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Abstract  

 

Early yield prediction of a maize crop is important for planning and policy decisions. Many 

countries, including South Africa use the conventional techniques of data collection for 

maize crop monitoring and yield estimation which are based on ground-based visits and 

reports. These methods are subjective, very costly and time consuming. Empirical models 

have been developed using weather data. These are also associated with a number of 

problems due to the limited spatial distribution of weather stations. Efforts are being made 

to improve the accuracy and timeliness of yield prediction methods. With the launching of 

satellites, satellite data are being used for maize crop monitoring and yield prediction. 

Many studies have revealed that there is a correlation between remotely sensed data 

(vegetation indices) and crop yields. The satellite based approaches are less expensive, 

save time, data acquisition covers large areas and can be used to estimate maize grain 

yields before harvest. This study applied Landsat 8 satellite based vegetation indices, 

Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) 

and Moisture Stress Index (MSI) to predict maize crop yield. These vegetation indices 

were derived at different growth stages. The investigation was carried out in the 

Kopanong Local Municipality of the Free State Province, South Africa.  Ground-based 

data (actual harvested maize yields) was collected from Department of Agriculture, 

Forestry and Fisheries (DAFF). Satellite images were acquired from Geoterra Image (Pty) 

Ltd and weather data was from the South African Weather Service (SAWS). Multilinear 

regression approaches were used to relate yields to the remotely sensed indices and 

meteorological data was used during the development of yield estimation models. The 

results showed that there are significant correlations between remotely sensed vegetation 

indices and maize grain yield; up to 63% maize yield was predicted from vegetation 

indices. The study also revealed that NDVI and SAVI are better yield predictors at 

reproductive growth stages of maize and MSI is a better index to estimate maize yield at 

both vegetative and reproductive growth stages. The results obtained in this study 

indicated that maize grain yields can be estimated using satellite indices at different maize 

growth stages.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Monitoring crop condition and crop yield forecasting are important for agriculture and 

economic departments at state, national and even international levels (XIJIE, 2013). Maize 

is an economically important crop; it serves as valuable human food in many regions of the 

world. In developing countries, like South Africa, maize is consumed directly and serves as 

staple diet for over 200 million people (DAFF, 2003). Yield potential of maize is essentially 

dependent on environmental conditions under which it is planted (i.e. the amount of 

intercepted radiation, water and nitrogen supply) (Robertson et al., 2000). Planting time of 

maize is known to influence yield through the effect of environmental conditions on canopy 

production function and maize development processes (Birch et al., 2000). Maize yield 

potential varies according to location, due to different growth conditions (Birch et al., 2000). 

Identification and evaluation of the environmental factors contributing to year-to-year 

fluctuation in maize yields can provide a basis for the assessment of production risk (i.e. 

getting low yield than the potential yield) and for adjustment in management practices to 

reduce this risk (Raymond, 2007). Weather, particularly rainfall and temperature during the 

growing season, are the major determinants of maize yield. Management activities can be 

planned to maximize yields provided environmental conditions of a particular area are 

known (Raymond, 2007). Understanding environmental conditions of an area can help in 

planning the planting dates of maize as mentioned that maize production depends on 

weather conditions. 

 

Optical remote sensing techniques, in particular, are well suited for agricultural applications 

(precision agriculture), because the techniques are able to provide information on the actual 

status of maize crop at different growth stages via their spectral signatures (Ruiz et al., 

2004). Yield forecasting around the world is done with crop simulation models, remote 

sensing, statistical techniques, scouting reports, and combinations of these methods 

(Guindin-Garcia, 2010). Scouting reports or sampling agricultural field is a reliable way to 

estimate yield, however; this method is time-consuming, costly and does not allow yield 
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estimates before harvest. In contrast, data obtained from remote sensing and simulation 

models allow government agencies, private industry, and researchers to estimate yield 

before harvest (Guindin-Garcia, 2010). 

 

Previous studies focused their analysis on two major techniques. The first technique relates 

vegetation indices (VIs) with a final yield at a specific growth stage (e.g. vegetative or 

reproductive) during the growing season (Shanahan et al., 2001; Lobell et al., 2002; Martin 

et al., 2007). This technique helps in identifying the best stage to estimate maize yields, 

thus, giving food markets enough time on price planning. The second technique relates to 

the final yield with cumulative values of Vegetation Index (e.g. Normalized Difference 

Vegetation Index) obtained during the entire growing season (Labus et al., 2002; Mkhabela 

et al., 2005; Wall et al., 2008). This technique leads in estimating maize gain yields after 

harvest, which is time-consuming to policy and decision makers. Therefore, this technique 

is not relevant as it is similar to ground-based techniques. Monteith (1972), introduced one 

form of agro-meteorological yield model that defines the relationship between light use 

efficiency (LUE) and biomass production. This approach makes use of observations of the 

fraction of absorbed Photosynthetically Active Radiation (fPAR) at different crop stages; it 

converts the amount of usable energy intercepted by the vegetation canopy to crop-specific 

biomass production (Alganci et al., 2013). This technique also lends itself well to satellite-

based estimates of crop because light absorption by plants is the key driver of crop growth 

during the growing season and can be directly measured over large areas using remote 

sensing (Field et al., 1995). 

 

Regional maize growth estimates based on field reports are often expensive, prone to errors, 

and cannot provide real-time, spatially explicit, estimates or forecasting of maize condition 

(Bing-fang et al., 2007). Acquiring the maize growing condition information at early stages 

of maize growth is even more important than acquiring the exact production after harvest. 

This gives decision-makers and policy planners enough time to plan for maize import in case 

of shortage and export in case of surplus. Estimating maize yield before harvest also helps 

food market in planning of maize price.   Remote sensing and Geographic Information 

Systems (GIS) techniques in particular are well suited for agricultural applications, because 
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the techniques are able to provide information on the actual status of crops at different 

growth stages via their spectral signatures (Ruiz et al., 2004). 

 

On the other hand, remote sensing may provide temporal information on crop growing 

conditions that could be related to final yield without the use of crop simulation models 

(Guindin-Garcia, 2010). Although satellite remote sensing has the advantage of providing 

spatial data over large areas, work to date using these images with spatial resolution 

sufficient for parcel-based analyses have been fraught with temporal resolution constraints, 

since daily to weekly observations are required to capture rapid changes in crop 

development (Alganci et al., 2013). There is also a limitation which needs to be considered 

when using information retrieved using remote sensing i.e. the lack of understanding of 

agricultural crop dynamics e.g. a better understanding of how maize yield is formed and 

which crop growth stage(s) is involved in determining yield, improving the accuracy of 

agricultural crop monitoring and enhancing final yield estimates (Doraiswamy et al., 2005). 

 

The spectral reflectance of plants has a high correlation with the vegetation status of various 

crops. Research has revealed significant relationships between spectral vegetation indices 

and crop yields (Groten, 1993; Wiegand et al., 1991). Researchers also documented that 

vegetation indices are sensitive to vegetation changes in terms of physiological 

development and thus, they can be used as indicators of crop health, which will determine 

the potential yield of crops (Asrar et al., 1984; Liu et al., 2012; Myneni et al., 1995; Wang et 

al., 2001). 

 

Maize is one of the most important grains in Africa and is produced throughout the continent. 

Maize is widely used as food in the African countries where it is grown (Obilana et al., 1980). 

The fresh grains are eaten roasted or boiled on the cob. The grains can be dried and cooked 

in combination with edible leguminous crops like cowpeas or beans. The grains can also be 

milled and boiled as porridge with or without fermentation. It can be baked into a form of 

bread. Generally, the bulk of the concentrates fed to farm animals consists of grains, and 

maize is the most important one in the tropics (Saunders, 1930). Maize supplies 
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carbohydrates mainly for the release of energy for the various essential activities of farm 

animals. 

 

Maize is a key crop, contributing to food security in Southern Africa, but accurate estimates 

of maize yield prior to harvesting season is limited An ability to predict maize yield before 

harvesting helps in ensuring regional food security (Kuri et al., 2014). In Southern Africa, 

maize yield estimates are traditionally obtained after ground surveys are done by field staff 

who use eyeballing and pace along the edges of the sample maize field to estimate the area 

under maize and expected yield (Masocha et al., 2014). South Africa also uses traditional 

ground-based surveys in predicting maize yields and this method cannot cover large areas. 

This study aims at estimating maize yield before harvest using remote sensing techniques, 

i.e. relating remotely sensed vegetation indices with a final yield at a specific growth stage. 

 

 

1.2 The need for crop yield estimation before harvest 

 

The main purpose of crop yield and production forecast activities is the reduction of risks 

(shortage and surplus) associated with local or national food systems. Accurate estimates 

of crop yield and prediction on regional and national scales are becoming increasingly 

important in developing countries and have sustained importance in developed countries 

(Guindin-Garcia, 2010). Yield estimation is an important issue in agro-economic planning 

because it optimizes price setting and storage policy on different governmental levels (Bach, 

1998). Since crop yield influences prices and subsidization, it is also important at the farming 

level to reliably estimate its expected value as early as possible during the growing season 

(Bach, 1998). Realistic and timely estimates of crop yield expectations form the basis for 

monetary decisions in fields such as credit business and the stock exchange. The production 

of crops and prediction of crop yield have direct impact on year-to-year national and 

international economies and play an important role in the food management and food 

security (Prasad et al., 2005). Remotely sensed crop yield estimates greatly benefit farmers 

as well as researchers and policymakers concerned with food production (Sawasawa, 

2003). 
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The agronomic variables (maturity, population density, vigour, disease, and weed 

infestation) can be used as yield indicators upon which crop models are based (Clevers et 

al., 1994). Estimating crop yield well before harvest is crucial, especially in regions 

characterized by climatic uncertainties (Sawasawa, 2003). This enables planners and 

decision makers to predict how much to import in case of shortfall or optionally, to export in 

case of surplus. It also enables governments to put in place strategic plans in redistribution 

of food during times of famine (Sawasawa, 2013). Therefore, monitoring of maize crop 

development, growth, and early yield prediction are generally important. With the 

development of satellites, remote sensing images provide access to spatial information at 

the field level of features and phenomena on earth on an almost real-time basis (Reynolds 

et al. 2000).  Remote sensing technology can be used to identify and provide information on 

spatial variability and permit more efficiency in the field scouting (Schuler, 2002). Remote 

sensing could, therefore, be used for crop growth monitoring and yield estimation before 

harvest. 

