

A Comparison of Open Source Object-Oriented

Database Products

A thesis submitted in fulfilment of the requirements of the degree of

Master of Science in Computer Science

At

University of Fort Hare

By

Peter Khayundi

Supervisor: Prof J. Chadwick

December 2009

i

Abstract

Object oriented databases have been gaining popularity over the years. Their ease of use and

the advantages that they offer over relational databases have made them a popular choice

amongst database administrators. Their use in previous years was restricted to business and

administrative applications, but improvements in technology and the emergence of new, data-

intensive applications has led to the increase in the use of object databases.

This study investigates four Open Source object-oriented databases on their ability to carry out

the standard database operations of storing, querying, updating and deleting database objects.

Each of these databases will be timed in order to measure which is capable of performing a

particular function faster than the other.

ii

Acknowledgements

I would like to thank God for giving me the strength and energy to finish this dissertation. I

would also like to thank my supervisor, Prof. Jim Chadwick, whose constant encouragement

and assistance was vital in me completing this dissertation.

I would like to thank my parents for their support and prayers. I would also like to thank my

brothers who have constantly been there for me from the start.

I would like to thank Kudakwashe Chodokufa for being there for me during the good and bad

times.

To Sibukele Gumbo, for her assistance and encouragement. Finally, to all my lab mates who

have been on this journey together with me. May you all be blessed.

iii

Declaration

I, the undersigned, declare that the work contained in this dissertation is my own original work

and has not previously, in its entirety or in part, been submitted at any educational institution

for a similar or any other degree awarded.

Signature..

Date..

iv

Acronyms

ACID Atomicity, Consistency, Isolation and Durability

API Application Programming Interface

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering

DBMS Database Management System

DML Data Manipulation Language

ER Entity-Relationship

GUI Graphical User Interface

GIS Geographic Information System

IDE Integrated Development Environment

JSQL Java Structured Query Language

NQ Native Queries

OLTP On-line Transaction Processing

OID Object Identifier

OODBMS Object-Oriented Database Management System

ORM Object-Relational Mapping

OLAP On-line Analytical Processing

OR Object-Relational

QBE Query-By-Example

v

RAM Random Access Memory

RDBMS Relational Database Management System

SODA Service-Oriented Database Architecture

SQL Structured Query Language

TPC Transaction Processing Performance Council

UML Unified Modelling Language

XML Extensible Markup Language

vi

Table of Contents

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Introduction .. 2

1.2 Background Information ... 2

1.3 Problem Statement .. 3

1.4 Research Objective ... 4

1.5 Thesis Statement ... 4

1.6 Delineations and Limitations ... 5

1.6.1 Delineations ... 5

1.6.2 Limitations ... 5

1.7 Significance of the Study .. 6

1.8 Organization of the Dissertation .. 6

CHAPTER 2 ... 8

OBJECT-ORIENTED DATABASES AND RELATED CONCEPTS 8

2.1 Introduction .. 9

2.2 Object-Oriented Database Management Systems (OODBMSs) ... 9

2.2.1 What is an Object-Oriented Database Management System (OODBMS)? 9

2.2.2 Why use Object-Oriented DBMSs? ...10

2.3 Object-Oriented Databases: Related Concepts and Characteristics....................................11

2.3.1 Complex Objects ...11

2.3.2 Object Identity...11

2.3.3 Types and Classes ...12

vii

2.3.4 Encapsulation ..12

2.3.5 Inheritance ..13

2.3.6 Overriding and Late Binding ...13

2.3.7 Extensibility ..14

2.3.8 Computational Completeness ..14

2.3.9 Persistence ..15

2.3.10 Performance ..15

2.3.11 Concurrency or Concurrent Update Support ..15

2.3.12 Recovery Support ..17

2.3.13 Query Facility ...18

2.4 OODBMS Advantages and Disadvantages ...19

2.4.1 Advantages ..19

2.4.2 Disadvantages ...21

2.5 Benchmarking ..21

2.6 Related Comparison Studies ...25

2.7 Conclusion ...26

CHAPTER 3 ..27

OPEN SOURCE OBJECT-ORIENTED DATABASE PRODUCTS27

3.1 Introduction ...28

3.2 Selection Criteria ...28

3.3 Factors To Be Evaluated ..30

3.3.1 Functionality ...30

3.3.2 Support..30

3.3.3 Performance ..31

3.3.4 Usability ..32

viii

3.3.5 Market Share ...32

3.3.6 Maintenance ..33

3.3.7 Scalability ...33

3.3.8 Flexibility ..33

3.4 Indexing ...33

3.5 Open Source Object-Oriented Database Products ...36

3.5.1 Introduction ...36

3.5.2 Db4o ...36

3.5.2.1 Overview and Features ...36

3.5.2.2 Functionality ..38

3.5.2.3 Support ...38

3.5.2.4 Performance ...38

3.5.2.5 Usability ...38

3.5.2.6 Market Share ..39

3.5.2.7 Maintenance ...39

3.5.2.8 Scalability...40

3.5.2.9 Flexibility ...40

3.5.3 Neodatis ..40

3.5.3.1 Overview and Features ...40

3.5.3.2 Functionality ..41

3.5.3.3 Support ...41

3.5.3.4 Performance ...41

3.5.3.5 Usability ...42

3.5.3.6 Market Share ..42

3.5.3.7 Maintenance ...42

ix

3.5.3.8 Scalability...42

3.5.3.9 Flexibility ...42

3.5.4 Perst ..43

3.5.4.1 Overviews and Features ..43

3.5.4.2 Functionality ..44

3.5.4.3 Support ...44

3.5.4.4 Performance ...44

3.5.4.5 Usability ...44

3.5.4.6 Market Share ..44

3.5.4.7 Maintenance ...45

3.5.4.8 Scalability...45

3.5.4.9 Flexibility ...45

3.5.5 Prevayler ...45

3.5.5.1 Overview and Features ...45

3.5.5.2 Functionality ..47

3.5.5.3 Support ...47

3.5.5.4 Performance ...48

3.5.5.5 Usability ...48

3.5.5.6 Market Share ..48

3.5.5.7 Maintenance ...48

3.5.5.8 Scalability...48

3.5.5.9 Flexibility ...49

3.5.6 Summary of Database Features..49

3.6 Conclusion ...50

x

CHAPTER 4 ..51

EVALUATION OF OPEN SOURCE OBJECT-ORIENTED DATABASE PRODUCTS51

4.1 Introduction ...52

4.2 Aim ..52

4.3 Research Design...52

4.4 Evaluation Methodology ..54

4.4.1 Research Instruments...54

4.4.1.1 Hardware Used ...54

4.4.1.2 Software Used ..55

4.4.1.3 Installation ..55

4.4.2 Data Collected ...56

4.4.3 The Wisconsin Benchmark ..56

4.4.4 The Item class ...58

4.4.5 Timing ..60

4.4.6 Description of Tests...60

4.4.6.1 Inserting ...60

4.4.6.2 Querying ..62

4.4.6.3 Updating ...68

4.4.6.4 Deleting ..70

4.5 Conclusion ...71

CHAPTER 5 ..72

RESULTS AND DISCUSSION OF OUTCOMES ...72

5.1 Introduction ...73

5.2 Results Obtained From Experiments ..73

5.2.1 Storing ..73

xi

5.2.2 Querying ...78

5.2.2.1 Q1. Querying for unique1 ...78

5.2.2.2 Q2. Querying for unique2 ...78

5.2.2.3 Q3. Querying for one percent of objects, randomly distributed............................79

5.2.2.4 Q4. Querying for ten percent of objects, randomly distributed80

5.2.2.5 Q5. Querying for twenty percent of objects, randomly distributed81

5.2.2.6 Q6. Querying for fifty percent of objects, randomly distributed82

5.2.2.7 Q7. Querying for the first 1000 objects in the database83

5.2.2.8 Q8. Querying for 1000 randomly dispersed objects ...84

5.2.2.9 Q9. Querying strings ...85

5.2.2.10 Q10. Querying for unique fields with indexing ...87

5.2.3 Updating ...90

5.2.4 Deleting ..92

5.3 Discussion of Findings ...96

5.4 Conclusion ...97

CHAPTER 6 ..98

CONCLUSION AND FUTURE WORK..98

6.1 Introduction ...99

6.2 Project Summary ..99

6.3 Work Covered ..99

6.4 Conclusions ... 100

6.5 Summary of Contributions ... 101

6.6 Suggestions for Further Research ... 101

6.7 Conclusion ... 101

REFERENCES .. 102

xii

APPENDICES ... 112

Appendix A ... 113

A.1. Java Code for Item Class .. 113

A.1.1. Item.java .. 113

A.1.2. Java code for ItemKeeper .. 114

A.1.3. Java code for MakeItem ... 115

A.2. Java code for storing objects in the databases ... 116

A.2.1. Db4o database ... 116

A.2.2. Neodatis database .. 119

A.2.3. Perst database .. 121

A.2.4. Prevayler database ... 124

A.3. Java code for searching for objects in the databases .. 125

A.3.1. Without indexing enabled .. 125

A.4. Java code for modifying objects in the databases .. 163

A.4.1. Db4o database ... 163

A.4.2. Neodatis database .. 165

A.4.3. Perst database .. 166

A.5. Java code for deleting objects in the databases .. 168

A.5.1. Db4o database ... 168

A.5.2. Neodatis database .. 169

A.5.3. Perst database .. 171

A.5.4. Prevayler database ... 172

Appendix B.. 174

B.1. Times for creating databases and standard deviations .. 174

B.2. Times for searching for unique2 without indexing .. 174

xiii

B.3. Times for searching for one percent of objects without indexing 175

B.4. Times for searching for ten percent of objects without indexing 175

B.5. Times for searching for twenty percent of objects without indexing 176

B.6. Times for searching for fifty percent of objects without indexing 176

B.7. Times for searching for field unique2 less than 1000... 177

B.8. Times for searching for field unique1 less than 1000... 177

B.9. Times for searching for field stringu1 without indexing .. 178

B.10. Times for searching for field stringu2 without indexing .. 178

B.11. Times for searching for field string4 without indexing .. 179

B.12. Times for searching for field unique1 with indexing ... 179

B.13. Times for searching for field stringu1 with indexing ... 180

B.14. Times for modifying a unique record with indexing .. 180

B.15. Times for deleting a single item without indexing ... 181

B.16. Times for deleting 1000 randomly distributed items without indexing 181

B.17. Times for deleting 1000 randomly distributed items with indexing 182

xiv

Table of Figures

Figure 3.1: Sample code for indexing in Db4o ...34

Figure 3.2: Sample code for indexing in Neodatis ..35

Figure 3.3: Sample code for creating indices in Perst ...35

Figure 3.4: Sample code for adding items to an index in Perst ..35

Figure 3.5: Comparison of an RDBMS architecture with that of Db4o37

Figure 3.6: Prevayler architecture...46

Figure 4.1: Member variables of the Item class ...59

Figure 4.2: Sample code for inserting objects in Db4o ...61

Figure 4.3: Sample code for querying for unique1 in Perst ...63

Figure 4.4: Code for selecting one percent in Db4o ..64

Figure 4.5: Code for selecting one percent in Neodatis ...65

Figure 4.6: Code for selecting one percent in Perst ...66

Figure 4.7: Code for selecting one percent in Prevayler ..66

Figure 4.8: Sample code for updating in Db4o ...69

Figure 4.9: Sample code for deleting objects in Db4o...71

Figure 5.1: Times taken to store objects in the databases ..75

Figure 5.2: Graph showing times taken for storing objects in Db4o, Neodatis and Perst76

Figure 5.3: Creating objects with indexes applied to four fields ..77

Figure 5.4: Searching for unique1 without indexing ...78

Figure 5.5: Searching for unique2 without indexing ...79

Figure 5.6: Searching for one percent of objects without indexing ..80

Figure 5.7: Searching for ten percent of objects without indexing...81

Figure 5.8: Searching for twenty percent of objects without indexing82

Figure 5.9: Searching for fifty percent of objects without indexing...83

Figure 5.10: Field unique2 less than 1000 ..84

Figure 5.11: Field unique1 less than 1000 ..85

Figure 5.12: Searching for stringu1 without indexing ...86

Figure 5.13: Searching for stringu2 without indexing ...86

Figure 5.14: Searching for string4 without indexing ...87

xv

Figure 5.16: Searching for unique2 with indexing ..88

Figure 5.17: Searching for stringu1 with indexing ..89

Figure 5.18: Searching for unique2 with indexing ..89

Figure 5.19: Modifying a unique record without indexing ..90

Figure 5.20: Modifying 1000 randomly distributed records without indexing91

Figure 5.21: Modifying a unique record with indexing ...91

Figure 5.22: Modifying the first 1000 items without indexing ..92

Figure 5.23: Deleting a single item without indexing ...93

Figure 5.24: Deleting 1000 randomly distributed items without indexing93

Figure 5.25: Deleting a single item with indexing ..94

Figure 5.26: Deleting 1000 randomly distributed items with indexing95

xvi

List of Tables

Table 3.1: Summary of object databases and features………………………………………...49

Table 4.1: Attribute Specification of "Scalable" Wisconsin Benchmark Relations…………...57

Table 5.1: Databases ranked according to performance……………………………………….95

xvii

1

CHAPTER ONE

INTRODUCTION

2

1.1 Introduction

This aim of this chapter is to discuss the motivation for studying object-oriented databases and

provide direction for the study. It also covers research objectives, the thesis statement,

delineations and limitations as well as the significance of the study. An organization of the rest

of the dissertation chapters is also covered.

1.2 Background Information

Object-oriented databases have over the past few years been gaining popularity amongst

database professionals. These databases offer many advantages over relational databases that

can be exploited by those professionals. Some of these advantages include, but are not limited

to, the following (Rolland 1998):

1. Circumventing the need for a query language.

2. No impedance mismatch.

3. Eliminating the need for primary keys.

Object-oriented databases also rely on object-oriented programming languages, making them

an ideal match for environments such as Java and .Net. Previously, database professionals had

to rely on using object oriented programming languages with relational databases, leading to

an “object-relational (OR) mismatch”. This occurred when relational databases were

incompatible with object-oriented programming languages such as Java and .NET (Versant

Corp. 2009).

This study was done in order to review a number of Open Source object-oriented databases

that are on offer in the market. The results gained from this study may be used to gauge how

efficiently the databases were able to perform different database operations.

3

1.3 Problem Statement

There exist a large number of Open Source object-oriented database products on the market

and all offer different levels of functionality as well as performance. Many of these products

have not been evaluated against each other to determine which of them provides better

performance when it comes to carrying out different database operations.

It is common that a database product that optimizes searching will not necessarily be efficient

at storing or modifying data. A user who intends to do a lot of searching may want a database

for which searching is optimized. On the other hand, if inserting new data is more frequent,

then the user will look for a database for which this operation is optimized. It will obviously be

helpful to users to know which database is most efficient when searching, and which is better

when it comes to storing new data.

The problem that this dissertation considers is:

 Which Open Source object-oriented databases are better able to perform basic database

operations of storing, querying, updating and deleting objects?

In order to answer this question, experiments will be carried out in order to test how well the

databases used in this study are capable of performing the above mentioned operations. The

results of these experiments will then be used to make reasonable conclusions about the

operation of the object databases. No previous studies were found comparing the databases

that were used in this study.

There have been previous studies on Open Source databases, such as the one carried out by

Mabanza (Mabanza 2006) on XML database, and a comparison of the performance between an

object database, Db4o, and an object-relational mapping (ORM) tool, Hibernate (Van Zyl,

Kourie & Boake 2006) . These studies served as a guide for the author of this dissertation to

carry out a comparison of Open Source object-oriented databases.

4

1.4 Research Objective

The objective of this project is to experiment on and compare different Open Source object-

oriented database products on their ability to perform the basic database operations of storing,

querying, updating and deleting database objects.

The experiments that will be carried out on each database will involve calculating the amount

of time that each database takes to perform an operation. Each database will be required to

perform a specific task that will be timed in order to see how much time is taken to perform the

operation.

The results obtained will be tabulated and graphs will be created. These graphs will provide

data that will be used to determine which of the databases under experiment is most suitable

for performing a particular operation.

1.5 Thesis Statement

The problem statement and research objective sections shown above have led to the thesis of

this study:

 Some Open Source object-oriented databases are better than others at performing the

standard database operations of storing, querying, updating and deleting database

objects.

All databases are required to be able to perform the four basic database operations of storing,

querying, updating and deleting. This should also apply to the Open Source object databases to

be used in this study.

The databases will be investigated and experimented on to show that they can actually perform

the basic database operations. The tests that will be carried out on the object databases are

designed to prove whether these databases can perform the operations that are required of

5

them. The databases will then be compared against each other to see which of them performs a

particular operation faster.

1.6 Delineations and Limitations

1.6.1 Delineations

There was some delineation that was made for this dissertation:

1. Only Open Source databases were used. These databases were freely available for

download from the Internet. Only databases that came with good documentation and

had support in the form of forums and mailing lists were considered. This was to

ensure that any difficulties encountered with the databases could be referred to these

forums and mailing lists for support.

2. The databases chosen were object-oriented. The aim of this study was to compare the

performance of object databases and therefore only these were selected for the study.

3. The objects created within the database were restricted to 100000. This decision to

restrict the objects to 100000 was taken as this number was considered adequate for the

purposes of comparison.

4. Java was used as the programming language. This was done since this was the

language that the author of the dissertation was most comfortable with.

1.6.2 Limitations

There were some limitations experienced during the course of this study. These were:

1. The tests were performed in the Windows environment only. The results obtained may

have been different had other operating systems been used to conduct the experiments.

At the time of conducting this study, the Windows environment was the most suitable

as it was available. Also, the databases chosen for the study were mostly implemented

in the Windows environment.

6

2. Due to time limitations, the number of experiments conducted was restricted. It was felt

adequate to carry out a reasonable selection of tests that would measure performance

on inserting data, querying, updating and deleting. Future work would involve further

testing with more detailed experiments.

3. There was no graphical user interface (GUI) to visualize the contents of the databases.

With other commercially available databases such as Microsoft Office® Excel, the

contents of the database are visible to the user. The object databases used for this study

had no GUI available to view the contents of the databases. This feature would have

been useful to enable one to see the actual objects stored within the databases.

1.7 Significance of the Study

This study aims to provide a reasonable comparison of Open Source object-oriented database

products that will enable a user to make an informed decision on which of these products

would be best suited to carry out a particular database operation. With the many databases

available on the market today, users would like to be able to choose which database would suit

their particular needs.

This study will compare the performance of different object databases and provide conclusions

that will show which of them is most suitable for performing any of the basic database

operations of storing, querying, updating and deleting database objects.

1.8 Organization of the Dissertation

Chapter 2 discusses object-oriented database management systems (OODBMSs) and related

concepts. The chapter will also define OODBMSs and explain why they are used. It will look

at the desired characteristics for an OODBMS. It will also look at the advantages and

disadvantages of using OODBMSs as compared to relational databases. There will also be a

brief discussion of a related comparison study carried out on an OODBMS and an object-

relational mapping (ORM) tool.

7

Chapter 3 discusses the object-oriented database products under investigation. It will look at

the selection criteria that were used when selecting the object databases for the study. It will

also look at the factors to be evaluated when testing the databases used for the study, namely

functionality, support, performance, and usability. A comparison of the features of each

database will also be carried out.

Chapter 4 discusses the evaluation of the databases used in this study. It will look at the

evaluation methodology used to test the databases, which includes timing, experimental set-up

and a description of the tests carried out on the databases.

Chapter 5 will look at the results obtained from the experiments conducted on the object

databases. It will also compare the results in order to establish which database performs a

particular operation better in terms of the amount of time taken to complete an operation.

Chapter 6 is the concluding chapter. It summarizes the contents of the dissertation and also

proposes future work.

8

CHAPTER 2

OBJECT-ORIENTED DATABASES

AND RELATED CONCEPTS

9

2.1 Introduction

This chapter will look at object-oriented database management systems (OODBMSs) and

related concepts. The chapter will define OODBMSs and explain why they are used. It will

look at the desired characteristics for an OODBMS. It will also look at the advantages and

disadvantages of using OODBMSs as compared to relational databases. There will also be a

brief discussion of a related comparison study carried out on an OODBMS and an object-

relational mapping (ORM) tool.

2.2 Object-Oriented Database Management Systems (OODBMSs)

2.2.1 What is an Object-Oriented Database Management System (OODBMS)?

An object-oriented database management system (OODBMS) is a database system that allows

objects to be stored and shared between different applications (Rolland 1998). Although

object-oriented DBMSs do not have a corresponding theoretical foundation similar to that of

relational databases, they all exhibit several common characteristics.

All object-oriented systems rely on the concept of an object. An object is a set of related

attributes along with the actions associated with the set of attributes. In relational systems,

actions are created as part of data manipulation, rather than as part of the data definition. In

contrast, in object-oriented systems, the data and actions are encapsulated, which means that

an object is defined to contain both the data and its associated actions. Thus an object-oriented

DBMS is one in which data and actions that operate on the data are encapsulated into objects

(Pratt & Adamski 2005).

10

2.2.2 Why use Object-Oriented DBMSs?

The first and most important database applications were used in business and administration,

mainly for banking applications to maintain information about customers and accounts, and

also for applications that stored record-oriented data, such as an inventory system. In the

1980s, new data-intensive applications emerged as a result of hardware innovations. Therefore,

traditional DBMSs, based on the relational data model, were inadequate (Chaudhri & Zicari

2001). Examples of some data intensive applications include (Rolland 1998):

1. Multimedia databases which require the storage of segments of sound, pictures and

text and the ability to associate them together in a consistent manner.

