1 — k-n —
2k+lz Z 2_r (mj(k nj +2k+l 2_r (mj(k nj + 2k+lz 2_r [nj(k nj ) 1
r=0 m=n-1 r r r=0 m=0 r r r=0 r r

g
e [ e N M
k

+2k+1k§2-r (2)[? :”j -1
W]
+...+ + ...+ + + —1
r r r r

k-n —
= r r r
— 2 k —
(n j+...+( nj +...+1, therefore the sum becomes

i n+1 n n o
Now since = + , by Definition (f), we then have
r+1 r r+1

k-n n n
2k+l 2—r + _1
247 )

k-n k-n k -n n

- 2k+2 2—I’ + 2k+l 2—I’ _
; r r ;, ( r J(r +1]
K (k=n)n) 2Ktk k-n)'n

— 2k+2 2—r + 2—(r—1) -1
s g

Ly kK-n\'n &t L (k—-n)n
— 2k+2 2—r + 2k+2 2—r -1
(e g G

1
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— 2k+2 + 2k+2 k_zmlz—r k=nj)'n _ 2k+2 (2—(k—n+1)) k=n n
~ r r k-n+1\k-n+1
k-n+1 k n\Y n
2k+2 2—!‘ _1
()

k-n n m
But | 242 (27D =0 sinc = Ofor m<r, thus we have
k-n+1\k-n+1 r

the sum

k-n+1 — k-n+1 —
22 + 22y 2‘f(k n)(nj+0+2k*2 > 2‘f(k nj[nj—l
r=1 r r r=1 r_l r
k—-n+1 - — — — —_
=207 4 22 3 o K ny, k-n n—l(Sincek n+1)_(k ny, kK-n )
pr r r=1)\r r r r-1
k&t (k—n+1
_2k+2 2—r _1.
g7

Therefore the Proposition is true for m=k + which establishes the result.
m n \(m
Thus G = an + qu , N> m, ha82n+m+1z ot (n rJ( ' ] —1fuzzy SUbgrOUpS- O
r=0 -
5.4 Classification of fuzzy subgroupsof G=2 , +Z +Z . for k= 1234
5.4.1 On fuzzy subgroupsof G=2 , +2,+Z,

For the casen = e have the following maximal chains:
z2,+2,+2, 02, +2,+{0f0z, +{o}+{o} O{0}

z,+2,+2, 02, +2,+{of0{0}+z, +{0} {0}
z,+2,+2, 02, +{0}+z 0z, +{o}+{0} 0{0}

» +{0}
Zp+Zq+ZrDZp+{0}+ZrD{}+{O}+ 0{o}
2,+2,+2, 0{d+z,+z, 0{o}+{o}+z, 0{q}
z,+2,+2, 0{0}+2,+z, 0{o}+z,+{0} 0 {0}

Calculating the number of equivalence classesz#yfisubgroups, we use the
previous technique and obta®i —1+2° +2% +2% +2° + 2?2 =6x2° +2% -1

= 2“1[12 +6() + 6] -1 distinct fuzzy subgroups.
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Using the same technique for higher values afe obtain the following number for

each group in the form of a table.

n | Group Number of | Number of fuzzy subgroups
Maximal
Chains
212,+2,+2, |12 2°-1+7x20 +4%2° =9%x 2" +4x2° -1

=222 +6(2) +6|-1

3|2,+2,+2 |20 2°-1+10x2° +9%x2% =12x2° +9x 2% -1
=2%4|3? + 6(3) + 6|~ 1

412.+2,+2 |30 2" -1+13x2° +16x2° -1=15%2° +16x2° -1
=247 + 6(4) + 6| -1

K| Z,+2,+2, | (k+D(k+2) | 25k? +6(k) + 6|1

Lemma 4.1.7

This table motivates proposition 5.4.2

Proposition: 5.4.2

The numberP(n )of equivalence classes of fuzzy subgroups for the
groupG =2 , +Z, +2, is 2”*1[n2 +6n+6]—1 forn>1

Proof

We are going to make use of the lattice diagrasubfyroups and induct am

We denote byp*ar the groupG = Zpk +Z,+Z,.
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pqr prar pk+lqr
pr »* P

q pk+lq
(4] k+l/

Lattice Diagram ofp*qr and p*“qr

The casesi= 123have been shown to hold in the above preliminasgkwiNow
assume thaP(k if true, thatiS =2 , +Z,+Z, has 2<**|k? + 6k + 6|~ 1
equivalence classes of fuzzy subgroups. Ther%a{azé”(k2 + 6k + 6)—1+1] fuzzy
subgroups (viewed as keychains) ending with a nonzie and

%[2"*1(k2 + 6K + 6)]—1 ending with a zero pin. The former each yielde¢hfurther

fuzzy subgroups in the subgroyg™qr while the latter remains the same as we can
only attach a zero to a zero pin. This is so bezauseychain inp“qr is of the

form1A,A,.. A,,, . Now with A,,, # Owe can only extend tdA,A,.. A, ., A,.,,

NA, .. A s @and LA A,.. A, ., O subgroups inp““'gr . Thus we have

%[2k+1(k2 +6k+ 6)—1+1]><3+%[2"+1(k2 +6k+6)]-1=

%[2k+1(k2 + 6K + 6)]>< 4 -1 distinct fuzzy subgroups.
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Next we have the nod&r : from theorem 3.2.18%r ha2"*(k + 2) - 1fuzzy

subgroups. We have established that if these supgrare considered as keychains,
the number of those with non-zero pin-ends is oneerthan the number of those