 

 

1.3 Problem statement 

 

Crop yield estimation in many countries is based on conventional techniques of data 

collection, crop and yield estimation based on ground-based field surveys. Such reports are 

often subjective, costly, time consuming and are prone to large errors due to incomplete 

ground observations, leading to poor crop yield assessment and crop area estimations 

(Reynolds et al., 2000). In most countries the data becomes available too late for appropriate 

actions to be taken to avert food shortage. Objective, standardized and possibly 

cheaper/faster methods that can be used for crop growth monitoring and early crop yield 

estimation are imperative. There are difficulties in comparing statistics and validating 

information collected by various ground-based techniques because they use different 

methodologies for monitoring and measuring production. When using these traditional 

techniques, the availability of production estimates is only close to harvest time. These 

cannot cover large areas also, therefore, there is a need to use remote sensing applications 
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to estimate maize yield from crop growth stages. There are few studies on estimating maize 

yield based on growth stages using remote sensing in South Africa and this study will use 

this technique to cover this gap. Combination of vegetation indices and meteorological data 

have not been used in estimating maize grain yields based on crop growth stages. Policy 

and decision makers cannot plan for future pricing, or plan how much maize needs to be 

imported or exported if they do not know the yields prior to harvest time. This study attempts 

to use remote sensing and GIS techniques to eliminate time taken to predict maize grain 

yields. 

 

1.4 Research Aim and Objectives 

 

1.4.1 Research Aim 

 

The primary aim of this study is to predict maize yield before harvest based on crop growth 

stages using remotely sensed vegetation indices (NDVI, SAVI and MSI). 

 

1.4.2 Specific objectives 

 

 To characterise maize crop growth stages (vegetative and reproductive stages) 

based on Vegetation Indices; 

 To apply regression models at different growth stages to predict maize yield; and 

 To validate yield predicted from remote sensing with ground-based techniques. 

 

 

1.5 Research questions 

 

 To what extent can Vegetation Indices derived from maize during different growth 

stages be used to estimate the final maize yields in a growing season? 

 To what extent can regression models that integrate vegetation indices and climate 

variables suitable to predict maize yield based on growth stages? 
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1.6 Hypothesis 

 

The spectral reflectance is a manifestation of all important factors affecting the agricultural 

crop and cumulative environmental impacts on crop growth (Liu & Kogan, 2012; Singh et 

al., 2002), therefore remotely sensed data can be used to monitor maize crop conditions 

through vegetation indices (e.g. Normalized Difference Vegetation Index-NDVI, Soil 

Adjusted Vegetation Index-SAVI, or Moisture Stress Index-MSI). 

 

 

1.7 Assumption 

 

The spectral reflectance of crops is strongly related to crop growing conditions, which can 

be related to the final crop yield. The growing conditions are influenced by factors such as 

soil characteristics, cultural practices, socioeconomic factors and other biotic factors. 

Spectral data are an integration of all the factors affecting crop growth. 

 

 

1.8 Research outline 

 

Chapter 1 introduces the research problem, the aim and the objectives. It introduces the 

importance and relevance of maize yield estimation before harvest time. It discusses 

challenges faced by the traditional approaches to yield estimation such as field surveys, 

which remote sensing can overcome. 

 

Chapter 2 provides a comprehensive review of literature with emphasis on: application of 

remote sensing approaches to maize yield estimation globally, the need to apply remote 

sensing data to predict maize grain final yield, the capability of remote sensing on maize 

crop monitoring and yield estimation and the applicability of different vegetation indices to 

predict maize yield on different growth stages. 
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Chapter 3 provides a detailed description of the study area and an overview of the materials 

and methods that were used in this study. The statistical approaches used to achieve the 

results obtained were discussed in this chapter. 

 

Chapter 4 presents the results of the study. The outcomes of the research are presented in 

the form of tables with brief statements attached to each table. 

 

Chapter 5 offers discussion of the results of the research. Remote sensing techniques 

advantages and shortfalls are discussed in this chapter. The procedures used to test the 

statistical significance of the results are explained with emphasis on NDVI, SAVI and MSI. 

The conclusion of the study is revealed based upon the analysed results.  

 

Chapter 6 highlights the suggested suitable recommendations and policies that can be 

implemented to improve the yield estimation methods. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Introduction 
 

This chapter provides a comprehensive review of literature with emphasis on: 

application of remote sensing approaches to maize yield estimation globally, the need to 

apply remote sensing data to predict maize grain yield, the capability of remote sensing 

on maize crop monitoring and yield estimation and the applicability of different 

vegetation indices to predict maize yield on different growth stages. 

 

2.2 Remote sensing 

 

Remote sensing is the acquisition of information about an object or phenomenon without 

being physically in contact with the object and thus, in contrast on site observation 

(Aggarwal, 2000). Remote sensors collect data by detecting energy that is reflected from 

an object on the Earth's surface. These sensors can be on a satellite or mounted on an 

aircraft. Some sensors are handheld, e.g. GreenSeeker handheld crop sensor, which is 

an affordable, easy-to-use measurement device that can be used to assess the health or 

vigour of a crop (Del Corso et al., 2010). The usual problem about handheld sensors is 

that they focus on one crop growth factor, e.g. GreenSeeker focuses on the application 

of fertilizer only (Del Corso et al., 2010). Therefore, these kinds of sensors are not useful 

for maize crop yield estimation because the maize yield is determined by many factors 

that include temperature and rainfall. 

 

Satellite technology provides valuable information over large areas and possess temporal 

data collection capabilities, has been widely used in crop yields assessments in a variety 

of environments (Alganci et al., 2014). Remote sensing offers great potential for 

monitoring regional maize production (Lobell et al., 2003). Regional estimates of maize 

yield are desirable for managing large agricultural lands and determining food pricing and 

trading policies (Asner et al., 2003). The use of remote sensing has proved to be very 

important in monitoring the growth of agricultural crops (Prasad et al., 2006). The 
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production of maize and prediction of maize crop yields has a direct impact on year-to-

year national and international economies and play an important role in the food 

management and food security (Presad et al., 2006). Using remotely sensed vegetation 

cover as crop predictor has an advantage in a way that it also captures the effect of soil 

type, relief, climate, vegetation type and other socio-economic factors that influence crop 

performance such as management practices adopted by farmers (Kuri et al., 2014). 

 

Remote sensing offers great potential for monitoring regional production, yet the 

uncertainties associated with large-scale yield are rarely addressed (Asner et al., 2003). 

Alganci et al., (2014) used satellite images combined with meteorological data and digital 

photographs to estimate maize and cotton yields. They found that the relative errors of 

yield estimates were under 5% in test parcels and less than 10% on a regional basis, 

therefore, the technique can be used to estimate maize yield.  Lobell et al., (2003) used 

remote sensing in regional crop production in Mexico to estimate and predict uncertainties 

in crops, they discovered that accurate yield predictions can be achieved using only one 

image, provided that the image is acquired at the peak of development for most crops. 

Peak development stage of maize is a stage when the crop is starting to fill grains (mature 

stage). Lobell et al., (2003) also discovered that applications of remote sensing in different 

regions may need to consider additional sources of uncertainty, for example water stress, 

temperature variability and crop management. Various techniques based on remotely 

sensed data (crop models, empirical models) have been employed for assessment of 

crop yield (Sakamoto et al., 2013). 

 

 

2.3 The spectral response of maize crops 

 

The spectral response of the crop represents the integrated effect of all cultural, soil, and 

meteorological factors affecting crop growth and development (Bauer et al., 1980). When 

energy strikes on a surface material, it is either absorbed or reflected back through the 

electromagnetic spectrum. The intensity of crop reflectance is commonly greater than 

from most inorganic materials (Ruiz et al., 2009). Consequently, crops appear bright in 
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the Near-Infrared (NIR) wavelengths due mostly to the sensitivity of these wavelengths 

to internal plant pigmentation (Soria-Ruiz et al., 2009). The visible (400-700 nm 

wavelengths) and NIR (700-2500 nm) region of the electromagnetic spectrum is the 

region at which most agriculture studies carry out measurements. This is because the 

spectral region includes wavelengths, which are sensitive to physiological and biological 

functions of crops (Lillesand, et al., 2008). 

 

Generally, healthy vegetation will absorb most of the visible light that falls on it, and 

reflects a large portion of the near-infrared light. Unhealthy or sparse vegetation reflects 

more visible light and less near-infrared light. Bare soils on the other hand reflect 

moderately in both the red and infrared portion of the electromagnetic spectrum (Holme 

et al 1987). The spectral characteristics of healthy crops are distinctive with low reflection 

in blue, high in green, very low in red and very high in the NIR (Ren et al., 2010; Genc et 

al., 2013). In the visible part of the spectrum plants absorb light in the blue (450 nm) and 

red (600 nm) regions and reflect relatively more on the green portion due to the presence 

of chlorophyll, which is the main factor, which determines whether a plant is healthy or 

not (Sawasawa, 2003). In general, healthy crops are associated with high potential yield 

therefore, if the crop highly reflects at NIR it can be estimated that the crop will have a 

high potential yield. In cases where crops are subjected to the moisture stress or other 

conditions that make it difficult for crop growth, the chlorophyll production will decrease; 

this leads to less absorption in the blue and red bands, this also helps in understanding 

whether the crop is healthy or not (Dadhwall and Ray, 2000; de Wit and Boogard, 2001; 

Jansen and Huurneman, 2001; Woldu, 1997). 

 

The canopy greenness of crops increases, either due to increasing crop density or 

chlorophyll content, therefore, canopy greenness is related to the percentage of red 

reflectance absorbed and the percentage of NIR reflected (Lillesand et al., 2008). This 

implies that, the reflectance spectral techniques are very suitable for providing relevant 

information on both crop foliar and canopy. This information could be related to nutrient 

status, and stress factors on the crops, which can be used to estimate the yields.  These 

factors are some of the factors which determine potential yield of crops. 
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As the leaves dry out or as the crop senesce, there is a reduction in chlorophyll pigment, 

this results in the general increase in reflectance in the visible spectrum and a reduction 

in reflectance in the NIR portion of the spectrum due to cell deterioration (Sawasawa, 

2013). Thus, the spectral response of a crop canopy is influenced by the plant health, 

percentage of ground cover, growth stage, differences in cultural practices, stress 

condition and the canopy architecture (Verma et al., 1998). The deferential reflection of 

green plants in the visible and infrared parts of the spectrum makes it possible for the 

detection of healthy plants from satellite data because other features on Earth's surface 

do not have such unique step-like characteristics in the 650-750 nm spectral range 

(Sawasawa, 2013). This signature is unique to green plants only thus this principle is used 

in vegetation indices.  

 

 

            

 

Figure 2.1:  Spectral reflectance curves for soil and crop (green vegetation) according to 

Scotford and Miller, 2005 
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2.4 Vegetation Indices (VIs) 

 

A vegetation index is an indicator that describes the greenness, the relative density and 

health of vegetation for each picture element, or pixel, in a satellite image. The main 

purpose of spectral vegetation indices is to enhance the information contained in spectral 

reflectance data, by extracting the variability due to vegetation characteristics and to 

minimize soil, atmospheric, and sun-target-sensor geometry effects (Moulin and Guerif, 

1999). More specifically, VIs have been considered as measures of vegetation density or 

cover, photosynthetically active biomass, leaf area index, green leaf density, 

photosynthesis rate, amount of photosynthetically active tissue and photosynthetic size 

of canopies (Wiegand, 1991). The vegetation indices provide information on the state of 

vegetation on the land surface (Dadhwall and Ray, 2000; de Wit; Gielen and de Wit, 

2001). Vegetation indices can be more useful in yield estimation because the health of 

crops and their densities are associated with the potential yield of crops. 

