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Abstract 

This dissertation is concerned with evolving and extending statistical models in the area of 

Bayesian spatial modelling, an increasingly important field of spatial epidemiology with 

particular interest towards application to Tuberculosis data in the Eastern Cape province of South 

Africa. In spatial epidemiology, the diseases to be examined usually occur within a map that 

needs spatial statistical methods that are appropriate, to model the observed data in the presence 

of some covariates and also cater for the variation of the disease.  

In this thesis, the Bayesian models were developed in such a way that they allowed several 

factors classified as fixed and random effects, to be included in the models and using the 

Bayesian approach. The basic model used in disease mapping is the Besag, York and Mollie 

model, which incorporates two random effects; one which is spatially structured and the other 

random effect which is spatially unstructured. The effects (fixed and random) were the covariate 

effects, socio-economic and demographic variability and the spatial variability respectively, 

which were all investigated in seven different hierarchical/multilevel Bayesian models. These 

factors showed varying and substantial effects in the posterior relative risk estimation of the 

disease. 

We assumed a negative binomial and generalized Poisson distributions to the response variable 

or relative risk estimate, 𝑦𝑖 ,to capture the over-dispersion phenomenon that is common and 

inherent with Poisson density for counts data. Spatial and non-spatial models were developed to 

model over-dispersion with all the distributions; Poisson, negative binomial and generalized 

Poisson.  Negative binomial and generalized Poisson showed varying properties from 

comparisons with DIC values and parameter estimates to standard errors, which made either of 

them fit depending on the choice of model selection. 
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It was found that a lower DIC value could be insufficient to determine a best fit model, if other 

models present estimates with lower variances even at higher DIC values. The generalized 

Poisson, a two parameter distribution like the negative binomial, which also has the ability to 

capture both under-dispersion and over-dispersion, was found to perform better in the results 

than the negative binomial on the basis of a lower variance and with more exact parameter 

estimates.  

A new weighted prior distribution, the “Besag2” ICAR model for the structured spatial random 

effects, which is an extension of the traditional ICAR prior model with two hyperparameters, 

was also developed and compared with some existing prior models; BYM and ICAR, to measure 

for spatial dependency in the regions. This new prior distribution was found to show a better fit, 

when compared to the basic ICAR prior usually assumed for the spatial random effect in the 

BYM model. This newly parameterized prior distribution in the Besag, York and Mollie model 

also led to improved parameter control, as the hyperparameters can be seen independently from 

each other. The result also showed that the new model performed well, both presenting good 

learning abilities and good shrinkage behaviour. In terms of model choice criteria, the proposed 

model performed at least equally well and better than the existing models, and the new 

formulation also gave parameters that are interpretable and have a clearer meaning. 

To interpolate scattered or regularly distributed data, there are imprecise or exact methods, but 

there are some of these methods that could be used for interpolating data in a regular grid and 

others in an irregular grid. Linear and biharmonic spline methods were implemented in 

MATLAB, to compare for smoothing in the distribution patterns of tuberculosis in the province. 

This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a 

spline function.  
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This new method is rarely used in disease mapping applications, but it has a superior advantage 

to be assessed at subjective locations rather than only on a rectangular grid as seen in most 

traditional GIS methods of geospatial analyses.  

The proposed new models and methods in this thesis were found to be flexible and robust, since 

they can be reduced or extended according to the nature of the data. Nevertheless, great care 

must be considered in the choice of prior densities. The approaches developed in this dissertation 

helped to broaden the scope for spatial analysis and disease mapping applications in 

epidemiology and public health studies. 
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Chapter One 

General Introduction 

1.1 Overview  

A growing interest in the advance and use of spatial statistical methods in analysing 

geographically correlated data has increased in the recent times. This can be connected to the 

increasing availability and accessibility to data that are geo-referenced, especially in public 

health and ecology fields of study. Most data obtained from governments and agencies through 

surveys are demarcated geographically by quarters, regions, provinces or other administrative 

units. It is important to note that the population level risk of a particular disease can vary across 

geographical regions, and it is of great concern to governments, health authorities and policy 

makers to discover these variations in disease risk in order to identify possible underlying 

reasons for these differences. Most disease mapping methods are based on the geographical 

region being divided into areal units, with the disease risks been estimated for each of these 

areas. This is because individual level data would be against patient’s confidentiality, and 

because governments are more interested in risk levels for populations as a whole. This thesis is 

inclined to multilevel models in disease mapping for count data. This is purely due to the 

accessibility and nature of such data in this situation. This thesis is also introduced by discussing 

key concepts in spatial modelling for a single disease model.  
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1.2 Disease Mapping 

Disease mapping is usually carried out to investigate the geographical distribution of disease 

burden. Area specific estimates of risk may inform public health resource allocation by 

estimating the disease burden in specific areas, and the informal comparison of risk maps with 

exposure maps may provide clues to the etiology or generate hypotheses (Wakefield 2007). The 

applications of disease mapping in epidemiology and public health have enjoyed a great deal of 

acceptance. Disease mapping also refers to the estimation and demonstration of summary 

measures of health outcomes that are spatially observed (Rezaeian et al., 2007). Some of the 

purposes of disease mapping include, to; 

1.  describe geographical variation and distribution of diseases. 

2.  generate hypotheses about a disease dynamics. 

3.  generate disease atlases. 

4.  detect clustering and characterization of a disease. 

To introduce this method of study, it is required that one defines the geographic scale for data 

collection and analysis. From literature, data collected for disease mapping is generally 

categorized as either an areal data or point level data and both are described briefly here. At the 

point level, we consider those data collected at a set of sites or regions; say c, which are 

considered to vary continuously over the area under study. For example, point level data arises 

when we know the geographic locations of individual cases of disease, expressed in terms of 

latitude and longitude. For this reason, point level data may also be described as geocoded or 

geostatistical data (Banerjee et al., 2004).  
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Given these data, it is often of interest to infer the distribution of the recorded outcome over the 

entire region of interest, based only on information collected on c, and taking spatial correlation 

into account. This spatial correlation is often measured as a function of distance between pairs of 

locations in c, with measurement aided by Geographic Information Systems (GIS) technology. 

While useful for capturing information on individual cases, the use of point data is not 

widespread in disease mapping, due to issues surrounding individual case confidentiality. 

Areal data conversely, involves the definition of geographic boundaries, either regular or 

irregular, such that individual cases of disease are combined based on the regions formed. A 

common example of boundary specification is by Statistical Local Area (SLA) (ABS, 2006). 

Compared to point data, areal data is easily obtainable, such as data from census and other 

government agency databases.  

Mapping of disease incidence and prevalence is a common concept in public health and 

epidemiology. Regularly, the main interest in disease mapping is to smoothen and predict some 

response variables over a geographical area of interest. However, there are two central 

characteristics of disease mapping, namely geographical distribution and the disease. The area-

specific estimates of the diseases can be used by policy makers to prioritize and make decisions 

on public health resources allocation and interventions. Two sources of variability that often 

appear in disease mapping studies at the area level that violate statistical assumptions for the 

residual term of the model is the unexplained variation and which can be divided into two parts: 

a structured (spatially correlated) and an unstructured (spatial random) component.  

The concept of disease mapping can also be used to describe geographical variation of diseases, 

identify clustering of diseases and generate atlas of diseases. A good number of statistical 

reviews on disease mapping have been done (Wakefield, 2007; Clayton and Bernardinelli, 1992; 
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Smans and Esteve, 1997; Wakefield et al., 2000; Manda et al., 2011). Disease mapping has a 

long history in epidemiology (Walter, 2000) as part of the classic triad of person/ place/time. A 

number of statistical reviews are available (see for example, Smans and Esteve, 1992; Clayton 

and Bernardinelli, 1992; Mollie, 1996; Wakefield et al., 2000). 

Disease mapping has seen many applications in epidemiology and public health. The backbone 

model for univariate disease mapping is the Besag, York and Mollie (BYM) model proposed by 

Besag et al., (1991) and was also the first to incorporate spatial smoothing into studies of disease 

mapping in a fully Bayesian framework. This work was an extension of earlier work by Clayton 

and Kaldor (1987), who considered the use of Empirical Bayes for the estimation of spatially 

correlated relative risks on the logarithmic scale. 

1.3 A Regression Model for Count Data 

In some epidemiological or clinical studies, the response of interest consists of counts, such as 

the number of cells that show defective evidence of differentiation, or the number of repeated 

infections experienced by a subject. The values recorded are always non-negative integers. In 

some cases, it may be possible to analyse observed data that are counted by the methods of 

multiple linear regression. Nevertheless, regression models that are available and better suitable 

for response measurements that are counted such as disease counts, in an area say i, include 

Poisson regression, negative binomial regression and zero-inflated models (David et al., 2007). 

Since it regularly provides a suitable representation for the variability observed in count data, the 

Poisson distribution plays a part in the analysis that is similar to that of the normal distribution in 

multiple linear regressions. 

As generally known, that the frequently used model for count regression data is the Poisson 

regression. One of the key features of the Poisson distribution is that the variance equals the 
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mean, but empirically, however, we often find data that exhibit over-dispersion, with a variance 

larger than the mean (Rodriguez 2013). Therefore, the concept of over-dispersion is more widely 

applicable in count data for the Poisson regression model. Over-dispersion can be termed as an 

extra variation when the systematic structure of the model is correct.  

Over-dispersion stems from how the stochastic component of the model is outlined. In a number 

of practical conditions where we desire to model count data, we may have variable observation 

periods for our counts (Richard et al., 2007). Over-dispersion arises when the marginal variance 

of an attribute exceeds the theoretical variance implied by a chosen model (Robert et al., 2008). 

The concepts and implications of a large variance in statistical models have always posed 

concerns. It is generally known that the larger the variance, the more imprecise our estimates and 

vice-versa. Also in practice, however, this assumption of equi-dispersion is often false, since the 

variance can either be larger or smaller than the mean, that is, both over-dispersion and under-

dispersion can exist in count data. 

Whenever we identify the possible presence of over-dispersion in count data, what could be the 

consequences of failing to take it into account? Firstly, the standard errors obtained from the 

model will be incorrect and unfitting and may be seriously underestimated and therefore, we may 

incorrectly assess the significance of individual regression parameters (John, 2007). Also, 

changes in deviance associated with model terms will also be too large and this will lead to the 

selection of overly complex models. Finally, the interpretation of the model will be incorrect and 

this may affect the prediction accuracy.  

Statistically, if over-dispersion is present, disregarding it is likely to have little influence on point 

estimates of the regression parameters (the maximum likelihood estimator is consistent, although 

some small sample bias might be present). 
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Though, standard error estimates for regression parameters are underestimated. Type I errors 

related with testing whether regression coefficients are zero or not are underestimated, which is 

particularly problematic in relation to covariates that are close to the significance threshold. If 

the objective is to build a parsimonious model, the presence of over-dispersion may result in an 

analyst building a model more complex than necessary, and that overestimates the variance 

explained. These statistical problems are similar to those that are encountered when fitting 

models where there is spatial autocorrelation in model residuals (Haining 1990, 2003). When 

over-dispersion occurs, we modify the model and also keep the Poisson model, but add ad-hoc 

models for the variance. Specifying alternative distributions that can generate over-dispersion 

can also be employed. 

For this thesis, we shall be discussing single disease (TB) modelling. Epidemiologic models like 

Bayesian regression models from the Besag, York and Mollie model (BYM) and geostatistics 

information are useful in this regard by allowing an assessment of the influence a disease 

outbreak may have under a selection of conditions. Such models are recognised as central to 

developing management strategies for disease. 

This dissertation also tries to show the incidence and prevalence of tuberculosis based on some 

demographic, socioeconomic and transmission-related indicators as an important determinant of 

disparities in TB rates in the Eastern Cape Province of South Africa.  

1.4 Statement of the Research Problem 

Some models have been established for both single and multiple diseases at ecological levels to 

deal with their incidences and prevalence. Most of these models are based on the use of Bayesian 

regression models and some are connected with random effects, which are divided into spatial 

and non-spatial components. 
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The presence of over-dispersion is a particular problem for the analysis of spatially grouped data 

such as counts of events for census tracts that tend to have populations that socially, 

economically and demographically are heterogeneous or where the event has a tendency to 

cluster at the tract scale perhaps due to an infectious process. Over-dispersion, which may arise 

as a result of data imprecision or choosing an unsuitable probability model needs to be adjusted 

with suitable probability distributions applied to give a better data estimate when observed.  

Also, violations of equi-dispersion from Poisson model show potential correlation in the data, 

which can affect the standard errors of parameter estimates. Therefore, alternative approaches to 

over-dispersion include reparameterisations of the variance function. This requires that 

alternative models, a type of mixture models built from Poisson be employed, to model and 

capture various types of dispersions in count data, which have predictable implications for the 

probabilistic structures of such models. Some of these mixture models also have the capacity to 

account for under-dispersion, though in very rare cases. 

Another challenge in spatial analyses is the problem of spatial autocorrelation. Modelling the 

spatial interactions that arise in spatially referenced data is normally done by integrating the 

spatial dependence into the covariance structure either explicitly or implicitly through 

autoregressive models. For lattice or regional summary data, the commonly used autoregressive 

model is the conditional autoregressive model (CAR) or “Besag” model.  

The conditional autoregressive (CAR) and the intrinsic autoregressive models (ICAR) are 

extensively used as prior distributions for the structured random spatial effects in Bayesian 

models. Some authors have pointed out unrealistic or counterintuitive consequences on the prior 

covariance matrix or the posterior covariance matrix of the spatial random effects (Renato et al., 

2009). It has been accepted also that the Besag or ICAR model may lead to ambiguous results in 
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the case where there is no spatial correlation in the data (Leroux et al., 2000). One issue 

characteristic to all the models used for spatial dependency in the Besag, York and Mollie model, 

is that the spatially structured component is not usually scaled. It has been discussed and pointed 

out that scaling or weighting is vital to enable hyperprior assignment and to guarantee that 

hyperpriors used in one application have the same explanation in another application. 

There is therefore the need to consider a weighted prior model for the spatial structured random 

effect. This thesis therefore seeks to propose and utilize a latent scaled Gaussian model as a prior 

for this spatial dependency model for flexibility, interpretability and better smoothing. 

1.5 Aim and Objectives of the Study 

The main aim is to carry out Bayesian spatial analyses for count data, by developing flexible and 

robust models for disease mapping.  

Specific objectives are to: 

i. to review the BYM model for disease mapping for count data and for a single disease 

at ecological levels. 

ii. to investigate the effects of some socio-economic and demographic factors on the 

relative risk of tuberculosis incidence in the Province. 

iii. to develop and compare some Poisson mixture models for robustness, to capture both 

under-dispersion and over-dispersion in a spatially correlated count data.  

iv. to also develop and utilise a new and a more interpretable weighted “latent” ICAR as 

an alternative prior for the spatially structured random effect in the BYM model. 
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v. to produce a more “smoothed” graphical disease map for TB prevalence patterns by a 

3-D curve fitting biharmonic spline techniques, that can suppress noise easily by 

seeking a least-squares fit rather than exact interpolation. 

1.6 History of Tuberculosis in South Africa 

Tuberculosis or TB (short for tubercle bacillus) is a popular, and in most cases, a deadly and 

terminal disease caused mainly by a bacteria called Mycobacterium tuberculosis (Kumar et al., 

2007). It is established that one third of the world's population is thought to have been infected 

with M. tuberculosis, with new infections arising in about 1% of the population each year (WHO 

2002). More people in the developing world contract tuberculosis as a result of a poor immune 

system, mostly due to high rates of HIV infection and the corresponding development of AIDS 

(Lawn et al., 2011). 

Tuberculosis is termed a social disease which is caused by an airborne pathogen and has low 

infectivity. The spread of tuberculosis is mostly dependent on human interface within 

communities. However, some communities provide a better environment for the transmission for 

the disease than others. Earlier investigation studies have documented great differences in rates 

of tuberculosis among neighborhoods (Barr et al., 2001). These differences may in part depend 

on community level, ecological risk factors that aid transmission—poverty, crowding, and other 

indicators of deprivation have long been associated with increased rates of tuberculosis 

(Hetherington et al., 1929).  

Tuberculosis is also closely related to both overcrowding and malnutrition, making it one of the 

major diseases associated with poverty (Lawn et al., 2011).   
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The primary mode of transmission of this disease is through airborne droplets emitted (usually 

when coughing) by an individual who has active TB. When exposed individuals continually 

breathe in air contaminated by an infectious patient, they may also become infected. 

Generally, the persons who are more prone to acquire infection are those in close contacts with 

the infected person, i.e. those who maintain long and repeated exposure to the infectious agent.  

About 30% of close contacts are infected, but only 15% of non-close contacts approximately 

(CDC and ATS, 1994). However, TB can also be spread during brief contact between individuals 

who do not live or work together (Small et al., 2010). From history, TB has been connected with 

movements in population, e.g. colonization of earlier non-exposed populations, and with changes 

in the spatial distribution of human populations such as urbanization, i.e. increased community 

size and high population densities (Wilson, 1995). 

South  Africa  is the  third  highest  burden  of  tuberculosis  in  the world as a country,  after  

India  and  China ,  with  an estimated incidence of 450,000 cases of active TB in 2013, an 

increase of 400% over the last 15 years (WHO 2014). An estimated 60-73% of the 450,000 

incident cases have both HIV and TB infection. The incidence of  multidrug-resistant (MDR)  

and  extensively drug-resistant  TB  are  increasing and  South Africa  has the second highest  

number  of  reported  multi-drug-resistant  TB  (MDR-TB)  cases  globally (NDOH 2014 and 

HST 2014). Tuberculosis remains the leading cause of death in South Africa, contributing to 

12% of deaths in 2009 (Stats SA, 2007) as shown in Table 1.2. It has also been estimated that 

about 80% of the population of South Africa is infected with Mycobacterium bacteria, the huge 

bulk of whom have latent TB rather than active TB disease.  
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The highest predominance of latent TB, which is estimated at 88% , has been discovered among 

people in the age group of 30-39 years old living in townships and informal settlements (Figure 

1.4). 

Table 1.1: Statistics for TB cases notified and incidence rate of TB. 

 2002 2003 2004 2005 2006 2007 2008 2009 2010 

TB 

cases 

notified 

224,420 255,420 279,260 302,460 341,160 353,870 388,880 406,080 410,040 

Tb 

incidenc

rate 

493.7 550.1 599.4 645.1 719.9 739.5 798.7 823.4 802.2 

 

Source: Notified TB cases and incidence rate of all forms of TB in South Africa (tbfacts.org 

2012). 

 

Figure 1.1: HIV and TB rates from 1980-2006. 

Source:Statistics South Africa (www.statssa.gov.za). 

http://www.statssa.gov.za/
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Figure 1.2: Trends for notified TB and MDR cases, South Africa (2007–2012). 

Source: RSA (2014). 

 

 

Figure 1.3: TB deaths per province. 

Source: Statistics South Africa (www.statssa.gov.za). 

 

 

http://www.statssa.gov.za/
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Table 1.2: Leading cause of deaths in South Africa. 

 

Source: Statistics South Africa (www.statssa.gov.za). 

Table 1.3: Number and percentage of TB deaths, South Africa, 2008–2013. 

Year Number of TB deaths % of all deaths Tb-specific rate per 100 000 

2008 75 281 12.6 153 

2009 69 791 12.0 140 

2010 63 281 11.6 125 

2011 54 112 10.7 107 

2012 48 409 8.4 92 

2013 40 452   - 76 

 

Source: SANAC (2014) and Stats SA (2014). 

http://www.statssa.gov.za/
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Figure 1.4: TB deaths by age group. 

Source: Statistics South Africa (www.statssa.gov.za). 

The scourge of tuberculosis in the Eastern Cape Province affects largely the economically active 

age group. For this age group of 25-34 years, the percentage distribution of reported TB cases 

was found to be 15.9%, 0.7% and 23.1% for the years 2003, 2004 and 2005 respectively. A 

report from South African National Burden of Disease study 2000 Eastern Cape Province, 

undertaken by South Africa Medical Research Council (SAMRC) rated tuberculosis as the 

second leading cause of death among women and the third leading cause of death among men 

aged 15-44 years.  

Eastern Cape Province ranks as the second highest burden of TB by province after Kwa Zulu 

Natal (NDoH 2010 data) as shown in Figure 1.3. Also, the Eastern Cape Province has an 

enormously high burden of TB/HIV co-infection and MDR-TB (Figure 1.1). Also, there were 

more than 60 000 new TB cases in the province in 2008. 

http://www.statssa.gov.za/
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From these, there were 1 251 confirmed cases of MDR-TB and 385 confirmed cases of XDR-

TB. In 2010, the total of new TB and re-treatment cases identified in the province stood at 62 

226 (ECAC 2012). 

1.7 Motivation 

This research work is therefore motivated by the need to develop flexible and robust models, 

which extends previous studies in Bayesian spatial modelling using the Besag, York and Mollie 

model for count data.  

Up to date, this thesis is the only analysis of the relationship between tuberculosis and 

transmission indicators of socio-economic and demographic variables in South Africa, despite 

the high burden effect of the disease. It is also one of the very few using a Bayesian disease 

mapping model to estimate the spatial effects and patterns of TB in the Eastern Cape province 

and in the country in general. 

1.8 Significance of the Study 

A specific challenge in epidemic modelling is the proper way to allow for spatial population 

structure, whereby the rate of contact between hosts depends on their spatial separation. 

Research of any statistical modelling of tuberculosis in the socio-demographics of South Africa 

has not been widely carried out. However, this would be among the first in the Province of the 

Eastern Cape and in the country in general. By this research, it is important to have some 

understanding of how a disease as serious as tuberculosis (TB) would congregate and spread 

through space among different regions, based on some demographic and socioeconomic risk 

factors in the Eastern Cape Province. 



16 
 

Therefore, the detection of areas with different risks for TB will take into cognizance the public 

health systems, and deal with the features of each region or cluster explicitly and highlight those 

that present higher incidences of the disease. This would also allow planning for the future, 

allocating scarce resources with priority and monitoring the impact of policy, political and 

economic changes in society and also showing the supposed direction that health policies and 

agencies should follow in enabling equal accessibility by all regardless of socio-economic status. 

The spatial effects of the spread of the disease would be determined and this would also give 

insight into the effects of some demographics and TB spread. Models can help propose for future 

zero-prevalence studies and intervention strategies by indicating where the disease frontlines are 

likely to be presented. 

1.9 Outline of the Study 

This entire thesis is about the modification of the Besag, York and Mollie (Besag et al., 1995) 

model for disease mapping and the development of multilevel models for the spatial analysis of 

disease incidence using the Bayesian approach. Furthermore, this dissertation shall adopt the 

following outline in the course of the research.  

Chapter one introduces the general concept of spatial modelling in epidemiology and some of the 

challenges attributable to the BYM disease mapping model for a single disease, with the 

common probability density (Poisson) mainly employed in spatial modelling of disease counts. 

The chapter also describes the rationale behind the study and the following objectives that would 

be investigated. 

In chapter two, the basic concept of Bayesian spatial modelling in its most common 

manifestation was addressed. It also seeks to examine both the theoretical and empirical review 

of previous works surrounding the subject of the research.  
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Chapter three will address the method of data collection and the theories and concepts of the new 

methodologies that will be used to implement our objectives and in addressing our research 

problems. This is the contribution to knowledge that this entire dissertation seeks to perform. 

Chapter four is an applied study using the Besag, York and Mollie model, addressing the spatial 

analyses of tuberculosis for our target regions in Eastern Cape Province based on our objectives 

and the overall aim of the research work. It also addresses the incidence and distribution of the 

disease, using the various methods sequentially as outlined in the objectives. 

Chapter five will draw a general and comprehensive conclusions on all the analyses performed in 

the preceding chapters. Perceived shortcomings and limitations will be outlined and 

consequentially, reasons and areas for future research will also be stated. 

In conclusion, through the interplay of developing theories, analyzing empirical data, and 

addressing applied problems, the work contained in this dissertation establishes some measures 

of progress in our understanding of disease spread in heterogeneous populations with spatial 

random effects.  
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Chapter Two 

Literature Review 

This chapter highlights the statistical theories and methodologies used and developed throughout 

this thesis, and it also gives an overview of the existing literature within this area of statistics. 

The objective is to outline some of the techniques employed in modelling disease incidences in 

the Bayesian perspectives across spatial analytic methods. It also highlighted some few cases of 

empirical application of Bayesian spatial methods to a disease. By choosing this review, this 

chapter concentrated on common theories in Bayesian spatial inference, and then concede 

specifics of some remarkable and recent threads of development to the appropriate literature.  