2. Geographic Information Systems (GIS) which require the storage of different types

of mapping and statistical data which may be subdivided into and collated from

overlapping regions.

3. Design databases which store data and diagrams involving complex components

which may be associated together into further complex components.

Object-oriented DBMSs have been developed in order to meet the requirements imposed by

the applications listed above. The object-oriented approach provides the required flexibility

because it is not limited to the data types and query languages available in traditional database

systems. One of the most important features of OODBMSs is the ability to specify both the

structure of complex application objects and the operations to manipulate those structures

(Chaudhri & Zicari 2001).

11

2.3 Object-Oriented Databases: Related Concepts and

Characteristics

In order for a system to qualify as an object-oriented database system, there are specific

characteristics that it must satisfy. These characteristics serve as a benchmark against which

one can measure object-oriented systems. These characteristics are described further below

(Atkinson et al. 2003):

2.3.1 Complex Objects

An OODBMS must support the creation of complex objects from simple objects such as

integers, characters, byte strings of any length, booleans, and floats. According to the Object-

Oriented Database Management System Manifesto (Atkinson et al. 2003), complex objects are

built from simpler objects by applying constructors to them. Examples of complex object

constructors include tuples, sets, bags, lists, and arrays. The minimal sets of constructors that a

system must have are set, list, and tuple. Sets are important because they are a natural way of

representing collections from the real world. Tuples are important because they are a natural

way of representing properties of an entity. Lists or arrays are important because they capture

order, which occurs in the real world, and they also arise in many scientific applications

(Atkinson et al. 2003).

Supporting complex objects also requires that appropriate operators must be provided for

dealing with such objects. This means that operations on a complex object must propagate

transitively to all its components. Additional operations on complex objects may be defined by

users of the system.

2.3.2 Object Identity

An OODBMS must provide a way to identify objects, i.e. the OODBMS must provide a way

to distinguish between one object and another (Atkinson et al. 2003). Object identities (OIDs)

are usually not directly visible and accessible by database users; they are internally used by the

12

system. In addition to the object identifier, an object can be characterized by one or more

names that are meaningful to the programmer or the end user.

OIDs are used in OODBMSs to identify objects and to support object references through

object property values. Objects can thus be interconnected and share components (Chaudhri &

Zicari 2001).

2.3.3 Types and Classes

An OODBMS must support types and classes. A type summarizes the common features of a

set of objects with the same characteristics. It has two parts: the interface and the

implementation, with only the interface part being visible to the users of the type. The

implementation part of the object is seen only by the designer of the system. The interface

consists of a list of operations together with their signatures, i.e. the type of the input

parameters and the type of the result (Atkinson et al. 2003).

The type implementation consists of a data part and an operation part. The data part is used to

describe the internal structure of the object‟s data. The operation part consists of procedures

which implement the operation of the interface part.

A class provides the implementation for a set of objects of the same type. It also provides

primitives for object creation (Chaudhri & Zicari 2001). Classes are used to create and

manipulate objects. They contain two aspects (Atkinson et al. 2003):

1. An object factory which can be used to create new objects.

2. An object warehouse, which means that there is an extension attached to the class, i.e.

the set of objects that are instances of the class.

2.3.4 Encapsulation

An OODBMS must encapsulate data and associated methods together in the database

(Atkinson et al. 2003). The principle of encapsulation states that an object in the database

13

encapsulates both the program and data. When storing an object in the database, both the data

and the operations to be carried out on the data are stored in the database.

Encapsulation ensures that one can change the implementation of a type without changing any

of the programs using that type. Application programs are protected from implementation

changes in the lower layers of the system (Atkinson et al. 2003).

2.3.5 Inheritance

An OODBMS must support inheritance. For any class, or superclass, one can define a

subclass, with every occurrence of the subclass being considered to be an occurrence of the

superclass. The subclass inherits the structure of the superclass as well as its methods. One can

also define additional attributes and methods for the subclass (Atkinson et al. 2003).

Inheritance is a powerful reuse mechanism. By using such a mechanism when defining two

classes, their common properties, if any, can be identified and factorized in a common

superclass (Chaudhri & Zicari 2001).

2.3.6 Overriding and Late Binding

In an object-oriented system, an operation can be defined in a class and inherited by all of its

subclasses. This operation can thus have a single name and be used differently on various

objects. Overriding involves redefining the operation implementation for each class. As a

result, a single name denotes different programs and the system manages the selection of the

appropriate one during execution.

Binding refers to the association of operations to actual programming code. With late binding,

this association does not happen until runtime, i.e. until the user actually invokes an operation.

With early binding, operations are associated at compile time. Late binding lets one use the

same name for different operations (Atkinson et al. 2003).

14

2.3.7 Extensibility
Any DBMS comes with a set of predefined data types, such as numeric and character. An

OODBMS should be extensible, meaning that it is possible to define new data types.

Furthermore, the OODBMS should make no distinction between the data types provided by

the system and these new data types (Atkinson et al. 2003).

Extensibility is one of the key features of object-oriented systems. One can be able to

manipulate them in order to suit specific applications. Extensibility can be explained further

using the following (InterSystems Corp. 2009: Extensibility):

1. Type definition – One can define new data types that represent application-specific

data.

2. Event handling – An application can define a set of methods that are called when a

specific action or event occurs. These methods enable the behaviour of an application

to be modified without changing the application‟s core implementation.

3. Subclassing – This involves adapting previously developed components for new uses

by creating subclasses of existing classes.

2.3.8 Computational Completeness
One must be able to use functions in the language of the OODBMS to perform various

computations. This means that one can express any computable function using the data

manipulation language (DML) of the database system (Atkinson et al. 2003). Alternatively, an

OODBMS should provide an application programming interface (API) to a standard

programming language (Casson 1994: Object-oriented databases) so as to enable the

programmer to use it.

15

2.3.9 Persistence

This is the ability of a programmer to have his/her data survive the execution of a process, in

order to eventually reuse it in another process. It also refers to the ability to have a program

„remember‟ its data from one execution to the next (Atkinson et al. 2003).

Persistence provides three main benefits (Pratt & Adamski 2005):

1. An application can stop and restart and retrieve the data that it needs to function.

2. An application can work with larger data sets than will fit in memory.

3. An application can share its data with other processes. This has traditionally meant the

transfer of data from volatile memory to disk.

2.3.10 Performance

An OODBMS should have sufficient performance capabilities to efficiently manage very large

databases (Atkinson et al. 2003). Most applications require that databases store thousands of

records within them, and it would be useful to have an OODBMS that is capable of handling

such large volumes of data.

2.3.11 Concurrency or Concurrent Update Support
An OODBMS must support concurrent update. Concurrent update occurs when multiple users

make updates to the same database at the same time (Atkinson et al. 2003). Concurrency deals

with allowing multiple users to simultaneously access shared entities, such as objects or data

records (Ambler 2009: Introduction to concurrency control).

To prevent users from accessing data or records in a database and making undesirable changes,

various locking mechanisms are implemented to avoid collisions. A collision occurs when two

activities attempt to change entities within a system. Examples of these locking mechanisms

include (Ambler 2009: Introduction to concurrency control):

16

1. Pessimistic locking – This approach ensures that an entity is locked in the database for

the entire time that it is in memory. The lock limits or prevents other users from

working with the entity in the database.

2. Optimistic locking – This approach considers that collisions may occur infrequently

and therefore, instead of trying to prevent them, it detects and resolves then when they

occur.

3. Overly-optimistic locking – This approach assumes that collisions will never occur,

and it neither tries to avoid nor detect them. It is suitable for a single-user environment.

Deadlocks may occur in database transactions during updates. Records may be locked during

updates and may not be accessible to other users (Jenkov [n.d.]: Deadlocks). In order to

prevent deadlocks, some techniques can be used (Jenkov [n.d.]: Deadlock Prevention):

1. Lock ordering – Thread locks can be taken in the same order all the time so as to

prevent deadlocks. This mechanism is simple yet effective, but it can only be used if

one knows about all the locks needed ahead of taking any of the locks.

2. Lock timeout – A timeout may be applied on lock attempts. Any thread trying to obtain

a lock will give up if it tries to do so for a long time. If a thread does not succeed in

taking all necessary locks within the given timeout, it will back up, free all locks, wait

for a random amount of time and retry. The random amount of time will give other

threads that may be trying to take the same locks a chance to take all locks. The

application will therefore continue running without locking.

3. Deadlock detection – This mechanism is used when lock ordering is not possible and

lock timing is not feasible. When a deadlock is detected, one possible action is to

release all locks, back up wait a random amount of time and then retry. This option is

similar to the lock timeout mechanism. A better option is to assign or determine a

priority of the threads so that only one or a few threads back up. The rest of the threads

continue taking the locks they need as if no deadlock had occurred.

17

2.3.12 Recovery Support

An OODBMS must provide recovery services. Recovery is the process of returning the

database to a state that is known to be correct from a state known to be incorrect.

If the data in a database has been damaged, the simplest approach to recovery involves

periodically making a copy of the database, called a backup. If a problem occurs, the database

is recovered by copying the backup copy over it. The damage is undone by returning the

database to the state it was in when the last backup was made (Atkinson et al. 2003).

An OODBMS must provide the software tools necessary to implement recovery in the event of

an inconsistent state arising in the database. Inconsistent states may arise as a result of the

following (Hughes 1991):

1. Failure of an updating transaction before it has completed its update but after it has

written some changes to the database.

2. A software failure in the operating system or database management system which

causes some or all transactions executing at the time of the failure to abort.

3. A power failure which brings all transactions currently active to a halt and loses the

contents of main memory.

4. A media failure, such as corruption of a disc.

5. Corruption of the database by a faulty transaction, i.e. a transaction with faulty logic

which writes incorrect or inconsistent data to the database.

Many modern DBMSs provide a variety of facilities for protecting against inconsistent states,

or for resolving inconsistencies when they arise. Some of these facilities are discussed below

(Hughes 1991):

1. Back-up Copies and Snap-shots – Back-up copies of a large database can only be taken

as frequently as is cost-effective, as this is an expensive and time-consuming operation.

18

The copy taken must represent a consistent state, so no updating transaction must be in

progress at the same time as the copying utility. In a highly volatile environment, i.e.

one in which the information in the database is constantly being updated, frequent

„snap-shots‟ of highly active areas of the database are desirable.

2. The Log File – Many DBMSs maintain a transaction logging file, or journal file, which

records a history of every transaction which has updated the database since the last

back-up copy was made. Entries for each transaction in the log file may consist of the

following:

i. A unique transaction identifier.

ii. The address of every object updated, or created, by the transaction together

with the old value of this object and its new value.

iii. Key points in the progress of transactions, such as their start and end times.

It is particularly useful if the log file records the point at which a transaction

„commits‟, i.e. when it has successfully recorded in the log file all its

changes to objects in the database.

3. Recovery from Inconsistent State – This may involve either undoing the changes made

by transactions, or redoing the updates of committed transactions. Most recovery

strategies require the log to record checkpoints, which are simple records written to the

log indicating a point in time to which the system can return and be consistent.

2.3.13 Query Facility

An OODBMS must provide query facilities. A query facility should satisfy the following three

criteria (Atkinson et al. 2003):

1. It should be high level, i.e. one should be able to express, in a few words or in a few

mouse clicks, non-trivial queries concisely. This implies that it should emphasize the

what and not the how.

19

2. It should be efficient, i.e. the formulation of queries should lend itself to some form of

query optimization.

3. It should be application independent, i.e. it should work on any possible database.

The characteristics described above are the ideal requirement for a system to be referred to as

an OODBMS. The OODBMSs to be used in this study will be required to satisfy all the above

requirements in order to be referred to as object-oriented databases. Each of them will be

tested exhaustively so as to classify them as OODBMSs.

2.4 OODBMS Advantages and Disadvantages

OODBMSs are often compared to relational database management systems (RDBMS) when it

comes to functionality and features. Many of the features that were only available in RDBMSs

are now being adapted to OODBMSs. This section will look at the advantages and

disadvantages of using an OODBMS as compared to an RDBMS (Obasanjo 2001).

2.4.1 Advantages

1. Composite Objects and Relationships – Objects in an OODBMS can store an arbitrary

number of types as well as other objects. Therefore, it is possible to have a large class

which holds many medium sized classes which themselves hold many smaller classes.

In an RDBMS this has to be done by either having one large table with many null fields

or with a number of smaller, normalized tables which are linked through foreign keys.

An object is also a better model of the real world entity than the relational tuples when

dealing with complex objects.

2. Class Hierarchy – Data in the real world usually has hierarchical characteristics. It is

easier to describe such data in an OODBMS than in an RDBMS with the use of

superclasses and subclasses.

20

3. Circumventing the Need for a Query Language – A query language is not necessary for

accessing data from an OODBMS, unlike an RDBMS. Interaction with the database is

done by transparently accessing objects from the database. However, it is still possible

to use queries in an OODBMS.

4. No Impedance Mismatch – When using an object-oriented programming language with

an RDBMS, a significant amount of time is usually spent mapping tables to objects and

back. This is completely avoided when using an OODBMS.

5. No Primary Keys – In an RDBMS, tuples must be uniquely identified by their values

and no two tuples can have the same primary key values in order to avoid error

conditions. In an OODBMS, the unique identification of objects is done behind the

scenes using object identifiers (OIDs) and is completely invisible to the user.

Therefore, there is no limitation to the values that can be stored in an object.

6. One Data Model – A data model typically should model entities and their relationships,

constraints and operations that change the states of the data on the system. An RDBMS

is not able to model the dynamic operations or rules that change the state of the data in

the system as this is beyond the scope of the database. Therefore, applications that use

RDBMSs usually have an Entity-Relationship (ER) diagram to model the static parts of

the system and a separate model for the operations and behaviours of entities in the

application.

In an OODBMS, there is no separation between the database model and the application

model because the entities are just other objects in the system. An entire application

can therefore be modeled comprehensively in one Unified Modeling Language (UML)

diagram.

21

2.4.2 Disadvantages

1. Schema Changes – Modifying the database schema in an RDBMS by either creating,

updating or deleting tables is typically independent of the actual application. In an

OODBMS, modifying the schema in any way means that changes have to be made to

the other classes in the application that interact with instances of that class.

Consequently, all schema changes in an OODBMS will involve a system-wide

recompile. Also, updating all the instance objects within the database can take a long

time depending on the size of the database.

2. Language Dependence – An OODBMS is usually tied to a specific language through a

specific Application Programming Interface (API). This means that data in an

OODBMS is only accessible from the specific language using a specific API, which is

not the case with an RDBMS.

3. Lack of Ad-Hoc Queries – In an RDBMS, the relational nature of the data allows one

to construct ad-hoc queries where new tables are created from joining existing tables

then these new tables are queried. With OODBMSs, it is not possible to duplicate the

semantics of „joining‟ two classes, thus losing flexibility. Therefore, the queries that

can be performed on the data in an OODBMS are highly dependent on the design of

the system.

2.5 Benchmarking

A benchmark is a standard by which something can be measured or judged (Seng 1998: under

heading Introduction). A database benchmark may be defined as a standard set of executable

instructions used to measure and compare the relative and quantitative performance of two or

more database systems through the execution of controlled experiments. Benchmarking can

therefore be described as a process of evaluating different database software systems on the

same or different hardware platforms.

22

Benchmark data such as throughput, jobs per time unit, and the inverse measure, as well as

independent measures such as price performance ratio, equivalent database size, and Web

interactions per second will serve to predict and profile the system performance. (Gray 1993).

Database benchmarks comprise test databases and test workloads, which can be synthetic or

empirical. Synthetic benchmarks emulate typical applications which can be found in a pre-

determined problem domain and create a corresponding synthetic workload. Empirical

benchmarks utilize real data and tests and they re-invent the actual database applications.

(Seng, Yao & Hevner 2003).

Benchmarks depend on the nature of the tested task (Versant Corp. 2009). Each experiment in

a benchmark is made up of two kinds of variables (Seng 1998: under heading Introduction):

1. Experimental factors – Independent variables which will affect the performance of

database systems.

2. Performance metrics – Dependent variables which represent quantitative measurements

collected from the benchmarking process.

 The results produced depend on the following (Seng 1998: under heading Introduction):

1. Workload, which is the amount of work assigned to or performed by a database system

in a given period of time.

2. Specific application requirements.

3. System design and implementation.

Examples of some benchmarks include:

1. The HyperModel benchmark – This is an early OODBMS benchmark designed to test

hypertext and hyperlink applications (Seng 1998: HyperModel benchmark). It may also

be used to test the performance of object-oriented DBMSs for engineering applications

23

(Berre, Anderson & Mallison 1999). This benchmark tests two of the most important

features of OODBMSs: complex object representation and complex object

implementation.

2. The 001 benchmark – This benchmark models the common requirements of

engineering applications. It defines the common workload characteristic of computer-

aided software engineering (CASE) and computer-aided design (CAD) applications.

This benchmark assesses the performance of OODBMS, RDBMS, network database

systems and hierarchical database systems. The database size can range from 4MB to

400MB (Seng 1998: 001 benchmark).

3. The 007 benchmark – This is an extension of the 001 benchmark where the benchmark

database and test sets are expanded to include more complex objects and operations.

Some of the performance characteristics that the 007 benchmark tests include the speed

of many different kinds of pointer transversals over cached data, the efficiency of many

different kinds of updates, and the performance of the query processor on several

different types of queries (Carey, DeWitt & Naughton 1993).

4. PolePosition – This is a benchmark test suite to compare database engines and object-

relational mapping technology (Sourceforge 2009). Some of the databases that were

tested using this benchmark include db4o, Hibernate, MySql, Mckoi, JavaDB,

HSQLDB and SQLite. The results of these tests can be found at (Sourceforge 2009).

5. Wisconsin benchmark – This benchmark was developed for relational database systems

and machines. It was designed with two objectives in mind: firstly, the queries in the

benchmark should test the performance of the major components of the relational

database system. Secondly, the semantics and statistics of the underlying relations

should be well understood to enable queries to be added easily (DeWitt 1993). A more

detailed discussion of the Wisconsin benchmark is found in chapter 4.

24

6. The TPC suite of benchmarks – The Transaction Processing Performance Council

(TPC) was founded to define transaction processing and database benchmarks and to

disseminate objective, verifiable TPC performance data to the industry. A transaction

could be referred to as a set of operations including disk read/writes, operating system

calls, or any form of data transfer from one subsystem to another. A typical transaction,

as defined by the TPC, would include the updating to a database system for such things

as inventory control (goods), airline reservations (services), or banking (money).

The TPC benchmarks include those for on-line transaction processing (OLTP)

benchmarks e.g. TPC-A (TPC 1992), TPC-B (TPC 1992), TPC-C (TPC 1995), on-line

analytical processing (OLAP) benchmarks e.g. TPC-D (TPC 1998), and an electronic

commerce benchmark e.g. TPC-W (TPC 2001). The TPC-A and TPC-B benchmarks

are already obsolete and have been replaced by the TPC-C benchmark.

The benchmarks discussed above are just a few of the many that are available on the market.

In a study carried out by Seng (Seng 1998) to compare the HyperModel, 001 and 007

benchmarks, it was found that the 007 benchmark ranked high as a more comprehensive and

complete benchmark method. The 001 benchmark does not support complex object definition

and semantic transversals. The HyperModel benchmark is difficult to implement, though it

gives more than 17 tests to measure system performance.

The aim of this study was not to develop a benchmark for object-oriented databases, but to

adapt some features from different benchmarks to suit the experiments being conducted. One

of the features used from benchmarking methods was conducting controlled experiments on

different databases. Experiments were created to test the databases in order to arrive at the

results that are reported on in chapter 5. The experiments were structured to test how different

Open Source object-oriented databases create, query, update and delete objects.

25

2.6 Related Comparison Studies

Many studies have been carried out on various object databases, object-relational mapping

(ORM) tools and relational databases. ORM tools provide a mapping between the object

model and the relational model, acting as an intermediary between an object-oriented code

base, and a relational database. They are used to eliminate the impedance or object-relational

(OR) mismatch (Van Zyl et al. 2006). A comparison of their performance and that of object-

oriented databases in carrying out various basic database tasks has also been investigated. The

use of ORM tools and relational databases is beyond the scope of this study, but a look at

performance comparisons when using OODBMSs, ORM tools and relational databases may be

useful in providing some insight into the performance comparisons that will be carried out on

the object databases for this study.

Benchmarks were used to measure the performance of an OODBMS compared to that of an

ORM tool. The benchmark used by (Van Zyl et al. 2006) was the 007 benchmark, which was

designed to investigate various features of performance. The OODBMS used was db4o, and

the ORM tool used was Hibernate.

The study established that db4o, a popular Open Source object database, performed various

operations considerably faster than Hibernate, which is also a popular ORM tool. Some of

these operations included creation, transversal times, which are the times taken to navigate

around the entire object model, queries and modifications, such as inserting and deleting of

objects.

A study was also carried out on Open Source Native XML database products by Mabanza

(Mabanza 2006). This study investigated and compared the performance of native XML

databases in carrying out the four main database functions of storing, reading or selecting,

updating and deleting. The databases were subjected to a series of tests that calculated the time

taken to perform the database functions. These results were then presented in graphs to show

which database performed a specific function faster.

26

The methods used in testing the performance of the OODBMSs to be used in this study are

similar to those used by Mabanza (Mabanza 2006) to test native XML databases.