with zero pin-ends. So we ha\%e[z'“l(k + 2)—1+1] fuzzy subgroups ending with

non-zero pins. We discard those ending with zems ps they do not give any new
fuzzy subgroups because we can attach only a aexaéro pin. Keychains ip“r
are of the forn,A,..4,,,. Now with A,,, # O, we can only extend
tOMl/‘Z"'/‘kﬂ/‘kﬂAkﬂ ’ Ml/]Z"'Ak+l/1k+lAk+2’ 1/11A2"'Ak+1Ak+2Ak+2’ 1/11A2"'/]k+lAk+2Ak+3'
nA,.. AuAn0, WA, A A, ,,0,14.4,..4,,,00. The following four
keychainslA, .. A yAcaAce Ay - A Ao Ais s WiA; Ay, 0 @and
nA,..A.,4.,0 have not been counted before, so they will effetyigive rise to
further fuzzy subgroups ip*qr , hence we multiply the number of distinct fuzzy

subgroups of p*r by four. Thus %[2"*1(k + 2)—1+ 1] becomes

%[2"*1(k +2) —1+1]>< 4= %[Zkﬂ(k + 2)]>< 4=22(k+2) in p*or. Therefore the

subgroupp®r yields 2“?(k + 2) fuzzy subgroups in the subgropp™or .
Similarly the nodep“q yields2**?(k + 2)distinct fuzzy subgroups.
There are two routes when extending from the nptimamely

p* - p! - plg — p*ar

p* - P - p'r — p“ar

From theorem 3.2.11p* has2**! —1 non-equivalent fuzzy subgroups. Keychains in
this node are of the forif,.. A, . Now with A, # O we can only extend to fifteen
fuzzy subgroups irp**ar ; these are:

N AAAA, N AAAA A AAA O, AAA A

AN A Ay N A A s Wy AA a0, 1.4, 000,

N AAA A s W AAA L0, U, A A, 00, U AA A oA

N, A A AioAss Wy AA A, 0, U0 A A, 00.

The following seven fuzzy subgroups viewed as kaydd)

N AAAA N AA A A e A AcaA s e AcA A O,

1,..4,000, WA,.. A A A, 0and1A,.. A, A, A A, ., have been counted before. Thus only

eight of the subgroups gf* will give rise to new fuzzy subgroups. Hen%e[z'“l] in
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p~ becomes%[2k+1]><8= (2% 4 in p*gr. The second route has been used once
before, thus we take half ¢2“*)x 4as some would have been counted already,
T A A e s

yielding > 5(2 )x 8| = 4(2°) distinct fuzzy subgroups.

The total from all these nodes give us this sum

%[2“1(18 +BK +6)x 4—14 22 (k + 2) + (k + 22+ 4x (21) +4x (2)

=22|k2 + 6k + 6+ 2k + 4+ 2+1| -1
=2?|k? +8k +13-1
=209k +1)? +6(k +1) + 6|~1 which shows thaP(k + 1)s true. 0

543 Thegroup G=2 ,+2,+Z,

We aim to establish a formula for the number ofindcs fuzzy subgroups of the

groupG = an +Z,+2, foralln=1.

[llustration One: The groups = sz +Z,+1Z,

We note that for the case= wee have the grou =2, +Z_  +Z , which by

Proposition 5.4.2 and symmetry h32§1[22 +6(2) + 6]—1= 175 non-equivalent fuzzy

subgroups.

For n= 2 we have the group = sz +Z,+Z ,. We execute the lattice diagram of

subgroups below and extend from the following basges, p*ar, par , p°r, pr,

gr andr .
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par? pigr?
/
Py ry/|
qr plqr

7~

e
@
i

2
lig

The nodep?qr ha522+1[22 +6(2) + 6] —-1=175 fuzzy subgroups by Proposition
5.4.2. We know that the number of fuzzy subgroupire with a zero pin, viewed as

keychains is one more than the number of fuzzy suas ending with a zero pin.

Keychains inp®gr are of the formiA,A,A,4, for 1=, = A, = A, = A, = 0. Now for

A, # 0 we can only extend tt,A,4,4,4, , N A,A,4,Ac or LN A,A4.4,0

therefore%[zm(z2 +6(2) + 6)—1+1] in p*or become%[zm(z2 +6(2) + 6)]><3 in

p2gr? and%[22+1(22 +6(2) + 6)]—1 remains the same because on zero we can only
attach a zero. Thus we have a total of
%[2”1(22 +6(2) +6)-1+1| 3+%[22+1(22 +6(2) + 6)| -1= 351distinct fuzzy

subgroups for this node.
Node p’r from theorem 3.2.18 ha&™*(2+2) - fluizzy subgroups. Fuzzy

subgroups that have zero pin-ends will not give tisany new fuzzy subgroups in
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and are one less than those with zero pin-ends ektension is carried out through
the following routep®r — p“r? — p*gr®.

Keychains inp®r are of the formi1,A,4,. Now for A, # O we can only extend to

N A, A A A, AN, W AAA A, WA AAA A, 1N A,A,4,0, A, A,4,4,0 and

N A,A,00for 0 A <A, <A, <A, <A <1in p’gr? . Of these, three end with zero
pins, thus we can only attach a zero and therefongot result in new fuzzy

subgroups inp?qgr ?. The other four result in new fuzzy subgroupssthu

%[22+l (2+2)-1+1=16 becomes.6x 4 = 64in pqr?.

Node pqr , from Proposition 5.4.2, he&”l[1+ 6+ 6]—1: 51 fuzzy subgroups. Using
a similar argument as abov%[zm(l2 +6(1) + 6)—1+1] =26 become6x4= 104

Nodepr , from theorem 3.2.18, ha&*[1+ 2| -1=11 distinct fuzzy subgroups. Six
have non-zero pin-ends. We extend through theviaig routes:

pr— pr’ - p’r? — p’gr®and pr — pr® — pgr® — p*qr?. Now a keychain in

pr is of the formlA A, for1=2 A, 2 A, 20, so we can only extend to

N AAAA, N A,AA,A,, AN AL,A,A,0 WL ALA, A4, UALA,A.A,, 1A A,A,4,0,
14,1,A4,00, N A, A4, N A,AA.A,, N A,A,A,0, W A,AA,A,, N A, A4, A,
MN,A,4;,4,0, 1,4,A4,00, 11,4,000. Eight have non-zero pin-ends which means that
this node will have6x8 = 48&listinct fuzzy subgroups. There are two routes to
extend through, namelpr - pr? - p%?® - p®gr? and

pr - pr? - par? — p®gr®. The above count is for the former while the latte
yields %[21+1 a1+ 2)]><8 = 24 fuzzy subgroups as the other half would have been

counted in the former.
From the nodegr we extend through this routg — gr’pgr® - p®qr?. Using a

similar argument as above, we obtain
6x8 =48 distinct fuzzy subgroups for this node.

