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Abstract 

In this thesis we use the natural equivalence of fuzzy subgroups studied by Murali and 
Makamba [25] to characterize fuzzy subgroups of some finite groups. We focus on 
the determination of the number of equivalence classes of fuzzy subgroups of some 
selected finite groups using this equivalence relation and its extension. 
 
Firstly we give a brief discussion on the theory of fuzzy sets and fuzzy subgroups. We 
prove a few properties of fuzzy sets and fuzzy subgroups. We then introduce the 
selected groups namely the symmetric group3S , dihedral group 4D , the quaternion 

group 8Q , cyclic p-group np
ZG /= , mn qp

ZZG /+/=  , rqp
ZZZG mn /+/+/=  and 

smn rqp
ZZZG /+/+/=  where qp, and r  are distinct primes and Nsmn /∈,,  . 

We also present their subgroups structures and construct lattice diagrams of 
subgroups in order to study their maximal chains. We compute the number of 
maximal chains and give a brief explanation on how the maximal chains are used in 
the determination of the number of equivalence classes of fuzzy subgroups. In 
determining the number of equivalence classes of fuzzy subgroups of a group, we first 
list down all the maximal chains of the group. Secondly we pick any maximal chain 
and compute the number of distinct fuzzy subgroups represented by that maximal 
chain, expressing each fuzzy subgroup in the form of a keychain. Thereafter we pick 
the next maximal chain and count the number of equivalence classes of fuzzy 
subgroups not counted in the first chain. We proceed inductively until all the maximal 
chains have been exhausted. The total number of fuzzy subgroups obtained in all the 
maximal chains represents the number of equivalence classes of fuzzy subgroups for 
the entire group, (see sections 3.2.1, 3.2.2, 3.2.6, 3.2.8, 3.2.9, 3.2.15, 3.16 and 3.17 for 
the case of selected finite groups).   
We study, establish and prove the formulae for the number of maximal chains for the 
groups mn qp

ZZG /+/= , rqp
ZZZG mn /+/+/=  and smn rqp

ZZZG /+/+/=  where qp,  and 

r  are distinct primes and Nsmn /∈,, . To accomplish this, we use lattice diagrams of 
subgroups of these groups to identify the maximal chains. For instance, the group  

mn qp
ZZG /+/=  would require the use of a 2- dimensional rectangular diagram (see 

section 3.2.18 and 5.3.5), while for the group smn rqp
ZZZG /+/+/=  we execute 3-

dimensional lattice diagrams of subgroups (see section 5.4.2, 5.4.3, 5.4.4, 5.4.5 and 
5.4.6). It is through these lattice diagrams that we identify routes through which to 
carry out the extensions. Since fuzzy subgroups represented by maximal chains are 
viewed as keychains, we give a brief discussion on the notion of keychains, pins and 
their extensions. We present propositions and proofs on why this counting technique 
is justifiable. We derive and prove formulae for the number of equivalence classes of 
the groups mn qp

ZZG /+/= , rqp
ZZZG mn /+/+/=  and smn rqp

ZZZG /+/+/= where qp,  

and r  are distinct primes and Nsmn /∈,, . We give a detailed explanation and 
illustrations on how this keychain extension principle works in Chapter Five. 
We conclude by giving specific illustrations on how we compute the number of 
equivalence classes of a fuzzy subgroup for the group 222 rqp

ZZZG /+/+/=  from the 

number of fuzzy subgroups of the group rqp
ZZZG /+/+/= 221 . This illustrates a 

general technique of computing the number of fuzzy subgroups of  
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smn rqp
ZZZG /+/+/=  from the number of fuzzy subgroups of 11 −/+/+/= smn rqp

ZZZG . 

Our illustration also shows two ways of extending from a lattice diagram of 1G  to that 
of G . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
KEY WORDS: 
Fuzzy Subgroups, normal fuzzy subgroups, maximal chains, equivalent fuzzy 
subgroups, keychains, node and pin extension. 
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Introduction 
 

Human beings barely comprehend quantitatively some decision-making and problem- 

solving tasks that are complex, hence the need for the execution of knowledge that is 

imprecise to reach definite decisions. This has led to the advent of fuzzy set theory 

thought to resemble human reasoning in its use of approximate data and uncertainty in 

the generation of decisions. Although Fuzzy Logic dates back to Plato, Lukaieviz 

(1900s) at some stage referred to it as Many-Valued logic, it was formalized by 

Pofessor Lotfi Zadeh in the 1960s. The term Fuzzy Logic is embracive as it is used to 

describe the likes of fuzzy arithmetic, fuzzy mathematical programming, fuzzy 

topology, fuzzy logic, fuzzy graph theory and fuzzy data analysis which are 

customarily called Fuzzy set theory. 

This theory of fuzzy subsets as developed by Zadeh L. has a wide range of 

applications, for example it has been used by Rosenfield in 1971 to develop the theory 

of fuzzy groups. Other notions have been developed based on this theory , these 

include among others , the notion of level subgroups by P.S. Das used to characterize 

fuzzy subgroups of finite groups and the notion of Equivalence of fuzzy subgroups 

introduced by Makamba and Murali which will be  used in this thesis. In this thesis 

we use this natural equivalence to study the characterization of some finite groups, we 

compare the number of equivalence classes and isomorphic classes of these specific 

groups. 

It was in 1971 that Rosenfeld [ ]34  first published his work on fuzzy groups. P.S. 

Das[ ]11 , Mukherjee and Bhattacharya[ ]7  followed a decade later. The latter 

characterized fuzzy subgroups executing the notions of fuzzy cosets and fuzzy normal 

subgroups. Das[ ]11  introduced level subgroups and characterized fuzzy subgroups of 

finite groups by their level subgroups, he proved that they form a chain. He raised the 

problem of finding a fuzzy subgroup that is representative of all the level subgroups. 

This problem was answered by Bhattacharya[ ]5 , he managed to show that given any 

chain of subgroups of a finite group there exists a fuzzy subgroup of that group whose 

level subgroups are precisely the members of that finite chain. An important 

discovery by [ ]5  was that this fuzzy subgroup is not unique, in other words two 

distinct fuzzy subgroups can have the same family of level subgroups. We use this 

characterization in this thesis. The same author in [ ]6   proves that two fuzzy 
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subgroups of finite groups with identical level subgroups are equal if and only if their 

image sets are equal. Bhattacharya in [ ]6  also generalized 

Rosenfeld[ ]10.5...,34 Theorem  and Das [ ]2.5...,11Theorem . 

Fuzzy normality was introduced by Bhattacharya and Mukherjee in[ ]7 . Several 

studies on the concept have been done by[ ]2 , [ ]3 , [ ]11  ,[ ]17  ,[ ]20   and [ ]22  just to 

mention a few. For instance Akgul[ ]2  studied fuzzy normality, fuzzy level normal 

subgroups and their homomorphism. Makamba and Murali in [ ]22  proved that normal 

fuzzy subgroups and congruence relations determine each other in a group theoretical 

sense. 

Sherwood[ ]38  introduced the concept of external direct product of fuzzy subgroups. 

Makamba [ ]21 introduced the concept of internal direct product and proved that both 

are isomorphic if the fuzzy subgroups are fuzzy normal. 

Rosenfeld[ ]34  proved that a homomorphic image of a fuzzy subgroup is a fuzzy 

subgroup provided the fuzzy subgroup has a sup-property, while a homomorphic pre-

image of a fuzzy subgroup is always a fuzzy subgroup.  Anthony and Sherwood [ ]3  

later proved that even without the sup-property the homomorphic image of a fuzzy 

subgroup is a fuzzy subgroup.   

Other studies on homomorphic images and pre-images of fuzzy subgroups were done 

by Sidky and Mishref, Kumar[ ]19 , Abou-Zaid[ ]1 , Makamba[ ]20  and Murali [ ]24 . 

The notion of a fuzzy relation was first defined on a set by Zadeh[ ]40,39 , further 

studies were accomplished by Rosenfeld[ ]34  and Kaufmann[ ]16 . Formato, Scarpati 

and Gerla[ ]14  and Zadeh[ ]40  also studied similarity relation, which we do not persue 

in this thesis. Chakraborty and Das[ ]10,9   studied fuzzy relation in connection with 

equivalence relations and fuzzy functions. Murali and Makamba[ ]28,27,26,25  instead 

studied fuzzy relations in connection with partitions and derived a suitable natural 

equivalence relation on the class of all fuzzy sets of a set. This they used to 

characterize and determine the number of distinct equivalence classes of fuzzy 

subgroups of p-groups. Murali and Makamba in [ ]26  characterize fuzzy subgroups of 

some finite groups by use of keychains. The same authors in [ ]27  introduced the 

notion of a pinned flag in order to study the operations sum, union and intersection in 

relation to this natural equivalence. 
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There have been a number of studies involving the use of this equivalence relation, 

see for example Murali and Makamba[ ]29,28  and Ngcibi[ ]30 . 

 

In Chapter 1 we define a fuzzy set in general and characterize fuzzy sets using 

.cuts−α We introduce the notion of a fuzzy subgroup and give a few properties of 

fuzzy subgroups. We give the definition of a product of fuzzy subgroups as given by 

Zadeh[ ]39  and Makamba[ ]20 . We also study fuzzy normality, its characterization by 

level subgroups and fuzzy points. We conlude the Chapter by proving that if µ  is a 

fuzzy subgroup of a group then the homomorphic image )(µf and homomorphic pre-

image are fuzzy subgroups of the same group. 

 

In Chapter 2 the notion of a fuzzy equivalence relation is introduced (see Murali[ ]24 , 

Murali and Makamba[ ]25 ,[ ]26  ,[ ]27 , Ngcibi[ ]30 ). In [ ]24  Murali defined and studied 

properties, including cuts, of fuzzy equivalence relations on a set. It is the natural 

equivalence relation introduced by Murali and Makamba (for more details 

see[ ]25 ,[ ]26  and [ ]27 ) that we are going to extensively use in this thesis. We give this 

definition (given also by Mural and Makamba) and show that it is indeed an 

equivalence relation. We also define a normt − , characterize a normt −  that is 

continuous and briefly discuss the usefulness of normt − . A brief discussion on the 

equivalence of fuzzy subgroups and some consequences is given in this chapter. 

Specific examples are given on equivalent and non-equivalent fuzzy subgroups. 

We characterize equivalence between fuzzy subgroups using level subgroups.We 

conlude the chapter with a brief discussion on homomorphic images and pre-images. 

 

Fraleigh[ ]13  characterizes finite Abelian groups in the crips case. Murali and 

Makamba in[ ]25 , [ ]26  and [ ]27  studied the classification of fuzzy subgroups of finite 

Abelian groups using different approaches that include the number of non-equivalent 

fuzzy subgroups for the group np
Z/  and qp

ZZG n /+/= where p and q are distinct 

primes, in[ ]25 . In [ ]26  they investigated the number of fuzzy subgroups of 

nppp
ZZZG /++/+/= ...21 for distinct primes ip  for ni ,...,3,2,1=  and also distinct fuzzy 

subgroups of mn qp
ZZG /+/= , where p and q are distinct primes, Nn /∈   and 
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5,4,3,2,1=m were also studied. Ngcibi[ ]30  also used the notion of equivalence of 

fuzzy subgroups studied by Murali and Makamba to characterize fuzzy subgroups of 

p-groups for specified primes p. The author[ ]30   also did a classification of fuzzy 

subgroups of Abelian groups of the form pp
ZZG n /+/= and of the form mn qp

ZZG /+/=  

for the cases mn =  and mn ≠ . 

 

In Chapter 3 we introduce some specific groups, namely the symmetric group 3S , 

dihedral group 4D ,the quaternion group 8Q , cyclic p-group np
ZG /=  and the group 

mn qp
ZZG /+/=  We present subgroups, lattice structure of subgroups and maximal 

chains. It is in this chapter that we give the definition of fuzzy isomorphism given by 

Murali and Makamba[ ]25 , we determine the number of distinct fuzzy subgroups and 

isomorphic classes of fuzzy subgroups for these groups. Comparisons are made on the 

number of distinct fuzzy subgroups and the number of isomorphic classes. Formulae 

for the number of distinct fuzzy subgroups for selected groups given by Murali and 

Makamba in[ ]25 ,[ ]26  and [ ]27  and Ngcibi[ ]30  are also verified on these groups we 

are studying. 

In Chapter 4 we define a maximal subgroup of a group and demonstrate with a few 

lattice diagrams the determination of the number of maximal chains. We establish and 

give proofs, in the form of lemmas and propositions, of formulae for the number of 

maximal chains for thegroups mn qp
ZZG /+/= , rqp

ZZZG mn /+/+/= and 

smn rqp
ZZZG /+/+/=   where rqp ,,  are distinct primes and Nsmn /∈,, . 

 

Chapter 5 is an extension of chapter 4. Having obtained the formulae for the number 

of maximal chains for the groups,  we go further on and introduce the notions of 

keychains, pins , pinned-flag (for more see Murali and Makamba[ ]25 ,[ ]26  and [ ]27 )  

and pin extension which we exploit in the computation of the number of equivalence 

classes of fuzzy subgroups for these groups. We give a detailed explanation of the 

method of computing the number of fuzzy subgroups using maximal chains. This we 

accomplish by stating the counting technique in terms of propositions. Specific 

examples are given to illustrate how the counting technique is applied. 
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In 5.1.3.1 we include some work by Ngcibi[ ]30  on the formulae for the distinct 

number of fuzzy subgroups for the group mn qp
ZZG /×/=  where qp,  are distinct 

primes and 3,2,1=m . We also give a proof of Ngcibi’s Theorem 5.3.3 in [ ]30  which 

the author did not prove. This we do as another illustration for the justification of our 

counting technique. We list a few combinatorial analysis definitions that are used in 

this proof. (for more see Riordan [ ]36 ). We establish and give proof, with an aid of 3-

dimensional lattice diagrams, of formulae for the number of distinct fuzzy subgroups 

of the group smn rqp
ZZZG /×/×/=  where rqp ,,  are distinct primes and 

Nn /∈ , 3.2.1,1 == sm  and 4. 

We conclude by showing how in general the number of distinct fuzzy subgroups of 

smn rqp
ZZZG /×/×/=  can be obtained if the number of distinct fuzzy subgroups of 

1−/+/+/= smn rqp
ZZZH  (or smn rqp

ZZZ /+/+/ −1 or smn rqp
ZZZ /+/+/ −1 ) is known, illustrating 

with a specific case. 
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CHAPTER ONE 

Fuzzy Sets, Fuzzy Subgroups, Fuzzy Normal Subgroups 

1.0 Introduction 

In order to study fuzzy subgroups, the theory of fuzzy sets is extended and applied to 

the group structural settings. In this topic we give a preliminary discussion on the 

general properties of fuzzy sets and characterize fuzzy sets using alpha- cuts. The 

notion of fuzzy subgroups as defined by Rosenfeld[ ]34  is given and a few properties 

of fuzzy subgroups proved. Zadeh[ ]39  and Makamba[ ]20  defined the product of two 

fuzzy subgroups, this definition is given in this chapter. The notion of level subgroups 

has been used by several researchers in the classification of fuzzy subgroups, 

including among others, Das[ ]11 , Bhattacharya[ ]6 , and Makamba[ ]20 . Fuzzy 

normality is studied and characterized using level subgroups and fuzzy points. We 

conclude by proving that if µ  is a fuzzy subgroup of a group G  then the 

homomorphic image )(µf  and homomorphic pre- image are fuzzy subgroups of the 

same group. Similar results were obtained by Rosenfeld[ ]34 , Kumar[ ]19  and 

Makamba[ ]20 . 

 

1.1 Fuzzy sets 

A fuzzy set is a set derived by generalizing the concept of crisp set. Unlike in crisp set 

theory where there is total membership, say x  belongs to a set U  written as Ux ∈ , 

fuzzy sets allow elements to partially belong to a set. 

A fuzzy subset of a set U  is a function  

                                                          [ ]1,0: →Uµ  . 

 

If the image set is }1,0{  then we have a crisp set. We sometimes represent the fuzzy 

set [ ]1,0: →Aµ  by Aµ  where txA =)(µ  for ,Ax ∈  10 ≤≤ t . We then say t  is the 

degree to which x  belongs to the fuzzy subsetAµ . 

We observe that when 0=t , we mean absolute non-membership, and when 1=t , 

absolute membership. If 1)()(0 ≤<≤ yx µµ  then we say y belongs to µ  more than 

x  belongs toµ . 
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1.1.1 Operations on Fuzzy sets 

 

***Union of two fuzzy sets Aµ  and Bµ  called the Maximum Criterion, is defined as 

       BABABA µµµµµ ∨==∪ ),max(  

 

***Intersection of two fuzzy sets Aµ  and Bµ  called the Minimum Criterion, is defined  

      as   BABABA µµµµµ ∧==∩ ),min(  

 

***Complement of Aµ  is defined as  

       )(1)( xx AA
C µµ −=  

 

***Inclusion 

Fix a set U . Suppose µ  and ν  are two fuzzy sets, IU →:µ , IU →:ν , then by 

νµ ⊆  we mean )()( xx νµ ≤  Ux ∈∀  . 

 

***Equality 

      Uxxx ∈∀=⇔= ),()( νµνµ . 

 

***Null set 

  Is described by the membership function Uxx ∈∀= ,0)(φµ . 

 

***Whole set 

 Is the fuzzy set UxxU ∈∀= ,1)(µ . 

{ } )(sup:)( xJjx j
Jj

j µµ
∈

=∈∨  and { } )(inf:)( xJjx j
Jj

j µµ
∈

=∈∧  
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1.1.2 Fuzzy Points 

Consider a non-empty universal set U . The set of all fuzzy subsets of U  is denoted 

by UI . 

Definition 1.1.3 [ ]20  

A fuzzy subset IX →:µ  is called a fuzzy point if Xxx ∈∀= ,0)(µ  except for one 

and only one element ofX . 

 

1.1.4 Consequences of definition 1.1.3 

Firstly 0)( ≠xµ  for one and only one element of .X  

Consider 0)(: ≠∈ aXa µ .Then  λµ =)(a  , 10 ≤< λ  by the definition of ).(xµ  

 

Case I: If 1=λ  then 1)( =xµ  when ax =  and 0  when ax ≠ , the fuzzy set is the 

crisp singleton { }a  

 

Case II: If 10 << λ  then λµ =)(x  when ax =  and 0otherwise  1.1.3.1 (b) 

Thusµ  is a fuzzy point and we denote it by λa . 

So λa  is such that λλ =)(xa  if ax =  and 0  if ax ≠ , this implies that 

     λλ =)(aa                                                                                            1.1.3.1(c) 

From 1.1.3.1(c) suppose 10 21 ≤<<< λλλ  then λλλ aaa ⊆⊆
21

 

 

Proposition 1.1.5 [ ]20  

Let XI∈µ  Then { }µµ λλ ∈∨= aa :  

 

1.1.6 On cuts−α  

Consider a fuzzy set [ ]1,0: =→ IXµ  and 10 ≤≤ α . 

 

Definition 1.1.7 [ ]30  

The weak cut−α  of µ  denoted by αµ is defined as  

                           { }αµµα ≥∈= )(: xXx                       



15 

   

  

Definition 1.1.8 [ ]30  

The strong cut−α  of µ  denoted by αµ  is defined as 

                            { }αµµα >∈= )(: xXx  

 

***Consequences of definitions 1.1.7 and 1.1.8 

         (a) φµα α =⇒= 1  

         (b) X=⇒= αµα 0  

 

Definition 1.1.9 [ ]20  

The Support of µ  is defined as follows  

                  { }0)(: >∈= xXxSupp µµ  

 

 

1.1.10 Characterization of fuzzy sets using cuts−α  

A fuzzy set can be characterized using cuts−α  as the following proposition shows. 

Proposition 1.1.11 

Given any fuzzy set µ  then ∫==
<<

1

010
sup dx

αα µµ
α

αχαχµ  

                                       or 
αα µαµα

αχαχµ
)1,0()1,0( ∈∈

∨=∨=  

Proof 

Let 1)( αµ =x , then 
1αµ∈x ⇒  )()( 11

1
xx µαχα

αµ == . 

Now if )(xµβ > , then βµ∉x  

 ⇒ 0)( =x
βµβχ , thus )(sup)(sup)()(

1010
1

1
xxxx

ααα µ
α

µ
α

µ αχαχχαµ
≤≤≤≤

=== .                    □                                                                                 

Also given any fuzzy setµ , ∫=
1

0

)()( dxxx
αµαχµ  

Proof 

Let αµ =)(x , then )()( xx
αµαχµ =   

 = ∫
1

0

)( dxx
αµαχ  since αµ∈x . 



16 

   

 Therefore               )(xµ  = ∫
1

0
)( dxx

αµαχ .                                                                   ⁭ 

 

1.1.12 Chains of cuts−α   

Suppose 10 <<< βα  then βα µµ ⊇  and also βα µµ ⊇ . Consequently given a 

chain of numbers  

1...0 121 ≤≤≤≤≤≤ − λλλλ nn , we have 
nn λλλλ µµµµ ⊆⊆⊆⊆

−121
...............  . 

 

1.1.13 Images and pre-images of fuzzy sets [ ]27  

 

Consider X  and Y  to be two universal non-empty sets and YXf →:  be a function 

from X  to Y  and let IX →:µ  be a fuzzy subset of X . 

By )(µf  we mean a fuzzy set of Y defined by  

                            
{ }





∉
∈

= −

−

)(,0

)(:)(sup
))((

1

1

yfxif

yfxx
yf

µµ  

Thus the degree to which y  belongs to )(µf  is at least as much as the degree to 
which x  belongs to  µ  , x∀  for which yxf =)( . 

 

Definition: 1.1.13.1 [ ]27  

Let YXf →:  be a function. 

If ν  is a fuzzy subset of Y then the pre-image )(1 ν−f is a fuzzy subset of X  defined 

by ))(())((1 gfgf νν =− , Xg ∈ . 

 

1.2 Fuzzy Subgroups [ ]23  

A fuzzy subset IG →:µ  of a group G  is a fuzzy subgroup of G  if 

               (i) { } Gyxyxxy ∈∀≥ ,,)(),(min)( µµµ  

               (ii) Gxxx ∈∀=− ),()( 1 µµ  

For the identity element ,Ge ∈  Gxex ∈∀≤ ),()( µµ  

 

Equivalently we have 
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Proposition: 1.2.0 

A fuzzy subsetµ  of G  is a fuzzy subgroup of G  iff 

          

            (a) µµοµ ≤  and 

            (b) µµ =−1  where 1−µ  is defined as IG →− :1µ , )()(, 11 −− =∈∀ ggGg µµ . 

Before we give a proof of the above proposition we first give two important 

definitions      

Definition: 1.2.1 [ ]24  

  We define ( ))()(sup)( 21
21

ggg
ggg

µµµοµ ∧=
=

 

Definition: 1.2.2 [ ]23  

If µ is a fuzzy subgroup on a group G  and θ  is a map from G  onto itself, we define 

a map  [ ]1,0: →Gθµ  by  

                                  Gggg ∈∀= ),()( θθ µµ  

where θg  is the image of g underθ . 

 

Proof of (a) 

)(⇒  

Let Ggg ∈21,  be arbitrary, now since µ   is a fuzzy subgroup ofG , 

)()()( 2121 gggg µµµ ∧≥ , set 21ggg =   

Taking the supremum over both sides we obtain 

( ) ( ))()(sup)(sup 21
2121

ggg
gggggg

µµµ ∧≥
==

 

( ) µµµµµ o=∧∨≥⇒
=

)()()( 21
21

ggg
ggg

 

Therefore µµµ ≤o  

              (b)µ  is a fuzzy subgroup Gggg ∈∀=⇒ − ),()( 1µµ  

But by definition Gggg ∈∀= −− ),()( 11 µµ  

Therefore µµ =−1 . 

)(⇐ if µµµ =o  and µµ =−1 , we need to show that µ  is a fuzzy subgroup. 

Now Gyxxyxy ∈∀≤ ,),()( µµµ o  and { })()(sup)( baxy
abxy

µµµοµ ∧=
=
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                                                                              { })(),(min yx µµ≥     Gyx ∈∀ , .                         