2.7 Conclusion

This chapter defined OODBMSs and explained their uses as compared to relational databases.

It also gave reasons why object-oriented databases are better suited for some applications not

supported by relational databases. Some of these applications are multimedia databases,

Geographical Information Systems (GIS) and design databases. Some object-oriented concepts

and characteristics were also covered. These characteristics were considered essential for a

database to have in order to be considered as being an object database.

The advantages of using OODBMSs over relational databases may be desirable when using

some applications. It would therefore be of interest to investigate how OODBMSs perform

when doing various basic database operations.

The object databases to be used in this study were compared on their ability to carry out the

four basic database operations of storing, updating, performing queries, and deleting. Different

conclusions were made about the times taken to perform these operations so as to determine

which database was best suited for a particular operation. The databases to be used in this

study are discussed further in the next chapter.

27

CHAPTER 3

OPEN SOURCE OBJECT-ORIENTED

DATABASE PRODUCTS

28

3.1 Introduction

The previous chapter covered various OODBMS concepts and characteristics. It looked at the

advantages and disadvantages of using OODBMSs as compared to relational databases. It also

looked at related comparison studies that were done using different databases.

This chapter will look at the Open Source object-oriented database products that were chosen

for this study. It will look at the selection criteria that were used when selecting the object

databases. It will also look at the factors to be evaluated when testing the databases used. A

comparison of the features of each database will also be carried out.

3.2 Selection Criteria

In order to evaluate the object databases for this study, some criteria were applied in selecting

these databases. These criteria ensured that only a particular type of database was selected that

was suitable for this study. The criteria are listed below (Khayundi 2008):

1. The database products had to be Open Source and written in Java. The reason for this

was because Open Source products were easily available for download from the

Internet. The use of Java was preferred as this was the programming language that the

author was familiar with.

2. The database products had to have good documentation and sample code. This was to

ensure that code examples were available and any difficulties could be addressed by

referring to the documentation.

3. The database products had forums on their websites. The availability of forums was to

provide support in cases where the author had difficulties when using the databases.

The following database products were reviewed and considered for selection in this study:

1. Db4o – This is an Open Source object-oriented database by db4objects, Inc (Versant

Corp. 2009).

29

2. JODB – This is an Open Source object-oriented database developed by Mobixess Inc.

(Mobixess 2009).

3. MyOODB – This is an Open Source object-oriented database developed by Thomas

Hazel (MyOoDB 2009).

4. Neodatis – This is an Open Source object-oriented database developed by Olivier

Smadja, Cristi Ursachi and Marcelo Mayworm (Neodatis 2009).

5. Ozone – This is an Open Source object-oriented database developed by ozone-db.org

(Ozone 2009).

6. Perst – This Open Source object-oriented database is by McObject LLC (McObject

2009).

7. Prevayler – This is an Open Source object-oriented database developed by Klaus

Wuesterfeld (Codehaus 2009).

Only four of the databases listed above will be discussed in greater detail in a later section of

this chapter. Three databases were not selected because they did not meet the criteria for use in

this study. The reasons for each of these databases not being selected are given below:

1. JODB – This database offers a number of useful features, which include native queries,

transaction rollbacks, data backup functionality and indexing to maximize query

performance. In spite of all these useful features, JODB does not provide any

documentation with the download. In addition to this, the forum on the website was

inactive at the time of conducting this research, which prevented the author from

getting any assistance on using the database.

2. MyOODB – This database is lacking in any form of documentation in its download

folder, or support on its website. It has therefore failed to meet the criteria for use in

this study.

30

3. Ozone – This database does not provide any documentation within its download folder.

The availability of documentation is important in order to enable one to use the

database effectively.

3.3 Factors To Be Evaluated

When testing any product, various factors can be used to determine the suitability of a

particular product for a specific purpose. By evaluating a product, we can determine the

benefits, drawbacks and risks that may be involved in using that product (Mabanza 2006).

For this study, a number of factors were considered when evaluating the products under

investigation. These factors will be discussed below.

3.3.1 Functionality

Functionality may be defined as any aspect of what a product can do for a user (Techtarget

2009). Different users may require different functionality from a particular product. Evaluation

of a product enables users to gauge exactly what they will get from the product according to

their needs and requirements.

The functionality of the products for this study was investigated in order to give users a clear

picture of what each product could do. When dealing with object databases, four basic

operations were considered: inserting or storing, querying, updating and deleting (Mabanza

2006) of objects. The products chosen for this study were evaluated on their ability to perform

these basic functions. Users could then make an informed decision on which database to use

according to its strengths and weaknesses.

3.3.2 Support

For the purposes of this study, support will refer to the personal assistance that vendors

provide to end-users concerning their particular product (Techtarget 2009).

31

The level of support offered by a vendor for their product will determine the level of interest

from users. Good vendor support will ensure that a product receives good reviews from users,

hence increasing its use.

Various forms of support are available for users. These include documentation, forums and

mailing lists (Mabanza 2006).The object databases selected for this study all provided some

form of support, and each will be discussed further when looking at the individual object

database.

3.3.3 Performance

Performance may be measured in terms of two things: efficient resource usage and user

perception (Apple 2009). Users may experience problems with a particular application or

product for one reason or another. These problems may be brought about due to different

aspects of performance. These aspects include (Apple 2009):

1. Computation Performance – This is concerned with the actual operation of the system

being used. It includes characteristics such as the number of instructions executed, the

overhead experienced while performing an operation, or what method or algorithm to

use when carrying out a particular operation.

2. RAM Footprint – The amount of memory required to run an application is an important

consideration when developing an application. Applications that consume RAM

resources may affect performance and be undesirable to users.

3. Startup Time – Users may be discouraged from using an application which takes a long

time to start up. Some applications may run slower when first started but improve on

speed as they run for a while. Though this may be adequate for a server-side

application, it may not be suitable for a client-side application. The user must be

considered when developing an application with regard to the start-up time.

32

4. Scalability – This refers to how a system or application performs under heavy loads

(Wulf 2001). With object databases, one needs to consider how a database will perform

as more objects are added to it. For example, whereas a database may be able to handle

the creation of 500 objects, the same database may not be able to cope with an

instruction to create 50000 objects. Therefore, an application must be designed with

scalability in mind to accommodate users‟ needs.

5. Perceived Performance – This refers to how the application “feels” to the user (Wulf

2001). Users may not be interested in how fast an application is in terms of processing

speed. What may be important to users is their experience when using an application.

For users, responsiveness is usually a more important factor than speed (Apple 2009).

3.3.4 Usability

Usability is the extent to which a product can be used by specific users to achieve specified

goals with effectiveness, efficiency and satisfaction (Spencer 2004). Users would prefer

applications which are easier to use and understand as this would enable them to complete

their tasks easily and efficiently.

The attributes discussed above were used to evaluate each of the chosen databases for this

study to determine which was suited for a specific purpose. A desirable result would be for

each database to meet the requirements presented by the above factors. The databases to be

used for this study are described further in the following section.

3.3.5 Market Share

This refers to how popular or widely used a particular product is. For any product, its

popularity may not necessarily reflect its superiority over other products. Market share is best

viewed together with other factors in order to determine how good a product actually is.

33

3.3.6 Maintenance

Many products require constant maintenance in order to remain current with users‟ needs. The

maintenance provided by the vendors of products should be adequate enough to enable users to

have the most recent and current versions of these products.

Maintenance of Open Source products is usually a self-driven process, with experienced

developers of these products providing some form of support to less experienced users.

Product websites mailing lists and forums are ideal places to find assistance on maintenance of

these Open Source products. The more developed a product‟s site or mailing list, the more

support one will be able to find in terms of maintenance.

3.3.7 Scalability

This refers to the ability of a product to handle a large increase in users, workload or in the

case of databases, transactions (Wheeler 2009). Open Source products are required to be

scalable so that they suit the users‟ needs.

3.3.8 Flexibility

Flexibility is a measure of how well a product can be used to handle unusual circumstances

that is was not originally designed for (Wheeler 2009). With Open Source products, any user

can customize the product to meet their needs, as the developer or user has access to the

product‟s source code.

3.4 Indexing

Indexes are used to speed up the retrieval of records in response to certain search conditions

(Elmasri & Navethe 1994). They are crucial in speeding up data access operations such as

searching and sorting (Korth & Silberschatz 1986).

There are various techniques that can be used for indexing within an object database. Each

technique must be evaluated based on (Korth & Silberschatz 1986):

34

1. Access method – This is the time taken to find a particular data item within the

database.

2. Insertion time – This is the time taken to insert a new item. This time will include the

time taken to find the correct place to insert the new data item as well as the time it

takes to update the index structure.

3. Deletion time – This is the time taken to delete a data item. This will include the time

taken to find the item to be deleted as well as the time taken to update the index

structure.

4. Space overhead – This is the additional space occupied by an index structure. If the

amount of additional space is moderate, then space can be provided in order to achieve

improved performance.

The four databases used for this study all supported some form of indexing. These are listed

below:

1. Db4o – This database used an instruction in the code to add an index on a particular

field of a class. The code segment is shown in Figure 3.1 below:

Db4o.configure().objectClass(ClassName.class).objectField(“field”).indexed(true);

Figure 3.1: Sample code for indexing in Db4o

In the code segment above, ClassName is used to represent the name of the class and

field is used to represent the actual field that one would want an index created on.

2. Neodatis – With this database, indexing can be declared on various fields of a class.

The code segment in Figure 3.2 below illustrates indexing in Neodatis:

35

Odb.getClassRepresentation(ClassName.class).addUniqueIndexOn(“className-

index”, fieldname, true);

Figure 3.2: Sample code for indexing in Neodatis

In the code above, ClassName represents the name of the class and fieldname

represents the actual object that the index is applied to.

3. Perst – With this database, indices were created in order to allow objects to be added

into the database. The code segment is shown in Figure 3.3 below:

 Class Indices() {

 Index uniqueIndex;

 Index nonUniqueindex;

 }

root = new Indices();

root.uniqueIndex = db.createIndex(int.class, true);

root.nonUniqueIndex = db.createIndex(int.class, false);

Figure 3.3: Sample code for creating indices in Perst

In the code above two types of indices are created, one being unique and denoted as

true and the other being non unique and denoted as false.

A key was then added to each of the indices as shown below in Figure 3.4:

root.uniqueIndex.put(new Key(intValue1, ClassName));

root.nonUniqueIndex.put(new Key(intValue2, ClassName));

Figure 3.4: Sample code for adding items to an index in Perst

In the code above, indices are created on integer values and the objects being stored in

the database are of type ClassName.

4. Prevayler – This database does not have a specific indexing technique. The creators of

the database suggest that one implements an indexing technique that one prefers.

36

The four databases were compared against each other with and without indexing enabled in

order to determine which of the four would perform better. These results are discussed in

Chapter Five.

3.5 Open Source Object-Oriented Database Products

3.5.1 Introduction

There are a number of Open Source OODBMSs available on the market. For the purposes of

this study, only four were selected.

3.5.2 Db4o

3.5.2.1 Overview and Features

Db4o stands for DataBase for (4) Objects and is an Open Source object-oriented database

developed by db4Objects, Inc. It is a very popular object database with users and customers

from over 170 different countries. Some of its biggest customers include Boeing, Bosch, Intel,

Ricoh and Seagate (Versant 2009).

Db4o was easy to install. A .jar file from the installation folder was added to the CLASSPATH

and the database was installed.

When dealing with object-oriented environments and relational databases, one may experience

some difficulty when it comes to the transition between the two. This may lead to the

programmer or developer having to sacrifice some aspects of her/his application in order to

accommodate this “object-relational mismatch”. Db4o has been able to offer a solution to this

by doing the following (Versant 2009):

1. It eliminates the object-relational mismatch.

2. It is ACID (Atomicity, Consistency, Isolation and Durability) transaction-safe and

allows for querying, replication and schema changes during runtime.

37

3. It allows for up to 55 times faster performance than object-relational mappers, and

therefore leaves a smaller footprint.

4. It can run in the same memory process to enhance the reliability of the database,

provide for powerful memory and performance tuning and to allow frequent refactoring

with one‟s integrated development environment (IDE).

5. It gives one the ability to modify, optimize and integrate the database engine easily

according to one‟s specific needs.

Db4o stores objects the way they are defined within the application (Versant 2009). Therefore,

it is easier to retrieve objects from the database using simple instructions within the

application.

When comparing Db4o with the traditional RDBMS, Figure 3.5 below illustrates the

difference in how objects are stored within each database (Versant 2009).

Figure 3.5: Comparison of an RDBMS architecture with that of Db4o

Within an RDBMS, objects are usually mapped into rows and columns to form tables. When

programming using an object-oriented programming language, mapping objects to tables can

be a long and tedious process (Versant 2009). When creating objects in an OODBMS, what is

programmed or created is usually represented the same way in the database. Objects are placed

within the database as they are created within the programming code, as shown in Figure 3.4

for Db4o. This eliminates the object-relational mismatch, or impedance mismatch, that occurs

when trying to work with RDBMSs while using object-oriented programming languages.

38

Db4o can be programmed in both Java and .Net (Db4o user guide). For this study, Db4o was

programmed using Java.

Db4o supplies three querying systems: Query-By-Example (QBE), Native Queries (NQ) and

Service-Oriented Database Architecture (SODA) API. It also supplies methods for updating

and deleting objects stored within the database.

Db4o also supports indexing, which can be used to provide maximum querying performance

(Db4o guide).

3.5.2.2 Functionality

Db4o supports all the basic functions required of an object database (inserting or storing,

querying, updating and deleting). It also supports indexing on various fields of a class. The

functionality of Db4o was investigated further in the next chapter, where objects were created,

queried, updated and deleted.

3.5.2.3 Support

Db4o provided excellent support in the form of documentation and forums. The forums

(Versant 2008) were supported by an active developer community that answered any queries

presented to it and was willing to assist with any problems that were encountered during use of

the product.

3.5.2.4 Performance

Performance tests were carried out on Db4o and these will be reported on in Chapter Five.

3.5.2.5 Usability

Db4o can be used by users who have an understanding of either the Java or .Net programming

environments. At the time of writing this dissertation, it was not known whether the product‟s

developers planned to introduce other programming environments to enable a more diverse

array of users to access their product.

39

The sample code provided for Db4o is easy to understand and follow. A user can be able to

easily adapt the code to suit their needs.

3.5.2.6 Market Share

Db4o is a popular product and boasts of many high-profile users such as Boeing, Bosch, Intel,

Ricoh and Seagate (Versant 2009). According to Freshmeat (Freshmeat 2009), Db4o has a

popularity score of 448.63 and a vitality score of 19.42. Freshmeat calculates the popularity

score of a product according to the last 90 days of data collected about this product using the

following formula (Freshmeat 2009):

 ((record hits + URL hits) * (subscriptions + 1))^(1/2)

The vitality score is calculated using the following formula (Freshmeat 2009):

 ((announcements * age) / (last_announcement))^(1/2)

The number of announcements that the project has made is multiplied by the number of days

that it has existed on the Freshmeat database. This is then divided by the days that have passed

since the last release. Projects with a high number of announcements that have been around for

a long time and have newer releases will earn a high vitality score, with a low vitality score

being given to projects that have only been announced once.

There are many users of Db4o as is indicated by the user traffic on its forum, with many users

being active.

3.5.2.7 Maintenance

The maintenance of Db4o is an ongoing process. There are improvements offered periodically

through email messages and on links on the Db4o website. Feedback on the Db4o forum also

provides users with ways on how to make improvements and fix bugs that may be found in the

product.

40

3.5.2.8 Scalability

The scalability of Db4o was tested with the creation of a number of objects and this is reported

on in the next chapter.

3.5.2.9 Flexibility

Db4o provides its source code to users and developers for modification. It is therefore flexible

and can be tailored to suit the users‟ needs and requirements.

3.5.3 Neodatis

3.5.3.1 Overview and Features

Neodatis is an Open Source object-oriented database developed by Olivier Smadja and Cristi

Ursachi (Neodatis 2009). Some of its users include JConcept, NovaDutra and Tabula

(Neodatis 2009).

According to the Neodatis website (Neodatis 2009), these are some of the features of Neodatis:

1. It is simple and easy to learn. The author was able to discover this fact when using

Neodatis. It was easy to learn how to create and store objects within the database.

2. It is small in size, with the database runtime size being less than 550KB of data.

3. It is safe and robust. It supports ACID transactions to guarantee the integrity of data in

the database. Automatic data recovery during start up ensures that all committed work

is applied to the database even in the event of a system failure.

4. It can be used in a multi-threaded environment.

5. It can import and export data to a standard XML format.

41

6. It can let one persist data with a few lines of code. This ensures that programmers are

more productive by allowing them to concentrate more on implementing the business

logic than on monitoring the persistence layer.

Neodatis can be run on both Java and .Net platforms. According to the Neodatis website

(Neodatis 2009) though, Neodatis currently works on the Java platform and is being ported to

the .Net platform.

Neodatis employs four ways of retrieving data. These are:

1. Retrieving all objects of a specific class.

2. CriteriaQuery, which retrieves a subset of objects of a specific class.

3. NativeQuery, which also retrieves a subset of objects of a specific class.

4. Retrieving objects using the object ID (OID).

Future releases will support Query-By-Example, and SQL-like queries (Neodatis 2008).

3.5.3.2 Functionality

Neodatis can perform the storage, querying/retrieval, updating and deleting of objects. It also

provides indexing. These were investigated further in the next chapter.

3.5.3.3 Support

Neodatis offered support in the form of a forum on their website (Sourceforge 2009) where

uses could post queries about using the database and receive assistance from site

administrators and other users.

3.5.3.4 Performance

Performance tests were carried out on Neodatis and will be covered in Chapter Five.

42

3.5.3.5 Usability

Neodatis is available for users to use with Java and is being ported to .Net and Mono (Neodatis

2008).

The sample code provided for Neodatis was also easy to understand and to adapt. Any user can

be able to follow this code and change it in order to suit their requirements.

3.5.3.6 Market Share

The use of Neodatis is not as widespread as with Db4o. Some of its users include JConcept,

NovaDutra and Tabula (Neodatis 2009). The product is also popular as is shown by the

number of active users on its forum (Sourceforge 2009). Frequent activity on a product‟s

forum page is a good indication of the popularity of the product. Freshmeat does not have any

score for this product on its website.

3.5.3.7 Maintenance

Users of Neodatis can seek support for the maintenance of the product by visiting the Neodatis

website (Neodatis 2009). Users can get support on the improvements they can make on the

database through the website forum. They can report bugs, and request the addition of new

features to improve the database.

3.5.3.8 Scalability

The scalability of Neodatis was tested with the creation of a number of objects and this is

reported on in the next chapter.

3.5.3.9 Flexibility

The source code for Neodatis is available for modification by users and developers.

43

3.5.4 Perst

3.5.4.1 Overviews and Features

Perst is an Open Source object-oriented database provided by McObject LLC, which is a

company co-founded by Steven T. Graves and Andrei Gorine (McObject 2009). Some

companies that use the Perst database include, but are not limited to, CA Wily Technology and

Carbon Diem (McObject 2009).

As with Db4o and Neodatis, Perst was easy to install. This was done by adding a .jar file from

the installation folder to the CLASSPATH. Some of Perst‟s features and benefits are listed

below (McObject 2009):

1. It is object-oriented. Perst stores data directly in Java objects, which boosts runtime

performance. This is due to the elimination of the translation required for storage in

relational and object-relational databases.

2. It is compact, with a core that consists of only 5000 lines of code. This ensures that

there is a minimal demand on resources due to this small footprint.

3. It is reliable. It supports transactions with the ACID properties, and requires no end-

user administration.

4. It supports transparent persistence.

5. It makes its source code available to developers and programmers.

6. It provides extras such as garbage collection, schema evolution, XML import/export,

database replication, and support for large databases.

Perst is available as an all-Java embedded database, and can also be implemented in C# for the

.Net Framework application (McObject 2009).

44

For querying, Perst uses JSQL, which is an implementation of SQL which provides a common

way of using SQL from within Java to access the database (PC Mag 2009). It also uses indexes

to speed up querying in the database (McObject 2009).

3.5.4.2 Functionality

Perst is able to store large volumes of data within the database (McObject 2009). A user can

also query, update and delete objects from the database, and also provides indexing. Perst‟s

functionality was investigated further in Chapter Five.

3.5.4.3 Support

Perst provided support on its website (McObject 2009) in the form of a forum. Users could

join the forum in order to post questions, opinions or experiences about using the database.

3.5.4.4 Performance

The performance of Perst will be covered in Chapter Five. The database was tested on its

capabilities to store, query, update and delete objects.

3.5.4.5 Usability

Perst can be coded in Java and C#. Users with experience of these programming environments

will be able to use the database effectively.

The sample code provided for Perst was more complex to work with as compared to the

previous two databases mentioned above. However, as user can still be able to quickly adapt

the code once they can understand how the Perst database structure works.

3.5.4.6 Market Share

Perst is used in a wide range of markets (McObject 2009), including mobile databases,

consumer electronics, telecoms and networking just to mention a few. These varying markets

45

show that Perst enjoys a large market share and therefore increased popularity. Freshmeat does

not have any score for this product on its website.

3.5.4.7 Maintenance

The creator of Perst, McObject LLC, maintains an active forum where users can report bugs in

the product. This forum also acts as a sounding board for users and developers who may have

questions about the use of the product and where other users can post any improvements that

they may have made to the existing product.

3.5.4.8 Scalability

The scalability of Perst was tested with the creation of a number of objects and this is reported

on in the next chapter.