2.1 Introduction 

Statistical data have continually been obtained at specific places either in a forest, at a specific 

path address, such as in a laboratory, or an exact point on the appearance array of a gene. The 

location in several cases can be responsible for further understanding into situations linked 

through the data detail, in a word, the place where we gather a quantity may notify on “how 

much “or “amount” we measure. Spatial statistics as a study area contains statistical techniques 

engaging the inference of distance and location. Various techniques of such include additions of 

regression, generalized linear models, and time series as accustomed methods, whereas some 

arise from specific stochastic methods in space (Lance, 2005). 

Substantial initial efforts in spatial analytical methods appeared in Moran (1948, 1950) and 

Whittle (1954). These were subsequently introductory work of spatial prediction in Matheron 

(1963) and Gandin (1963), also models for spatial autoregression in Besag (1974), and spatial 

point processes (Ripley, 1977; Diggle, 1983).  
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Another increasing importance in the improvement of spatial analysis is the contrasts in Ripley 

(1981) and Cressie (1993) writings that seek to address spatial statistics in its entirety, 

additionally to the current and quick growth in versions specifying certain ways of use and/or 

theory (Stein et al., 1999; Chil`es and Delfiner, 1999; Lawson and Denison, 2002; Webster and 

Oliver, 2001; Waller and Gotway 2004). 

The current upsurge of application in this field of spatial statistics can mostly be connected 

comparatively to the concurrent growths for both spatial data handiness, together with precise 

locality dimensions through global positioning system (GPS) technology, and speedy 

developments in computational power permitting improvements in the structures of spatial data 

(mainly within the geographic information systems) and for the insertion of extremely difficult 

and multifaceted models through refined algorithms and procedures. Related advancements in 

the speed of computations and algorithm development has moved the increase in using Bayesian 

approaches in this state, particularly for acknowledging and additional progress of Markov chain 

Monte Carlo (MCMC) algorithms, permitting huge elasticity for fitting of spatially structured 

statistical models. 

The field of study of spatial statistics includes statistical techniques engaging place and distance 

in its inference. Spatial dynamics can be defined as the categorization of changes in space and 

time. The study of spatial analysis can also be a set of techniques which fluctuate with the 

locations of the objects under observation (Longley et al., 2005). The spatial and the temporal 

process are one and the same and they cannot be separated (Shanthi and Rajan, 2012). Spatial 

data analysis is defined also as a collection of techniques suitable for evaluating ‘events’ at a 

selection of spatial scales, and the results of which can be influenced by spatial arrangement of 

the ‘events’ (Haining, 1994). 
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Significant initial study in spatial analysis showed in the studies of Moran (1948, 1950), Whittle 

(1954). The aim of spatial modelling is to develop a significant illustration of actions, incidences 

or procedures by exploring the power of spatial analysis. The two vital terms for GIS science are 

spatial analysis and spatial modelling. 

2.2    Spatial Epidemiology Applications in Public Health Research 

The study of epidemiology deals with the interrelatedness between the person, place and time in 

the distribution of diseases in the population (Last, 2001). In the health field, interest in spatial 

epidemiology began with the appreciation of maps as useful tools for understanding likely causes 

of disease and areas of high risk. Throughout the ages, there are instances where diseases have 

been wiped out after their spatial patterns were discovered. One classical example of spatial 

epidemiology is the London’s cholera epidemic by Dr. John Snow in 1854 (Snow 1855). Snow’s 

belief that cholera was transmitted through drinking water was refuted by some. Brody (Brody et 

al., 2000) gave a detailed history of how Snow and others demonstrated the role of maps in the 

investigation of the cholera outbreak of 1854. Other examples of spatial epidemiology include 

the study of rickets by Palm in 1890 (Palm, 1890), and Blum in 1948 (Blum, 1948) who 

disclosed that sunlight was a causal factor for skin cancer. More recent studies have used spatial 

Bayesian techniques in malaria mortality, all-cause and cause specific mortality (Sartorious et 

al., 2010; Musenge et al., 2011). Public health data analysis has played a significant role in the 

development of spatial statistics in the last two decades. In spatial epidemiology, disease clusters 

are found for planning health care delivery and for identifying causes of the disease (Shannon 

2008). 
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Epidemiology is also the study of how commonly diseases occur in different groups of people 

and why. It can also be defined as the study of the occurrence of diseases in relation to their 

explanatory risk factors. An important feature of epidemiology is the measurement of disease 

outcomes in relation to a population at risk. The population at risk is related to the group of 

people who are healthy or sick and counted as cases if they have the disease being studied. 

Epidemiological information is often used to plan and evaluate strategies to prevent an illness, 

and it also helps as a guide to the management of patients, in whom this particular disease has 

already developed. Spatial epidemiology is defined as the description and analysis of 

geographically indexed health data with respect to demographic, environmental, behavioural, 

socio-economic, genetic and infectious risk factors. In considering an analytic framework for 

spatial epidemiologic analyses (Elliott et al., 2000b), it is vital to first differentiate between point 

and areal data. Each of the population, environmental exposure, and health data may be 

connected with a point, or a specific spatial location, for example, a street address (occurrence 

data), or an area, a defined spatial region such as a community, of which it is descriptive 

(aggregate summaries, e.g. count data). Data from a variety of these points (e.g., residence, 

workplace, schools) may give the closest link to an assumed biologic model in which the average 

disease risk of an individual will reflect individual’s characteristics such as age, sex, and genetic 

factors (e.g., predisposition, susceptibility, immune or toxicological response capability); 

lifestyle variables, such as smoking and diet; and exposure to environmental pollutants (Paul et 

al., 2004). 

There are three types of spatial data that exist: areal (lattice) such as village level, point patterns 

(locations not fixed but random) and point-level (geo-statistical, locations are fixed over a 

continuous space) such as household location data (Gemperli, 2003).  
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Areal models use neighbourhood structures based on the arrangements of the blocks in the map. 

Two very popular models that incorporate such neighbourhood information are the 

simultaneously and conditionally autoregressive models (abbreviated SAR and CAR 

respectively, originally developed by Whittle (Whittle 1954) and Besag (Besag 1974), 

respectively. An essential property for geo-statistical data is isotropy when the spatial correlation 

only depends on the distance between the two locations and not directional as with anisotropy 

(Zimmerman, 1993).  

Spatial data analysis has involved new advances in many fields, to some extent referring to an 

important core of knowledge, but displaying many special features in the methods involved. 

Many Bayesian applications have arose in spatial epidemiology, with Lawson et al., (1999), 

Elliot et al., (2000) and Lawson (2001) providing highly improved discussions. A major element 

in spatial outcomes analysis is the valuation of patterns of relative disease risks in terms of 

possible clustering around environmental point sources, but also in terms of ecological 

regression of disease patterns in terms of known risk factors (Lawson, 2001). 

A long history of spatial modelling has occurred in spatial epidemiology. Spatial analysis has 

recently been added as a powerful public health tool, for its ability of visualizing disease 

distribution, even with sparse data (Best et al., 2005), and mapping risk factors at population 

level (Bailey, 2001; Bailey et al., 2005). The major emphasis lies in describing behavioural 

relationships by regression models, whether the data are defined over regions and areas, or at the 

level of individual actors involved in spatially defined behaviours. 

Special tools in spatial statistics have advanced our understanding of the geographic distribution 

of diseases and improved the focus of public health actions (Anselin, 1995; Bailey, 2001).  
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Some recent publications have emphasized the role of Geographical Information Systems 

technology in Public Health research, but its use being limited by the quality of address 

information, particularly those available in routine information systems. Some socio-economic 

factors and other vulnerabilities have also been linked as risk factors to the upsurge and 

prevalence of disease burdens in some geographical locations. 

The challenges related to transmission of infectious disease dynamics therefore, demand the 

attention of all researchers. Essential research on epidemiological theory must work to improve 

our understanding of commonly-used transmission models, and extend them to include known 

heterogeneities that traditionally are ignored (Dietz and Hadeler, 1988; Diekmann et al., 1990; 

Ball et al., 1997; Keeling, 1999). Empirical research must still seek to identify important patterns 

of heterogeneity and describe their effects on disease spread (Longini et al., 1982; Grenfell et al., 

2001; Bjornstad et al., 2002; Gani and Leach, 2004). 

Some studies of social determinants of health outcomes often fail to describe how social factors 

influence the physiological mechanisms that may lead to various health outcomes. On one hand, 

infectious diseases are an individual level relationship between the host and the pathogen 

(Anderson, 1998). On the other hand, there is evidence that infectious disease rates are 

influenced more by population patterns of exposure than by the exposure status of individuals 

(Koopman & Lynch, 1999).  

Particularly, territory-based surveillance systems have shown that the distribution of endemic 

diseases is also determined by social processes that are inherently related to the space where they 

occur (Vieira et al., 2008). Such investigations may include locally related health risk factor data 

such as exposures to local sources of environmental pollution and the distribution of locally 

varying socioeconomic and behavioral factors. 
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It is therefore required to address how a disease like TB infection and development to the 

disease, which primarily occurs at the individual level, to be related to population level (i.e. 

social and demographic) trends. 

The dynamics of infectious diseases depend on the spatial distribution of pathogens and the host, 

and the probability of an encounter between them. The transmission of infectious pathogens from 

infected to susceptible hosts decline with increasing distance between individuals.  However, in 

large cities which tend to be overcrowded with many highly mobile individuals, the spatial 

correlation generated by the transmission of infection may be disrupted depending on the degree 

of mixing of the population (Grassberger, 1983). Since it is known that control efforts are best 

designed when areas of high prevalence are known, it is also important to know areas where 

rates are abnormally high given the underlying risk factors. 

Bayesian inference has contributed greatly to this field of research which, together with 

computation power, friendlier and accessible software, can be used for public health purposes 

(Lawson, 2001). Daiane et al., (2012) employed the use of a Bayesian regression model 

assuming a Poisson distribution to evaluate the urban spatial and temporal distribution of TB and 

their relationship with social vulnerability in Sao Paulo, southeast Brazil, and the model 

confirmed the spatial heterogeneity of TB distribution in that region, identifying areas with 

elevated risk and effects of social vulnerability on the disease. The relationship between 

tuberculosis (TB) and socioeconomic status is well known (Souza et al., 2000; Waaler, 2002). 

Souza (2007) by a Bayesian approach, modeled the effect of socio-economic deprivation and 

some transmission-related indicators to TB incidence at small area level, and their model 

confirmed a clustered pattern of the disease and poverty (Souza et al., 2007). 
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2.3 Bayes and Bayesian Application in Spatial Modelling 

Bayesian approach remains a method of statistical inference which has been in existence for a 

very long time, but its uses have remained inadequate not until current improvements in 

simulation and computation approaches (Congdon, 2001). In the event of any statistical 

modelling approach, we have a vector of observed data 𝑦𝑖 = (𝑦1, … , 𝑦𝑛),which are believed to 

have come from a probability model; 𝑓(𝑌|𝜃) with a set of unknown parameters 𝜃𝑖 = (𝜃1, … , 𝜃𝑛). 

The purpose of statistical modelling is to use the data to deduce the best possible estimate of the 

values of these unknown parameters. Considering the likelihood approach, the parameters are 

estimated as the value,


, which maximizes the likelihood function, represented by

   
1

 | | 
n

i

L Y f Yi 


   where 𝑌1, . . . , 𝑌𝑛 are assumed to be independent. Under this context, it 

is assumed that the unidentified true values of the model parameters θ are fixed, with inference 

based on a point estimate 


 (e.g. the maximum likelihood estimator) and the uncertainty of that 

estimate specified by a c% confidence interval. The description of these intervals is that, if the 

data were recurrently sampled and an interval constructed each time, then the c% of these 

intervals would contain the “true” value of the parameter. 

The technique of Bayesian spatial modelling is the use of Bayesian procedure to spatial models, 

such as models of spatial autoregression and conditional autoregressive models. A spatial 

dimension of this method is the use of Bayesian methods of spatial models. The idea underlying 

this new dimension of analyzing spatial data is Bayes’ theorem that studies and accepts together 

the distributions of the data and the coefficient estimates that are not known (Lesage and Pace, 

2009). Bayes theorem is that mathematical design of the natural idea that our estimates should 

change in light of observed and experimental evidence. 
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Precisely, the modest Bayes theorem states the association between the conditional probabilities 

of two events A and B as follows (Carlin and Louis, 2000): 

 

 
(F | E) (E)

E | F
(F)

P P
P

P


      (2.1) 

 

Where  |P E F  shows the posterior probability of the event E given that event F is detected.

 P E and  P F characterize the prior or marginal probabilities of event E and F arising 

correspondingly. Equation (2.1) is applicable to a spatial modelling framework and structure. 

This is possible by substituting F with A to display the observed spatial data and spatial weights 

matrix, and E with θ to denote the parameters to be assessed in a spatial manner. We rewrite 

equation (2.1) as: 

 
(A | ) ( )

| A
(A)

P P
P

P

 
 

     (2.2) 

 

However, the following points should be captured: (i) an assumption in a Bayesian approach is 

that each parameter has a prior distribution in ( )P  , which captures some reservations and tells 

current information before observing the data. (ii) the likelihood of attaining data A in this spatial 

model that has the parameters,  , is (A | )P  . (iii) Basically, (A)P is regularly set as an unknown 

constant which does not include any parameters in   (Lesage and Pace 2009). (iv) the posterior 

distribution of  , after allowing for both empirical data and uncertainty is  | AP  . 
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The method of spatial modelling is primarily connected with three concerns: estimation and 

inference of the parameter, specification and comparison of the model, and predict from the 

model. It is established that spatial modelling using Bayesian techniques can solve  these issues 

and they still have more smart and attractive characteristic indifference to the conservative 

method (i.e. frequentist), toward spatial modelling (Banerjee et al., 2003; LeSage and Pace, 

2009; Wasserman, 2003). For instance, the spatial modelling Bayes method gives an extra fixed 

basis as the current information and/or uncertainties of unidentified parameters are considered. 

The statistical inference of the posterior distribution of the Bayesian spatial modelling is more in-

built and rightly agrees to probability theory. 

The core dissimilarity that exists between the Bayesian approach and the frequentist is in the 

manner in which the unknown parameters are treated. The frequentists method mainly adopts 

that the data observed come from an exact chance and likelihood model, and where the unknown 

parameters are fixed and incomprehensible (Carlin and Louis, 2000; Congdon, 2001). On the 

contrary, the method of Bayesian adopts that the unidentified parameters follow prior 

distributions, which engages the prior distributions to get the posterior distributions of the 

unknown parameters. 

Techniques used in Bayesian spatial modelling combines almost all the spatial models, like the 

spatial lag models, the spatial error models, and the well-known geographically weighted 

regression, and provided that Bayesian approach can be used to estimate and analyse the 

statistical model. Also, this spatial modelling in Bayes does not need a Gaussian spatial process, 

and it is more robust and elastic in generalized linear modelling (Banerjee et al., 2003).  
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The objectives of the model are modelling the spatial variation of a random Variable ( )Y s  at 

locations s D , description of trends and spatial correlation and prediction for unobserved times 

locations. 

Amongst the advantages of adopting and applying the Bayesian method, and of current sampling 

procedures of Bayesian estimation (Gelfand and Smith, 1990), are the more general and usual 

explanation of parameter intervals, whether referred to as credible or confidence intervals, and 

the ease with which the true density may be obtained. The ease and elasticity of Bayesian 

sampling estimation spreads to resulting or structural parameters that combines model 

parameters and data probably, together with practical significance in usage areas (Jackman, 

2000), which in classical techniques might need the delta method. 

New methods of estimation assist also in the use of Bayesian random effects models for pooling 

strength across set of related units. These have played a key part in applications like in the 

analyses of spatial disease forms, survey results from lesser domain estimation (Gosh and Rao, 

1994) and meta-analysis through numerous studies (Smith et al., 1995). Unlike from classical 

methods, the Bayesian methods allow comparison of model across non-nested options, and again 

the latest sampling estimation improvements have enabled new techniques of model choice 

(Chib, 1995; Gelfand and Gosh, 1998). 

2.4 Prior Distributions 

The concept of a prior distribution forms a crucial part of Bayesian inference. A prior 

distribution,  f  , is that which represents all of the information which is known about the 

parameters, , before observing the data, Y.  
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This prior distribution could be based on information from previous studies on similar data sets 

or an estimate from an expert in the field, or it could simply be used to represent a position of 

prior ignorance. 

These prior distributions can take many forms subject to the type of model and data being 

adopted; it is possible to choose a univariate prior for each individual parameter (assuming 

independence between the parameters), that is 𝑓(𝜃|𝑌) =  ∏ 𝑓(𝜃𝑗),𝑝
𝑗=1  or a single multivariate 

prior for all parameters together. The parameters of these prior distributions are referred to as 

hyperparameters. The choice of a prior distribution will influence the posterior distribution 

obtained, so it is essential to make a sensible choice of prior in order to produce a good and 

sensible estimate for the parameters. In some cases, we may have little or no insight about the 

value of the parameter in advance of observing the data because choice is not always direct. In 

such cases, it is possible to characterize our lack of prior knowledge by assigning a non-

informative or weakly prior which will have a negligible result on the posterior, thus allowing 

the posterior distribution,  |f Y , to be driven by the data rather than the choice of prior. 

Prior distributions can be termed as weakly informative, if it is a proper prior but has a system 

that the information it gives is purposely not strong, even for whatever real prior knowledge that 

is obtainable. Numerous non-informative prior distributions have been proposed for scale 

parameters for multilevel models, comprising uniform and inverse-gamma families, in the 

perspective of an extended conditionally-conjugate family. Several non-informative distributions 

for prior for  𝜎𝑎,  were recommended in some Bayesian literature and software, together with an 

improper uniform density on 𝜎𝑎 (Gelman et al., 2003), proper distributions like 𝑃(𝜎𝛼
2) ∼inverse-

gamma (0.001, 0.001) (Spiegelhalter et al., 1994, 2003), and distributions which rest on the data-
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level variance (Box and Tiao, 1973). Completely non-informative priors can take the form of 

distributions without a finite density, for example Uniform  ,    . 

These are called improper priors and care should be taken when using them because in many 

cases, they can lead to an improper posterior distribution which makes inference impossible. 

Another form of prior is called the Jeffreys prior (Jeffreys, 1946), which is considered to be 

invariant under reparameterisation. 

These Jeffreys priors are of the form  

 

   detf I 
      (2.3) 

where 

 I  is called the Fisher information, defined as 

 

       
2 2

log ; | log ; ;I E f Y f Y f Y y    
 

     
      

      


   (2.4) 

2.4.1 Classes of Spatial Prior Distributions in Disease Mapping Models. 

Best et al., (2005) made comparisons of some Bayesian spatial models used for disease 

mappings by enumerating some classes of spatial prior distributions. Earlier assessments of 

approaches used for spatial analysis in disease risks comprise Marshall (Marshall, 1991), who 

contemplates empirical Bayes together with some initial entirely Bayesian approaches for 

disease mapping; bit hell (Bit hell, 2000) then debates that model based and nonparametric 

methods for both point and areal data; a little exploratory section on mapping of disease by 
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Lawson et al., (1999) and the current section by Richardson (Richardson, 2003), which analysed 

the spatial modelling application techniques in epidemiology with a highlight on connecting 

point and area level designs. 

The study of Marshall also entails cluster recognition techniques, which are not considered in 

this study because their objective is unlike that of creating a class of area specific risk estimates.  

The resulting generic three level multilevel models have been debated by some authors 

(Wakefield et al., 2000; Pascutto et al., 2000), and likened to a basic and natural model for 

disease mapping, based on collection of the fundamental individual level risks: 

 

𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝐶𝑖 , 𝐸𝑖), 𝑖 = 1, . . . , 𝑛 

𝐶𝑖  ∼ 𝑃(./𝜃)    (2.5) 

𝜃 ∼  𝜋() 

 

with iY  and iE as respectively, the observed and expected number of disease cases in area i, iC  

is the log relative risk in area i , with ( / )P  as a suitable second stage prior distribution for the 

 iC and   in this second stage models are termed hyperparameter with hyperprior distributions 

() . The expected counts are estimated as i ij j
j

E N r  with jr as the disease rate in the 

reference population for strata j , with ijN  as the population at risk in area i , strata j . This type of 

model is suitable if the disease condition is uncommon, and if the following assumptions are 

applicable: 
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1) if the level of risks of individuals contrast randomly as contained by areas (i.e., they are not 

spatially crowded), 

2) in an area if the risk related to living in area i  acts proportionately on the reference point risks 

for each stratum, then the strata specific area risks, 𝑟𝑖𝑗, reduce to 𝐶𝑖  𝑥 𝑟𝑗. A binomial model for 

the first stage distribution is more suitable for common disease (Knorr-Held et al., 1998). The 

major groups of some suggested spatial prior distributions for the area specific risks  iC or iR

are: 

2.4 .1.1    Correlated Normal priors: Jointly Specified Models 

Among the most flexible distributions for indicating correlated random variables is the 

multivariate normal (Gaussian) distribution. Given that  1,..., nC C C signify the vector of area 

specific spatial random effects given in Equation (2.6), it can be stated that the dependence 

structure in terms of an n x n covariance matrix , giving rise to a second stage prior 

 

𝐶 ∼ 𝑀𝑉𝑁(𝜇, 𝛴)      (2.6) 

 

with 2    and ij  given as the correlation between 𝐶𝑖 and 𝐶𝑗. If 0ij  , note that this 

suggests that iC and jC are slightly independent. 

Given some reasons of parsimony, it is normal to identify and state the essentials of the 

correlation matrix as a distribution-bound function of the distance, 𝑑𝑖𝑗, among the centroids of 

each pair of areas, given that Ω𝑖𝑗= 𝑓 (𝑑𝑖𝑗; 𝜙). Nevertheless, caution is required to make sure that 

the preferred function effects a positive definite covariance matrix , and there exists 

remarkably a small number of parametric arrangements for which this is certain (Ripley, 1981). 
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There exist some limited examples that are published in the use of such multivariate normal 

models to disease mapping, though Cook and Pocock (1983) and Richardson et al., (1992) used a 

frequentist design in modelling the area specific errors in ecological regression and Wakefield et 

al., (2000), gave an application to cancer outbreak disease map in the United Kingdom (UK). 

Diggle et al., (1998) also discussed the use of mapping to count data in the environment, even 

though measured at point rather than areal locations. 

A significant practical constraint of these models used in disease mapping techniques, even with 

reasonably sized study areas (which comprise of some hundred areas) is that,, application 

through Markov chain Monte Carlo (MCMC) algorithms, which is very expensive 

computationally due to the n x n inversion of the covariance matrix at each iteration. Wakefield 

and Kelsall (2002) proposed a similar methodology, which is centered on postulating a random 

(Gaussian) field (GRF) in respect of the fundamental log relative risk surface that is continuous 

at the second stage of the multilevel model. By joining the GRF over areas, and by using several 

approximations, they achieve the multivariate normal (Gaussian) distribution for the area specific 

log relative risks, with the average the same as the mean of the underlying GRF and the 

association between areas i  and j  is equivalent to the average correlation between the two points 

randomly selected from those regions. 

The method is striking given that correlation and association between areas is invoked through a 

point level correlation function and it is likely to restructure the posterior distribution of the 

principal and underlying continuous risk surface. The data nevertheless, will comprise little facts 

about the spatial dependence at distances which are below the size of the smallest areas, so that 

structures of the posterior risk surface at a small scale should not be too inferred. 
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2.4.1.2    Conditionally Specified (Markov random field) Models 

The second stage multilevel model most frequently used in disease mapping is the Gaussian 

Markov random fields (MRF), by following the ingenious documents by Clayton and colleagues 

(Clayton et al., 1987; Clayton et al., 1992) and Besag et al., (1991).  

Typically, the models are stated by a succession of some conditional distributions, which in 

broad form, can be given as  

 

𝐸(𝐶𝑖|𝑐(−𝑖)) = 𝜇𝑖 + ∑ 𝑎𝑖𝑗(𝑐𝑗 − 𝜇𝑗); 𝑎𝑖𝑗 ≠ 0 , 𝑎𝑖𝑗 = 0, 𝑖 = 1, . . . , 𝑛𝑗 ,    (2.7) 

 

𝑉𝑎𝑟(𝐶𝑖|𝑐(−𝑖)) = 𝑘𝑖 > 0, 𝑖 = 1, . . . , 𝑛.                 (2.8) 

 

where ( )ic  signifies the values of the random effects in all the areas except for the ith area 

(Besag, 1974; Cressie, 1993). 

Models of such are also called the Gaussian conditional autoregressions, where the 𝜇𝑗parameters 

signify a huge and large scale spatial trend or gradient at location i , and they are generally 

assumed to be constant across locations or quantified as a function of covariates. Generally, we 

assume 0i i   here and there are 𝑎𝑖𝑗 , coefficients imitating the local spatial reliance that are 

between the units i  and j .  