⇒  { })(),(min)( yxxy µµµ ≥ . 

Since )()( 1 gg −= µµ Gg ∈∀  and )()( 11 −− = gg µµ Gg ∈∀ , then it follows that  

 )()( 1−= gg µµ Gg ∈∀ .  Therefore µ is a fuzzy subgroup of .G                             ⁭                                                  
 
 
Definition 1.2.3 [ ]11  
Let G  be a group and µ  be a fuzzy subgroup of G . The subgroups  

tµ , [ ]1,0∈t  and )(et ≤ are called level subgroups ofG . 

 

Definition 1.2.4 [ ]20  

Let  µ  and ν  be fuzzy subsets ofG . The product [ ]1,0: →Gµν  is defined by  

                       ( ))()(sup)( 21
21

xxx
xxx

νµµν ∧=
=

, Gxxx ∈21,, .
 

Proposition: 1.2.5 

If  µ  is a fuzzy subgroup of a group, then ( ))(),(min)( yxxy µµµ =  for each 

Gyx ∈, , )()( yx µµ ≠ . 

Proof (see A Mustafa[ ]2 ) 

 

1.2.6 Properties of fuzzy subgroups 

Utilizing the definitions given above we come up with the following properties of 

fuzzy subgroups. 

Proposition: 1.2.6.1 

If µ  is a fuzzy subset of a groupG , then µ  is a fuzzy subgroup if and only if each 

tµ  is a subgroup ofG , .10 ≤≤ t  

Proof 

)(⇒ µ  is a fuzzy subgroup. We need to show that tµ  is a subgroup ofG . Let 

tyx µ∈,  then tx ≥)(µ and ty ≥)(µ  ( ) txytyxxy µµµµ ∈⇒≥≥⇒ )(),(min)(            

Let tx µ∈  then txxtx ≥=⇒≥ − )()()( 1 µµµ , thus .1
tx µ∈−

 

Therefore tµ  is a subgroup ofG .        
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)(⇐ tµ  is a subgroup of G  [ ]1,0∈∀t . We need to show that µ  is a fuzzy subgroup 

ofG . 

Let Gyx ∈, . For tx µ∈ and ty µ∈  we have tx ≥)(µ  and ty ≥)(µ  . 

But since tµ  is a subgroup ofG  then .)( txyxy t ≥⇒∈ µµ   

Therefore ( ))(),(min)( yxxy µµµ ≥ . 

Case tx µ∈  and sy µ∈ . 

If ts <  then st µµ ⊆ , so sx µ∈ .Thus syx µ∈,  and since sµ  is a subgroup of G  this 

implies that ( ))(),(min)( yxxyxy s µµµµ ≥⇒∈ . Similarly if st < . 

Let Gx ∈ . For tx µ∈  we have Gxxxtxx t ∈∀≥⇒≥⇒∈ −−− ),()()( 111 µµµµ .  

Thus ( ) )()()( 111 −−− ≥= xxx µµµ . Hence )()( 1−= xx µµ . 

Therefore µ  is a subgroup ofG . This completes the proof.                                       ⁭ 

 

Proposition: 1.2.6.2 

Let µ be a fuzzy subset ofG . Then µ  is a fuzzy subgroup 

of ⇔G µµ βλβλ ∈⇒∈∀ − )(,, 1baba . 

Proof 

)(⇒  assume µ  is a fuzzy subgroup. Let µβλ ∈ba ,  . Then λµ ≥)(a  and βµ ≥)(b . 

Now βλµµµµµ ∧≥∧=∧≥ −− )()()()()( 11 babaab   

µµ βλβλ ∈⇒∈⇒ −
∧

− )()( 11 baab     

  )(⇐  let Gyx ∈, . We need to show that )()()( yxxy µµµ ∧≥ . Let λµ =)(x  

and βµ =)(y . If 0=λ , 0≠β  then )()(0)( yxxy µµµ ∧=≥ . Now we 

assume 0, ≠βλ . 

So µµ βλβλ ∈⇒∈ ∧)(, xyyx , )()()( yxxy µµβλµ ∧=∧≥⇒ . 

To show that )()( 1 xx µµ =−  we proceed as follows: case 0)( ≠= λµ x . Let λµ =)(x , 

then µµ λλλ ∈⇒∈ − )( 1xxx , thus .)( 1 µλλ ∈=− exx  Now 

).()(, 11 xxxxe µµµµ λλλ ≥⇒∈⇒∈ −−  By symmetry ).()( 1−≥ xx µµ  Therefore µ   

is a fuzzy subgroup.                                                                                                      ⁭ 
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Theorem: 1.2.6.3  

Let GGf →:  be a homomorphism ofG  intoG  . If µ  is a fuzzy subgroup ofG , 

then )(µf  is a fuzzy subgroup ofG . 

Proof 

We need to show the two conditions of section 1.2. Since f  is into therefore 







∉

∈
= −∈

)(0

)()(sup
))(( )(1

Gfyif

Gfyifa
yf yfa

µ
µ    

Suppose )(Gfy ∈ , then )(1 Gfy ∈− . Thus 

Gyyfaayf
afyafy

∈∀≤== −

==

−

−−
),)(())((sup))((sup))(( 1

)()(

1

11

µµµµ . 

So ))(()))((())(( 111 −−− ≤= yfyfyf µµµ  ))(())(( 1−=⇒ yfyf µµ .  

Suppose )(Gfy ∉ , then )(1 Gfy ∉− ⇒ ))((0))(( 1 yfyf µµ ==− . 

Let 213 yyy = , we aim to show that ))(())(())(( 321 yfyfyf µµµ ≤∧ . 

Consider ))((sup))((
)(

3
3

ayf
afy

µµ
=

= , ))((sup))(( 1
)(

1
11

ayf
afy

µµ
=

=  

and ))((sup))(( 2
)(

2
22

ayf
afy

µµ
=

= . Taking 0>ξ , then 

)()())(())(( 2121 aayfyf µµξµµ ∧<−∧ for 

some ,a )(),(:, 221121 afyafyaa == , 21aaa =  and 213 yyy = .  

Now )()()()( 2121213 afaafafafyyy ====  and )()()()( 2121 aaaaa µµµµ =≤∧ . 

This implies that  

 )())(())(( 21 ayfyf µξµµ <−∧ ))(())((sup 3
)(3

yfa
afy

µµ =≤
=

 

))(())(())(( 321 yfyfyf µµµ ≤∧⇒ .Since ξ is arbitrary. 

Thus )(µf   is a fuzzy subgroup of .G                                                                    ⁭ 

 

 

Proposition: 1.2.6.4 

Let GGf →:  be a homomorphism and µ  a fuzzy subgroup of a groupG . Then 

)(1 µ−f  is a fuzzy subgroup ofG . 

Proof 

))(())(( 111 −−− = afaf µµ  
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                     = ))(( 1−afµ  

                     = ))(( afµ  

                    = ))((1 af µ−  

 

Finally ))()(())(()(1 bfafabfabf µµ ==−  

                                              ))(())(( bfaf µµ ∧≥  

                                            = ))(())(( 11 bfaf µµ −− ∧  

Therefore ))(())(())(( 111 bfafabf µµµ −−− ∧≥ .                                                         ⁭ 

 

 

1.3 Fuzzy Normal subgroups 

Definition: 1.3.1 [ ]20  

 If µ  is a fuzzy subgroup of a groupG , thenµ  is called a fuzzy normal subgroup if  

                       Gyxyxxy ∈∀= ,),()( µµ  . 

Equivalently µ  is fuzzy normal if and only if Gyxyxyx ∈∀=− ,),()( 1 µµ  

Proof 

)(⇒ Suppose  µ  is fuzzy normal, then Gyxyxxy ∈∀= ,),()( µµ  

                             ⇒ )())(()( 111 xyxyxxxyx −−− == µµµ  

                                                 = .,),( Gyxy ∈∀µ       

⇐( ) Suppose Gyxyxyx ∈∀=− ,),()( 1 µµ  

  Then )()()( 1 yxxyxxxy µµµ == −                                                                                ⁭ 

                

 

 

Proposition: 1.3.2 

If νµ,  are fuzzy subgroups of a group G  and µ  is fuzzy normal, then µν  is a fuzzy 

subgroup ofG . 

Proof 
We need to show the two conditions of definition 1.2. To show that 

)()()( yxxy µνµνµν ∧≥   we let ))()((sup)( 21
21

xxx
xxx

νµµν ∧=
=
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and ( ))()(sup)( 21
21

yyy
yyy

νµµν ∧=
=

. Let 21212121 ,:,,,,0 yyyxxxyyxx ==∃>ξ  and 

)()(
2

)( 21 xxx νµξµν ∧<−  and )()(
2

)( 21 yyy νµξµν ∧<− . Then  

( ) )()()()(
2

)(
2

)(
2

)()( 2121 yyxxyxyx νµνµξµνξµνξµνµν ∧∧∧<






 −∧






 −=−∧  

 

    = )()()()( 22
1

2121 yxxyxx ννµµ ∧∧∧ −  

          ( ) )()()( 22
1

2121 xyyxxyxx µννµ ≤∧≤ −   

 (by normality ofµ ) and since 22
1

2121 yxxyxxxy −=  
Therefore )()()( xyyx µνµνµν ≤∧  since ξ is arbitrary. 

Condition (b): Let Gx ∈  then  ))()(((sup)( 21
1

21
1

xxx
xxx

νµµν ∧=
=

−

−
 

                                                                    = ( ))()(sup 1
2

1
1

1
1

1
2

−−

=
∧

−−
xx

xxx

νµ   since µ  and   

ν  are fuzzy subgroups                             

                                                                  = ( ))()(sup 1
22

1
1

1
2

1
1

1
2

−−−

=
∧

−−
xxxx

xxx

νµ   (by 

normality of µ  )                                      )()( 1
1

1
2 xxx µνµν =≤ −−  since 

xxxxxxx == −−−−− 1
1

1
2

1
22

1
1

1
2  . 

By symmetry we also have ))(()( 1 xx µνµν ≥−  

Therefore equality holds.        ⁭ 

 

Proposition: 1.3.3 

If µ  and ν  are both fuzzy normal subgroups ofG , then µν  is a fuzzy normal 

subgroup ofG  . 

 

Proof 

We need to show that Gyxyxyx ∈∀=− ,),()( 1 µνµν . 

  ( ))()(sup)(
1

1 baxyx
abxyx

µµµν ∧=
=

−

−
 

                   ( ) )((sup 11 bxxaxx −− ∧= νµ   (by normality of µ  andν ) 

                   )(yµν≤  since bxaxxxabxxy 111 −−− ==  

Thus     Gyxyxxy ∈∀≥ − ,),()( 1µνµν .  

       ⇒   )()( 11 xxyxxy −−= µνµν   
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                          )( 1−≤ xyxµν  

 Therefore )()( 1−= xyxy µνµν   µν⇒  is a fuzzy normal subgroup of .G                  ⁭ 

 

 

Proposition: 1.3.4 

If µ  and ν  are fuzzy subgroups of G  and µ  is fuzzy normal, then νµµν = . 
 
Proof 

( ))()(sup)( 21
21

xxx
xxx

µννµ ∧=
=

 

           = ( ))()(sup 1
1

121
21

xxxx
xxx

νµ ∧−

=
 since µ  is fuzzy normal. 

           )()( 21 xxx µνµν =≤  since 1
1

121 xxxxx −= . 
Similarly )()( xx νµµν ≤ .  
                                                                                                                                        □ 
 
 
Proposition: 1.3.5 

Let µ  be a fuzzy subgroup ofG . µ  is fuzzy normal if and only if each tµ  is a 

normal fuzzy subgroup of G , [ ]1,0∈∀t . 

Proof 

)(⇒  

We need to show that Gxxx tt ∈∀=− ,1 µµ  

 Let th µ∈  then th ≥)(µ  

                            txhxh ≥=⇒ − )()( 1µµ  

                             tt hGxxhx µµ ∈∈∀∈⇒ − ,,1 . 

                         ⇒ xx tt µµ 1−⊆  .Therefore 1−⊆ xx tt µµ  

Let 1−∈ xxy tµ . Now 1−= xhxy  for some th µ∈ . Then thxhxy ≥== − )()()( 1 µµµ , 

since µ  is normal. This implies that tyty µµ ∈⇒≥)( .Therefore tt xx µµ ⊆−1 .  

Thus tt xx µµ =−1 . 

)(⇐ Let Gyx ∈,  , also set tx =)(µ  . Then 1−=∈ yyx tt µµ  since tµ  normal. 

Therefore )()( 11 xtxyyxyy t µµµ =≥⇒∈ −− , Gyx ∈∀ , . This implies that 

).()( 1 xyxy µµ ≥− Then ( ) )()()( 111 −−− ≥= yxyyyxyyx µµµ . 
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Therefore Gyxyxyx ∈∀= − ,),()( 1µµ  . Thus µ  is a fuzzy normal subgroup of G .   ⁭ 
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Chapter Two 

FUZZY EQUIVALENCE RELATION AND FUZZY 
ISOMORPHISM 
 

2.0 Introduction 

Relating objects that are perceived equal requires the notion of equivalence relations. 
Studies on the implications of this equivalence relation on fuzzy subsets of a set were 
accomplished by a number of authors, for example in [ ]24  Murali defined and studied 
properties, including cuts, of fuzzy equivalence relations on a set. In this chapter we 
first give a definition of an equivalence relation in general and secondly that of a 
fuzzy equivalence relation (for more see Murali[ ]24 , Murali and Makamba [ ]25 ,[ ]26  

and [ ]27 , Ngcibi[ ]30 ). We study the natural equivalence relation introduced by 

Murali and Makamba (for more details see[ ]25 ,[ ]26  and [ ]27 ) and show that it is 
indeed an equivalence relation. We study the equivalence of fuzzy subsets of a set as a 
foundation to the study of equivalence of fuzzy subgroups of a groupG . This we 
accomplish by assigning equivalence classes to the fuzzy subgroups of that group. 
The definition of an equivalence class of an element of a set is given in 2.3.2. Some 
consequences of equivalence of fuzzy subgroups are given.  We also define a 

normt − , characterize a normt −  that is continuous and briefly discuss the usefulness 
of normst − . 
 

2.1 An Equivalence Relation 

 
Definition: 2.1.0 

 A relationℜ , on X  is a subset D  of XX ×  and we write .),( Dyxyx ∈⇔ℜ  

Now ℜ  is an equivalence relation on X  if Xzyx ∈∀ ,, : 

                   (a) xxℜ , Xx ∈∀  (Reflexive law) 

                   (b) xyyx ℜ⇒ℜ (Symmetric law) 

                   (c) yxℜ  and zxzy ℜ⇒ℜ  (Transitive law) 

 

2.2 Fuzzy Relations 

Definition: 2.2.1 

A fuzzy relation µ between elements of two sets X  and Y  is a fuzzy subset of 

YX × given by ),(),(,: yxyxIYX µµ →→× . 

Note: ),( yxµ  is thought as the degree to which x  is related toy . The µ  defined 

above is a binary relation and is said to be: 
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                       (a) Reflexive if Xxxx ∈∀= ,1),(µ  

                       (b) Symmetric if Xyxxyyx ∈∀= ,),,(),( µµ  

                       (c) Transitive if µµµ ≤o  where µµ o  is defined by 

                                 ( )),(),(sup),( yzzxyx
Xz

µµµµ ∧=
∈

o . 

Any fuzzy relation that satisfies (a), (b) and (c) is called a fuzzy equivalence relation 

on X . 

 

2.3 Fuzzy Equivalence relation 

We define an equivalence relation on XI  as follows: 

Definition: 2.3.1 [ ]25  

Let µ  and ν  be two fuzzy subgroups.µ  is fuzzy equivalent to ν  denoted by νµ ≈  

if and only if )()()()( yxyx ννµµ >⇔>  and 0)(0)( =⇔= xx νµ . 

Claim : Definition 2.3.1 is an equivalence relation. 

We have to check (1) Reflexive law: (Clear from definition) 

                              (2) Symmetric law : Need to show that µννµ ≈⇒≈  

Now   )()()()( yxyx ννµµνµ >⇔>⇔≈  and 0)(0)( =⇔= xx νµ      2.3.1.a 

Interchanging the roles of µ  and ν  in 2.3.1.a we obtain: 

.νµ ≈  

                               (3) Transitive law: Need to show that for GI∈,,, βνµ , νµ ≈  and 

βµβν ≈⇒≈ . 

Now using 2.3.1.a and the fact that )()()()( yxyx ββννβν >⇔>⇔≈  and 

0)(0)( =⇔= xx βν  we obtain )()()()( yxyx ββµµ >⇔>  and 

βµβµ ≈⇔=⇔= 0)(0)( xx  therefore 2.3.1 defines an equivalence relation on G . 

 

Definition: 2.3.2 

Let A be a set andℜ  an equivalent relation on A, then the equivalence class of  Aa ∈  

is a set{ }xaAx ℜ∈ : . 
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Proposition: 2.3.3 

Let G  be a finite group and µ  be a fuzzy subgroup of G . If it , jt  are elements of 

the image set of µ  such that 
ji tt µµ = , then ji tt = . 

Proof [ ]6  

 

Proposition: 2.3.4 
νµ ≈ ⇒ νµ ImIm =  

Proof [ ]20  

 

Definition: 2.3.5 

Let [ ] [ ]1,01,0: 2 →T  be a binary operation , then T  is called a triangular norm 

)( normt −  if (a)T  is associative 

                (b)T  is commutative 

                (c)T  is non-decreasing for both variables 

                (d) [ ]1,0,)1,( ∈∀= xxxT  

 

2.3.6 Consequences of definition 2.3.5. 

***A  normt −  T  is called count if it preserves the least upper bound. 

***A normt −   T  is called Archimedean if xxxT <),(  for any [ ]1,0∈x . 

 

2.3.7 Characterization of an equivalence by a normt −  T  that is  

         continuous. 

An equivalence can be defined as follows: 

 

( ))(),( xyyxTyx TTT ⇒⇒=⇔ . 

This is so because the implication is defined by: 

{ }yzxTzyx T ≤=→ ),(|max . 

Similarly 

{ }xzyTzxy T ≤=→ ),(|max  
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2.3.8 Usefulness of normst −  

Although the min, union, product and bounded sum operators belong to a class of 

normst − , there are unique definitions for the intersection (=and) and union (=or) in 

dual logic, traditional set theory and fuzzy set theory. This is so because most 

operators only behave exactly the same if the degrees of membership are restricted to 

the values 0 and 1. This shows that there are other ways of aggregating fuzzy sets 

besides the min and union. 

A normt −  T  as given in Definition 2.3.5 defines an intersection and union of two 

fuzzy sets Aµ  and Bµ  as follows : 

(i) Intersection  [ ] )()(),( xxxT BABA ∩= µµµ , Gx ∈∀ . 

(ii) Union         [ ] )()(),( xxxT BABA ∪= µµµ , Gx ∈∀ . 

So using this definition we note that (b) and (c) ensure that a decrease of the degree of 

membership to set A or set B will not involve an increase to the degree of 

membership to the intersection. Symmetry is also expressed by (b), and (a) guarantees 

that the intersection of any number of fuzzy sets can be performed in any order. 

Apart from the already mentioned use, a normt −  can be used to define a notion of 

isomorphism. 

 

2.4 Fuzzy Isomorphism 

Researchers, amongst them Makamba [ ]20 and Murali and Makamba[ ]25 , studied the 

number of distinct fuzzy subgroups of  a group using an equivalence relation and 

compared with the notion of isomorphism. They noticed that the notion of fuzzy 

equivalence is finer than the notion of fuzzy isomorphism. We therefore define fuzzy 

isomorphism as a generalization of the equivalence relation presented in section 2.3. 

This will enable us to establish a technique to calculate the number of isomorphic 

classes of fuzzy subgroups of finite groups we are to study in chapter three. We start 

with defining a homomorphism for the sake of completeness. 

 

Definition: 2.4.1 Let ),( ∗G  and ),( ' oG  be groups. A mapping ': GGf →  such 

that Gbabfafbaf ∈∀=∗ ,),()()( o   is called a homomorphism. 
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Definition: 2.4.2 

 A homomorphism that is also a 11−  correspondence is called an isomorphism. Such 

a mapping is said to preserve the group operation.  

We will denote two groups G  and 'G  that are isomorphic by 'GG ≈ . 

 

Theorem: 2.4.3 

Isomorphism is an equivalence relation on the class of all groups. 

Proof [ ]30  

 

Definition: 2.4.4 

Let µ   and  ν  be two fuzzy subgroups of groupsG  and 'G respectively. Then we say 

µ  is fuzzy isomorphic toν , denoted ∃⇔≅ νµ  an isomorphism ': GGf →   such 

that ))(())(()()( yfxfyx ννµµ >⇔>  and .0))((0)( =⇔= xfx νµ  

 

2.4.5 Homomorphism and Equivalence 

Equivalence classes of homomorphic images and pre-images of fuzzy subgroups were 

investigated by Murali and Makamba in[ ]27 , they discovered that subgroup property 

is transferred to images and pre-images by a homomorphism between groups. They 

also noted that inequivalent fuzzy subgroups may have equivalent images under a 

homomorphism. 

We recall that if ': GGf →  is a homomorphism, by )(µf  we mean the image of a 

fuzzy subset µ  of G  and is a fuzzy subset of 'G  defined by 

{ }')(,:)(sup)'))((( ggfGgggf =∈= µµ  if Ο/≠− )'(1 gf  and 0)')(( =gf µ  if 

Ο/=− )'(1 gf  for '' Gg ∈ . Similarly if ν is a fuzzy subset of 'G , the pre-image of ,ν  

)(1 ν−f is a fuzzy subset of G  and is defined by ))(()))((( 1 gfgf νν =− . 

In propositions 2.4.6 and 2.4.7 we suppose that HGf →:  is a homomorphism from 

a group G  toH . 

Although a proof of Proposition 2.4.6 is given by Murali and Makamba in [ ]27  we 

give a different proof using the definition )(sup))((
)(

axf
afx

µµ
=

= . 
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Proposition: 2.4.6 [ ]27  

If νµ ≈  then )()( νµ ff ≈ . 

Proof  

Let ))()(())()(( bffaff µµ > . We need to show that ))()(())()(( bffaff νν > . Now 

since f is an isomorphism, then axafxf =⇔= 11 )()(   

and bxbfxf =⇔= 22 )()( . 
So 

)()(
2

)()(
1

21

)(sup)(sup))()(())()((
bfxfafxf

xxbffaff
==

>⇒> µµµµ  therefore )()( ba µµ > . 

But )()( ba νννµ >⇒≈ . 

Therefore 
)()(

2
)()(

1
21

)(sup)(sup
xfbfxfaf

xx
==

> νν   that is ))()(())()(( bffaff νν >  and conversely. 

If 0))()(( =xff µ  then )(0)(sup
)()(

xa
xfaf

µµ ==
=

    this implies that 0)( =xν  since 

νµ ≈ .This implies that 0))()((0)(sup
)()(

=⇒=
=

xffa
xfaf

νν   Thus )()( νµ ff ≈ and 

conversely.                                                                                                                     ⁭ 
 
Proposition: 2.4.7 [ ]27  

If νµ ≈  in H  then )()( 11 νµ −− ≈ ff  in G . 
 

Proof .  Straightforward. 
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Chapter Three 

ON EQUIVALENCE OF FUZZY SUBGROUPS AND ISOMORPHIC 
CLASSES OF FUZZY SUBGROUPS OF SELECTED FINITE GROUPS 
 
3.0 Introduction 
 Characterization of finite groups has been studied by a number of researchers, for 
example Fraleigh [ ]13  and Baumslag and Chandler[ ]4 . Murali and Makamba[ ]25 ,[ ]26  

and [ ]27  looked into equivalence of fuzzy subgroups in order to characterize fuzzy 

subgroups of finite abelian groups. Ngcibi[ ]30  also employed the equivalence relation 
used by Murali and Makamba to determine the number of distinct fuzzy subgroups of 
some specific p-groups. In this chapter we use this equivalence to study the 
characterization of the following groups: the symmetric group 3S , dihedral group 4D , 

the quaternion group8Q , cyclic p-group np
ZG /= and the group mn qp

ZZG /×/= . We 

begin by presenting their subgroups, lattices of subgroups and maximal chains. We 
also use the definition of isomorphism given in chapter two to determine the number 
of equivalence and isomorphic classes of fuzzy subgroups of these groups. We then 
compare the number of equivalence and isomorphic classes for the groups. 
 