From the node we may extend using the following three routes:
r-r?-ar? - por? - par?(1)
r-r2 - pr? S por? - p2ori(2)
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r - r2 N pr2 - p2r2 N p2qr2(3)
Now the subgroup has, from theorem 3.2.11, three fuzzy subgroupghach two

end with a nonzero pin. Keychainsitiwhen extending tgp®gr *result in 32
extensions. So the route (1) will yielé[z] x32=2x16= 32 fuzzy subgroups.

The other two routes each yiel@x8= ,1his is so because we observe that if we
list all the 32 extensions, some are distinct intraeiee chains while some will
represent identical fuzzy subgroups in either (i @) or (2) and (3). For example
the fuzzy subgroufds; A,4,14,4,,14,4,4,4,0 and 11,4, 4,4, A, viewed as keychains
have not been counted before, whilgA A1, 4, , 14,4,000 and11,4,4,4,4, have
been counted previously. On the other hand extasdike 14,4,1,14,4, and

1N, 4,A4,4,0 represent the same fuzzy subgroups in routesn@}2) while1,4,4,00,
N A A,A;A, and1A A A, 00 represent the same fuzzy subgroup in (2) and (3).
Summing up all these we obtain 175+351+64+104+4832416+16=703.

3 2
Thus the grougs =2 , +Z,+Z , has 7032%* % +13x (22) +21(2) +16} -1

distinct fuzzy subgroups.

[llustration Two: The groupG = Zp3 +Z,+1,

Next we determine the number of fuzzy subgroupsHercasen = 3that is the

group G = Zp3 +Z,+Z ,. We use the lattice diagram of subgroups belogatoy-

out pin extensions from the eight base nodes :

par, p2ar, pgr, p°r, pr, pr , qr andr.
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par’ plar’ plar’
prl p2r2 p3r2
[47] [par] pigr plgr
E‘i] 7 2 3 /
pr pr

Nodep3qgr : applying Proposition 5.4.2 we ha\2é+1[32 +6(3) + 6J—1 non-
equivalent fuzzy subgroups. We know that the nurobéuzzy subgroups, if viewed
as keychains, with a non-zero pin-end is one muae the number of fuzzy

subgroups viewed as keychains, ending with a zexoljpus we have
%[24 (32 +6(3) + 6)—1+1] distinct fuzzy subgroups ending with nonzero pid a
%[24 (32 +6(3) + 6)]—1 fuzzy subgroups ending with a zero pin. Keychaing*qr

are of the formlA A,A,A,A; ,forl= A, 24,2 A, 24, 2 A, 2 0. Now with A, # O

we can only extend to fuzzy subgrouipgA,A,4,A. A, 4, A,A,4,A: A, and
MN,A,A,4,A,0 in piar. Thus%[z“(ff.2 +6(3) +6)—1+1] becomes
%[24 (32 + 63 +6)x3 and%[24(32 +6(3) +6)] -1 remains the same. The total for

this node thus become;s[Z“(:%2 +6(3) + 6)] x4-1=1055

Nodep®r : from Theorem 3.2.18 we obtaif (3+2) =  &listinct fuzzy subgroups

of which half will have nonzero pin-ends. We extémugh the following
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routep’r - p°r® - pgr?®. Keychains inp®r are of the formA,A,4,1,,

forlzA, 24,24, 24, 20. Now for A, # 0 we can only extend to the following
keychainsiA A,A,A,A,A, , AN, A4, 4,45, A4, A, A4, A A AN, A4, A A,

NA,AA,A,0, U A,AA,A. 0and 14, 4,4,1, 0Gn the subgroupp®gr *. We note that
the keychaindA, 1,4, 4,4, AN A,A.4,A A, N A,A4,4,4,0 and A,4,4,4,A, have
not been counted when extending through the noie , and two of these have non-
zero pin-ends and therefore will result in new fugabgroups, whildAA,A;4,4, O
and14,4,A;4, 00do not result in any new fuzzy subgroups. The kayts

N A,AA,A,A,and A, .. A, A A, represent fuzzy subgroups that have been counted

when extending using nogégr , thus the total for the nodg®r will be
%[80] x4 =160 distinct fuzzy subgroups.

From the nodep?qr , applying proposition 5.4.2, we have
[22+1 (2% +6(2) + 6)J —-1=175 distinct fuzzy subgroups, and taking into accdbat

half of the fuzzy subgroups will have non-zero pimds and are one more than those

that end with a zero, we then ha;*/[ée’ (2% +6(2) + 6] =88 distinct fuzzy subgroups

with no zero pin-ends. We will use the followingite p?gr — p’ar® — p3gr?.
Keychains inp®gr are of the form U, 1,4,4,, forl= A, = A, 2 A, = A, = 0. Now
for A, # 0 we can only extend to the following keychains

N A, AN, 4,4, N A,AA, A, A5, N AL A A A A AL A4, A A, A A,A,4,4, 0,

N A,A,4,A.0and14,1,4,4, 00 The following four fuzzy subgroups, viewed as
keychains, have not been counted beforelja,A,A,4,A.,N,A,A;A,A A,

N, A,A;4,A,0 and14 1,4,14,4, Otherefore we hav88x4 = 35&istinct fuzzy
subgroups for this node.