3.5.4.9 Flexibility

Perst‟s source code is available for modification by users and developers.

3.5.5 Prevayler

3.5.5.1 Overview and Features

Prevayler is an object persistent database for Java developed by Klaus Wuestefeld. Some users

of Prevayler include Paradigm One and ObjectResourceManager (Prevayler 2006).

In order to install Prevayler, a .jar file was added to the CLASSPATH. This process was

similar to that of the other databases used in this study.

The architecture behind Prevayler can be illustrated in Figure 3.6 below (Prevayler 2007), with

an explanation to follow thereafter:

46

1

5

Disc

4

3

2

Transaction

Interface

MEMORY

Figure 3.6: Prevayler architecture

The business objects (1) of an application are stored in memory. All modifications to these

objects are encapsulated into instances of the transaction interface (2). When Prevayler is

asked to execute a transaction on the business objects (3), Prevayler first writes the transaction

objects to a journal (4), which are then stored on the disc (5) to prevent data loss in the event of

a system crash. Prevayler may also take a snapshot of the business objects and store this on the

disc. It can then use this snapshot to automatically recover the business objects when the

application is started up again. Some of Prevayler‟s features are listed below (Prevayler 2007):

1. It is simple, with no separate database server to run.

2. It allows a programmer to program with real objects. One can choose the object

models, data structures and algorithms that are suitable for one‟s application.

47

3. It is fast, with everything running in memory and the only disc access is streaming

transactions to a journal.

4. It makes thread safety easy, with transactions running sequentially. This eliminates

multithreading issues such as locking and consistency.

Prevayler is a single-platform database, available only in Java. There is no mention by the

developer on whether other platforms will be supported in future releases of Prevayler.

Prevayler does not have a specific way of implementing queries. The developer of the database

saw it fit to allow users to adopt any querying mechanism suitable for their purposes

(Codehaus 2004).

3.5.5.2 Functionality

According to Prevayler‟s website (Prevayler 2007), the database is simple and extremely fast.

It does not provide any specific form of indexing, and it is left to the user to implement an

indexing scheme that one finds suitable for one‟s needs. The author will test Prevayler and

report on whether this is true in Chapter Five.

3.5.5.3 Support

Prevayler provides support in the form of mailing lists (Sourceforge 2009). Users can send

mail to an address provided in order to query any of the members on this mailing list for

support.

The support provided by Prevayler‟s mailing lists was very helpful and faster as compared to

that offered by the other databases in the form of forums. The response time on the mailing

lists was almost immediate and more direct as it targeted the specific queries posted on the

mailing list.

48

3.5.5.4 Performance

The performance of Prevayler will be covered in Chapter 5. The database was also tested on its

ability to store, query, update and delete database objects.

3.5.5.5 Usability

Prevayler is available for use only in the Java environment. This limits the use of Prevayler by

users who may be familiar with programming environments other than Java, and may prove to

work against it when it comes to users choosing a database for their applications.

Prevayler‟s sample code is very hard to follow and adapt. It involves a very complex object

structure consisting of interfaces and abstract classes. A user would find it difficult to adapt

their code from that provided by Prevayler.

3.5.5.6 Market Share

Prevayler is not as popular as the other databases used in this study in terms of its use.

According to Freshmeat (Freshmeat 2009), Prevayler has a popularity score of 41.38 and a

vitality score of 1.41.

3.5.5.7 Maintenance

Prevayler has an active mailing list where users reply to any queries from other users. This

mailing list is very helpful, as the author of this dissertation was able to discover when using

the product. Other users may also provide assistance with fixing any bugs that may occur

during the use of the product.

3.5.5.8 Scalability

The scalability of Prevayler was tested with the creation of a number of objects and this is

reported on in the next chapter.

49

3.5.5.9 Flexibility

Like all Open Source products, Prevayler also provides its source code for modification by

users and developers. This ensures that users and developers can modify the code to handle

any situation that the product is not initially able to handle.

3.5.6 Summary of Database Features

The databases discussed above can be represented in Table 3.1, with their main features and

characteristics listed:

Database Developer Features and

Characteristics

Programming

Environments

Db4o Db4Objects Inc Eliminates the object-

relational mismatch.

Provides indexing.

Java, .Net

Neodatis Olivier Smadja and

Cristi Ursachi

Simple and easy to

learn.

Can import/export data

to a standard XML

format.

Unique indexing.

Java, .Net, Mono

Perst Steven T. Graves and

Andrei Gorine

Compact.

Supports ACID

transactions.

Provides indexing.

Java, C#

Prevayler Klaus Wuestefeld Allows transactions to

run sequentially.

Runs in memory.

Indexing implemented

by user.

Java

Table 3.1: Summary of object databases and features

50

3.6 Conclusion

This chapter covered the databases that were used in this study. It looked at the selection

criteria that were used to select the databases for the study. The databases selected were Db4o,

Neodatis, Perst and Prevayler. This chapter also looked at factors that were considered

important in the evaluation of the databases. These factors were functionality, support,

performance and usability. A review of each of these factors was carried out for each database,

with performance being discussed further in Chapter Five.

The selection and review of the databases in the previous section provided some insight into

their performance under experimentation. All the databases were easy to install and to learn.

The author did not have any difficulties when it came to using the databases.

The next chapter will look at the experiments that were carried out on the databases to

investigate their performance. These experiments were used to classify the databases according

to their speed in carrying out various operations.

51

CHAPTER 4

EVALUATION OF OPEN SOURCE

OBJECT-ORIENTED DATABASE

PRODUCTS

52

4.1 Introduction

In the previous chapter, the object databases used in this study were discussed in detail. Factors

considered important in the evaluation of the databases, namely functionality, support,

performance and usability, were reviewed. These factors were considered important for a

database to have in order for it to satisfy the users‟ specifications.

This chapter will look at the evaluation of the databases used in this study. It will look at the

evaluation methodology used to test the databases, which includes timing, experimental set-up

and a description of the tests carried out on the databases.

4.2 Aim

The aim of this study was to provide a way for users to know which database performed a

particular function faster, by considering the amount of time a database took to perform a

function.

Each database was evaluated according to the amount of time it took to perform any of the

basic database functions of creating, querying, updating or deleting objects within the

database.

4.3 Research Design

The research design used for this study was a combination of experiments as well as

comparative analysis. These methods were chosen because the study involved comparing a

number of database products by experimenting on them. Comparative analysis was chosen

because a number of products were being tested in order to compare their performance and to

draw conclusions from this comparison.

The experiments were conducted in a controlled environment in order to ensure that the results

obtained were as accurate as possible. The decision to use experiments to test the databases

was taken because it would be possible to predict the results that were to be obtained. Also, the

53

amount of control over external factors that was provided by experimentation in the lab was

desirable for use in this study.

Another advantage of using experiments was that it was possible to control the variables. In

the case of this study, some of the variables included, but were not limited to, the number of

databases tested and the number of objects stored in each database. In addition, experiments

could be replicated, therefore making it possible to authenticate the results produced in the first

place (Colorado State University 2009).

Experiments can also be combined with other research methods. Experimental testing was

used together with comparative analysis in order to obtain the results used for this study.

The disadvantage of experimentation is that inconsistencies may arise as a result of either

human or machine error. Also, though careful attention was taken to ensure that all external

factors were considered and controlled, there were still some factors that affected the

experiments. Some of these included power outages and lack of access to the lab. In spite of

these drawbacks, the experiments were still conducted successfully to produce accurate and

reliable results.

The other method used in the research design was comparative analysis. An advantage of this

method is that it enables a number of things to be compared against one another. Four database

products were compared on their ability to perform the standard database functions of creating,

querying, updating and deleting objects. This comparison was used to draw conclusions as to

which database was better suited to perform a particular function.

Another disadvantage of comparative analysis is that comparing of a large number of items

can prove to be difficult, as one may not be able to fully analyze each product effectively.

Though this may be a disadvantage, the choice to analyze four database products for this study

was considered sufficient to produce the desired results.

54

A similar study was carried out by Mabanza (Mabanza 2006) on Open Source XML databases,

where a combination of experimentation and comparative analysis was used to compare these

database products against each other.

4.4 Evaluation Methodology

For this study, the databases were tested on their ability to perform various functions. Timings

were recorded in order to determine which database performed a particular function the fastest.

The following sections will describe the research instruments used, the data that were collected

and will also include a description of the tests that were conducted.

4.4.1 Research Instruments

The following sections outline the set-up of the experiment, including the hardware and

software used when carrying out the tests on the databases, and the installation procedure.

4.4.1.1 Hardware Used

For this study, a single machine was used to install and store all the databases. When the

databases were being tested, the machine was new and therefore less likely to experience

problems such as hardware or software crashes. The test machine had a Pentium(R) 4, 3.20

GHz processor. It had 2GB of RAM and a hard disk capacity of 160GB. These specifications

surpassed all the minimum requirements for installation and operation of all the databases.

The use of a single machine was considered more convenient, as it was desirable to have all

the databases in one location to perform the comparisons effectively, and the capacity of the

machine was sufficient to cater for all the databases. Furthermore, the experimental results

would be distorted by using different processors to test the various products.

55

4.4.1.2 Software Used

The operating system on the test machine was Microsoft Windows XP Professional N, Version

2002 with Service Pack 2. This operating system came pre-installed with the test machine and

was considered sufficient for the purposes of this study.

The databases used were:

1. Db4o version 6.1,

2. Neodatis-odb version 1.8.1,

3. Perst Build 305, and

4. Prevayler version 2.3.

These databases were all Open Source products and were available for download from their

respective websites on the Internet. At the time of writing this dissertation, some of the

databases already had newer versions available.

Netbeans version 6.0.1 was the integrated development environment (IDE) used to write and

debug the code for the databases.

4.4.1.3 Installation

Instructions for the installation of the databases were provided within the installation folders.

All the databases were installed by adding a .jar file from their installation folders to the

CLASSPATH of the test machine. These .jar files were also added to the Libraries folder in

Netbeans.

56

4.4.2 Data Collected

The data used for this study consisted of timings collected from the database code. Timing data

were collected at specific checkpoints in the database code and recorded in milliseconds. The

timings recorded were for how long it took for certain database operations to be completed.

In order to obtain the timing data, checkpoints were inserted into the database code. The data

were then used to plot graphs that were representative of all the databases and the various

operations carried out on them.

4.4.3 The Wisconsin Benchmark

This benchmark was developed to evaluate relational database systems and machines. It

became highly successful because it was the first evaluation containing impartial measures of

real products (DeWitt 1993). It consists of two parts:

1. A single user benchmark in which a suite of approximately 30 different queries are

used to obtain response time measures in standalone mode (DeWitt 1993).

2. A multi-user benchmark in which several queries of varying complexity are used to

determine the response time and throughput behaviour under a variety of conditions

(Panel discussion 1986).

The creators of this benchmark decided to use synthetically generated relations instead of

empirical data from a real database. This was done for the following reasons:

1. Empirical databases are difficult to scale.

2. Values obtained in empirical databases are not flexible enough to permit the systematic

benchmarking of the database system.

3. One has to deal with very large amounts of data before it can be safely assumed that the

data values are randomly distributed.

57

The Wisconsin benchmark is composed of three relations, one with 1000 tuples named

ONEKTUP, and two others each with 10000 tuples, named TENKTUP1 and TENKTUP2

respectively. The TENKTUP1 relation contains various attributes which include unique1 and

unique2. These are uniformly distributed unique random numbers in the range 0 to

MAXTUPLES-1, where MAXTUPLES is the cardinality of the relation. The attributes found

in each of the relations mentioned above are shown in Table 4.1 below (DeWitt 1993).

Attribute Name

Range of Values Order Comment

unique1

unique2

four

twenty

onePercent

tenPercent

twentyPercent

fiftyPercent

stringu1

stringu2

string4

0-(MAXTUPLES-1)

0-(MAXTUPLES-1)

0-3

0-19

0-99

0-9

0-4

0-1

-

-

-

random

sequential

random

random

random

random

random

random

random

random

cyclic

unique, random order

unique, sequential

(unique1 mod 4)

(unique1 mod 20)

(unique1 mod 100)

(unique1 mod 10)

(unique1 mod 5)

(unique1 mod 2)

candidate key

candidate key

Table 4.1: Attribute Specification of "Scalable" Wisconsin Benchmark Relations

The values of unique1 are randomly distributed unique values between 0 to MAXTUPLES-1,

whereas the values for unique2 are in sequential order from 0 to MAXTUPLES-1. The values

for the four and twenty attributes are randomly distributed as they are generated by computing

the appropriate mod of unique1. The other set of attributes, onePercent, tenPercent,

twentyPercent and fiftyPercent, have been defined so as to simplify the task of scaling

selection queries with a certain selectivity factor. For example, the predicate “twentyPercent =

3” will always return 20% of the tuples in a relation, regardless of the relation‟s cardinality.

The string attributes, stringu1 and stringu2, are string analogies of unique1 and unique2. Both

stringu1 and stringu2 consist of seven significant characters from the alphabet (A-Z) followed

by 45 x‟s. The seven significant characters of stringu1 (stringu2) are obtained by converting

the value of unique1 (unique2) to its corresponding character string representation, and

padding the result to a length of seven characters with A‟s.

58

The last string attribute, string4, assumes four values, AAAAxxx…, HHHHxxx…,

OOOOxxx…, and VVVVxxx… in a cyclic manner:

AAAAxxx…

 HHHHxxx…

OOOOxxx…

VVVVxxx…

AAAAxxx…

HHHHxxx…

OOOOxxx…

VVVVxxx…

The structure of the attributes mentioned above was modified in order to develop the Item

class for use in the experiments that were conducted for this study. The way that the attributes

were defined made it ideal to use them to model the Item class.

4.4.4 The Item class

In order to evaluate each database, objects must be inserted, queried, modified and deleted. A

decision was made as to what kind of objects should be stored in the databases, in order to

allow for operations that could be meaningfully timed and would allow for a sensible

evaluation.

The approach that was adopted was similar to the one used in the Wisconsin Benchmark for

relational databases, as described by DeWitt (DeWitt 1993), where the fields in each row of

the database table are structured in such a way as to control the number of rows returned by a

specific query.

59

All objects are of class Item. An Item object has a number of member variables, as depicted in

Figure 4.1 below.

.

Figure 4.1: Member variables of the Item class

The variables unique1 and unique2 have unique values in a particular database. If the database

has size objects, then the values of unique2 are 0, 1, 2, …. (size – 1) in the order in which the

objects were stored. The variable unique1 consists of the numbers 0, 1, 2, …. (size – 1) in a

randomized order. A query of the form (unique2 < 5) would select the first five items stored in

the database, while a query of form (unique1 < 5) would select five items scattered in various

places throughout the database. The query (unique2 > size – 6) will select the last five items

stored in the database.

Variables onePercent, tenPercent, twentyPercent and fiftyPercent are defined in the following

way: onePercent = unique1 % 100, tenPercent = unique1 % 10, twentyPercent = unique1 % 5

and fiftyPercent = unique1 % 2. The query (fiftyPercent = 1) will return exactly half of the

items in the database. Furthermore, the items selected by this query will be randomly dispersed

throughout the database.

The string variables stringu1, stringu2 and string4 are selected as follows. Firstly, stringu1 is

derived from the unique integer unique1, in such a way that each value of the variable stringu1

occurs exactly once in the database. This is the same for stringu2, which is derived from

unique2. For the variable string4, it has exactly four equally likely values, so that each value of

string4 occurs one quarter of the time in the database. The string variables contain about 50

characters, and can be used to test the performance of the database when managing strings of

characters.

public class Item {

 int num;

 int unique1, unique2;

 int onePercent, tenPercent;

 int twentyPercent, fiftyPercent;

 String stringu1, stringu2, string4;

 // various constructors and other methods

}

60

Finally, the integer variable num is only used as a spare variable when updating the database –

the value of num can be changed without affecting the more significant member variables of

the Item class. The complete Item class can be found in Appendix A.

4.4.5 Timing

For each database, the basic operations were performed and timed. The timing was done by

calculating how long a database took to perform a particular function. The time (t1) recorded

before the function was carried out was subtracted from the time (t2) after the function was

completed. These timings were then used to determine which database performed a particular

function faster. Each experiment was repeated ten times, and the mean time, as well as the

standard deviation, was calculated.

4.4.6 Description of Tests

The databases were tested in order to evaluate them. These tests were carried out in order to

establish the performance of the databases and to show which was capable of performing a

specific function faster than the other. These tests are described below.

4.4.6.1 Inserting

Databases were created to store large amounts of data conveniently. A database should be able

to handle the storing or insertion of large amounts of data. The databases for this study were

required to handle the creation of numbers of objects ranging from 5000 to 100000. The limit

of 100000 was chosen as this was considered to be adequate for the purposes of comparison.

A sample of the code to insert objects in db4o is shown in Figure 4.2 below:

61

int limit = 100000;

 for (int size = 5000; size<=limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long Time = 0;

 for (int m = 0; m<10; m++) {

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for(int k = 0; k<size; k++){

 db.set(items[k]);

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 Time = t2-t1;

 sum += Time;

 sumSquares+= Time*Time;

 }

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

Figure 4.2: Sample code for inserting objects in Db4o

In the figure above, limit represents the maximum number of objects to be created in the

databases, which were 100000. The variable size will be used to create databases ranging from

5000 to 100000 in steps of 5000. The variables sum, sumSquares and Time were used to

calculate the standard deviation. These objects were placed in databases with corresponding

names using the instruction new MakeItems(size).itemList(), which creates an array of size

items, with values of unique1, unique2 in range 0 to size-1. For example, for 5000 objects,

these were placed in a database named db4o-no-index-5000-0. The instruction db.set(items[k])

was used to place the objects into the database. The average and standard deviation are

calculated and stored in a file on the disc.

The creation of each database was repeated 10 times in order to get the average time for the

particular operation. This was done in order to account for variations in the execution time. An

average of the timings taken by repeating the operation 10 times was a more accurate

62

representation of the actual time taken to perform the operation. The standard deviation was

also calculated to as to record the spread in time of the creation of the objects due to the

repetition.

4.4.6.2 Querying

Every database needs to have a querying facility, where data can be retrieved in some way.

The databases chosen for this study all offered such a facility. Each of them was queried in

order to compare the response time that would be obtained after a query was performed.

The various databases had different ways of querying. These included:

1. Query-By-Example – This method was available for db4o.

2. Native Queries – This method was provided by both db4o and Neodatis.

3. Service-Oriented Database Architecture (SODA) API – This method was available for

db4o.

4. Criteria Query – This method of querying was provided by Neodatis.

5. JSQL – This method of querying was available for Perst.

The databases were queried using specific criteria in order to obtain desired results. The

queries used are specified below:

Q1. Querying for unique1

The value of unique1 in the database, as mentioned in section 4.4.4, consists of the numbers 0,

1, 2, …. (size - 1) in a randomized order. An example of a query would be to find all items in

the database where the value of unique1 is 300. This is shown in Figure 4.3 below, with

sample code from Perst:

63

int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 1000;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "unique1 = 300");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 }

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 }

Figure 4.3: Sample code for querying for unique1 in Perst

In the code segment above, the instruction query.prepare(Item.class, "unique1 = 300");

ensures that the field unique1 in the Item class will be searched for. The code iterator =

query.execute(root.iterator()); will execute the query and return all objects that match the

query. This process is then timed, with the average time and standard deviation being

calculated and saved to a file.

Q2. Querying for unique2

The code for querying for unique2 is similar to the one found above, with the only change

being in the line query.prepare(Item.class, "unique2 = 300"); . This code is also timed and the

average time and standard deviation calculated and saved to a file.

64

Q3. Querying for one percent of objects, randomly distributed

This query was used to select one percent of objects from the database. For example, for a

database containing 5000 objects, running this query would produce 50 objects. This query

was timed for all the databases in order to see which database performed the query faster.

The code for selecting one percent in Db4o is shown in Figure 4.4 below:

for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("onePercent").constrain(new Integer(5));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

 System.out.println("Searched size = " + size + " For onePercent = 5");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

}

Figure 4.4: Code for selecting one percent in Db4o

The code for selecting one percent in Neodatis is shown in Figure 4.5 below:

65

for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("onePercent", 5));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

 System.out.println("Searched size = " + size + " For onePercent = 5");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

Figure 4.5: Code for selecting one percent in Neodatis

The code for querying one percent of the objects in Perst is shown in Figure 4.6 below:

for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 1000;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "onePercent = 5");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

66

 }

 System.out.println("Searched size = " + size + " For onePercent = 5");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);listResult(result);

}

Figure 4.6: Code for selecting one percent in Perst

The code for selecting one percent in Prevayler is shown in Figure 4.7 below:

List list = ((ItemKeeper)prevalentSystem).itemList();

 List result = new ArrayList();

 for(int k = 0; k < list.size(); k++) {

 Item item = (Item)list.get(k);

 if(item.onePercent == 5)result.add(item);

 }

 return result;

Figure 4.7: Code for selecting one percent in Prevayler

Q4. Querying for ten percent of objects, randomly distributed

This query was used to select ten percent of the objects stored in the database. The code for

this query was similar to that for selecting one percent, with the only change being made in the

following lines in the respective databases:

 Db4o:

query.descend(“tenPercent”).constrain(new Integer(4));

 Neodatis:

IQuery query = new CriteriaQuery(Item.class, Where.equal(“tenPercent”,4));

 Perst:

query.prepare(Item.class, "tenPercent = 4");

 Prevayler:

If(item.tenPercent==4) result.add(item);

By modifying the code in the ways shown above, the query was able to select ten percent of

the objects stored in the respective database.