3.1 Equivalent Fuzzy Subgroups 

Definition: 3.1.1 
Two fuzzy subgroupsµ and ν are said to distinct if and only if[ ] [ ]νµ ≠ , where [ ]µ  

and [ ]ν  are equivalence classes containing µ  and ν  respectively. 
 
3.1.2 Examples of equivalent and non-equivalent fuzzy subgroups 
 
Example: 3.1.2.1 
Let { }baabbaaeS 22

3 ,,,,,=  where 23 bea ==  and e is the identity element. Define 

fuzzy sets








=
=

=
otherwiseif

aaxif

exif

x

7
1

2
4
1 ,

1

)(µ and 








=
=

=
otherwiseif

bxif

exif

x

7
1

4
1

1

)(ν  

 
Here suppµ = supp 3S=ν  and )()( ba µµ >  but )()( ba νν >/  therefore νµ ≈/ . 

 
Example: 3.1.2.2 
Let { }baabbaaeS 22

3 ,,,,,=  where 23 bea ==  and e is the identity element. Define 

fuzzy sets 








=
=

=
otherwiseif

abxif

exif

x

3
1

2
1

1

)(µ  

   and 








=
=

=
otherwiseif

abxif

exif

x

0

1

)( 2
1ν  
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Clearly )()( aab µµ >  iff )()( aab νν > but suppµ ≠ suppν  therefore µ  is not 
equivalent toν . 
 
 
 
3.2 Classification of Fuzzy Subgroups of Finite Groups 
 
The examples given above demonstrate the importance of all the conditions in 
definition 2.3.1. In order to enumerate the number of distinct fuzzy subgroups and 
isomorphic classes of specific groups in the sections to follow, we begin by 
explaining how in general, distinct fuzzy subgroups can be identified from a fixed 
maximal chain of subgroups. The chain is said to be maximal if it cannot be refined. 
The definitions of a keychain, pin and pinned-flag are given in section 5.1.0. 
Now given any maximal chain of subgroups 
                    { } nn GGGG ⊆⊆⊆⊆⊆ −121 ...0 ...3.2a, 

we say that the maximal chain has length )1( +n , which is the number of components 
in the maximal chain. A fuzzy subgroup µ  can be represented by the following 

ordered symbols nn λλλλ 121 ...1 −   where the si 'λ  are real numbers in [ ]1,0  that are in 

descending order. The si 'λ  are called pins. We observe that there are )1( +n  pins for 

this maximal chain. If we identify each iG  with iλ , we have the fuzzy subgroup 

{ }

















∈

∈
∈

=

=

−1

122

11

\
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nnn GGxif

GGxif

Gxif

xif

x

λ

λ
λ

µ  

  

nn λλλλ 121 ...1 −  is called a keychain ofµ . We sometimes write nn λλλλµ 121 ...1 −= , thus 

we identify µ  with its keychain when the underlying maximal chain of subgroups is 

known. Each iG is a component of the maximal chain. 

 
Example: 3.2.0 
                     (a) The maximal chain { } pZ/⊂0  has two components (levels).  We 

therefore have the following distinct fuzzy subgroups for this chain:11, λ1   and10. 
                      (b) The maximal chain { } 30 SBe ⊂⊂  has three components (levels). 

Corresponding to this maximal chain there are seven distinct fuzzy subgroups 
represented by the keychains111, λ11 ,110 ,λλ1 λβ1 , 01λ ,100 . 
  
3.2.1 Fuzzy Subgroups of the symmetric group 3S  

The group of symmetries of three objects has order 6 and is defined as 

{ }baabbaaeS 22
3 ,,,,,=  where 23 bea == . 
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Its subgroups are { }2
0 ,, aaeB =  , { }beB ,1 =  , { }abeB ,2 = , { }baeB 2

3 ,=  , { }e  and 3S . 

It has four maximal chains viz 

{ } 30 SBe ⊂⊂ ,{ } 31 SBe ⊂⊂ , { } 32 SBe ⊂⊂ and{ } 33 SBe ⊂⊂               3.2.1a 

From equation 3.2.1a each chain is of length three, which means that we can represent 

each fuzzy subgroup using a keychain**  with three pins *** , for example λβµ 1=  

where 01 ≠>> βλ  on the first chain. 

 Thus    { }








∈
∈

=
=

03

0

\

\

1

)(

BSxif

eBxif

exif

x

β
λµ                                                                3.2.1b 

If { }


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



∈
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01

\

\

1

)(

BSxif

eBxif

exif

x

β
λν  for 01 11 ≠>> βλ  then νµ ≈ , thus λβµ 1=  is 

actually a class of fuzzy subgroups. 

 

 

The definitions of a keychain ** and pin ***   are given in section 5.1.0. and 5.1.1 

respectively. 

 

 

Now in computing the number of distinct equivalence classes of fuzzy subgroups for 

the entire group, we consider all the maximal chains as follows: 

Let: λβµ 1=  on the first chain, that is { }

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      λβν 1=  on the second chain, that is { }

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       λβξ 1=  on the third chain, that is { }

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
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            λβτ 1=  on the fourth chain, that is { }








∈
∈

=
=

33

3

\

\

1

)(

BSxif

eBxif

exif

x

β
λτ   

From the above discussion we are able to identify thatµ ,ν , ξ and τ  are distinct 

fuzzy subgroups when considering these four distinct chains. 

If the number of distinct equivalence classes of fuzzy subgroups is computed for each 

maximal chain, then the total number of equivalence classes of fuzzy subgroups for 

the group can be calculated. The following section demonstrates how this fact is used 

to calculate the number of equivalence classes of fuzzy subgroups of3S . 

 

3.2.2 Technique for calculating the number of equivalence classes of 

          fuzzy subgroups of 3S : 

Consider the chain { } 30 SBe ⊂⊂   in 3.2.1a. The number of distinct classes of fuzzy 

subgroups was found to be equal to seven viz  111  λ11    110   λλ1  λβ1   01λ  100 . 

Each one of the keychains above is used for each maximal chain in the enumeration 

of the total number of fuzzy subgroups of the whole group. These results are tabulated 

in the table below.  

 

Distinct Keychains # of ways each counts if all chains 

considered 

111 1 

λ11  4 

110  4 

λλ1  1 

λβ1  4 

01λ  4 

100  1 

Total # of distinct equivalence classes of  

fuzzy subgroups 

19 

 

Thus the number of distinct equivalence classes of fuzzy subgroups for the group 

3SG =  is 19. 
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Now looking at the table above, the class of fuzzy subgroup represented by the 

keychain 111 has a count one because if we consider each chain, this keychain 

represents the same fuzzy subgroup 3,1)( Sxx ∈∀=µ  in all the chains of subgroups. 

The fuzzy subgroup λ11  counts four times because for the same λ  in all the four 

chains eBx \0∈  or eBx \1∈  or eBx \2∈  or eBx \3∈  which are different sets. 

What this means is that the same keychainλ11  represents a different class of 

equivalent fuzzy subgroups on different maximal chains of subgroups. 

From the construction of fuzzy subgroups in section 3.2.1 with λβ1  replaced with 

λ11  we have:                   

                                   )()()()()( 22 baabbaa µµµµµ ==>=  

                                   )()()()()( 22 baabaab ννννν ===>  

                                   )()()()()( 22 babaaab ξξξξξ ===>  

                                   )()()()()( 22 abbaaba τττττ ===>                                     

From the argument above it is clear thatµ ,ν ,ξ  andτ  are distinct equivalence classes 
of fuzzy subgroups under the equivalence we are executing, hence the count of four. 
Similarly the keychains 110, λβ1  and 01λ  will give a count of four. 

 
3.2.3 The Dihedral group 4D   

The group of symmetries of a square or the octic, has order eight. 

To identify the subgroups of this group we consider the number of permutations 

corresponding to the ways that two copies of a square with vertices 1, 2, 3 and 4 can 

be placed, one covering the other. If we basically use iρ  for rotations, iµ  for mirror 

images in perpendicular bisectors of sides, and iδ for diagonal flips we obtain the 

following permutations  









=

4321

4321
0ρ  








=

1432

4321
1ρ    








=

2143

4321
2ρ  








=

3214

4321
3ρ  

 









=

3412

4321
1µ  








=

1234

4321
2µ  








=

4123

4321
1δ   








=

2341

4321
2δ  

 

Alternatively it can be thought of as a group generated by two elements s  and r  such 

that 14 =r  , 12 =s  and srsr 1−= . Thus { }srsrrssrrrD 3232
4 ,,,,,,,1=  
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3.2.4 Subgroups of 4D  

The ten subgroups f 4D  are listed below: 

{ } { } { } { } { } { } { } { } { }21202120321020102020100 ,,,,,,,,,,,,,,,,,,,,,, δδρρµµρρρρρρµρµρρρδρδρρ
 and 4D . 

In view of the discussion given on subgroups of the octic we are able to construct 

maximal chains for this group in section 3.2.5. 

 

3.2.5 Maximal Chains for 4D  

There are seven maximal chains for this group. 

{ } { } { } 421202,00 ,,, D⊂⊂⊂ δδρρδρρ  

{ } { } { } 42120100 ,,,, D⊂⊂⊂ δδρρδρρ  

{ } { } { } 42120200 ,,,, D⊂⊂⊂ δδρρρρρ  

{ } { } { } 43210200 ,,,, D⊂⊂⊂ ρρρρρρρ  

{ } { } { } 42120200 ,,,, D⊂⊂⊂ µµρρρρρ  

{ } { } { } 42120200 ,,,, D⊂⊂⊂ µµρρµρρ  

{ } { } { } 4212010 ,,,, Do ⊂⊂⊂ µµρρµρρ                               3.3.5a 

Each chain in 3.3.5a is of length four. A keychain of 4D is of the form λβα1  where 

αβλ ≥≥≥1 . 

3.2.6 The number of equivalence classes of fuzzy subgroups for 4D . 

In all the chains the distinct fuzzy subgroup 1111 counts once, that is it represents 

only one fuzzy subgroup 4,1)( Dxx ∈∀=µ . The following table below lists a 

keychain and the number of distinct fuzzy subgroups it represents. 

Distinct Keychains Number of counts in all chains 

1111 1 

λ111  3 

1110  3 

λλ11  5 

λβ11  7 

011λ  7 



37 

   

1100  5 

λλλ1  1 

λλβ1  3 

01λλ  3 

λββ1  5 

λβα1  7 

01λβ  7 

001λ  5 

1000  1 

Total Number 63 

 

We obtain the above number of equivalence classes of fuzzy subgroups for each 

keychain as follows : 

Using the maximal chains in  3.3.5a consider the keychain λβ11   

λβµ 11=  on the first chain gives 

)()()()()()()( 2131122 µµµµρµρµδµρµδµ ===>=>  

λβν 11=  on the second chain gives 

)()()()()()()( 2131221 µνµνρνρνδνρνδν ===>=>  

λβξ 11=  on the third chain gives 

)()()()()()()( 2131212 µξµξρξρξδξδξρξ ===>=>  

λβψ 11=  on the fourth chain gives 

)()()()()()()( 2121312 δψδψµψµψρψρψρψ ===>=>  

λβϖ 11=  on the firth chain gives 

)()()()()()()( 2113212 δϖδϖρϖρϖµξµϖρϖ ===>=>  

λβτ 11=  on the sixth chain gives 

)()()()()()()( 2113212 δτδτρτρτρτµτµτ ===>=>   

λβς 11=  on the seventh chain gives 

)()()()()()()( 2131221 δςδςρςρςµςρςµς ===>=>  
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From the preceding discussion it is clear thatµ , ν , ξ , ψ , ϖ , τ  and ς  represent 

different equivalence classes of fuzzy subgroups when considering all the seven 

maximal chains hence the count of seven. 

Now in the above construction if we replace the keychain λβ11  with λββ1  we have 

λββµ 1=  on the first chain gives 

)()()()()()()( 2131122 µµµµρµρµδµρµδµ =====>  

λββν 1=  on the second chain gives 

)()()()()()()( 2131221 µνµνρνρνδνρνδν =====>  

λββξ 1=  on the third chain gives 

)()()()()()()( 2131212 µξµξρξρξδξδξρξ =====>  

λββψ 1=  on the fourth chain gives 

)()()()()()()( 2121312 δψδψµψµψρψρψρψ =====>  

λββϖ 1=  on the firth chain gives 

)()()()()()()( 2113212 δϖδϖρϖρϖµξµϖρϖ =====>  

λββτ 1=  on the sixth chain gives 

)()()()()()()( 2113212 δτδτρτρτρτµτµτ =====>   

λββς 1=  on the seventh chain gives 

)()()()()()()( 2131221 δςδςρςρςµςρςµς =====>  

It is clear thatξ ,ψ , ϖ  represent the same equivalence class of fuzzy subgroup hence 

will count once. The fuzzy subgroups represented by the four:µ ,ν , τ  and ς   are all 

distinct, thus we have a total of five counts for this keychain. 

Similarly for other cases. 

 

3.2 7 The Quaternion group 8Q  

8Q  is formed by the quaternions ,,,1 ji ±±±  and k± . 

88 =Q  

The group is generated by i  and j  with 224 ,1 iji ==  and jiji 3=  

Its subgroups are, 

{ } { } { } { } { }kkjjii ,,1,1,,1,1,,,1,1,1,1,1 −−−−−−−  and { }kkjjii ,,,,,1,1 −−−− . All the 

subgroups are normal and contain the subgroup { }1,1− , except the trivial group{ }1 . 
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3.2.8 Maximal Chains for 8Q  

There are three maximal chains for this group. These are: 

{ } { } { } { }kkjjiiii ,,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂  

{ } { } { } { }kkjjiijj ,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂  

{ } { } { } { }kkjjiikk ,,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂    3.3.3.2.a 

 

There are four components for each chain. Therefore a keychain βλα1  on the 

maximal chain  { } { } { } { }kkiiiiii ,,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂  represents a fuzzy 

subgroup µ  as follows: 

{ } { }
{ } { }

{ } { }











−−−−−−∈
−−−∈

−∈
=

=

iikkjjiixif

iixif

exif

exif

x

,,1,1\,,,,,,1,1

1,1\,,1,1

\1,1

1

)(

α
λ
β

µ  

 

 

Since there are four components in this chain, we have 15 distinct fuzzy subgroups on 

this chain, represented by the keychains  

1111   011λ   λββ1  

λ111    1100    λβσ1  

1110    λλλ1    01λβ  

λλ11   λλβ1     001λ  

λβ11    01λλ    1000  

Using this counting technique to determine the number of fuzzy subgroups for the 

entire group, we obtain the following table: 

Distinct Keychains Number of counts in all chains 

1111 1 

λ111  3 

1110  3 

λλ11  1 

λβ11  3 
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011λ  3 

1100  1 

λλλ1  1 

λλβ1  3 

01λλ  3 

λββ1  1 

λβα1  3 

01λβ  3 

001λ  1 

1000  1 

Total Number 31 

 

Thus 8Q  has 31 distinct fuzzy subgroups. 

 

3.2.9 The group np
Ζ/  for 2=n  and 3 

  A cyclic p- group is of the form +Ζ/∈Ζ/ nnp
, , p  a prime. 

3.2.10 Maximal chains for np
Ζ/  

+Ζ/∈Ζ/ nnp
,  has only one maximal chain of the 

form { }0... 221 ⊃/⊃/⊃⊃/⊃/⊃/ −− ppppp
ZZZZZ nnn   and if the cyclic group +Ζ/∈Ζ/ nnp

,  

contains the cyclic subgroup kp
Z/  of order kp , we write kn pp

ZZ /⊃/ , for nk ≤ . 

 

(a) The case 1=n  

We have the chain { }0⊃Ζ/ p             3.2.9a 

In 3.2.9a any fuzzy subgroup of pΖ/  is equivalent to any of the following:  

11, λ1 , 10  where 01 >> λ . 

Let     { }



/∈
=

=
0\1

01
)(

pZxif

xif
xµ  

            { }



/∈
=

=
0\

01
)(

pZxif

xif
x

λ
ν  
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    { }



/∈
=

=
0\0

01
)(

pZxif

xif
xξ    , then 

 11=µ  , λν 1=  , 10=ξ . It is clear that ξνµ ,≠  because by construction 01 >> λ  

Now )()( yx µµ = for { }0\,0 pZyx /∈=  while )()( yx νν >  and )()( yx ξξ >  for the 

same x and y . It is clear that µ  is not equivalent to ν  and ξ . We also observe that 

)()()()( yxyx ξξνν >⇔>  but the supp ≠ν suppξ , therefore ν  is not equivalent to 

ξ . Since there is only one chain, each keychain counts once on the maximal chain, 

resulting in three distinct equivalence classes of fuzzy subgroups for this group. 

 

(b) The case 2=n   

We have the maximal chain { }02 ⊃/⊃/ pp
ZZ  with seven distinct classes of fuzzy 

subgroups viz 111, λ11 ,110 ,λλ1 , λβ1 , 01λ and100 .    

From the above it is clear that using the equivalence stated in section 2.0 

   111=µ  and λν 11=  are not equivalent as  

)()( yx µµ =  for { } ppp ZZyZx //∈/∈ \,0\ 2  but )()( yx νν >  for the same x  

and y  because by assertion λ>1 . 

Now we observe that 127 12 −= + . 

A similar argument can be used to show that the maximal chain 

{ }023 ⊃Ζ/⊃Ζ/⊃Ζ/ ppp
 of the group 3p

Ζ/  has 15 distinct fuzzy subgroups 

and 1215 13 −= + . This suggests theorem 3.2.11. 

 

Theorem: 3.2.11 

For any Ν∈n  there are 12 1 −+n  distinct equivalence classes of fuzzy subgroups 

on np
Ζ/ . 

Proof (See Proposition 3.3 [ ]25  ) 
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3.2.12 On the group qp
ZZG n /+/=  where p  and q  are distinct primes 

            and Nn /∈ . 

Theorem: 3.2.13 

The number of maximal chains for the group qp
ZZG n /+/=  is )1( +n  for 1≥n . 

Proof 

Straightforward.  (See illustrations, Figures 1, 2 and 3 under list of figures) 

 

3.2.14 The number of fuzzy subgroups of the group qp
ZZG n /+/=  where 

p  and q  are distinct primes and Nn /∈  

In this section we want to determine a general formula for the number of distinct 
fuzzy subgroups for the group qp

ZZG n /+/=  where p  and q  are distinct primes (also 

derived in[ ]25 ). We advance a few values of n to motivate theorem 3.2.18. Although 

a proof of the same theorem was given by Murali and Makamba in[ ]25 , we give a 
different version of the proof as a way of illustrating how our method of pin-extension 
is used.  
 
3.2.15 The case 1=n  that is qp ZZG /+/=   

From theorem 3.2.13 with 1=n , qp ZZG /+/=  has (1+1) =2 maximal chains and these 

are: 

{ } qpp ZZZ /+/⊂+/⊂Ο 0
 

{ } qpq ZZZ /+/⊂/+⊂Ο 0  

Each maximal chain has three components, thus corresponding to each maximal chain 

there are seven distinct equivalence classes of fuzzy subgroups given by the keychains  

111 ,  110  ,λβ1  ,100  , λ11  , λλ1  and 01λ . 

If the two chains are considered, we obtain a total of eleven non-equivalent fuzzy 

subgroups as explained below: 

The keychains 111, λλ1 ,100  each represents the same fuzzy subgroup if both 

maximal chains are considered, thus giving a total of three non-equivalent fuzzy 

subgroups. The keychains λ11 , 110 , λβ1  and 01λ each behaves as a unique fuzzy 

subgroup with reference to each maximal chain, hence each counts twice giving a 

total of eight non-equivalent fuzzy subgroups. This gives a total of eleven non- 

equivalent fuzzy subgroups for the group. 
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Below we explain how we arrive at this number of counts: 

Suppose we take for example the keychain 111, it gives a  count of one in both chains 

because it is the same fuzzy subgroup in both cases, ( that is qpxx Ζ/×Ζ/∈∀= ,1)(µ ). 

We observe that if we let λµ 11=  and λν 11=  for the first and second chains 

respectively, then )()( yx µµ >  but )()( xy νν >  for the same { }0×/∈ pZx and 

{ } qZy /×∈ 0  , therefore the same keychain represents different equivalence classes of 

fuzzy subgroups when observed in the context of each chain, thus the count two. A 

similar argument holds for the double count of the rest. 

 

3.2.16 The case 2=n  that is the group qp
Ζ/×Ζ/ 2  

For this group 2=n , therefore we have 3)12( =+  maximal chains by Theorem 

3.2.13 and these are: 
{ } { }002 ⊃+/⊃/+/⊃/+/ pqpqp

ZZZZZ  

{ } { }002 ⊃/+⊃/+/⊃/+/ qqpqp
ZZZZZ  

{ } { } { }00022 ⊃+/⊃+/⊃/+/ ppqp
ZZZZ  

There are four levels for each chain. Thus corresponding to the chain 

{ } { } { }00022 ⊃+/⊃+/⊃/+/ ppqp
ZZZZ  for example we have 15 distinct equivalence 

classes of fuzzy subgroups as listed below 

1111   011λ   λββ1  

λ111    1100    λβα1  

1110    λλλ1    01λβ  

λλ11   λλβ1     001λ  

λβ11    01λλ    1000 , where  01 >>>> αβλ  

Considering all the chains it can be shown using this counting technique that there are 

31 distinct equivalence classes of fuzzy subgroups. 

Remark: This is how the counting technique goes: for example the keychain 1111 

counts once in all the maximal chains because it is the same fuzzy subgroup in all 

cases (that is qp
xx Ζ/×Ζ/∈∀= 2,1)(µ  ). 

The keychain λ111  counts twice if all chains are considered because if we let 

λµ 111= , λν 111=  and λξ 111=  be three keychains corresponding to the first, 
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second and third chains respectively, they are distinct fuzzy subgroups since for the 

same qp ZZx /×/∈  and Ο×/∈ pZy we have )()( yx µµ >  but )()( xy νν <   and 

)()( yx ξξ <   for example )1,0(=x , )0,( py = . In other words the keychain λ111 on 

the first and second maximal chains represent the same fuzzy subgroup while it 

represents a different equivalence class on the third maximal chain. 

Now using this counting technique, we have the following table which completes the 

entire count 

Distinct Keychains Number of counts in all chains 

1111 1 

λ111  2 

1110  2 

λλ11  2 

λβ11  3 

011λ  3 

1100  2 

λλλ1  1 

λλβ1  2 

01λλ  2 

λββ1  2 

λβα1  3 

01λβ  3 

001λ  2 

1000  1 

Total Number of  31 

 

Therefore the group qp
ZZG /×/= 2 has 31 distinct fuzzy subgroups. We observe that 

1)22(21)4(831 12 −+=−= + . 

 

3.2.17 The case when 3=n  that is qp
Ζ/×Ζ/ 3  

For the group  qp
G Ζ/×Ζ/= 3  we have 3=n , thus we have  4 maximal chains for this 

group.  These are: 
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{ } { } qpqpqpp ZZZZZZZ /+/⊂/+/⊂/+/⊂+/⊂ 3200  (a) 

{ } { } { } { } qpppp ZZZZZ /+/⊂+/⊂+/⊂+/⊂ 332 0000 (b) 

{ } { } { } qpqppp ZZZZZZ /+/⊂/+/⊂+/⊂+/⊂ 322 000 (c) 

{ } { } qpqpqpq ZZZZZZZ /+/⊂/+/⊂/+/⊂/+⊂ 32200 (d) 

There are five levels for each maximal chain. Corresponding to each maximal chain 

we have 31 distinct fuzzy subgroups, given by the keychains: 

11111 , λ1111 ,11110, λλ111 , λβ111  , 0111λ , 11100, λλλ11  , λλβ11  , 011λλ , 

λββ11  , λβδ11  , 011λβ  , 0011λ  ,11000,λλλλ1  , λλλβ1  , 01λλλ  , λλββ1  , λλβδ1  
01λλβ , 001λλ , λβββ1 , λββδ1 , 01λββ , λβδδ1 , λβδγ1 , 01λβδ , 001λβ , 0001λ and

10000. 
 

