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ABSTRACT   

In this paper, Bayesian hierarchical model proposed to estimate the coefficients of the composite quantile 

regression model when the response variable is binary.  For selecting variables in binary composite quantile 

regression lasso the adaptive lasso penalty is derived in a Bayesian framework. Simulation study and real data 

examples are used to examine the performance of the proposed methods compared to the other existing methods. 

We conclude that the proposed method is comparable.  
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1. Introduction 

Modelling the relationship between the average of a dependent variable Y with the set of explanatory variables X 

not always be convenient. In many application studies mean regression may be not appropriate to describe the 

behavior of outcome variable Y with covariates variable X. For example, the effect of demographic properties and 

maternal conduct on the weight of infant born was study by [1] in the United States. This study concerned in low 

birth weight for infant it is cause many health problems, these data analyze by standard mean regression, the 

conditional mean was not attractive approach for low tail distribution. Quantile regression (QReg) was proposed 

by [14] as an extension for standard mean regression to conditional different quantiles of a dependent variables. 

Quantile regression model is a capable of providing a complete information about different quantiles of the 

stochastic relationships between dependent and predictors variables. Recently, quantile regression has received 

much attention in theoretical and application study, it is applied in different field of study biology, medicine, 

survival analysis, financial and economics and environment for more detail see [26].    

For  any 𝜏th quantile, (0 < 𝜏 < 1) , the  𝜏th quantile regression can be denoted as 𝑄𝑦𝑖|𝑥𝑖
(𝜏) = 𝑥′𝑖𝛽𝜏 , where 𝑦𝑖 is 

the response variable, 𝑥′𝑖 is a k-dimensional vector,  𝛽𝜏  is a  coefficient vector of quantile regression. To estimate 

the coefficient vector [14] proposed this equation 

∑ 

𝑛

𝑖=1

𝜌𝜏(𝑦𝑖 − 𝑥′
𝑖𝛽𝜏),                                                          (1) 
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where 𝜌𝜏(𝑢) = 𝜏(1 − 𝐼(𝑢 < 0)), 𝐼(𝑢 < 0) is the indicator function this equation can be minimization by the 

algorithm proposed by [13]?   Bayesian method employ to estimate quantile regression coefficient where the 

errors are independent asymmetric Laplace distribution [25]. 

In recent years, selection important subset of explanatory variables takes a lot of attention in the literature, many 

techniques suggest to get the   important groups in the model for instance, lasso [24], SCAD [8], the elastic net 

method [29], adaptive Lasso [28]. Variables selection techniques has been used in quantile regression model, 

lasso penalty was applied to the mixed-effect QReg model or longitudinal data by [12], a solution path was 

introduced by [19] to  𝐿1-penalized for quantile regression model. Bayesian hierarchical model was proposed by 

[18], in lasso, group lasso and elastic net in quantile regression. In linear-mixed quantile regression A hierarchical 

Bayesian Lasso was used by [2] and was developed Bayesian adoptive lasso in quantile regression [3]. 

Binary quantile regression was developed for by [20,21], he was employed quantile regression in a classification 

and indicted to the drawbacks in the frequentist process as the difficulty optimization to estimate the parameters 

and the problem of computing confidence interval to the parameters.  [16] studied models with binary response 

variable by quantile regression and was concluded this approach drive to good classification. Bayesian approach 

was adopted by [5] to avoid the drawback that mention above by setting some assumptions on the error term. [22] 

considered approach that proposed by [6] to evaluate the credit risk was modelled by binary quantile regression. 

New method was proposed for estimating the coefficients in regression model called composite quantile 

regression (CQReg), and show the relative efficiency of these estimators is greater than 70% when compare with 

least square estimator regardless of the error distribution [30]. Composite quantile regression (CQReg) estimators 

are robust to the heavy tailed or outliers in the dependent variables and more efficient than a single quantile 

regression. For these characteristics we employ this approach in this study. 

The novel in this paper, Bayesian hierarchical model proposed to estimate the coefficients of the composite 

quantile regression model when the response variable is binary.  For selecting variables in binary composite 

quantile regression lasso and the adoptive lasso penalty is derived in a Bayesian framework.   