67

The queries above were used to select ten percent of objects stored in each of the databases. A

similar modification was made to the code as was done for the previous query to select twenty

percent of the objects. The code was then used to select twenty percent of the objects in the

database.

Q6. Querying for fifty percent of objects, randomly distributed

This query was executed and it selected fifty percent of the objects that were stored in the

database. The code for querying was also changed as in the previous cases to enable it to select

fifty percent of the objects stored in the database.

When querying for, say, 50% of the objects in the database, the number of objects returned

will clearly increase with the size of the database. This is realistic, in the sense that a particular

query is likely to return more results from a large database than from a small one. However,

one might also like to compare the timings in the case where the query returns a fixed number

of items, independent of the database size.

To test this out, the following two queries were also implemented:

Q7. Querying for the first 1000 objects in the database

This is implemented using the condition that unique2 < 1000.

Q8. Querying for 1000 randomly dispersed objects

This is implemented by requiring that unique1 < 1000.

Q9. Querying strings

The Item.java class also had string variables, namely stringu1, stringu2 and string4. The

values for these variables were obtained by converting the values created for unique1 and

68

unique2 into strings. These string variables were then queried in the database and the timings

taken to establish how long it took to obtain a result.

This query uses a function convert() that takes any integer as a parameter and converts it to its

corresponding string object in the database. It also adds an additional 45 x‟s. The following

queries were used in Perst:

 query.prepare(Item.class, "stringu1 = '"+convert(300)+ x45 +"'");

 query.prepare(Item.class, "stringu2 = '"+convert(300)+ x45 +"'");

 query.prepare(Item.class, "string4 = 'AAAA"+x45+ "xxx'");

The query above for string4 returns four A‟s in addition to 45 x‟s and an additional three x‟s.

The searches based on stringu1 and stringu2 return a unique value, and those based on string4

return one quarter of the objects found in the database.

Q10. Querying for unique fields

The Item class has four fields which are unique, namely unique1, unique2, stringu1 and

stringu2. Experiments were carried out to find out the amount of time it took to search the

databases for these fields.

4.4.6.3 Updating

One may want to modify data already stored within the database by either changing it or

adding something to its value. Different experiments were conducted in order to measure the

time taken to update any particular database. The times were used in order to enable the

comparison of the databases when updating a number of objects.

69

A sample of the code for updating in db4o is shown in Figure 4.8 below:

for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 long t1 = System.currentTimeMillis();

 for (int m = 0; m<repeats; m++) {

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Db4o.configure().objectClass(Item.class).cascadeOnUpdate(true);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique1").constrain(new Integer(300));

 ObjectSet result = query.execute();

 for(int k=0; k<result.size(); k++) {

 Item found = (Item)result.next();

 found.addNumber(k);

 db.set(found);

 db.commit();

 }

 db.close();

 }

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Modified size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Modifying time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

}

Figure 4.8: Sample code for updating in Db4o

In order to update objects within the database, they must first be queried. This ensured that the

update was performed only on the required object or objects. Using the set() method above

without first retrieving the objects would add new objects to the database (Db4o user guide

2003).

Once the objects were queried, a loop was used to go through and modify them by adding a

number to the num variable in the class Item. This variable is used for no other purpose. The

instruction found.addNumber(k) added a number k to the result obtained from the query. The

70

changed object was then put back into the database using the db.set(found) instruction. The

changes to the database were then made using the instruction db.commit().

Although various databases implemented updating differently, the concept was generally the

same. Objects were first retrieved using a query before being updated and returned into the

database. The results of the comparison in timings taken to update objects will be discussed in

the next chapter.

4.4.6.4 Deleting

The last major function that a database must be able to perform is the deletion of objects. Each

of the databases that were chosen was able to delete objects.

The section of code in Figure 4.9 below shows how objects were deleted in db4o:

for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 String dbname = ("db4o-no-index"+size+"-"+0);

 db = Db4o.openFile(dbname);

 Db4o.configure().objectClass(Item.class).cascadeOnDelete(true);

 int repeats = 10;

 long t1 = System.currentTimeMillis();

 for(int m = 0; m<repeats; m++) {

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique1").constrain(new Integer(300));

 ObjectSet result = query.execute();

 for(int k=0; k<result.size(); k++) {

 Item found = (Item)result.next();

 db.delete(found);

 db.commit();

 System.out.println("Deleted: "+found);

 }

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Deleted size = " + size + "For unique1 = 300");

71

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Deleting time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

}

Figure 4.9: Sample code for deleting objects in Db4o

As with the updating of objects, one must first query the objects from the database so as to

delete them. After the query was executed, a loop was used to go through all the results. Each

result was then deleted from the database using the instruction db.delete(found). An instruction

was used to check on whether these objects were successfully deleted from the database.

As with updating, the way that the databases deleted objects was similar, with the difference

only being in the way the code was written. A query was used to obtain the objects and they

were then deleted from the database. The timings were taken to establish which database

deleted objects faster. These results will be discussed in the next chapter.

4.5 Conclusion

This chapter covered the methodology used for testing the databases chosen for this study. It

covered the research design and evaluation methodology used. The software and hardware

environments were discussed and the tests that were performed on the databases were

described in detail. These tests were used to compare the performance of the databases in

carrying out various functions. The results of these tests will be discussed in the next chapter.

72

CHAPTER 5

RESULTS AND DISCUSSION OF

OUTCOMES

73

5.1 Introduction

In the previous chapter, the methodology used for this study was discussed. This methodology

included the research design and evaluation methodology that was used in this study. Also, the

tests that were performed on each database were explained further. The hardware and software

environments were also discussed.

This chapter will look at the results obtained from the experiments conducted on the object

databases. It will also compare the results in order to establish which database performs a

particular function better in terms of the amount of time taken to complete an operation.

5.2 Results Obtained From Experiments

The purpose of the experiments was to perform timings of various databases as they performed

the basic database functions of storing, querying, updating and deleting. The timings were a

measure of the response time for particular databases for particular operations.

The number of objects that were added to the database ranged from 5000 to 100000. This

operation of storing objects was timed and graphs were created to compare the timings from

each database. Objects were also queried, updated and deleted and these results will be

discussed further in the coming sections.

The results obtained are represented graphically in the following sections. The source code for

all the operations, namely storing, querying, updating and deleting, and tables containing the

timing results can be found in Appendices A and B respectively.

5.2.1 Storing

The experiments for storing objects within the database comprised of code written to store

between 5000 and 100000 objects in the databases. Two sets of experiments were performed,

74

one with indexing enabled, and the other without. Three databases provided indexing, namely

Db4o, Neodatis and Perst. The creators of Prevayler suggest that any form of indexing can be

applied according to the users‟ requirements. In view of this, it was felt that implementing the

author‟s own indexing mechanism would not represent a fair comparison.

For Neodatis, the indexing mechanism only allowed for the creation of unique indexes on any

field. The Item class has four fields which are unique, namely unique1, unique2, stringu1 and

stringu2. A different comparison graph was created for the databases with indexing

implemented on four fields.

These operations were timed for each database to determine which one performed the

operations faster. The timings are shown in milliseconds. The timing differences in each of the

graphs with the objects raging from 5000 to 100000 are sometimes small and not noticeable.

These differences would be significantly larger with objects in the millions or even billions

being added to any particular database. Figure 5.1 below shows a comparison graph for the

timings of the four databases when creating without indexing applied. A discussion follows

thereafter. The standard deviations (SD) obtained when calculating the times for Perst are very

low, as compared to those for Prevayler, which are very high. These standard deviation values

imply that the results of the Prevayler experiments were very widely spread as compared to

those for the other databases. The times taken by all the databases can be found in a table B.1

in Appendix B.

75

Figure 5.1: Times taken to store objects in the databases

In the graph shown above, the horizontal axis represents the number of objects added in the

databases and this ranged from 5000 to 100000. The vertical axis represents the time taken, in

milliseconds, to store the objects within the databases. The curves represent the times taken to

store objects ranging from 5000 to 100000 within the four databases. The times taken for

Prevayler to create objects are higher than for the other databases. Different users of the

Prevayler database offered explanations, through the mailing list on their website (Sourceforge

2009), on what the possible causes of this could be. The explanations included:

1. The poor performance of the database may have been caused by other IO operations on

the same disc. The remedy suggested for this was to use an entirely separate disc for

the database to read and write to.

2. The objects were being inserted into the database one at a time, which was affecting the

performance of the database. The suggested remedy was to insert the objects as an

array to reduce the time taken to insert each object individually.

Placing the database on a separate disc did not improve its performance to a noticeable degree.

The timings were similar, and in some cases, higher than before. Also, the code used to store

76

the objects was written to enable each object to be added to the database one at a time. The

other databases in this study used the same code for storing objects, and therefore it was not

desirable to change the way in which objects were inserted.

A possible cause of the high values for Prevayler could be the calling of numerous constructors

in its code when creating the database. This could have affected the time that it took to create

the different databases.

The curves created by the other databases are barely discernible, as they are closely formed at

the bottom of the graph. In order to make an observation of how these curves behaved, another

graph is shown below in Figure 5.2:

Figure 5.2: Graph showing times taken for storing objects in Db4o, Neodatis and Perst

Db4o and Neodatis exhibit similar performance, though Perst is substantially faster than the

other databases.

Neodatis only provides unique indexes and was therefore only able to create indexes on the

unique fields of the Item class, namely unique1, unique2, stringu1 and stringu2. All the other

databases that provide indexing were therefore also tested with indexes applied on the four

fields. Figure 5.3 below shows the results of this comparison.

77

Figure 5.3: Creating objects with indexes applied to four fields

In the figure above, Db4o takes the shortest time and Perst takes the longest time to create

objects. It can therefore be concluded that when indexing is applied to the unique fields of the

Item class, Db4o takes the shortest time to create objects and Perst takes the longest time, with

Neodatis found in between the two databases. Note now that, with indexing, Perst is slowest,

whereas it is fastest without indexing. There is a high cost in implementing indexing with

Perst. The indexing scheme for Db4o is clearly implemented efficiently.

For all the databases, the amount of time taken to store objects increased as the number of

objects increased. In some cases, the amount of time taken by Perst was very small compared

to all the databases. It can be concluded that it takes Perst the shortest time with no indexing

but the longest time when indexing is enabled.

78

5.2.2 Querying

5.2.2.1 Q1. Querying for unique1

The values of unique1 are randomly distributed within the databases. This experiment searched

for a single record with unique1 being equal to 300. Figure 5.4 below illustrates the results

obtained.

Figure 5.4: Searching for unique1 without indexing

Prevaylers takes the longest time to search for the values of unique1. Perst takes the shortest

time, followed by Db4o and Neodatis respectively. It can therefore be concluded from the

above figure that Perst performs the search faster.

5.2.2.2 Q2. Querying for unique2

The values of unique2 are in sequential order from 0, 1, 2, …. (size – 1) and are found in the

order in which the objects were stored. This experiment searched for the single record with

unique2 equal to 300. The results are shown in Figure 5.5 below.

79

Figure 5.5: Searching for unique2 without indexing

According to the graph, Neodatis takes the longest time to obtain a result from the query.

Neodatis follows with the second highest times, followed by Db4o. Perst takes the shortest

time. The standard deviations (SD) obtained when calculating the timings are lowest for Perst

and highest for Prevayler. It can therefore be concluded that Neodatis took the longest time to

perform the operation and Perst took the shortest time.The times taken by all the databases can

be found in table B.2 in Appendix B.

5.2.2.3 Q3. Querying for one percent of objects, randomly distributed

The query above, as mentioned in section 4.4.6.2, selects one percent of the objects found in

any database. The results of the timings are represented in Figure 5.6 below.

80

Figure 5.6: Searching for one percent of objects without indexing

Prevayler takes the longest time to perform the search, followed by Neodatis. These are

followed by Db4o, with Perst taking the shortest time to perform the query. It can therefore be

concluded that Prevayler takes longer in performing the query. The standard deviations (SD)

obtained when calculating the timings for Perst was very low, as compared to the other

databases, with Db4o‟s standard deviation being the highest. The times taken by all the

databases can be found in table B.3 in Appendix B.

5.2.2.4 Q4. Querying for ten percent of objects, randomly distributed

This query searches for ten percent of the objects stored in the database. The results are shown

in Figure 5.7 below.

81

Figure 5.7: Searching for ten percent of objects without indexing

Prevayler takes the longest time, with the other databases performing the query faster than

Prevayler. The standard deviation (SD) obtained when doing the timings for Perst is the lowest

and that for Neodatis is the highest in all the databases. The times taken by all the databases

can be found in table B.4 in Appendix B.

5.2.2.5 Q5. Querying for twenty percent of objects, randomly distributed

This query is executed to search for twenty percent of the objects in any particular database.

The results are shown in Figure 5.8 below.

82

Figure 5.8: Searching for twenty percent of objects without indexing

The results shown above indicate that Prevayler takes the longest time and Perst the shortest in

performing the operation. Perst has the lowest standard deviation (SD) and Neodatis has the

highest in all the databases. The times taken by all the databases can be found in table B.5 in

Appendix B.

5.2.2.6 Q6. Querying for fifty percent of objects, randomly distributed

This query selects fifty percent of the objects in any particular size of database. The results are

shown in Figure 5.9 below.

83

Figure 5.9: Searching for fifty percent of objects without indexing

Prevayler takes the longest time and Perst the shortest time. The standard deviation (SD) for

Perst is the lowest calculated and that for Prevayler is the highest across all times recorded.

The times taken by all the databases can be found in table B.6 in Appendix B.

From the above experiments, it can be concluded that Prevayler is not particularly desirable for

performing searches, whereas Perst performs searches well

5.2.2.7 Q7. Querying for the first 1000 objects in the database

This experiment will select all values where unique2 < 1000. The query will return the first

1000 objects found in the database. The results of the experiment are shown in Figure 5.10

below.

84

Figure 5.10: Field unique2 less than 1000

Perst and Db4o take shorter times to perform the experiment respectively as compared to

Neodatis and Prevayler. The standard deviation (SD) for Perst is the lowest, followed by Db4o,

then Prevayler, and Neodatis comes last with the highest standard deviations calculated. The

times taken by all the databases can be found in table B.7 in Appendix B.

5.2.2.8 Q8. Querying for 1000 randomly dispersed objects

This query will select all numbers where unique1 < 1000. This will return 1000 random

numbers created in each database. The results are show in Figure 5.11 below.

85

Figure 5.11: Field unique1 less than 1000

Prevayler takes the longest time to perform the operation, followed by Neodatis. Perst and

Db4o take shorter times respectively to carry out the operation. The standard deviation (SD)

obtained for the calculations shows that Perst had the lowest standard deviation and Prevayler

had the highest in all the databases. The times taken by all the databases can be found in table

B.8 in Appendix B.

5.2.2.9 Q9. Querying strings

Three experiments were carried out on strings, which involved selecting stringu1, stringu2 and

string4 from the different databases. The results are shown below.

86

Figure 5.12: Searching for stringu1 without indexing

The trend that was observed before, of Prevayler taking the longest time to search for values, is

repeated in the experiment above. The other databases take shorter times to perform the

experiment, with Perst taking the shortest time. Perst has the lowest standard deviation (SD)

and Db4o has the highest in all the databases. The times taken by all the databases can be

found in table B.9 in Appendix B.

Figure 5.13: Searching for stringu2 without indexing

87

Prevayler takes the longest time to perform the above experiment with Perst taking the shortest

time. Perst has the lowest standard deviation (SD) and Neodatis has the highest in all the

databases. The times taken by all the databases can be found in table B.10 in Appendix B.

Figure 5.14: Searching for string4 without indexing

In all the experiments on strings, it can be concluded that Prevayler takes the longest time to

perform any particular experiment compared to the other databases. Perst takes the shortest

time, with Db4o and Neodatis following respectively in terms of lower timings. The standard

deviation (SD) for Perst is the lowet, with that of Neodatis being the highest of all the tested

databases. The times taken by all the databases can be found in table B.11 in Appendix B.

5.2.2.10 Q10. Querying for unique fields with indexing

As mentioned previously, Neodatis can only apply indexing to unique fields. Prevayler does

not provide indexing, and was therefore not considered in the following section. Experiments

were carried out on the following fields: unique1, unique2, stringu1 and stringu2. The graphs

shown were created as a result of these experiments.

88

Figure 5.15: Searching for unique1 with indexing

Db4o and Perst take shorter times to perform the search as compared to Neodatis. The standard

deviation (SD) is lowest for Perst and highest for Neodatis. The times taken by all the

databases can be found in table B.12 in Appendix B.

Figure 5.16: Searching for unique2 with indexing

89

Figure 5.17: Searching for stringu1 with indexing

The standard deviation (SD) is highest in Neodatis, with Perst and Db4o both having low

standard deviations. The times taken by all the databases can be found in table B.13 in

Appendix B.

Figure 5.18: Searching for stringu2 with indexing

90

Neodatis and Db4o take a similar amount of time to create the index, but the indexing scheme

for Db4o is much more efficient when searching. With Perst, the index is created quickly and

is also very efficient when searching.

It can be concluded from the above experiments that Neodatis takes the longest time to search

for strings as compared to Db4o and Perst.

5.2.3 Updating

The experiments conducted for updating, as mentioned in section 4.4.6.3, involved modifying

the Item class by adding a number to the num variable. The results of these experiments are

shown below.

Figure 5.19: Modifying a unique record without indexing

In the figure above, Neodatis takes the longest time to perform the operation, with Perst

following it. Prevayler takes the least time and Db4o follows it with the second least time.

91

Figure 5.20: Modifying 1000 randomly distributed records without indexing

In Figure 5.20 above, the databases that took the longest times were Perst and Neodatis, which

exhibited similar performance. Prevayler performed the updates most efficiently.

Figure 5.21: Modifying a unique record with indexing

In the figure above, Neodatis again takes the longest time to perform the operation. Perst takes

the least time. The standard devition (SD) is very high for all the databases when recording the

92

timings for this experiement, but Perst has the lowest and Neodatis has the highest. The times

taken by all the databases can be found in table B.14 in Appendix B.

Figure 5.22: Modifying the first 1000 items without indexing

In the figure above, Perst takes the longest times when it is modifying values in the smaller

databases. As the databases increase in size, the times taken by Db4o increase. This spike in

the graph for Db4o is most likely caused by a timing anomaly. The general trend of the graphs

implies that Perst is worse the Db4o. Neodatis takes the least time to perform the experiment.

In most of the experiments performed above, Neodatis takes the most time to perform

operations. Perst and Prevayler take the least time, and the timings for Db4o are found in

between those of the other databases.

5.2.4 Deleting

The delete operation was performed last. Some experiments were conducted to time this

operation for various fields in the database. These results are shown below.

93

Figure 5.23: Deleting a single item without indexing

In the figure above, Prevayler and Neodatis take longer to perform the operation respectively

than Perst and Db4o. The standard deviation (SD) for Db4o is very low, and is 0 in some

cases. The SD is highest for Perst. The times taken by all the databases can be found in table

B.15 in Appendix B.

Figure 5.24: Deleting 1000 randomly distributed items without indexing

94

In the figure above, Neodatis took longer to perform the operation, with Db4o taking the least

time. The standard deviation (SD) is also lowest here in Db4o and highest in Neodatis. The

times taken by all the databases can be found in table B.16 in Appendix B.

Figure 5.25: Deleting a single item with indexing

In the figure above, Perst takes the longest time to perform the operation. Neodatis takes the

least time, followed by Db4o. Comparing figures 5.24 and 5.25, we see that it can take a long

time to remove items from the Perst index.

95

Figure 5.26: Deleting 1000 randomly distributed items with indexing

In the figure above, the graph shows that it took Perst the longest time to perform the

operation. Db4o and Neodatis took almost similar times to complete the operation. The curve

for Db4o is hardly visible in the figure above and it is therefore not clear that Db4o takes a

shorter time than Perst. Looking at all the graphs, it can be concluded that for delete

operations, Perst takes the most time and Db4o takes the least. The standard deviation (SD) is

lowest for Db4o, followed by Neodatis and Perst comes last with a very high SD. The times

taken by all the databases can be found in table B.17 in Appendix B.

The databases above can be ranked in terms of performance, from best to worst, in the table

below:

Store no

index

Store with

index

Query 20%

no index

Modify no

index

Modify

with index

Delete no

index

Delete with

index

Perst Db4o Perst Prevayler Perst Db4o Neodatis

Db4o Neodatis Prevayler Db4o Db4o Prevayler Db4o

Neodatis Perst Db4o Perst Neodatis Perst Perst

Prevayler - Neodatis Neodatis - Neodatis -

Table 5.1: Databases ranked according to performance

96

5.3 Discussion of Findings

After all the tests were carried out on the databases, it is possible to make some comparisons

on their performance.

Db4o has demonstrated its functionality, as mentioned in section 3.5.2.2. One is able to store,

query, update and delete database objects. Db4o also provides indexing and is scalable, with as

many as 100000 objects being added to the database. Db4o was able to excel in tasks involving

deleting of objects from the databases.

Neodatis performed many of the operations the slowest. Neodatis has proven its functionality,

as mentioned in section 3.5.3.2. Objects were added, queried, updated and deleted. Neodatis

also provided indexing. Neodatis took a short time to create objects, but was the database that

lagged behind when it came to many of the other database operations. Db4o and Perst fell in

between these two extremes of performance.