With reference to some definite restraints on 𝑎𝑖𝑗 and  𝑘𝑖, it can then be presented that equations 

(2.7) and (2.8) give a type of joint distribution as 
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𝐶 ∼ 𝑀𝑉𝑁(μ, 𝑃−1) where   1 1,..., 0 ,n ii
i

P
k

      and ij
ij

i

aP
k

  . 

 

Given P  as the inverse covariance matrix, then it must be symmetric giving rise to the 

constraint ij j ji ia k a k . 

A broadly used design that fulfills this type of symmetry situation is 

 

;
ij

ij i ij

i j

w
a w w

w






       (2.9) 

            

2

j

i

k
w





       (2.10) 

 

Knowing that the term ik  must be positive, caution is required if any of ijw  is negative. The term

ijw , is given as the ijth  element of a symmetric n x n weight matrix W, with diagonal 

components, 0iiw  . A general option is to set 1ijw   if locations i  and j  are neighbours and 

0ijw  , otherwise. The parameter,  , can be assumed as an autocorrelation parameter, which 

reveals the complete power of spatial dependence between regions with nonzero weights. 

An attractive characteristic of the MRF prior (2.8) – (2.9) is the likelihood of making an 

inference or extrapolation about the total amount of spatial dependence in the disease risks by 

approximating, . Nevertheless, explanation of   is not direct (Sun et al., (2000) for an 

explanation of   as a spatial shrinkage factor), and for values near to the maximum 1 𝜆𝑚𝑎𝑥⁄ , are 

desired to reveal uniform adequate spatial dependence (Besag, 1981).  
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Alternatively, if 0  , it shows independence between areas, but in the case of the prior for MRF 

parameterized, using Equations (2.9) and (2.10) does not shrink to that typical independent 

hierarchical/multilevel normal prior for the log relative risks as the variance is unequal across 

areas.  

This made Besag et al. (1991) to suggest a substitute for the second stage prior model (hereafter 

indicated Besag, York and Mollie (BYM) model) 

 

,i i iC V U    1,....i n    (2.11) 

 

𝑉𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑣
2)     (2.12) 

 

𝑈𝑖|𝑢−𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (
∑𝑗𝑤𝑖𝑗𝑈𝑖

𝑤𝑖+
,

𝜎𝜇
2

𝑤𝑖+
)    (2.13) 

 

The  iU follows a central autoregression, realized by setting up 𝜙 to its restrictive value of 1, 

and likened to be signifying a between area variation of a spatial element in a disease risk. 

Though the conditional univariate prior distributions (2.13) are adequately specified, the 

equivalent joint prior distribution for U  is now termed as improper (as a vague mean and 

infinite variance). A posterior distribution that is very appropriate will however be achieved, 

conditional on the standard prerequisite for proper hyperprior distributions on variance 

components in multilevel designs (Sun et al., 1999). The  iV characterized the geographically 

uncorrelated elements of heterogeneity in the disease risk.  
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The posterior implication about the degree of spatial dependence is then centered on the quantity 

of the total (marginal) variation in the iC , covered by each element (whereby the marginal 

variance of the 'iU s  is valued empirically at each MCMC iteration).  

As described before, the MRF models in (2.8) and (2.9) are equal to postulating a multivariate 

Gaussian model for area specific random effects joint distribution, but giving distribution 

parameters to the dependence structure in terms of the precision matrix, P , (signifying 

conditional independence assumptions), reasonably than the covariance matrix 1P 

(signifying marginal independence assumptions). 

Nevertheless, there are significant computational benefits to modelling the accuracy matrix, as 

the independence assumptions that are conditional are freely misused by MCMC algorithms, so 

that the MRF models can be resourcefully employed lacking the necessity for matrix inversion. 

MacNab (2003) recommended a correlated multivariate normal model, which is also 

parameterized in terms of the precision matrix. It was assumed that 𝐶 ∼ 𝑀𝑉𝑁(0, 𝜎2𝐷−1) with 

(1 )D P I     by MacNab, where P  is given to be the MRF model, I , is defined as the n x 

n identity matrix and  0,1 can be inferred as measuring for spatial dependence for the case 

that if 0  or 1, then the model shrinks to the normal (Gaussian) independence prior (2.12) or 

to the intrinsic autoregression (2.13), respectively. 

This specific model may well therefore, be perceived as a substitute to the BYM model, but with 

the benefit that it evades the possible identifiability difficulty faced by the BYM prior, where 

only the summation of i iU V  is fully recognized by the data (Eberly et al., 2000). MacNab also 

reported generally related outcomes in a contrast of the two designs when used in modelling 

small area health service utilization and outcome rates, though her model was not as much 
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profound to the hyperpriors, and gave rise to a somewhat improved fit in her specific application. 

An alternative adjustment and broadening of the model (BYM) has been recommended by 

Lawson and Clarke (2002). Their model contains a combination of normal and non-normal 

(median based) conditional autoregressive elements, with the non-normal aimed to identify and 

capture discrete jumps in the relative risk structure in a bid to escape over smoothing of the risk 

surface. 

2.4.1.3    Semi-parametric Spatial Models 

Best et al., (2005) suggest that in the case of the parametric requirements or specifications 

defined earlier, the extent of smoothing executed in the model (BYM) is disturbed generally by 

all the regions and is not adaptive. 

With a concern that the parametric models of such, could over smooth the relative risk surface 

have made numerous authors to improve on semi- parametric spatial models, to substitute the 

constantly changing spatial distribution for iC , by discrete distribution or partition models 

within each cluster area or component with a constant unknown relative risk. As one of the 

common features, these models permit gaps in the risk surface and they make fewer assumptions 

about the distributions, though implementing however, a required quantity of smoothing and 

borrowing of strength by letting areas to be assigned to the same cluster. These models are 

different in the way that they allot areas to cluster groups or to the mixture components. This 

group of models possess the possibility to over fit the data by generating a boundless number of 

needless clusters, and it is likely to reason it is necessary to add penalization that is categorical of 

the model measurement. 
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Actually as debated by Denison et al., (2002), the Bayesian framework with functional selection 

of hyperpriors for the model parameters will inevitably favour a simpler model over a more 

multifaceted one, if the data is sustained by the former, since the prior weight will be further 

concerted about the observed data for the lesser dimensional prior and hereafter, the modest and 

simpler model will have a greater posterior probability 

2.4.1.4    Spatially Dependent Mixture Models with Allocations 

A mixture model suggested by Green and Richardson (2002), for the iC  values states that the 

distribution of each area to a risk grouping sticks to a spatially correlated procedure. This 

mixture type of model can be viewed as an extension lead of hidden Markov models, to 

unknown discrete state MRF, namely, MRF lowered by (conditionally) independent noise. The 

distribution or allocation model selected is called the Potts model, commonly used in image 

processing, and consists of an interaction parameter that guides the extent of spatial dependence. 

The amount of the constituents of this mixture is not defined before, and it is also estimated as 

part of the model.  

Therefore, the model is given as follows:  

 

exp(C ) ,i zi  i 1,...,n  

 

iz (allocation/distribution variable)  1,...,k (selected according to Potts model) 

 

( ) ( )( | , ) u z kp z k e    (Potts model) 

 



40 
 

𝜂𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 1,...,i k  

 

k (the amount of components) ∼ 𝑈𝑛𝑖𝑓(1, 𝑒𝑚𝑎𝑥) 

 

where 0  is the parameter of interaction  to be estimated and  ''( ) i i
i i

U z I z z


  is given as 

the amount of characterized pairs of the neighbouring areas. 

Hence, when a region i  is allocated to a component j it will be preferred by taking neighbouring 

regions in the same component j , and the more it is so, the greater the value of c. 

This procedure of allocation not only takes prior beliefs about spatial resemblance of threats in 

nearby areas, but it also permits noncontiguous areas to fit into similar element. 

In the Potts model, the last component   ( )( ) log( 1,2,...,
n u z

k z k e    is called the normalizing 

constant, where the totality is the complete probable structures of the allocation for the n areas. 

2.4.1.5    Spatial Partition Models 

These authors, Knorr-Held and Raßer (2000) and Denison and Holmes (2001) introduced a set of 

closely linked semi-parametric models and they called them spatial partition models. For any of 

these partition models, it is anticipated that there would be a group of k non-overlapping clusters 

of areas, and each of them with uniform relative risk, and the k term is given as unknown. These 

models are different technically in the manner the clusters are defined and in their hyperprior 

condition. 
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For Knorr-Held and Raßer (2000) model mentioned above, the term k  of the regions are chosen 

at random as the supposed cluster “hot spot” centres ,1jg j k  . With these restrictions, the left 

over areas are assigned to cluster j  if its center is closer than any other in terms of the 

insignificant number of region boundaries that have to be cut across to get to it. Also restricted 

on the term k  is each structure of centres assumed to be equally likely a priori.  

The following model is then given: 

 

,i ziC   i 1,...,n  

iz  1,...,k (ideal according to allocation procedure defined earlier) 

log 𝜂𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2)  1,...,j k  

k (amount of clusters) ∼ 𝑈𝑛𝑖𝑓(1, 𝑒𝑚𝑎𝑥)or geometric. 

 

Therefore, knowing that all the regions in a cluster are joined, while in the spatial mixture model 

earlier defined, the regions in the same part are not essentially connecting. Therefore, the amount 

of k clusters, in the KHR’s model will be likely to be much greater than the number of elements 

in the mixture model. In assigning areas to a cluster group, the duo Denison and Holmes adopted 

the hint given by Voronoi tessellations as a clustering tool.  

Every single region is considered as a point location and characterized \by means of the co-

ordinates of its centroid. The tessellation of Voronoi points of generations are presumed to be 

situated at any point in the area of concern. Restrictive on a set of k  creating points (similar to 

the jg  in KHR’s model), partition of the jth  component is then comprised of regions with 

centroids nearer (in Euclidean distance) to the jth  generating point than to any other point. 
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Another spatial partition model that is associated is that established by Gangnon and Clayton 

(2000). This model particularly, also assemble regions into clusters, but the principal emphasis is 

not on the flexible and supple modelling of the hazard or risk surface, but instead, the making of 

extrapolation about the number, location and configuration of clusters.  

These are being modeled as placed over, on a varied related risk surface by making use of an 

exact group of priors for their structure. 

2.4.1.6    Spatial Moving Average models 

There exist classes of flexible models called spatial moving average models that have been 

applied and used to define a continuous spatial process, generally in presentations of 

geostatistics. Models of such are developed by incorporating a simple two dimensional random 

noise procedure (e.g., a grid of iid normal random variables) with a particular leveling kernel 

which is a function of distance and probably, location. This kernel can be supposed to be a 

method to depict the random noise process in the two dimensional space in order to give a 

smooth surface. 

The benefit of this spatial moving average technique over straight modelling of the covariance 

function lies in the fact that rich groups of kernel functions can be taken into account for 

modelling exact descriptions (e.g., nonstationarity, edge effects) of the spatial dependence 

structure (Higdon 2002) although still conserving the features of the fundamental covariance 

function. These models were principally developed for continuous procedures, and so they have 

just little application to a disease mapping setting. 

Best et al., (2000; 2002) however, suggested a discrete form of a gamma moving average 

procedure in modelling geographical differences in childhood respirational diseases. Their model 

was founded on the additive risk models of (2.15) and (2.16): 
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𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ((𝑟𝑜 + 𝑅𝑖) × 𝑀𝑖), 1,...,i n    (2.14) 

𝑅𝑖~ 𝑃(. |𝜃), 0iR       (2.15)       

                        

where i j ij
j

M N  and can be assumed to be the ‘standardized’ population in area and the 

region specific random effects iR  denote unmeasured spatially fluctuating extra risks. 

For each iR  the next stage of the model is built by indicating a random grid of latent iid gamma 

random variables j ( ( 1,..., )j m  where m  is denoted the total number of grid cells describing 

the latent process) hiding the study area. 

An isotropic, stationary Gaussian kernel function was assumed by Best and partners, though 

other kernel methods are basically adapted. Formally, the second stage model is given as 

follows: 

 

i

1

R ,
m

ij j

i

k 


   1,...,i n    (2.16) 

𝜆𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗 , 𝜏), 1,...,j m    (2.17) 

2 2/2

2

1

2

ijd
ijk e






  

 

where   can be defined as a scale factor for the spatial random effects, the distance between the 

centroid of area i  is given as ijd ,while the latent grid cell centroid given j  and   is defined as 

the spatial range parameter overseeing how speedily the effect of the latent gamma random 

variables with distance on the area specific extra risk decreases. 
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An attractive explanation of this model is to picture the gamma random variables as 

representative of the location and size of unmeasured risk influences, and the region exact 

random effects as demonstrating the cumulative outcome of these risk factors in each region,  

weighted by their distance from the region fitting to the kernel ‘weights’ ijk . Nevertheless, this 

model ensures more fine tuning other than the semi-parametric or that of the BYM models, since 

the number and extent of the latent grid cells must be quantified ahead by the user, and it is not at 

all times clear on how best to select these. 

Best et al., (2000) deliberated in full the hyperprior description. However, note that the prior 

shape ( )ij and the precision ( )  parameters of the latent gamma variables ought to be selected 

in such a way that the term jg  has prior mean relative to the part of the jth  latent grid cell (thus 

the subscript for j  to get used to nonregular grids). This enables the model to be spatially 

extensible with the knowledge that any division of the latent gamma random variables will give 

rise to same probability distributions for the kernel weighted sums in Equation (2.17). Since the 

undetected risk factors are characteristically defined on a reduced geographic partition other than 

the disease outcome data, maps of the posterior risk surface can be created for other geographical 

partition, just by estimating the kernel sum (2.17) at these needed places. However, a possible 

restraint is that the model depend on the theory of additive risks which may not continually hold 

in reality, and it does not assure that the Poisson degree in each area, 0( )ir R , will be assessed to 

be fewer than 1 (though this is not likely to be a problem as long as the disease is uncommon). 
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2.5 Posterior Distributions 

The distribution of the parameters after detecting the data is defined as the posterior distribution. 

This distribution (posterior) is attained when the prior distribution with the observed data is 

updated. A full Bayesian inference attains its estimations by sampling from this posterior 

distribution. The posterior distribution in certainty is generally of high measurement and 

dimension, and it is also systematically intractable. This is worsened by the weighty and tedious 

integration essential when presenting analytical approaches.  

The Markov chain Monte Carlo (MCMC) approaches is a class of methods that have been used 

to surmount this problem. The MCMC permits for a straight sampling from this posterior 

distribution repetitively and approximations are calculated from these samples by means of 

simple data extractions such as the mean and median (Ngesa, 2014). 

2.6 Multilevel/Hierarchical Models 

Multilevel models are also known as hierarchical models for two different reasons: firstly, from 

the way the data are structured and secondly, the model itself, which possesses its own exact 

hierarchical structure. These multilevel/hierarchical models are regularly known as random-

effects or mixed-effects models. Hierarchical models are used when the data are structured in 

groups for example, demographically, temporally, spatially or when different (but related) 

parameters are used for each group. These multilevel Bayes models are actually the mixture of 

two things: (i) when a model is written in a hierarchical procedure that is (ii) when such a model 

can be estimated using Bayesian techniques.  
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Multilevel regressions usually have different intercepts or slopes (or both) for each group and are 

constrained by a distribution – often a normal with a variance that we model (Gelfand et al., 

1990).  

The one that is written modularly is a hierarchical model, or when it is in terms of sub-models. 

It is beneficial to consider the analysis of epidemiologic data using a particular model for the 

within-unit analysis, and use a different model for across-unit analysis. When describing the 

behavior of individual/aggregate respondents over time, the within-unit model could be used, 

while when describing the diversity, or heterogeneity, of the units, the across-unit would be 

appropriate. The combination of the sub-models form the hierarchical model and the pieces are 

integrated by the Bayes theorem and which also account for all the uncertainty that is present 

(Greg et al., 2005). 

Hierarchical models are fundamental and central to contemporary Bayesian statistics both for the 

reasons of conceptuality and practicality. On the hypothetical basis, hierarchical or multilevel 

models permit a more objective and unbiased methodology to inference, by estimating the prior 

distribution parameters from the data instead of requiring that they be indicated by means of 

subjective evidence and information (James and Stein, 1960; Efron and Morris, 1975; and 

Morris, 1983). At the real-world level, multilevel models are flexible and robust tools for joining 

information and fractional inferential pooling (Kreft and De Leeuw, 1998; Snijders and Bosker, 

1999; Carlin and Louis, 2001; Raudenbush and Bryk, 2002; Gelman et al., 2003). 

In the (generalized) linear models, the observations are independent of each by assumptions 

given the predictor variables. Although, there are some circumstances in which independence of 

that type does not stand. A main type of condition that infringes these assumptions of 

independence is the cluster-level characteristics. 
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This happens when observations belong to dissimilar clusters and when each of the clusters has 

its own features (Roger et al., 2012).MCMC methods have been known to function mostly well 

with multilevel models, and this has powered the development and application of Bayes' 

theorem.  

Hierarchical or multilevel models is when a tasking difficulty is broken into a sequence of levels 

connected by non-complex rules of probability, when it assumes a very elastic and easy structure 

proficient of accepting ambiguity and possible a priori scientific information while it still retains 

many benefits of a stringent likelihood method for example, many sources of data and 

information with scientifically significant structure (Ali et al., 2006). 

When complicated procedures are modeled in the presence of data, let 1 2,     and 3 be data, 

process and parameter models respectively, it is useful to present the multilevel or hierarchical 

model in three phases basically: 

 | 1.  :  ;   Stage Data Model data process data parameters  

  2.  :   |Stage Process Model process process parameters  

  3.  :     ,Stage Parameter Model data and process parameters  

So that, when making use of the Bayesian method, the joint or posterior distribution of the 

process and parameters when the data is given, is hereby acquired through the Bayes' Theorem: 

 

      | | |;    ;    process parameters data data process parameters x process parameters parameters  
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The first phase is connected to the observational procedure or the model of the data, which states 

the distribution of the data, when given the central process of concern and parameters that define 

the data model. The second stage goes ahead to describe the process, which is conditional on 

other process parameters. Lastly, the uncertainty in the parameters is modeled by the last stage, 

from the combination of the data and process phases. Also know that each of these steps can 

have several sub-stages (Wikle et al., 1998, 2001). The overall objective is to quantify by 

estimating the distribution of the process and parameters by the given data. 

The methods of Bayesian are logically suitable for approximation in such hierarchical situations. 

A multilevel model needs hyperparameters, and these must be assigned their specific prior 

distribution (Gelman, 2006). The priors considered above for the underlying population mixing 

density have an exact parametric form. Various non-informative prior distributions for 
  have 

been proposed in some Bayesian documents and software, together with an improper uniform 

density on 
  (Gelman et al., 2003), proper distributions such as  2p   inverse-

gamma(0.001, 0.001) (Spiegelhalter et al., 1994, 2003), and the distributions that rely on the 

data-level variance (Box and Tiao, 1973) as indicated before. 

2.7 Generalized Linear Models 

Generalized linear modelling is the background for most analysis in statistics that contains linear 

and logistic regression as distinct cases. A generalized linear model usually contains: 

1. A data of vector 𝑦𝑖 = (𝑦1, … , 𝑦𝑛) 

2. Predictor variables X and coefficients  , creating a linear predictor X  

3. A specified link function g, that yields a vector of transformed data 1ˆ ( )y g X that are 

utilised to model the data 
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4. A type of data distribution , ˆ( | )p y y  

5. Probably other parameters like variances, over-dispersions, and cutpoints contained in the 

predictors, link function and data distribution. 

The choices made for a generalized linear model are the link function g, and the specified data 

distribution, p. 

Considering the statistical modelling employed for this research, the data usually consists of an 

outcome variable𝑌𝑖 = (𝑦1, … , 𝑦𝑛)and a given set of covariate data  1  ,  . . . ,  ,T T

nX x X  

where  1 ,  . . . , T

i i ipx x x , the set of p-covariate values linking to observation I and 
ix  is a 

vector of ones for the intercept term. The objective of the modelling methodology is to estimate a 

set of regression parameters 1 ,  . . . ( ), p   , which best define the relationship between the 

responses and these covariates.  

The well-known and simplest modelling approach is the linear model, which represents a direct 

association between the covariate data and the response variable, and takes the form: 

 

2 ~ , ,  i  1,  .(  . . ,  )  i iY N n  
    (2.18) 

 

 T

i ix 
       (2.19) 

 

where each response iY is presumed as an independent Gaussian random variable with mean and 

variance i  and 2 respectively. 
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For the Bayesian framework, we can assign a prior 
2~ 0,( )bN  , to indicate a lack of any strong 

prior certainty about the intercept, and a conjugate prior 2
1(~ ,),InvGamma   and then the full 

conditionals are given as: 

     
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A generalized linear model (GLM), Nelder and Wedderburn (1972) is an extension of this linear 

model form, which allows for more flexibility and robustness in the modelling approach. 

For this approach, there is no longer a necessity for it to be a direct linear association between 

the outcome variable and the covariates, and this outcome or response variable, Y , can be any 

set of independent random variables from any exponential family distribution, f . For some 

random variable,Y , and some parameters, 𝜂, this exponential family is a set of statistical 

distributions which, accepts that         ( | ) ( (  ) ( ,)  f y exp a y b c y d      where, a, b, c, 

d are a set of recognized functions. Some known members of this exponential family are the 

Gaussian, Binomial, Exponential, probit, multinomial logit and Poisson distributions. 

A generalized linear model therefore takes the form: 

 ~                 1,  . . . ,  i iY f i n   

 h  T

i i ix   
      (2.21) 

 

From (2.21), 𝜂𝑖 = 𝑥𝑖
𝑇𝛽, is identified as the linear predictor, and h() is a recognized monotonic 

invertible function called a link function. Common examples of the link function h()  include log, 

square root and logit transformations. Note that the linear model defined above is known as a 

distinct case of the GLM that is obtained where the link utility or function is simply the identity 

function 

 

 h   i i   and   2  | ( , )i i if Y N  
 (2.22) 
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2.8 Poisson Generalized Linear Model (GLM) For Count Data 

Poisson regressions have been extensively used to model count data. It is also used for modelling 

the dissimilarity or variation in count data (that is, data that can be equal to 0,  1,  2,  . . . , ). 

Nevertheless, it is evaluated regularly for its constricting assumption of equal dispersion between 

the variance and the mean. But in real life and practical applications, count data always show 

over-dispersion (Osei, 2010). 

We can calculate probabilities for counts through the theoretical formula that follow a Poisson 

probability function which is characterised by a single parameter, . Suitably,  is the 

theoretical mean and estimated by the sample mean under both likelihood and moments. 

Consequently, if we have an estimated value for , we can immediately calculate the 

corresponding probability that a count equal to iY is observed in a Poisson distribution with 

mean, . Considering modelling the count of people with a particular disease within a set of 

areas 𝑖 =  1, 2, . . . , 𝑛. 

The problem can be measured from a hierarchical viewpoint, where the disease count data is 

modeled as Poisson. We introduce random effects to account for spatial dependence unexplained 

by the observed data. For spatially indexed data, the random effects linked to each area or 

location may be explored, giving way for the modelling of a fundamental spatial dependence 

structure. It is preferred considering the modelling in the frame work of the Bayesian approach. 

This permits adjustment of the uncertainty parameters by allocating parameters with prior 

distributions. Structures for spatial correlation are then integrated in a Bayesian background by 

assuming appropriate spatial random effects prior distribution.  
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Models for Bayesian approximation of the Normal straight line regression model, whether with 

univariate or multivariate result are well recognized. If we assume that the predictors are 

exogenous and measured without error, that is, not random, they may be conditioned on a fixed 

constants. For a parameter with univariate outcome, the regression coefficients link the mean 

outcome for case I to predictors , for that case and the conditional or residual variance. 

General Linear models (GLMs) have been proposed as an integrated structure for both types of 

outcomes. McCullough and Nelder (1989) elaborated that several discrete densities can be 

included within the exponential family. The exponential family density (Gelfand and Ghosh, 

2000) has the form: 

 

      1   –    ,  |i i i i i i i if y exp y b c y           (2.23) 

 

where 𝜙𝑖,scale parameters, and the means are obtained as: 

 

      i i iE y b  
    (2.24) 

 

and variances as 

         i i i i iV y b V    
   (2.25) 

 

 

 

 

2
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Poisson and binomial densities have a fixed scale factors ϕi = ϕ = 1. So for the Poisson with 

 

     ,i ib exp 
     (2.26) 

 

the mean and variance are both i . Thus for a Poisson outcome,  iY ~  iPoi  a model is  

stipulated for the mean i  containing both fixed and random effects: 

 

log(𝜇𝑖) =  𝛽𝑋𝑖 + 𝜀𝑖      (2.27) 

 

where 𝜀𝑖 are parametric (Normal) or possibly non-parametric. This well means that adding a set 

of parameters, which increase in number with the sample size, theoretically making the 

likelihood nonregular and raising the question about how many parameters are actually in the 

model (Congdon, 2003). 