2.   Prior assumptions and hierarchical models 

2.1.   Bayesian Binary composite quantile regression model (BBCQReg) 

Consider the following model  

𝑦 𝑖 = 𝑏𝜏 + 𝑥𝑖
′𝛽 + 휀𝑖,              𝑖 = 1,…… . , 𝑛 ,   𝑦𝑖 = ℎ(𝑦 𝑖)                              (2) 

                                      𝑦𝑖 = {1     𝑖𝑓   𝑦 𝑖 ≥ 0    0     𝑖𝑓  𝑦 𝑖 < 0     

Where 𝑦𝑖  is an observed binary response variable determined by the unobserved scalar latent variable 𝑦 𝑖  , 𝑏𝜏 is the 

𝜏𝑡ℎ quantile intercept parameter where 0 < 𝜏 < 1, 𝑥𝑖
′ is a p-dimensional vector of explanatory variables,   𝛽 is a 

vector of coefficient, 휀𝑖 is the error term. For (0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑞 < 1), composite quantile regression 

parameters estimate by solving the following equation   

(�̂�𝜏1
, �̂�𝜏2

, …… , �̂�𝜏𝑞
, �̂�) = 𝑎𝑟𝑔 ∑ 

 𝑞

𝑗=1

{∑ 

𝑛

𝑖=1

𝜌𝜏𝑗
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽)}  ,                       (3) 

where  𝜌𝜏𝑗
(𝑡) = 𝑡 (𝜏𝑗 − 𝐼(𝑡 < 0)), is the check function and   𝐼(. ), is indicator function, 𝜏𝑗 =

𝑗

𝑞+1
 , 𝑗 =

1,2,… . . , 𝑞. Equation (3) is a mixture of the objective functions from different quantile models. 
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Quantile regression was adopting by many researchers to treatment the models with binary response variable see 

for example [20,21,16,9,5,6]. Recently, composite quantile regression (CQReg) that proposed by [30] have been 

proven more efficient than the single quantile regression and more robust in the non-normal distribution for the 

error. To ameliorate the efficiency of CQReg a new estimation approach was proposed by [27], based on different 

weights of the components and they introduced a technique to estimate the optimal weight. Follow [27], weighted 

composite quantile regression proposed in this paper to model the binary response data, so Equation (3) rewrites 

as follow: 

(�̂�𝜏1
, �̂�𝜏2

, …… , �̂�𝜏𝑞
, �̂�) = 𝑎𝑟𝑔∑ 

 𝑞

𝑗=1

{∑ 

𝑛

𝑖=1

𝑤𝑗𝜌𝜏𝑗
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽)}                       (4)  

where the weight  0 ≤ 𝑤𝑗 ≤ 1, and  ∑  
𝑞
𝑗=1 𝑤𝑗 = 1, for each component 𝑗𝑡ℎ. 

The latent variables 𝑦 1, 𝑦 2, …… , 𝑦 𝑛, come from an asymmetric Laplace distribution with parameters  𝐴𝐿𝐷(𝜇 =

𝑏𝜏 + 𝑥𝑖
′𝛽, 𝜎 = 1, 𝜏), for identification reasons 𝜎 set at unity, for more detail, see ([5, 15, 25]),  

 

𝑝(𝑦 𝑖|𝑦𝑖 , 𝑥𝑖 , 𝑏𝜏, 𝛽, 𝜏) = 𝜏(1 − 𝜏)𝑒𝑥𝑝 (−𝜌𝜏(𝑦 𝑖 − 𝑏𝜏 − 𝑥𝑖
′𝛽)). 

So the joint distribution function of 𝑦 = (𝑦 1, 𝑦 2, …… , 𝑦 𝑛)  given 𝑋 = (𝑥1
′ , 𝑥2

′ , …… , 𝑥𝑛
′ )′is: 

𝑙 = ∏  
𝑞
𝑗=1 ∏  𝑛

𝑖=1 𝜏(1 − 𝜏) 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 𝑤𝑗𝜌𝜏𝑗
(�̌�𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽))                   (5)   

Maximization the likelihood function (5) is equivalent to Minimization the loss function (3), Equation (5) is 

difficult to solve directly, follow f [10] cluster assignment matrix 𝐾 with the elements 

 

𝑘𝑖𝑗 = {
1                       when ith belong to jth cluster  
0        when ith does not belong to jth cluster

                                           

 

Where 𝑘𝑖𝑗 Treat as missing value, the likelihood function will be as follows: 

  ∏  
𝑞
𝑗=1 ∏  𝑛

𝑖=1 [𝑤𝑗𝑝(𝑦 𝑖|𝑦𝑖 , 𝑥𝑖 , 𝑏𝜏, 𝛽, 𝜏)]
𝑘𝑖𝑗                                                                              (6) 

To facilitate of calculations by using an MCMC algorithm a mixed representation  of asymmetric Laplace 

distribution have been used, the error term can be written as a mixture of standard normal distribution and 

standard exponential see  [17], suppose that  𝑢~ 𝑒𝑥𝑝 (
1

𝜏(1−𝜏)
) and 𝑣~𝑁(0,1). Therefore, the error term in (2) can 

be written as  휀 = 𝜃𝑢 + √𝜑𝑢𝑣, where 𝜃 = (1 − 2𝜏) and 𝜑 = 2. Using MCMC algorithm with a mixed 

representation provided by [11]   lead to converge at a geometric rate. Then the conditional distribution of 𝑦 𝑖 will 

be as follows:  