Extending from the nod@’r we use the following routes
pzr . p2r2 . p3r2 N p3qr2

er . p2r2 . qurZ N p3qr2
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From Proposition 3.2.18 we know that’r has thirty-one fuzzy subgroups of which
we know that those with nonzero pin-ends are oneertian those with zero pin-end,

and each route above involves four nodes. Keychaiggr are of the fornii, A, A,
for124, 2 A, 24, 20. Now with A, # 0 we can only extend to the following
keychainslA A,A,A,A,A, , W A,A,454,A,, N A,A54,4,4,,

A AAA A, WA AAAA, WA AN A A, AN AA, W A,A,A,A4,,
14,4,4,4,00, 1N,A,A,14,1,0, 14,4,4,4,4,0,14,4,4,000, 11,14,4,14,4,0,

N, A,A34;4,0, 14,4,4,4,00. Now comparing these keychains to the ones oldaine

when extending through the nodpdgr , p°r and pgr and the two routes that can

be used to extend, the first route will contribiex 8 =128 distinct fuzzy subgroups
while the second contributeis[lGx 8] = 64distinct fuzzy subgroups ip3gr 2.

We employ a similar way of argument for the remagnbase nodes and we obtain the
following number of distinct fuzzy subgroups foethodes:

pgr gives26x8= 208

pr gives6x16+6x8+6x8= 192

gr gives6x16= 96
And finallyr gives2x32+2x16+2x16+2x16= 16Qbecause of the four routes
and five nodes in these routes)
The total for this group 18055+160+ 352+128+ 64+ 208+192+ 96+160= 2415

=2 ,xZ xZ, has2*" @ +13><@2 +21(3) +16| -1 distinct
Sothe groud> =4 . x4, XL, > >

fuzzy subgroups.

lllustrations One and Two motivate proposition 5.4.4

Instead of giving a direct proof of the propositwa derive the formula in style by
use of the counting technique discussed earli@nohthe extensions carried out on
the base nodes of the lattice diagram of subgraMesalso firstly list down formulae

that we use in the proofs of propositions 5.4.4,%and 5.4.6
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NOTE: 543.1

(a)1+2+3+...+n:w for nON .
(0)1* +2° +3* +...4+n? :%n(n+1)(2n+1) fornON .
C)LP+2°+3F+...+n° :%nz(n+1)2 for nON.

(d)1*+2*+3*+...+n* :3—1On(n +1)(2n+1)(3n* +3n-1) for nON

Proposition: 5.4.4

3 2
G=7 +2 +zzhaszn+1[”—+13”
p q r 2

+21In +16} -1 fuzzy subgroups for ah> .1

Proof

We use the lattice diagram below and the counggrique discussed earlier on.

Lattice Diagram Six

g L"l’ﬂ rq R'q
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Since we know from Proposition 5.4.2 and Lemmal® 2hat the groups
G=2,+2,+2,andG=2 , +Z, have2""|n? +6n+6|-1and2"*(n+2)- 1

fuzzy subgroups fon> fespectively, now carrying out the extensions fthm
base nodes we obtain the following:

Node:p"gr gives%[Z”*l(n2 +6n+ 6)]>< 4-1=2"1(2n* +12n+12) -1 fuzzy
subgroups.

Node:p"r gives%[z’”l(n + 2)]>< 4 =2"?(n+ 2) fuzzy subgroups.

Node: p"™qr gives%[z"‘“l((n -D%+6(n-1)+ 6)]>< 4= 2”+1[(n -D%+6(n-1)+ 6]

fuzzy subgroups.

Node : p"*r gives

%[2”"1+1((n ~1)+2)|x8+ %[2“"1+1((n ~1)+2)|x4=2"2[n+1]+ 2"*[n+1] fuzzy
subgroups.

Node p"*qr gives%[zn‘1+1 ((n -2)+6(n-2)+ 6)]>< 8= 2“*1[(n -2)*+6(n-2)+ 6]
Node : p"?r yields

%[2”‘2+l (n-2)+2)| ><16+%[2”’2+1 (n-2) +2)|x8x 2= 2"2[n] + 2"[n] x 2 fuzzy
subgroups.

Node :p™qr yields%[zn‘sﬂ((n ~3)2+6(n-3) +6)|x16=2"[(n-3)2 + 6(n-3) + 6

fuzzy subgroups.

Node :p"°r yields
%[2”‘3+1((n ~3)+2)|x 32+%[2”’3+1((n -3)+2)|x32x3=2"?[n-1]+2"n-1]x3

fuzzy subgroups.

Inductively,
Node p°qr yields%[zm (9% + 6(3) + 6)|x 2"+ = 2"1[(3)% + 6(3) + 6]

fuzzy subgroups.
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Node :p’r yields

%[23+l (3+2)|x 2 +%[23+l (3+2)|x 272 x (n-3) = 2"[5] + 2"[8]x (n - 3) fuzzy
subgroups.

Node :pqr yielols,%[22+1((2)2 +6(2) +6)|x 272 = 20[(2)% + 6(2) + 6]

fuzzy subgroups.

Node :pr yields

%[2”1 2+2)|x2" + % 2222+ 2)|x 27 x (n-2) = 272[4] + 2"[4] x (n - 2) fuzzy
subgroups.

Node :pqr yields %[2“1((1)2 +6(1) + 6)|x 2" = 271[(@)2 + 6(1) + 6]

fuzzy subgroups.

Node :pr yields

%[2“l @+2)|x 2" +%[2l+l @+2)|x 2" x (n-1) = 2"2[3] + 2™[3] x (n-1) fuzzy
subgroups.

Node :p°qr yields %[20*1((0)2 +6(0) +6)|x 270 = 2"2[(0)2 + 6(0) + 6]

fuzzy subgroups.

Node :p°r yields

%[20+1 (O + 2)])( 2n+2 +%[20+1 (O+ 2)])( 2n+1 x (n) - 2n+2 [2] + 2n+1[2] x (n) fuzzy

subgroups.