 

Biophysical features of plants can be characterized spectrally by vegetation indices 

defined as radiometric measures. They are calculated as ratios or differences of two or 

more bands in the VIS, NIR and SWIR wavelengths. The usefulness of a vegetation index 

is determined by its high correlation with biophysical parameters of plants and low 

sensitivity to factors hampering remote sensing data interpretation, e.g. soil background, 

relief, nonphotosynthesizing elements of plants, atmosphere, viewing and illumination 

geometry (Huete and Justice, 1999). The most commonly used index is the Normalized 

Difference Vegetation Index (NDVI), proposed by Rouse et al. (1974) and calculated as 

a quotient of the difference and sum of the reflectance in NIR and red regions. Green 

parts of plants reflect intensively in the NIR region due to scattering in the leaf mesophyll 

and strongly absorb red and blue light via chlorophyll (Ayala-Silva and Beyl, 2005).  

 

The NDVI index is used most frequently to determine the condition, developmental stages 

and biomass of cultivated plants and to forecasts their yields. The NDVI has become the 

most commonly used vegetation index and many efforts have been made aiming to 

develop further indices that can reduce the impact of the soil background and atmosphere 
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on the results of spectral measurements. An example of a vegetation index limiting the 

influence of soil on remotely sensed vegetation data is SAVI (Soil Adjusted Vegetation 

Index) proposed by Huete (1988). Another, the VARI index (Visible Atmospheric 

Resistant Index) (Gitelson et al., 2002), strongly reduces the influence of the atmosphere. 

Still more have been developed to consider differences in reflectance in the NIR and 

SWIR ranges indicating the occurrence of lack of water for plants: MSI (Moisture Stress 

Index) (Reiser et al., 1986). Hamar et al., (1996) established a linear regression model to 

estimate corn and wheat yield at a regional level based on vegetation indices computed 

with Landsat MSS data. The results showed that vegetation indices are highly correlated 

with the crops yields.  

 

2.4.1 Normalized Difference Vegetation Index (NDVI) 

 

The Normalized Difference Vegetation Index (NDVI) is a numerical indicator that uses the 

visible and near-infrared bands of the electromagnetic spectrum, and is adopted to 

analyse remote sensing measurements and assess whether the target being observed 

contains presence or absence of live green vegetation (Holme et al., 1987). The NDVI is 

closely correlated with green biomass and leaf area, and is one of the most widely used 

indices for agricultural monitoring (Rouse et al., 1973). This VI can be derived from 

various satellite data and well-understood vegetation index (de Wit and Boogard 2001). 

It has been found to correlate better with yields than other vegetation indices and thus, 

continues to be used as a vegetation indicator using remotely sensed data (Andrew et 

al., 2000; Mohd et al., 1994) 

 

Studies have noted that plant development, stress, and yield potentials are expressed in 

the spectral reflectance from crop canopies and that crops’ growing conditions can be 

quantified using NDVI (Tucker, 1979; Jackson et al., 1986; Weigand and Richardson, 

1990). A study by Benedetti and Rossini (1993) was the first to apply NDVI derived from 

remotely sensed images to grain yield assessment and forecasting. The study was based 

in Emilia Romagna, Italy, with simple linear regression model from 1986 to 1989. The 

predicted wheat yields had greater than 10% but less than 19% difference from the actual 
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wheat yield.  Labus et al., (2002) examined NDVI during wheat’s growing season and 

estimated wheat yield at regional and farm scales in Montana from 1989 to 1997. The 

study found a strong relationship between actual wheat and estimated wheat yield from 

NDVI both throughout the whole growing season and at the grain-filling stage. 

 

In recent years, Jianqiang et al., (2007) used NDVI from MODIS to estimate the winter 

wheat yield in one of the main winter-wheat-growing regions in Shandong province, 

China. The results showed that the relative errors of the predicted yield using MODIS-

NDVI are between -4.62% and 5.40% and that whole Root Mean Square Error (RMSE) 

was 214.16 kg per hectare lower than RMSE (233.35 kg per hectare) of agro-climate 

models in the region. These results depicted that the method was good for predicting the 

regional winter wheat yield (Jianqiang et al., 2007). 

 

Mkhabela et al., (2005) conducted a study to evaluate the capability of the NDVI in 

forecasting the maize yield and to identify the best time for making a reliable forecast in 

Swaziland using four agro-ecological regions. The results showed that the NDVI can be 

used effectively to forecast maize. The best time for making an accurate forecast was 

found to be from third week of January to the third week of March (grain-filling stage) 

depending on agro-ecological region environmental effects; therefore, yield estimation 

can be made 2-3 months’ prior harvest. Few studies to date have examined NDVI 

variables with surface temperature, precipitation, and soil moisture in estimating crop 

yields (Prasad et al., 2006; Balaghi et al., 2008). Prasad et al. (2006) examined corn and 

soybean yields for the state of Iowa from 1982-2001. An average of NDVI throughout the 

growing season was used as the input to the model to estimate crop yields. However, 

these results should be treated with caution because the signs of rainfall coefficients were 

negative for both corn and soybean, meaning more rainfall would reduce crop yields. 

Other vegetation indices have been developed to take into account the soil effect on 

vegetation reflectance, especially at low vegetation levels (Sawasawa, 2013). These 

indices provide better results than NDVI at low vegetation level because they eliminate 

the soil background effect, that include Perpendicular Vegetation Index (PVI), Weighted 

Difference Vegetation Index (WDIV), Soil Adjusted Vegetation Index, and Transformed 
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Soil Adjusted Vegetation Index (de Wit and Boogard 2001; Huete, 1999; Qi et al., 1994; 

Rondeaux et al., 1996). 

 

Although NDVI models established by several researchers have become widely used in 

the application of vegetation monitoring and yield assessment, it has to be emphasized 

that all models have limitations. Firstly, the NDVI is less sensitive to the crop at low level, 

i.e. when soil surface is still exposed (Sawasawa, 2013). This means NDVI has less or 

no capability to eliminate soil background reflectance; therefore, it cannot be used to 

accurately estimate or monitor crop at a very low crop cover. NDVI results generalize the 

health of vegetation, i.e. doesn’t count for specific causes of plants health e.g. crop 

moisture stress or drought (Gu et al., 2007). 

 

2.4.2 Soil Adjusted Vegetation Index (SAVI) 
 

The spectral reflectance of a plant (maize) canopy is a combination of the reflectance 

spectra of plant and soil components, governed by the optical properties of these 

elements and photon exchanges within the canopy (Rondeaux et al., 1995). The effect of 

soil brightness exerts considerable influence on the computation of vegetation indices. 

The reflectance of the soil background and the environment varies spatially in relation to 

soil structure, texture, colour, the materials, as well as soil moisture (Colwell, 1974; Rao 

et al., 1979; Kollenkark et al., 1982; Huete et al., 1984; Major et al., 1990). As the 

vegetation grows, the soil contribution progressively decreases but may remain 

significant, depending on plant density, row effects, canopy geometry and wind effects. 

 

Soil background is one source of variations that has received much attention in recent 

years, and Soil Adjusted Vegetation Index (SAVI) has been introduced to address this 

issue (Gilabert et al., 2002). The soil-adjusted vegetation index was developed as a 

modification of the NDVI to correct for the influence of soil brightness when vegetative 

cover is low. SAVI minimizes the influence of soil background from sparse to dense 

vegetation conditions (Bausch, 1993). This is done by considering first-order soil 

vegetation interaction by means of a soil-adjusted parameter (L), which usually depends 
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on the vegetation amount and has to be empirically determined, although it can also be 

measured or modelled. In particular, for the case of low vegetation canopy level, L = 1, at 

intermediate vegetation canopy level, L = 0.5 and high vegetation canopy level, L = 0 

(Melia et al., 2002). SAVI is used at early stages of crops, where the soil surface is still 

exposed. 

 

The main function of SAVI is to compensate for the effects of disturbing factors on the 

relationships between vegetation spectral reflectance as measured by crop 

characteristics (Panda et al., 2010). This index assumes linear relationship between near 

infrared and the visible reflectance from bare soil (Sawasawa, 2003). SAVI is anticipated 

to provide better results than NDVI at low vegetation cover because it eliminates the soil 

background. Although this index appears to be more reliable and less noisy than the 

NDVI, it is not widely used except in theoretical studies. The reason for this may be either 

the index’s more complex formulation or the fact that it has not been convincingly 

demonstrated to improve on the NDVI in the assessment of vegetation parameters. For 

these reasons, this study focuses on testing the applicability of different vegetation 

indices, including SAVI in estimating maize grain yields at different growth stages (from 

low vegetation to high vegetation levels). 

 

2.4.3 Moisture Stress Index (MSI) 
 
Moisture Stress Index (MSI) is a reflectance measurement that is sensitive to increasing 

and decreasing of leaf water content. MSI for maize plant is a measure of the effects of 

drought and catastrophic wetness on crop (Champagne, 2001). This index is applied on 

canopy stress analysis, productivity prediction and modelling. Moisture stress, either lack 

or an abundance of soil moisture during critical growth stages of the crop, affects average 

crop yields (Champagne, 2001). 

 

Moisture stress occurring at various vegetative and reproductive stages of growth and 

development of a maize crop may reduce final grain yields. The extent of grain yield 

reduction depends not only on the severity of the stress but also on the stage of crop 
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development when the stress occurs (Classen and Shaw, 1971). No studies in South 

Africa that combine different indices including those that count for crop moisture stress or 

drought e.g. MSI to estimate maize grain final yields. 

 

Lastly, previous studies either used summed NDVI values or the average across the 

growing season as the input for their regression models. None has examined the 

relationship between the change of NDVI from early season to the end of grain-filling 

stage and crop yield. Motivated by the above mentioned gaps from literature, this thesis 

attempts to use NDVI in combination with SAVI and MSI to estimate maize yield at specific 

growth stages in South Africa at a provincial level. 

 

2.5 Forecasting of yield using remote sensing 

  
Remote sensing has been used to forecast crop yields based primarily upon statistical–

empirical relationships between yield and vegetation indices (Casa and Jones 2005). 

Information on expected yield is very important for government agencies, commodity 

traders and producers in planning harvest, storage, transportation and marketing 

activities. The sooner this information is available, the lower the economic risk, translating 

into greater efficiency and increased return on investments.  