𝑝(𝑦 𝑖|𝑦𝑖 , 𝑋, 𝑏, 𝛽, 𝑢𝑖, 𝑤, 𝐾) =𝑒𝑥𝑝   (−∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

 𝑘𝑖𝑗

4𝑢𝑖
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽 − 𝜃𝑢𝑖)

2
) ∏ 

𝑛

𝑖=1

(4𝜋𝑢𝑖)
−

𝑘𝑖𝑗

2                    (7)  
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The fully conditional distribution of  𝑦 𝑖 as we see in equation (7) is a mixture of two truncated normal distribution 

and can write as follow:  

 �̌�𝑖|𝑦𝑖 , 𝑋, 𝑏, 𝛽, 𝑢𝑖 ~ {
𝑁 (𝑏𝜏𝑗

+ 𝑥𝑖
′𝛽 + 𝜃𝑢𝑖, 2𝑢𝑖) 𝐼(�̌�𝑖 > 0)     𝑖𝑓  𝑦𝑖 = 1

𝑁 (𝑏𝜏𝑗
+ 𝑥𝑖

′𝛽 + 𝜃𝑢𝑖, 2𝑢𝑖) 𝐼(�̌�𝑖 < 0)     𝑖𝑓  𝑦𝑖 = 0
                                 (8)    

   

The prior distribution for the coefficients  𝛽 = (𝛽1, 𝛽2, …… . , 𝛽𝑝) set as normal distribution 𝜋(𝛽)~𝑁(0,100), 

follow   [10] Dirichlet prior distribution consider for the weight vector 𝑤 = (𝑤1, 𝑤2, …… . . , 𝑤𝑞), so the prior 

distribution is:   

𝜋(𝑤) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛿1, 𝛿2, …… . , 𝛿𝑞) 

The Bayesian hierarchical model for binary composite quantile regression will write as follows: 

 

                                              �̌�|𝑦, 𝑥, 𝑏𝜏, 𝛽, 𝑢 ~ 𝑁(𝑏𝜏𝑗
+ 𝑥𝑖

′𝛽 + 𝜃𝑢𝑖, 2𝑢𝑖) 

𝜋(𝛽)~𝑁(0,100)                                                                  (9) 

                                              𝑝(𝑢𝑖)~∏  𝑛
𝑖=1 𝜏(1 − 𝜏)𝑒𝑥𝑝 (−𝜏(1 − 𝜏)𝑢𝑖) 

                                              𝑝(𝑣𝑖)~∏  𝑛
𝑖=1

1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑣𝑖

2) 

2.2. Bayesian Lasso penalty for binary composite quantile regression (BLBCQReg) 

In this section, the lasso penalty for binary composite quantile regression was considered, coefficient can be 

estimated by the following 

∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

[𝑤𝑗𝜌𝜏𝑗
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽)] + 𝜆 ∑  

𝑝

𝑘=1

|𝛽𝑘|                                              (10)  

Where the second term is 𝑙1 the norm penalty for  𝛽,  𝜆 > 0,  is the Lagrange multiplier. Laplace distribution put 

as a prior for  𝛽,  

𝜋(𝛽𝑘|𝜆, 𝜎) =
𝜎𝜆

2
 𝑒𝑥𝑝{−𝜎𝜆|𝛽𝑘|}                                                                  (11) 

 

 

For any 𝑏 ≥ 0, Equation (11) can be expressed as follows   [4]:  

𝑏

2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝑏|𝑧|)  = ∫  

∞

0

1

√2𝜋𝑠
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝑧2

2𝑠
)  

𝑏2

2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝑏2

2
𝑠)  𝑑𝑠. 

Let 𝛾 = 𝜎𝜆, then the prior distribution for the coefficients 𝛽 will be can be shown as follow  
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𝜋(𝛽𝑘|𝛾) = ∏ 

𝑝

𝑘=1

∫  
∞

0

1

√2𝜋𝑠𝑘

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝛽𝑘

2𝑠𝑘
)  

𝛾2

2
𝑒𝑥𝑝 (−

𝛾2

2
𝑠𝑘)𝑑𝑠𝑘 .                     (12) 

Following [18], we considered gamma distribution as a prior for the parameter  𝛾2 , the Bayesian hierarchical 

model for binary composite quantile regression will be  

                                                 �̌�|𝑦, 𝑥, 𝑏𝜏, 𝛽, 𝑢 ~ 𝑁(𝑏𝜏𝑗
+ 𝑥𝑖

′𝛽 + 𝜃𝑢𝑖, 2𝑢𝑖)  