Now taking the sum of all these fuzzy subgroupspb@in the following,
2" 2n? +12n+12+ (N-1)6(N—1) + 6 +...+1% + 6(1) + 6+ 02 + 6(0) + 6|~ 1
+2"2[(N+2)+ (N+1) +(n) +..+4+3+ 2]+

2" [(n+D() + (M) + (N =D(@) +...+ @)(n=2) + (N =D + (2)(n)]

= 2”*1[n2 +6n+ 6+%(n)(n +1)(2n+1) +§(n)(n )+ 6(”+1)} -1

+2”+2[&2(n+3)—1}+ ni(2+k)(n—k)
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Now taking the above sums separately we have

(@) 2n+1|:n2 +6Nn+6 +%(n)(n +1(2n+1) +g(n)(n +1) +6(n +1)} -1=

2n® +27n*> +9In+ 72
6

2n®+3n® +n

2”*1[n2 +6n+6+ +3n°+3n+6n+ 6} -1= 2”*1[

(b)2“+2{(n +2)(n+3) _1} _ pne2 n®+5n+4 pe 6n° +30n+ 24
2 2 6

n-1

(c)Z“{Z @2+Kk)(n- k)} = 2”{% (2n - 2k +nk — kz)}

k=0 k=0

k=0 k=

= 2m1] 2n(r) + (n— 25 k-5 kz}
_ 2n+1_2n2 +(n- 2)%(n -1)(n) _%(n =D(n)(2n —1)} (By NOTE 5.4.3.1(a) and (b))

:::2n+1 er]z

N n®-3n*+2n _(2n°-3n®+n)
2 6

- 2n+1

6

n3 +6n? +5n}

Now adding (a), (b) and (c) we obtain:

2n+{2n3 + 27n26+ 9In+ 72} N 2n+{6n2 + 360n + 24} .\ Zn{ n® + 622 + Sn} i

::2n+1

[ 3n® +39n? +126n+96} 4
6

[ 3
=2m % +% +2In +16} -1 fuzzy subgroups which establishes the result. [
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Proposition: 5.4.5

4 3 2
The groupG = an +Z,+Z has 2”*{% + 23; + 79; + 125n + 40} -1 fuzzy

subgroups .

Proof

We extend fromZpk +Z,+2, toZpk +Z,+1 ., see lattice diagram above.

The number of fuzzy subgroups of

3
(i) p*gr?is 2t k—+1—3k2 +12k +16|-1 for k> 1.
2 2

(i) pr iszk”ﬂiz-m 2= 2¢[k? + 7k + 8]
= m)l m
(i) p“r is 2¢[k+ 2]
Now when extending, we obtain the following numbgdistinct fuzzy subgroups for

the listed nodes;
3 3
p“ar? yields 2{%+§k2 +21k +16}<4—1: 2k+1><2{k?+1—23k2 +2k+16|-1

pr? yields 2¢k? + 7k +8|x 4 = 24 |k? + 7k + 8]
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p“gr? yields 2* 1{(k 21) (k )2+ 21k -1) +16}x4

z“{(k 21) (k )2 +21(k - 1)+16}

pkir? yields 272 |k? + 7k +8|x 8+ 25?|(k ~1)% + 7(k - 1) +8|x 4
@1 +2)|(k-1)? + 7(k -1) + 8]

p"‘zqrzyieldsz"*{(kzz) —(k 2)? +21(k — 2)+16}

p¥2r? yields (2 + 2% +2%)|(k - 2)2 + 7(k - 2) +§|
pFSr2yields (2441 + 2% + 2K +24)|(k -3)2 + 7(k - 3) +§|
Inductively,
( )
2

p2gr? yields 2“{ (2) +2](2)+16}

2,2 H k+1 k k 2
p2r? yields (24 +2 +...+ 2)|(2)2 + 7(2) +8§]

k-2

= (2 + (k - 2)2)[26] =13x 22 +13x 2K — 26 2
par? yields 2“{ (2) (1) +21(1) +16}

pr? yields (2 + (k - 1)2)|1% + 7(1) +8]

p°gr? yields 2"*{(2) (0) +21(0)+16}

p°r? yields (2! + (k)2“)|0? + 7(0) + 8]

Summing up all the fuzzy subgroups obtained abovdave;

3 3
2'<+1{k2 123k2+2:|k+16+?+(k 21) +...+1—}

2
+2k+1[13(k2+(k D+, +12)+16(k+1)}

+2°121(k + (k-1 + (k- 2) +...+1)| -1
+ 21k + (k=1)% +...+2 +7(Kk + (K =1) +...+1) + 8(k +1)]
+2(k D2 +.. 422 +22)+ 7((k =) +...+ 2 +1) + 8K|
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+2|(k=2)2 +..+12)+ 7(k = 2) +...+ 2 +1) +8(k - 1)
+24(k=3)7 +...+ 22 +22)+ 7((k - 3) +...+ 2+1) + 8(k - 3)
#24|((k=2)2 +..+ 22 +22)+ 7((k = 4) +...+ 1) + 8(k - 4]
+24(@2 + @7 + )?)+ 7(3+2+1)+ 84)]
(

+2/(@2 + @?)+ 7(2+1) + 8@3) +1% + 7(1) + 8(2) + 0% + 7(0) +8] =

3
zk{kz 123k2+2:|k+16+1—23x£k(k+1)(2k+1)+ x 2 k(k+1) +—k(k+1)+16k+16}
+

zk“[é K(k +1)(2k +1) +% K(k +1) +8k+8} " 2{(13 (k-Dk(2k -1) +£ (k—T)k +8k +é (k-2)(k -1)(2k —3)}
2"{%(k—3)(k—2)(2k—5) +%(k—3)(k—2) +8k—16+...+}

e E @)()E) + % 2)(3) +8(3) +1+7 +8(2) + 8}

Now taking the above terms separately and applgefmition 5.4.3.1 we obtain:

3
(a)2"*1{k2 B o +16+%3>< 1 k(k +1)(2k +1)}

+2"*1[§><—k2(k +1)? +—k(k +1) +16k +16} -

k+1 k3 13 2 3 2
=2 5 +Ek +2]k+16+—(2k +3k“ +Kk)