If all these distinct fuzzy subgroups are taken individually for all the four chains we 

get 79 non-equivalent fuzzy subgroups for the group qp
ZZG /+/= 3 . We also observe 

that 791801)5(21)23(2 413 =−=−=−++ . 

This motivates theorem 3.2.18. 

 

Theorem: 3.2.18 

The number of distinct fuzzy subgroups for the group qp
ZZG n /+/=  is 1)2(2 1 −++ nn  

for Nn /∈ . 

Proof 

We prove by induction on n . The formula holds for 2,1=n  and 3  as shown above. 

Suppose the statement is true for kn = , that is qp
ZZG k /+/=  has 1)2(2 1 −++ kk  

distinct fuzzy subgroups. We are going to make use of the lattice diagram of 

subgroups of qp
ZZ k /+/   and extend from the two nodes kp  and qp k to the lattice 

diagram of subgroups of qp
ZZ k /+/ +1 . The subgroup qp

ZZ k /+/  is written as qp k  or 

simply qp k . 
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We show that the theorem is true for 1+= kn . The number of fuzzy subgroups of 

qp
ZZ k /+/ that end with a nonzero pin is one more than those that end with a zero pin. 

Thus the node (subgroup)  qp k  has 
[ ]

2

)2(2

2

1)1)2(2( 11 +=+−+ ++ kk kk

 non-

equivalent fuzzy subgroups ending with a nonzero pin, and there are 1
2

)2(2 1

−++ kk

 

fuzzy subgroups ending with a zero pin. Each of the former yields three distinct fuzzy 

subgroups in the subgroup  qp k 1+  as follows: A keychain in qp k is of the form 

kααα ...1 21 . Now for 0≠kα , we can only extend to kkαααα ...1 21 , βααα k...1 21  and 

0...1 21 kααα  keychains in qp k 1+  for kαβ <<0 . Therefore  
2

)2(2 1 ++ kk

 yields  

3
2

)2(2 1

×++ kk

  fuzzy subgroups in qp k 1+  and 1
2

)2(2 1

−++ kk

 remains the same 

because on zero we can only attach a zero. The node kp  has 12 1 −+k  non-equivalent 

fuzzy subgroups from theorem 3.2.11. Similarly there are 
[ ]

2

2

2

1)12( 11 ++

=+− kk

 fuzzy 

subgroups that will give rise to new fuzzy subgroups when applied to extensions. 

Suppose kααα ...1 21  is a keychain in kp  with 0≠kα . Extending kp  to qp k 1+  we 

obtain seven keychains viz: kkk ααααα ...1 21 , βαααα kk...1 21 , 0...1 21 kkαααα , 

ββααα k...1 21 , βαααα k...1 21 , 0...1 21 βααα k  and  00...1 21 kααα for kαβ <<0  and 

βα <<0 . 

Three have been counted before viz kkk ααααα ...1 21 , ββααα k...1 21  , 00...1 21 kααα , 

through  qp k . Thus 
2

2 1+k

 yields  4
2

2 1

×
+k

 keychains in qp k 1+ . 
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Similarly keychains in kp  ending with zero do not contribute new fuzzy subgroups as 

these have been counted when extending from qp k  to qp k 1+ . 

Summing up we get 3
2

)2(2 1

×++ kk

 

+ 1
2

)2(2 1

−++ kk

+ 4
2

2 1

×
+k

= 22)2(231)2(2 +++×+−+ kkk kk  

= 1)3(2 2 −++ kk = ( ) 12)1(2 2 −+++ kk . This completes the proof.                                ⁭                                                               

3.3 Isomorphic Classes of Fuzzy Subgroups 
A mathematical object usually consists of a set and some mathematical relations and 
operations defined on the set. A collection of mathematical objects that are 
isomorphic form an isomorphism class. In defining isomorphism classes therefore the 
properties of the structure of the mathematical object are studied and the names of the 
elements of the set considered are irrelevant. 
 
Definition: 3.3.1 
An isomorphism class is an equivalence class for the equivalence relation defined on 

a group by an isomorphism. 

We are going to use the definition of isomorphism given in section 2.4.4. The notion 

of equivalence is a special case of fuzzy isomorphism, that is if two fuzzy subgroups 

are equivalent then they are isomorphic but not vice versa. 

Definition: 3.3.2 

Two or more maximal chains are isomorphic if their lengths are equal and the 

corresponding components are isomorphic subgroups. 

 

 3.3.3 Number of Isomorphic classes for selected finite groups: 
3.3.3.1 The symmetric group 3S (see section 3.2.1) 

3S  has the following maximal chains. (3.1.2 a) 

{ } 30 SBe ⊂⊂                                      (i) 

{ } 31 SBe ⊂⊂                                                 (ii) 

{ } 32 SBe ⊂⊂                                      (iii) 

{ } 33 SBe ⊂⊂                                   (iv) 
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We observe that chain (i) is not isomorphic to the other chains (ii) and (iii)  which are 

isomorphic to each other , therefore will be viewed as distinct from others. But (ii) 

and (iii) will be viewed as one chain. So calculating the number of isomorphic classes  

of fuzzy subgroups we obtain the following in tabular form: 

 

Distinct Keychains Number of ways each Keychain counts 

111 1 

λ11  2 

110  2 

λλ1  1 

λβ1  2 

01λ  2 

100  1 

Total number of isomorphic classes 11 

 
Comments 
For the group 3S  we have fewer isomorphic classes of fuzzy subgroups than 

equivalence classes. 
 
3.3.3.2 The Quaternion group 8Q  

This group has the following maximal chains as presented in chapter three. 

{ } { } { } { }kkjjiiii ,,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂                              ** 

{ } { } { } { }kkjjiijj ,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂                          *** 

{ } { } { } { }kkjjiikk ,,,,,,1,1,,1,11,11 −−−−⊂−−⊂−⊂                                 **** 

 

(**), (***) and (****) are all isomorphic since by construction  1222 −=== kji  

they are viewed as one chain when computing the number of isomorphic classes. In 

section 3.3.0 we established that each chain has 15 non-equivalent fuzzy subgroups 

that can be represented by the following symbols: 

1111   011λ   λββ1  λ111    1100    λβσ1 1110    λλλ1    01λβ  λλ11   λλβ1     001λ  

λβ11    01λλ    1000  

Since all chains count as one, there are 15 isomorphic classes of fuzzy subgroups 

for 8Q . 
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Note: There are fewer isomorphic classes of fuzzy subgroups than equivalence 

classes. 

3.3.3.3 The group qp ZZG /+/=  

This group has the following maximal chains     

{ } { } qpp ZZZ /+/⊂+/⊂ 00    

{ } { } qpq ZZZ /+/⊂/+⊂ 00               

The two chains are not isomorphic, thus each contributes to the number of isomorphic 

classes. We established in chapter three that there are 7 distinct fuzzy subgroups for 

each chain, these are:  

111   110  λβ1  100  λ11   λλ1  01λ . 

First we present a table of keychains and the number of isomorphic classes 

represented by each keychain. We count these as in the case of equivalence classes 

and obtain the following table: 

 

Distinct Keychains Number of ways each Keychain counts 

111 1 

λ11  2 

110  2 

λλ1  1 

λβ1  2 

01λ  2 

100  1 

Total number of isomorphic classes 11 

 
 
We observe that the number of equivalent fuzzy subgroups is equal to the number of 
isomorphic classes for this group. 
 

3.3.3.4 The group qp
ZZG /+/= 2  

There are three maximal chains for this group as shown below: 

{ } { }002 ⊃+/⊃/+/⊃/+/ pqpqp
ZZZZZ       (i) 

{ } { }002 ⊃/+⊃/+/⊃/+/ qqpqp
ZZZZZ       (ii) 
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{ } { } { }00022 ⊃+/⊃+/⊃/+/ ppqp
ZZZZ       (iii) 

We observe that chain (iii) contains a cyclic subgroup { }02 +/
p

Z , therefore is not 

isomorphic to either (i) and (ii). Also (i) and (ii) are not isomorphic because p and 

q are different primes. Thus the number of isomorphic classes of fuzzy subgroups is 

equal to the number of equivalence classes for this group. 

So for the group qp
ZZ n /+/ , the number of isomorphic classes of fuzzy subgroups is 

equal to the number of equivalence fuzzy subgroups and is given by the formula 

1)2(2 1 −++ nn . (See theorem 3.4[ ]25 ) 

 

Now if we investigate the group pp ZZG /+/= , we start with for example 22 ZZ /+/  

which has the following maximal chains 

{ } { } 222 00 ZZZ /+/⊂+/⊂  

{ } { } 22200 ZZZ /+/⊂/+⊂  

{ } 22)1,1(0 ZZ /+/⊂⊂  

they are all isomorphic thus 22 ZZ /+/  has 123 −  isomorphic classes but has 

2
2

2
12

3
3 ×+−  equivalence classes of fuzzy subgroups. 

In general pp ZZG /+/=  has only proper subgroups of orders p and 1. All subgroups 

of order p  are isomorphic, hence all the maximal chains are isomorphic which 

implies that pp ZZG /+/=  has 7123 =− isomorphic classes of fuzzy subgroups for all 

primesp . 

For the group 222 ZZG /+/=  we have the following maximal chains 

{ } { } { } 2222 22 000 ZZZZ /+/⊂+/⊂+/⊂  

{ } { } 222 2)1,1(00 ZZZ /+/⊂⊂+/⊂  

{ } { } 22222 200 ZZZZZ /+/⊂/+/⊂/+⊂  

{ } 2222 2)1,2(0 ZZZZ /+/⊂/+/⊂⊂  

The last two maximal chains are isomorphic and will be viewed as one chain while 

the first two are also isomorphic 

So the number of isomorphic classes of fuzzy subgroups for 222 ZZG /+/=  is  
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23
2

2
12

4
4 =+− . Similarly it can be shown that the group 223 ZZG /+/=  has 

63)2(
2

2
12

5
5 =×+−  isomorphic classes of fuzzy subgroups.  
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Chapter Four 

ON THE MAXIMAL CHAINS OF THE GROUPS mn qp
ZZG /+/=  AND 

smn rqp
ZZZG /+/+/=  

 

4.0 Introduction 

Since the concept of maximal chains plays a crucial role in facilitating the 

characterization of fuzzy subgroups of particular groups, in this section we wish to 

determine a formula for the number of maximal chains for the 

group rqp
ZZZG mn /+/+/=   and possibly conjecture on the formula for the group 

smn rqp
ZZZG /+/+/= for all values of +/∈ Zsmn ,,  and for all qp,  and r  distinct 

primes.To accomplish this we first begin with studying the group mn qp
ZZG /+/= . 

Ngcibi in  [ ]30  studied the classification of abelian groups of the form pp
ZZG n /+/=  

and obtained the following results which we put down in the form of lemmas without 

proof. 

4.1 Maximal Chains of pp
ZZG n /+/=  

 Lemma: 4.1.0 

pp ZZG /+/=  has 1+p  maximal chains. 

Proof [ ]30  

 Lemma: 4.1.1 

pp
ZZG /+/= 2 has 12 +p  maximal chains. 

Proof [ ]30  

Lemma: 4.1.2  

 pp
ZZG /+/= 3   has   13 +p   maximal chains. 

 Proof [ ]30  

Lemma: 4.1.3 

pp
ZZG n /+/= has )1()1)(1( ++−− ppn  maximal chains. 

Proof [ ]30  
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We also include the following definition that will be used in the decomposition of 

groups when determining the number of maximal chains of these selected groups. 

 

Definition: 4.1.4 

A maximal subgroup 'G  of a group G  is a proper subgroup of G such that no proper 

subgroup "G  of G strictly contains 'G . 

4.1.5 Maximal Chains of mn qp
ZZG /+/=  

Since our ultimate goal is to establish the formula for the number of maximal chains 

for the group mn qp
ZZG /+/=  , we accomplish this by fixing m  and for that particular 

value of m , values of n  are advanced to identify a pattern. 

 

When 1=m  we have qp
ZZG n /+/=  and advancing a few values of n  say 4,3,2,1=n  

we observe that here are  )1( +n  maximal chains (see tree diagrams of subgroups for 

n=1, 2, 3 and 4(Figures One, Two and Three)) and by symmetry mqp ZZG /+/=  has 

)1( +m  maximal chains. 
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We denote the group mn qp
ZZG /+/=  by mnqp    
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Proposition: 4.1.6 

qp
ZZG n /+/=  has )1( +n  maximal chains. 

Proof 

From the tree diagrams above the formula is true for 4,3,2,1=n . We assume the 

formula is true for kn = , that is qp
ZZ k /+/  has  )1( +k  maximal chains. Now we need 

to show that qp
ZZ k /+/ +1  has )2( +k  maximal chains. qp

ZZ k /+/ +1  has the following 

maximal subgroups (i) qp
ZZ k /+/  and (ii) 1+/ kp

Z . Now (i) by assumption has )1( +k  

maximal chains and (ii) from section 3.2.10 has one maximal chain. Summing we 

have )1( +k +1= )2( +k  maximal chains as required.    ⁭  
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Furthermore, continuing with the process we obtain the following number of maximal 

chains for different values ofm . 

M Group Number of Maximal chains 

2 2qp
ZZ n /+/  

!2!

)!2(

n

n +
 

3 3qp
ZZ n /+/  

!3!

)!3(

n

n +
 

4 4qp
ZZ n /+/  

!4!

)!4(

n

n +
 

5 5qp
ZZ n /+/  

!5!

)!5(

n

n +
 

 

The above observation motivates the following proposition. 

 

Proposition: 4.1.7  

 The number of maximal chains for mn qp
ZZG /+/=  is 

!!

)!(

mn

mn +
 , for all +/∈ Zmn, . 

Proof 

We prove by inducting on the sum of the exponents of p and q  that is mn + . Now if 

we let mns += , the formula is true for 1=s  because we have either 1=n  and 

0=m  or 0=n  and 1=m . G  is isomorphic to the grouppZ/  or qZ/ which has one 

maximal chain and 1
!0!1

)!10( =+
. For 2=s , we may have 2=n  and 0=m or 2=n and 

0=m , making G  isomorphic to the groups 2p
Z/  or 2q

Z/  with one maximal chain and 

1
!0!2

)!20( =+
. We may also have 1=n  and 1=m  , thus G  is isomorphic to the group 

qp ZZ /+/  which has 
!1!1

)!11(
2

+=  maximal chains, therefore the formula holds for 

.2=s  

Now we assume the formula holds for ks = nkmkmn −=⇒=+⇒  so that 

nkn qp
ZZG −/+/=  has  

)!(!

!

)!(!

!

nkn

k

nkn

s

−
=

−
maximal chains. We need to show that 
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when 1+−/+/= nkn qp
ZZG  there are 

)!1(!

)!1(

)!1(!

)!1(

+−
+=

+−
+−+

nkn

k

nkn

nkn
 maximal chains. The 

maximal subgroups of 1+−/+/ nkn qp
ZZ  are 11 +−− //+/ nkn qp

ZZ  (a) and nkn qp
ZZ −//+/  (b) 

From (a) and (b) using assumption, we have that 11 +−− /+/ nkn qp
ZZ  has 

)!1()!1(

!

)!1()!1(

)!11(

+−−
=

+−−
+−+−

nkn

k

nkn

nkn
  maximal chains and nkn qp

ZZ −//+/  has 

)!(!

!

)!(!

)!(

nkn

k

nkn

nkn

−
=

−
−+

 maximal chains. 

Adding we obtain 
)!1(!

)1(!)(!

)!(!

!

)!1()!1(

!

+−
+−+=

−
+

+−− nkn

nkknk

nkn

k

nkn

k
 

                               =
[ ]

)!1(!

)!1(

)!1(!

)1(!

)!(!

1!

+−
+=

+−
+=

−
+−+

nkn

k

nkn

kk

nkn

nknk
. This completes 

the proof.                                                                                                                       ⁭ 

 

4.2 Maximal Chains of rqp
ZZZG n /+/+/=  

Utilizing the tree diagram of subgroups below and executing a similar technique like 

above, we obtain the number of maximal chain for the group rqp
ZZZG n /+/+/=  , in 

tabular form for any +/∈ Zn . 

The group rqp ZZZG /+/+/=  has the following maximal chains: 
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The group rqp
ZZZG /+/+/= 2  has the following maximal chains: 

 

 
 

n  
rqp

ZZZ n /+/+/  Number of Maximzl Chains 

1 
rqp ZZZ /+/+/  6=(1+1)(1+2) 

2 
rqp

ZZZ /+/+/ 2  12=(2+1)(2+2) 

3 
rqp

ZZZ /+/+/ 3  20=(3+1)(3+2) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

k  
rqp

ZZZ k /+/+/  )2)(1(232 ++=++ kkkk  
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From this table we can deduce that the number of maximal chains for 

rqp
ZZZG n /+/+/=  is a polynomial in n  and we state this as a lemma that follows. 

 

Lemma: 4.2.1 

The group rqp
ZZZG n /+/+/=  has 

!

)!11(
)2)(1(

n

n
nn

++=++  maximal chains for 

1≥n . 

Proof 

We induct on n . From the illustration on tree diagrams and the chart above we 

observe that the formula holds for 3,2,1=n . Now we assume that the formula holds 

for kn =  that is rqp
ZZZG k /+/+/=  has  )2)(1( ++ kk  maximal chains. We have to 

show that rqp
ZZZG k /+/+/= +1  has )3)(2( ++ kk  maximal chains. 

Now rqp
ZZZG k /+/+/= +1 has the following maximal subgroups   

   rqp
ZZZ k /+/+/  (a) 

{ }01 +/+/ + qp
ZZ k  (b) 

{ } rp
ZZ k /++/ + 01   (c) 

From assumption,  (a) has )2)(1( ++ kk , (b) and (c), from previous result 4.1.7 have 

)!1(

)!11(

+
++

k

k
  and  

)!1(

)!11(

+
++

k

k
 maximal chains respectively. 

Summing up the number of maximal chains for (a), (b) and (c) we obtain 

         )2)(1( ++ kk +
)!1(

)!11(

+
++

k

k
+

)!1(

)!11(

+
++

k

k
 

         
)!1(

)!2()!2()2)(1()!1(

+
+++++++=

k

kkkkk
 

        
[ ]

)!1(

)2()2()2)(1()!1(

+
+++++++=

k

kkkkk
 

        [ ]111)2( ++++= kk  

         )3)(2( ++= kk .     This establishes the result.                                                   ⁭ 
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4.2.2 The group  rqp
ZZZ n /+/+/ 2  

Fixing the value of m  to be 2=m  and advancing a few values of n  we obtain the 

following table  

     

n  
rqp

ZZZ n /+/+/ 2  Number of Maximal Chains 

1 
rqp ZZZ /+/+/ 2  12=2.3+3.3 

2 
rqp

ZZZ /+/+/ 22  30=3.4+3.4+3.4 

3 
rqp

ZZZ /+/+/ 23  60=4.5+5.6+3.5 

4 
rqp

ZZZ /+/+/ 24  105=5.6+3.5.7+3.7 

. 

. 

         . 

         . 

        . 

        . 

.          .         . 

k  
rqp

ZZZ k /+/+/ 2  
2

)3)(2)(1()2)(1(

2

)2)(1(
)2)(1(

+++=++++++++ kkkkkkkk
kk  

   

 

From the above observation we have lemma 4.2.3. 

 

Lemma: 4.2.3 

 The number of maximal chains for the group rqp
ZZZ n /+/+/ 2  is 

!2!

)!12(

2

)3)(2)(1(

n

nnnn ++=+++
. 

Proof 

Formula holds for 4,3,2,1=n  as shown by the tree diagrams. We assume the formula 

is true for kn =  that is rqp
ZZZ k /+/+/ 2  has 

!2

)3)(2)(1( +++ kkk
 maximal chains. 

We need to show that rqp
ZZZ k /+/+/ + 21  has 

!2

)4)(3)(2( +++ kkk
 maximal chains. 

Now rqp
ZZZ k /+/+/ + 21  has the following maximal subgroups  

 rqp
ZZZ k /+/+/ 2     (a) 



63 

   

 { }021 +/+/ + qp
ZZ k  (b) 

 rqp
ZZZ k /+/+/ +1    (c) 

From assumption (a) rqp
ZZZ k /+/+/ 2  has 

!2

)3)(2)(1( +++ kkk
  maximal chains. 

From Proposition 4.1.5 (b) { }021 +/+/ + qp
ZZ k  has 

)!1(!2

)!21(

+
++

k

k
 maximal chains. From  

Proposition 4.1.7  we also know that (c) rqp
ZZZ k /+/+/ +1  has )3)(2( ++ kk  maximal 

chains. 

Taking the sum of all the number of maximal chains obtained for (a),(b) and (c) we 

get  

                     
!2

)3)(2)(1( +++ kkk
 +

)!1(!2

)!21(

+
++

k

k
 + )3)(2( ++ kk  

                   =
!2

)3)(2)(1( +++ kkk
+

2

)3)(2(2

2

)2)(3( +++++ kkkk
 

                  =
[ ]

2

211)2)(3( +++++ kkk
 =

2

)4)(3)(2( +++ kkk
 which establishes the 

result.                                                                                                                             ⁭    

 

It can be easily noticed that if we continue in this fashion we will obtain the formulae 

of the number of maximal chains for the group rqp
ZZZ mn /+/+/  for 4,3=m  and these 

we list as lemmas without proof. 

 

Lemma: 4.2.4 

rqp
ZZZG n /+/+/= 3 has 

!3!

)!13(

!3

)4)(3)(2)(1(

n

nnnnn ++=++++
 maximal chains for 

1≥n . 

Lemma: 4.2.5 

rqp
ZZZG n /+/+/= 4 has 

!4!

)!14(

!4

)5)(4)(3)(2)(1(

n

nnnnnn ++=+++++
 maximal 

chains for all 1≥n  
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In view of the lemmas 4.2.4 and 4.2.5 we can therefore give a general formula for the 

number of maximal chains for the group rqp
ZZZ mn /×/×/  which we state in the 

proposition to follow. 

 

Proposition: 4.2.6 

There are 
!!

)!1(

mn

mn ++
 maximal chains for the group rqp

ZZZG mn /+/+/=  were 

+/∈ Znm,    and qp, and r  are distinct primes. 

 

Proof 

We prove by inducting on the sum of the exponents of p ,q , and r  that is 1++ mn . 

Let 1++= mns , the formula holds for 1=s   because we have 0== mn  and this 

gives the  group rZ/  with one chain. The formula holds for 2=s since we either have 

0,1 == mn  or 1,0 == mn  in which case we have essentially the two groups rp ZZ /+/  

and rq ZZ /+/  respectively, and from proposition 4.1.7 these have 2
!1!1

)!11( =+
 and 

2
!0!1

)!101( =++
maximal chains respectively. 

The formula holds for 3=s  because we either 1== mn  which gives the group 

rqp ZZZ /+/+/  and by proposition 4.2.1, we have 6!3
!1!1

)!111(
)21)(11( ==++=++  

maximal chains or secondly we may have 2,0 == mn  or 0,2 == mn  which 

essentially gives the groups rq
ZZ /+/ 2 and rp

ZZ /+/ 2  respectively, and from proposition 

4.1.7 these each has  3
!1!2

)!12( =+
 and 3

!0!1!2

)!012( =++
 respectively. Now we assume 

that the formula is true for 11 −−=⇒=++⇒= nkmkmnks , that is 

rqp
ZZZ nkn /+/+/ −− 1    has 

)!1(!

!

−− nkn

k
 maximal chains. We need to show that 

rqp
ZZZ nkn /+/+/ −  has 

)!(!