The Poisson distribution belongs to a known exponential family of distributions, and so it is a 

generalized linear model that can be used with these types of data. Therefore, the response data 

from the Poisson distribution can only take non-negative values, so the log is an appropriate and 

commonly used link function which allows that the model always fits non-negative values.  

The basic Poisson GLM can take the form as follows: 

 

( )~  i iY Poisson 
     (2.28) 

 

      T

iLog i x 
     

(2.29) 
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In the Bayesian framework, if we assign the prior 
2~  0( ), bN  then the full conditional is 

given as: 

 2f  | , Y  
1

n

i

  ( )T

iPoisson x  
1

p

j

  2 | 0,N    
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i iexp x x  
1

p

j



2

22

j
exp





 
  
   (2.30) 

 

2.9 The Besag, York and Mollie (BYM) Model 

The most commonly used model in single disease spatial analysis was proposed by Besag et al., 

(1991). The model was used for disease incidence and prevalence in areas by means of the 

Poisson model. Areal count data are usually modeled by extending the Poisson log-linear model 

to explain for the spatial form of the disease data.  

The data is possible to contain spatial autocorrelation, where correlation exists between pairs of 

areal units which are close to each other geographically. The spatial pattern of the data is 

modeled by a combination of covariate data,  1  ,  . . . ,  T T

nX x x  and a set of random effect 

terms, 1 ,  . . . ,( ).n   These random effect terms usually represent the unexplained spatial 

autocorrelation and some unmeasured confounding and/or latent variables brought into the 

disease data. 

 

 

The spatial models commonly used with count data Y are typically Poisson GLMs of the form 
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𝑌𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖) 1,..., ,i n    (2.31) 

 

log( ) T
i iix     

 

These random effects 1 ,  . . . ( ), n  are usually modeled using the widely known conditional 

autoregressive (CAR) prior. These types of models can be indicated by a group of univariate full 

conditionally restrictive distributions of the form ( | )i if   , where 1 1 1( ,..., , ,..., )ni i i       . 

Besag et al., (1991) in addition, modified this model further by the addition of a spatially 

unstructured random effect and a spatially structured random effect, through what is called the 

convolution model. This is to permit the model to use information both at the local and global 

level. Also the need arises to allocate prior weights equally to these two model components in 

order to evade either the global over smoothing or the local over smoothing. The BYM model 

was used for disease dominance and incidence in areas using the Poisson model. 

For the model, let the relative risk unknown for area i with regard to a regular population be 

defined as i . Let iY  also indicate the counts of disease observed in region i and let ie indicate 

the count expected in the same location. The log of the relative risk by assumption has it, that the 

disease can be split into two components namely: spatially structured component iu  and a 

spatially unstructured iv . 

 

This can then be mathematically given as 
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, )~ ( i i iY Poisson e 
    (2.32) 

with 

    ( )i i ilog u v  
    (2.33) 

 

where i  and iv denote the random effects signifying the unobserved covariates, with i

signifying variables that if they were detected would impact on the spatial structure, while iv

characterizes the unobserved heterogeneity in region i. Besag et al., (1991) also observed in most 

cases, that one of the random effects commonly overshadows the other. If the strength of i  

exceeds that of iv , then the risk estimated will display a spatial structure and if the strength of 

iv supersedes that of i  conversely, it means the implication will be to compress the estimated 

means towards the total mean.  

Also, Besag et al., (1991) assumed that the terms u  and v  were independent with the following 

priors: 

 

/2( | ) np v exp   2
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and 
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            (2.35) 
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Fundamentally, equation (2.34) means that v , the spatially unstructured component consist a 

Gaussian process white noise with a variance τ that is unknown, and equation (2.35) denotes that 

the spatially structured component termu , also has a known Gaussian Markov random field 

(GMRF) process with variance k, with n given as the number of areas under study and ( )iN

denotes the set of neighbours of area i. This neighbourhood can then be defined in terms of 

Euclidean distance of the centroids of the areas, if the two regions share a boundary or a 

combination of these two. Besag et al., (1991) defined their neighbourhood based on shared 

border. 

This study was concentrated upon by Bernardinelli et al., (1995) and reached a decision that the 

standard deviation of the conditional distribution of the spatially correlated random effects would 

be 0.7 times the standard deviation of the spatially uncorrelated random effects. Though, this 

assumption is still made open for in-depth study and discussion. If given that the prior 

distributions of the precision parameters for the two random effects expressed in the convolution 

model are assumed to be non-informative, it then means only the summation of these two 

random effects will be classifiable and not as separate components. 

This suggests that when the rest of the conditional distributions of each iu are given, then we 

have 

 

  ~|i iu u N (
∑ 𝑢𝑗𝑗𝜖𝑁𝑖

𝑑𝑖
,

𝑘

𝑑𝑖
)  

    (2.36) 
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with 
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            (2.37) 

 

and 

Var ( | )i i

i

k
u u

d
 

     (2.38) 

 

where di denotes the amount of neighbours in region i. This distribution of u, which is 

conditional, is known as the intrinsic conditional autoregressive (ICAR) prior distribution. Besag 

et al., (1991) investigated the posterior distribution by using the Gibbs sampler, a part of an 

MCMC algorithm. 

2.10 Spatial Random Effects 

Modelling the count of people with a particular disease within a set of areas 𝑖 =  1, 2, … , 𝑛 can 

be considered from a hierarchical perspective, where we model the disease count data as Poisson. 

Random effects are then introduced to make up for spatial dependence unexplained by this 

observed data. These random effects also constitute spatial heterogeneity in addition to spatial 

correlation in the count data on the disease. In spatially indexed data set, spatial random effects 

connected to each area or location may be used, letting for the modelling of a fundamental 

spatial dependence structure (Osei, 2010). 
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Considering the modelling framework in the Bayesian approach allows for adjustment of the 

uncertainty parameters by allocating prior distributions to the parameters.  

The spatial link structures are then integrated in a Bayesian situation when appropriate prior 

distributions are assumed for the spatial random effects. There is a need to assume a prior 

distribution for the spatial effects so as to impose a spatial dependency structure which takes into 

account, the neighbourhood arrangement of the study region where the count of people with a 

particular disease is conducted. 

2.10.1 Additive and Multiplicative Random Effects 

These types of random effects terms are presented to account for unnoticed or ignored spatial 

heterogeneity inherent in the count data set. Depending on how we choose to model the spatial 

count data, these random effects can either be additive or multiplicative. It is generally well 

known that count data show over-dispersion when linked to the Poisson distribution. It has been 

established that the unobserved heterogeneity normally seen to be the basis of over-dispersion in 

count data models has some predictable consequences for the probability structures of such 

models (Mullahy, 1997). 

Disease counts data which are generally assumed to follow the Poisson distribution has a mean 

parameter λ which can be modeled in two ways: 

(i) Adding an unobserved random variable 𝜀. 

(ii) Multiplying by an unobserved random variable 𝜀. 

The first case is called the additive random effects, which conditional autoregressive models use 

when accounting for spatial heterogeneity in the count data. On the other hand, the multivariate 

Poisson gamma uses the second case which is the multiplicative random effects. 
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2.11 Spatial Heterogeneity 

Two authors, Fotheringham et al., (2000) and Lesage (1999) also raised an additional subject and 

it centers on spatial heterogeneity. It could either be in terms of regression relationships or in 

terms of heteroscedasticity observed in a spatially unstructured error term as discussed above. 

Reasons could also be problems of identifiability in splitting spatial dependence from spatial 

heterogeneity (de Graaff et al., 2001; Anselin, 2001). In disease mapping applications, the word 

excess heterogeneity is frequently applied to spatially unstructured errors, for Poisson over-

dispersion in the log link for count outcomes.  

In analysing small area disease data in epidemiology, the central purpose repeatedly, is 

estimating the true nature of relative risk in the presence of over-dispersion in the observed event 

counts and spatially correlated errors as a result of lost predictors. The assessment of relative 

risks by some standard methods built on the Poisson distribution gives that a disease risk is often 

the same over areas, and also over the individuals inside that area. Individuals may not be the 

same within the areas, and the disease risks differ between the areas, with the intention that the 

observed counts display a larger unevenness than what Poisson shows. 

This disparity can be modeled by displaying the area relative risks in terms of one or more 

random effects (Congdon, 2003). Effects of such may be spatially unstructured and which tends 

to white noise in time series, and these are sometimes called extra heterogeneity (Best et al., 

1999). While heteroscedasticity can well be relevant, a known alternative viewpoint on spatial 

heterogeneity pays attention to the regression parameters themselves. 

Both linear and general linear models characteristically adopt that the structure of the model 

remains homogenous over the study region without any local variations in the parameter 

estimates. 
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In several applications, the effects of regression are likely not to be constant over the area of 

application (Casetti, 1992). An approach for the enhancement of relative risk estimation is to use 

smoothing tools on Standard Mortality ratio (SMR) to reduce the noise. To overcome this, the 

method of conditional autoregressive model (CAR) is used.  

The models (CAR) are usually used to define the spatial difference or variation of quantities of 

importance in the form of aggregates over subregions. These CAR models have been employed 

to analyse data in various areas like demography, economy, epidemiology and geography. 

Overall accounts of CAR models are given as a class of Gaussian Markov random fields 

(GMRF) in Cressie (1993), Banerjee et al., (2004) and Rue and Held (2005). 

The models have been broadly used in spatial statistics to model observed data (Cressie and 

Chan, 1989; Richardson et al., 1992; Bell and Broemeling, 2000; Militino et al., 2004; Cressie et 

al., 2005), as well as (unobserved) latent variables and spatially varying random effects (Clayton 

and Kaldor, 1987; Sun et al., 1999; Pettitt et al., 2002; Banerjee et al., 2004). 

This model was first introduced by Besag (1974). The hierarchical version of disease-mapping 

models that is based on CAR was studied by Besag et al., (1991). Proper multivariate conditional 

autoregressive models were used by Gelfand and Vounatsou (2003). Venkatesan et al., (2008 

and 2010) studied HIV and tuberculosis patterns for India using CAR. Normally, a CAR model 

offers a facet in defining the spatial autocorrelation structure that exceeds distance based 

functions and combines the idea of spatial neighbours. Besag et al., (1991) allocated weights 

based on whether a pair of regions shared a borderline or not; if the regions share a boundary, the 

weight is allocated 1, otherwise it is allocated 0. Other weighting possibilities were discussed in 

Best et al. (1999). 
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The overall objective of these spatial models is to reveal and measure spatial relations present 

between the data, particularly to measure how quantities of interest differ with independent 

variables and to identify bands of ‘hot spots’ (Oliveira, 2012). It is also common to assume that 

observations we make at locations close to each other have a tendency to have interrelated 

values. This conditional autoregressive (CAR) model is therefore a standard choice for analysing 

these lattice data. Another alternative is to use CAR to directly model the covariance structure of 

disturbance terms in a linear regression model (Anselin, 1988). 

A model like the CAR have been broadly used in spatial statistics in modelling observed data 

(Cressie and Chan 1989; Richardson et al., 1992; Bell and Broemeling 2000; Militino et al., 

2004; Cressie et al., 2005), also to model (unobserved) latent variables and spatially changing 

random effects (Clayton and Kaldor, 1987; Sun et al., 1999; Pettitt et al., 2002; see Banerjee et 

al., 2004). The CAR model is also used extensively in Bayesian models as prior distribution for 

random spatial effects (Renato et al., 2009). Spatial data in Bayesian analyses frequently use the 

conditionally autoregressive (CAR) prior promoted for mapping disease by Besag et al., (1991). 

The central idea for a conditional autoregressive model is that the probabilities estimated at any 

given location, say i, are conditional on the level of neighbouring values.  

Several writers have also suggested other designs for the convolution (CAR) model. Particularly, 

Leroux et al., (1999) as different from Besag et al., (1991) design of a random intercept divided 

into two parts, only one random intercept was used by the authors and its variance covariance 

matrix was divided into spatial and non-spatial components, with a parameter directing the 

spatial dependency. For some authors with different proposals, check MacNab and Dean (2000) 

for a parametric bootstrap method, and also see Green and Richardson (2002) for method on 

their hidden Markov field.  
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Despite all these substitute models, the model suggested by Besag et al., (1991) still continue to 

enjoy greater application as a result of its close fit with the usual MCMC operations and also 

because of a broad assortment of freely accessible software, e.g WinBUGS (Spiegelhalter et al., 

2007) with R statistical software (R Development, 2008) effecting it. 

In the case of CAR, the random effect conditional distribution in an area when all others are 

given is simply given as the weighted average of all the other random effects. The popular Besag 

et al., (1991) allocated the weights centered on whether an area shared a boundary or not as 

earlier stated in this review proceedings; if the locations share a boundary, the weight is allocated 

1, otherwise it is allotted the value 0. Best et al., (1999) also discussed extra weighting 

potentials.  

The weighting alternatives debated thus far are expected to be stable and fixed during modelling. 

Another approach was taken by Lu et al., (2007). This weighting is done by giving the estimates 

from the data itself. The CAR is known to have a computational benefit against the multivariate 

Gaussian for the reason that the variance component in multivariate Gaussian needs matrix 

inversion in its estimation, for every update when performing an algorithm giving rise to more 

computational problem and which in CAR is not essential. Below are some of the models used 

for spatial dependency in disease mapping. 

2.11.1    Intrinsic CAR (Besag) Model 

The simplest of the CAR prior is the intrinsic model suggested by Besag et al., (1991), which is 

given as 

𝜙𝑖|𝜙−𝑖 ∼ 𝑁 (
𝜌 ∑ 𝜔𝑖𝜙𝑗

𝑛
𝑗=1

∑ 𝜔𝑖𝑗
𝑛
𝑗=1

,
1

𝜏(∑ 𝜔𝑖𝑗
𝑛
𝑗=1 )

), 1,...,i n                (2.39) 
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where the parameter,  , is the conditional precision.  The precision is comparative to the number 

of neighbouring units, while the conditional expectation of 𝜙𝑖, is the mean of the random effects 

in the neighbouring areal units. The precision formulation here is functional, because you would 

expect the precision to be higher when you have more neighbouring areas and therefore more 

information to estimate the value of i . These groups of conditional distributions agree to the 

multivariate normal distribution, with a zero vector mean. The improper precision matrix is 

given by   1Q diag W W  , with 1W as a vector comprising the number of neighbors for 

each of the areal unit. 

One limitation of this model is the lack of a parameter to regulate the strength of the spatial 

autocorrelation; if you multiplied   by 10, then the precision, would decrease, but the spatial 

structure does not change. This implies that the intrinsic model is only practical in cases where 

the spatial autocorrelation in the data is strong; it is not practical for cases where there is weak or 

moderate spatial autocorrelation across the study region because the model would tend to 

produce an overly smooth estimated risk surface in these cases. 

This formulation of the precision will make sense if strong spatial autocorrelation is present, 

because an increased number of neighbours mean that more information is available to estimate 

the random effect value.  However, in cases where weaker spatial autocorrelation is present, this 

formulation is less practical, because by increasing the number of neighbours would not certainly 

lead to a huge increase in the amount of information available to estimate the random effect 

value.  
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2.11.2 The BYM Model  

The assumption of the Besag model adopts that a spatially structured component cannot take the 

limiting form that allows for no spatially structured variability. Hence, unstructured random error 

or pure over-dispersion within area i, will be modelled as spatial correlation, giving confusing 

parameter estimates (Breslow et al., 1998). To address this issue, the Besag-York-Mollie (BYM) 

model (Besag et al., 1999) splits the regional spatial effect b into a sum of an unstructured and a 

structured spatial component, so that b = v + u. 

Here, 𝑣 ∼ ℵ(0, 𝜏𝑣
−1𝐈) accounts for pure over-dispersion, while 𝑢 ∼ ℵ(0, 𝜏𝑢

−1𝑸−) is the Besag 

model whereby 𝑸−represents the generalized inverse of𝑸. The subsequent covariance matrix of 

b is  

 

𝑉𝑎𝑟(𝑏|𝜏𝑢, 𝜏𝑣) = 𝜏𝑣
−1𝐈 + τ𝒖

−𝟏𝑸−. 

 

2.11.3    Leroux CAR Model 

In the BYM model, the unstructured and structured components cannot be seen independently 

from each other, and are thus not identifiable (MacNab, 2011). Leroux et al., (2000) proposed an 

alternative model formulation to make the compromise between unstructured and structured 

variation more explicit. The concern of accounting for the chance of weaker spatial 

autocorrelation was addressed by Leroux et al., (1999), who proposed the following CAR model:

 

𝜙𝑖|𝜙−𝑖 ∼ 𝑁 (
𝜌 ∑ 𝜔𝑖𝑖𝜙𝑗

𝑛
𝑗=1

∑ 𝜔𝑖𝑗𝜌+1−𝜌𝑛
𝑗=1

,
1

𝜏(∑ 𝜔𝑖𝑗𝜌+1−𝜌𝑛
𝑗=1 )

), 1,...,i n                   (2.40) 
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Here,  controls for the degree of spatial autocorrelation currently in the data. For a value of   

= 1 corresponds to the intrinsic model (2.39), while  = 0 corresponds to a completely spatially 

smooth model with a constant mean, 0, and precision, .  This increased flexibility can therefore 

enable the random effects to model a wider range of spatial autocorrelation than the intrinsic 

approach. 

2.11.4    Lee CAR Model 

The intrinsic and Leroux models are both globally smooth; that is they assume a constant level of 

spatial smoothness across the whole study region with the partial correlation between ( i , j ) 

conditional on the remaining random effects ij  given by 

 

 
  

,

1 1
1 1

ij
i j

n n
ik jl

k l

Corr


 

     
 



    
   (2.41) 

 

For the Leroux CAR, a parameter   close to 1 will give a strong spatial autocorrelation between 

all pairs of adjacent areas for which 1ij  ,while if   is close to 0 then there will be lower 

spatial autocorrelation across the study region. Thus  moderates the level of spatial smoothness 

across the region globally. This may not be true in practice, because you may expect different 

levels of spatial autocorrelation in different areas of the study region.  This was being addressed 

by Lee et al., (2014), where he suggested a localized conditional autoregressive model which 

offers more flexibility in the way the random effects are modeled by permitting for 

discontinuities in the spatial autocorrelation surface. 
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Here, elements of the neighbourhood matrix relating to adjacent areas, {𝑤𝑖𝑗|𝑖 ∼ 𝑗}, are treated as 

binary random quantities which are no longer fixed at 1; if ij  is estimated as 0 for neighbouring 

areal units i and j, then that corresponds to a boundary between the areal units as ( i , j ) are 

conditionally independent given the random effects. The matrix W  is defined as a set of edges, 

and under this terminology 𝑤𝑖𝑗 = 0|𝑖 ≠ 𝑗; means that an edge has been removed. 

2.11.5 The Dean Model 

Dean et al.(2001) proposed a reparameterisation of the BYM model where 

 

𝑏 =
1

√𝜏𝑏
(√1 − ∅𝑣 +  √∅𝑢),     (2.42) 

 

having covariance structure 

 

Var (𝑏|𝜏𝑏,∅) = 𝜏𝑏
−1((1 − ∅)𝐈 + 𝜙𝑄−1)  (2.43) 

 

Equation (2.42) is a reparameterisation of the original BYM model, where 𝜏𝑢
−1 = 𝜏𝑏

−1𝜙 and 

𝜏𝑣
−1 = 𝜏𝑏

−1(1 − 𝜙) (MacNab. 2011). 

The additive decomposition of the variance is then on the log relative risk scale. This is in 

contrast to the Leroux model (2.40), where the precision matrix of b resulted as a weighted 

average of the precision matrices of the unstructured and structured spatial components. As a 

consequence, the additive decomposition of variance in the Leroux model happens on the log 

relative risk scale, conditional on 𝑏𝑗,𝑗 ∈ 𝛿𝑖 (Leroux et al., 2000). 
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2.12 Bayesian Ranking Methods in Disease Mapping. 

In disease mapping, early attention to emerging hotspots, that is, areas with high risks which are 

surrounded by areas with much lower risks, before they become extreme, is vital in decision-

making related to health surveillance. Such decision making processes may refer to optimal 

allocation of resources for health prevention, or to decisions reflecting mobility of a society or 

other environmental controls. 

A typical approach for detection of disease hotspots through a hypothesis testing framework uses 

the scan statistic (Kulldorff and Nagarwalla, 1995; Kulldorff et al., 1998), which aims at 

detecting the location and size of hotspots without any defined assumptions about these values. It 

is very necessary to estimate and rank various local elevations in risk across a map. For rare 

diseases like tuberculosis, the observed disease count may exhibit extra Poisson variation. 

Hence, the standardized mortality ratios (SMRs), a basic investigative tool for epidemiologists, 

may be highly variable. Consequently, in maps of SMRs, the most variable values, arising 

normally from low population areas, tend to be highlighted, hiding the true underlying pattern of 

disease risk. 

To address the issue of such over-dispersion, the field of disease mapping has increased in the 

last decade with a range of valuation approaches and spatial models for latent levels of the 

hierarchy of the model. In particular, there have been many developments related to Bayesian 

hierarchical models, which permit an area risk to borrow strength and information from the 

neighboring areas where the disease risks are similar. These models have certainly become 

standard tools for mapping disease rates (see Besag et al., 1991; Clayton and Bernardinelli, 

1992; Clayton et al., 1993; Lawson et al., 2000; MacNab et al., 2004; Best et al., 2005, for 

example) in order to recognize global hotspots and trends in the risk surface across the map. 
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Identification of local or developing hotspots has received less attention. It is uncertain whether 

and what sorts of smoothing techniques offer advantages for identifying isolated hotspots, over 

basic estimates such as raw rates.  

Here, we still maintain the emphasis on Bayesian hierarchical conditional autoregressive (CAR) 

models, developed by Besag et al., (1991); Clayton and Bernardinelli (1992); Clayton et al., 

(1993). The CAR model and its extensions have become commonplace in epidemiological 

studies and have been shown to be flexible and robust (Lawson et al., 2000). Best et al., (2005) 

demonstrated the merits of the CAR model when compared to other modern models together 

with a multivariate normal geostatistical model with an exponential covariance, a spatial mixture 

model type, a partition type model and a gamma type moving average model. 

While CAR models were not intended to identify isolated hotspots of isolated hotspots, but have 

been used broadly for identifying extreme risks. The most natural measure of isolation is the 

difference between the risk or rank of a potential hotspot and the corresponding quantity for its 

neighbors. Ranking methods play a valuable role in drawing attention to elevated regions.  

Laird and Louis (1989) showed that ranking of empirical Bayes estimators can be more accurate 

than that of conventional maximum likelihood estimators. Shen and Louis (1998) investigated 

ranking procedures using loss functions of squared error operating on the difference existing in 

the estimated and exact ranks. Though we focus on disease mapping, we note that methods for 

ranking isolation measures may be broadly useful in many other contexts, particularly 

sociological, for ranking political or racial isolation, or ecological, for diversity studies. 
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2.13 Some Empirical Reviews of Bayesian Spatial Modelling Techniques with Application 

to Tuberculosis Data. 

Research to appraise the spatial distribution of TB and to identify high-risk areas is limited 

especially in developing countries (Bishai et al., 1998; Verver et al., 2004; Vieira et al., 2008). 

Since it is known that control efforts are best intended when areas of high prevalence are known, 

it is also important to know areas where rates are unusually high given the underlying risk 

factors.  

Spatial analysis techniques have in recent times been added as an influential tool in public health, 

because of its ability of envisaging the distribution of disease, even with scarce data (Best et al., 

2005), and disease mapping risk factors observed at population level (Bailey, 2001; Bailey et al., 

2005). Some current write-ups have highlighted the usefulness of Geographical Information 

Systems technology in Public Health research, but its use being inadequate arising from the 

worth of the address information obtained, mainly those obtainable in monotonous information 

systems. 

Some researchers have been able to identify socioeconomic status (SES) as an essential cause of 

the observed social inequalities in health outcomes (House et al., (1990); Williams (1990); Link 

et al., (1995)) and in particular of racial differences in health (William 1997).  