+ 2“1[ (k* +2k® + k? )+ (k2 +k) +16k +16}

_ 2k+1[3k4 +70k° +48%K” +1166k + 768} 1
24

3 2
(b)2k+{% k(k +1)(2k +1) +£(k(k +1)+8Kk+ 8} = 2k+{2‘< +10K* +56k + 48}

6

_ 2k+{8k3 +96k? + 280K + 192}
24
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(c)ZKE(k—l)k(Zk—l)+£(k—2)k+8k+%(k—2)(k—1)(2k—3)}+
+2"[%(k—3)(k—2)(2k—5)+g(k—3)(k—2)+8k—16+...+}

+ 2{% 2)((3)5) +%(2)(3) F8E)+1+7+8(2) + 8}

— nk+1 1 3 3 2 2

=2 [Z(k -2k +k)+ (2k -3k +k)+—k Zk}

+ 2“{% (2k® -3k* +k) +g(k2 -k) +2k* + Zk}

_ ki k*+14k® + 47k* + 34k
24

Now adding (a) ,(b) and (c) we obtain

Zkﬂ{sk“ + 70k + 48%? +1166K + 768} 1
24

+ 2k+l

[8Kk® +96k? + 280k +192 4 ok k* +14k® + 47k ? + 34K
24 24

- 2k+l

[ 4k* +92k3 +63%2 +148(K + 960}
24

2k+{ k* + 263k 739k2+1—§5k+40} 1

Thus the grougs =2 , +2,+Z , hasz'“l[(l3 k* + 263k ?k %k + 40}

distinct fuzzy subgroups. O

Proposition: 5.4.6

5
The groupG =2 , +Zq +7Z, has 2" n_+§n4 + 431n3 + 261n2 + 331n+96 ~1
P ' 46 2 24 3
distinct fuzzy subgroups.
Proof

Consider the following lattice diagram of subgroop< .
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ar ogr e oraget
4 pre P ot
= pqia R __ED‘quI |:pqu3
3 pr |:pk—1r E)Ara
2 2 12 k2
P i =z v
E’2 ED'V_Z'/ E)'Hrz pkrz
qr pq_l L —E)J:—lqr l}) ar
] pr [pk—-lr phr
@ [P4] g By

We extend fromG = Zpk + Zq + er which has

2k+1[é K4 233, 92 125k +40} —1distinct fuzzy subgroups and

L8 kY 3
G=2,+2Z. has2') 2" e T L D B
e m\ m 6 2 3

r=0
From the lattice diagram above we carry out extersson the base nodes and obtain
the following:
Node p*qr® has2* { k* + 263k 7—;k %5k+40}<4 1

22 k4 23k 79k2+g3k+40}
6 3 3

ﬁ*sze‘ +§k2 +§k+8}
2 2 3
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Node p**qr3has 2 1[ (k-1* £ 23 (k 1)° —(k—1)2 £ﬁ(k 1)+4o}<4
=2k+1E(k_1)4+ (k-1)° +—(k 1)? +@(k 1)+40}

Node p**r? hasZ"‘l[%(k—l)3 +g(k—1)2 +2—;(k—1)+8}<8

4l 1 5 28
+2 (k-1 +=(k-D*+=—(k-1) +8|x4

[6( ) 2( ) 3'( ) }
1 5 28

=(22 + 2" | Z(k-D)° +=(k-D)° +—(k-D+8

( )[6( )+ (k=17 + (kD) }

k=2 yp 3 k+1 185
Node p““qgr” has2 [ (k-2)* +—(k 2)° + (k 2)? +—(k 2)+40}
Node p“2r® has(2+2 + 2 xzﬁ(k—zf +g(k—2)2 +%8(k—2) +8}
3 k+1 185

Node pgr° has2 [ m* + (1) + (1) +—(1)+40}
Node pr? has (22 + 2 (k —1){% 1)° +g(1)2 +2—38(1) +8}

23

Node par® has 2“1[ O+ + (0) +185(0)+4o}

Node r® has(22 + 2k+1(k)E 0)° +g(0)2 +%8(0) +8}

4
Now summing up we ObtaikﬂF 23,5, 19 185

+—k®+—k*+=—k+40
6 3 3

+ 2"*{k—4+—(k_1)4 (1)4 (k3+(k —D)3+..+ (1) )}
6 6
185

+2"+1[§(k2+(k—1)2+...+(1)2)}+2'”1[ (k+(k-D+..... +1)+40"(k+1)}'1

k+2 (k 1) (1_)3 S5( 2 _n2 2
+2 {6 R +2(k + (k=12 +..+ (1) )}
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3
+2"*2{28(k+9k 1) +.. +1)+8k+8}+2k+12(k r){—+2 2+2—38r+8}

Using Note 5.4.3.1 (a), (b) (c) and (d) on this suenobtain,

4
2k+{% 23k3 L L %5k + 40} + 2“[&) (6K® + 25¢* +10k° - k)}

+2"+1[23(k4 + 2K +k2 )+ (oK 43K + k)}
24 18

+2k+l[ 1

EwR—

+2k+{ (k* +2k® +k?) += (2k3 +3k? + k) 428 (k2 +k) +16(k +1) +8k }
2k+l|:%.(k 2k3 + k )+ (2k3 3k2 + k) + (k2 k) (6k5 _15(4 +:|_Ok3 k):l

-2“{2(1«‘ 2k3+k)+ (2k3 32 +K)+— (k2 k)}-l

Taking these brackets separately we get the follgwiums

4
0 2“{“— +%3k3 NATEN 1§5k + 40+—[6k5 +15K* +10k° = k]}

+2k+1[§[k4 +2k3 +k2]j|+2k+l|:zz|:2k3 +3k2 +k+185(k2 +k)j|j|

+25[40k + 40] -1

5
_ k| K° 435, 2625 ; 16055 , 43728 .1 .
30 360 12 360 360

(“) 2k+2|:6 (k61) +%+ (k2+(k 1) +. +(1) )j|

+2"*2{28(k+9k 1) +.. +1)+8k+8+8k}

4 3 2 4 3 2
_ | KY 22k% 23K* 157, ol oeal KT 2K 23K° 157,
24 12 24 12 6 12

(iii)

k-1 3 5 4 3 2
2k+1{z(k_ r){%%rz +2—38r +8ﬂ _ 2k+{ k® , 5k _20%°  719%’ 6432@

— 120 24 360 360 360
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Adding (i), (ii) and (iii) we obtain:

2k{1516’ +540k* +6265° +3132(k? +5958(k + 34560} 1
360

5
:2"*{% +gk4 + 42“11k3 + 2§1k2 + Bglk + 96} -1.