)!1(

nkn

k

−
+

 maximal chains. Now rqp
ZZZ nkn /+/+/ −  has the 

following maximal subgroups 

rqp
ZZZ nkn /+/+/ −−1     (a) 
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rqp
ZZZ nkn /+/+/ −− 1     (b) 

{ }0+/+/ −nkn qp
ZZ        (c) 

In (a) knkns =+−+−= 11   therefore by assumption , rqp
ZZZ nkn /+/+/ −−1  has 

 

)!()!1(

!

nkn

k

−−
 maximal chains. In (b) knkns =+−−+= 11  therefore 

rqp
ZZZ nkn /+/+/ −− 1  has 

)!1(!

!

−− nkn

k

 
 maximal chains by assumption. Finally 

{ }0+/+/ −nkn qp
ZZ  has  

)!(!

!

)!(!

)!(

nkn

k

nkn

nkn

−
=

−
−+

 maximal chains by Proposition  4.1.5 

Summing up we obtain  

   
)!()!1(

!

nkn

k

−−
+ 

)!1(!

!

−− nkn

k
+

)!(!

!

nkn

k

−
 

[ ]
)!(!

)!1(

)!(!

1!

)!(!

!)(!)(!

nkn

k

nkn

nknk

nkn

knkknk

−
+=

−
+−+=

−
+−+=   . This completes the proof. 

                                                                                                                                      ⁭ 

 

Our discussion above enables us to conjecture on the general formula for the number 

of maximal chains for smn rqp
ZZZ /+/+/  for rqp ,,  distinct primes and  +/∈ Zsmn ,, . 

This is given as a proposition that follows.  
 

Proposition: 4.2.7  

There are 
!!!

)!(

smn

smn ++
 maximal chains for the group smn rqp

ZZZ /+/+/  for rqp ,,  

distinct primes and  +/∈ Zsmn ,, . 

Proof 

We prove by inducting on the sum of the powers of p ,q  and r  that is smn ++ . 

Let smnj ++= , the formula holds for 1=j   because this implies that 

1,0 === smn  so we have essentially the group rZ/  with one chain. The formula 

holds for 2=j , that is we either have 1,0,1 === smn  or 1,1,0 === smn  and 

0,1,1 === smn  in which case we have the three groups rp ZZ /+/ , rq ZZ /+/  and  

qp ZZ /+/ respectively, and the result is true from proposition 4.1.7. 
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We assume that the formula holds for kj = , thus snkmksmnj −−=⇒=++=  

that is ssnkn rqp
ZZZ /+/+/ −−  has 

!)!(!

!

ssnkn

k

−−
 maximal chains. We need to show that 

ssnkn rqp
ZZZ /+/+/ +−− 1  has 

!)!1(!

)!1(

ssnkn

k

+−−
+

 maximal chains. Now ssnkn rqp
ZZZ /+/+/ +−− 1  

has the following maximal subgroups, 

ssnkn rqp
ZZZ /+/+/ +−−− 11  (a) 

ssnkn rqp
ZZZ /+/+/ −−     (b) 

11 −+−− /+/+/ ssnkn rqp
ZZZ  (c) 

In (a) kssnknj =++−−+−= 11  therefore ssnkn rqp
ZZZ /+/+/ +−−− 11  has 

!)!1()!1(

!

ssnkn

k

+−−−
 maximal chains by assumption. In (b) 

kssnknj =+−−+=  therefore ssnkn rqp
ZZZ /+/+/ −−  has 

!)!(!

!

ssnkn

k

−−
 maximal 

chains. In (c) kssnknj =−++−−+= 11  therefore 11 −+−− /+/+/ ssnkn rqp
ZZZ  has  

)!1()!1(!

!

−+−− ssnkn

k
 maximal chains. 

 

Summing up all these we get 

!)!1()!1(

!

ssnkn

k

+−−−
+

!)!(!

!

ssnkn

k

−−
+

)!1()!1(!

!

−+−− ssnkn

k
 

=
[ ]

!)!1(!

)1(!

!)!1(!

1!

!)!1(!

)(!)1(!)(!

ssnkn

kk

ssnkn

ssnknk

ssnkn

sksnkknk

+−−
+=

+−−
++−−+=

+−−
++−−+

 

=
!)!1(!

)!1(

ssnkn

k

+−−
+

. This establishes the proof.                                                          ⁭ 

Remark: 

It can be shown that in the stage of establishing the induction in 4.2.6 if we  

interchange the roles of n  and m , we have that rqp
ZZZ mmk //+/+/ −  has 

)!(!

)!1(

mkm

k

−
+

 

while rqp
ZZZ nkn //+/+/ −  has 

)!(!

)!1(

nkn

k

−
+

 maximal chains. It can be shown that 
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)!(!

)!1(

mkm

k

−
+

=
)!(!

)!1(

nkn

k

−
+

. Similarly with  4.1.13 ssnkn rqp
ZZZ /+/+/ −−  has 

!)!(!

!

ssnkn

k

−−
 

maximal chains and smmk rqp
ZZZ /+/+/ −− 1  will have 

!)!(!

!

ssmkm

k

−−
 maximal chains. 

 

From the above observation we can generalize the formula of the number of maximal 

chains for the group
kn

k
nn ppp

ZZZG /++/+/= ...2
2

1
1

. This we give as a proposition that 

follows below. 

 

 

Proposition: 4.2.8 

The group 
mn

m
nn ppp

ZZZG /++/+/= ...2
2

1
1

 

has 
!!...!!

!

!!...!!

)!...(

321

1

321

321

m

m

i
i

m

m

nnnn

n

nnnn

nnnn









=
++++ ∑

=     maximal chains, where ip  

mi ≤≤1  are distinct primes. 

Proof 

We prove by inducting on snnnn m =++++ ...321 . Let   1=s  then we have either 

1
1

np
ZG /=  or 2

2
np

ZG /=  or 3
3

np
ZG /= or …or 

mn
mp

ZG /=  which has  1
)!(

)!(

1

1 =
n

n

 
or 

1
)!(

)!(

2

2 =
n

n
or 1

)!(

)!(

3

3 =
n

n
 or…or 1

)!(

)!(
=

m

m

n

n
maximal chains respectively. 

Now we assume the formula is true for 

mnnnks +++== ...21 mnnnkn −−−−=⇒ ....321  that is 

mn
m

nmnnnk ppp
ZZZG /++/+/= −−−− ...2

2
...32

1
  has 

!!...!)!...(

!

!!...!)!...(

)!...)...((

32323232

3232

mmmm

mm

nnnnnnk

k

nnnnnnk

nnnnnnk

−−−
=

−−−−
++++−−−−

  

maximal chains.  

We need to show that the formula holds for mnnnks ++=+= ...1 21 , that is 

mn
m

nmnnnk ppp
ZZZG /++/+/= +−−−− ...2

2
1...32

1
has  
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( )
!!...!)!1...(

)!1(

!!...!)!1...(

!...)...(

32323232

3232

mmmm

mm

nnnnnnk

k

nnnnnnk

nnnnnnk

+−−−−
+=

+−−−−
++++−−−−

 

maximal chains. We observe that 
mn

m
nnmnnnk pppp

ZZZZG /++/+/+/= +−−−− ...3
3

2
2

1...32
1

has the 

following maximal subgroups, 

(1)
mn

m
nnmnnnk pppp

ZZZZ /++/+/+/ −−−− ...3
3

2
2

...32
1

 

(2) 
mn

m
nnmnnnk pppp

ZZZZ /++/+/+/ −+−−−− ...3
3

12
2

1...32
1

 

(3) 
mn

m
nnmnnnk pppp

ZZZZ /++/+/+/ −+−−−− ...13
3

2
2

1...32
1

 

                                . 

                                . 

                                . 

(m-1) 
mn

m
mn

m
nnmnnnk ppppp

ZZZZZ /+/++/+/+/ −−
−

−+−−−− 11
1

13
3

2
2

1...32
1

...  

(m) 11
1

13
3

2
2

1...32
1

... −−
−

−+−−−− /+/++/+/+/
mn

m
mn

m
nnmnnnk ppppp

ZZZZZ  

Now by assumption each maximal subgroup has the following maximal chains: 

(1) has: 

( )
!!...!)!...(

!

!!...!)!...(

!...)...(

32323232

3232

mmmm

mm

nnnnnnk

k

nnnnnnk

nnnnnnk

−−−−
=

−−−−
++++−−−−

 

(2) has: 

( )
!!...)!1()!1...(

!

!!...)!1()!1...(

!...)1()1...(

322322

322

mmmm

mm

nnnnnk

k

nnnnnk

nnnnnk

−+−−−
=

−+−−−
+++−++−−−

 

(3) has: 

( )
!)!...1(!)!1...(

!

!)!...1(!)!1...(

!...)1()1...(

322322

322

mmmm

mm

nnnnnk

k

nnnnnk

nnnnnk

−+−−−
=

−+−−−
++−+++−−−

 

. 

. 

 

(m-1) has: 
 
( )

!)!1!...()!1...(

!

!)!1!...()!1...(

!)1...()1...(

122122

122

mmmmmm

mmm

nnnnnk

k

nnnnnk

nnnnnk

−+−−−
=

−+−−−
+−+++−−−

−−

−

 
(m) has: 
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( )
)!1!...(!)!1...(

!

)!1!...(!)!1...(

!)1(...)1...(

322322

322

−+−−−
=

−+−−−
−+++++−−−

mmmm

mm

nnnnnk

k

nnnnnk

nnnnnk
 

Summing all of these we obtain 
 

!!...)!...(

!

232 mm nnnnnk

k

−−−−
+

!)!...1()!1...(

!

232 mm nnnnnk

k

−+−−−−
 

 
 

+
!)!...1(!)!1...(

!

3232 mm nnnnnnk

k

−+−−−−
+… 

+
!)!1!...()!1...(

!

1232 mmm nnnnnnk

k

−+−−−− −

+

)!1(!!...)!1...(

!

1232 −+−−−− − mmm nnnnnnk

k
 

 
 

=
!!!...)!1...(

)(!...)(!)1...(!

1232

232

mmm

mm

nnnnnnk

nknknnnkk

−+−−−−
+++−−−−

 

=
( )

!!...!)!1...(

...1...!

3232

3232

mm

mm

nnnnnnk

nnnnnnkk

+−−−−
+++++−−−−

 

=
!!...!)!1...(

)1(!

3232 mm nnnnnnk

kk

+−−−−
+

 

=
!!!...)!1...(

)!1(

1232 mmm nnnnnnk

k

−+−−−−
+

; which establishes the result.                    ⁭                 
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Chapter Five 
 

ON THE NUMBER OF EQUIVALENCE CLASSES OF FUZZY SUBGROUPS 

FOR THE GROUPS mn qp
ZZG /+/=  AND smn rqp

ZZZG /+/+/=  

5.0 Introduction 

[ ]20 , [ ]25 ,[ ]26 , [ ]26 ,[ ]27 , [ ]28 ,[ ]29 and [ ]30  were very useful in the compilation of 

this background information on the notions of keychains, pins (already mentioned in 

chapter 3),  pinned-flag (for more see Murali and Makamba[ ]25 ,[ ]26  and [ ]27 )  and 

pin extension which we exploit in the computation of the number of equivalence 

classes of fuzzy subgroups for these selected groups. A detailed explanation to justify 

the method of computing the number of fuzzy subgroups using maximal chains is 

given in section 5.2.0. We also give specific examples to illustrate how the counting 

technique is applied. 

In 5.1.3.1 we include some work by Ngcibi[ ]30  on the formulae for the number of  

distinct fuzzy subgroups for the group mn qp
ZZG /×/=  where qp,  are distinct primes 

and 3,2,1=m  . With the aid of a few combinatorial analysis definitions (for more see 

Riordan[ ]36 ), we give a proof of Ngcibi’s Theorem 5.3.3 in [ ]30  which the author did 

not prove. This we do as another illustration for the justification of our counting 

technique. 

 

5.1 Keychains and Pin-extensions 

Definition: 5.1.0 

A set of real numbers on [ ]1,0=I  of the form nnn λλλλλ >>>>>> −− 1221 ...1  

where nλ  may or may not be zero, is called a finite n -chain. This chain is customarily 

written in descending order as follows nn λλλλ 121 ...1 − . 6.1.0..a                                                                                            

The real numbers nn λλλλ ,,...,,,1 121 −  are called pins. The finite −n chain becomes a 

keychain if 0...1 1221 ≥≥≥≥≥≥≥ −− nnn λλλλλ . 

An increasing maximal chain of 1+n  subgroups of G  starting with the trivial 

subgroup { }0  is called a flag on G . 
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Definition: 5.1.1 

A pinned-flag is the pair { }l,ς  where ς  is the flag onG  and l  is a keychain. 

We customarily write this to suit fuzzy subgroups with nGG =  as follows   

 

Associated to the keychain 6.1.0.a with the iλ ’s not all necessarily different, a fuzzy 

subgroup µ  on G  can be constructed that corresponds to the pinned –flag on G  as 

follows 

                           

{ }

















∈

∈
∈

=

=

−1

122

11

\

...

...

...

\

0\

01

)(

nnn GGxif

GGxif

Gxif

xif

x

λ

λ
λ

µ  

           

   where nG  is the whole group G . µ  defined above is a fuzzy subgroup of G . 

Theorem: 5.1.2 

Let G be a finite group. A fuzzy subset µ  of G is a fuzzy subgroup of G if there 

exists a maximal chain of subgroups GGGG n =<<< ...10  such that for the numbers 

nλλλ ,...,, 10  belonging to µIm  with nλλλ >>> ...10  we have 00 )( λµ =G , 

11 )'( λµ =G ,…, nnG λµ =)'( , where 1\' −= iii GGG , ni ≤≤1  

Conversely, any fuzzy subgroup of G satisfies such condition. 

Proof ( [ ]6 ) 

 

Where a fuzzy subgroup has been represented by a pinned –flag say 

for example  

( ) ( ) ( ) ( ) ( )ϑγβλ
222

1

rprprpr ZZZZZZZ /×Ο×/⊂/×Ο×/⊂/×Ο×/⊂/×Ο×Ο⊂Ο  

pin-extension can be carried out on this and one such extension is given by  

( ) ( ) ( ) ( ) ( )ϑγβλ
222

1

rprprpr ZZZZZZZ /×Ο×/⊂/×Ο×/⊂/×Ο×/⊂/×Ο×Ο⊂Ο

( )ξ22 rqp
ZZZ /×/×/⊂  where ξϑ =   or ξϑ <<0  or 0=ξ . 

 

nn
nn GGGG λλλλ ⊂⊂⊂⊂⊂ −

−
121

121
1 ...0
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Definition: 5.1.3 

 An extension of  nGGG ⊂⊂⊂⊂Ο ...21  is a maximal chain 

121 ... +⊂⊂⊂⊂⊂Ο nn GGGG   having the chain  

nGGG ⊂⊂⊂⊂Ο ...21  as a subchain. 

Since we identify a fuzzy subgroup µ  with its keychain when the underlying 

maximal chain is known, an extension of a maximal chain also results in a new 

keychain associated with that chain. Below we want to briefly explain how we carry 

out this pin-extension principle.  

For a fixed maximal chain with two components we have seen that there are three 

distinct fuzzy subgroups which can be represented using the following tree diagram: 

 

Now when extending in the diagram above, to the pin 1 we may attach a 1,λ or 0 with 

01 >> λ  , to the pin λ  we may attach a λ , β  or 0 with 01 >>> βλ . We get seven 

distinct equivalence classes of fuzzy subgroups as shown in the next tree diagram. 



73 

   

 

 

In the tree diagram above if we attach a branch of the form  

  

 where 1=A ,λ or β  and λ=B , β  or 0≠γ , to a zero we attach azero ,we obtain 

fifteen distinct fuzzy subgroups. 

 So in general if we have a fixed maximal chain of 

subgroups GGGG n =⊂⊂⊂⊂Ο ...21 , a keychain associated with chain is of the 

form nααα ...1 21  for 0...1 21 ≥>>>> nααα . If we extend to  

GGGGG nn =⊂⊂⊂⊂⊂Ο +121 ... , the keychain nααα ...1 21  for 0≠nα can only 

extend to nnαααα ...1 21  or 121 ...1 +nnαααα  or 0...1 21 nααα . If 0=nα , we can only 

attach a zero. 
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5.2 0 Justification of the Counting technique of Fuzzy Subgroups 

Our goal is to make use of this pin-extension principle and the counting technique 

introduced earlier to establish a formula for the number of equivalence classes of 

fuzzy subgroups for the groups rqp
ZZZ n /+/+/ , rqp

ZZZ mn /+/+/ and sn rqp
ZZZ /+/+/ and 

possibly establish the general formula for the group  smn rqp
ZZZ /+/+/ for distinct 

primes qp,  and r , +/∈ Zsmn ,, . 

To achieve this we first give a detailed explanation on the counting technique of 

distinct equivalence classes of fuzzy subgroups. Again maximal chains of the group 

play a pivotal role. 

 

Let GGGG n =⊂⊂⊂⊂Ο ...21   be a maximal chain of G . The number of 

equivalence classes of fuzzy subgroups of G  can be computed by considering how 

many each maximal chain contributes in any sequence. 

Suppose we start with a maximal chain GGGG n =⊂⊂⊂⊂Ο ...21   (a). There are 

12 1 −+n  distinct equivalence classes of fuzzy subgroups contributed by this chain [ ]9 . 

Now if another maximal chain is considered say GJJJ n =⊂⊂⊂⊂Ο ...21  (b) 

where only one ii GJ ≠  for some { }ni ,...,3,2,1∈  the number contributed by this chain 

excluding those counted in chain (a) is given by this proposition. 

 

Proposition: 5.2.1 

The number of fuzzy subgroups of G  obtained from (b) only excluding those 

obtained from (a) is 
2

2 1+n

 for 2≥n . 

Proof 

We prove by inducting on n . For 2=n  we have the following maximal chains 

GGG =⊂⊂Ο 21 (1) 

  GJJ =⊂⊂Ο 21 (2) 

From previous result (1) contributes 712 12 =−+  distinct fuzzy subgroups as follows. 

Since there are three levels such distinct fuzzy subgroups can be represented by the 

keychains  111   λ11   110  λλ1  λβ1  01λ  100  where 01 >>> βλ . The keychains  



75 

   

111  λλ1 100cannot be counted again in (2) as they would represent precisely the 

same fuzzy subgroups counted using (1) 

To illustrate this we observe that for instance 111 is 


 =

=
otherwise

x
x

,

0,1
)(

λ
µ  

This shows that 1G  and 1J  play no role in the determination of   µ . 

So if these keychains are removed we remain with four . This is the number 

contributed by (2) distinct from those of (1). 

On the other hand λβ1  is distinct in (2) from the one counted in (1) because 

in (1) λβ1  is  { }








∈
∈

=
=

1

1

\,

0\,

0,1

)(

GGx

Gx

x

x

β
λµ  while in (2) is { }









∈
∈

=
=

1

1

\,

0\,

0,1

)(

JGx

Jx

x

x

β
λν  

Now there exist 11 \ JGx ∈ . Since chain (1) ≠  (2) then 11 GJ ≠ . So for thisx  

λµ =)(x  while λβν ≠=)(x νµ ≠⇒ . Thus (2) contributes 
2

2
24

12
2

+

==  fuzzy 

subgroups. So the proposition is true for 2=n . 

Now we assume the proposition is true for 2>= kn  that is (1) contributes 12 1 −+k  

and (2) contributes k
k

2
2

2 1

=
+

 distinct fuzzy subgroups not counted in (1). 

Let 1+= kn  and let kλλλ ...1 21 be a keychain of (2) in the case when 2>= kn . 

We consider two cases: 

Case 0≠kλ : Extending this keychain to a keychain in the case 1+= kn , we have the 

following possibilities kk λλλλ ...1 21 , 121 ...1 +kk λλλλ , 0...1 21 kλλλ . 

Case 0=kλ : There is only one way of extending to the case 1+= kn  and that is to 

attach a zero, that is 00...1 21λλ . The two cases give four keychains for 1+= kn  from 

the one keychain for 2>= kn . Now there are 
2

2

2

2

2

1 1 kk

=






 +

 keychains of (2) for 

2>= kn  ending with 0≠kλ  and the rest are keychains ending with 0=kλ . 

Thus (2) for 1+= kn  contributes  
2

2
2

2

2
4

2

2
1

2

2
3

2
1

+
+ ==×=×+×

k
k

kkk

 distinct 

fuzzy subgroups not counted in (1). This completes the proof.                                    ⁭ 
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Example: 5.2.1.1 

On the number of fuzzy subgroups of qp ZZG /+/= . This group has the following 

maximal chains  { } { } GZZZ qpp =/+/⊂+/⊂ 00  (i) 

                            { } { } GZZZ qpq =/+/⊂/+⊂ 00  (ii) 

Here (i) contributes 7123 =−  distinct fuzzy subgroups. Since there are three levels, 

fuzzy subgroups here are represented by the following keychains 111 λ11 110  λλ1  

λβ1  01λ  100  where 01 >>> βλ . The keychains 111 λλ1 100  cannot be counted 

again in (ii) as they would represent precisely the same fuzzy subgroups counted 

using (i). So we remain with four which are the fuzzy subgroups contributed by (ii). 

These are distinct from those counted in (i) for the following reasons: λβ1  in (i) is  

{ } { }
{ }








+/∈
+/∈
=

=
0\,

0\0,

0,1

)(

p

p

ZGx

Zx

x

x

β
λµ  while in (ii) it is { } { }

{ }







/+∈
/+∈

=
=

q

q

ZGx

Zx

x

x

0\,

0\0,

0,1

)(

β
λν .  It is clear 

that { } { }00 +/≠/+ pq ZZ  therefore there exists { } { } νµ ≠⇒+//+∈ 0\0 pq ZZx . For 

such an x  λν =)(x  and λβµ ≠=)(x . Therefore the number of fuzzy subgroups 

contributed by (ii) distinct from those of (i) is [ ]32
2

1
4 = . The total number of distinct 

fuzzy subgroups for the group is .1147 =+  

Note: From now on we assume each chain (2) yields 
2

2 1+n

 fuzzy subgroups even if (2) 

has two or more subgroups distinct from those of (1). 

 

Proposition: 5.2.2 

Suppose G  has the following maximal chains GGGG n =⊂⊂⊂⊂Ο ...21  (a) 

 GJJJ n =⊂⊂⊂⊂Ο ...21  (b) and a third maximal chain   

GKKK n =⊂⊂⊂⊂Ο ...21  (c) distinct from (a) and (b), and suppose Ni /∈∃  such 

that ii GJ ≠ , ii JK ≠  and ii GK ≠ , then when computing the number of fuzzy 

subgroups of G , the number contributed by (b) is equal to the number of fuzzy 

subgroups contributed by (c)  for 2≥n  . 

Proof 

We prove by inducting on n . If 2=n  we have the following maximal chains  
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GGG =⊂⊂Ο 21  (i) 

GJJ =⊂⊂Ο 21  (ii) 

GKK =⊂⊂Ο 21  (iii) with 111 KJG ≠≠ . Clearly 11 GK ≠ . 

By proposition 5.2.1 chain (i) has 123 −  fuzzy subgroups. (ii) has 2
3

2
2

2 =  fuzzy 

subgroups distinct from those counted in (i). 

Similarly as in proposition 5.2.1 the fuzzy subgroups of (i) can be represented by the 

keychains 111   λ11   110  λλ1  λβ1  01λ  100  where 01 >>> βλ . It is clear that the 

keychains 111  λλ1 100  represent the same fuzzy subgroups in all the three maximal 

chains thus they are not included in chain (iii). The remaining keychains are λ11  110   

λβ1  01λ . 

Since 111 KJG ≠≠  and 11 GK ≠ , these four keychains will represent distinct fuzzy 

subgroups in all the three maximal chains. Therefore chain (iii) has four fuzzy 

subgroups not counted in maximal chains (i) and (ii). Thus the number of fuzzy 

subgroups contributed by (iii) is equal to the number of fuzzy subgroups contributed 

by (ii) for 2=n . 