A vast review of accessible literature shows that not much research have been done in building 

Bayesian spatial models for TB as a single outcome health case in South Africa. However, some 

authors and articles have established some spatial (Bayesian) models which have been applied to 

many countries and which depend on the nature of the epidemic. 
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Tiwari et al., (2010) investigated tuberculosis cluster in Dehradun city of India using 

Geographical Information System (GIS) and spatial scan statistics. Their objective was to 

examine the occurrence of statistically significant geographical assembles of tuberculosis in that 

city so as to detect their nearest locations.The spatial scan statistic saTScan v6.1 used is centered 

on the likelihood ratio test (LRT) and detecting of high/low clusters was carried out under 

Poisson probability model assumption. All the geographical and cartographic outputs were 

presented by the ArcGIS 9 application software. Significant enormous clusters were recognized 

in seven wards of the Dehradun Municipal area. 

Bastida et al., (2012) also identified the spatial and temporal distribution of TB for a four year 

period in a Mexico state, by the use of GIS and SCAN statistics program. 

They identified nine major clusters (P< 0.05) by spatial-time analysis. Their decision was that, 

TB prevalence in the state of Mexico is not randomly distributed but systematic and is concerted 

in areas close to Mexico City. A strong relationship between the strains of TB clusters and the 

distance to the center of urban zones was also found. 

Maciel et al., (2010) investigated spatial arrays of the occurrence of pulmonary TB and its 

association with socio-economic status in Vitoria, Brazil. Spatial Poisson models were fit to 

examine the association between socio-economic rank and TB incidence alongside with Anselins 

local indicators of spatial clustering statistics (LISA), smoothed Bayesian estimates and model-

predicted incidence rates to show the spatial patterns of disease incidence. 

The index of quality of urban municipality (IQU) was calculated for each neighborhood to 

measure for socio-economic status. The IQU, developed by the Instituto Pólis (São Paulo, SP, 

Brazil), is a simple arithmetic mean with 11 variables and a range between 0 and 1, with 1 being 

the highest level.  
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They used a supervised backward elimination method to select model variables using both the 

methods of Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) 

statistics as criteria (lesser values considered improved fit) with the full model written: 

 

       
2 3

0 1 2 3 4 5     .  . . .  .ln count ln pop b b IQU b IQU b IQU b Lat b Long         

..(2.44) 

 

Each beta estimate is interpreted as the increase in log-incidence for a one unit increase in its 

respective variable, where b1, b2 and b3 are the beta parameters for the IQU (linear, quadratic, 

cubic), and b4 and b5 are beta parameters for latitude and longitude, respectively. The model was 

fit using PROC GLIMMIX in SAS 9.2 (SAS Institute, Cary, NC, USA). The method of Moran’s 

I showed solid spatial autocorrelation between incidence rates and four groups of high 

occurrence were recognized by LISA. TB incidence alongside socioeconomic status had a 

significant curvilinear relationship. 

Wayner et al., (2007) investigated the consequence of socio-economic deficiency and some 

transmission-related pointers of tuberculosis (TB) cases at small area level, to debate the 

potential of each indicator in aiming locations for developing protective action. The authors 

employed four full hierarchical Bayesian models differently to estimate the relative risk of the 

incidence of TB through Markov chain Monte Carlo. A generalized linear mixed model 

(GLMM) was used to smooth out the unevenness in the observed disease rates and to estimate 

the relationship between TB incidence rate, over an observed period and some chosen covariates. 

Considering the Bayesian context though, the observed number of cases in  1    , , ny y y  the n 

regions is one recognition of Poisson random variables,  1, , ny y , with means,  1    , , n    .  
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This value was stated as the amount of expected cases i multiplied by the relative risk of each 

area:        i i i    , or, in logarithm form,              i i ilog log log    . The relative risk i  is defined as a 

function of the k covariates kx  which explains the differences in disease rate. A non-informative 

Gaussian priors with zero mean and precision equal to 1 × 10
−5

 was assumed for β. 

Still in that framework, i is a non-spatially structured random effect, normally assumed to be 

independent Gaussian, with zero mean and variance,
2

v usually incorporated into the models to 

explain for extra-poisson variation, because of non-measured significant covariates. The spatially 

structured random effects parameter –  1    , , n    – accounts for the spatial dependence, with 

the prior distribution taken as a conditional intrinsic Gaussian autoregressive model, where the 

average value for i is a weighted mean of the neighbouring random effects and the variance,

2 , directs the strength of this local spatial reliance. 

 

𝑃(𝜃𝑖|𝜃𝑗≠𝑖) ∼ 𝑁 [
∑ 𝜔𝑖𝑗𝜃𝑗𝑗≠𝑖

∑ 𝜔𝑖𝑗𝑗≠𝑖
,

𝜎2

∑ 𝜔𝑖𝑗𝑗≠𝑖
]    (2.45) 

 

Guy et al., (2013) examined the spatial distribution, alongside the social and economic correlates 

of tuberculosis in Brazil during the period 2002 and 2009 using municipality-level age/sex-

standardized tuberculosis notification data. The disease rates were strongly spatially 

autocorrelated, being remarkably high in municipal regions on the eastern seaboard and in the 

west of the country. 
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Non-spatial ecological regression analyses showed higher disease rates related with urbanicity, 

population density, poor economic conditions, household crowding, non-white population and 

worse health and healthcare indicators.  

All these relationships remained in spatial conditional autoregressive models, though the 

outcome of poverty seemed to be partially confounded by urbanicity, race and spatial 

autocorrelation, and partially interceded by household gathering. Their study emphasized both 

the multiple associations between socioeconomic factors and tuberculosis in Brazil, and the 

significance of accounting for spatial factors in analysing socioeconomic factors of tuberculosis. 

Roza et al., (2012) studied to investigate the urban spatial and temporal distribution of 

tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, during the years 2006 

to 2009 and to assess its association with causes of social vulnerability such as income and 

education level. Social vulnerability measures were acquired from the SEADE Foundation, and 

information about the number of inhabitants, education and income of the households were 

accessed from Brazilian Institute of Geography and Statistics. The Statistical analyses were 

shown by a Bayesian regression model that assumed a Poisson distribution for the observed new 

cases of TB in each area. For the spatial covariance structure, a conditional autoregressive model 

was used. The Bayesian model established the existence of spatial heterogeneity of TB 

distribution in Ribeirão Preto, identifying higher risk areas and also the effects of social 

vulnerability on the disease. The authors established that the high incidence of TB was related 

with the measures of income, education and social vulnerability. 
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Sampurna et al., (2014) studied the spatial and temporal variations in TB incidence in Nepal. 

They established models for TB incidence by gender, year and location using linear regression of 

log-transformed incidence rates. Aside a comparatively small amount of outliers, a good fit was 

produced by their models as showed by residual plots and estimates from the r-squared statistic. 

They observed that there were trends of increase in TB for current years among sexes. The 

additive log-linear regression model that was used to model TB incidence rates with normally 

distributed errors that differ by location and year was defined as: 

 

  /       bij i ij i jln n P y         (2.46) 

In their model, Pi was the corresponding population at risk in 1000s and the terms i and j  

signifies the super-district and gender-year effects that sum to be zero so that  is a constant 

capturing the total occurrence. The model fit was then evaluated by the linearity in the plot of 

deviance residuals versus the normal quantiles. Also the model gave adjusted prevalence rates 

for each cause of interest, acquired by replacing the parameters consistent to the other factors by 

constants chosen to make sure the total expected number of cases equals the observed number. 

A spatial modelling method is basically concerned with these three main concerns and they are 

estimation and inference of parameters, comparison and specification of the model, and also 

prediction, known as kriging. In the disease spatial epidemiology investigation, there exists a 

concern in discovering the spatial patterns of disease in exact areas and locations and to 

investigate whether these patterns have any spatial dependence. 

 



77 
 

Kriging is one of the interpolation methods which are used to locate the spatial dependence and 

to extrapolate the sites of cases from unmeasured sites. A few reviews in this dimension will also 

be considered in this section. 

Spatial variations of Pulmonary TB occurrence and its association with socio-economic and 

geographical factors in China were studied by Xin-Xu Li et al., (2014). The authors performed 

an evaluation using ArcGIS to choose which kriging and cokriging devices along with diverse 

combinations of types of detrending, semivariogram models, anisotropy and covariables (socio-

economic and geographical factors) could properly construct spatial distribution surface of PTB 

incidence using statistic data. They found that the global cokriging with socio-economic and 

geographical factors as covariables confirmed to be the best statistical approach for precisely 

estimating spatial distribution surface of PTB prevalence.The forecast constant surface then 

exemplified the spatial variations of PTB incidence that were co-impacted by socio-economic 

and geographical factors. 

Srinivasan et al., (2013) used a Bayesian kriging method to investigate the spatial arrangement of 

tuberculosis within a Chennai ward population in India to gain an insight into the disease spread 

and also, to infer the locality from the unmeasured locations. Moran’s I technique was one of the 

approaches used to see the autocorrelation of the disease based on the region which is one of the 

oldest pointers of spatial autocorrelation (Moran, 1950). It is used to measure the strength of 

spatial autocorrelation in a map. It uses the cross-products deviances from the average and it is 

calculated for n observations on a variable x at regions i,j as: Ordinary and Bayesian kriging 

methods were employed in their geo-statistical predictions. The latter method was found to bring 

additional elasticity to the standard prediction framework. 
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More explicitly, prediction in Bayesian develops from the posterior predictive distribution which 

mixes above the posterior distribution of all model parameters, that is: 

Orinary kriging, 

 

𝑌(𝑆) = 𝜇 + 𝜖(𝑆)    (2.47) 

and Bayesian kriging, 

𝑃(𝑍(𝑆𝑜)|𝑍, 𝑋, 𝑥(𝑆𝑜)) =  ∫ 𝑃(𝑍(𝑆𝑜), 𝛽, 𝛼, 𝜂, 𝜃|𝑍, 𝑋, 𝑥(𝑆𝑜)𝑑𝛽𝑑𝑥𝑑𝜂𝑑𝜃    

 

      0 0    , ,  ,  , , ,  , , ,   | ,|p Z S Z X x S p Z X d d d d               (2.48) 

 

Venkatesan et al., (2010) modeled the spatial variogram of tuberculosis for Chennai ward in 

India to describe the spatial dependence of TB in that ward. A variogram is used to evaluate 

whether disease characteristics of the cases are random or clustered. In their studies, they used 

three models namely, the exponential, the spherical and the Gaussian model as theoretical 

models and compared it with their variogram model, to mathematically describe the shape of the 

disease. In their comparisons using AIC, AICC and BIC, the spherical model fit data better. 

Bayesian methods of disease epidemiology also make attempts to present a good posterior 

relative risk of the disease cases as against the raw risk patterns which could be misleading. 

Bayesian Conditional Autoregressive models, (CAR), are suitable for smoothing disease relative 

risk estimates based on neighbourhood structure, which provides some shrinkage of the raw 

relative risk estimate of the pattern of underlying risk factor than that produced by raw estimates.   
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Venkatesan et al., (2012) constructed a Bayesian spatial CAR to study TB patterns in India to 

smoothen the relative risk of the disease. He compared the Bayesian log-normal relative risk 

with the Bayesian CAR, which he proposed. The Deviance Information Criterion (DIC) 

approach was used in comparing the two models and it was found that Bayesian CAR showed 

less deviance and which showed that CAR model is best suitable for mapping of the disease. 

Also, mapping of disease has received many applications in epidemiology and public health. The 

fundamental model normally used in disease charting is the Besag, York and Mollie model 

(BYM), which usually combines two random effects, one which is spatially structured and the 

other random effect which is spatially unstructured. Assumption of normality on the uncorrelated 

random effect in models is common and which is mainly because of its computational simplicity. 

At times this assumption is improper because some random effects can be platykurtic, leptokurtic 

or skewed; deviating from this general normality assumption (Box and Tiao, 1973). It is 

therefore necessary to examine a more symmetric, flexible and robust distribution for the 

spatially unstructured random effect by considering another related type of Gaussian distribution 

in the disease mapping problem.   

Rindra et al., (2010) studied to explore the pattern of tuberculosis for Antananarivo, Madagascar 

and the relationship that exists between the spatial variation of TB risk and national control 

program pointers for all neighbourhoods using a Bayesian method. Mixture of a Bayesian 

methodology and a generalized linear mixed model (GLMM) was used to measure spatial 

heterogeneity in the TB standardized incidence ratio (SIR) and to examine relationships between 

the three year average TB incidence rates and some variables. 
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Contained in the Bayesian context, the observed numbers of new cases  i 1y ,...,  ny y in the n 

neighbourhoods were treated as non-independent Poisson random variables with means

 1 ,...,  i n   , where each i  is given by 

 

 E  ,i i i    

 

or, in the logarithmic form, 

 

         .i i iElog log log     (2.49) 

 

The SIR i  is a known function of the explanatory variables kiX  that account for differences 

and spatial heterogeneity in the disease rate: 

 

 0 1 1 2 2 3 3 4 4 5 5       i i i i i i i iexp X X X X X               
 (2.50) 

 

with  /ki ki kX X SD , where kSD  is the standard deviation (of all neighbourhoods) of each 

variable. There result discovered that there were clusters of high TB risk areas and the 

distribution of TB was found to be related primarily with the number of patients lost to follow-up 

and the number of households with more than one disease case. 
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Also, in most count data, the average and variance are frequently connected and can be estimated 

by the use of a single parameter, as in the Poisson model, which is the most commonly used 

model for disease mapping data analysis. 

It is observed that much has not been done in the literatures of modelling the patterns and 

incidences of tuberculosis as a single disease with over-dispersion and as a count data. Previous 

studies outlined in this thesis shows that tuberculosis modelling was done by assuming a Poisson 

type of regression, disregarding the existence of over-dispersion and modelling it in the data.  

Modelling of count data in the presence of over-dispersion has been studied for other diseases 

that constitute counts. A rare disease type like tuberculosis that generates count data have not 

been widely studied and applied in Eastern Cape Province of South Africa.  

For instance, Mohammadreza et al., (2014) in their paper applied the generalized linear model to 

model geographical variation in esophageal cancer incidence data in the Caspian region of Iran. 

Their data constitute a multifaceted and hierarchical structure that make them appropriate for 

hierarchical analysis by the Bayesian techniques, but which caution was essential to deal with 

problems arising from counts of actions detected in small geographical areas when over-

dispersion and residual spatial autocorrelation are present. The authors used the Poisson, 

generalized Poisson and negative binomial, and three different autocorrelation structures. The 

confirmation from applying the modelling method suggests that the modelling approaches from 

the use of the generalized Poisson and negative binomial with spatial autocorrelation worked 

well and provided a robust basis for inference. 

Another very commonly used modelling approach that deals with over-dispersion and count data 

is called the zero-inflated models - a type of mixture models and approach employed in the 

analysis of count data when there exist over-dispersion.  
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One recurrent expression of over-dispersion is that the frequency of zero counts exceeds the 

expected for the Poisson distribution and this is interesting because zero counts normally have 

special prominence. For data that consist of zero values, zero inflated Poisson (ZIP) is the 

suitable model to substitute the Poisson models. 

Musenge et al., (2013) used data from Agincourt located in the rural northeast of South Africa, 

collected longitudinally during the years 2000 and 2005.Agincourt child HIV deaths data had 

several problems that made it difficult to use standard statistical procedures: over dispersion, 

caused by unobserved heterogeneity or temporal correlation, large data, excess of zeros, and 

household spatial random effects. In their paper, they applied two zero inflated models adjusting 

for household spatiotemporal random effects using Bayesian inference and performed 

exploratory analyses looking for risk influences for childhood HIV/TB death rates using spatial 

modelling. The modelling procedure adjusts for the household level spatial random effects for 

child HIV/TB mortality. The method of Bayesian zero inflated spatiotemporal models were able 

to spot hidden patterns within the data. Geo-additive spatiotemporal zero inflated Poisson (ZIP) 

as well as Negative Binomial (ZINB) models were employed in the analysis. The ZIP and ZINB 

models have many parameters and are hierarchical (multilevel), thus we resort to full Bayesian 

inference with the computationally efficient MCMC techniques. Their main finding revealed that 

those maternal orphans were almost thrice at bigger risk of HIV/TB mortality matched with 

those with living mothers. Also, a risk analysis which amends for person, place and time enables 

policy makers to use estimates and maps for interventions. 
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Mohd et al., (2013) in their study also modeled a joint disease, HIV-TB mortality for the period 

between 2001- 2009 for Kelantan state in Malaysia.  

The study modeled this scenario using the Zero Inflated Negative Binomial model. In 

conclusion, their study recognized a high complete mortality rate among patients hospitalized 

with HIV and TB. However, their study posit that for ZIP and ZINB models to give good 

statistical fit but do not distinguish the underlying mortality process, then numerous stimulating 

questions may arise. First could be that, what are the consequences of applying these models? 

Secondly, what substitute model should be used instead? The suitable and handy answer for 

these two questions, are if the only objectives should consist of achieving the best statistical fit 

other than the zero inflated model. 

2.14 Conclusion 

Our evaluation of Bayesian concepts in spatial statistics only traces on a sequence of common 

subjects through major and common issues in spatial statistics. The principal factor to all 

methods (for all Bayesian analyses) is the improvement and application of a fully defined 

probability model from which posterior inference follows. According to Box and Tiao (1973, pp. 

9-10), the suitability of the model can always be tested, but fully Bayesian (posterior-based) 

inference focuses criticism and disapproval on the correctness of the probabilistic structure of the 

model, rather than the mode of inference, correctness of approximation, or suitability of the 

particular choice of estimator. 

As earlier stated in this literature review that Bayesian analyses is basically concerned with 

model specification, model comparison and prediction, this thesis therefore focuses on 

developing and specifying alternative models and distributions to the convolution model (BYM; 
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Besag et al., 1991), by specifying alternative models and comparing them for robustness and 

flexibility based on this tripod operations of Bayesian analyses. 

From our reviews, modelling responses in count data therefore require that adjustments be 

employed on the BYM model, by evolving other probability densities that can model over-

dispersion that is common with count data. Mixture models from Poisson as alternatives to the 

Poisson density to model over-dispersion have been suggested. Among those suggested are the 

negative binomial (NB) models, which is a good and promising model to adjust if over-

dispersion is found. However, some authors have pointed out that the negative binomial model 

itself can be over-dispersed, because it can converge to a Poisson density at some certain amount 

of the dispersion parameter (Imoto, 2014; Xinyan et al., 2017).  

The contrary case is that of under-dispersion, where the variance is smaller than the mean. 

Although literature contains more examples of over-dispersion, under-dispersion is also 

common. Rare events, for instance, generate under-dispersed counts. Examples include the 

number of strike outbreaks in the UK coal mining industry during successive periods between 

1948 and 1959 and the number of eggs per nest for a species of bird (Blincoe et al., 2000).  

In such cases, neither the Poisson nor the negative binomial distributions provide adequate 

approximations. This thesis would therefore explore some Poisson mixtures to deal with this gap 

by comparing some of these alternatives with existing ones. 

Another task in spatial analyses is the problem of spatial autocorrelation. A way of dealing with 

over-dispersion is also by means of random effects to explain for spatial heterogeneity and 

correlation in the data. As it has been generally observed that the standard model used in disease 

mapping is the Besag, York and Mollie (BYM) model which includes two random effects, with 

one which is spatially structured and the other random effect which is spatially unstructured and 
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with their respective prior distributions as conditional autoregressive (CAR) models and 

Gaussian distribution.  

In the usual BYM (Besag, York and Mollie) model, the spatially structured random effect cannot 

be seen independently from the spatially unstructured random component. This has raised the 

problem of identifiability. These therefore made prior definitions for the hyperparameters of the 

two random effects thought-provoking. There are alternative model formulations that address 

this confounding, however, the issue on how to choose interpretable hyperpriors is still vague in 

most spatial modelling of the random effects. This thesis would propose a parameterisation of 

the BYM model that can lead to an improved parameter control as the hyperparameters can be 

seen independently from each other. 

For the CAR or “Besag” model that is usually assumed as a prior distribution for the spatially 

structured random effects, some authors have also pointed out counterintuitive consequences on 

the prior covariance matrix of the spatial random effects (Renato et al., 2009). Therefore, the 

need to develop a more intuitive spatially weighted ICAR prior for the spatial random 

component is important to enable the task of providing interpretable hyperpriors. 
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Chapter Three 

Materials and Methodologies 

3.1 Introduction 

This chapter seeks to address the methods of data collection, the theories and concepts of the 

newly proposed methodologies that would be used to implement our objectives and in addressing 

our research problems. The objective of this chapter is to also develop and build the models for 

all the methods proposed. Alternative models to measure over-dispersion were developed, and 

further, a model that can measure both under-dispersion and over-dispersion was developed. 

Also the chapter proposes a more intuitive conditional autoregressive model (CAR), to model for 

spatial dependency in the BYM convolution model. A new technique from a mathematical 

procedure to disease mapping is also introduced in this chapter. A computationally faster 

estimation method, the INLA approach, to be used in the parameter estimation was also 

introduced. These are the contributions to the existing knowledge that this entire dissertation 

seek to perform. 

3.2 Ethical Consideration 

This study was carried out under the authorization and permission of the Ethical committee of 

the University of Fort Hare, Alice, Eastern Cape, South Africa and approval of the Eastern Cape 

Department of Health, with ethical clearance reference number QIN041SOBA01 and 

EC_2015RP24_398 respectively. 

3.3 Data Sources 

This is a retrospective secondary data source from Eastern Cape Province TB notification and 

survey data. All data used is an extract from the electronic tuberculosis register (ETR) records of 
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TB cases from the twenty-four health sub-districts of the province including the two 

metropolitan municipalities as shown in Figure 3.1. The data obtained was for the period of 

2012 to 2015. The socio-economic and socio-demographic indicators and variables were 

obtained from publications of Eastern Cape Socio Economic Consultative Council (ECSECC 

2014) reports of all the local municipalities. 

3.4    Eastern Cape Province Geographical Information System 

The Province of the Eastern Cape is situated on the east coast of South Africa and lies between 

the Western Cape and KwaZulu-Natal provinces. The Northern Cape and Free State provinces as 

well as Lesotho, shares borders with this Province. The Eastern Cape Province boasts of amazing 

natural diversity, stretching from the semi-arid Great Karoo to the forests of the Wild Coast. It 

also extends around the Keiskamma valley, the fertile Langkloof, and the mountainous southern 

Drakensberg region. The main feature of the Eastern Cape is its amazing coastline adjoining the 

Indian Ocean. The Province covers an area of 168 966km² and with a population of 6 562 

053(Statistics South Africa, Censuses 2011). The Province is situated at 32.2968° S and 

26.4194°E of the country. 

The Eastern Cape is the second-largest province in South Africa by surface area and also the 

third-largest populated province with its capital in Bhisho. Port Elizabeth, East London, 

Grahamstown, Mthatha (previously Umtata), Graaf Reinet, Cradock and Port St Johns are the 

major towns and cities in the province. The province is divided into two metropolitan 

municipalities, and they are Buffalo City Metropolitan Municipality and Nelson Mandela Bay 

Metropolitan Municipality. It has six district municipalities and which are further subdivided into 

37 local municipalities. 
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The Eastern Cape is regarded as one of the poorest provinces in South Africa. This is mostly as a 

result of the poverty found in the former homelands, where subsistence agriculture prevails. 

 

 

Figure 3.1: Map of Eastern Cape showing TB data registries in the 24 health sub-districts. 

Source: Obaromi (2016) 
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3.5 Over-dispersion Model Distributions and Their Properties 

3.5.1 The Poisson Model 

Considering the limit of the probability mass function (pmf) of the Binomial distribution, as n 

tends to infinity and p tends to zero with 𝑛𝑝 = 𝜆, where 𝜆 > 0, then the resultant distribution has 

the density 

 

𝑃(𝑌 = 𝑦) =
𝑒−𝜆𝜆𝑦

𝑦!
𝑦 = 0,1, …                                              (3.1) 

 

This distribution is called the Poisson distribution with parameter 𝜆. The Poisson distribution 

also arises from the counting process {𝑁(𝜏)}: 

3.5.1.1 Properties 

 𝑁(0) = 0. 

 The numbers of occurrences counted in disjoint intervals are independent from each 

other. 

 The probability distribution of the number of occurrences counted in any time interval 

only depends on the length of the interval. 

 No counted occurrences are simultaneous. 

In this process, the random variable 𝑁(𝜏)) follows the Poisson distribution with parameter 𝜆(𝜏), 

where 𝜆(𝜏) is the rate of the event occurring in the interval time (𝑡, 𝑡 + 𝜏) for any time 𝑡. 
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The Poisson density has mean and variance, 

 

𝐸(𝑌𝑖) = 𝑉𝑎𝑟(𝑌𝑖) = 𝜆𝑖 . 