Thus the grou = Zpk +Z,+Z, has

5
2”*1{% +gn4 + ‘;ilne’ + 2§1n2 + 3§1n + 96} -1 distinct fuzzy subgroups.
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5.5 Conclusion

Research on the study of equivalence classes py &ubgroups of groups has
generated a lot of interest amongst a number efrebers as mentioned in the main
introduction. The counting technique we have beedyshg can be continued to find

the number of distinct fuzzy subgroups oan + qu +Z . where p ,g andr are

distinct primes. Thus if the number of distinct fuaubgroups of

G, = an + qu +Z .,is known, then the technique discussed in thisshreay be
used to find the number of distinct fuzzy subgroop& = an + qu +Z  (or
G= anﬂ + qu +Z ., 0rG= an + quﬂ +Z .,). We lllustrate this whem =2

m=2 ands = 2because in the thesis we have had one,ah andsas 1 all the time.

ThusG, = sz + Zqz +Z, is a group whose number of fuzzy subgroups is knand

we want to compute the number of distinct fuzzygsabps of the group

G= sz + Zqz +Z ,. We construct a lattice diagram fGr and use the lattice diagram

for G, within G to compute the number required.

3 2
By Proposition 5.4.4G, has 22{27 + 13(22) +21x2 +16} -1=g[8g]-1=703

distinct fuzzy subgroups.

The following is the lattice diagram f@& = sz + Zqz +Z,.

2.2
qr pq2r2 p2q2r2
pqr’
_— P,,Zu p2q2r
pqr] — l
g " 2.2
: 7Y p'q
kel “’
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We use the lattice diagram f@*gr > and extend the number of distinct fuzzy
subgroups ofp®qr? using the following nodesp®ar? , p*ar, p°q, pq, par , por?,

q, gr andgr?®. Note thatp®g®r and p®gr?® have the same number of distinct fuzzy
subgroups, thus using®gr® is as good as using?g°r .

We begin with the nod@®qgr > which has 703 distinct fuzzy subgroups. Now we
know that%[703+ 1] = 352 of the fuzzy subgroups viewed as keychains enl avit

nonzero pin and we extend to one node, thtgr > contributes 352x4-1=1407
distinct fuzzy subgroups. Nodg?qgr , from Proposition 5.4.2 has 175 distinct fuzzy
subgroups. Keychains ip’gr extend to seven more keychains pfq°r? because

there are three nodes. Out of the seven, fourreslllt in new fuzzy subgroups if

viewed as key chains, thys’qr will contribute%[l75+ 1]>< 4 =352 distinct fuzzy

subgroups inpgr?.

The subgroupp®q has, from Lemma 3.2.22"[2 + 2] -1 = 31 distinct fuzzy
subgroups, its contribution ipg?r? will be %[31+ 1]x8 =128 distinct fuzzy

subgroups. Here we multiply by eight because ofdle nodes used in the extension.
Next we extend from nodeqr ?. From proposition 5.4.2 and using symmetpgy 2
has 175 distinct fuzzy subgroups. We extend thrabghroute

22,2

par? — pg’r? - p?qg°r?. There are seven three pin extensions here anavitur

give rise to new fuzzy subgoups prg?r?, thus the contribution of this node is
1
E[l7d x 4 = 352 fuzzy subgroups.

Node pqr , from proposition 5.4.2, has 51 fuzzy subgrolpgending from this
node we use the following routepgr — pg’r — p°g*r - p°g’r? (a)

par - pa’r — pa’r® - p*g°r? (b)
We know that 26 fuzzy subgroups viewed as keychamaswith a non-zero pin and

from the routes above there are four nodes threxlgbh we can extend. Spgr
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from route (a) contributes;r [52] x 8 = 208fuzzy subgroups and through route (b)

contribute% X % [52] x 8 =104fuzzy subgroups.

Node pq has eleven distinct fuzzy subgroups, six will giee to new fuzzy

subgroups. We then observe that there are threesrthrough which we can extend

namely:
pd - p9* - pa’r - pa’r® - p°g’r® (a)
pa - pg® - pa’r - p°Q°r - p*a’r® (b)
pd - pg® - p*ad” - p°Q°r - p*a’r® (c)
So the total contribution opq using route (a) is 6x16=96 distinct fuzzy subgroups

The sixteen is a result of the five nodes used. Tgiraaute (b) we have

%[6><16] = 48 distinct fuzzy subgroups. Route (c) gives an equahber of fuzzy

subgroups becausgg’r and pg®r? are distinguishing factors for the second and
third route respectively.

Node gr? , from Lemma 3.2.1 and by symmetry, has 31 disfiurzzy subgroups, of
these 16 end with a non-zero pin-end. We can oxtgnel through the following route

2 2

ar’ - g°r® - pg’r® - p°g’r®,soqr’ contributes%[31+l]><8:128 distinct

fuzzy subgroups

Node gr has eleven distinct fuzzy subgroups. We extendutiirdhe three routes. viz
ar - q°r - q°r* - pg’r® ~ p’q’r’
ar - q°r ~ pa’r - pqa’r* ~ p’q’r’
ar - g°r - pa’r - p°g’r » p°g’r’

and five nodes, sqr contributes%[ll+ 1] x16 =96 distinct fuzzy subgroups when

considering the first route, an%alX%[lh 1] x16 = 48 distinct fuzzy subgroups for

each of the last two routes.
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Finally we compute those distinct fuzzy subgrouptimed when extending from the
subgroupq. By theorem 3.2.1%, , for n=1, has2™' —1= 3distinct fuzzy
subgroups. Two end with a nonzero pin. There areasites to extend through, viz:
q-9° -a°r-qr’ - pg’r* - p°g’r’

q-9°-q°r - pa’r - po’r® - p°g’r’

q-9° - pa® — pa’r - pg’r® - p°g’r®

g-a°-ar - pa’r - p’a’r - p°Q’r’

g-9° - pa° - pg’r - p*ar® - p°g°r’

g-0° - pd® - p’q® - p“a’r - p°q’r’

Now through the first routeg will contribute%[z] x 32 = 32distinct fuzzy subgroups.