Now we assume the proposition is true for 2>= kn  . If we consider a keychain  

kλλλ ...1 21 of the maximal chain (ii) for 2>= kn  and extending it to the case when 

1+= kn  as in proposition  5.2.1 we obtain the number of fuzzy subgroups 

contributed by maximal chain (ii) to be 12
2

2
4 +=× k

k

. This number is equal to the 

number of fuzzy subgroups contributed by maximal chain (iii) because the number of 

fuzzy subgroups contributed by maximal chain (iii) for 2>= kn  is the same as that 

contributed by maximal chain (ii) for 2>= kn . This completes the proof.               ⁭ 

 

Proposition: 5.2.3 

In the process of computing the number of fuzzy subgroups using maximal chains 

suppose there are three maximal chains as follows  

GGGG n =⊂⊂⊂⊂Ο ...21   (a) 

GKKK n =⊂⊂⊂⊂Ο ...21  (b) 

GJJJ n =⊂⊂⊂⊂Ο ...21    (c) taken strictly in the given sequence. 
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Suppose there exists jiNji ≠/∈ ,,  such that ii JG ≠ , ii GK = , jj GK ≠  and jj JK ≠ . 

Then the number of fuzzy subgroups for the maximal chain (b) is equal to the number 

of fuzzy subgroups for the maximal chain (c) for 3≥n . 

Proof 

We prove by inducting on n . Let 3=n  and consider the following maximal chains 

GGGG =⊂⊂⊂Ο 321               (a’) 

GKGKK =⊂=⊂⊂Ο 3221     (b’) 

GJJJ =⊂⊂⊂Ο 321                (c’) with  11 GK ≠  , 11 JK ≠ , 22 GJ ≠ 22 JK ≠⇒ . 

(a’) contributes 124 −  distinct fuzzy subgroups. We list them as keychains 

1111   011λ   λββ1  

λ111    1100    λβσ1  

1110    λλλ1    01λβ  

λλ11   λλβ1     001λ  

λβ11    01λλ    1000  

By proposition 5.2.1 (b’) has  8
2

24

=  distinct fuzzy subgroups. 

Since 22 GK = , the keychains 1111 λ111  1110  λλλ1  λλβ1  01λλ  and 1000  

represent the same fuzzy subgroups in both (a’) and (b’).Thus to find keychains of 

(c’) not counted in (a’) we look at those listed for (b’). 

Since 11 JK ≠ , the keychains of (b’) represent different fuzzy subgroups in (c’). For 

example λλ11  is 




∈
∈

=
1

1

\,

,1
)(

JGx

Jx
x

λ
µ  in (c’) while in (b’) the same keychain is 





∈
∈

=
1

1

\,

,1
)(

KGx

Kx
x

λ
ν  . Since 11 KJ ≠ , νµ ≠ . 

Case 11 JG ≠  

The keychains λλ11  λβ11   011λ  1100  λββ1  λβσ1  01λβ  001λ  on (c’) represent 

fuzzy subgroups that have not appeared before since 22 JK ≠ , 22 JG ≠  and 11 JK ≠ . 

All other keychains not listed here represent fuzzy subgroups that have been counted 

elsewhere. Thus (c’) contributes precisely 
2

2
8

4

=  fuzzy subgroups. 
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Case 11 GJ =  

 The seven keychains 1111, λλλ1 , 1000 , λλ11 , 1100 , λββ1  and 001λ  of (c’) 

represent the same fuzzy subgroups in (a’) since 11 GJ = . This leaves us with the 

keychains λ111 , 1110 , λβ11 , 011λ , λλβ1 , 01λλ , λβσ1  and 01λβ   which represent 

fuzzy subgroups of (c’) that have not appeared in (a’) or (b’). 

Thus (c’) contributes eight distinct fuzzy subgroups. Now assume the proposition is 

true for 3>= kn . Extending the keychains to the case 1+= kn as in propositions 

5.2.1 and 5.2.2 yields the required results.                                                               ⁭ 

Example: 5.2.3.1 

qp
ZZG /+/= 2 has the following maximal chains, 

{ } { } qpqpp ZZZZZ /+/⊂/+/⊂+/⊂ 200  

{ } { } qpqpq ZZZZZ /+/⊂/+/⊂/+⊂ 200  

{ } { } { } qppp ZZZZ /+/⊂+/⊂+/⊂ 22 000  

All the maximal chains are distinct. The first chain yields 124 −  fuzzy subgroups 

while the last two each yields [ ] 34 22
2

1 = fuzzy subgroups by Proposition 5.2.3. The 

total number for the group is 124 − + ( ) 3122 3 =  fuzzy subgroups. 

 

Proposition: 5.2.4 

In the process of counting distinct fuzzy subgroups, let the first maximal chain have  

12 1 −+n  fuzzy subgroups. A chain (k) in the process which has precisely one subgroup 

J  that has not appeared in the previous maximal chain 

 )(i , for 1...,3,2,1 −= ki , contributes 
2

2 1+n

 distinct fuzzy subgroups not  counted in 

the chains ),(i  for 3≥n . 

 
Proof .  This is essentially Proposition 5.2.2. 
 
Note: 
In the process of computing the number of distinct fuzzy subgroups, we start with any 
maximal chain (1). This chain is assigned 12 1 −+n  fuzzy subgroups. Any second 

maximal chain (2) is assigned   
2

2 1+n

 fuzzy subgroups. Clearly (2) has at least one 
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subgroup not appearing in (1). If a maximal chain (3) has at least one subgroup H of 
G  not appearing in (1) or (2), then the number of fuzzy subgroups contributed by (3) 
is equal to that contributed by (2) when computed in a particular sequence. Now 
suppose the two subgroups of (2)  H and K do not appear in (1). Then H may be 
assigned to (3) as new and K is assigned to (2) as new. We will also say H and K are 
distinguishing factors of (3) and (2) respectively. In the first chain (1) all subgroups 
are distinguishing factors. This process ensures that each chain other than (1) is 

assigned 
m

n

2

2 1+

  (for )1+< nm  fuzzy subgroups even if it has one or more subgroups 

distinct from those of (1). In this case we simply say (1) contributes 
m

n

2

2 1+

  fuzzy 

subgroups. Thus the ordering of flags becomes irrelevant.                                           ⁭ 
 
We may rephrase Proposition 5.2.4 as follows: 
 
Proposition: 5.2.5 
 
In the process of counting distinct fuzzy subgroups, let the first maximal chain have 

12 1 −+n  fuzzy subgroups. Suppose chain )(i  has a distinguishing factor, then the 

number of fuzzy subgroups of maximal chain )(i  , 1≠i  is equal to 
2

2 1+n

 for 3≥n . 

 
 
Proposition: 5.2.6 
In the process of counting fuzzy subgroups, let (k) be the maximal chain  

GKKK n =⊂⊂⊂⊂Ο ...21  such that all the sK i '  have appeared in some previous 

maximal chain )(i for ki .........2,1=  and have been used as distinguishing factors. 

Then the number of fuzzy subgroups of (k) is equal to 
2

1

2

2 +n

 for 3≥n . 

Proof 
We induct on n . Let 3=n , then we have (k) being GKKK =−−−Ο 321 . 

Assume without loss of generality the following maximal chains of G  
GGGG =⊂⊂⊂Ο 321   (a) 

GJJJ =⊂⊂⊂Ο 321    (b) 

GLLL =⊂⊂⊂Ο 321     (c)   

and (k) as above such that 11 GJ = , 22 GJ ≠ , 111 JLK ≠= , 11 GL ≠ , 22 JK =  , 

and 22 GL = . 

(b) contributes 8
2

24

=  keychains as follows  λλβ1  01λλ  λ111  1110   

                                                              λβ11  λβσ1  01λβ  011λ  

Since 22 JK = ,  the keychains  λλβ1  01λλ  λ111  1110  of (b) represent precisely the 
same fuzzy subgroups as in the maximal chain (k). We therefore do not count these 
fuzzy subgroups in (k). 
It is also clear that 1111 λλλ1  and 1000  cannot be counted in (k). 
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This leaves us with eight keychains that is λβ11  011λ  λβσ1  01λβ  from (b) and  
λλ11  1100  λββ1   001λ  from (a). 

But since 11 LK =  the keychains λλ11 1100  λββ1  001λ  have been counted in (c). 

Thus (k) has only four fuzzy subgroups not counted in (a) ,(b) and (c), and  
2

13

2

2
4

+

= .  

Note: The least number of distinct fuzzy subgroups a chain can have is four. 
So the proposition is true for 3=n . 
Now we assume the proposition is true for 3>= kn  and then use extensions of 
keychains to show that it is true for 1+= kn . This completes the proof.                   ⁭ 
 
Remark: The arguments of Propositions 5.2.5 and 5.2.6 can be continued inductively. 
In fact if there is no distinguishing factor (new subgroup) in a maximal chain )(i  but 
there is a new pair or a distinguishing pair ( not used in the 1−i  chains) then the 

number of fuzzy subgroups of the maximal chain )(i is equal to 
2

1

2

2 +n

. 

Inductively , if there is no distinguishing pair of subgroups but there is a 
distinguishing triple of subgroups in )(i , then the number of fuzzy subgroups 

contributed by the maximal chain )(i is equal to 
3

1

2

2 +n

. Thus this argument continues 

inductively. 
 
Example: 5.2.6.1 
 
The group qp

ZZG /×/= 3  has the following number of fuzzy subgroups  

[ ] [ ] [ ] 792
2

1
2

2

1
2

2

1
12 5555 =+++− . These are computed using the above arguments as 

follows. Firstly we consider the four maximal chains of G : 
 

(1) { } { }00 ***
23 ⊃+/⊃/+/⊃/+/⊃/+/ pqpqpqp

ZZZZZZZ    

 (2) { } { } { } { }0000 233

* ⊃+/⊃+/⊃+/⊃/+/ pppqp
ZZZZZ  

(3) { } { } { }000 *
223 ⊃+/⊃+/⊃/+/⊃/+/ ppqpqp

ZZZZZZ  

 (4) { } { }00 *
23 ⊃/+⊃/+/⊃/+/⊃/+/ qqpqpqp

ZZZZZZZ  

Maximal chain (1) contributes 125 −  fuzzy subgroups and all nontrivial subgroups 
are a distinguishing factor. 

(2) contributes 
2

25

 since the subgroup { }03 +/
p

Z is a distinguishing factor (does not 

appear in (1) ) 

(3) contributes 
2

25

 since the subgroup { }02 +/
p

Z is a distinguishing factor. 

And finally maximal chain (4) contributes 
2

25

 fuzzy subgroups because the subgroup 

{ } qZ/+0  distinguishes it from the other three maximal chains. 
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In examples 5.2.6.1 and 5.2.6.2 we use asterik to indicate the distinguishing factors in 
each chain. 
 
Example: 5.2.6.2 
Let 72ZG /= .G  has the following maximal chains 

(1) 72
*

24
*

8
*

4
*

2 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(2) 7224
*

1242 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(3) 7224126
*

3 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(4) 722412
*

62 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(5) 72
*

361242 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(6) 723612
*

6
*

2 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(7) 7236
*

1862 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(8) 723612
*

6
*

3 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(9) 72
*

36
*

1863 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

(10) 723618
*

93 ZZZZZ /⊂/⊂/⊂/⊂/⊂Ο  

We have used stars to denote distinguishing factors. In the maximal chain (6) there is 
no single distinguishing factor, but there is a distinguishing pair 2Z/  and 6Z/ , implying 

that (6) yields 16
2

2
2

6

=  fuzzy subgroups 

Now using the propositions 5.2.4, 5.2.5, 5.2.6 and the arguments raised before, we 
have the fuzzy subgroups contributed by each maximal chain as follows 
 
Maximal Chain Number of Fuzzy subgroups 
(1) 126 −  
(2) ,(3),(4); (5),(7) and (10) 

Each yields 5
6

2
2

2 =  

(6),(8) and (9) 
Each yields 4

2

6

2
2

2 =  

 
Thus the total number of fuzzy subgroups of 72Z/  is .303232612 456 =×+×+−  

 
Further justification of the process of counting fuzzy subgroups of 

2
2

1
1

kk pp
ZZG /×/= : 

Let (1) GGGG =⊂⊂⊂Ο 321  and 

      (2) GHHH =⊂⊂⊂Ο 321   with  11 GH ≠   and 22 GH ≠  be maximal chains. 

Clearly there is another maximal chain besides (2) having  1H  or 2H  as a subgroup. 

For instance if 022 =∩ HG , then the chain GgHH ⊆⊕⊆⊆ 1110  is maximal and 

not equal to (1) or (2) where 111 \ HGg ∈ .  

Suppose 022 ≠∩ HG , then 122 GHG =∩  or 1H  gives either  3210 GGH ⊆⊆⊆ or 

3210 HHG ⊆⊆⊆  as a new maximal chain containing 1H  or 2H . If 122 GHG ≠∩  
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and 122 HHG ≠∩ , then 32220 HHHG ⊆⊆∩⊆  is a new maximal chain 

containing 2H . 
Thus limiting a chain )(i , 2≥i , to one distinguishing subgroup or one distinguishing 
pair or triple etc, is justifiable and sensible for the ease of counting , since other 
subgroups not used in one chain will be used in other chains. So all fuzzy subgroups 
will be counted. Obviously the above justification extends to any chains of length 

1+n , 3≥n . 
Thus the result of this section holds even when

3
3

2
2

1
1

kkk ppp
ZZZG /+/+/=  where 1p , 2p  

and 3p  are distinct primes. 

 
 
5.3 Classification of fuzzy subgroups of mn qp

ZZG /+/=  

Authors of [ ]25  and[ ]30  studied the classification of fuzzy subgroups of the 

mn qp
ZZG /+/=  . We list this preliminary work in the form of lemmas, for proofs refer 

to references 

  

Lemma: 5.3.1 

qp
ZZG n /+/= has  1)2(2 1 −++ nn  fuzzy subgroups. 

Proof  [ ]25  

 

Lemma: 5.3.2 

2qp
ZZG n /+/= has 1

2
22

2

0

12 −
















−∑
=

−++

rrn

n

r

rn  distinct fuzzy subgroups for all 2≥n  

Lemma: 5.3.3 

3qp
ZZG n /+/= has 1

3
22

3

0

13 −
















−∑
=

−++

rrn

n

r

rn  distinct fuzzy subgroups for all 2≥n . 

 

The above discussion motivates proposition 5.3.5 which was given in[ ]30  . Our next 

aim is to provide a proof for Proposition 5.3.5 but before we embark on that we define 

a few combinatoric statements that we are going to use in this proof. We again make 

use of a general lattice diagram of subgroups and carry out extensions from the 

resultant nodes. 
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Definition: 5.3.4 

We define (a) 0=








r

n
 for nr >   

(b) 1
0

0
=








. From the fact that 1!0 = . 

(c) ∑ ∑ ∑∑
−

−= =

−

−=

+

=

−+







 −








=







 −







kn

nm

m

r

kn

nm

k
m

r

rk

r

kn

r

m

r

kn

r

m

1 0 1

1

0

1 222  

 

(d) 








−
−

+






 −
=









1

11

r

n

r

n

r

n

    
for rn ≥ . 

(e) 








+
−

+






 −−
++







 −
+






 −
=









+ 1

)2(
...

21

1 r

nk

r

knn

r

n

r

n

r

n
for 1+≥ rn . 

(f) 








+
−

+






 −
=









+ 1

11

1 r

n

r

n

r

n
 from (d) above for 11 +≥− rn  

 

(g) 








−
−

+






 −
=







 +−
1

1

r

nk

r

nk

r

nk
  from (d) above. 

Proposition 5.3.5 below was given without proof by Ngcibi in[ ]10 , we provide a proof 

as a way of demonstrating how our counting technique works. As stated above we 

make use of the lattice diagram of subgroups and apply pin-extension to the given 

nodes. 

 

Proposition: 5.3.5 

mn qp
ZZG /+/= , mn ≥ ,  has ∑

=

−++ −
















−

m

r

rmn

r

m

rn

n

0

1 122 fuzzy subgroups. 

Proof 

We induct on nm + . If we assume 1=n  and 0=m  then pqp ZZZG /≅/+/= 0 , and this 

group from previous result has 312 11 =−+  distinct fuzzy subgroups. Using the 

formula with these values of 0=m  and 1=n  we have 

31)1(41)1(
0

1
221

0

0

0

1
22 02

0

0

101 =−=−
















=−
















∑

=

−++

r

r  distinct fuzzy subgroups. It is 



85 

   

clear that if the roles of m  and n  are interchanged, the same will be true. Therefore 

the formula holds for 1=+ nm . 

Now we assume the formula is true for nkmkknm −=⇒>=+ )1(,  that is 

nqkp
ZZG n −/+/= has 122

0

1 −






 −








∑

−

=

−+−+
nk

r

rnkn

r

nk

r

n
fuzzy subgroups. 

We need to show that the formula is true for 1+=+ knm , that is nqkp
ZZG n −+/+/= 1  

has 1
1

221
1

22
1

0

2
1

0

11 −






 +−








=−







 −+








∑∑

+−

=

−+
+−

=

−+−++
nk

r

rk
nk

r

rnkn

r

nk

r

n

r

nk

r

n
distinct fuzzy 

subgroups. 

The lattice diagram of subgroups given below enables us to identify the subgroups 

from which to carry out the extensions. In this case we are going to extend from nodes 

nknqp − , nkn qp −−1 , nkn qp −−2 ,…, nknk qp −−− 1 ,…, nkqp −2 , nkpq −  and nkq −  . 

As before we denote a group nkn qp
ZZG −+− /+/= 11  by simply nkn qp −+− 11 . 

 

We know that the number of distinct keychains that end with a non-zero pin is one 

more than the number of those that end with zero pin. Thus the node  nknqp −   

contributes 
















 −








=








+−







 −








× ∑∑

−

=

−+−+
−

−

−+−+
nk

r

rnkn
nk

r

rnkn

r

kn

r

n

r

nk

r

n

0

1

0

1 22
2

3
1122

2

1
3 non- equivalent 

fuzzy subgroups corresponding to keychains ending with a non-zero pin plus   

122
2

1

0

1 −














 −








∑

−

=

−+−+
nk

r

rnkn

r

kn

r

n
fuzzy subgroups corresponding to keychains ending 

with a zero pin. This number equals                                                                                                                                                                    
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1422
2

1

0

1 −×














 −








∑

−

=

−+−+
nk

r

rnkn

r

nk

r

n
= ∑

−

=

−+ −






 −







nk

r

rk

r

nk

r

n

0

2 122 distinct fuzzy 

subgroups in the subgroup nknqp −+1 .                                                                  (##) 

Similarly the node nkn qp −−1   contributes 

∑∑
−

=

−+
−

=

−+−+−







 −







 −
=×















 −







 − nk

r

rk
nk

r

rnkn

r

nk

r

n

r

nk

r

n

0

1

0

11 1
224

1
22

2

1
  because when 

extending through nkn qp −−1

     to 1+−nknqp on the diagram given we observe that there 

are two routes that can be followed namely, 

(1) nknnknnkn qpqpqp −+−−− →→ 11  

(2) nknnknnkn qpqpqp −+−+−−− →→ 1111 . 

We do not extend using route (1) because we have carried out extensions through 

node nkn qp −−1 . Now keychains in the subgroup  nkn qp −−1  are of the form 11...1 −kλλ . 

Now for  01 ≠−kλ  we can only extend to  ,...1 11121 −−− kkk λλλλλ  ,...1 1121 kkk λλλλλ −−   

,...1 121 kkk λλλλλ − ,...1 1121 +− kkk λλλλλ ,0...1 1121 −− kk λλλλ  and0...1 121 kk λλλλ −  

.00...1 121 −kλλλ  

The three extensions given by the keychains 11121 ...1 −−− kkk λλλλλ , kkk λλλλλ 121 ...1 − and 

00...1 121 −kλλλ  have already been counted above when extending through nknqp − .  

We are left with the following keychains 1121 ...1 +− kkk λλλλλ , kkk λλλλλ 1121 ...1 −−  

0...1 1121 −− kk λλλλ   and 0...1 121 kk λλλλ −  in nknqp −+1  .  

The first two will give rise to new fuzzy subgroups, while to the last one we can only 
attach a zero therefore do not result in any further new fuzzy subgroups in  nknqp −+1 . 

Therefore to calculate the contribution of node nkn qp −−1 , we multiply by four , half 

the number of fuzzy subgroups of the group nkn qp
ZZG −− /+/= 1  that end with nonzero 

pin. 
Thus nkn qp −−1 yields  
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Extending from the subgroup nkn qp −−2   we know that keychains on this node are of 

the form 221 ...1 −kλλλ  . Now for  02 ≠−kλ we can only extend to  

222221 ...1 −−−− kkkk λλλλλλ , 122221 ...1 −−−− kkkk λλλλλλ , 112221 ...1 −−−− kkkk λλλλλλ ,  

111221 ...1 −−−− kkkk λλλλλλ , kkkk λλλλλλ 11221 ...1 −−− , kkkk λλλλλλ 12221 ...1 −−− , 

0...1 11221 −−− kkk λλλλλ , 0...1 22221 −−− kkk λλλλλ , kkkk λλλλλλ 1221 ...1 −− , 11221 ...1 +−− kkkk λλλλλλ  

000...1 221 −kλλλ , 0...1 12221 −−− kkk λλλλλ , 00...1 2221 −− kk λλλλ , 0...1 1221 kkk λλλλλ −− , 

00...1 1221 −− kk λλλλ  

We observe that this can be carried out through the three routes, 

11112 +−+−−−−−− →→→ nknnknnknnkn qpqpqpqp     (1) 

112 +−−−−−− →→→ nknnknnknnkn qpqpqpqp          (2) 

111122 +−+−−+−−−− →→→ nknnknnknnkn qpqpqpqp   (3) 

We observe that routes (1) and (2) cannot be used here as they have been used before 

when extending from nkn qp −−1  and nknqp −  respectively. We also note that each of the 

keychains 222221 ...1 −−−− kkkk λλλλλλ , 000...1 221 −kλλλ , 111221 ...1 −−−− kkkk λλλλλλ  represents 

the same fuzzy subgroup in all three maximal chains  (1), (2) and (3) above.  

Listing down all the keychains and comparing, we find that the following seven 

distinct equivalence classes of fuzzy subgroups viewed as keychains have been 

counted before when extending from nknqp −  and   nkn qp −−1 , viz 

122221 ...1 −−−− kkkk λλλλλλ , kkkk λλλλλλ 11221 ...1 −−− , 0...1 11221 −−− kkk λλλλλ ,

222221 ...1 −−−− kkkk λλλλλλ , 111221 ...1 −−−− kkkk λλλλλλ , 0...1 22221 −−− kkk λλλλλ  and 

000...1 221 −kλλλ . 

Thus the node nkn qp −−2   contributes  
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Continuing with the process, we get the following number of distinct fuzzy subgroups 

for each node: 
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The node nkn qp −−3  
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Now to sum up these we consider three classes of equivalent fuzzy subgroups 

precisely those that are obtained by making extensions from 

(a) nodes nkn qp −−1  to nknk qp −−  

(b) nodes nkq −  to nknk qp −−− 1  

(c) node nknqp −  
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= ∑
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Therefore the Proposition is true for 1+=+ kmn  which establishes the result.            