 

Walsh et al., (2012), conducted research on winter wheat, using ground-based spectra to 

forecast yield at the beginning of shooting stage. Many authors draw attention to the 

development phase of plants, as a critical component of yield forecasting ( Wójtowicz et 

al., 2005 and Piekarczyk, 2011). For instance, the most accurate yield forecasts of winter 

oilseed rape were achieved when the spectral measurements were performed in the 

phase of full budding of the crop (Wójtowicz et al., 2005). However, Piekarczyk et al., 

(2011) showed that the strongest relationship between the spectral data and the winter 

rape yield was obtained at the beginning of the flowering stage, while wheat yields were 

most accurately predicted when the plants were in the shooting phase. Many studies have 

shown the usefulness of the NDVI index for yields forecasting (Piekarczyk et al., 2004, 

Wójtowicz et al., 2005, Walsh et al., 2012), but good correlations with predicted yield were 
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also obtained for RVI (Ratio Vegetation Index) and ELAI (Estimated Leaf Area Index) 

indices (Wójtowicz et al., 2005). According to Piekarczyk et al., (2011), before oilseed 

rape flowering, the strongest correlation with yield was best when indices were calculated 

on the basis of reflectance in green and NIR wavelengths (550 and 775 nm, respectively). 

For yield forecasting, at the time of rape flowering, indices calculated on the basis of 

reflectance in NIR wavelengths and their logarithmic transformation were better than non-

transformed spectral data (Piekarczyk, 2011). 

 

The usefulness of aerial photographs for forecasting maize yield, using portions of the 

VIS and NIR ranges several times during the growing season, has been extensively 

studied (Chang et al., 2003). Airborne remote sensing data can substantially improve crop 

yield forecasting models. Launay and Guerif (2005) developed such a model that 

assimilates information obtained from images taken throughout the growing season. Yield 

estimates were improved decreasing the root mean square error (RMSE) from 20% to 

about 10%. The robustness of the model depended on the number and timing of images 

which defines the number and the type of plant biophysical parameters that can be 

assessed. When yield estimations were compiled for areas for which the soil was poorly 

characterized the forecasts generated by the model were improved (the RMSE decreased 

from 21% to 15%) if late in the season remote sensing data were assimilated. The study 

also found that the crop model was considerably less reliable in severe drought 

conditions. Yield predictions can be also derived based on data recorded from an UAV 

platform. An unmanned helicopter was used by Swain and Zaman (2013) to obtain 

multispectral images to estimate rice yield. With the use of a linear Wójtowicz et al., 

application of remote sensing methods in agriculture, regression model the study proved 

a high relationship between spectral data and rice yield (R2=0.76) existed. 

 

On a regional scale, crop yield estimation was carried out based on vegetation indices 

derived from AVHRR/NOAA satellite image data (Prasad et al., 2006). The model 

developed by the study, describing relationships between satellite spectral data and crop 

yield in Iowa gave high R2 values for corn (0.78) and soybean (0.86). Dąbrowska-

Zielińska et al. (2008) used the method to monitor the growth and yield of cereals on the 
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basis of AVHRR/NOAA images in Polish conditions. The authors developed a model 

which estimated wheat yield (with an error RMSE=13%) on the basis of LAI and 

evapotranspiration indices calculated from AVHRR images. Galvão et al. (2009) studied 

the possibility of using satellite Hyperion hyperspectral images to estimate the yield of 

soybean obtaining a high correlation (r = 0.74) between vegetation indices and weight of 

harvested seed. The model developed by Li et al., (2008) used an artificial neural network 

structure and enabled the prediction of yields of maize and soybean using MODIS sensor 

at a regional scale. Model results produced an accuracy of 85%. Doraiswamy et al., 

(2004) also studied the possibility of using MODIS satellite data for forecasting yields 

using a calibrated form of the model developed by Li et al. (2008). Model calibration was 

accomplished using ground reflectance measurements. Simulated yield results were in 

good agreement with yields reported by USDA–National Agricultural Statistics Service 

(NASS) for corn and soybean with -3.12 and 6.62 percent difference, respectively. Based 

on the gaps discovered above, this study will use different vegetation indices in 

combination with meteorological data to estimate maize grain yield before harvest. 
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CHAPTER 3:  MATERIALS AND METHODS 

3.1  Introduction 
 
The study was conducted in the Kopanong Local Municipality in Free State province of 

South Africa. The Kopanong Local Municipality area is situated in the southern Free 

State. It has the largest surface area of the three local municipalities in the Xhariep district, 

covering 15 190 square kilometres (44,5%). The nine towns situated in Kopanong are 

Trompsburg (municipal head office), Gariep Dam, Springfontein, Bethulie, Philippolis, 

Jagersfontein, Fauresmith, Edenburg, and Reddersburg. 

 

During 2000/2001, according to the Low Drop Out (LDO) documents, the Kopanong 

population was estimated to be 53 947, with an average of 3,55 people per square 

kilometre. This is about 41,9% of the total Xhariep population. Of these 76,3% live in 

urban areas, whereas 23,7% live in rural areas. According to the latest figures received 

from the nine towns in Kopanong it seems as though the population density could 

presently be more than the figure given above. It will be updated as soon as the latest 

data from STATS SA becomes available. 

 

Trompsburg, serves as the regional administrative seat within Kopanong and is situated 

approximately 108 km South of Bloemfontein. Access to the town is via the N1 between 

Bloemfontein and Colesberg. The main social & economic functions of the town include: 

(a) main local municipal administrative centre, (b) regional agricultural services centre, 

(c) regional social centre for health services, (d) social functions such as residence, 

education & social development services, and (e) transport support services on major 

routes.  

 

The town Gariep Dam, (the youngest town in South Africa) situated alongside the N1, 

and is perhaps better known to most for the manmade Gariep Dam (which is the largest 

dam in South Africa with a radius of 360 square kilometres) which forms part of the 

Orange River Development Scheme. The sheer magnificence of this more than 100km 

http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/36-trompsburg
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/21-gariep-dam
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/22-springfontein
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/35-bethulie
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/53-philippolis
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/54-jagersfontein
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/55-fauresmith
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/56-edenburg
http://www.kopanong.gov.za/index.php/component/content/article/66-uncategorised/57-reddersburg
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long and 24km wide dam, is indeed sufficient to testify to the exceptional engineering and 

success of Africa's largest water supply scheme. 

 

The Free State province lies between latitudes 26.6⁰  South and 30.7⁰  South and 

between longitudes 24.3⁰  East and 29.8⁰  East (Moeletsi et al., 2012). The province was 

selected because it is one of the main maize producing regions in the country. The 

province lies on a succession of flat grassy plains covered with pastureland. It reclines on 

a general elevation of 1158.24 metres above sea level, only broken by the occasional 

hills. The rich soil and pleasant climate (temperature and rainfall) allow for a thriving 

agricultural industry. With more than 30 000 farms, which produce more than 70% of the 

country’s grains, it is known locally as South Africa’s breadbasket (statistics South Africa, 

2013). The Free State province contributes to the agricultural economy of the country with 

an average of 3 million tons of maize per year, which is over 30% of the national maize 

production (De Jagger et al., 1998; Department of Agriculture Forestry and Fisheries 

(DAFF), 2000). Agriculture in the province is mostly rain-fed with less than 10% of arable 

land under irrigation (Moeletsi et al., 2012). Geographically, Kopanong is located in the 

southern Free State province has the largest surface area of the three local municipalities 

in the Xhariep District, covering 15190 square kilometres. 
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Figure 3.1:  Location of the Study Area 
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Another reason for choosing the area is because of the temporal resolution of Landsat 

imagery, i.e. 16 days, the whole of Free State province could not be used for this study 

because Landsat imagery cannot cover the whole province within one month. Maize 

calendar was also used to confirm the growing period in the province and the months 

were covered in the available imagery. Kopanong Local Municipality had six planted 

farms in 2013/2014 growing season. This season was chosen based on availability of 

data. This information is confirmed from yield data collected from DAFF (Figure 3.1). The 

farm locations in the area were verified using Google Earth. 

 

 

3.2  Climate 
 

Free State province experiences a continental climate (Continental climates are climates 

with significant annual variation in temperature), characterized by warm to hot summers 

and cool to cold winters (Moeletsi et al., 2012). Areas in the East experience frequent 

snowfall, especially on the Drakensburg range, whilst the West can be extremely hot in 

summer (up to 330C during the day). Almost all rainfall falls in summer with brief afternoon 

thunderstorms, with aridity increasing towards the West (Moeletsi et al., 2012). Areas in 

the eastern part of the province are well watered. The average annual rainfall of the 

province is between 559 and 680 millimetres. The average temperatures in the province 

is between 31⁰ C summer and 17⁰ C winter (Moeletsi et al., 2012). Maize yield is affected 

by extreme weather conditions. Too high or too low temperatures will decrease yields and 

drought or floods will also decrease maize yields. 

 

3.3 Data acquisition 
 

Four data different sets are going to be discussed below They are: 

 

 Remote Sensing Data; 

 Maize Data; 

 mage pre-processing; 
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3.3.1 Remote sensing data 

 

Landsat 8 images for November – December 2013 and January – April 2014 growing 

seasons were collected from Geo-Terra Image. GEOTERRAIMAGE is a privately owned 

company, which has been providing geographical information, services and products to 

a wide range of public and commercial sectors, e.g. agriculture, in support of business 

intelligence and planning decisions since 1999. The choice of the 2013 / 2014 growing 

season was considered based on the availability of data. Specific months, i.e. November 

– April (growing season) were selected based on the maize calendar of the Free State 

province. These data sets were selected on the basis of cost, availability, spectral and 

spatial resolution of the sensor. Landsat imagery has proved to be very effective in 

vegetation monitoring (University of Michigan, 1979), and there is substantial reason to 

believe that Vegetation Indices derived from Landsat can be used in the crop yield 

estimation. Vegetation Indices (VIs) have been considered to be a useful way of crop 

yield assessment models using various approaches from simple integration to more 

complicated transformation (Prasad et al., 2006). Spatial resolution of Landsat TM 

(Thematic mapper) is 30 metres. Landsat imagery is often used for explaining plant and 

soil variability in agriculture because of the ability to use several spectral bands 

(Kumhalova et al., 2014). 

 

The Landsat 8 imagery has four useful bands in vegetation monitoring, these are Band 2 

(blue), Band 3 (green), Band 4 (red) and Band 5 (NIR). Visible light (Band 2, Band 3 and 

Band 4) part of the spectrum can be used to distinguish soil from vegetation. This can be 

done by observing the absorption of light by chlorophyll in plants and reflectance of light 

by soil. Band 5 (NIR), this is especially important for crops because healthy crops reflect 

NIR, water in the leaves scatters the wavelengths back into the sky (Curran, 1989). The 

optical properties in the near infrared spectral domain are explained by leaf structure. The 

spongy mesophyll cells located in the interior or back of the leaves reflects NIR light, 

many of which emerges as strong reflection rays. The intensity of NIR reflectance is 
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commonly greater than most inorganic materials, so vegetation appears green in NIR 

wavelengths. 