 

To incorporate covariates and to ensure non-negativity, the mean or the fitted value is assumed to 

be multiplicative, that is, 𝐸(𝑌𝑖|𝒙𝒊) = 𝜆𝑖 = 𝑒𝑖𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷), where 𝑒𝑖 denote a measure of exposure, 

𝒙𝒊a 𝑝 × 1vector of explanatory variables, and 𝜷 a 𝑝 × 1vector of regression parameters. If  𝜷 is 

estimated by the maximum likelihood method, the likelihood equations are, 

 

𝜕𝑙(𝜷)

𝜕𝜷𝒋
= ∑ (𝑦𝑖 − 𝜆𝑖)𝑥𝑖𝑗 = 0, 𝑗 = 1,2, … , 𝑝𝑖                               (3.2) 

 

Since (3.2) is also equal to the weighted least squares, the maximum likelihood estimates, 𝜷̂, 

may be solved by using the Iterative Weighted Least Squares OWLS) regression. 

The index of dispersion of the Poisson distribution is thus always one. 

3.5.2 The Negative Binomial Model 

In single disease spatial analysis, the most commonly used model was proposed by Besag et al., 

(1991) called the Besag, York and Mollie (BYM) model. It is used normally to model disease 

prevalence in areas assuming the Poisson distribution. A likely problem with such data is that 

over-dispersion may be evident in the data. One approach to address the problem of over-

dispersion is to assume alternatively, that yi  has a negative binomial distribution (NBD), also 

known as the Poisson-Gamma distribution which has become the most commonly used 

probabilistic distribution for modelling over-dispersion in count data, with an additional 
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parameter called the dispersion parameter which permits the variance to exceed the mean (Bliss 

et al., 1958; Poch et al., 1996; Lord 2006; Cameron et al., 1998). 

The negative binomial distribution, just like the normal distribution, arises from a mathematical 

formula. It is normally used to describe the distribution of count data. Also like the normal 

distribution, it can be entirely defined by just two parameters - its mean (m) and shape parameter 

(k), which is commonly considered to be fixed (Lord, 2006; Bliss et al., 1958), to measure over-

dispersion. However, unlike the normal distribution, the negative binomial does not naturally 

result from the use of large samples, nor does it arise from a single causal model. 

Anscombe (1950) described five (5) causal models of the negative binomial, some of which can 

be interpreted as due to aggregation: Inverse binomial sampling, Constant birth-death-

immigration rates, Heterogeneous Poisson sampling, Compounding of Poisson and logarithmic 

distributions and True clumping aggregation or contagion. 

3.5.2.1 Properties 

Sometimes, the occurrence of an event is dependent of other events in the same sampling unit. 

For example, numerous subjects of interest are not distributed randomly or are not sampled 

randomly, and therefore, the Poisson distribution does not offer a good explanation of their 

pattern of dispersion. The most common pattern of spatial dispersion is usually aggregated, 

rather than random or regular. The same may also happen for events occurring through time. 

That is, an event that may 'spark off' other events and resulting in a contagious distribution. The 

negative binomial distribution is one of some probability distributions that can be used to 

describe such a pattern of dispersion. 
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The negative binomial is the easiest to calculate, and the most widely-applicable of over-

dispersion models. Like the Poisson distribution, the negative binomial is discrete, unimodal and 

skewed. Statistically, its parameters are both simple and flexible. The negative binomial model 

can also be described as being versatile, but without carrying too deep a causative commitment. 

Usually, it is used as a fairly subjective, but convenient approximation to how counts are 

distributed, and provided the data have a negative binomial distribution; k is used as a measure 

of that distribution's shape. 

3.5.2.2 Negative Binomial Population Parameters 

The mean, variance, skew and kurtosis of a negative binomial population can be calculated as 

follows: 

 The mean frequency of failures, m, can also be calculated as 1 − k - where k is given as 

the mean number of successes. 

 The variance is m(k+m)/k 

 The skew is (1 + m/(k+m)) × √(km/(k+m))  

The kurtosis is 3 + 6/k + k/(m(k+m)) 

3.5.2.3 Definition: The probability mass function (pmf) of a negative binomial regression model 

for independent count data observations ,  1,. . .,iY i n with parameters d >0 and  0i  , 

represented by ( , )i iY NB d  , is defined as 

 

 
 

 
| , . .

( 1)

id y
i i

i i i

i i i

y d d
P Y y d

d y d d




 

     
     

        ,   

0, 0d   , 0,1,...y   (3.3) 
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This distribution also arises from a Poisson distribution where the dispersion parameter d is 

assumed to be constant and follows a Gamma distribution with mean 

 

 | ,i i iE Y d  
 

and 

 var | , 1
i

i i iY d
d


 

 
  

   

 

The parameter d with a fixed assumption over time for each region i , depends on covariates 

through the transformation: 

 

ln( )i iX   

 

As d  in the limit, the negative binomial distribution converges to the Poisson distribution 

with parameter i (Winkelmann, 2003) and the logarithmic series distribution is obtained as 

0d  (Bliss et al., 1953; Anscombe, 1950). Consequently, the unobserved heterogeneity among 

observations can be used to interpret the over-dispersion in the negative binomial model. 

3.5.2.4 Estimators of the Negative Binomial Dispersion Parameter. 

From the mass function of the negative binomial distribution, it can be seen that the dispersion 

parameter d, is an essential part of the model. Estimation of d is thus important given a sample of 

counts. For example, d is a parameter that is critical for evolving confidence intervals and 

refining the forecast mean when the Empirical Bayes (EB) is used (Hauer, 1997; Wood, 2005). 
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In estimating the dispersion parameter (or its inverse), several estimators have been proposed. 

The simplest method is the Method of Moments Estimate (MME) (Anscombe, 1949). 

The method of Maximum Likelihood Estimate (MLE), first proposed by Fisher (1941) and later 

developed by Lawless (Lawless, 1987) with the introduction of gradient elements, is also 

commonly used. More recently, Clark and Perry (Clark et al., 1989) introduced the Maximum 

Quasi-Likelihood Estimate (MQLE), which is considered to be an extension of the MMEA 

method of multistage estimation was also presented in (Willson 1984). Among these methods, 

the MME and the MLE are often considered to be superior to other methods and are more widely 

used nowadays. 

We hereby describe the two common estimators of the dispersion parameter d: moments, 

maximum likelihood estimate and just for mentioning, the recently proposed Bootstrapped 

maximum likelihood estimator by Zhang et al., (2006). However, the full mathematical 

estimation of these estimators was not considered in this thesis. 

3.5.2.5 Methods of Moments estimators (MME) 

For a negative binomial distribution, the variance 2 , mean  and d have the relationship 

 

2
2

d
   . 

 

Based on this relationship, the MME is developed and estimated by 

 

2

2
ˆ x
d

S x



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Where x and 2S are the first and second unbiased sample moments (Anscombe 1949). Note that 

the estimate 𝑑̂ is reasonable only when 2S x because 0d  . 

To obtain a good estimate of d by MME, it is very important to have a good knowledge of the 

variance because even a slight change of the variance may cause a large variation of d. This 

problem will be enlarged when the sample size becomes smaller. 

3.5.2.6 Maximum Likelihood Estimate (MLE) 

Different types of negative binomial distributions can be generated by different parametrisations 

(John Cook 2009). The more useful parameterization,   1/ d   giving  

 

 
 

1
1

1

1
P[Y = y] = , 0, 0, 0,1,...

1 1!

y
y

y
y

 
 

 






     
     

     
,

  (3.4) 

 

allows for more direct identification of the dispersion parameter d . When   0  , note that the 

above distribution becomes a Poisson    distribution. More normally,  < 0 can be allowed, 

which suggests under-dispersion of the data and the corresponding distribution given by (3.2) 

becomes a Binomial distribution. 

If  > 0 (over-dispersion) is given its true value according to sampling variation under small 

sample sizes, the MLE of the dispersion parameter can be negative if the parameter space 

   1/ ,Ymax     is considered (Piegorsch, 1990; Saha and Paul, 2005). The task of fitting 

discrete count data using the NB distribution is to find the maximum likelihood estimate (MLE) 

for the dispersion parameter,  . 
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As shown by Fisher (Fisher, 1941), the log-likelihood function from a sample of independent 

identically distributed (i.i.d.) variates ( ' )ix s  is proportional to 

 

𝑙(𝑑, 𝜇) =
1

𝑛
∑ 𝑙𝑜𝑔𝑛

𝑖=𝑖 (
𝑥𝑖+𝑑

Γ(𝑑)
) + [𝑥̅ log(𝜇) − (𝑥̅ + 𝑑)log (1 +

𝜇
𝑑⁄ )]       (3.5) 

 

where  is again the mean of the NB distribution. The sample variates are integers in practice, 

which yields 

 

        1 2 ... 1 .x d d x d x d d k          

The term 

                                      𝑙𝑜𝑔 (
Γ(𝑥𝑖+𝑑

Γ(𝑑)
)     (3.6) 

then can be written as 

 

           𝑙𝑜𝑔 (
Γ(𝑥𝑖+𝑑

Γ(𝑑)
) = ∑ 𝑑𝑙𝑜𝑔(1 + 𝑣/𝑑)

𝑥𝑖−1
𝑦=1 .    (3.7) 

 

without call to the gamma function (Lawless, 1987).  

 

Thus, the log-likelihood function can finally be expressed by 

 

       
1

1 1

1
( , ) d log 1 log log 1

in x

i v

l d v d x x d u d
n

 


 

          (3.8) 
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with gradient elements 

 

1

1
u

x x d
l

u u d


  


and ∇𝑑𝑙 =

1

𝑛
∑ ∑

𝑣

1+𝑣/𝑑
+ 𝑑2 log (1 +

𝑢

𝑑
) −

𝑢(𝑥𝑖+𝑑)

1+
𝑢

𝑑

.
𝑥𝑖−1
𝑣=1

𝑛
𝑖=1  (3.9) 

 

From the gradient elements, 0ul  yields ˆ x  . Then the MLE of d can be obtained via a 

nonlinear root-finder by setting 0dl  and given ˆ  . 

Although a vast literature exist on how to estimate the dispersion parameter   (Willson et al., 

1984; Clark and Perry, 1989; Piegorsch, 1990; Saha and Paul, 2005) and several estimation 

approaches are given. All current works showed that finding the MLE for   is a challenging 

one, since the roots of the score function can be no root, one root or more than one root. The 

index of dispersion is given by 1/d > 1 and the negative binomial distribution is thus always 

overdispersed. 

3.5.3 The Generalized Poisson distribution 

The Generalized Poisson Distribution (GPD) was introduced in Consul and Jain (1973) and 

studied extensively by Consul (1989). The generalized Poisson (GP) distribution when defined 

using the maximum likelihood estimation methods for its parameters, has the probability density 

function (Wang et al., 1997), 

  Pr((𝑌𝑖 = 𝑦𝑖) = (
𝜇𝑖

1+𝑎𝜇𝑖
)

𝑦𝑖 (1+𝑎𝑦𝑖)𝑦𝑖−1

𝑦𝑖!
𝑒𝑥𝑝 (−

𝜇𝑖(1+𝑎𝑦𝑖)

1+𝑎𝜇𝑖
),    𝑦𝑖 = 0,1, …             (3.10) 

 

with mean 𝐸(𝑌𝑖) = 𝜇𝑖and variance 𝑉𝑎𝑟(𝑌𝑖) = 𝜇𝑖(1 + 𝑎𝜇𝑖)2. 
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The Generalized Poisson (GP) is a natural extension of the Poisson distribution. If a equals zero, 

the Generalized Poisson reduces to the Poisson distribution, resulting into  𝐸(𝑌𝑖) = 𝑉𝑎𝑟(𝑌𝑖).  

If 𝑎 > 0, the variance is larger than the mean, 𝑉𝑎𝑟(𝑌𝑖) >  𝐸(𝑌𝑖), and the distribution represents 

count data with over-dispersion. If 𝑎 < 0, the variance is smaller than the mean, 𝑉𝑎𝑟(𝑌𝑖) <

 𝐸(𝑌𝑖), so that now the distribution represents count data with under-dispersion. If by 

assumption, the mean or the fitted value is multiplicative, that is, 𝐸(𝑌𝑖|𝒙𝒊) = 𝜇𝑖 = 𝑒𝑖𝑒𝑥𝑝(𝒙𝒊
𝑻𝜷), 

the likelihood for Generalized Poisson regression model may be written as, 

 

𝑙(𝜷, 𝑎) = ∑ 𝑦𝑖𝑙𝑜𝑔 (
𝜇𝑖

1+𝑎𝜇𝑖
)𝑖 + (𝑦𝑖 − 1)𝑙𝑜𝑔(1 + 𝑎𝜇𝑖) −

𝜇𝑖(1+𝑎𝑦𝑖)

1+𝑎𝜇𝑖
− 𝑙𝑜𝑔(𝑦𝑖!)           (3.11) 

 

Therefore, the maximum likelihood estimates, (𝜷,̂ 𝑎̂), may be obtained by maximizing 

𝑙(𝜷, 𝑎)with respect to 𝜷and 𝑎. The associated equations are, 

 

𝜕𝑙(𝜷)

𝜕𝜷𝒋
= ∑

(𝑦𝑖−𝜇𝑖)𝑥𝑖𝑗

(1+𝑎𝜇𝑖)2
= 0,         𝑗 = 1,2, … ,𝑖  (3.12) 

 

and, 

 

𝜕𝑙(𝜷)

𝜕𝒂
∑ −

𝑦𝑖𝜇𝑖

1+𝑎𝜇𝑖
+

𝑦𝑖(𝑦𝑖−1)

1+𝑎𝑦𝑖
−

𝜇𝑖(𝑦𝑖−𝜇𝑖)

(1+𝑎𝜇𝑖)2
= 0𝑖 .                      (3.13) 

 

The main advantage of using the Generalized Poisson distribution is that it can be fitted for both 

over-dispersion, 𝑉𝑎𝑟(𝑌𝑖) >  𝐸(𝑌𝑖) as well as under-dispersion, 𝑉𝑎𝑟(𝑌𝑖) <  𝐸(𝑌𝑖), which serves 

as an advantage over the negative binomial distribution. 
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3.6 Modelling the Prior for the Spatial Dependency Structure. 

3.6.1 The CAR “Besag” model for the structured spatial component. 

As defined in the literature, the CAR prior model is an intrinsic Gaussian Markov random field 

(GMRF) model, here referred to as the Besag ICAR model and it is one of the most popular 

approaches to model spatial correlation. 

The Besag (CAR) model for random vector 𝑥 = (𝑥1, … , 𝑥𝑛) is defined as 

 

                     𝑥𝑖|𝑥𝑗 , 𝑖 ≠ 𝑗, 𝜏 ∼ 𝑁 (
1

𝑛𝑖
∑ 𝑥𝑗 ,

1

𝑛𝑖𝜏𝑖∼𝑗 )                                               (3.14) 

 

where ni is the number of neighbours of node i, 𝑖 ∼ 𝑗indicates that the two nodes i and j are 

neighbours. The mean of 𝑥𝑗 equals the mean of the effects over all neighbours, and the precision 

n is proportional to the number of neighbours. 

Hyperparameters 

The parameter 𝜏 is the precision parameter and it is represented as 

 

𝜃1 = 𝑙𝑜𝑔 𝜏 

and the prior is defined on 𝜃1. 
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3.6.2 A novel Besag2 ICAR Model for the Structured Spatial Effects. 

A modification of the Dean model in (2.42) was proposed by Simpson et al., (2015) and which 

addresses both the identifiability and scaling issue of the BYM model. The model uses a scaled 

structured component 𝜇𝑖∗ where 𝜏 is the precision matrix of the Besag ICAR model. 

The “Besag2” is one of the models in the latent Gaussian field. The Besag2 model is an 

extension to the Besag (ICAR) model above in (3.14). 

Paramerisation of the Besag2 model 

Let the random vector 𝑧 = (𝑥1, … , 𝑥𝑛) be the “Besag” model (ICAR), then the “Besag2” is the 

following extensions 

𝑥 = (𝑎𝑧,
𝑧

𝑎
)     (3.15) 

 

where 𝑎 > 0 is an additional hyperparameter and dim(𝑥) = 2𝑛, and z is the same (a tiny 

additive noise) random vector. 

Hyperparameters 

This model has two hyperparameters 𝜃 = (𝜃1, 𝜃2). The precision parameter 𝜏 is represented as 

 

                                                                 𝜃1 = 𝑙𝑜𝑔𝜏          (3.16) 

 

And the prior is defined on 𝜃1. 

The weight parameter 𝑎 is signified as 

 

                                                                  𝜃2 = log 𝑎                (3.17) 
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And the prior is defined on 𝜃2. The precision defines how equal the two copies of z is. 

This new prior is a member of the class of a latent Gaussian (LGMs) markov random field 

models and would be compared with the Besag ICAR, and the BYM models for flexibility and 

robustness. 

3.7 Proposed Model Building and the Covariates 

3.7.1 Statistical Analysis 

Our working model is the usual BYM model (Besag et al., 1991) which is a type of generalized 

linear mixed model (GLMM) with both fixed and random effects; 

 

𝑙𝑜𝑔𝑦𝑖 = 𝛼 + ∑ 𝛽𝑖𝑥𝑖𝑘 + 𝒃𝑘
𝑖=1     (3.18) 

 

where b is the random effects which are further broken into spatially structured, ui, and spatially 

unstructured, vi, random effects. 

Modifications and adjustments would be made on the BYM model and applied to observed TB 

counts in region i to estimate the relationship between TB relative risks and some explicative 

variables of socio-economic vulnerability and demographic factors.  Also on this working model, 

all other model specifications and comparisons would be carried out by adjusting for spatial and 

non-spatial components. We adopted seven (7) different full hierarchical Bayesian models to 

estimate the relative risk of the occurrence of TB through the integrated nested Laplace 

approximation (INLA) method. 
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3.8 Definition of the Covariates in the Regression Model 

For our model, six covariates (socio-economic and demographic factors) were taken as 

explanatory variables for the relative risk of the disease. Let 𝜆𝑖 be the number of new TB cases in 

area i, x1 = Gini coefficient (a measurement of how income or poverty is equally distributed), x2 

= poverty rate (% number of individuals living below the poverty line. Though, there is no 

official poverty line defined for South Africa), x3 = unemployment rate (%), x4 = No schooling 

(%; person aged 20+ years), x5 = average household size and x6 = Population density of the 

regions/municipalities. The Gini coefficient, poverty rate and unemployment are considered in 

this study as distal factors, while no schooling, average household size and population density 

are taken as proximal factors. Two spatial random effects of ui and vi respectively as unstructured 

random effect to measure for spatial heterogeneity and a structured random effect to measure for 

spatial dependency among the regions. 

3.8.1 Fitting the Spatial Multilevel Models 

For the analysis of the estimated risk factors to determine the effects of these covariates, our 

proposed regression model above will give rise to seven (7) multilevel or hierarchical Bayesian 

models in the following order: 

Model 1:; 𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖:3
𝑖=1 Oi ~ Poisson ( i ) [analyse with only the distal factors 

without the spatial random effects]. 

Model 2: 𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖:6
𝑖=4  Oi ~ Poisson ( i ) [analyse with only the proximal factors 

without the spatial random effects]. 
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Model 3: 𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖 :6
𝑖=1  Oi ~ Poisson ( i ) [analyse with both the distal and 

proximal factors without the spatial random effects]. 

Model 4:  𝑙𝑜𝑔𝜆𝑖 = 𝛽
0

+ ∑ 𝑋𝑖𝛽
𝑖

+3
𝑖=1 𝑣𝑖 + 𝑢𝑖; Oi~Poisson( i ), i ~ICAR, vi~N(0,

2

v ) 

[analyse with only distal factors and spatial random effects]  

Model 5:; :𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖 +6
𝑖=4 𝑣𝑖 + 𝑢𝑖;  Oi ~Poisson ( i ), i ~ICAR, vi~N(0,

2

v ) 

[analyse with only proximal factors and spatial random effects] . 

Model 6: 𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖 + 𝑣𝑖 + 𝑢𝑖
6
𝑖=1 ;  Oi ~ Poisson ( i ), i ~ICAR, vi ~ N(0, 

2

v )  

[analyse with both the distal and proximal factors with the spatial random effects] 

Model 7: 𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + 𝑣𝑖 + 𝑢𝑖:Oi ~ Poisson ( i ), i ~ICAR, vi ~ N(0, 
2

v )[the model with 

only the spatial random effects]. 

3.9 MODEL ASSUMPTIONS AND ESTIMATION 

Model estimations were carried out following Bayesian techniques and appropriate priors were 

assigned to all the functions and terms. A non-informative prior knowledge was considered with 

a flat distribution for the intercept 𝛽0. For the βi, we assumed non-informative Gaussian priors 

with zero mean and precision equal to 1 × 10
−5

. The spatially structured random effects 𝑢𝑖 =

(𝑢𝑖, . . . , 𝑢𝑛) – accounts for the spatial dependence, with prior distribution taken as a conditional 

intrinsic Gaussian autoregressive model, ICAR. Also in this context, the non-spatial or 

unstructured spatial random effects was assumed to have an independent Gaussian distribution of 

zero mean and variance 𝜎𝑣
2 following an inverse gamma distribution as 1/ 

𝜎𝑣 ~ 𝑑𝑔𝑎𝑚𝑚𝑎(0.5, 5 × 10−4). 
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The entire above model fitting and analyses would be done by first assuming a Poisson 

distribution for 𝜆𝑖 as seen above and thereafter, the proposed negative binomial and generalized 

Poisson distributions respectively, for the observed counts.  

3.10 Bayesian Modelling Approach 

Bayesian analysis rests upon computing the posterior probability distribution for model 

parameters. The posterior probability distribution is the conditional probability distribution of the 

unknown parameters, given the observed data and weighted by the prior information. Bayesian 

modelling depends on the ability to compute posterior distributions in order to provide estimates 

for all the corresponding model parameters. Majority of these posterior distributions are 

straightforward to calculate. Distributions with a conjugate prior typically have a posterior 

distribution which follows a standard distributional form. 

Bayesian Inference 

The prior distribution is the distribution of the parameter(s) before any data is observed, that is, 

𝑝(𝜃|𝛼).  

The prior distribution might not be easily determined. In this case, we can use the Jeffreys prior 

to obtain the posterior distribution before updating them with newer observations. 

The sampling distribution is the distribution of the observed data conditional on its parameters, 

i.e. 

𝑝(𝑋|𝜃) . 
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This is also termed the likelihood, especially when viewed as a function of the parameter(s), 

sometimes written, 

𝐿(𝜃|𝑋) = 𝑝(𝑋|𝜃). 

The marginal likelihood (sometimes also termed the evidence) is the distribution of the observed 

data marginalized over the parameter(s),  

𝑝(𝑋|𝛼) = ∫ 𝑝(𝑋|𝜃)
𝜃

𝑝(𝜃|𝛼)𝑑𝜃 

The posterior distribution is the distribution of the parameter(s) after taking into account the 

observed data. This is determined by Bayes' rule, which forms the heart of Bayesian inference 

𝑝(𝜃|𝑋, 𝛼) =
𝑝(𝑋|𝜃) 𝑝(𝜃|𝛼))

𝑝(𝑋|𝛼)
∝  𝑝(𝑋|𝜃)𝑝(𝜃|𝛼) 

In many cases, however, the computation required is more complex and a more advanced 

method is essential to calculate the posterior distribution. These advanced approaches usually 

make use of some form of numerical simulation, generally by drawing a sample of parameter 

values from an approximation of the posterior distribution ( | )f Y   to allow estimation of the 

distributions of the model parameters. 
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3.11 Estimation by the Integrated Nested Laplace Approximation (INLA) method. 

The posterior marginals are not always presented in closed form as a result of the non-Gaussian 

response variables. For such models, Markov chain Monte Carlo methods can be applied, but 

they are not without some problems, both in terms of convergence and in computational time. In 

some practical uses, the extent of these problems is such that Markov chain Monte Carlo is 

simply not an appropriate tool for monotonous analysis. 

It is shown in that by using an integrated nested Laplace approximation (INLA) and its 

simplified version; we can directly compute very precise approximations to the posterior 

marginals. The key advantage of these approximations is simply computational: where MCMC 

algorithms need hours and days to run, INLA provide more precise estimates in seconds and in 

minutes.  

Another benefit with INLA approach is its generality, which makes it possible to perform 

Bayesian analysis in a programmed, streamlined way, and to compute model comparison criteria 

and various predictive measures so that models can be compared and the model under study can 

be tested. This method is also used where the model has a hidden Gaussian Markov Random 

field, with the parameters of interest being latent variables which are not observed directly, but 

are instead inferred from other observed variables. 