Perst performs consistently, with its times for creating, searching and updating being fast. The

only time that Perst seems to suffer in its performance is when it has to carry out the delete

operation. Perst has good functionality, as mentioned in section 3.5.4.2. It was able to store

large volumes of data very fast. This also serves to confirm its scalability, as mentioned in

section 3.5.4.8.

Prevayler took a long time to create objects. It also took longer times when it came to

performing searches. This is in contrast to the claim by Prevayler, as shown in section 3.5.5.2,

that their database is simple and fast. The code segments and documentation provided were

inadequate. On the other hand, Prevayler performs modification of objects very fast.

A possible reason for Prevayler behaving the way is does is that the developers may have

invested a lot of time in ensuring that the creation of the database will speed up all the other

97

functions. Usually, one part of a product‟s performance may suffer in order to accommodate it

being superior in another part.

By referring to the results above, a user may be able to decide which of the databases to use for

their requirements.

5.4 Conclusion

This chapter covered the experiments carried out on all the databases. Various experiments

were conducted in order to test on the speed of these databases in producing results. The

graphs created from the experimental results can be used to make an informed decision on

what database to use depending on the user‟s requirements. A user that would want a fast

database for creating or storing objects should use Perst or Db4o, rather than Prevayler. On the

other hand, if a database is needed that will perform searches, updates and deletes, Prevayler

may well be a user‟s best option.

98

CHAPTER 6

CONCLUSION AND FUTURE WORK

99

6.1 Introduction

This chapter will conclude the project on the comparison of Open source object-oriented

database products. It will provide a summary of the project, a summary of the findings and

discuss the conclusions reached from these findings. A summary of the conclusions and

suggestions for future research will also be covered.

6.2 Project Summary

The project involved comparing the performance of four Open Source object-oriented database

products on their ability to perform the basic database operations. These operations are

creating, querying, updating and deleting database objects.

The selected databases were Db4o, Neodatis, Perst and Prevayler. Java code was written in

order to test these databases. The tests were carried out and timings were taken that would

show which of the databases performed a particular function the fastest.

These timings were recorded and used to create graphs that showed the performance of these

databases.

6.3 Work Covered

The experiments that were carried out were structured in such a way as to enable the author to

confirm whether the object databases were able to perform the standard database operations.

Graphs were used to show how these different databases performed the experiments.

The thesis statement in chapter one was as follows:

 Some Open Source object-oriented databases are better than others at performing the

standard database operations of storing, querying, updating and deleting database

objects.

100

The results obtained were able to confirm that these Open Source object-oriented databases are

able to perform the standard database operations of storing, querying, updating and deleting

database objects.

6.4 Conclusions

The following conclusions were made at the end of the project:

 All the databases used in this study are able to carry out the basic standard operations

of creating, querying, updating and deleting database objects.

 Prevayler was the slowest database and Perst was the fastest when it came to creating

objects.

 Perst was the fastest in searching and updating, but was slowest when it came to

deleting objects from the databases.

 Neodatis performed many of the operations the slowest, apart from the operation for

creating objects.

 Db4o performed operations at different speeds compared to the other databases, but it

was neither the slowest nor fastest at completing any operation.

 Not all the databases offered indexing.

 Object databases can prove difficult to use if one does not have the necessary

programming skills.

 The performance of the different databases made them suitable for different operations.

For example, in a case where searching is more important, like in a library, Perst would

be more suitable to be used as it performs searches faster than any of the other

101

databases. Neodatis would be suitable for a case where a user would want to enter

objects into the database quickly and not need to search for them very often, such as a

payroll system.

6.5 Summary of Contributions

The conclusions reached in section 6.4 above may serve as a guide to anyone who may want to

use the chosen object-oriented databases. The experiments carried out on these databases

showed which was suited to perform a particular function.

6.6 Suggestions for Further Research

Some suggestions for future work may include, but are not limited to, the following:

 The number of databases can be increased in order to broaden the scope of products

being tested.

 The number objects being added to the databases may be increased to more than

100000 so that the behaviour of these databases in terms of scalability and performance

can be tested.

 Newer versions of the object databases can also be used to run similar experiments.

 The number of experiments may be increased in order to investigate different scenarios

when dealing with object databases.

6.7 Conclusion

Open Source object-oriented databases are found in our everyday lives. Their use is gaining

popularity and though it may not surpass that of the commonly used relational databases, an

understanding of their functioning and mechanics is needed in order to appreciate them.

102

REFERENCES

103

Ambler, S.W. 2008. Introduction to Concurrency Control. Available at:

http://www.agiledata.org/essays/concurrencyControl.html [Accessed: October 23 2008].

Apple.com. 2008. Introduction to Performance Overview. Available at:

http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/De

velopingForPerf/chapter_2_section_2.html [Accessed: November 12 2008].

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik S. 2003. The Object-

Oriented Database System Manifesto. Available at:

http://www.cl.cam.ac.uk/teaching/2003/Databases/oo-manifesto.pdf [Accessed: 12 September

2008].

Berre, A.J., Anderson, T.L., Mallison, M. The HyperModel Benchmark. Technical Report

No. CSE 88-031. Oregon Graduate Institute, Department of Computer Science. USA.

Bitton, D., DeWitt, D.J., Turbyfill, C. Benchmarking Database Systems: A Systematic

Approach. Proceedings of the 1983 VLDB (Very Large Data Bases) Conference.

Carey, M.J., DeWitt, D.J., Naughton, J.F. The 007 Benchmark. ACM SIGMOD Record,

Volume 22, (2) June 1993. P 12-21.

Casson, A. 1994. What are Object Oriented Databases? Available at:

http://www.aiai.ed.ac.uk/project/plinth/oodb/what.html [Accessed: October 29 2008].

Chaudhri, A.K., Zicari, R. 2001. Succeeding with Object Databases – A Practical Look at

Today’s Implementations with Java
 TM

 and XML. John Wiley & Sons, Inc. Canada.

http://www.agiledata.org/essays/concurrencyControl.html
http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/DevelopingForPerf/chapter_2_section_2.html
http://developer.apple.com/documentation/Performance/Conceptual/PerformanceOverview/DevelopingForPerf/chapter_2_section_2.html
http://www.cl.cam.ac.uk/teaching/2003/Databases/oo-manifesto.pdf%20%20%5bAccessed:%2012%20September%202008%5d.
http://www.cl.cam.ac.uk/teaching/2003/Databases/oo-manifesto.pdf%20%20%5bAccessed:%2012%20September%202008%5d.
http://www.aiai.ed.ac.uk/project/plinth/oodb/what.html

104

Codehaus.org. 2004. Object Query Languages. Available at:

http://docs.codehaus.org/display/PREVAYLER/Object+Query+Languages [Accessed:

November 17 2008].

Codehaus.org. Prevayler Development Team. Available at:

http://prevayler.codehaus.org/Team [Accessed: October 22 2008].

Colorado State University. 2009. Advantages and Disadvantages of Experimental

Research. Available at: http://writing.colostate.edu/guides/research/experiment/pop5c.cfm

[Accessed: January 16 2009].

Db4o user guide. Available with product download.

DeWitt, D. 1993. The Wisconsin Benchmark. Available at:

http://firebird.sourceforge.net/download/test/wisconsin_benchmark_chapter4.pdf [Accessed:

January 27 2009].

DeWitt, D.J. 1993. The Wisconsin Benchmark: Past, Present, and Future. The Benchmark

Handbook for Database and Transaction Systems (2nd Edition). Morgan Kaufmann

Publishers, USA.

Elmasri, R., Navethe, S.B. 1994. Fundamentals of Database Systems Second Edition. The

Benjamin/Cummings Publishing Company Inc. Redwood City, CA. 94065.

Freshmeat.net. 2009. Available at: http://freshmeat.net [Accessed: 30 September 2009].

http://docs.codehaus.org/display/PREVAYLER/Object+Query+Languages
http://prevayler.codehaus.org/Team%20%5bAccessed:%20October%2022%202008
http://writing.colostate.edu/guides/research/experiment/pop5c.cfm
http://firebird.sourceforge.net/download/test/wisconsin_benchmark_chapter4.pdf
http://www.informatik.uni-trier.de/~ley/db/publishers/mkp.html
http://freshmeat.net/

105

Freshmeat.net. 2009. Freshmeat measure of popularity. Available at:

http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-popularity [Accessed:

30 September 2009].

Freshmeat.net. 2009. Freshmeat measure of vitality. Available at:

http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-vitality [Accessed: 30

September 2009].

Freshmeat.net. 2009. Prevayler review on Freshmeat. Available at:

http://freshmeat.net/projects/Prevayler [Accessed: 30 September 2009].

Geeknet Inc. 2009. Neodatis ODB: Topics for Help. Available at:

http://sourceforge.net/forum/forum.php?forum_id=619814 [Accessed: November 17 2008].

Geeknet, Inc. 2009. Mailing Lists for Prevayler. Available at:

http://sourceforge.net/mail/?group_id=36113 [Accessed: November 24 2008].

Gray, J.N. 1993. The Benchmark Handbook for Database and Transaction Processing

Systems. Morgan Kaufmann Publishers, USA.

Hughes, J.G. 1991. Object-Oriented Databases. Prentice Hall International (UK) Ltd. United

States of America.

InterSystems Corp. 2008. Available at:

http://vista.intersystems.com/csp/docbook/DocBook.UI.Page.cls?KEY=GOBJ_oo [Accessed:

October 24 2008].

http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-popularity%20%5bAccessed:%2030%20September%202009
http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-popularity%20%5bAccessed:%2030%20September%202009
http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-vitality%20%5bAccessed:%2030%20September%202009
http://help.freshmeat.net/faqs/statistics/how-do-you-measure-a-projects-vitality%20%5bAccessed:%2030%20September%202009
http://freshmeat.net/projects/Prevayler%20%5bAccessed:%2030%20September%202009
http://sourceforge.net/forum/forum.php?forum_id=619814
http://sourceforge.net/mail/?group_id=36113
http://vista.intersystems.com/csp/docbook/DocBook.UI.Page.cls?KEY=GOBJ_oo

106

Jenkov, J. Java Concurrency: Deadlock Prevention. Available at:

http://tutorials.jenkov.com/java-concurrency/deadlock-prevention.html [Accessed: 18

September 2009].

Jenkov, J. Java Concurrency: Deadlock. Available at: http://tutorials.jenkov.com/java-

concurrency/deadlock.html [Accessed: 18 September 2009].

Khayundi, P., Chadwick, J. A Comparison of Open Source Object-Oriented Database

Products. In Proceedings of SATNAC (Southern African Telecommunication Networks &

Appliances Conference) 2008, Wild Coast, South Africa. September 2008.

Korth, H.F., Silberschatz, A. 1986. Database System Concepts. McGraw-Hill, Inc. USA.

McObject.com. 2009. McObject Management. Available at:

http://www.mcobject.com/management [Accessed: November 17 2008].

McObject.com. 2009. Perst Features and Benefits. Available at:

http://www.mcobject.com/perst_features_benefits [Accessed: November 30 2008].

McObject.com. 2009. Perst Forum. Available at:

http://forums.mcobject.com/index.php?showforum=4 [Accessed: November 17 2008].

McObject.com. 2009. Perst Introduction and Tutorial. Available at:

http://www.mcobject.com/index.cfm?fuseaction=download&pageid=457§ionid=114

[Accessed: November 17 2008].

http://tutorials.jenkov.com/java-concurrency/deadlock-prevention.html
http://tutorials.jenkov.com/java-concurrency/deadlock.html%20%5bAccessed%2018%20September%202009
http://tutorials.jenkov.com/java-concurrency/deadlock.html%20%5bAccessed%2018%20September%202009
http://www.mcobject.com/management%20%5bAccessed:%20November%2017%202008
http://www.mcobject.com/perst_features_benefits
http://forums.mcobject.com/index.php?showforum=4
http://www.mcobject.com/index.cfm?fuseaction=download&pageid=457§ionid=114

107

McObject.com. 2009. Perst Product Website. Available at: http://www.mcobject.com/perst

[Accessed: November 17 2008].

McObject.com. 2009. Perst Target Markets. Available at: http://www.mcobject.com/markets

[Accessed: November 18 2008].

McObject.com. 2009. Users of McObject Embedded Databases. Available at:

http://www.mcobject.com/who_uses_mcobject1 [Accessed: November 17 2008].

Mobixess Inc. 2009. JODB-The Free Object Database for Java. Available at:

http://www.java-objects-database.com/ [Accessed: July 15 2009].

MyOoDB. Myoodb Developer Information. Available at:

http://www.myoodb.org/aboutauthor.html [Accessed: July 15 2009].

N. Mabanza, J. Chadwick. A comparison of Open Source XML Database Products,

Proceedings SATNAC conference, Stellenbosch, South Africa, 2006. ISBN 0-620-37043-2.

N. Mabanza, J. Chadwick. Performance evaluation of Open Source Native XML databases

– A Case Study, Proceedings of IEEE - the 8
th

 International Conference on Advanced

Communication Technology (ICACT), Phoenix Park, Korea. ISBN 89-5519-130-8.

Neodatis user guide. 2008. Available with product download.

Neodatis.org, 2009. Neodatis Team. Available at: http://www.neodatis.org/team [Accessed:

October 20 2008].

http://www.mcobject.com/perst
http://www.mcobject.com/markets
http://www.mcobject.com/who_uses_mcobject1
http://www.java-objects-database.com/
http://www.myoodb.org/aboutauthor.html
http://www.neodatis.org/team

108

Neodatis.org. 2009. Neodatis Overview. Available at: http://www.neodatis.org/overview

[Accessed: October 20 2008].

Neodatis.org. 2009. Neodatis Product Website. Available at: http://www.neodatis.org

[Accessed: November 17 2008].

Neodatis.org. 2009. Users of Neodatis. Available at: http://www.neodatis.org/whos-is-using

[Accessed: October 20 2008].

Obasanjo, D. 2001. An Exploration of Object Oriented Database Management Systems.

Available at: http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html [Accessed:

September 1 2008].

Ozone-db.org. 2009. Ozone Open Source Java Object Database Management System.

Available at: http://www.ozone-db.org/frames/about/about.html [Accessed: July 14 2009].

Panel Discussion: Database system performance management. Proceedings of the 1986

ACM SIGMOD International Conference on Management of Data. Washington, D.C.,

United States. p 153 – 154.

PC Mag.com. 2009. JSQL Definition. Available at:

http://www.pcmag.com/encyclopedia_term/0.2542,t=JSQL&i=45688,00.asp [Accessed:

November 17 2008].

Pratt, J.P., Adamski, J.J. 2005. Concepts of Database Management, Fifth Edition. Thomson

Learning Inc. United States of America.

http://www.neodatis.org/overview%20%5bAccessed:%20October%2020%202008
http://www.neodatis.org/overview%20%5bAccessed:%20October%2020%202008
http://www.neodatis.org/overview%20%5bAccessed:%20October%2020%202008
http://www.neodatis.org/
http://www.neodatis.org/whos-is-using
http://www.25hoursaday.com/WhyArentYouUsingAnOODBMS.html
http://www.ozone-db.org/frames/about/about.html
http://www.pcmag.com/encyclopedia_term/0.2542,t=JSQL&i=45688,00.asp

109

Prevayler.org. 2006. Prevayler Pioneers and Users. Available at:

http://www.prevayler.org/old_wiki/PrevaylerPioneers.html [Accessed: November 17 2008].

Prevayler.org. 2007. Prevayler Features. Available at: http://www.prevayler.org/wiki

[Accessed: November 17 2008].

Prevayler.org. 2007. Prevayler Product Website. Available at:

http://www.prevayler.org/wiki/;jsessionid=95305B805BA647C47B2F0C019D8FE63F

[Accessed: November 30 2008].

Rolland, F.D. 1998. The Essence of Databases. Prentice Hall, United Kingdom.

Seng, J., Yao, S.B., Hevner, A.R. 2003. Requirements-driven database systems benchmark

method. Available at: www.sciencedirect.com. [Accessed: 4 November 2009].

Seng, Jia-Lang. 1998. Comparing Object-Oriented Database Systems Benchmark

Methods. In Proceedings of the Thirty-First Annual Hawaii International Conference on

System Sciences, Volume 6, Page 455.

Sourceforge.net 2009. PolePosition benchmark results. Available at:

http://polepos.sourceforge.net/results/PolePosition.pdf [Accessed 4 November 2009].

Sourceforge.net 2009. PolePosition Open Source Database Benchmark. Available at:

http://polepos.sourceforge.net/ [Accessed: 22 October 2009].

Spencer, D. 2004. What is usability? Available at:

http://www.steptwo.com.au/papers/kmc_whatisusability [Accessed: September 24 2008].

http://www.prevayler.org/old_wiki/PrevaylerPioneers.html
http://www.prevayler.org/wiki
http://www.prevayler.org/wiki/;jsessionid=95305B805BA647C47B2F0C019D8FE63F
http://www.sciencedirect.com/
http://polepos.sourceforge.net/results/PolePosition.pdf
http://polepos.sourceforge.net/
http://www.steptwo.com.au/papers/kmc_whatisusability%20%5bAccessed:%20September%2024%202008%5d.

110

Techtarget.com. 2009. Definition of Functionality. Available at:

http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci335477,00.html [Accessed: October 20

2008].

Techtarget.com. 2009. Definition of Support. Available at:

http://whatis.techtarget.com/definition/0,,sid9_gci774434,00.html [Accessed: October 20

2008].

Transaction Processing Performance Council. 1992. TPC Benchmark A, Standard

Specification. Available at: http://www.tpc.org/tpca/default.asp [Accessed: 22 October 2009].

Transaction Processing Performance Council. 1992. TPC Benchmark B, Standard

Specification. Available at: http://www.tpc.org/tpcb/default.asp [Accessed: 22 October 2009].

Transaction Processing Performance Council. 1995. TPC Benchmark C, Standard

Specification. Available at: http://www.tpc.org/tpcc/default.asp [Accessed: 22 October 2009].

Transaction Processing Performance Council. 1998. TPC Benchmark D, Standard

Specification. Available at: http://www.tpc.org/tpcd/default.asp [Accessed: 22 October 2009].

Transaction Processing Performance Council. 2001. TPC Benchmark W, Standard

Specification. Available at: http://www.tpc.org/tpcw/default.asp [Accessed: 22 October 2009].

Van Zyl, P., Kourie, D. G., Boake, A. 2006. Comparing the Performance of Object

Databases and ORM Tools. Proceedings of SAICSIT 2006 Annual Conference of the South

African Institute of Computer Scientists and Information Technologists, 9–11 October 2006,

Pretoria, South Africa.

http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci335477,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci774434,00.html
http://www.tpc.org/tpca/default.asp
http://www.tpc.org/tpcb/default.asp
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcd/default.asp
http://www.tpc.org/tpcw/default.asp

111

Versant Corp. 2008. Db4o discussion forums. Available at:

http://developer.db4o.com/forums/ [Accessed: October 20 2008].

Versant Corp. 2009. Available at: http://www.db4o.com/s/benchmarkdb.aspx [Accessed: 22

October 2009].

Versant Corp. 2009. Available at: http://www.db4o.com/about/productinformation/db4o/

[Accessed: November 26 2008].

Versant Corp. 2009. Db4o Product Website. Available at: http://www.db4o.com [Accessed:

October 22 2008].

Wheeler, D.A. 2009. How to Evaluate Open Source Software/Free Software (OSS/FS)

Programs. Available at: http://www.dwheeler.com/oss_fs_eval.html [Accessed: September 22

2009].