 

 

Table 3.1: Landsat 8 useful bands properties for vegetation monitoring 

 

Band Wavelength Useful for mapping 

Band 2 – blue 0.45 - 0.51 Bathymetric mapping, distinguishing soil from 

vegetation and deciduous from coniferous 

vegetation 

Band 3 – green 0.53 - 0.59 Emphasizes peak vegetation, which is useful for 

assessing plant vigour 

Band 4 – red 0.64 - 0.67 Discriminates vegetation slopes 

Band 5 - Near 

Infrared (NIR) 

0.85-0.88 Emphasizes biomass content and shorelines 

 

Source:http://landsat.usgs.gov/best_spectral_bands_to_use.php. 

 

 

3.3.2 Maize data 

 

The study used actual maize yield statistics from DAFF for the growing season of 2013 / 

2014. Experienced agricultural technical and extension officers through sample-based 

field surveys collected data on each farm within the Free State province. The data were 

in the form of Microsoft Excel spreadsheet in point format with coordinates, and then 

converted to a Shape file using Arc Map. From converted farms points ArcGIS was used 

to extract the six farms of the Kopanong Local Municipality. 
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3.3.3 Weather data 

 

The maximum (max) and minimum (min) daily temperature data for the concerned period, 

i.e. 2013 / 2014 growing season were collected from the South African Weather Service 

(SAWS). SAWS records daily air temperatures and rainfall. This data was from the 

weather stations surrounding the study area. The data were necessary because the 

maize yield is affected by growing conditions such as temperatures and rainfall. Maize 

yield is very sensitive to temperatures, e.g. at very high extreme temperatures and low 

average rainfall we expect low yield. 

 

 

3.3.4  Image pre-processing data 
 

Image pre-processing is the process in which the correction of distorted or degraded data 

is performed, create a more meaningful representation of the original scene (Lillesand et 

al., 1999). This process consists of processes aimed at improving the ability to interpret 

qualitative and quantitative image components. The main purpose of image pre-

processing is to eliminate data registration errors. Pre-processing of images has been 

performed before the actual processing of images. Image pre-processing involved 

geometric correction, radiometric correction and noise removal (Thillou et al., 2004). 

Image restoration process is highly dependent upon the characteristics of the sensor. The 

images from Geo-Terra Images were already georeferenced with South African projection 

UTM WGS84. Therefore, there was no further image pre-processing required. 

 

 

3.4 Vegetation indices 

 

Of all six farms that were in the Kopanong Local Municipality during the growing season 

2013 / 2014, vegetation indices were calculated on Landsat 8 images. NDVI (appendix 1, 

4, 7, and 10), SAVI (appendix 2, 5, 8, and 11) and MSI (appendix 3, 6, 9, and 12) were 

calculated from 04/11/2013 (appendix 13), 06/12/2013 (appendix 14), 23/01/2014 
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(appendix 15) and 28/03/2014 (appendix 16) Landsat 8 images. NDVI was calculated to 

understand the state of vegetation on leaf surface, i.e. greenness and the health of the 

maize crop throughout the growing season (Holme et al., 1987). SAVI was calculated to 

take into account the soil effect on maize crop reflectance, especially at low vegetation 

level (Sawasawa, 2013). MSI was used to estimate the leaf water content at canopy level, 

this index is useful in monitoring drought and early warning of water stress (Gao et al., 

2007). The above-mentioned indices were calculated as follows: 

 

NDVI = 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
             (1) 

SAVI =
𝑁𝐼𝑅−𝑅𝑒𝑑(1+𝐿)

𝑁𝐼𝑅+𝑅𝑒𝑑
    (2) 

MSI = 
𝑀𝑖𝑑𝐼𝑅

𝑁𝐼𝑅
      (3) 

 

Where NIR is a Near Infrared band, Red is red band and MidIR is a Mid-Infrared band of 

the electromagnetic spectrum. 

 

These indices were calculated using ERDAS IMAGINE software. They were automatically 

calculated in an automated index calculator. The results for index were extracted using 

ArcGIS software commands and put into spreadsheet to generate regression model. The 

main purpose of calculating these results was to; 1) understand the growing conditions of 

maize crop throughout the growing season and, 2) to identify the index which best 

correlate with grain yield throughout the growing season.  Thus, the above-mentioned two 

facts were trying to answer the first and second question, i.e. can vegetation indices 

obtained from maize during different growth stages be used to accurately estimate the 

final maize yields in a growing season? And, which vegetation index correlates well with 

grain yield throughout the season? 

 

Due to the unavailability of Landsat 8 images of February and April that covered 

Kopanong Local Municipality during growing season 2013/2014, February and April were 

not used in the study. 
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3.5 Statistical data analysis 

 

Actual maize grain yields were regressed on vegetation indices (NDVI, MSI and SAVI), 

rainfall and temperatures (as predictors). The regression analysis was repeated at 

different maize growth (vegetative and reproductive) stages. The main purpose of 

regression model was to; 1) check whether the vegetation indices obtained from maize 

during different growth stages are suitable to accurately estimate the final maize yields in 

the growing season, 2), to identify the vegetation index that best correlate with the maize 

grain yield throughout the growing season, and 3) to identify the stage in which maize 

grain yield can be accurately estimated. The multi - regression model was used to answer 

the above-mentioned questions. The coefficient of determination (R2) was used to check 

the goodness of fit of the model. The values of R2 range from zero to one, with zero 

indicating that the proposed model does not improve prediction and one indicating perfect 

prediction (Prasad et al., 2006). Improvement in the regression model results in 

proportional increases in R2. Random resampling was performed to increase the sample 

size from 6 points to 90 points. This was done to meet multilinear regression requirements 

i.e. to perform regression analysis 30 and above sample size are required to get 

meaningful results. 
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Table 3.2: Shows multilinear regression models performed on statistical analysis 

 

Dependent variable Independent variable (s) 

Yield NDVI * Maximum temperature (Max temp) 

Yield SAVI * Max temp 

Yield MSI * Max temp 

Yield NDVI 

Yield Max temp * average rainfall (Avg rain) 

Yield Avg rain 

Yield MSI 

Yield Avg rain * minimum temperature 

Yield Average temperature * NDVI 

 

 

3.6 Predictive performance validation methods of the models 

 

Model validation is one of the most important works in scientific research. The common 

method to validate models is to plot the measured/observed values against the predicted  

values and the correlation coefficient is used to validate the results (Jianqiang et al., 

2008). The study used the coefficient of determination (R2) together with root Mean 

Square Error (RMSE) to assess the predictive accuracy of the model. RMSE indicates 

the absolute fit of the model to the data, i.e. how close the observed data points are to 

the model’s predicted values. R2 is a relative measure of fit whereas RMSE is an absolute 

measure of fit. RMSE has the useful property of being in the same units as the predicted 

variables. Lower values of RMSE indicate better fit. RMSE is a good measure of how 

accurately the model predicts the response/dependent variable, and is the most important 

criterion for fit if the main purpose of the model is predicting. The main purpose of this 

study was prediction therefore, it was ideal to choose RMSE to validate the model. The 

combination of different variables was used in the regression model to see if they could 

improve the fit of the model.  
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Chapter four presents results of this research exercise and presents them aided by 

graphs and tables as visual aids and regression and vegetation indices and 

meteorological data. 
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CHAPTER 4:  RESULTS 

 

Yield estimations of maize grain were determined for six selected farms by performing 

regression analysis on meteorological (temperature and rainfall) data, satellite indices 

and actual harvested maize yields. 

 

 

4.1 Application of satellite vegetation indices derived at various maize growth 

stages to estimate maize yields 

 

Throughout the growing season, the maize crop undergoes a series of different 

developmental stages from a seed at planting to a tall plant at harvest. These 

developmental growth stages are divided into vegetative and reproductive growth stages. 

A fundamental understanding of the growth and development processes of the maize 

crop is critical in order to estimate what to expect at harvest time. These developmental 

and growth stages are important because researchers may use them in understanding 

how the maize plants respond to weather conditions throughout the growing season. 

 

In this study, different vegetative indices obtained at different growth stages together with 

temperatures and rainfall were major factors in models estimating maize grain yields. 

Different vegetation indices were derived separately for four months (November 2013, 

December 2013, January 2014 and March 2014) of the 2013/2014 growing season on 

the six farms. Regression models were applied separately with observed maize yield, 

three different vegetation indices (Normalized Difference Vegetation Index, Soil Adjusted 

Vegetation Index, and Moisture Stress Index), temperatures and Average rainfall (Avg 

rainfall) for each month as the main variables. The values of the different vegetation 

indices during the four months of 2013/2014 growing season on the six farms are shown 

in Table becomes 4.1 
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Table 4.1: Depicts the values of different vegetation indices (Normalized Difference 

Vegetative Index, Soil Adjusted Vegetative Index and Moisture Stress Index) in four 

months during 2013/2014 growing season for the six farms. 1-6 presents farm 1 - farm 6 

 

Date Index  1 2 3 4 5 6 

Nov-13 

(Vegetative 

stage) 

NDVI 0.19 0.18 0.17 0.15 0.19 0.19 

SAVI 0.30 0.30 0.25 0.23 0.29 0.22 

MSI 1.38 1.44 1.48 1.34 1.41 1.42 

Dec-13 

(Vegetative 

stage) 

NDVI 0.13 0.22 0.12 0.13 0.12 0.16 

SAVI 0.28 0.28 0.27 0.23 0.30 0.24 

MSI 1.42 1.45 1.53 1.44 1.44 1.42 

Jan-14 

(Reproductive 

stage) 

NDVI 0.20 0.18 0.22 0.24 0.27 0.17 

SAVI 0.31 0.27 0.33 0.35 0.40 0.26 

MSI 1.36 1.42 1.41 1.21 1.26 1.36 

Mar-14 

(Reproductive 

stage) 

NDVI 0.32 0.46 0.49 0.28 0.55 0.30 

SAVI 0.49  0.69 0.73 0.43 0.83 0.45 

MSI 1.17 1.87 1.84 1.09 1.78 1.10 

 

The NDVI values varied from 0.15 to 0.19 (Table 4.1) in November 2013. This means that 

the maize crop in the region was at a yearly growth stage (Vegetative growth stage) 

because NDVI values increase with the increase in crop canopy. Multi linear regression 

analysis results between maize yields, cumulative NDVI and maximum (Max) 

temperature showed poor correlation in November with a coefficient of determination 

value of R2 =0. 13 and p = 0.003 (Table 4.2). 