Considering the following hierarchical model, 

 

𝑌𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖)    𝑖 = 1, . . . , 𝑛   

 

log(𝜇𝑖) =  𝑥𝑖
𝑇 𝛽 + 𝜙𝑖    (3.19) 
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Given that, 1( ,..., )n   comprise a set of random effects, which can be considered as a group of 

latent variables. Let   be the set of hyperparameters relating to , then the marginal posterior 

for each variable i  is as follows: 

1
( | ) ( , | )i iY Y d d

 
      

          (3.20) 

 

where, 𝜙−1 is the vector 𝜙, with element i  removed.  

This can be modified as 

( | ) ( | , ) ( | )i iY Y Y d


        
   (3.21) 

 

INLA involves the construction of a nested approximation of (3.15), which requires 

approximations of ( | )Y   and ( | , )i Y   . 

 Here can be approximated using the following Laplace approximation 

 

    𝜋̃(𝜔|𝑌) ∝
𝜋(𝜙,𝜔,𝑌)

𝜋̃𝑐(𝜙𝑖|𝜙,𝜔,𝑌)
|𝜙 = 𝜙∗(𝜔)                             (3.22) 

 

where 𝜋̃𝑐(𝜙𝑖|𝜙, 𝜔, 𝑌)is termed the Gaussian approximation to the full conditional distribution of

  and 
*( )   is the mode of the full conditional distribution of   for a given value of . 

The authors in Rue et al., (2009) propose using a Laplace estimate of ( | , )i Y    which takes the 

following form: 

( | )Y 
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𝜋̃𝐿𝐴(𝜙𝑖|𝜔, 𝑌) ∝
𝜋(𝜙,𝜔,𝑌)

𝜋̃𝐺(𝜙−𝑖|𝜙𝑖,𝜔,𝑌)
|𝜙−𝑖 = 𝜙−𝑖

∗ (𝜙𝑖 , 𝜔)    (3.23) 

 

where 𝜋̃𝐺(𝜙−𝑖|𝜙𝑖 , 𝜔, 𝑌) is the Gaussian approximation to | , ,i i Y   and 
* ( , )i i    as its 

modal value for a given . 

Even though in most cases, MCMC and INLA inferences give the same and related results, it 

should be noted that there are vital differences in the way that posterior distributions are 

estimated. MCMC is capable of sampling directly from a joint posterior distribution, while INLA 

on the other hand, uses a closed form expression to estimate the marginal posterior distributions. 

In MCMC inference, the joint posterior distribution can be estimated directly, and will take the 

form of a straight line which passes through the points. In contrast, INLA estimates the marginal 

distributions individually, and both of these will be alike to the prior. For this thesis, we adopted 

the latter. 

3.12 Model Comparison 

The comparison of numerous contending Bayesian models is usually a challenging task and 

needs special attention (see Kass and Raftery, 1995). Since the models used include sets of 

random effects, the Deviance Information Criterion (DIC) shall be used for comparison 

(Spiegelhalter et al., 1998).  

It is defined as DIC = ,D pd


 where [ 2log( )]D E L
 

   is given as the mean posterior deviance 

and pd represents the actual number of parameters. When two or more models are compared, the 

model with the least DIC value would be adopted. 
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Similar to the BIC, this approach penalises models which have superfluous parameters, and 

favours approaches which provide a sensible data fit while minimising the amount of parameters.  

3.13 Geospatial Disease Mapping Using the Biharmonic Splines 

It is important to examine how a disease prevalence rates are distributed in space and how they 

relate to each other within a defined distance and direction. It is usually anticipated that regions 

or locations that are close neighbours tend to have similar rates than regions or locations that are 

far apart, given that the socio-economic and demographic behaviours may exceed geographical 

boundaries. 

For the geographic and graphic representation of the disease prevalence, linear and biharmonic 

curve fitting methods in MATLAB 7.10.0 would be used to identify and localize areas of TB 

clusters. The biharmonic spline interpolation methods, which is based on Green’s function and 

proposed by Sandwell (1987), has become the conventional technique for its high precision, 

simplicity and flexibility.  This method would be employed in describing the spatial distribution 

of the disease, other than the traditional GIS mapping software. Spline Smoothing is best 

effective and operational for eliminating angular contours or surfaces by filling in a sparse grid. 

Surface and contour plots would be produced for TB incidence at the provincial level for the 

period 2012-2015. Smooth functions of the prevalence rates by the coordinates-longitudes and 

latitudes, using biharmonic (v4) method in the software would be fitted.  

The provincial TB data for 2012, 2013, 2014 and 2015 were used as the separate outcome 

variables, then the curve fitting plots to describe the spatial patterns and distribution of 

tuberculosis cases in the province. In this thesis, all computational and mathematical expressions 

of this method were disregarded. 
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 Chapter Four 

Results and Interpretations 

This chapter focuses on the results obtained from the methodologies developed and adopted and 

also followed respectively by the interpretations. The results are outlined in two sections: 

Statistical and spatial/geospatial assessment. The statistical analysis is to show the descriptive 

statistics and the posterior estimates from the Bayesian approach using the INLA method. This 

chapter focus mainly on parameter estimations and comparisons of all the proposed models.   

Also the spatial/geospatial assessment would display the spatial patterns and distribution of the 

disease incidence and prevalence in the twenty four health sub districts in the province. 

4.1 Statistical Analyses 

4.1.1 Descriptive Analyses 

Table 4.1 and figure 4.1 shown below displayed the histograms and descriptive statistics of TB 

cases respectively. It shows the mean, variance, standard deviation, skewness and kurtosis of the 

data. This was carried out to test for normality in the data, and it could be seen that all the 

distributions of the data are skewed to the right and also showed a high degree of dispersion in 

the mean-standard deviation ratio. 
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Table 4.1: Table of Descriptive Statistics for TB Counts from 2012-2015. 

Descriptive Statistics 

N = 24 2012 2013 2014 2015 

MEAN 1.35E+03 1.53E+03 1.51E+03 1.54E+03 

VAR 8.10E+05 1.37E+06 1.39E+06 1.29E+06 

STD. DEV 899.9398 1.17E+03 1.18E+03 1.13E+03 

SKEWNESS 0.8571 1.6524 1.7746 1.6234  

KURTOSIS 2.6181 5.4316 5.7433 4.8264 
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Figure 4.1: Normal histogram Plots of TB cases for 2012-2015. 
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4.2 Bayesian Spatial Analyses 

(a).  

 

(b)  

Figure 4.2: Map of (a). Eatsern Cape Province showing the 37 local municipalities and the 2 

metros and (b). extracted map showing the 24 health sub-districts for TB dataset. 

 

 

N 
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Table 4.2: List of locations of TB registries in the Eastern Cape province, South Africa. 

 

 

 

 

 

 

 

 

S/N LOCATION 13 Emalahleni 

1 Matatiele 14 Maletswai 

2 Mbizana 15 Lukhanji 

3 Elundini 16 Amahlathi 

4 Sakhisizwe 17 Buffalo City 

5 Engcobo 18 Nkonkobe 

6 Nyandeni 19 Makana 

7 Mhlontlo 20 Inxuba Yethemba 

8 King Dalindyebo 21 Nelson Mandela 

9 Sengu 22 Camdebbo 

10 Mbhashe 23 Kouga 

11 Mnguma 24 Umzimvubu 

12 Intsika Yethu 
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Table 4.3 below showed the estimates from the combination of Bayesian approach and GLMM 

to assess the spatial heterogeneity in the TB relative risk for 2014 dataset, by investigating its 

relationship with some socio-economic and demographic variables in the Eastern Cape Province 

of South Africa. For 2014 data, Eastern Cape had 37,365 notified TB cases from all the twenty-

four (24) health sub-districts and with about 91.1% bacteriological coverage (ratio of number of 

PTB patients diagnosed by bacteriological tests to the total PTB patients reported, excluding 

children 0-4 years). 

In this study, seven (7) separate multilevel models including/excluding the covariates/spatial 

random effects were developed and treated as non-independent Poisson random variables with 

means 𝜆𝑖 = (𝜆1, … , 𝜆𝑛), to investigate whether the covariates influenced part or all of the spatial 

correlation in the TB relativity. In Table 4.3, the measures of association and their respective 

means and standard errors are presented for all covariates in all models. In the distal models, the 

most significant explanatory variable is poverty. Gini coefficient, unemployment and no 

schooling, which are one of the most widely used socio-economic indicators in South Africa, 

were not significant in any of the models and with very low standard errors. They are possibly 

due to either indirect effect of the trio in TB occurrence, through their effects on income (Singh-

Manoux et al., 2002). For the proximal models in model 2 and the rest of the models, average 

household size was significant, indicating that an increase of one more person in the house 

increases the risk of TB. Population density also play a little significant role in the disease 

incidence in the province (models 2, 3 5 and 6), and which indirectly influences the average 

household number of persons living together. In the models without the spatial random effects 

(models 1, 2 and 3), the effects of poverty and average household size were vital. The largest 

significant factor, however, is the average household size per house.  
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Table 4.3: Posterior Estimated (means and std. deviations) of Risk Factors Associated with 

TB by GLMM Model for Eastern Cape Province. 

 Model 1 Model 2 Model  3 Model 4 Model 5 Model 6 Model 7 

Covariates Distal model  Proximal 

model  

Proximal and 

distal  

Distal with 

random 

effects  

Proximal 

and random 

effects  

 Proximal, Distal 

and random 

effects  

Spatial random 

effects  

Intercept 8.31 (0.035) 5.99 (0.062) 7.19 (0.072) 8.08 (0.760) 6.68 (0.422) 7.38 (1.071) 7.13 (0.132) 

Gini coeff. -0.33 (0.042)  -0.81 (0.045) -0.60 (0.852) - -0.65 (0.647) - 

Poverty 0.10 (0.032)  0.08 (0.038) 0.33 (0.840) - 0.06 (0.674) - 

Unemploym. -0.03 (0.001)  -0.02 (0.001) -0.02 (0.012) - -0.02 (0.009) - 

Pop. Dens. - 0.002 (0.000) 0.002 (0.000)  0.005(0.000) 0.003 (0.001) - 

No school  -496.34(16.00) -388.89 (17.128)  -5.17(31.302) -5.40 (31.512) - 

Ave hhold 

size 

- 0.44 (0.020) 0.35 (0.021)  0.02 (0.116) 0.10 (0.266) - 

ui-struc std  - - - 18369.33 1.21 1.55 1.841e+04 

vi-unstruc  

std 

- - - 0.84 18373.35 18342.02 7.319e-01 

pD 4.51 4.20 7.10 23.95 23.80 23.92 23.95 

DIC 13853.45 7123.56 6206.43 263.17 262.99 263.14 263.16 

Log L -7186.85 -3848.68 -3336.43 -219.18 -211.30 -227.39 -206.25 
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Although, it is an indicator of poverty and population density, it is also an important covariate in 

the household transmission of TB. The addition of spatial random effects to the full model 

comprising the distal and proximal models decreased the significance of the effects of the 

previous covariates on TB incidence. By adding the CAR random effects, we also found that 

they can bring about large changes in the posterior mean and variance of fixed effects compared 

to the non-spatial regression model. On the basis of DIC, model 5 performed better than all the 

other models, in which only the proximal factors and random effects were considered. In this 

best fit model, average household size and population density had a positive association with the 

relative risk of TB prevalence in the province. The impression is that models with smaller DIC 

should be chosen to models with larger DIC. Models are penalized both by the value of 𝐷̅, which 

favours a good fit, but also (in common with AIC and BIC) by the effective number of 

parameters, 𝑝𝐷. Since 𝐷̅ will decrease as the number of parameters in a model increases, the 𝑝𝐷 

term recompenses for this effect by favouring models with a smaller number of parameters. 

When the GLMM is adjusted for the proximal and distal spatial random effects models, it is seen 

here to affect largely only the effect of poverty and which decreased the effect of almost all the 

other covariates. This outcome can be understood not only as a result of the colinearity between 

the average household size and poverty, but because of the fact that poverty is spatially clustered. 
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Model1 model2  

model3 model4 

model5 model6 

Model 7 

Figure 4.3: Maps of Estimated Relative Risks from the Seven (7) Models Using the Poisson Model. 
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4.2.1 Modelling Over-Dispersion Using Negative Binomial (NB) and the Generalized 

Poisson (GP) Distributions.   

We hereby compare the mixture models (NB and GP) with Poisson model from the best fit 

model (model 5) to ascertain how they capture over-dispersion and also see how they affect the 

entire estimates from the Poisson regression model. 

From model 5 which gave the best fit model on the basis of DIC, we have 

𝑙𝑜𝑔𝜆𝑖 =  𝛽0 + ∑ 𝑋𝑖𝛽𝑖 +6
𝑖=4 𝑣𝑖 + 𝑢𝑖;Oi ~ Poisson ( i ), i ~ICAR, vi ~ N(0,

2

v ) [analyse 

with only proximal factors and spatial random effects]. 

In order to compare the presented models in Table 4.4 and Table 4.5, the DIC, the posterior 

means of the over-dispersion parameters and the effective number of parameters are given for 

each model. 

For the models with spatial random effects, the lowest value of the DIC is obtained for the 

Poisson model, while the DIC for the NP and GP model takes higher values. Hence, according to 

the DIC, the Poisson model is considered best among the spatial random effect models, while the 

NB and GP models clearly performed lesser. But considering the variances of the unstructured 

spatial effects for the three models, GP has the lowest variance and therefore can be said to be 

the best fit model on this basis. As we know that the lesser the variance, the better the precision. 

The effective number of parameters pD is close to the true number of parameters which is twenty 

four for the Poisson regression model, four for the NB and two for the GP regression model. 

Also, with the inclusion of spatial random effects, the posterior mean of the deviance and the 

number of effective parameters in the NP model hardly changed, but changes were observed in 

the GP models. 
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For the Poisson model, a significant drop in the DIC is observed when spatial effects are taken 

into account and a slight decrease in the NB model. This demonstrates that there are some extra 

variability in the data which is not adequately described by the covariates only in these models. 

For the non-spatial models, the lowest values of the DIC are obtained for the NP and GP models, 

while the DIC for the Poisson takes the highest value. Hence, according to the DIC, the NP and 

GP models are considered best among the models without spatial random effects, while the 

Poisson model clearly performed worse. Comparing the NB and GP models without spatial 

random effects, the NB model slightly performed better than the GB model on the basis of DIC, 

but GP would be preferred over NB on the basis of standard error estimates as GP model 

estimates tend to have lesser variance values. Also the effective number of parameters pD is 

close to the true number of parameters in the models. 

Since the Poisson model does not allow for over-dispersion and the heterogeneity is not of a zero 

inflated nature, therefore, for these two models (NB and GP), the unexplained variability is 

covered by the spatial effects. According to the DIC, the spatial random effect Poisson model 

gave the best fit and it is to be preferred to the non-spatial NB and GP models. It should be noted 

also, that the DIC must be used with care in this case, since firmly speaking, the DIC is defined 

for distributions of the exponential family only. 
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Table 4.4. Results to Compare Poisson, NB and GP Models in Handling Over-Dispersion 

with the inclusion of Spatial Random Effects. 

Covariates Poisson NB GP 

Intercept 6.68 (0.422) 6.96 (0.990) 3.92 (0.564) 

Pop. Dens. 0.005(0.000) 0.004 (0.001) 0.003 (0.001) 

No school -5.17(31.302) -5.93 (31.538) 1.09 (31.453) 

Ave hhold size 0.02 (0.116) -0.02 (0.267) 0.79 (0.138) 

ui-struc std 1.21 1.840e+04 18372.43 

vi-unstruc std 18373.35 1.841e+04 18095.99 

Mean of over-dis. - 3.412 32.38 

pD 23.80 3.761 1.797 

DIC 262.99 382.87 396.14 

Log L -211.30 -208.21 -301.36 
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Table 4.5. Results to Compare Poisson, NB and GP Models in Handling Over-Dispersion 

without the inclusion of Spatial Random Effects. 

Covariates Poisson NB GP 

Intercept 5.99 (0.062) 6.96  (1.005) 6.41 (0.796) 

Pop. Dens. 0.002 (0.000) 0.004 (0.001) 0.003  (0.000) 

No school -496.34(16.00) -5.80 (31.544) -8.44 (31.389) 

Ave hhold size 0.44 (0.020) -0.02 (0.271) 0.15 (0.212) 

Mean of over-dis. - 3.412 14.14 

pD 4.20 4.048 3.534 

DIC 7123.56 383.47 384.40 

Log L -3848.68 -206.62 -219.28 

 

By contrast of both methods for modelling over-dispersion (spatial and non-spatial models), it is 

seen that all the model distributions (Poisson, NB and GP) gave better fits when the spatial 

random effects were included. . Also by adding the spatial random effects can cause some 

changes in the posterior means and variances of fixed effects compared to the non-spatial 

random effect regression model. 

Interestingly, the results showed some differences and effects of the standard errors on the 

parameter estimates, based on these model distributions. Based on the comparison between 

Poisson, Negative Binomial and Generalized Poisson additive regression models, the Poisson, 

Negative Binomial and the Generalized Poisson produce almost similar estimates for the 

regression parameters in both models (spatial and non-spatial), but the standard errors for the 

Negative Binomial and the Generalized Poisson are larger than the Poisson.  
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Hence, the Poisson can be said to overstate the significance of the regression parameters in the 

presence of over-dispersion.  

The spatial maps in Figure 4.4 below showed varying patterns of TB distribution in the province 

using the three models (Poisson, NB and GP). The NB and GP spatial maps displayed a more 

systematic pattern of TB incidence in the twenty four sub-districts than the one displayed by the 

Poisson map, which showed a somewhat dispersed disease pattern, hence NB and GP modelling 

of the TB counts gave a more detailed and clustered disease patterns. 

 

 

 

 

 

 

 

 

 



125 
 

(1).  

(2).  

 

(3).  

Figure 4.4. Posterior Spatial Maps At 97.5% C.I for Comparing (1) Poisson Model (2). 

NB Model (3). GP Model.  
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4.2.2 Modelling the Structured Random Effects Using the Extended Weighted “Latent” 

ICAR Prior. 

For this analysis, the standard Besag, York and Mollie convolution model is adjusted with 

additive spatial random effects and then used to compare the priors for the structured random 

effect, 𝑢𝑖. An offset variable, log pop, of each region i, is used as a covariate in the model. 

 

Model:  𝑙𝑜𝑔𝜆𝑖 = 𝐿𝑜𝑔 (𝑝𝑜𝑝) +  𝛽0 + 𝑣𝑖 + 𝑢𝑖;  𝑣𝑖 ∼ 𝑖𝑖𝑑; 𝑢𝑖 ∼ "Besag" ICAR. 

 

Three (3) multilevel models with only one covariate as an offset variable are hereby developed 

for comparison between the spatial models BYM, the intrinsic CAR and the new “Besag2” 

ICAR model with additive spatial random effects and given as: 

Model 1: 𝑙𝑜𝑔𝜆𝑖 = 𝐿𝑜𝑔 (𝑝𝑜𝑝) + 𝛽0 + 𝑣𝑖 + 𝑢𝑖;  𝑣𝑖  ~ 𝑖𝑖𝑑, 𝑢𝑖~𝐵𝑌𝑀 

Model 2: 𝑙𝑜𝑔𝜆𝑖 = 𝐿𝑜𝑔 (𝑝𝑜𝑝) + 𝛽0 + 𝑣𝑖 + 𝑢𝑖;  𝑣𝑖  ~ 𝑖𝑖𝑑, 𝑢𝑖~𝐵𝑒𝑠𝑎𝑔 𝐼𝐶𝐴𝑅 

Model 3: 𝑙𝑜𝑔𝜆𝑖 = 𝐿𝑜𝑔 (𝑝𝑜𝑝) + 𝛽0 + 𝑣𝑖 + 𝑢𝑖;  𝑣𝑖  ~ 𝑖𝑖𝑑, 𝑢𝑖~𝐵𝑒𝑠𝑎𝑔2 𝐼𝐶𝐴𝑅 

Comparisons were made between the three spatial dependency models: BYM, ICAR and the 

newly proposed Besag2 ICAR, to see which of them gave a better fit and more interpretable 

estimates. As shown in Table 4.6 below, the major objective is not only to optimize model 

choice criteria such as DIC values, but to offer a sensible model design where all parameters 

have a clear significance and interpretation. On the basis of DIC, the performances of the models 

are almost identical, but the newly proposed model 3 gave the best fit.  
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Table 4.6: Comparison of Priors for the Structured Random Effects Model without 

Covariates. 

Spatial models 𝒍𝒐𝒈𝒑𝒐𝒑 𝒊 𝜷𝟎 𝒖𝒊 𝒗𝒊 pD Parameter, 

a 

DIC 

BYM 1.24 (0.26) 0.64 (1.37) 2725.85 1.45 23.90 - 263.12 

ICAR 1.24 (0.26) 0.64 (1.35) 18433.50 1.44 23.90 - 263.12 

Besag2 ICAR 1.29  (0.27) 0.46 (30.23) 18.83 1.44 23.89 0.05 (0.002) 263.08 

 

However, from the reparameterised “Besag2” ICAR model, which has the advantage of 

possessing two hyperparameters over the Besag ICAR prior with only one hyperparameter, the 

posterior estimates of the new prior gave significantly reduced variances for the two spatial 

components, and especially for the structured spatial component (𝜎 = 18.83), thereby making it 

to be considered as the best fitted model. In terms of model choice criteria by DIC values, the 

three models perform at least equally well with existing parameterisations, but only the new 

model offers parameters that are clearly interpretable. 
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The comparative spatial maps of the BYM and the usual ICAR models are very identical as 

shown in Figure 4.5 below. Spatial maps of ICAR and the new Besag2 ICAR models showed 

varying disease patterns when the two prior models were compared. The third model which 

utilized the new prior “Besag2” ICAR showed a better smooth and a more defined disease 

cluster and distribution.  

Areas like Inxuba Yethemba and Camdebbo in Sarah Baatman and Chris Hani municipalities 

respectively showed varying disease patterns from the two prior models as the new prior gave a 

smoother and a well-defined spatial dependency. 
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(i).  

               (ii).  

                       (iii).  

Figure 4.5: Posterior estimated Spatial maps of the structured random prior comparisons 

of BYM, Besag ICAR and the new “Besag2” ICAR Spatial models respectively. 
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4.3 Geospatial Assessment 

4.3.1. Curve Fittings With Linear And Biharmonic (Spline) Methods For Spatial Patterns 

Of TB In Eastern Cape, South Africa. 

The plottings of all the Figures of 4.3.1 shown below, displayed the spatial patterns of TB cases 

by the surface and contour plots using the linear and the biharmonic spline methods for the year 

(2012-2015). The datasets are represented generally as a 3D or XYZ triplets, where X and Y are 

the spatial coordinates and Z is the variable of interest and in this case, TB counts in the 

province. 

In curve fitting applications, the interpolant fit category fits an interpolating curve or surface that 

passes through every data points. Generally, the outlook of all the fittings showed a systematic 

pattern in the distribution of TB cases in the Eastern Cape province, and this is consistent with 

some of the initial statistical analyses carried out in this thesis, where the spread of the disease 

has been found to be non-random. It is also observed that the distribution of TB in the province 

tends to cluster more at the southern part and also shows a higher disease incidence as it 

approaches the coastal areas towards the Indian ocean. Only year 2012 showed a two high 

incidence hotspots of the disease in Kouga (Sarah Baartman Municipality), Nelson Mandela, 

King Dalingyebo and Nyandeni (OR Tambo) and Umzimvubu in Alfred Nzo municipality. The 

years 2013, 2014 and 2015 showed similar disease incidence clusters and hotspots.  

There is a very high cluster of TB at Amathole, OR Tambo and on the coastal stretch of Sarah 

Baartman Districts municipalities. Again, they all displayed a worrying pattern of incidence with 

closer proximity to the Indian ocean.  
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Neighbourhood effects of the disease spread can also be observed as TB incidence either eases 

away from the hotspot areas or increase as it approaches the hotspots. The central and northern 

part of Eastern Cape province showed a very low TB incidence, although not outrightly free 

from the disease. 

(Ai) 

 

A(ii) 

 

Figure 4.6: Surface plots for A(i) Linear interpolant and (ii) Biharmonic interpolant for 

TB 2012 data. 
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B(i) 

 

B(ii) 

 

Figure 4.7: Contour plots for B(i). Linear interpolant and B(ii). Biharmonic interpolant for TB 

2012 data. 
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A(i) 

 

 

A(ii)

 

Figure 4.8: Surface plots for A(i) Linear interpolant and (ii) Biharmonic interpolant for TB 2013 

data. 
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B(i). 