Wulf, W.A. 2001. What is performance? Available at:

http://java.sun.com/docs/books/performance/1st_edition/html/JPPerformance.fm.html

[Accessed: November 12 2008].

http://developer.db4o.com/forums/
http://www.db4o.com/s/benchmarkdb.aspx
http://www.db4o.com/about/productinformation/db4o/
http://www.db4o.com/
http://www.dwheeler.com/oss_fs_eval.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPPerformance.fm.html

112

APPENDICES

113

Appendix A

A.1. Java Code for Item Class

A.1.1. Item.java

// This code creates an item to be used to perform the experiments

public class Item implements java.io.Serializable{

 int num;

 int unique1, unique2;

 int onePercent, tenPercent;

 int twentyPercent, fiftyPercent;

 String stringu1, stringu2, string4;

 public Item(int unique1, int unique2) {

 /**************************************/

 String[] list4 = {"AAAA", "HHHH", "OOOO", "VVVV"};

 String x45 = "xxx";

 this.unique1 = unique1;

 this.unique2 = unique2;

 this.onePercent = unique1 % 100;

 this.tenPercent = unique1 % 10;

 this.twentyPercent = unique1 % 5;

 this.fiftyPercent = unique1 % 2;

 this.stringu1 = convert(unique1) + x45;

 this.stringu2 = convert(unique2) + x45;

 this.string4 = list4[unique2%4] + x45 + "xxx";

 }

 public Item (int num) {

 this.num = num;

 }

 public Item(String str) {

 String x45 = "xxx";

 this.unique1 = 0;

 this.unique2 = 0;

 this.onePercent = unique1 % 100;

 this.tenPercent = unique1 % 10;

 this.twentyPercent = unique1 % 5;

 this.fiftyPercent = unique1 % 2;

 this.stringu1 = str+x45;

 this.stringu2 = null;

114

 this.string4 = null;

 }

 private String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

 public String toString() {

 String result = "unique1 = " + unique1 + "\t";

 result += "unique2 = " + unique2 + "\t";

 result += "stringu1 = " + stringu1 + "\t";

 result += " num = " + num;

 return result;

 }

 public void addNumber(int num) {

 this.num+=num;

 }

}

A.1.2. Java code for ItemKeeper

import java.util.*;

public class ItemKeeper implements java.io.Serializable{

 private final List myItems = new ArrayList();

 void keep(Item nextItem) {

 myItems.add(nextItem);

 }

 List itemList1() { return myItems; }

}

115

A.1.3. Java code for MakeItem

public class MakeItems {

 Item[] items;

 static long generator, prime;

 public MakeItems(int n){

 items = new Item[n];

 if(n <= 0 || n > 100000000) n = 10;

 if(n <= 1000) {generator = 26; prime = 1009;}

 else if (n <= 10000) {generator = 59; prime = 10007;}

 else if (n <= 100000) {generator = 242; prime = 100003;}

 else if (n <= 1000000) {generator = 568; prime = 1000003;}

 else if (n <= 10000000) {generator = 1792; prime = 10000019;}

 else if (n <= 100000000) {generator = 5649; prime = 100000007;}

 else {generator = 16807; prime = 2147483647; }

 long seed = generator;

 for(int k = 0; k < n; k++) {

 seed = rand(seed, (long) n);

 items[k] = new Item((int) seed - 1, k);

 }

 }

 private static long rand(long seed, long limit) {

 /***/

 do {

 seed = (generator*seed) % prime;

 } while (seed > limit);

 return(seed);

 }

 public Item[] itemList(){

 return items;

 }

 }

116

A.2. Java code for storing objects in the databases

A.2.1. Db4o database

A.2.1.1. Storing objects without indexing enabled

// This database is created without indexing implemented

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.query.*;

import java.io.*;

public class CreateNoIndex {

 public static void main(String[] args) throws Exception {

 ObjectContainer db = null;

 try {

 System.out.println("Creating.......");

 FileWriter fw = new FileWriter("D:\\jim\\create-db4o-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size<=limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long Time = 0;

 for (int m = 0; m<10; m++) {

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for(int k = 0; k<size; k++){

 db.set(items[k]);

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 Time = t2-t1;

 sum += Time;

 sumSquares+= Time*Time;

117

 db.close();

 }

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 }

 finally {

 db.close();

 }

 }

}

A.2.2.2. Storing objects with indexing enabled

// This database is created with indexing enabled

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.query.*;

import java.io.*;

public class CreateWithIndex {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Creating.......");

 FileWriter fw = new FileWriter("D:\\jim\\create-db4o-index-4fields.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

118

 for(int m = 0; m < 10; m++) {

 Db4o.configure().objectClass(Item.class).objectField("unique1").indexed(true);

 Db4o.configure().objectClass(Item.class).objectField("unique2").indexed(true);

 Db4o.configure().objectClass(Item.class).objectField("stringu2").indexed(true);

 Db4o.configure().objectClass(Item.class).objectField("string4").indexed(true);

 String dbname = "db4o-" + size + "-" + m;

 db = Db4o.openFile(dbname);

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for(int k = 0; k<size; k++){

 db.set(items[k].unique1);

 db.set(items[k].unique2);

 db.set(items[k].stringu1);

 db.set(items[k].stringu2);

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 long Time = t2-t1;

 System.out.println(Time);

 sum += Time;

 sumSquares+= Time*Time;

 db.close();

 }

 System.out.println("The time taken to store "+size+" objects is "+(sum/10));

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

 System.out.println("\t" + "Standard deviation = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 }

 finally {

 db.close();

 }

 }

}

119

A.2.2. Neodatis database

A.2.2.1. Storing objects with indexing enabled

// This database is created without indexing implemented

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import java.io.*;

public class CreateNoIndex {

 public static String ODB_NAME = null;

 public static void main (String[] args) {

 Item[] list;

 ODB odb = null;

 try {

 System.out.println("Creating.......");

 FileWriter fw = new FileWriter("D:\\jim\\create-neodatis-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for(int size = 5000; size<=limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long Time = 0;

 for(int m = 0; m<10; m++) {

 ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 list = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for (int k = 0; k<size; k++) {

 odb.store(list[k]);

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 Time = t2-t1;

 sum += Time;

 sumSquares += Time*Time;

 odb.close();

 }

 double variance = ((double) (sumSquares - sum*sum/10)) / 10;

120

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

 System.out.println(size + " created");

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

}

A.2.2.2. Storing objects with indexing enabled

// This database is created with indexing enabled

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import java.io.*;

public class CreateWithIndex {

 public static String ODB_NAME = null;

 public static void main (String[] args) {

 Item[] list;

 ODB odb = null;

 try {

 System.out.println("Creating.......");

 FileWriter fw = new FileWriter("D:\\jim\\create-neodatis-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for(int size = 5000; size<=limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long Time = 0;

 for(int m = 0; m<10; m++) {

 ODB_NAME = ("neodatis-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

121

 String [] fieldNames4 = {"unique1", "unique2", "stringu1", "stringu2"};

 odb.getClassRepresentation(Item.class).addUniqueIndexOn("item-

index",fieldNames4,true);

 list = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for (int k = 0; k<size; k++) {

 odb.store(list[k]);

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 Time = t2-t1;

 sum += Time;

 sumSquares += Time*Time;

 odb.close();

 }

 double variance = ((double) (sumSquares - sum*sum/10)) / 10;

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

}

A.2.3. Perst database

A.2.3.1. Storing objects without indexing enabled

// This database is created without indexing implemented

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

122

public class CreateNoIndex {

 public static void main (String[] args) {

 try {

 System.out.println("Creating");

 FileWriter fw = new FileWriter("D:\\jim\\create-perst-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for(int m = 0; m < 10; m++) {

 String dbname = "perst-no-index-" +size+ "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 if(root == null) {

 root = db.createList();

 db.setRoot(root);

 } // if root

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for (int k = 0;k<size;k++) {

 root.add(items[k]);

 } // for int k

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 System.out.println("Created size = " + size + " m = " + m);

 } // for int m

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

}

123

A.2.3.2. Storing objects with indexing enabled

// This database is created with indexing enabled

import org.garret.perst.*;

import org.garret.perst.Storage;

import org.garret.perst.Index;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import org.garret.perst.Key;

import org.garret.perst.Index;

import java.io.*;

class Indices extends Persistent {

 Index unique1Index;

 Index unique2Index;

 Index stringu1Index;

 Index stringu2Index;

 public Indices() {}

}

public class CreateWithIndex4 {

 public static void main (String[] args) {

 try {

 System.out.println("Creating…….");

 FileWriter fw = new FileWriter("D:\\jim\\create-perst-index-4fields.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for(int m = 0; m < 10; m++) {

 String dbname = "perst-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 Indices root = (Indices) db.getRoot();

 if(root == null) {

 root = new Indices();

 root.unique1Index = db.createIndex(int.class, true);

 root.unique2Index = db.createIndex(int.class, true);

 root.stringu1Index = db.createIndex(String.class, true);

 root.stringu2Index = db.createIndex(String.class, true);

124

 db.setRoot(root);

 } // if root

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for (int k = 0;k<size;k++) {

 root.unique1Index.put(new Key(items[k].unique1),items[k]);

 root.unique2Index.put(new Key(items[k].unique2),items[k]);

 root.stringu1Index.put(new Key(items[k].stringu1),items[k]);

 root.stringu2Index.put(new Key(items[k].stringu2),items[k]);

 } // for int k

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "m = " + m + "\t" + "time = " + (t2-t1));

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 System.out.println("Created size = " + size + " m = " + m);

 } // for int m

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Average time for size " + size + "\t" + (sum /10));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

 }

A.2.4. Prevayler database

A.2.4.1. Storing objects without indexing enabled

// This database is created without indexing implemented

import org.prevayler.Prevayler;

import org.prevayler.PrevaylerFactory;

import java.util.*;

import java.io.*;

125

public class CreateNoIndex {

 public static void main(String[] args) throws Exception {

 Prevayler prevayler = null;

 ItemKeeper itemKeeper = null;

 System.out.println("Creating");

 FileWriter fw = new FileWriter("D:\\jim\\create-prevayler-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for(int size = 5000; size<=limit; size+=5000) {

 long Time = 0;

 String dbname = ("prevayler-no-index-"+size);

 prevayler = PrevaylerFactory.createPrevayler(new ItemKeeper(), dbname);

 itemKeeper = (ItemKeeper)prevayler.prevalentSystem();

 Item[] items = new MakeItems(size).itemList();

 long t1 = System.currentTimeMillis();

 for (int k = 0; k<size; k++) {

 prevayler.execute(new InsertItem(items[k]));

 }

 long t2 = System.currentTimeMillis();

 p.println("Size = " + size + "\t" + "time = " + (t2-t1));

 Time = t2-t1;

 System.out.println(Time);

 } // for ssize

 p.close();

 bw.close();

 fw.close();

 } // main

}

A.3. Java code for searching for objects in the databases

A.3.1. Without indexing enabled

A.3.1.1. Db4o database

// Searching for the field unique1 without indexing

126

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexUnique1 {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-unique1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique1").constrain(new Integer(300));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 }

 System.out.println("Searched size = " + size + " For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

127

 ex.printStackTrace();

 }

 }

}

// Searching for the field unique2 without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexUnique2 {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-unique2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique2").constrain(new Integer(300));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 }

 System.out.println("Searched size = " + size + " For unique2 = 300");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

128

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for the field stringu1without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexStringu1 {

 public static void main (String[] args) {

 String x45 = "xxx";

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-stringu1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("stringu1").constrain(new String(convert(300)+ x45));

129

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 //System.out.println(result.size());

 }

 System.out.println("Searched size = " + size + " For stringu1 = convert(300)+

x45");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

130

// Searching for the field stringu2without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexStringu2 {

 public static void main (String[] args) {

 String x45 = "xxx";

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-stringu2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("stringu2").constrain(new String(convert(300)+ x45));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 //System.out.println(result.size());

 }

 System.out.println("Searched size = " + size + " For stringu2 = convert(300)+

x45");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

131

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for the field string4without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexString4 {

 public static void main (String[] args) {

 String x45 = "xxx";

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-string4.txt");

132

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("string4").constrain(new String("AAAA"+x45+ "xxx"));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

 System.out.println("Searched size = " + size + " For string4 = 'AAAA"+x45+

"xxx'");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

133

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for one percent of objects without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexOnePercent {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-onePercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("onePercent").constrain(new Integer(5));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

134

 System.out.println("Searched size = " + size + " For onePercent = 5");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for ten percent of objects without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexTenPercent {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-tenPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

135

 query.descend("tenPercent").constrain(new Integer(4));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 }

 System.out.println("Searched size = " + size + " For tenPercent = 4");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for twenty percent of objects without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexTwentyPercent {

 public static void main (String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-twentyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

136

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("twentyPercent").constrain(new Integer(2));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 }

 System.out.println("Searched size = " + size + " For twentyPercent = 2");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for fifty percent of objects without indexing

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class SearchNoIndexFiftyPercent {

 public static void main (String[] args) {

 ObjectContainer db = null;

137

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-db4o-no-index-fiftyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 for (int m = 0; m<10; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("fiftyPercent").constrain(new Integer(1));

 ObjectSet result = query.execute();

 long t2 = System.currentTimeMillis();

 while(result.hasNext()) {

 System.out.println(result.next());

 }

 db.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

 System.out.println("Searched size = " + size + " For fiftyPercent = 1");

 double variance = ((double) (sumSquares - sum*sum/10) /10);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /10));

 p.println("SD = " + SD);

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

138

A.3.2.2. Neodatis database

// Searching for the field unique1 without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexUnique1 {

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-unique1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("unique1", 300));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

139

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 //odb.close();

 }

 }

}

// Searching for the field unique2 without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexUnique2 {

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-unique2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("unique2", 300));

140

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For unique2 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for the field stringu1without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexStringu1 {

 //public static String ODB_NAME = null;

 public static void main(String[] args) {

141

 String x45 = "xxx";

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-stringu1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("stringu1",

convert(300)+ x45));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For stringu1 = convert(300)+ x45");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

142

private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for the field stringu2without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexStringu2 {

 public static void main(String[] args) {

 String x45 = "xxx";

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-stringu2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

143

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("stringu2",

convert(300)+ x45));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For stringu2 = convert(300)+ x45");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

144

// Searching for the field string4without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexString4 {

 public static void main(String[] args) {

 String x45 = "xxx";

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-string4.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("string4",

"AAAA"+x45+ "xxx"));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For string4 = AAAA +x45+ xxx");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

145

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for one percent of objects without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexOnePercent {

 public static void main(String[] args) {

 ODB odb = null;

146

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-onePercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("onePercent", 5));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For onePercent = 5");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

147

// Searching for ten percent of objects without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexTenPercent {

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-tenPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("tenPercent", 4));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For tenPercent = 4");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

148

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for twenty percent of objects without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexTwentyPercent {

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-

twentyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("twentyPercent",

2));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

149

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For twentyPercent = 2");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for fifty percent of objects without indexing

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class SearchNoIndexFiftyPercent {

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-neodatis-no-index-

fiftyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

150

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("fiftyPercent", 1));

 Objects value = odb.getObjects(query);

 long t2 = System.currentTimeMillis();

 System.out.println("Items selected: "+value.size());

 int i = 1;

 while (value.hasNext()) {

 System.out.println((i++)+ "\t:" + value.next()+ "\t");

 }

 odb.close();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 } //for int m

 System.out.println("Searched size = " + size + " For fiftyPercent = 1");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 System.out.println("The time taken to select unique1 is "+(((double)sum) /repeats));

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

151

A.3.3.1. Perst database

// Searching for the field unique1without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexUnique1 {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-unique1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "unique1 = 300");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

152

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for the field unique2without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexUnique2 {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-unique2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

153

 Query query = db.createQuery();

 query.prepare(Item.class, "unique2 = 300");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For unique2 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for the field stringu1without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexStringu1 {

 public static void main (String[] args) {

 String x45 = "xxx";

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-stringu1.txt");

 BufferedWriter bw = new BufferedWriter (fw);

154

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "stringu1 = '"+convert(300)+ x45 +"'");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For stringu1 = '"+convert(300)+

x45 +"'");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

155

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for the field stringu2without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexStringu2 {

 public static void main (String[] args) {

 String x45 = "xxx";

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-stringu2.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

156

 Query query = db.createQuery();

 query.prepare(Item.class, "stringu2 = '" +convert(300)+ x45 + "'");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For stringu2 = '" +convert(300)+

x45 + "'");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

157

// Searching for the field string4without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexString4 {

 public static void main (String[] args) {

 String x45 = "xxx";

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-string4.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "string4 = 'AAAA"+x45+ "xxx'");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For string4 = 'AAAA"+x45+

"xxx'");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

158

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

 private static String convert(int n) {

 /*****************************/

 char[] result = new char[7];

 char[] temp = new char[7];

 for(int k = 0; k < 7; k++) result[k] = 'z';

 int i = 6; int count = 0;

 while (n > 0) {

 int rem = n % 26;

 temp[i] = (char) ((int) 'A' + rem);

 n = n / 26;

 i--; count++;

 }

 for(int k = 0; k < count; k++) result[k] = temp[++i];

 return(new String(result));

 }

}

// Searching for one percent of objects without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexOnePercent {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-onePercent.txt");

159

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "onePercent = 1");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For onePercent = 1");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

160

// Searching for ten percent of objects without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexTenPercent {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-tenPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "tenPercent = 7");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For tenPercent = 7");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

161

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }}

// Searching for twenty percent of objects without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexTwentyPercent {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-twentyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "twentyPercent = 3");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

162

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For twentyPercent = 3");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

// Searching for fifty percent of objects without indexing

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class SearchNoIndexFiftyPercent {

 public static void main (String[] args) {

 try {

 System.out.println("Searching");

 FileWriter fw = new FileWriter("D:\\jim\\search-perst-no-index-fiftyPercent.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 Iterator iterator = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

163

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "fiftyPercent = 1");

 iterator = query.execute(root.iterator());

 long t2 = System.currentTimeMillis();

 while(iterator.hasNext()) {

 System.out.println(iterator.next());

 }

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 db.close();

 } // for int m

 System.out.println("Searched size = " + size + " For fiftyPercent = 1");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Searching time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

A.4. Java code for modifying objects in the databases

A.4.1. Db4o database

A.4.1.1. Modifying objects without indexing enabled

import java.util.*;

import com.db4o.Db4o;

164

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class ModifyNoIndex {

 public static void main(String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Modifying");

 FileWriter fw = new FileWriter("D:\\jim\\modify-db4o-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 long t1 = System.currentTimeMillis();

 for (int m = 0; m<repeats; m++) {

 String dbname = ("db4o-no-index-"+size+"-"+m);

 db = Db4o.openFile(dbname);

 Db4o.configure().objectClass(Item.class).cascadeOnUpdate(true);

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique1").constrain(new Integer(300));

 ObjectSet result = query.execute();

 for(int k=0; k<result.size(); k++) {

 System.out.println(result);

 Item found = (Item)result.next();

 found.addNumber(k);

 db.set(found);

 db.commit();

 System.out.println("Added "+k+ " to "+found);

 }

 db.close();

 }

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Modified size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Modifying time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

165

 } // for int size

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }}

A.4.2. Neodatis database

A.4.2.1. Modifying objects without indexing enabled

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

import java.io.*;

public class ModifyNoIndex {

 public static String ODB_NAME = null;

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Modifying.......");

 FileWriter fw = new FileWriter("D:\\jim\\modify-neodatis-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long t1 = System.currentTimeMillis();

 int repeats = 10;

 for (int m = 0; m<repeats; m++) {

 ODB_NAME = ("neodatis-no-index-"+size+"-"+m);

 odb = ODBFactory.open(ODB_NAME);

166

 IQuery query = new CriteriaQuery(Item.class, Where.equal("unique1",300));

 Objects value = odb.getObjects(query);

 System.out.println("Items selected "+value.size());

 for (int k = 0; k<value.size(); k++) {

 Item found = (Item)value.next();

 found.addNumber(k);

 odb.store(found);

 odb.commit();

 System.out.println("Added "+k+ " to "+found);

 }

 odb.close();

 } //for int m

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Modified size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Modifying time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } //for int size

 p.close();

 bw.close();

 fw.close();

 } //for try

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

}

A.4.3. Perst database

A.4.3.1. Modifying objects without indexing enabled

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class ModifyNoIndex {

167

 public static void main (String[] args) {

 Item[] items = new Item[100000];

 try {

 System.out.println("Modifying");

 FileWriter fw = new FileWriter("D:\\jim\\modify-perst-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long t1 = System.currentTimeMillis();

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 String dbname = "perst-no-index-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "unique1 = 300");

 Iterator iter = query.execute(root.iterator());

 while (iter.hasNext()) {

 System.out.println(iter.next());

 }

 iter = query.execute(root.iterator());

 int index = 0;

 while (iter.hasNext())items[index++] = (Item) iter.next();

 for(int n = 0; n < index; n++) {

 root.remove(items[n]);

 items[n].num = 1;

 items[n].modify();

 root.add(items[n]);

 }

 iter = query.execute(root.iterator());

 while (iter.hasNext()) {

 System.out.println(iter.next());

 }

 db.close();

 } // for int m

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Modified size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

168

 p.println("Modifying time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }}

A.5. Java code for deleting objects in the databases

A.5.1. Db4o database

A.5.1.1. Deleting objects without indexing enabled

import java.util.*;

import com.db4o.Db4o;

import com.db4o.ObjectContainer;

import com.db4o.ObjectSet;

import com.db4o.query.*;

import java.io.*;

public class DeleteNoIndex {

 public static void main(String[] args) {

 ObjectContainer db = null;

 try {

 System.out.println("Deleting......");

 FileWriter fw = new FileWriter("D:\\jim\\delete-db4o-noindex.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 String dbname = ("db4o-no-index"+size+"-"+0);

 db = Db4o.openFile(dbname);

 Db4o.configure().objectClass(Item.class).cascadeOnDelete(true);

 long t1 = System.currentTimeMillis();

 int repeats = 10;

169

 for(int m = 0; m<repeats; m++) {

 Query query = db.query();

 query.constrain(Item.class);

 query.descend("unique1").constrain(new Integer(300));

 ObjectSet result = query.execute();

 for(int k=0; k<result.size(); k++) {

 Item found = (Item)result.next();

 db.delete(found);

 db.commit();

 System.out.println("Deleted: "+found);

 }

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Deleted size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Deleting time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 }

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

A.5.2. Neodatis database

A.5.2.1. Deleting objects without indexing enabled

import org.neodatis.odb.core.Objects;

import org.neodatis.odb.main.ODB;

import org.neodatis.odb.main.ODBFactory;

import java.util.*;

import org.neodatis.odb.core.query.IQuery;

import org.neodatis.odb.core.query.criteria.CriteriaQuery;

import org.neodatis.odb.core.query.criteria.Where;

170

import java.io.*;

public class DeleteNoIndex {

 public static String ODB_NAME = null;

 public static void main(String[] args) {

 ODB odb = null;

 try {

 System.out.println("Deleting");

 FileWriter fw = new FileWriter("D:\\jim2\\delete-neodatis-no-index.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 ODB_NAME = ("neodatis-no-index-"+size+"-"+limit);

 odb = ODBFactory.open (ODB_NAME);

 IQuery query = new CriteriaQuery(Item.class, Where.equal("onePercent",5));

 Objects value = odb.getObjects(query);