 

Table 4.2, presents regression model results between observed maize yields, remotely 

sensed data (NDVI) and maximum temperature during four months of 2013/2014 growing 

season.    
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Table 4.2: Multi linear regression results between maize yields and cumulative 

Normalized Difference Vegetative Index (NDVI), Maximum temperature for four months on 

2013/2014 

 

Month R R2 p-value 

November 

(vegetative 

stage) 

0.35 0.13 0,003 

December 

(vegetative 

stage) 

0.31 0.09 0,012 

January 

(reproductive 

stage) 

0.73 0.54 0,000 

March 

(reproductive) 

0.72 0.40 0,000 

 

The Soil Adjusted Vegetation Index (SAVI) values in November were higher than that of 

NDVI, ranged from 0.23 to 0.30 (Table 4.1). 

 

The regression model results between actual maize grain yields, SAVI and maximum 

temperature were similar to NDVI results. There was better relationship between SAVI, 

maximum temperature and maize grain yields in January with R2 = 0.52 (Table 4.3). In all 

four months, regression results showed high significances judging from small p values. 
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Table 4.3: Multi linear regression results between maize yields, cumulative Soil Adjusted 

Vegetative Index, and Maximum temperature in four months of 2013/2014 growing 

season 

 

Month R R2 p-value 

November 

(vegetative 

stage) 

0.35 0.13 0.003 

December 

(vegetative 

stage) 

0.26 0.07  0,04 

January 

(reproductive 

stage) 

0.73 0.52 0,001 

March 

(reproductive 

stage) 

0.72 0,53 0,000 

 

Values of Moisture Stress Index (MSI) ranged from 1.30 to 1.50 (Table 4.1).  

 

NDVI and SAVI yielded similar results when regressed with meteorological (temperature) 

data in all four months (November 2014, December 2014, January 2014 and March 

2014). Therefore, these vegetative indices can be used interchangeably to estimate 

maize grain yields in these four months. 

 

The regression model results between actual maize grain yields, MSI and maximum 

temperature during four months of 2013/2014 growing season are shown in Table 4.4. In 

November there was better correlations between MSI, maximum temperature (R2 = 0.55). 

However, the results were not significant (p>0.05). All other three months, there were 

poor correlations with significant results. 
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Table 4.4:  Multi linear regression results between maize yields and cumulative Moisture 

Stress Index (MSI), maximum temperature in four months of 2013/2014 growing season 

 

Month R R2 p-value 

November 

(vegetative 

stage) 

0.23 0.55 0.09 

December 

(vegetative 

stage) 

0.36 0.13 0.002 

January 

(reproductive 

stage) 

0.47 0.22 0.00002 

March 

(reproductive 

stage) 

0.51 0.26 0.00012 

 

There were noticeably poor correlations between actual maize, MSI and Max temperature 

in all four months. The p-values were significant in December, January and March (Table 

4.4). The small p-values showed that the predictors (Max temp and NDVI) were a 

meaningful addition to the regression model. 

 

NDVI values in December were similar to November NDVI values; they varied from 0.16 

to 0.22 (Table 4.1). The R2 values were very low (Table 4.2). SAVI values were also 

similar to November SAVI values ranging from 0.23 to 0.30 (Table 4.1) with low R2 value, 

R2 = 0.07, p = 0.012 (Table 4.3). MSI values did not show much change too; they varied 

from 1.3 to 1.5 (see table 4.1) with R2 = 0.13 and p =0.002 (Table 4.4). 

 

There was a noticeable change in NDVI and SAVI values in January; they varied from 0.2 

to 0.3 and from 0.3 to 0.4, respectively (Table 4.4). The regression models showed better 

correlations, R2 = 0.54, p = 0.000 (Table 4.4) and SAVI regression results gave R2 = 0.52 
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and p = 0.00 (Table 5) see table 5. MSI values showed a slight increase in January varied 

from 1.2 to 1.4 (Table 4.1). MSI regression analysis results showed poor correlation with 

R2 =0.22 and p = 0.00012 (Table 4.4). 

 

There was a high increase in NDVI and SAVI values in March; NDVI values varied from 

0.3 to 0.6 and SAVI values varied from 0.4 to 0.8 (Table 4.1) and there was poor 

correlation with R2 value of 0.40 and p-values of 0.000 for NDVI (table 4.2). R2 = 0.53 with 

p=0.0000 for SAVI regression analysis results (Table 4.3). MSI values also showed 

increase; they were from 1.1 to 1.9 (Table 4.1), with regression correlation (R2 = 0.26) 

and a small p-value of 0.00012 (Table 4.4). 

 

Considering the R2 values of each regression analysis performed per month, NDVI, SAVI 

and Maximum temperature were identified as better predictors to estimate maize yield in 

January (reproductive stage) with R2 = 0.54 and 52, respectively. There was good 

relationship between MSI index and meteorological data in November (vegetative stage). 

Therefore, this index is suitable to estimate maize grain yield at vegetative growth stage. 

The results were significant in all four months judging from p-values obtained. This means 

that maximum temperature has impacts on vegetation indices. Based on the results 

obtained in this study, the combination of different vegetation indices was relevant. The 

reason for this is, the indices managed to estimate maize grain yields at different growth 

stages. 

 

 

4.2 Testing goodness of fit of the model 

 

Results obtained when testing the performance of the model with NDVI and temperature 

as variables in four months of 2013/2014 season are shown in Table 4.5. 
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Table 4.5: Depicts the values of Root Mean Square Error (RMSE) obtained in four months 

of 2013/2014 growing season for NDVI and temperature 

 

Month RMSE in t/ha 

November (vegetative stage) 1.62 

December (vegetative stage) 1.68 

January (reproductive stage) 1.17 

March (reproductive stage) 1.19 

 

 

In all the four months (November, December, January and March), the models showed 

poor fit when using NDVI and maximum temperatures as grain yield predictors. This is 

evidenced by the large values of RMSE in these months (4.5). The models over-predicted 

the yields in these months. 

Results obtained when testing the performance of the model with SAVI and temperature 

as variables in four months of 2013/2014 season are shown in Table 4.6. 

 

Table 4.6: Depicts the values of Root Mean Square Error (RMSE) obtained in four months 

of 2013/2014 growing season for SAVI and temperature 

 

Month RMSE in t/ha 

November 1.62 

December 1.63 

January 1.13 

March 1.21 

 

The SAVI vegetation index showed similar model fitness properties as NDVI in 

November, December, January and March, the values of RMSE were large in these 

months (Table 4.6) Results obtained when testing the performance of the model with MSI 

and temperature as variables in four months of 2013/2014 season are shown in Table 

4.7. 
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Table 4.7: Depicts values of Root Mean Square Error (RMSE) obtained in four months of 

2013/2014 growing season for MSI and temperature 

 

Month RMSE in t/ha 

November 1.17 

December 1.62 

January 1.54 

March 1.00 

 

Model with MSI combined with maximum temperature showed poor fit in all the four 

months (November, December, January and March); this is evidenced by large values of 

RMSE obtained in these months (Table 4.7).  

 

The different combination of variables were used to perform regression analysis to see if 

they could improve the fit of the model. For each month five different combinations of 

variables were performed. In November (vegetative stage) 2013, the results were as 

follows: 

 

 𝒀𝒊𝒆𝒍𝒅 = 𝑵𝑫𝑽𝑰, results showed R2 value of 0.029, p-value for was 0.10 and 

RMSE was 1.71. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝒂𝒙 𝒕𝒆𝒎𝒑 + 𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.30, p-value =0.09 and RMSE=0.63. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.19, p-value =0.00002 and RMSE was 1.57. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝑺𝑰; R2 =0.08, P-value =0.008 and RMSE=1.67. 

 𝒀𝒊𝒆𝒍𝒅 =  𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍 +  𝑴𝒊𝒏 𝒕𝒆𝒎𝒑; R2 =0.41, p-value =0.45 and RMSE =1.33. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑵𝑫𝑽𝑰 + 𝑨𝒗𝒈 𝒕𝒆𝒎𝒑; R2 = 0.04, p = 0.17 and RMSE = 1.68 

 

From the results obtained above, only one model showed better correlation. This model 

is Yield =Min temp + rainfall with R2 = 041. However, the model results are significant 

judging from p-values, except one model.  

In December (vegetative stage) the results were: 
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 𝒀𝒊𝒆𝒍𝒅 =  𝑵𝑫𝑽𝑰, results showed R2 value of 0.01, p-value was 0.29 and RMSE 

was 1.73. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝒂𝒙 𝒕𝒆𝒎𝒑 + 𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.52, p-value =0.002 and RMSE=1.20. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.46, p-value =0.007 and RMSE was 1.27. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝑺𝑰; R2 =0.10, P-value =0.001 and RMSE=1.64. 

 𝒀𝒊𝒆𝒍𝒅 =  𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍 +  𝑴𝒊𝒏 𝒕𝒆𝒎𝒑; R2 =0.68, p-value =0.006 and RMSE =0.98 

 𝒀𝒊𝒆𝒍𝒅 = 𝑵𝑫𝑽𝑰 + 𝑨𝒗𝒈 𝒕𝒆𝒎𝒑; R2 = 0.09, p = 0.01 and RMSE = 1.59. 

 

Considering values of R2, three models (Yield =Max temp + rainfall, Yield = rainfall and 

Yield = rainfall + Min temp) showed better correlations with R2 of 0.52 and 0.46, 0.68, 

respectively. However, these models showed poor performances based on RMSE values. 

The small p-values mean that the results were significant. 

 

In January (reproductive stage), the following results were obtained: 

 

 𝒀𝒊𝒆𝒍𝒅 =  𝑵𝑫𝑽𝐼, results showed R2 value of 0.04, p-value=0.07 and RMSE was 1.70. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝒂𝒙 𝒕𝒆𝒎𝒑 + 𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2   = 0.22, p-value= 0.00002 and RMSE=1.53. 

 Y𝒊𝒆𝒍𝒅 = 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.04, p-value =0.07 and RMSE was 1.70. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝑺𝑰; R2 =0.07, P-value =0,009 and RMSE=1,67. 

 𝒀𝒊𝒆𝒍𝒅 =  𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍 +  𝑴𝒊𝒏 𝒕𝒆𝒎𝒑; R2 =0.04, p-value =0.16 and RMSE =1.70 

 𝒀𝒊𝒆𝒍𝒅 = 𝑵𝑫𝑽𝑰 + 𝑨𝒗𝒈 𝒕𝒆𝒎𝒑; R2 = 0.05, p = 0.09 and RMSE = 1.69 

 

From above obtained results in January, none of the models showed a good correlation.  

In March (reproductive stage) the same model were repeated and the results were as 

follows: 

 

 𝒀𝒊𝒆𝒍𝒅 =  𝑵𝑫𝑽𝑰, results showed R2 value of 0.05, p-value was 0.04 and RMSE 

was 1.69. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝒂𝒙 𝒕𝒆𝒎𝒑 + 𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.22, p-value =0.008 and RMSE=1.53. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍; R2 =0.04, p-value =0.71 and RMSE was 1.70. 
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 𝒀𝒊𝒆𝒍𝒅 = 𝑴𝑺𝑰; R2 =0.15, P-value =0.0002 and RMSE=1.60. 