Thus mn qp
ZZG /+/= , mn ≥ ,  has ∑

=

−++ −





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1 122 fuzzy subgroups.         □ 

 

5.4 Classification of fuzzy subgroups of kn rqp
ZZZG /+/+/= for 4,3,2,1=k  

5.4.1 On fuzzy subgroups of rqp
ZZZG n /+/+/=  

For the case 1=n  we have the following maximal chains: 

{ } { } { } { }0000 ⊃++/⊃+/+/⊃/+/+/ pqprqp ZZZZZZ  

{ } { } { } { }0000 ⊃+/+⊃+/+/⊃/+/+/ qqprqp ZZZZZZ  

{ } { } { } { }0000 ⊃++/⊃/++/⊃/+/+/ prprqp ZZZZZZ  

{ } { } { } { }0000 ⊃/++⊃/++/⊃/+/+/ rrprqp ZZZZZZ  

{ } { } { } { }0000 ⊃/++⊃/+/+⊃/+/+/ rrqrqp ZZZZZZ  

{ } { } { } { }0000 ⊃+/+⊃/+/+⊃/+/+/ qrqrqp ZZZZZZ  

Calculating the number of equivalence classes of fuzzy subgroups, we use the 

previous technique and obtain 12262222212 23233334 −+×=+++++−  

= [ ] 16)1(612 211 −+++  distinct fuzzy subgroups. 
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Using the same technique for higher values of n  we obtain the following number for 

each group in the form of a table. 

n  Group Number of  

Maximal 

Chains  

Number of fuzzy subgroups 

2 
rqp

ZZZ /+/+/ 2  12 12429242712 34345 −×+×=×+×+−  

= [ ] 16)2(622 212 −+++  

3 
rqp

ZZZ /+/+/ 3  20 1292122921012 45456 −×+×=×+×+−  

= [ ] 16)3(632 213 −+++  

4 
rqp

ZZZ /+/+/ 4  30 1216215121621312 56567 −×+×=−×+×+−  

= [ ] 16)4(642 214 −+++  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

k  
rqp

ZZZ k /+/+/  )2)(1( ++ kk  

Lemma 4.1.7 

[ ] 16)(62 21 −+++ kkk  

 

 

This table motivates proposition 5.4.2 

 

Proposition: 5.4.2 

The number )(nP  of equivalence classes of fuzzy subgroups for the 

group rqp
ZZZG n /+/+/=  is  [ ] 1662 21 −+++ nnn   for 1≥n  

Proof 

We are going to make use of the lattice diagram of subgroups and induct on n  

We denote by qrp k the group rqp
ZZZG k /+/+/= . 
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Lattice Diagram of qrp k  and qrp k 1+  

 

The cases 4,3,2,1=n  have been shown to hold in the above preliminary work. Now 

assume that )(kP is true, that is rqp
ZZZG k /+/+/=  has [ ] 1662 21 −+++ kkk  

equivalence classes of fuzzy subgroups. There are ( )[ ]11662
2

1 21 +−+++ kkk  fuzzy 

subgroups (viewed as keychains) ending with a nonzero pin and 

( )[ ] 1662
2

1 21 −+++ kkk  ending with a zero pin. The former each yields three further 

fuzzy subgroups in the subgroup qrp k 1+  while the latter remains the same as we can 

only attach a zero to a zero pin. This is so because a keychain in qrp k is of the 

form 221 ...1 +kλλλ . Now with 02 ≠+kλ we can only extend to  2221 ...1 ++ kk λλλλ , 

3221 ...1 ++ kk λλλλ  and  0...1 221 +kλλλ   subgroups in qrp k 1+  . Thus we have 

( )[ ] 311662
2

1 21 ×+−+++ kkk + ( )[ ] 1662
2

1 21 −+++ kkk = 

[ ] 14)66(2
2

1 21 −×+++ kkk  distinct fuzzy subgroups. 
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Next we have the node rp k : from theorem 3.2.18 rp k  has 1)2(2 1 −++ kk  fuzzy 
subgroups. We have established that if these subgroups are considered as keychains, 
the number of those with non-zero pin-ends is one more than the number of those 

with zero pin-ends. So we have ( )[ ]1122
2

1 1 +−++ kk  fuzzy subgroups ending with 

non-zero pins. We discard those ending with zero pins as they do not give any new 
fuzzy subgroups because we can attach only a zero to a zero pin. Keychains in rp k  

are of the form 121 ...1 +kλλλ . Now with 01 ≠+kλ  , we can only extend 

to 11121 ...1 +++ kkk λλλλλ  , 21121 ...1 +++ kkk λλλλλ , 22121 ...1 +++ kkk λλλλλ , 32121 ...1 +++ kkk λλλλλ , 

0...1 1121 ++ kk λλλλ , 0...1 2121 ++ kk λλλλ , 00...1 121 +kλλλ . The following four 

keychains, 21121 ...1 +++ kkk λλλλλ , 32121 ...1 +++ kkk λλλλλ , 0...1 2121 ++ kk λλλλ  and 

0...1 1121 ++ kk λλλλ  have not been counted before, so they will effectively give rise to 

further fuzzy subgroups in qrp k 1+ , hence we multiply the number of distinct fuzzy   

subgroups of  rp k  by four. Thus   ( )[ ]1122
2

1 1 +−++ kk  becomes 

( )[ ] =×+−++ 41122
2

1 1 kk [ ] )2(24)2(2
2

1 21 +=×+ ++ kk kk  in qrp k 1+ . Therefore the 

subgroup rp k  yields )2(2 2 ++ kk  fuzzy subgroups in the subgroup qrp k 1+ . 

Similarly the node qp k  yields )2(2 2 ++ kk distinct fuzzy subgroups. 

There are two routes when extending from the node kp  namely 

qrpqppp kkkk 111 +++ →→→  

qrprppp kkkk 111 +++ →→→  

From theorem 3.2.11, kp  has 12 1 −+k  non-equivalent fuzzy subgroups. Keychains in 

this node are of the form kλλ ...1 1 . Now with 0≠kλ  we can only extend to fifteen 

fuzzy subgroups in qrp k 1+ ; these are: 

kkkk λλλλλ ...1 1 , 11...1 +kkkk λλλλλ , 0...1 1 kkk λλλλ , 111...1 ++ kkkk λλλλλ ,  

, 1111...1 +++ kkkk λλλλλ , 2111...1 +++ kkkk λλλλλ , 0...1 111 ++ kkk λλλλ , 000...1 1 kλλ , 

 211...1 ++ kkkk λλλλλ , 0...1 11 +kkk λλλλ , 00...1 1 kk λλλ , 2211...1 +++ kkkk λλλλλ , 

3211...1 +++ kkkk λλλλλ , 0...1 211 ++ kkk λλλλ , 00...1 11 +kk λλλ .   

The following seven fuzzy subgroups viewed as keychains, 

kkkk λλλλλ ...1 1 , 1111...1 +++ kkkk λλλλλ , 2111...1 +++ kkkk λλλλλ , 0...1 111 ++ kkk λλλλ , 

000...1 1 kλλ , 0...1 1 kkk λλλλ and 11...1 +kkkk λλλλλ have been counted before. Thus only 

eight of the subgroups of kp  will give rise to new fuzzy subgroups. Hence  [ ]12
2

1 +k  in 
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kp  becomes [ ] 4)2(82
2

1 11 ×=× ++ kk  in qrp k 1+ . The second route has been used once 

before, thus we take half of 4)2( 1 ×+k  , as some would have been counted already, 

yielding  )2(48)2(
2

1

2

1 1 kk =




 ×+ distinct fuzzy subgroups.
 

The total from all these nodes give us this sum 

[ ] 14)66(2
2

1 21 −×+++ kkk + )2(2 2 ++ kk + 22)2( ++ kk + )2(4 1+× k + )2(4 k×  

= [ ] 11242662 22 −+++++++ kkkk  

= [ ] 11382 22 −+++ kkk  

= [ ] 16)1(6)1(2 21)1( −++++++ kkk  which shows that )1( +kP  is true.              ⁭                                                                                           

                           

5.4.3 The group 2rqp
ZZZG n /+/+/=  

We aim to establish a formula for the number of distinct fuzzy subgroups of the 

group 2rqp
ZZZG n /+/+/=   for all 1≥n . 

 

 

Illustration One: The group 22 rqp
ZZZG /+/+/=  

We note that for the case 1=n  we have the group 2rqp ZZZG /+/+/=  which by 

Proposition 5.4.2 and symmetry has [ ] 17516)2(622 212 =−+++  non-equivalent fuzzy 

subgroups. 

For 2=n  we have the group 22 rqp
ZZZG /+/+/= . We execute the lattice diagram of 

subgroups below and extend from the following base nodes, qrp 2 , pqr  , rp 2 , pr , 

 qr  andr . 
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The node qrp 2   has [ ] 17516)2(622 212 =−+++  fuzzy subgroups by Proposition 

5.4.2. We know that the number of fuzzy subgroups ending with a zero pin, viewed as 

keychains is one more than the number of fuzzy subgroups ending with a zero pin.  

Keychains in qrp 2  are of the form 43211 λλλλ  for 01 4321 ≥≥≥≥≥ λλλλ . Now for 

04 ≠λ  we can only extend to 443211 λλλλλ  , 543211 λλλλλ  or 01 4321 λλλλ  

therefore ( )[ ]116)2(622
2

1 212 +−+++  in qrp 2   becomes ( )[ ] 36)2(622
2

1 212 ×+++  in 

22qrp  and ( )[ ] 16)2(622
2

1 212 −+++  remains the same because on zero we can only 

attach a zero. Thus we have a total of 

( )[ ] ( )[ ] 35116)2(622
2

1
3116)2(622

2

1 212212 =−+++×+−++ ++ distinct fuzzy 

subgroups for this node.
       

 

Node rp 2

  from theorem 3.2.18 has 1)22(2 12 −++  fuzzy subgroups. Fuzzy 

subgroups that have zero pin-ends will not give rise to any new fuzzy subgroups in 
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and are one less than those with zero pin-ends.  This extension is carried out through 

the following route 22222 qrprprp →→ . 

Keychains in rp 2

  are of the form 3211 λλλ . Now for 03 ≠λ  we can only extend to  

333211 λλλλλ , 433211 λλλλλ , 443211 λλλλλ ,  543211 λλλλλ , 01 3321 λλλλ , 01 4321 λλλλ  and 

001 321 λλλ  for 10 12345 ≤≤≤≤≤≤ λλλλλ  in 22qrp  . Of these, three end with zero 

pins, thus we can only attach a zero and therefore do not result in new fuzzy 

subgroups in 22qrp . The other four result in new fuzzy subgroups, thus  

[ ] 1611)22(2
2

1 12 =+−++  becomes 64416 =× in 22qrp . 

Node pqr , from Proposition 5.4.2,  has [ ] 5116612 11 =−+++  fuzzy subgroups. Using 

a similar argument as above, ( )[ ] 26116)1(612
2

1 211 =+−+++  becomes 104426 =× . 

Nodepr , from theorem 3.2.18, has [ ] 111212 11 =−++  distinct fuzzy subgroups.  Six 

have non-zero pin-ends. We extend through the following routes: 

22222 qrprpprpr →→→  and 2222 qrppqrprpr →→→ . Now a keychain in 

pr  is of the form 211 λλ  for 01 21 ≥≥≥ λλ , so we can only extend to 

222211 λλλλλ , 322211 λλλλλ , 01 2221 λλλλ  332211 λλλλλ , 432211 λλλλλ , 01 3221 λλλλ , 

001 221 λλλ , 333211 λλλλλ , 433211 λλλλλ , 01 3321 λλλλ , 443211 λλλλλ , 543211 λλλλλ , 

01 4321 λλλλ , 001 321 λλλ , 0001 21λλ . Eight have non-zero pin-ends which means that 

this node will have 4886 =×  distinct fuzzy subgroups. There are two routes to 

extend through, namely 22222 qrprpprpr →→→  and 

2222 qrppqrprpr →→→ . The above count is for the former while the latter 

yields [ ] 248)21(2
2

1 11 =×++  fuzzy subgroups as the other half would have been 

counted in the former. 

From the node qr  we extend through this route 2222 qrppqrqrqr →→ . Using a 

similar argument as above, we obtain 

 4886 =×   distinct fuzzy subgroups for this node. 

From the node r  we may extend using the following three routes: 

22222 qrppqrqrrr →→→→ (1) 

22222 qrppqrprrr →→→→ (2) 
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222222 qrprpprrr →→→→ (3) 

 Now the subgroup r  has, from theorem 3.2.11, three fuzzy subgroups of which two 

end with a nonzero pin. Keychains in r when extending to 22qrp result in 32 

extensions. So the route (1) will yield  [ ] 32162322
2

1 =×=×  fuzzy subgroups. 

The other two routes each yields 1682 =× , this is so because we observe that if we 

list all the 32 extensions, some are distinct in all three chains while some will 

represent identical fuzzy subgroups in either (1) and (2) or (2) and (3). For example 

the fuzzy subgroups 432111 λλλλλ , 01 3211 λλλλ  and 543111 λλλλλ viewed as keychains 

have not been counted before, while 111111 λλλλλ , 0001 11λλ  and 222111 λλλλλ  have 

been counted previously. On the other hand extensions like 322111 λλλλλ  and 

01 1111 λλλλ  represent the same fuzzy subgroups in routes (1) and (2) while 001 211 λλλ , 

332111 λλλλλ   and 001 111 λλλ  represent the same fuzzy subgroup in (2) and (3). 

Summing up all these we obtain 175+351+64+104+48+24+32+16+16=703. 

Thus the group 22 rqp
ZZZG /+/+/=  has 703= 116)2(21

2

)2(
13

2

)2(
2

23
12 −








++×++  

distinct fuzzy subgroups. 

 

 

Illustration Two: The group 23 rqp
ZZZG /+/+/=  

Next we determine the number of fuzzy subgroups for the case 3=n , that is the 

group 23 rqp
ZZZG /+/+/= . We use the lattice diagram of subgroups below to carry-

out pin extensions from the eight base nodes : 

qrp3 , qrp 2 , pqr , rp3 , rp 2 , pr  , qr  and r . 
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Node qrp3  : applying Proposition 5.4.2 we have [ ] 16)3(632 213 −+++   non-

equivalent fuzzy subgroups. We know that the number of fuzzy subgroups, if viewed 

as keychains, with a non-zero pin-end is one more than the number of fuzzy 

subgroups viewed as keychains, ending with a zero pin. Thus we have 

( )[ ]116)3(632
2

1 24 +−++  distinct fuzzy subgroups ending with nonzero pin and 

( )[ ] 16)3(632
2

1 24 −++  fuzzy subgroups ending with a zero pin. Keychains in qrp3  

are of the form 543211 λλλλλ  , for 01 54321 ≥≥≥≥≥≥ λλλλλ . Now with 05 ≠λ  

we can only extend to fuzzy subgroups 5543211 λλλλλλ , 6543211 λλλλλλ  and 

01 54321 λλλλλ  in qrp3 . Thus ( )[ ]116)3(632
2

1 24 +−++  becomes  

( )[ ] 36)3(632
2

1 24 ×++  and ( )[ ] 16)3(632
2

1 24 −++  remains the same. The total for 

this node thus becomes ( )[ ] 1055146)3(632
2

1 24 =−×++  

Node rp3

 : from Theorem 3.2.18 we obtain 80)23(24 =+  distinct fuzzy subgroups 

of which half will have nonzero pin-ends. We extend through the following 



100 

   

route 23233 qrprprp →→ . Keychains in rp3  are of the form 43211 λλλλ , 

for 01 4321 ≥≥≥≥≥ λλλλ . Now for 04 ≠λ  we can only extend to the following 

keychains 4443211 λλλλλλ , 5443211 λλλλλλ , 5543211 λλλλλλ , 6543211 λλλλλλ ,  

01 44321 λλλλλ , 01 54321 λλλλλ and 001 4321 λλλλ in the subgroup 23qrp . We note that 

the keychains 01 54321 λλλλλ , 6543211 λλλλλλ , 01 44321 λλλλλ  and 5443211 λλλλλλ  have 

not been counted when extending through the node qrp3 , and two of these have non-

zero pin-ends and therefore will result in new fuzzy subgroups, while 01 44321 λλλλλ  

and 001 4321 λλλλ  do not result in any new fuzzy subgroups. The keychains 

4443211 λλλλλλ and 5541...1 λλλλ  represent fuzzy subgroups that have been counted 

when extending using nodeqrp3  , thus the total for the node rp3  will be 

[ ] 160480
2

1 =×  distinct fuzzy subgroups. 

From the node qrp 2 , applying proposition 5.4.2,  we have 

[ ] 1751)6)2(62(2 212 =−+++  distinct fuzzy subgroups, and taking into account that 

half of the fuzzy subgroups will have non-zero pin-ends and are one more than those 

that end with a zero, we then have[ ] 886)2(62(2
2

1 23 =++  distinct fuzzy subgroups 

with no zero pin-ends. We will use the following route 23222 qrpqrpqrp →→ . 

Keychains in qrp 2

 are of the form   43211 λλλλ , for 01 4321 ≥≥≥≥≥ λλλλ . Now 

for 04 ≠λ  we can only extend to the following keychains 

4443211 λλλλλλ , 5443211 λλλλλλ , 5543211 λλλλλλ , 6543211 λλλλλλ ,  01 44321 λλλλλ , 

01 54321 λλλλλ and 001 4321 λλλλ . The following four fuzzy subgroups, viewed as 

keychains, have not been counted before viz 5443211 λλλλλλ , 6543211 λλλλλλ , 

01 54321 λλλλλ  and 01 44321 λλλλλ  therefore we have 352488 =×  distinct fuzzy 

subgroups for this node. 

Extending from the node rp 2  we use the following routes 

2323222 qrprprprp →→→  

2322222 qrpqrprprp →→→  
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From Proposition 3.2.18 we know that  rp 2  has thirty-one fuzzy subgroups of which 

we know that those with nonzero pin-ends are one more than those with zero pin-end, 

and each route above involves four nodes. Keychains in rp 2  are of the form 3211 λλλ  

for 01 321 ≥≥≥≥ λλλ . Now with 03 ≠λ  we can only extend to the following 

keychains 3333211 λλλλλλ  , 4333211 λλλλλλ , 4433211 λλλλλλ , 

5433211 λλλλλλ  ,  5533211 λλλλλλ , 4443211 λλλλλλ , 5543211 λλλλλλ , 6543211 λλλλλλ , 

001 3321 λλλλ , 01 43321 λλλλλ , 01 54321 λλλλλ , 0001 321 λλλ , 01 44321 λλλλλ , 

01 33321 λλλλλ , 001 4321 λλλλ . Now comparing these keychains to the ones obtained 

when extending through the nodes qrp3 , rp3  and qrp 2 and the two routes that can 

be used to extend, the first route will contribute 128816 =×  distinct fuzzy subgroups 

while the second contributes [ ] 64816
2

1 =× distinct fuzzy subgroups in 23qrp . 

We employ a similar way of argument for the remaining base nodes and we obtain the 

following number of distinct fuzzy subgroups for the nodes: 

 pqr  gives 208826 =×  

 pr  gives 1928686166 =×+×+×  

 qr  gives 96166 =×  

And finallyr  gives 160162162162322 =×+×+×+× (because of the four routes 

and five nodes in these routes) 

The total for this group is 241516096192208641283521601055 =++++++++  

So the group 23 rqp
ZZZG /×/×/=  has 116)3(21

2

)3(
13

2

)3(
2

23
13 −








++×++  distinct 

fuzzy subgroups. 

Illustrations One and Two motivate proposition 5.4.4 

Instead of giving a direct proof of the proposition we derive the formula in style by 

use of the counting technique discussed earlier on and the extensions carried out on 

the base nodes of the lattice diagram of subgroups. We also firstly list down formulae  

that we use in the proofs of propositions 5.4.4, 5.4.5 and 5.4.6 
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NOTE: 5.4.3.1 

 (a)
2

)1(
...321

+=++++ nn
n  for Nn /∈ . 

(b) )12)(1(
6

1
...321 2222 ++=++++ nnnn  for Nn /∈ . 

(c) 223333 )1(
4

1
...321 +=++++ nnn  for Nn /∈ . 

(d) )133)(12)(1(
30

1
...321 24444 −+++=++++ nnnnnn  for Nn /∈  

 

Proposition: 5.4.4 

2rqp
ZZZG n /+/+/= has 11621

2

13

2
2

23
1 −








++++ n

nnn  fuzzy subgroups for all 1≥n . 

 

Proof  

We use the lattice diagram below and the counting technique discussed earlier on. 
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Since we know from Proposition 5.4.2 and Lemma 3.2.18 that the groups  

rqp
ZZZG n /+/+/= and qp

ZZG n /+/=   have [ ] 1662 21 −+++ nnn  and 1)2(2 1 −++ nn  

 fuzzy subgroups for 1≥n  respectively, now carrying out the extensions from the 

base nodes we obtain the following: 

Node: qrp n  gives [ ] 1)12122(214)66(2
2

1 2121 −++=−×++ ++ nnnn nn  fuzzy 

subgroups. 

Node: rp n  gives [ ] )2(24)2(2
2

1 21 +=×+ ++ nn nn fuzzy subgroups. 

Node: qrp n 1−  gives ( )[ ] [ ]6)1(6)1(246)1(6)1(2
2

1 21211 +−+−=×+−+− ++− nnnn nn  

fuzzy subgroups. 

Node : rp n 1−  gives 

[ ] [ ] [ ] [ ]12124)2)1((2
2

1
8)2)1((2

2

1 121111 +++=×+−+×+− +++−+− nnnn nnnn  fuzzy 

subgroups. 

Node qrp n 2−  gives ( )[ ] [ ]6)2(6)2(286)2(6)2(2
2

1 21211 +−+−=×+−+− ++− nnnn nn  

Node : rp n 2−  yields 

( )[ ] ( )[ ] [ ] [ ] 222282)2(2
2

1
162)2(2

2

1 121212 ×+=××+−+×+− +++−+− nnnn nnnn  fuzzy 

subgroups. 

Node : qrp n 3−  yields ( )[ ] [ ]6)3(6)3(2166)3(6)3(2
2

1 21213 +−+−=×+−+− ++− nnnn nn  

fuzzy subgroups. 

Node : rp n 3−  yields 

( )[ ] ( )[ ] [ ] [ ] 312123322)3(2
2

1
322)3(2

2

1 121313 ×−+−=××+−+×+− +++−+− nnnn nnnn  

fuzzy subgroups. 

Inductively,  

Node qrp3  yields ( )[ ] [ ]6)3(6)3(226)3(6)3(2
2

1 2131213 ++=×++ +−++ nn  

fuzzy subgroups. 
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Node : rp3  yields 

[ ] [ ] [ ] [ ] )3(5252)3(2)23(2
2

1
2)23(2

2

1 12213113 −×+=−××++×+ ++−+−+ nn nnnn  fuzzy 

subgroups. 

Node : qrp 2  yields ( )[ ] [ ]6)2(6)2(226)2(6)2(2
2

1 2121212 ++=×++ +−++ nn   

fuzzy subgroups. 

Node : rp 2  yields 

[ ] [ ] [ ] [ ] )2(4242)2(2)22(2
2

1
2)22(2

2

1 1211212 −×+=−××++×+ ++−++ nn nnnn  fuzzy 

subgroups. 

Node :pqr  yields ( )[ ] [ ]6)1(6)1(226)1(6)1(2
2

1 2111211 ++=×++ +−++ nn  

fuzzy subgroups. 

Node :pr  yields 

[ ] [ ] [ ] [ ] )1(3232)1(2)21(2
2

1
2)21(2

2

1 1211111 −×+=−××++×+ +++++ nn nnnn  fuzzy 

subgroups. 

Node : qrp0  yields ( )[ ] [ ]6)0(6)0(226)0(6)0(2
2

1 2101210 ++=×++ +−++ nn  

fuzzy subgroups. 

Node : rp0  yields 

[ ] [ ] [ ] [ ] )(2222)(2)20(2
2

1
2)20(2

2

1 12110210 nn nnnn ×+=××++×+ ++++++  fuzzy 

subgroups. 