 System.out.println("Items selected "+value.size());

 long t7 = System.currentTimeMillis();

 for (int k = 0;k<value.size();k++) {

 Item found = (Item)value.next();

 odb.delete(found);

 odb.commit();

 System.out.println("Deleted: "+found);

 }

 long t8 = System.currentTimeMillis();

 long Time4 = t8-t7;

 System.out.println("The time taken to delete one percent is "+Time4);

 }

 p.close();

 bw.close();

 fw.close();

 if(odb!=null) {

 odb.close();

 }

 }

 catch(Exception ex) {

 System.out.println(ex);

 }

 }

}

171

A.5.3. Perst database

A.5.3.1. Deleting objects without indexing enabled

import org.garret.perst.*;

import org.garret.perst.Storage;

import java.util.Iterator;

import java.util.*;

import org.garret.perst.StorageFactory;

import org.garret.perst.Storage;

import java.io.*;

public class DeleteNoIndex {

 public static void main (String[] args) {

 try {

 System.out.println("Deleting");

 FileWriter fw = new FileWriter("D:\\jim\\delete-perst-noindex.txt");

 BufferedWriter bw = new BufferedWriter (fw);

 PrintWriter p = new PrintWriter(bw);

 IPersistent[] list = null;

 int limit = 100000;

 for (int size = 5000; size <= limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 long t1 = System.currentTimeMillis();

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 String dbname = "perst-noindex-" + size + "-" + m;

 Storage db = StorageFactory.getInstance().createStorage();

 db.open(dbname,Storage.INFINITE_PAGE_POOL);

 IPersistentList root = (IPersistentList) db.getRoot();

 Query query = db.createQuery();

 query.prepare(Item.class, "unique1 = 300");

 Iterator iter = query.execute(root.iterator());

 while (iter.hasNext()) {

 System.out.println(iter.next());

 }

 while (iter.hasNext()) {

 Item item = (Item) iter.next();

 root.remove(item);

 item.num = 1;

 item.modify();

 root.add(item);

172

 } // for n

 iter = query.execute(root.iterator());

 while (iter.hasNext()) {

 System.out.println(iter.next());

 }

 db.close();

 } // for int m

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 System.out.println("Deleted size = " + size + "For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Deleting time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 } // for int size

 p.close();

 bw.close();

 fw.close();

 } // try

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

A.5.4. Prevayler database

A.5.4.1 Deleting objects without indexing enabled

import org.prevayler.Prevayler;

import org.prevayler.PrevaylerFactory;

import java.util.*;

import java.io.*;

public class DeleteNoIndexUnique1 {

 public static void main(String[] args) {

 Prevayler prevayler = null;

 ItemKeeper itemKeeper = null;

 try {

 System.out.println("Deleting");

 FileWriter fw = new FileWriter("D:\\jim\\delete-prevayler-no-index-unique1-a.txt");

 BufferedWriter bw = new BufferedWriter (fw);

173

 PrintWriter p = new PrintWriter(bw);

 int limit = 100000;

 for(int size = 5000; size<=limit; size+=5000) {

 long sum = 0;

 long sumSquares = 0;

 int repeats = 10;

 for(int m = 0; m < repeats; m++) {

 long t1 = System.currentTimeMillis();

 String dbname = ("prevayler-no-index-a-"+size+"-"+m);

 prevayler = PrevaylerFactory.createPrevayler(new ItemKeeper(), dbname);

 itemKeeper = (ItemKeeper)prevayler.prevalentSystem();

 List list = null;

 for(int k = 0; k<99; k++) {

 list = (List) prevayler.execute(new SelectUnique1(300));

 }

 for(int k = 0;k<list.size();k++) {

 Item found = (Item)list.get(k);

 list.remove(found);

 }

 long t2 = System.currentTimeMillis();

 sum += (t2-t1);

 sumSquares+= (t2-t1)*(t2-t1);

 }

 System.out.println("Deleted size = " + size + " For unique1 = 300");

 double variance = ((double) (sumSquares - sum*sum/repeats) /repeats);

 double SD = Math.sqrt(variance);

 p.println("Deleting time for size " + size + "\t" + (((double)sum) /repeats));

 p.println("SD = " + SD);

 prevayler.close();

 }

 p.close();

 bw.close();

 fw.close();

 }

 catch(Exception ex) {

 System.out.println(ex);

 ex.printStackTrace();

 }

 }

}

174

Appendix B

B.1. Times for creating databases and standard deviations

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

636

1406

2403

3463

4542

4803

5670

6981

8043

12621

Db4o

(SD)

44.8

72.4

329.3 686.5 866 267.3 319.8

797.6

1659.2

3537

Neodatis

(Time)

657

1415

2471

3684

5456

5644

10529

9354

9621

9681

Neodatis

(SD)

73.6

152.2

124.1

200.4

927.7

435.6

3260.6

1540.4

1848.4

679.2

Perst

(Time)

1.5

7.8

9.3

12.3

17.2

26.7

26.6

40.6

59.2

43.9

Perst

(SD)

4.5

7.8 7.6

6.1

4.9

10

6.9

10.6

13.8

11.8

Prevayler

(Time)

111228

221454 335532 450326 556387 667170 797795 902915 1012612 1119829

Prevayler

(SD)

2923.7 5583.4 7228.2 6387.8 12000.7 14776.6 42662.8 12357.3 8236.2 25181.1

B.2. Times for searching for unique2 without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

353.1

2315.7

2293.8

2387.5

4681.2

5028.1

3871.9

4821.9

6365.7

6970.3

Db4o

(SD)

74.2

217.4

435.1

329.3

1335.7

2058.6

299.4

605.3

1956.4

1854.3

Neodatis

(Time)

882.8

1612.5

2729.7

4901.6

14321.8

11803.1

10714.2

12935.9

16750

23559.4

Neodatis

(SD)

238.6

331.8

717.6

692.4 15562 9853.5

3721.2

4136.1

9193

28156

Perst

(Time)

6.2

4.7

4.7

3.1

3.1

6.3

4.7

3.1

1.6

3.1

Perst

(SD)

7.6

7.1

7.1 6.2 6.2 7.7

7.1

6.2

4.8

6.2

Prevayler

(Time)

1320.3 3232.8 4187.5 5784.4 6937.5 8715.6 12662.5 11250 14706.2 16771.8

Prevayler

(SD)

114.3 654.4 117.1 280.1 152.1 879.8 2526.2 733.5 2780.6 4459.1

175

B.3. Times for searching for one percent of objects without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

2920.2

4486.1

2984.1

7407.7

5814

3899.9

9059.5

4940.7

10036

6959.4

Db4o

(SD)

2490.2 3846.8

1392.3 7687

4758.9 407.3 9992.2 757.6

8299.1

1820

Neodatis

(Time)

887.6

1837.5

3107.9

6229.6

11767.2

8706.3

14779.7

15311.1

10495.5

13576.4

Neodatis

(SD)

243.4

419.1

1326.2

2405.4

17114.4

3157.4

15603.7

4372

1578.1

3201.9

Perst

(Time)

6.3

4.7

4.7

4.6

4.7

3.2

3.1

4.7

3.1

3.1

Perst

(SD)

7.7

7.1

7.1 7

7.1 6.4

6.2

7.1

6.2

6.2

Prevayler

(Time)

1317.2 3292.2 4181.3 5854.7 7595.3 8725 12528.2 11706.2 14014.1 16050

Prevayler

(SD)

69.1 492.5 91.1 312.5 599.3 528.7 1060 554.1 941.6 608.6

B.4. Times for searching for ten percent of objects without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

914.2

4556.3

2414.1

2768.6

3211

4170.3

4018.8

6486

6817.3

8232.6

Db4o

(SD)

62.4

2770.7 1017.8 857.5

304.5

583.5

724.4

1632.9

3288

2270.4

Neodatis

(Time)

899.9

1650

2531.2

4553

5529.6

6448.3

9373.4

11665.8

10268.4

10715.5

Neodatis

(SD)

239.8 190

302.4

666.9

436.7

1395.8

2291.7

1994.7

1534.4

1681.6

Perst

(Time)

6.3

4.7

4.7

3.1

3.2

4.7

4.7

3.1

3.1

3.1

Perst

(SD)

7.7

7.1 7.1

6.2

6.4

7.1 7.1

6.2 6.2

6.2

Prevayler

(Time)

1325 2870.3 5042.2 5776.6 7025 8421.9 10103.1 11221.9 12759.3 14306.3

Prevayler

(SD)

74.6 115.5 1132.2 188.2 234.4 378.2 796.9 191.1 947.6 872.2

176

B.5. Times for searching for twenty percent of objects without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

923.4

2623.4

2087.5

2188.9

3568.6

5470.1

3990.5

4758

5779.8

6565.9

Db4o

(SD)

157.5

555.4

449.4

280.3

1104.7 4332.8 590.1

354.1

805.7

1592.3

Neodatis

(Time)

956.2

1923.3

2498.5

5004.6

6054.6

6382.9

9228.1

11114

11578.2

11650

Neodatis

(SD)

239.5

475.8

265.5

1186.3

1248.3

975.5 1181.2

1669.1 1957.5

1306.5

Perst

(Time)

4.7

3.1

4.7

3.1

3.1

3.1

4.7

3.1

4.6

3.1

Perst

(SD)

7.1

6.2

7.1

6.2

6.2

6.25

7.1

6.2

7 6.2

Prevayler

(Time)

1514.1 3753.1 4985.9 8471.9 8650 10712.5 13929.7 11678.1 13862.5 15932.8

Prevayler

(SD)

68.7 321.4 309.4 2081.7 626 1151.8 2835 391.1 1062 1704.4

B.6. Times for searching for fifty percent of objects without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

293.8

2198.6

1985.8

2181.2

4337.4

3600.2

3897

5004.8

5420.2

7257.9

Db4o

(SD)

69 170

455.5

192.3

2361.8

356

458.9

832

669.7

3788.1

Neodatis

(Time)

956.2

1923.3

2498.5

5004.6

6054.6

6382.9

9228.1

11114

11578.2

11650

Neodatis

(SD)

239.5

475.8

265.5

1186.3

1248.3 975.5

1181.2 1669.1

1957.5

1306.5

Perst

(Time)

6.3

4.6

4.7

4.7

4.6

3.1

4.7

3.2

3.1 3.2

Perst

(SD)

7.7

7

7.1

7.1

7

6.2 7.1

6.4 6.2

6.4

Prevayler

(Time)

1751.6 3117.2 4695.3 6689.1 8137.5 13635.9 13065.6 15665.7 17367.2 16567.1

Prevayler

(SD)

242 156.3 173.1 801.6 1287.6 2961.4 1987.7 1998.9 3986.6 2650.4

177

B.7. Times for searching for field unique2 less than 1000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

873.5

2089.2

1892.2

2161.1

4096.9

7687.5

3695.2

5465.6

8975.2

6204.7

Db4o

(SD)

80.6

62.7

133.7

197.1

2015.8

7612.97

171.9

2986.7

8702.7

1578.1

Neodatis

(Time)

940.6

1740.8

2364

7743.6

5827.9

5759.4

9865.6

12132.7

10050.1

11975

Neodatis

(SD)

289.6

655.6

243.5

7334

938.2

957.7

4968.6 3021.3

1706.5

4169.6

Perst

(Time)

67.1

84.7

57.8

62.5

75

59.5

61

56.5

82.9

54.6

Perst

(SD)

17.3

14.2

9.9

9.85

6

9.6

14.7

15.8

17.3

12.6

Prevayler

(Time)

1468.8 3689.1 5501.6 5781.2 7064 8292.2 10703.1 11109.3 12859.4 14332.8

Prevayler

(SD)

139.2 389 807. 6 338.3 440.1 247.3 1595.8 595.3 1262.5 625.1

B.8. Times for searching for field unique1 less than 1000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

898.2

2172.2

2212.4

2296.9

3276.6

3893.6

3886.1

8051.5

5389.1

6710.8

Db4o

(SD)

75.7

97.9

720.8

214.9

318.5

662.3

298

5433

368 1812.1

Neodatis

(Time)

898.5

1629.8

2642.1

4509.4

5920.3

5893.7

8081.5

10678

10334.4

9771.8

Neodatis

(SD)

219.2

220

1141.7 535.3

1372

903.6

535.2

2805.2

1902.7

1020.2

Perst

(Time)

34.3

102.9

70.4

71.7

79.9

75

79.5

59.5

76.6

53.1

Perst

(SD)

30.1

28.9

18.9

19.9

19

34.7 14.6

11.9

14.8

14.4

Prevayler

(Time)

1257.8 2710.9 4273.4 6457.8 7289.1 10176.5 9712.5 11976.6 12798.4 14445.4

Prevayler

(SD)

73.7 81.6 233.5 1635.1 335.8 2435.3 359.6 2445.7 1406.6 1465

178

B.9. Times for searching for field stringu1 without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

906.3

2196.8

2086

2326.3

3226.6

3956.3

3742.4

4656.3

5501.7

7059.5

Db4o

(SD)

134.9 144.2

490.4

363.3

377.7

551.3

164.3

434

735.4

4055.7

Neodatis

(Time)

173.4

1665.6

2543.8

4781.2

6632.8

6231.2

11134.3

10110.9

14046.9

11331.2

Neodatis

(SD)

11.1

270.5

275.5

634.6 4002.6

1051.9

6401.3

962.4

5988.9

1842.1

Perst

(Time)

6.3

4.7

4.7

4.7

3.1

3.1

3.1

3.1

3.1

4.7

Perst (SD) 7.7

7.1

7.1

7.1

6.2

6.2

6.2

6.2

6.2 7.1

Prevayler

(Time)

1434.4 3056.2 4765.6 6062.5 7837.5 9620.3 10929.7 12687.5 13935.9 15471.8

Prevayler

(SD)

63.6 104.8 482 54.1 909.8 358.3 1003.7 866.2 521.5 776.4

B.10. Times for searching for field stringu2 without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

881.3

2135.8

1949.9

2084.5

3149.9

5262.7

3731.4

4849.9

7723.5

7123.5

Db4o

(SD)

79.9

85.9

152.7

96.6

327.5

2206.3

129.6

597.1

6815.1

1863.7

Neodatis

(Time)

176.6

1621.8

2486

4989.1

5804.6

6101.6

8060.9

10611

10032.8

12673.5

Neodatis

(SD)

12.1

188.2

221.9

640.9

675.9 1315.6

862.6

1589.8

1532

6455.2

Perst

(Time)

6.3

3.1

4.7

4.7 3.1 6.2

4.7

3.1

3.1

4.7

Perst

(SD)

7.7

6.25

7.1 7.1

6.2

7.6

7.1

6.2

6.2

7.1

Prevayler

(Time)

1426.6 3070.3 4782.8 6325 9471.8 9190.7 11326.6 16000 15311 17828.1

Prevayler

(SD)

67.5 35.1 199.1 227.8 3260.7 245.4 916.7 5386.5 1147.3 1194.9

179

B.11. Times for searching for field string4 without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

887.3

2112.3

1818.6

2064.2

3623.4

3772.1

3780

4825

5843.9

6768.5

Db4o

(SD)

72.6

89.9

66.9

117.8

621.2

574.3

160.4

377.5

909.5

1784.2

Neodatis

(Time)

429.8

2092.3

2946.9

5346.9

6514.1

6559.4

9085.9

12014

12154.7

12935.9

Neodatis

(SD)

364.1

358.4

347.7

677

1043.7

884.5

1015.1

2389.3

1664.3

1287.8

Perst

(Time)

6.2

4.7

4.7

3.2

4.7

3.1

4.6

3.1

3.1

3.2

Perst

(SD)

7.6

7.1

7.1

6.4

7.1

6.2 7

6.2

6.2 6.4

Prevayler

(Time)

1392.2 2826.6 4201.5 5503.1 12153.1 10196.9 16442.2 11071.9 12301.6 13718.8

Prevayler

(SD)

75.2 169.8 128.2 95.3 3166.3 2813.3 3853 892 517.1 711.6

B.12. Times for searching for field unique1 with indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

223.3

92.2

82.8

57.6

67.3

155.9

118.7

148.5

93.8

146.8

Db4o

(SD)

77.4

19.1

72

15.5

11.9 45.2

30.5

58.3

70.2

108

Neodatis

(Time)

1596.9

2848.5

5259.3

5742.2

7634.3

12768.7

12893.8

18059.4

17651.6

17945.3

Neodatis

(SD)

447.2

622.9

719.2

1156.1

1070.5 6542.4

4252.3

10249.9

3083.8

3741.84

Perst

(Time)

47

26.6

24.7

28.2

18.8

18.8

26.6

30.2

23.9

14.2

Perst

(SD)

22

13.9

14.4

11.5

11.5

11.5

13.9

10.8

 12.7

10.8

Prevayler

(Time)

- - - - - - - - - -

Prevayler

(SD)

- - - - - - - - - -

180

B.13. Times for searching for field stringu1 with indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

59.4

56.2

103.3

50.1

76.5

57.9

61.1

104.7

76.6

57.8

Db4o

(SD)

9.6 17.3

52.5

6.2

68.9

7.1

4.7

85.4 69.9

12.2

Neodatis

(Time)

1603.1

2725

10395.3

5492.2

7954.7

10671.9

13131.3

16187.5

16042.3

18239.1

Neodatis

(SD)

450.1

605.7

5819.3

993.9

1005.1

1070.1

2599.1

3829.4

2038.4

2550.4

Perst

(Time)

37.4

21.9

23.8

32.9

41.1

30.1

25.1

23.5

27.8

31

Perst

(SD)

20.9

14.2 16.1

14.7

17.3 17.7

14.2 12.4

11.9

12.3

Prevayler

(Time)

- - - - - - - - - -

Prevayler

(SD)

- - - - - - - - - -

B.14. Times for modifying a unique record with indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

520.3

596.8

629.7

682.8

529.6

621.8

568.8

587.5

586

359.4

Db4o

(SD)

1560.9

1790.4

1889.1

2048.4

1588.8

1865.4

1706.4 1762.5

1758

1078.2

Neodatis

(Time)

1501.6

2715.6

5767.2

5909.4

7531.3

12979.7

16051.5

21701.6

18228.2

25037.5

Neodatis

(SD)

4504.8 8146.8 17301.6

17728.2

22593.9

38939.1

48154.5

65104.8

54684.6 75112.5

Perst

(Time)

321.9

220.3

232.8

340.6

246.8

232.8

312.5

214

251.5

228.1

Perst

(SD)

965.7

660.9

698.4

1021.8

740.4

698.4

937.5

642

754.5 684.3

Prevayler

(Time)

- - - - - - - - - -

Prevayler

(SD)

- - - - - - - - - -

181

B.15. Times for deleting a single item without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

0 1.6

0 1.5

0 0 1.6

0 1.6 0

Db4o

(SD)

0 4.8

0 4.5

0 0 4.8

0

4.8

0

Neodatis

(Time)

1009.3

1590.6

2614.1

4906.3

8329.7

8567.2

13934.4

10104.7

10739.1

10100

Neodatis

(SD)

3027.9 4771.8

7842.3

14718.9

24989.1

25701.6

41803.2

30314.1

32217.3

30300

Perst

(Time)

1070.3

2468.7

1945.3

3814.1

3095.3

4228.2

6070.3

4625

9237.5

7845.3

Perst

(SD)

3210.9

7406.1

5835.9

11442.3

9285.9 12684.6

18210.9

13875

27712.5 23535.9

Prevayler

(Time)

1251.6 2818.7 4271.9 5415.6 6737.5 10760.9 9693.7 11578.2 12386 13878.1

Prevayler

(SD)

86.3 115.5 233 37.1 119.2 2725.6 405.6 934.3 608.9 1267.5

B.16. Times for deleting 1000 randomly distributed items without indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

0 0 1.5

0 0 0 0 1.6

0 1.6

Db4o

(SD)

0 0 4.5

0 0 0 0 4.8 0 4.8

Neodatis

(Time)

3037.5

3960.9

6489

9037.5

10811

10653.1

15818.8

28928.1

21196.8

21504.7

Neodatis

(SD)

9112.5

11882.7

19467

27112.5

32433

31959.3

47456.4 86784.3

63590.4

64514.1

Perst

(Time)

1090.6

2065.6

1893.7

2650

4948.4

3487.5

4178.1

3992.2

6637.5

8732.9

Perst

(SD)

3271.8

6196.8

5681.1

7950

14845.2

10462.5

12534.3

11976.6 19912.5

26198.7

Prevayler

(Time)

1339.1 2806.2 4525 5506.3 6773.4 8762.5 10814.1 10812.5 12826.6 13703.1

Prevayler

(SD)

31.3 98 718.1 145.5 71 851.8 2420 140.2 1586.2 553.7

182

B.17. Times for deleting 1000 randomly distributed items with indexing

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Db4o

(Time)

0 0 1.5

0 0 0 0 1.6

0 1.6

Db4o

(SD)

0 0 4.5

0 0 0 0 4.8

0 4.8

Neodatis

(Time)

10.9

12.5

7.8

7.8

9.4

4.7

4.7

7.8

6.2

7.8

Neodatis

(SD)

32.7

37.5

23.4

23.4

28.2

14.1 14.1

23.4

18.6

23.4

Perst

(Time)

4286

6811

8573.5

8045.3

9470.3

8942.2

9970.3

7856.3

12115.6

7353.1

Perst

(SD)

12858

20433

25720.5

24135.9

28410.9

26826.6

29910.9

23568.9 36346.8 22059.3

Prevayler

(Time)

- - - - - - - - - -

Prevayler

(SD)

- - - - - - - - - -