 𝒀𝒊𝒆𝒍𝒅 =  𝒓𝒂𝒊𝒏𝒇𝒂𝒍𝒍 +  𝑴𝒊𝒏 𝒕𝒆𝒎𝒑; R2 =0.04, p-value =0.16 and RMSE =1.70. 

 𝒀𝒊𝒆𝒍𝒅 = 𝑵𝑫𝑽𝑰 + 𝑨𝒗𝒈 𝒕𝒆𝒎𝒑; R2 = 0.12, p = 0008 and RMSE = 1.54. 

 

 

In March (reproductive stage), none of the models showed good relationship, but p-values 

showed that the results were significant.  

 

 

4.3 Comparison between ground-based (actual) yields and predicted yields 

 

Comparisons of predicted (model-based) and observed yields arise frequently in 

agricultural research. This section presents the results of simulation models predicting 

maize grain yield from meteorological and remotely sensed data compared with actual 

maize yield measurements to assess the model’s accuracy. Testing models predictions 

are a critical step in science. The purposes of these comparisons are to assess models 

predictive accuracy, to inform preferences among several competing models, to inform 

among various possible measurements serving as model inputs, and to define a range of 

conditions over which a model is applicable or reliable. The prediction is accurate if the 

difference between the predicted and actual yields is within a small range.  Difference 

between ground-based and predicted yields obtained using NDVI and temperature as 

model variables in November 2013 are shown in Table 4.8. 
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Table 4.8: Difference between ground-based and predicted maize yields in November 

2013 for models with NDVI and temperature as variables 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 4,24 

4,37 4,29 

2,61 5,64 

4,37 5.02 

6,45 5,36 

8,05 5,82 

T-Test statistics, results of Table 4.8 are; ground-based yield mean=5. 065, predicted 

yield mean=5. 062, F statistic=7. 97, t-value= 0.004045 and p-value=0. 99. The results 

mean that the difference between ground-based yield and predicted yield is no significant 

(p > 0.05). 

Difference between ground-based and predicted yields obtained using SAVI and 

temperature as model variables in November 2013 are shown in Table 4.9. 

 

Table 4.9: Difference between ground-based and predicted maize yields in November 

2013 for models with SAVI and temperature as variables 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,37 

4,37 5,59 

2,61 3,99 

4,37 3,93 

6,45 5,92 

8,05 7,58 

 

T-Test statistics, results of Table 4.9 are; ground-based yield mean = 5. 065, predicted 

yield mean = 5. 062, F statistic = 7. 97, t-value = 0.004045 and p-value = 0. 99. The 



 
 

43 
 

results mean that the difference between ground-based yield and predicted yield is not 

significant (p>0.05). 

 

Table 4.10: Difference between ground-based and predicted yields in November 2013 for 

models with MSI and temperature as variables. 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,76 

4,37 4,10 

2,61 3,66 

4,37 5,79 

6,45 7,03 

8,05 6,04 

 

T-Test statistics, results of Table 4.10 are; ground-based yield mean = 5. 065, predicted 

yield mean = 5. 063, F statistic = 1. 82, t-value = 0.001724 and p-value = 0. 99. The 

results mean that the difference between ground-based yield and predicted yield is no 

significant (p>0.05).   

Difference between ground-based and predicted yields obtained using NDVI and 

temperature as model variables in December 2013 are shown in Table 4.11. 

 

Table 4.11: Difference between ground-based and predicted maize yields in December 

2013 for models with NDVI and temperature as yield variables 

  

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 4,12 

4,37 5,47 

2,61 3,75 

4,37 5,72 

6,45 6,27 

8,05 5,07 
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T-Test statistics results of Table 4.11 are; ground-based yield mean=5.065, predicted 

yield mean = 5.067, F statistic = 3.88, t-value = -0.001913 and p-value = 0.99. The results 

mean that the difference between ground-based yield and predicted yield is not significant 

(p>0.05).  Difference between ground-based and predicted yields obtained using SAVI 

and temperature as model variables in December 2013 are shown in Table 4.12. 

 

Table 4.12: Difference between ground-based and predicted maize yields in December 

2013 for models with SAVI and temperature as yield predictors 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 4.12 

4,37 5.47 

2,61 3.75 

4,37 5.72 

6,45 6.27 

8,05 5.07 

 

T-Test statistics results of Table 4.12 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.067, F statistic = 3.88, t-value = -0.001913 and p-value = 0.99. The results 

mean that the difference between ground-based yield and predicted yield is no significant 

(p>0.05).  Difference between ground-based and predicted yields obtained using MSI and 

temperature as model variables in December 2013 are shown in Table 4.13. 

 

Table 4.13: Difference between ground-based and predicted maize yields in December 

2013 for models with MSI and temperature as yield estimators 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 4,71 

4,37 4,69 

2,61 4,29 

4,37 6,26 

6,45 5,09 

8,05 5,34 
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T-Test statistics results of Table 4.13 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.067, F statistic = 3.88, t-value = -0.001913 and p-value = 0.99. The results 

mean that the difference between ground-based yield and predicted yield is no significant 

(p>0.05). 

 

In November 2013 NDVI, SAVI and MSI were used as components of maize yield 

estimates compared with the observed/ground-based yields. Results showed that the 

difference between observed and predicted yield varied from -3.02 tons per hector (t/ha) 

to 2.24; from -3.02 to 2.24 t/ha and from -1.64 to 3.05 t/ha for NDVI, SAVI and MSI yield 

estimators, respectively (Tables 4.9, 4.10 and 4.11). In the same year different date 

(December), the same indices were used to estimate maize yield, the results showed that 

the residuals ranged from -1.35 to 2.98 t/ha; -1.35 to 2.98 t/ha and -1.63 to 2.88 t/ha for 

NDVI, SAVI and MSI, respectively (see tables 4.12, 4.13 and 4.15. Difference between 

ground-based and predicted yields obtained using NDVI and temperature as model 

variables in January 2014 are depicted in Table 4.14. 

 

Table 4.14: Difference between ground-based and predicted yields in January 2014 for 

models with NDVI and temperature as variables 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,16 

4,37 4,71 

2,61 4,58 

4,37 5,18 

6,45 5,28 

8,05 7,48 

 

T-Test statistics results of Table 4.14 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.065, F statistic = 7.63, t-value = 0.00 and p-value = 1.00. The results mean 

that the difference between ground-based yield and predicted yield is no significant 
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(p>0.05).  Difference between ground-based and predicted yields obtained using SAVI 

and temperature as model variables in January 2014 are shown in Table 4.15. 

 

Table 4.15: Difference between ground-based and predicted maize yields in January 2014 

for models with SAVI and temperature as yield estimators 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,16 

4,37 4.71 

2,61 4.58 

4,37 4,18 

6,45 5.28 

8,05 7,48 

 

T-Test statistics results of Table 4.15 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.065, F statistic =7.63, t-value = 0.00 and p-value = 1.00. The results mean 

that the difference between ground-based yield and predicted yield is no significant 

(p>0.05). Difference between ground-based and predicted yields obtained using MSI and 

temperature as model variables in January 2014 are shown in Table 4.16. 

 

Table 4.16: Difference between ground-based and predicted maize yields in January 2014 

for models with MSI and temperature 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,77 

4,37 4,31 

2,61 5,12 

4,37 5,42 

6,45 6,32 

8,05 5,56 
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T-Test statistics results of Table 4.16 are; ground-based yield mean =5.065, predicted 

yield mean = 5.068, F statistic = 4.55, t-value = -0.003886 and p-value = 0.99. The results 

mean that the difference between ground-based yield and predicted yield is no significant 

(p>0.05).  Difference between ground-based and predicted yields obtained using NDVI 

and temperature as model variables in March 2014 are shown in Table 4.17. 

 

Table 4.17: Difference between ground-based and predicted maize yields in March 2014 

for models with NDVI and temperature as yield estimators  

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,71 

4,37 3,58 

2,61 3,79 

4,37 5,94 

6,45 6,25 

8,05 7,12 

 

T-Test statistics results of Table 4.17 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.065, F statistic = 1.50, t-value = 0.00 and p-value = 1.00. The results mean 

that the difference between ground-based yield and predicted yield is no significant 

(p>0.05). Difference between ground-based and predicted yields obtained using SAVI 

and temperature as model variables in March 2014 are shown in Table 4.18. 

 

Table 4.18: Difference between ground-based and predicted maize yields in March 2014 

for models with SAVI and temperature as variables 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3.71 

4,37 3.58 

2,61 3.79 

4,37 5,94 

6,45 6.25 

8,05 7.12 
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T-Test statistics results of Table 4.18 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.065, F statistic = 1.50, t-value = 0.00 and p-value=1.00. The results mean 

that the difference between ground-based yield and predicted yield is no significant 

(p>0.05).  Difference between ground-based and predicted yields obtained using MSI and 

temperature as model variables in November 2013 are shown in Table 4.19 

 

Table 4.19: Difference between ground-based and predicted maize yields in March 2014 

for models with MSI and temperature as yield predictors 

 

Ground-based yield (t/ha) Predicted (yield t/ha) 

4,54 3,86 

4,37 3,37 

2,61 4,36 

4,37 5,53 

6,45 5,76 

8,05 7,49 

 

T-Test statistics results of Table 4.19 are; ground-based yield mean = 5.065, predicted 

yield mean = 5.062, F statistic = 1.59, t-value = 0.00 and p-value=0.99. The results mean 

that the difference between ground-based yield and predicted yield is no significant 

(p>0.05).   

 

The following year in January 2014, NDVI, SAVI and MSI were also used to estimate 

maize yield. The results showed that the difference between ground-based and predicted 

yields varied from -0.82 to 0.82 t/ha when using NDVI and maximum temperature, varied 

from -0.82 to 0.82 t/ha for SAVI index and ranged from -2.22 to 2.75 t/ha when MSI was 

used to estimate yield (Tables 4.14, 4.15 and 4.16). In March the same year, the 

difference between observed and estimated yields was observed using the same indices 

i.e. NDVI, SAVI and MSI. The results showed that the differences were from –1.57 to 1.16 
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t/ha for NDVI, from -1.57 to 1.16 t/ha for SAVI and varied from -1.64 to 3.05 t/ha for MSI 

(see table 4.17, 4.18 and 4.19). 