The remaining five routes will each resultdncontributing%[zx32] = 32 distinct

fuzzy subgroups.
Summing all we obtain 1407+352+128+352+312+192+9B8-48+48+224=3287
distinct fuzzy subgroups for the groGp= sz X Zqz xZ,.

Now as a way of verifying the number 3287, we ysgr® to extend from. Clearly
pa’r® has 703 distinct fuzzy subgroups. For extensiopig’r > we use the

following nodes: pg®r?, pg®r, par?, par, pg®, pq, pr?, pr and p.
We now give a summarized count of the number afyfisibgroups obtained when

we extend from the subgroupqg®r? to p?g®r?.

Node pg?°r? yields%[704]><4—1=1407 fuzzy subgroups.
Node pg°r yields%[176]><4 =352
Node pgr? yieIds%[l?dx 4 =352

Node pg? yields %[32] =128 fuzzy subgroups.

Node pgr : We can extend through the following two routes:
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par — p°ar - p*ar® - p°q°r’(a)
par - p*ar - p*a’r ~ p*q’r*(b)
So (a) is assigned all subgroups as distinguistaictyrs, thus yields

%[52] x 8 = 208 fuzzy subgroups. (b) contribute:ZLsx%[SZ] x8=104 as p*q°r

distinguishes it from (a).
Node pq: We extend through the following three routes:
pg - p’q - p“ar — p°a’r - p“q’r* (1)
pg - p’d - p’q* - p°Q’r — p°a’r’(2)
22,2

pq - p’q - p’ar — p’ar® - p’g’r? (3)

Route (1) contribute%[lZ]X16= 96 fuzzy subgroups, route (2) contributes
2—12[12]><16= 48 fuzzy subgroups ap®qg® distinguishes it from (1) and route (3)

contributesz—lz[lz] x16 = 48fuzzy subgroups as subgroyggr * distinguishes it from
().
Node pr? yields %[32] x8 =128 fuzzy subgroups.

Node pr : We use the following three routes :

pr - p’r - p?r? - p%gr? - p?g’r? (a)

pr - pr - p’ar - p“ar® - p°g°r’ (b)

pr - p°r — p’ar - p°g’r - p°a’r® (c)
Using propositions 5.2.4, 5.2.5 and 5.2.6 (a)rt'nblmtes%[lZ]xm: 96 fuzzy
subgroups. It is also clear that the subgr@dpr , distinguishes (b) from (a) , thus

route (b) contribute521—2[12]><16= 48 fuzzy subgroups and because of the subgroup

p?g’r (c) contributesziz[lz] x16 = 48 distinct fuzzy subgroups.

Node p: We extend using the following six routes :

p N p2 N er N p2r2 . qurZ . p2q2r2
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p-p° - p°r - par - p’ar® -~ p°q’r’
p- p° - p’r - p’ar - p’a’r - p°q’r’
p- p° - p’d- p’ar - piar® - p’a’r’
p-p° - p’d- p°ar - p°Q°r - p°Q°r’
p-p° - p’d- p°ad° - p°Q°r - p°Q°r’
If we assign%[4]><32= 64 fuzzy subgroups to the first route (as a maxirhairt),
each of the last five routes has a factor or tve tlistinguishes it from the first,

therefore they have a combined contributiomefz—lz[4] x 32 =160 fuzzy subgroups.

Now summing up we obtain
1407+352+352+208+104+128+96+48+48+128+96+48+48+6a@=3287distinct

fuzzy subgroups for the group = sz + Zqz +Z ,. This number is the same as the

one obtained when we extended usjprgyr °.

The arguments used in chapter five can also betossampute the number of fuzzy

subgroups ofG = Zplnl + Zp n Foot Zp « Where all thep,’s are distinct primes,

although the lattice diagrams may be too complitatece for example in

G= .?[pln1 + Zp n Tt ans + Zp . We need a 4-dimensional diagram. Hence it may be

necessary to explore other techniques of comptit@gumber of distinct fuzzy
subgroups. Ngcibi irﬁ3]] studied p-groups of rank 2 and only managed t@aget

recurrence formula for the number of distinct fusepgroups, suggesting the

complexity of such computations.
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LIST OF DIAGRAMS
Figure 1

Figure One

n=1 Number of maximal chains

Number of maximal chains
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Figure Two

Number of maximal chains

4
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Figure Three

Number of maximal chains

14 g 5

Figure 3
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Lattice Diagram 1
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prar

i+l
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pPqr

pir

pgr

pPq

Lattice Diagram 2
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gr par’ pigr’ plar’
2 2
r pr, pr
@ pgr pzqr }33({?”
9
7 P
4 (24] pq @35]

Lattice Diagram 3
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pqr

qr

Lattice Diagram 4




127

" or 'y p]ilrf
e b s o T’
'pk+1
pk+ r
}ik+l
¥4

Lattice Diagram 5
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pgr’ p“lgr? plar
5 : o A -7
pa/ i P
E’ﬂ [par pgr prgr
) A
r pr ol b
q k

Lattice Diagram 6
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Lattice Diagram 7

pqr pigr’
Py P’ /
e ‘pzqr
E?J [@ p°q
Vi
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p
1
pk+ 7
_E’kH
// D
P/
&

Lattice Diagram 8
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