 

B(ii) 

 

Figure 4.9: Contour plots for B(i). Linear interpolant and B(ii). Biharmonic interpolant 

for TB 2013 data. 
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A(i). 

 

A(ii) 

 

Figure 4.10: Surface plots for A(i) Linear interpolant and A(ii) Biharmonic interpolant for TB 

2014 data. 
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B(i).  

 

B(ii) 

 

Figure 4.11: Contour plots for B(i). Linear interpolant and B(ii)  Biharmonic interpolant for TB 

2014 data. 
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A(i).

 

A(ii). 

 

Figure 4.12: Surface plots for A(i). Linear interpolant and (ii) Biharmonic interpolant for TB 

2015 data 
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B(i).  

 

 

B(ii) 

 

Figure 4.13: Contour plots for B(i). Linear interpolant and B(ii). Biharmonic interpolant for TB 

2015 data. 

 

 

 



139 
 

Chapter Five 

Findings, Summary and Conclusion 

This final chapter summarizes and discuss all the results obtained from the various methods that 

were employed in the analyses. It also highlights some of the limitations that may be conversant 

or observed in the whole procedures of this thesis. Reasons and areas of future research are also 

discussed in this chapter. 

5.1 Findings 

The results of Table 4.3 showed the multilevel effects of socio-economic and demographic 

factors on TB and it was generally observed that the relative risk imposed by poverty, population 

density and average household size were strong and positively related to the disease outcome. 

Also, Gini coefficient, unemployment and no schooling had no positive association with TB 

prevalence in any of the models. In models 3 and 6 where both the proximal and distal factors 

were combined, showed that some socio-economic factors like Gini coefficient and poverty rates 

gave both negative and positive relationship in the association respectively. The average number 

of people living in a household showed a positive association with TB incidence in all the 

models.  

Strong evidences for a relationship between TB and poverty are already available, expressed by 

higher TB incidence rates in crowed urban areas and amongst low income and illiterate 

populations (Waaler 2002). It is known that TB spread is cluster dependent, an infected 

individual in a crowded household would aid the easy transmission of the bacteria as also 

observed in Souza et al., (2007).  
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The combination of some socio-economic and demographic factors as distal and proximal factors 

respectively, considered in this research showed that both risk factors have interplaying effects 

on TB incidence, as individuals tend to converge with relation to their similar economic and 

demographic resemblance. The Eastern Cape Province is predominantly Black populated, hence 

there is a stronger tendency to converge as a community and which makes healthy individuals 

susceptible to the disease. 

The well-known phenomenon of over-dispersion which is inherent with Poisson density in 

counts data was basically studied in this thesis. This work has presented several regression 

models for count data allowing for over-dispersion. Over-dispersion is either modelled by the 

introduction of an additional parameter as in the NB and GP models, or by allowing for an extra 

proportion of zero observations using zero inflated models or by combining zero inflated models 

with over-dispersed distributions.  

For this thesis, the negative binomial (NB) and the generalized Poisson (GP) distributions were 

used to capture the extra variation in the TB count data, by adjusting with and without the spatial 

random components. Usually, additional spatial random effects are included in the models in 

order to account for unobserved spatial heterogeneity in the data. This method permits for spatial 

correlations between observations. The result of Table 4.4 was used for comparison between 

modelling with Poisson, negative binomial and generalized Poisson for the defined multilevel 

models. These models were applied to analyse cases of tuberculosis prevalence in the Eastern 

Cape province of South Africa. The DIC was used for model comparison. The Poisson model 

gave a significantly best fit than the spatial NB and GP regression models with DIC values of 

262.99, 382.87 and 396.14 respectively.  
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However, the models allowing for over-dispersion (NB and GP) gave better parameter estimates 

and lower variances for the two spatial random effects when compared with that of Poisson. 

Among these non-spatial models, the NB model fitted the data best, but the GP model gave more 

precise estimates from lower variance values. 

This thesis showed that even though the Poisson, the Negative Binomial and the Generalized 

Poisson gave similar estimates for the regression parameters, the standard errors for the Negative 

Binomial and the Generalized Poisson are higher than the Poisson. Therefore, the Poisson 

inflated the impact of the regression parameters in the presence of over-dispersion. 

The results of Tables 4.4 and Table 4.5 have also shown that the choices left for a researcher in 

choosing a best fit model would be based on either values of DIC or the model with the smaller 

variance values. Either of these choices have implications but I would suggest for the latter, as it 

is generally accepted that the lower the variance, the better the precisions.  

In concluding, the negative Binomial (NB) and the Generalized Poisson (GP) models are not that 

difficult to understand. Although the probability density functions for both Negative Binomial 

and Generalized Poisson involve some mathematically complex formulas, the mean and variance 

for both models are abstractly easier to be understood. The mean for both Negative Binomial and 

Generalized Poisson models are equal to the Poisson. The variance of the Negative Binomial is 

equal or larger than the Poisson, and this allows the Negative Binomial model to handle over-

dispersion. The variance of the Generalized Poisson is equal, larger or smaller than the Poisson, 

and this makes the Generalized Poisson able to handle both over-dispersion and under-

dispersion. 
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A disease mapping technique, which is usually used for smoothening of relative risk is the 

Bayesian Conditional Autoregressive (CAR) model (Clayton, 1987), which has only one 

precision hyperparameter, 𝜏. This CAR model offers some shrinkage and spatial smoothing of 

the raw relative risk estimate, which gives a more stable estimate of the shape of the underlying 

risk of disease than that given by the raw estimates (Venkatesen et al., 2012).  

Without suitable weighting that is characterized with the usual ICAR prior, the hyperparameter 

usually have no clear meaning and may be incorrectly interpreted. This sole parameter of this 

ICAR rest on the basic graph structure and is confused with the mixing parameter if the 

structured spatial effect is not correctly scaled. Also, it is not clear on how to select a prior 

distribution for this precision parameter. For lack of weighting, a fixed hyperprior for the 

precision parameter usually give diverse amount of smoothing if the graph on which given 

disease counts are observed is altered (Riebler et al., 2016). Also, the commonly used hyperprior 

distributions in the traditional ICAR prior models usually induce overfitting, and will not permit 

to reduce to simpler models such as a constant risk surface or uncorrelated noise over space 

(Simpson et al., 2015). Therefore, the need for a weighted and a better latent prior is essential in 

Bayesian disease mapping. 

The spatially structured random effect cannot be treated individually from the unstructured 

spatial random effect in the classical or frequentist BYM (Besag, York and Mollie) model. This 

makes the prior explanations for the hyperparameters of the two spatial random effects 

problematic and challenging (Andrea et al., 2016). There are other model designs that address 

this puzzling issue, nevertheless, the issue on how to select interpretable hyperpriors is still 

unresolved. 
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In this thesis, another type of an intrinsic CAR prior, a scaled ICAR prior, which is a member of 

the latent Gaussian markov random field models with two hyperparameters; a precision 

parameter,𝜏 , and a weight-parameter, a, was developed and assumed for the structured random 

effect, and compared with the generally used intrinsic conditional autoregressive model ICAR. In 

this new model, the precision parameter, 𝜏, signifies the marginal precision and it controls the 

unevenness explained by the spatial effect, while the mixing or weighting parameter, a, allocates 

prevailing variability between the unstructured and structured random effects. This new model 

parameterizes the BYM model and is also an extension of the Besag ICAR model, that leads to 

better parameter control as the hyperparameters can be seen independently from each other. 

From the result of Table 4.6, the new “Besag2” weighted ICAR prior was found to fit the data 

well with the two spatial components added in the model. The weight-parameter, a, of the new 

prior shows that the new model performed well both showing good learning abilities and good 

shrinkage behavior. In terms of model choice criteria, the proposed model performed at least 

equally well as existing parameterisations, but the new “Besag2” prior gave parameters that are 

interpretable and hyperpriors that have a clear meaning. This parameter meaningfully reduced 

the variances of the two spatial components, thereby making the new model to be considered as a 

better fit with a better and more acceptable precisions. Also in terms of model comparison, it was 

found that the Besag2 model is slightly favored compared to the BYM and the existing ICAR 

model in terms of DIC in the case of a constant risk. 

Performance in terms of model choice criteria by DIC is regarded lesser in this case. The main 

advantage of this novel “Besag2” ICAR model is that it permits for an intuitive parameter 

explanation and enables prior assignment. Also, the model is able to shrink towards a spatially 

unstructured risk for different disease prevalence.  
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This shows that the Besag2 ICAR model does not overfit the parameter estimates. It is therefore 

acceptable, that the practical advantages in terms of interpretability and prior assignment makes 

the newly proposed Besag2 ICAR model in this thesis beneficial compared to existing models, 

and its usage is also recommended since its model criteria performance is at least as good as for 

existing approaches. 

Surface modeling is the process of a natural or artificial surface determination by using one or 

more mathematical equations. Modeling the 3-dimensional surface in space involves finding a 

function z = f (x, y) that represents the entire surface of the values z = f (x, y) associated with the 

point P (x, y) arranged irregularly. In addition, this function can predict the values z = f (x, y) 

and for other positions regularly arranged. Such a feature is known as interpolation function 

(Dimitru et al., 2013). Interpolation and gridding of data are processes in the physical sciences 

and are accomplished naturally using an averaging or finite difference scheme on an equidistant 

grid. Cubic splines are common because of their smooth appearances however, these functions 

can have undesirable oscillations between data points (Wessel et al., 1998). 

In linear methods, the new surface is restricted to the area that contains the disease points and by 

default, it does not extrapolate beyond its regions. Also, the contours in linear method are rather 

angular than when compared with the biharmonic methods, which smooth the shapes of the 

contours. The method also presents a fast interpolation algorithm but has the disadvantage that 

the interpolation function is limited to the area bounded by convex random set of data points, 

thereby resulting in a surface that is not smoothed. MATLAB offers a biharmonic spline 

interpolation since the early stages. This interpolation method was developed by Sandwell 

(1987). This specific gridding method produces smooth surfaces that are mainly appropriate for 

noisy data sets with irregular distribution of control points. 
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On the observed TB counts from the twenty four (24) health subdistricts of the Eastern Cape 

province, we used the linear and the biharmonic spline interpolation methods for the disease 

spatial distribution. These two methods were used for comparison both for the surface and 

contour plottings, and the latter (biharmonic) was observed to give a well defined disease map 

and fit from the values of their respective sum of squares errors (SSE), and it also displayed a 

better spatial pattern of TB prevalence for the regions. On the biharmonic smoothing method, the 

spline interpolation is used to interpolate the irregular-spaced dataset at grid points. 

The biharmonic spline interpolation method used in this thesis provides a solution to most 

gridding problems. The biharmonic spline interpolations are in many ways, said to be the other 

extreme, because they can be used for very irregular-spaced and noisy data, hence the contours 

suggest an extremely smooth surface. For reasonable amounts of data, the Green's function or the 

biharmonic technique is superior or higher to the orthodox finite-difference methods because (1) 

both data values and directional gradients can be used to constrain the model surface, (2) noise 

and disturbances can be curbed easily by seeking a least-squares fit rather than exact 

interpolation, and (3) the model can be evaluated at random locations rather than only on a 

rectangular grid. In conclusion, one of the most worthwhile features of the biharmonic function 

approach for splines lies in the great simplification of the computer implementation and 

interpretation of the method. 
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5.2 Conclusion 

This thesis has been concerned with developing and extending statistical models in the area of 

spatial modelling with application to Tuberculosis data in the Eastern Cape Province of South 

Africa. The model (BYM) under consideration provides for areal (lattice) data only. Point pattern 

data were not examined in this work.  

Earlier disease mapping models are based on collating, mapping and analysing prevalence or 

incidence data with conventional (frequentist) statistical methods, which are often affected by 

random variation due to population variability and a loss of statistical power when cases are 

given to subgroups in geographical subregions.  

The true spatial distribution of a disease may not be reflected by the observed extreme values; 

instead it reflects those of the population areas. The Bayesian approach can overcome these 

problems as it can model the random and true variation separately (Bergamaschi et al., 2006). 

This is the basis upon which this thesis is centered on and it is an attractive substitute to the 

frequentist approach. 

This research by extension, considered an additional factor of demographic variability to socio-

economic factors as a possible risk factor for the prevalence of TB in the Eastern Cape province 

of South Africa. A combination of a Bayesian and generalized linear mixed model (GLMM) 

parameter estimation was carried out using the integrated nested Laplace approximation (INLA) 

and implemented in R, as an alternative to the commonly used Monte Carlo Markov Chain 

(MCMC) simulation technique. The former was adopted because of its computational advantage 

of speed over MCMC. 
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The practical implications of the multilevel models developed and utilised in this thesis to public 

health, are in its ability to direct for areas of surveillance and interventions to these disease 

hotspots. The spatial patterns of the disease distribution, as seen from the disease maps, would 

serve as a pointer to epidemiologists and government health agencies, to be able to make policies 

that would curb the spread of the disease and also promote health education to the concerned 

population of those hotspots. Areas around the coastal lines, which showed a higher disease 

prevalence from the spatial maps, should be given higher priority, and multifaceted factors that 

could be responsible for such a trend should be investigated, and those concerned should be 

properly educated. 

The struggle against infectious diseases like tuberculosis, will not decrease in the predictable 

future, so biostatisticians and epidemic modelers must continue to advance our science in order 

to contribute meaningfully to the fight. Also, government and public health authorities should 

intensify efforts in and for the Eastern Cape Province, to ensure that regions and locations with a 

consistent rise in TB prevalence are specially targeted with appropriate interventions.  When 

carrying out the various preventive interventions, emphasis should be focused also on preventing 

the incidence of HIV as it has a positive alliance with tuberculosis. 

5.3 Limitations of the Study and Future Research 

As we know that no study goes without limitations, a major limitation of our study is that data on 

sex and age of the cases were not provided by the electronic tuberculosis register (ETR), hence 

we could not give any case description for these groups.  

For this thesis, future works would consider extensions of the models presented to model for the 

negative binomial distribution, by allowing the dispersion parameter, d, to be spatially correlated 

and not fixed as assumed.  
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Further extensions of mixed negative binomial distribution that can cater for both under-

dispersion and over-dispersion have been mentioned for count data analyses (Tomoaki Imoto, 

2014). 

Further studies can also be directed into using alternative distributions for the structured random 

effects in lieu of the intrinsic conditional autoregressive (ICAR) model. The Besag2 ICAR model 

can also be logically joined and applied with covariate information, or integrated into a spatio-

temporal situation. Further work would also be required to distribute the variance not only within 

the spatial components but over all model parameters in the linear predictor.  

A major extension of all the models discussed in this thesis is the incorporation of the temporal 

component as most spatial data are also time dependent. Since ETR survey will be carried out in 

the future, these models can be extended to accommodate for this time portion. Some authors 

have considered temporal extensions to hierarchical spatial models based on a parametric 

description of the time trends, on independent risk estimates for each time period, or on the 

definition of the joint covariance matrix for all the periods as a Kronecker product of matrices 

(Cressie and Wikle, 2011).  

Nonparametric methods can also be employed in the overall analyses of Bayesian spatial 

modelling. A full semi-parametric or penalized regression based on splines is an area to look 

into, as it would relax the restrictions involved and embedded in parametric procedures. 

Above all, further researches can be focused on extending these models for TB/HIV joint 

modelling, and this should be given a high priority research concern as it is a major problem in 

South Africa. Research on the distribution of tuberculosis can also be extended into the racial 

composition of the province and the country in general, as South Africa still has evidence of 

racial divide by residential differentiation in some locations. 
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Lawson, A, BöHning, D., Biggeri, A., Lesaffre, E. and, Viel J-F. (1999). Disease Mapping and Its Uses. 
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Appendix I. 

R codes used for the multilevel models.  

# Packages required 

library("MASS") 

library("lattice") 

library("ctv") 

library("sp") 

library(maptools) 

library(rgdal) 

require(RColorBrewer) 

library(spdep) 

require(INLA) 

###########Linearity##################### 

########################### 

#########Model-1############ 

############################ 

formula<-TB~GINI+Poverty+UNEMP 

result1<-

inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE,mlik=TRUE,cpo=TRUE)) 

summary (result1) 
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########################### 

#########Model-2############ 

############################ 

formula<-TB~POPDEN+Noschool+AVGHouse 

result2<-inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor 

= list(compute = TRUE)) 

summary(result2) 

stru=result2$summary.random$District1 

stru 

########################### 

#########Model-3############ 

############################ 

formula<-TB~GINI+Poverty+UNEMP+POPDEN+Noschool+AVGHouse 

result3<-inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor 

= list(compute = TRUE)) 

summary(result3) 

unstru=result3$summary.random$District 

unstru 

########################### 

#########Model-4############ 

############################ 

formula<-TB~GINI+Poverty+UNEMP+f(District,model="iid")+f(District1,scale.model=TRUE, 

model="Besag",graph="dav.graph") 

result4<-inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor 

= list(compute = TRUE)) 

summary(result4) 
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 stru=result4$summary.random$District1 

stru 

unstru=result4$summary.random$District 

unstru 

dav.graph$NUNSTR<-stru$"0.975quant" 

spplot(dav.graph,"NUNSTR",   col.regions=bpy.colors(20)) 

unstru=result3$summary.random$District 

unstru 

dav.graph$UNUNSTR<-unstru$"0.975quant" 

spplot(dav.graph,"UNUNSTR",   col.regions=bpy.colors(20)) 

########################### 

#########Model-5############ 

############################ 

formula<-TB~POPDEN+Noschool+AVGHouse+f(District, model="iid")+f(District1,scale.model=TRUE, 

model="Besag",graph="dav.graph") 

result5<-inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor 

= list(compute = TRUE)) 

summary(result5) 

########################### 

#########Model-6############ 

############################ 

formula<-TB~GINI+Poverty+UNEMP+POPDEN+Noschool+AVGHouse+f(District, 

model="iid")+f(District1,scale.model=TRUE, model="Besag",graph="dav.graph") 

result6<-

inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE,mlik=TRUE,cpo=TRUE)) 

summary(result6) 
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dav.graph$NUNSTR<-stru$"0.975quant" 

spplot(dav.graph,"NUNSTR",   col.regions=bpy.colors(20)) 

unstru=result1$summary.random$District 

unstru 

dav.graph$UNUNSTR<-unstru$"0.975quant" 

spplot(dav.graph,"UNUNSTR",   col.regions=bpy.colors(20)) 

########################### 

#########Model-7############ 

############################ 

formula<-TB~f(District,model="iid")+f(District1,scale.model=TRUE, 

model="Besag",graph="dav.graph") 

result7<-inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor 

= list(compute = TRUE)) 

summary(result7) 

#####SPATIAL EFFECTS-Structured#### 

stru=result6$summary.random$District1 

stru 

#####SPATIAL EFFECTS-unstructured#### 

unstru=result6$summary.random$District 

unstru 

#################PLOTS############# 

#############STRU############## 

dav.graph$NUNSTR<-stru$"0.5quant" 

spplot(dav.graph,"NUNSTR",   col.regions=bpy.colors(20)) 

dav.graph$NUNSTR1<-stru$"0.025quant" 

spplot(dav.graph,"NUNSTR1",   col.regions=bpy.colors(20)) 
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dav.graph$NUNSTR1<-stru$"0.975quant" 

spplot(dav.graph,"NUNSTR1",   col.regions=bpy.colors(20)) 

##############UNSTRU################# 

dav.graph$UNUNSTR<-unstru$"0.5quant" 

spplot(dav.graph,"UNUNSTR",   col.regions=bpy.colors(20)) 

# R-INLA codes for spatially weighted ICAR 

############################ 

#########Model-5############ 

############################ 

formula<-TB~log(pop)+f(District,model="iid")+f(District1,scale.model=TRUE, 

model="besag2",graph="dav.graph") 

result5<-

inla(formula,family="poisson",data=dav_data,control.compute=list(dic=TRUE),control.predictor = 

list(compute = TRUE)) 

summary(result5) 

stru=result5$summary.random$District1 

stru 

unstru=result5$summary.random$District 

unstru 

dav.graph$NUNSTR<-stru$"0.975quant" 

spplot(dav.graph,"NUNSTR",   col.regions=bpy.colors(20)) 

dav.graph$UNUNSTR<-unstru$"0.975quant" 

spplot(dav.graph,"UNUNSTR",   col.regions=bpy.colors(20)) 
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Appendix II 

Table A1: TB prevalence data in the Eastern Cape Province from 2012 to 2015. 
 Locations  LONG 

(X) 

LAT (Y) tb cases 

(Z):- 

2012 2013 2014 2015  

1 Maluti  28.76 -30.31  791 784 843 875  

2 Umzimvubu 28.95 -30.77  2754 2169 2458 2931  

3 Amahlathi 27.26 -32.52  1514 1642 1579 1537  

4 Mbhashe  28.76 -32.16  994 1203 1185 1282  

5 Mnquma  28.01 -32.17  1115 1171 1272 1292  

6 Nkonkobe 26.83 -32.79  1139 1086 1042 1035  

7 Emalahleni 27.07 -31.55  855 744 777 713  

8 Engcobo  27.98 -31.67  1481 1321 926 770  

9 Intsika Yethu 27.64 -31.93  905 1026 737 833  

10 Inxuba Yethemba 25.37 -31.93  1092 1202 818 942  

11 Lukhanji  26.89 -32.1  1354 1328 1418 1222  

12 Sakhisizwe 27.83 -31.38  551 435 388 336  

13 Elundini  28.39 -30.91  547 505 611 475  

14 Maletswai 26.89 -30.92  457 489 533 539  

15 Sengu  27.64 -30.91  848 730 792 919  

16 Quakeni  29.69 -31.26  1682 1473 1355 1509  

17 King Dalindyebo 28.57 -31.7  2809 2892 2517 2154  

18 Mhlontlo  28.81 -31.19  1156 1028 1164 1056  

19 Nyandeni 29.13 -31.56  2847 2726 2838 2891  

20 Camdebbo 24.33 -32.23  973 905 899 1054  

21 Kouga  24.8 -33.91  2506 2706 2640 2529  

22 Makana  26.32 -33.24  1158 1135 1109 989  

23 A  27.64 -32.93  34 5409 5568 5147  

24 B  25.56 -33.74  3409 4016 3896 3862  
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Table A2: TB 2014 Analysis Dataset. 

District GINI Poverty TB Noschool POPDEN AVGHouse UNEMP Population Logpop 

1 0.69 0.8005 843 0.00094 61.68 3.7 20.69 268,428 5.428828 

2 0.65 0.636 2458 0.0008 92.29 3.8 28.53 231,401 5.364365 

3 0.71 0.5205 1579 0.001 28.46 3.5 30.86 121,432 5.084333 

4 0.5 0.6843 1185 0.00212 88.68 4.1 37.11 270,865 5.432753 

5 0.51 0.6405 1272 0.00114 94.34 3.5 26.46 312,077 5.494262 

6 0.38 0.6923 1042 0.00072 37.16 3.4 49.24 138,513 5.141491 

11 0.39 0.6253 777 0.00188 36.51 3.7 63.84 129,886 5.113562 

12 0.72 0.6803 926 0.00197 62.78 4 41.78 141,911 5.152016 

13 0.2 0.7201 737 0.00146 62.36 3.5 49.78 189,883 5.278486 

14 0.5 0.3521 818 0.00107 4.39 3.4 25.68 50,924 4.706923 

15 0.44 0.6195 1418 0.00078 51.91 3.5 36.97 221,281 5.344944 

16 1.01 0.615 388 0.00127 25.78 3.7 52.99 57,997 4.763406 

17 0.58 0.6363 611 0.00159 25.63 3.5 21.05 130,174 5.114524 

18 0.64 0.1868 533 0.0011 10.42 3.4 26.99 45,463 4.657658 

19 0.74 0.3944 792 0.00145 17.23 3.5 35.63 126,195 5.101042 

23 0.48 0.6087 1355 0.00208 120.59 4.7 23.55 296,808 5.472476 

21 0.62 0.4849 2517 0.0014 156.27 4 21.02 456,447 5.65939 

22 0.64 0.599 1164 0.00147 87.33 4.2 24.05 246,656 5.392092 

24 0.51 0.5907 2838 0.00182 133.71 4.6 40.61 330,461 5.51912 

8 0.54 0.0931 899 0.0009 5.98 3.8 18.91 43,292 4.636408 

9 0.72 0.2649 2640 0.00049 31.47 3.2 14.62 76,091 4.881333 

10 0.54 0.4738 1109 0.00063 17.08 3.4 36.51 74,793 4.873861 

7 0.54 0.4653 5568 0.00049 311.26 3.2 21.14 785,330 5.895052 

20 0.69 0.442 3896 0.0003 569.32 3.4 26.77 1,111,767 6.046014 
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Appendix III 

Ethical Clearance Certificate. 
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