 

From the above obtained results there were small differences between observed and 

predicted maize yields in all the months (November, December, January and March). The 

p-values obtained in t-Test analysis between observed and predicted yields of all four 

months, were large (p>0.05). This means that there was no significant difference between 

observed and predicted yields. Therefore, vegetative indices and meteorological 

(temperatures and rainfall) parameters can be used to reliably estimate maize grain yield 

before harvest. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 
 

5.1 Discussion. 

 

The main goal of the study was to assess the capability of satellite data (obtained at 

different crop growth stages) in predicting maize final yield before harvest. This was 

achieved by performing a regression analysis between observed grain yield, 

meteorological data and three satellite vegetation indices, i.e. Normalized Difference 

Vegetative Index (NDVI), Soil Adjusted Vegetative Index (SAVI) and Moisture Stress 

Index (MSI) obtained at different maize growth stages (vegetative and reproductive). The 

results indicated that up to 55% of maize grain yield can be predicted using a combination 

of satellite indices and meteorological data. 

 

The study obtained small values of NDVI and SAVI during vegetative growth stages 

(November 2013 and December 2013). At reproductive (flowering) stage (January 2014) 

the values showed slight increase and in March 2014 (reproductive stage) NDVI and SAVI 

values were high. The MSI values were moderate to high from November 2013 through 

March 2014. 

 

Small values of NDVI and SAVI in November 2013 and December 2013 meant that maize 

was at an early (vegetative) stage during these months because these indices increase 

with an increase in the crop canopy (Sawasawa, 2003). The slight increase of NDVI and 

SAVI in January 2014 indicated that maize was changing from low-level growth stage 

(vegetative) to reproductive (flowering) stage. Therefore, maize was at flowering stage in 

January 2014. The high values of vegetation indices (NDVI and SAVI) obtained in March 

showed that maize was at reproductive stage (grain filling). The grain filling stage is the 

most important stage of maize and excess rainfall or wet day during this stage can 

severely deteriorate the yield quality of maize. Moderate to high values of MSI obtained 

throughout the growing season indicated that the area in which the research took place 

did not experience water problems in 2013/2014 growing season. 
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NDVI and SAVI results obtained in this study concur with the results found by Jackson et 

al., (1991) when interpreting different vegetative indices of different crops, including the 

maize crop in Swaziland. 

 

In the early stages of the maize crop (November and December), coefficient of 

determination (R2) values of regression analysis between maximum temperature and two 

vegetation indices, i.e. NDVI and SAVI were low R2 = 0.13 in November for both NDVI 

and SAVI, R2 = 0.09 in December for both NDVI and SAVI. This means that NDVI and 

SAVI are not good yield predictors at early stages of maize growth. The R2 values 

increased in January, R2 = 0.55 for both NDVI and SAVI regression results. This suggests 

that at a high level of maize crop canopy, NDVI and SAVI are better yield predictors. 

Therefore, the best stages that can be used to predict maize grain yield using NDVI and 

SAVI are reproductive stages. These results agree with John et al., (2001) when 

estimating corn grain yield using remote sensing imagery in California. 

 

The study also found that NDVI alone is not significant when predicting maize yield. This 

is confirmed by big p-values in each model that included only NDVI as the independent 

variable. The combination of NDVI with meteorological data in a model showed significant 

results. When the temperatures were very high (November and December) the 

relationship between maize yield, NDVI and temperature was very poor. The 

temperatures dropped in January, the relationship was better (R2 =0.55) as mentioned 

above. This meant that temperature has an impact on the increase and decrease of NDVI 

values, thus, it has effects on the yield of maize. 

 

MSI regression coefficient differed from the regression coefficient of NDVI and SAVI, MSI 

regression results had high values during vegetative stage (November, R2 = 0.55). This 

means that, when MSI is regressed with maximum temperature can predict maize grain 

yield at the vegetative stage. 

 

The differences in the correlations and explaining ability to yield are due to the quality of 

data being used and derived models (Muthy et al., 1994). Mohd et al., (1994) used yield 
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from highly controlled research and found good correlation (R2 = 0.87). From the results 

obtained in this study, it is evident that the quality of data may have a significant effect on 

the degree of the relationship between remotely sensed vegetation indices and the maize 

yield. The findings of this study showed that a combination of vegetation indices, i.e. 

Normalized Difference Vegetative Index (NDVI), Soil Adjusted Vegetative Index (SAVI) 

and Moisture Stress Index (MSI) and meteorological data can improve maize yield 

prediction at different growth stages above use of vegetation indices alone. 

 

The results obtained in this study are in agreement with field observations that suggested 

that vegetation indices during vegetative and reproductive stages can be used to detect 

variations in maize grain yield (Gundin-Garcia, 2010). The results also confirm previous 

studies that suggested a close relationship between maize grain yields with vegetation 

indices during reproductive stage at field level (Tollenar and Aguilera, 1992; Rajcan and 

Tollenar, 1999a; Tollenar et al., 2004). This study established that there is a significant 

positive relationship between remotely sensed vegetation indices and observed maize 

field. Sawasawa (2003) found a positive relationship between remotely sensed NDVI and 

rice yield at field level (R2 = 0.52, p<0.05). 

 

Water shortage has a significant impact on maize grain yield. The current study used MSI 

to determine the impacts of water on maize yield and the results were positive in 

November (R2 = 0.54), this means there was enough water during these months. The 

study also showed that the use of other vegetation indices without combining them with 

meteorological data to predict yield did not offer any significant improvement in explaining 

the yield. This suggests that the use of NDVI with meteorological data for crop growth 

monitoring and yield estimation is valid as reported by previous authors (Riad et al., 2006. 

Gat et al., (2000), also noted the correlations between vegetation indices and linear 

transformed, e.g. SAVI could not perform any better than the original vegetation indices, 

in this case NDVI and MSI and he proposed to use the original vegetation indices without 

any transformations. 

There was no significant difference between observed and predicted maize grain yields. 

This suggests that the used vegetation indices in the prediction of maize yield are suitable 
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to explain maize yield during different growth stages. However, the models did not 

perform well, this is evidenced by large values of Root Mean Square Error (RMSE), that 

varied from 1.00 to 1.70 t/ha. 

 

Previous studies (Teal et al., 2006; Martin et al., 2007; Solari et al., 2008) related maize 

yield with vegetation indices during vegetative stages. Most of the previous studies that 

reported a correlation between vegetation indices and maize grain final yields during 

vegetative stage related chlorophyll meter reading with vegetation indices, whereas this 

study did not consider chlorophyll readings. Previous studies also reported good 

correlation between remote sensing data and maize yield at reproductive stages using 

satellite sensors evaluating nearly entire growing season (Shanahan et al., 2001; 

Mkhabela et al., 2005; Baez et al., 2005). The high correlation obtained in this study was 

during the reproductive stage, this means that the study is similar to the previous studies. 

 

 

5.2 Conclusion. 

 

Remote Sensing and Geographic Information Systems (GIS) can be used as useful tools 

to predict maize grain yield at a regional level. Being intended for use by decision-makers 

these techniques were designed to be simple and based on readily available data. The 

study proved that maize grain yield can be predicted with high accuracy using regression 

models and information on weather (temperature and rainfall) data. The models showed 

high accuracy in predicting maize yield before harvest. 

 

Remote sensing approach is an important technique for early maize yield estimation 

because it is based on key crop growth factors at the optimum development stage. 

Regression models used in this study allows delivering early maize yield forecasts in a 

fast and cheap way, it can be considered as a promising complement to the ground-based 

yield assessment.  
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The best time for making an accurate maize yield prediction was found to be reproductive 

stage (January to March). Maize harvesting in the Free State Province, South Africa, 

generally takes place from April to May; therefore, yield predictions can be made 1-3 

months prior to harvest, thus giving the Government, NGO’s, grain handlers and other 

food security stakeholders enough time to plan for imports in case of a deficit or exports 

in case of surplus. In conclusion the results mean that regression models performed on 

vegetation indices values and meteorological data are capable of accurately estimate 

maize yield at different growth stages. 
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CHAPTER 6: RECOMMENDATIONS 

 

 It is recommended that the high-resolution imagery with less cloud cover is used 

to investigate crop yield because in some cases there are mixed-crop farms. In 

these cases, high-resolution imagery assists in accurately identifying individual 

crop types.  

 In the analysis, it has been shown that other vegetation indices that takes into 

account soil reflectance e.g. SAVI did not perform better than the NDVI. 

Nevertheless, in literature these indices have been claimed to perform better than 

vegetation indices that do not take into account soil influences on reflectance. In 

view of this it is suggested that there is need to establish specific soil reflectance 

in the area, and apply the actual soil reflectance when dealing with Soil adjusted 

vegetative indices rather than using the generally applied factor of 0.5 for all the 

soils, and at any vegetative density. 

 It is recommended that the study similar to this should use land management 

practices (e.g. fertilizers applied), which may have an effect on crop growth and 

production. It is important to assess this and incorporate into the model if found to 

be significant.     

 It is recommended that ground truth data can be used in similar studies as ancillary 

data source to contribute in verifying the vegetation index values obtained from 

satellite images. 

 Based on the results, it is recommended that the regression models must be 

developed for other geographical areas in South Africa, if the careful testing of the 

data and model assumptions is observed. 
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APPENDICES 

 

Appendix 1. November NDVI image. 
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Appendix 2. November SAVI image. 
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Appendix 3. November MSI image 
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Appendix 4. December NDVI image 
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Appendix 5. December SAVI image 
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Appendix 6. December MSI image 
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Appendix 7. January NDVI image 
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Appendix 8. January SAVI image 
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Appendix 9. January MSI image 
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Appendix 10. March NDVI image 
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Appendix 11. March SAVI image 
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Appendix 12. March MSI image 
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Appendix 13. 04/11/2013 image 
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Appendix 14. 06/12/2013 image 
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Appendix 15. 23/01/2014 image 
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Appendix 16. 28/03/2014 image 

 

Appendix 1- 16. 

 
Nov_kopa_ndvi.img: November Kopanong NDVI image. 

Nov_kop_savi.img: November Kopanong Soil Adjusted Vegetation Index (SAVI) image. 

Nov_kop_msi.img: November Kopanong Moisture Stress Index (MSI) image. 

Dec_kopa_ndvi.img: December Kopanong NDVI image. 

Dec_kopa_savi.img: December Kopanong SAVI image. 

Dec-kopa-msi.img: December Kopanong MSI image 

Jan_kopa_ndvi.img: January Kopanong NDVI image. 
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Jan_kopa_savi.img: January Kopanong SAVI image. 

Jan_kopa_msi.img: January Kopanong MSI image. 

Mar_kopa_ndvi.img: March Kopanong NDVI image 

Mar-kopa_savi.img: March Kopanong SAVI image. 

Mar_kopa_msi.img: March Kopanong MSI image. 

Nov_kopanong.img: November Kopanong satellite image. 

Dec-kopanong.img: December Kopanong satellite image. 

Jan_kopanong.img: January Kopanong satellite image. 

Mar_kopanong.img: March Kopanong satellite image. 
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South Africa”. 
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