Now taking the sum of all these fuzzy subgroups, we obtain the following, 

[ ] 16)0(606)1(61...6)1(6)1(121222 22221 −++++++++−−++++ nnnnn  

[ ]++++++++++ + 234...)()1()2(2 2 nnnn  

[ ]))(2()1)(3()2)(4(...)3)(1()2)(()1)(1(2 1 nnnnnnn +−+−++−++++  

1)1(6)1)((
2

6
)12)(1)((

6

1
662 21 −




 +++++++++= + nnnnnnnnn  

+ 




 −+++ 1
2

)3)(2(
2 2 nnn + ∑

−

=

−+
1

0

))(2(
n

k

knk  
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Now taking the above sums separately we have 

(a) 1)1(6)1)((
2

6
)12)(1)((

6

1
662 21 −




 ++++++++++ nnnnnnnnn = 

1
6

7291272
216633

6

32
662

23
12

23
21 −







 +++=−







+++++++++ ++ nnn

nnn
nnn

nn nn

 

(b) 






 ++=






 ++=




 −++ +++

6

24306
2

2

45
21

2

)3)(2(
2

2
1

2
22 nnnnnn nnn  

 

(c) 






 −+−=






 −+ ∑∑
−

=

+
−

=

+
1

0

21
1

0

1 )22(2))(2(2
n

k

n
n

k

n knkknknk   

= 






 −−+ ∑∑
−

=

−

=

+
1

0

2
1

0

1 )2()(22
n

k

n

k

n kknnn  

= 




 −−−−−++ )12)()(1(
6

1
))(1(

2

1
)2(22 21 nnnnnnnn (By NOTE 5.4.3.1(a) and (b)) 

= 






 +−−+−++

6

)32(

2

23
22

2323
21 nnnnnn

nn  

= 






 +++

6

56
2

23
1 nnnn  

Now adding (a), (b) and (c) we obtain: 

 








 ++++

6

7291272
2

23
1 nnnn + 







 +++

6

24306
2

2
1 nnn  + 1

6

56
2

23
1 −







 +++ nnnn  

= 1
6

96126393
2

23
1 −







 ++++ nnnn  

= 11621
2

13

2
2

3
1 −








++++ n

nnn  fuzzy subgroups which establishes the result.           ⁭ 
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Proposition: 5.4.5 

The group 3rqp
ZZZG n /+/+/= has 140

3

185

3

79

6

23

6
2

234
1 −








+++++ n

nnnn  fuzzy 

subgroups . 

Proof 

 

We extend from 2rqp
ZZZ k /+/+/  to 3rqp

ZZZ k /+/+/ , see lattice diagram above.  

The number of fuzzy subgroups of  

(i) 2qrp k  is 11612
2

13

2
2 2

3
1 −








++++ kk

kk  for 1≥k .  

(ii) 2rp k  is [ ]872
2

22 2
2

0

12 ++=















∑

=

−++ kk
mm

k k

n

mk   

(iii) rp k  is [ ]22 +kk  

Now when extending, we obtain the following number of distinct fuzzy subgroups for 

the listed nodes; 

2qrp k  yields 11621
2

13

2
22141621

2

13

2
2 2

3
12

3

−







+++×=−×








+++ + kk

k
kk

k kk  

2rp k  yields [ ] [ ]8724872 2121 ++=×++ +− kkkk kk  
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21qrp k−  yields 416)1(21)1(
2

13

2

)1(
2 2

3
1 ×








+−+−+−− kk

kk  

                         = 







+−+−+−+ 16)1(21)1(

2

13

2

)1(
2 2

3
1 kk

kk  

21rp k−  yields [ ] [ ] 48)1(7)1(28872 2222 ×+−+−+×++ −− kkkk kk  

                          = [ ]8)1(7)1()22( 21 +−+−++ kkkk  

22qrp k − yields 







+−+−+−+ 16)2(21)2(

2

13

2

)2(
2 2

3
1 kk

kk  

22rp k −  yields [ ]8)2(7)2()222( 21 +−+−+++ kkkkk  

23rp k − yields [ ]8)3(7)3()2222( 21 +−+−++++ kkkkkk  

Inductively, 

22qrp  yields 







++++ 16)2(21)2(

2

13

2

)2(
2 2

3
1k  

22rp  yields [ ]8)2(7)2()2...22( 2

2

1 +++++
−

+
43421

k

kkk                                                                                                                                                                                                                                                                

= [ ] kkkkk k 22621321326)2)2(2( 21 ×−×+×=−+ ++

   

2pqr  yields 







++++ 16)1(21)1(

2

13

2

)1(
2 2

3
1k  

2pr  yields [ ]8)1(71)2)1(2( 21 ++−++ kk k  

20qrp  yields 







++++ 16)0(21)0(

2

13

2

)0(
2 2

3
1k  

20rp  yields [ ]8)0(70)2)(2( 21 ++++ kk k  

Summing up all the fuzzy subgroups obtained above we have; 









++−++++++

2

1
...

2

)1(

2
1621

2

13

2
2

333
2

3
1 kk

kk
kk

 

( ) 




 ++++−++ + )1(161...)1(
2

13
2 2221 kkkk  

+ ( )[ ] 11...)2()1(212 1 −++−+−++ kkkk  

+ ( )[ ])1(81...)1(7...)1(2 2221 ++++−++++−++ kkkkkk  

+ ( ) ( )[ ]kkkk 812...)1(712...)1(2 222 ++++−++++−  
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+ ( ) ( )[ ])1(812...)2(71...)2(2 22 −++++−+++− kkkk  

+ ( ) ( )[ ])3(812...)3(712...)3(2 222 −++++−++++− kkkk  

+ ( ) ( )[ ])4(81...)4(712...)4(2 222 −+++−++++− kkkk  

+ ( ) ( )[ ])4(81237)1()2()3(2 222 ++++++k  

+ ( ) ( )[ ]8)0(70)2(8)1(71)3(8127)1()2(2 2222 ++++++++++k  = 

 

11616)1(
2

21
)1(

4

1

2

1
)12)(1(

6

1

2

13
1621

2

13

2
2 222

3
1 −








+++++×+++×+++++ kkkkkkkkkk

kk

+ 






 −−−++−+−−+




 +++++++ )32)(1)(2(
6

1
8)1(

2

7
)12()1(

6

1
288)1(

2

7
)12)(1(

6

1
2 1 kkkkkkkkkkkkkkk kk

 

+ 




 ++−+−−+−−− ...168)2)(3(
2

7
)52)(2)(3(

6

1
2 kkkkkkk

 

+ 




 ++++++ 8)2(871)3(8)3)(2(
2

7
)5)(3)(2(

6

1
2k  

Now taking the above terms separately and applying definition 5.4.3.1 we obtain:  

(a) 







++×+++++ )12)(1(

6

1

2

13
1621

2

13

2
2 2

3
1 kkkkk

kk

11616)1(
2

21
)1(

4

1

2

1
2 221 −




 +++++×+ + kkkkkk

 

= 







+++++++ )32(

12

13
1621

2

13

2
2 232

3
1 kkkkk

kk  

     +   11616)(
2

21
)2(

8

1
2 22341 −




 +++++++ kkkkkkk  

= 






 +++++

24

7681166489703
2

234
1 kkkkk -1  

(b) 




 +++++++ 88)1((
2

7
)12)(1(

6

1
2 1 kkkkkkk = 







 ++++

6

4856102
2

23
1 kkkk  

= 






 ++++

24

192280968
2

23
1 kkkk  
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(c) 




 −−−++−+−− )32)(1)(2(
6

1
8)2(

2

7
)12()1(

6

1
2 kkkkkkkkkk + 

+ 




 ++−+−−+−−− ...168)2)(3(
2

7
)52)(2)(3(

6

1
2 kkkkkkk

 

+ 




 ++++++ 8)2(871)3(8)3)(2(
2

7
)5)(3)(2(

6

1
2k  

= 




 −++−++−+ kkkkkkkkk

24

1

24

1
)32(

24

1
)2(

24

1
2 2232341  

+ 




 ++−++−+ kkkkkkkk 22)(
8

7
)32(

24

7
2 22231  

= 






 ++++

24

344714
2

234
1 kkkkk  

Now adding (a) ,(b) and (c) we obtain 

 








 +++++

24

7681166489703
2

234
1 kkkkk -1 

+ 






 ++++

24

192280968
2

23
1 kkkk + 







 ++++

24

344714
2

234
1 kkkkk  

= 






 +++++

24

9601480632924
2

234
1 kkkkk  

= 140
3

185

3

79

6

23

6

1
2 2341 −




 +++++ kkkkk  

Thus the group 3rqp
ZZZG k /+/+/= has 140

3

185

3

79

6

23

6

1
2 2341 −




 +++++ kkkkk

 

distinct fuzzy subgroups.                                                                                               ⁭ 

 

 

Proposition: 5.4.6  

The group 4rqp
ZZZG n /+/+/=  has 196

2

331

3

261

24

431

2

3

!4
2 234

5
1 −








++++++ nnnn

nn  

distinct fuzzy subgroups. 

Proof 

Consider the following lattice diagram of subgroups of G . 
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We extend from 3rqp
ZZZG k /+/+/=  which has 

140
3

185

3

79

6

23

6

1
2 2341 −




 +++++ kkkkk distinct fuzzy subgroups and 

3rp
ZZG k /+/=  has ∑

=

−=+ −














3

0

13 1
3

22
r

mk

mm

k
= 18

3

28

2

5

6

1
2 231 −




 ++++ kkkk  

From the lattice diagram above we carry out extensions on the base nodes and obtain 

the following: 

Node 3qrp k  has 1440
3

185

3

79

6

23

6

1
2 234 −×




 ++++ kkkkk  

                                 = 140
3

185

3

79

6

23

6

1
2 2342 −




 +++++ kkkkk  

  

                                 = 




 ++++ 8
3

28

2

5

2

1
2 232 kkkk  
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Node 31qrp k− has 440)1(
3

185
)1(

3

79
)1(

6

23
)1(

6

1
2 2341 ×




 +−+−+−+−− kkkkk  

 

= 




 +−+−+−+−+ 40)1(
3

185
)1(

3

79
)1(

6

23
)1(

6

1
2 2341 kkkkk  

 

Node 31rp k−  has 88)1(
3

28
)1(

2

5
)1(

6

1
2 231 ×




 +−+−+−− kkkk  

+ 48)1(
3

28
)1(

2

5
)1(

6

1
2 231 ×




 +−+−+−− kkkk  

 =( ) 




 +−+−+−+ ++ 8)1(
3

28
)1(

2

5
)1(

6

1
22 2312 kkkkk  

Node 32qrp k −  has 




 +−+−+−+−+ 40)2(
3

185
)2(

3

79
)2(

6

23
)2(

6

1
2 2341 kkkkk  

Node 32rp k −  has ( ) 




 +−+−+−×+ ++ 8)2(
3

28
)2(

2

5
)2(

6

1
222 2312 kkkkk  

Node 3pqr  has 




 +++++ 40)1(
3

185
)1(

3

79
)1(

6

23
)1(

6

1
2 2341k  

Node 3pr  has ( ) 




 +++−+ ++ 8)1(
3

28
)1(

2

5
)1(

6

1
)1(22 2312 kkk  

Node 30qrp  has  




 +++++ 40)0(
3

185
)0(

3

79
)0(

6

23
)0(

6

1
2 2341k  

Node 3r  has ( ) 




 ++++ ++ 8)0(
3

28
)0(

2

5
)0(

6

1
)(22 2312 kkk  

Now summing up we obtain 







+++++ 40

3

185

3

79

6

23

6
2 23

4
1 kkk

kk  

+  ( )







++−++++−++ 333

444
1 )1(...)1(

6

23

6

)1(
...

6

)1(

6
2 kk

kkk  

+ ( )




 ++−++ 2221 )1(...)1(
3

79
2 kkk + 




 +×+++−++ )1(40)1......)1((
6

185
2 1 kkkk -1  

+ ( )







++−++++−++ 222

333
2 )1(...)1(

2

5

6

)1(
...

6

)1(

6
2 kk

kkk  
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+ ( ) 




 ++++−++ 881...)19
3

28
2 2 kkkk + ∑

−

=

+








+++−

1

0

2
3

1 8
3

28

2

5

6
)(2

k

r

k rr
r

rk  

Using Note 5.4.3.1 (a), (b) (c) and (d) on this sum we obtain, 









+++++ 40

3

185

3

79

6

23

6
2 23

4
1 kkk

kk + ( )




 −++
×

+ kkkkk 3451 10256
306

1
2  

+ ( ) ( )




 ++++++ kkkkkkk 232341 32
18

79
2

24

23
2  

+ ( ) 




 +++
×

+ )1(40
306

1
2 21 kkkk  

+ 




 +++++++++++ 22232341 8)1(16)(
3

28
)32(

6

5
)2(

12

1
2 kkkkkkkkkkk +






 −+−−−++−++−+ )10156(
180

1
)(

6

28
)32(

12

5
)2(

24
2 3452232341 kkkkkk

k
kkk

k
kkk

kk

- 




 −++−++−+ )(
2

8
)32(

18

28
)2(

8

5
2 2232341 kkkkkkkkk -1 

Taking these brackets separately we get the following sums 

(i) [ ]







−++++++++ kkkkkkk

kk 34523
4

1 10156
180

1
40

3

185

3

79

6

23

6
2  

+ [ ]




 +++ 2341 2
24

23
2 kkkk + 













 +++++ )(
12

185
32

18

79
2 2231 kkkkkk  

+ [ ]40402 1 ++ kk -1 

= 180
360

43728

360

16955

12

2625

360

435

30
2 234

5
1 −








++++++ kkkk

kk  

(ii) ( )







++−++++−++ 222

333
2 )1(...)1(

2

5

6

)1(
...

6

)1(

6
2 kk

kkk  

+ ( ) 




 +++++−++ 22 8881...)19
3

28
2 kkkkk  

= 







+++++ 8

12

157

24

239

12

22

24
2

234
2 k

kkkk = 







+++++ 16

6

157

12

239

6

22

12
2

234
1 k

kkkk  

(iii)









++−+=
















+++− +

−

=

+ ∑ k
kkkk

rr
r

rk k
k

r

k

360

6432

360

7195

360

293

24

5

120
28

3

28

2

5

6
)(2

2345
1

1

0

2
3

1
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Adding (i), (ii) and (iii) we obtain: 

1
360

345605958031320626554015
2

2345
1 −







 ++++++ kkkkkk  

= 196
2

331

3

261

24

431

2

3

!4
2 234

5
1 −








++++++ kkkk

kk .                                                 

Thus the group 3rqp
ZZZG k /+/+/=  has 

196
2

331

3

261

24

431

2

3

!4
2 234

5
1 −








++++++ nnnn

nn  distinct fuzzy subgroups.             □ 
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5.5 Conclusion 

Research on the study of equivalence classes of fuzzy subgroups of groups has 

generated a lot of interest amongst a number of researchers as mentioned in the main 

introduction. The counting technique we have been studying can be continued to find 

the number of distinct fuzzy subgroups of    smn rqp
ZZZ /+/+/  where p ,q and r are 

distinct primes. Thus if the number of distinct fuzzy subgroups of 

11 −/+/+/= smn rqp
ZZZG is known, then the technique discussed in this thesis may be 

used to find the number of distinct fuzzy subgroups of smn rqp
ZZZG /+/+/= ( or  

11 −+ /+/+/= smn rqp
ZZZG  or 11 −+ /+/+/= smn rqp

ZZZG ).  We  illustrate this when  2=n , 

2=m  and 2=s  because in the thesis we have had one of n , m ands as 1 all the time. 

Thus rqp
ZZZG /+/+/= 221  is a group whose number of fuzzy subgroups is known, and 

we want to compute the number of distinct fuzzy subgroups of the group 

222 rqp
ZZZG /+/+/= . We construct a lattice diagram for G  and use the lattice diagram 

for 1G  within G  to compute the number required. 

By Proposition 5.4.4, 1G  has [ ] 7031888116221
2

)2(13

2

2
2

23
12 =−=−








+×+++  

distinct fuzzy subgroups. 

The following is the lattice diagram for 222 rqp
ZZZG /+/+/= . 
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We use the lattice diagram for 22qrp  and extend the number of distinct fuzzy 

subgroups of 22qrp  using the following nodes : 22qrp  , qrp 2 , qp 2 , pq , pqr , 2pqr , 

q , qr  and 2qr . Note that rqp 22  and 22qrp  have the same number of distinct fuzzy 

subgroups, thus using 22qrp  is as good as using rqp 22 . 

We begin with the node 22qrp  which has 703 distinct fuzzy subgroups. Now we 

know that [ ] 3521703
2

1 =+  of the fuzzy subgroups viewed as keychains end with a 

nonzero pin and we extend to one node, thus 22qrp  contributes 352×4-1=1407 

distinct fuzzy subgroups. Node qrp 2  , from Proposition 5.4.2  has 175 distinct fuzzy 

subgroups.  Keychains in qrp 2  extend to seven more keychains in  222 rqp  because 

there are three nodes. Out of the seven, four will result in new fuzzy subgroups if 

viewed as key chains, thus qrp 2  will contribute [ ] 35241175
2

1 =×+  distinct fuzzy 

subgroups in 222 rqp . 

The subgroup qp 2  has, from Lemma 3.2.1, [ ] 311222 12 =−++  distinct fuzzy 

subgroups, its contribution in 222 rqp  will be [ ] 1288131
2

1 =×+  distinct fuzzy 

subgroups. Here we multiply by eight because of the four nodes used in the extension. 

Next we extend from node 2pqr . From proposition 5.4.2 and using symmetry, 2pqr  

has 175 distinct fuzzy subgroups. We extend through this route 

222222 rqprpqpqr →→ . There are seven three pin extensions here and four will 

give rise to new fuzzy subgoups in 222 rqp , thus the contribution of this node is 

[ ] 3524176
2

1 =×  fuzzy subgroups. 

Node pqr , from proposition 5.4.2,  has 51 fuzzy subgroups. Extending from this 

node we use the following routes: 222222 rqprqprpqpqr →→→  (a) 

                                                        222222 rqprpqrpqpqr →→→  (b) 

We know that 26 fuzzy subgroups viewed as keychains end with a non-zero pin and 

from the routes above there are four nodes through which we can extend. So pqr  
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from route (a) contributes [ ] 208852
2

1 =× fuzzy subgroups and through route (b) 

contribute [ ] 104852
2

1

2

1 =×× fuzzy subgroups. 

Node pq  has eleven distinct fuzzy subgroups, six will give rise to new fuzzy 

subgroups. We then observe that there are three routes through which we can extend 

namely: 

                                               2222222 rqprpqrpqpqpq →→→→  (a) 

                                               2222222 rqprqprpqpqpq →→→→   (b) 

                                                22222222 rqprqpqppqpq →→→→  (c) 

So the total contribution of pq using route (a) is 6×16=96 distinct fuzzy subgroups. 

The sixteen is a result of the five nodes used. Through route (b) we have 

[ ] 48166
2

1 =×  distinct fuzzy subgroups. Route (c) gives an equal number of fuzzy 

subgroups because rpq 2  and 22rpq  are distinguishing factors for the second and 

third route respectively. 

Node 2qr  , from Lemma 3.2.1 and by symmetry, has 31 distinct fuzzy subgroups, of 

these 16 end with a non-zero pin-end. We can only extend through the following route 

22222222 rqprpqrqqr →→→ , so 2qr  contributes [ ] 1288131
2

1 =×+  distinct 

fuzzy subgroups 

Node qr has eleven distinct fuzzy subgroups. We extend through the three routes. viz 

22222222 rqprpqrqrqqr →→→→  

2222222 rqprpqrpqrqqr →→→→  

2222222 rqprqprpqrqqr →→→→  

 and five nodes, so qr  contributes [ ] 9616111
2

1 =×+  distinct fuzzy subgroups when 

considering the first route, and [ ] 4816111
2

1

2

1 =×+×  distinct fuzzy subgroups for 

each of the last two routes. 
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Finally we compute those distinct fuzzy subgroups obtained when extending from the 

subgroup q . By theorem 3.2.11, np
Z/  for 1=n , has 312 11 =−+  distinct fuzzy 

subgroups. Two end with a nonzero pin. There are six routes to extend through, viz: 

222222222 rqprpqrqrqqq →→→→→  

22222222 rqprpqrpqrqqq →→→→→  

22222222 rqprpqrpqpqqq →→→→→  

22222222 rqprqprpqrqqq →→→→→  

22222222 rqpqrprpqpqqq →→→→→  

222222222 rqprqpqppqqq →→→→→  

 

Now through the first route q  will contribute [ ] 32322
2

1 =× distinct fuzzy subgroups. 

The remaining five routes will each result in q  contributing [ ] 32322
2

1 =×  distinct 

fuzzy subgroups.  

Summing all we obtain 1407+352+128+352+312+192+128+96+48+48+224=3287 

distinct fuzzy subgroups for the group 222 rqp
ZZZG /×/×/= . 

Now as a way of verifying the number 3287, we use 22rpq   to extend from. Clearly 

22rpq  has 703 distinct fuzzy subgroups. For extension to 222 rqp  we use the 

following nodes: 22rpq , rpq 2 , 2pqr , pqr , 2pq , pq , 2pr , pr  and p . 

We now give a summarized count of the number of fuzzy subgroups obtained when 

we extend from the subgroup  22rpq  to 222 rqp . 

Node 22rpq  yields [ ] 140714704
2

1 =−×  fuzzy subgroups. 

Node rpq 2  yields [ ] 3524176
2

1 =×  

Node 2pqr  yields [ ] 3524176
2

1 =×  

Node 2pq  yields [ ] 12832
2

1 =  fuzzy subgroups. 

Node pqr : We can extend through the following two routes: 
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               222222 rqpqrpqrppqr →→→ (a) 

               222222 rqprqpqrppqr →→→ (b) 

So (a) is assigned all subgroups as distinguishing factors, thus yields 

[ ] 208852
2

1 =×  fuzzy subgroups. (b) contributes [ ] 104852
2

1

2

1 =××  as rqp 22  

distinguishes it from (a). 

Node pq : We extend through the following three routes: 

            2222222 rqprqpqrpqppq →→→→  (1) 

           22222222 rqprqpqpqppq →→→→ (2) 

           2222222 rqpqrpqrpqppq →→→→  (3) 

Route (1) contributes [ ] 961612
2

1 =×  fuzzy subgroups, route (2) contributes 

[ ] 481612
2

1
2

=×  fuzzy subgroups as 22qp  distinguishes it from (1) and route (3) 

contributes [ ] 481612
2

1
2

=× fuzzy subgroups as subgroup 22qrp  distinguishes it from 

(1). 

Node 2pr  yields [ ] 128832
2

1 =×  fuzzy subgroups. 

Node pr : We use the following three routes : 

                 22222222 rqpqrprprppr →→→→  (a) 

                 2222222 rqpqrpqrprppr →→→→  (b) 

                 2222222 rqprqpqrprppr →→→→  (c) 

Using propositions 5.2.4, 5.2.5 and 5.2.6 , (a) contributes [ ] 961612
2

1 =×  fuzzy 

subgroups. It is also clear that the subgroup qrp 2  , distinguishes (b) from (a) , thus 

route (b) contributes [ ] 481612
2

1
2

=×  fuzzy subgroups and because of the subgroup 

rqp 22  (c) contributes [ ] 481612
2

1
2

=×  distinct fuzzy subgroups. 

Node p : We extend using the following six routes : 

222222222 rqpqrprprppp →→→→→  
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22222222 rqpqrpqrprppp →→→→→  

22222222 rqprqpqrprppp →→→→→  

22222222 rqpqrpqrpqppp →→→→→  

22222222 rqprqpqrpqppp →→→→→  

222222222 rqprqpqpqppp →→→→→  

If we assign [ ] 64324
2

1 =×  fuzzy subgroups to the first route (as a maximal chain), 

each of the last five routes has a factor or two that distinguishes it from the first, 

therefore they have a combined contribution of [ ] 160324
2

1
5

2
=××  fuzzy subgroups. 

Now summing up we obtain 

1407+352+352+208+104+128+96+48+48+128+96+48+48+64+160=3287distinct 

fuzzy subgroups for the group 222 rqp
ZZZG /+/+/= . This number is the same as the 

one obtained when we extended using 22qrp . 

The arguments used in chapter five can also be used to compute the number of fuzzy 

subgroups of 
ks

k
nn ppp

ZZZG /++/+/= ...
2

2
1

1
where all the ip ’s are distinct primes, 

although the lattice diagrams may be too complicated since for example in 

4
4

3
3

2
2

1
1

nnnn pppp
ZZZZG /+/+/+/=  we need a 4-dimensional diagram. Hence it may be 

necessary to explore other techniques of computing the number of distinct fuzzy 

subgroups. Ngcibi in [ ]31  studied p-groups of rank 2 and only managed to get a 

recurrence formula for the number of distinct fuzzy subgroups, suggesting the 

complexity of such computations. 
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LIST OF DIAGRAMS 
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Figure 3 
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Lattice Diagram 1 
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Lattice Diagram 2 
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Lattice Diagram 3 
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Lattice Diagram 4 



127 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lattice Diagram 5 
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Lattice Diagram 6 
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Lattice Diagram 7 
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Lattice Diagram 8 
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