                                         𝑝(𝑢𝑖)~∏  𝑛
𝑖=1 𝜏(1 − 𝜏) 𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝜏(1 − 𝜏)𝑢𝑖)                                                        (13) 

                                                  𝑝(𝑣𝑖)~∏  𝑛
𝑖=1

1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑣𝑖

2) 

                                              𝜋(𝛽, 𝑠|𝛾2) = ∏  
𝑝
𝑘=1 ∫  

∞

0

1

√2𝜋𝑠𝑘
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛽𝑘

2𝑠𝑘
)  

𝛾2

2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛾2

2
𝑠𝑘)  𝑑𝑠𝑘 .       

                                                  𝑝(𝛾2) = (𝛾2)𝑎−1𝑒𝑥𝑝 (−𝑏𝛾2) 

where = (𝑠1, 𝑠2, … . . , 𝑠𝑝) , 𝑎 , 𝑏 > 0 , are the hyperparameters.  

 

2.3. Bayesian adaptive Lasso penalty for binary composite quantile regression (BALBCQReg) 

Adaptive lasso penalty [28] was extended for a lasso approach that proposed by [24]. Adaptive lasso has been 

proved by  [28] yields a consistent estimate and enjoys oracles properties   [8] while in high dimensional. Binary 

composite quantile regression with adaptive lasso penalty estimates by solving the following  

∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

[𝑤𝑗𝜌𝜏𝑗
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽)] + ∑  

𝑝

𝑘=1

𝜆𝑘|𝛽𝑘|                                                    (14)  

where 𝜆𝑘 > 0, 𝜆𝑘  are weighted penalty parameters, the second term ∑  
𝑝
𝑘=1 𝜆𝑘|𝛽𝑘| is the adaptive weighted 

penalty for parameter selection. Follow [3],  Laplace prior distribution was setting for the parameters  𝛽𝑘 and the 

form is  

𝜋(𝛽𝑘|𝜆𝑘, 𝜎) =
𝜎

1
2

2𝜆𝑘
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝜎
1
2|𝛽𝑘|

𝜆𝑘
)                                                            (15)  

Equation (15) can be expressed as a mixture of exponential and normal mix function     [4] . For any 𝑏 > 0, then  

 

𝑏

2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝑏|𝑧|)  = ∫  

∞

0

1

√2𝜋𝑠
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝑧2

2𝑠
)  

𝑏2

2
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝑏2

2
𝑠)  𝑑𝑠. 

 

 Let  𝜂𝑘 =
𝜎

1
2

𝜆𝑘
 , so the prior distribution for 𝛽𝑘 can be rewritten as follows: 

𝜋(𝛽𝑘| 𝜂𝑘) = ∏ 

𝑝

𝑘=1

∫  
∞

0

1

√2𝜋𝑟𝑘
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛽𝑘
2

2𝑟𝑘
)  

𝜂𝑘
2

2
𝑒𝑥𝑝 (−

𝜂𝑘
2

2
𝑟𝑘)𝑑𝑟𝑘.                            (16) 
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For the parameters  𝜂𝑘
2    Gamma distribution set as a prior distribution   [3] . 

The Bayesian hierarchical model for binary composite quantile regression with an adaptive lasso penalty can be 

shown as follows: 

                                    �̌�|𝑦, 𝑥, 𝑏𝜏, 𝛽, 𝑢 ~ 𝑁(𝑏𝜏𝑗
+ 𝑥𝑖

′𝛽 + 𝜃𝑢𝑖, 2𝑢𝑖) 

                                    𝑝(𝑢𝑖)~∏  𝑛
𝑖=1 𝜏(1 − 𝜏) 𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝜏(1 − 𝜏)𝑢𝑖)                                                                       (17) 

                                    𝑝(𝑣𝑖)~∏  𝑛
𝑖=1

1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑣𝑖

2) 

                                    𝜋(𝛽, 𝑟𝑘|𝜂𝑘
2) = ∏  

𝑝
𝑘=1 ∫  

∞

0

1

√2𝜋𝑟𝑘
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛽𝑘
2

2𝑟𝑘
)  

𝜂𝑘
2

2
𝑒𝑥𝑝 (−

𝜂𝑘
2

2
𝑟𝑘)𝑑𝑟𝑘 .   

                                     𝑝(𝜂𝑘
2) = ∏  

𝑝
𝑘=1 (𝜂𝑘

2)𝑐−1𝑒𝑥𝑝 (− 𝑑𝜂𝑘
2) 

 

where, 𝑏 > 0 are the hyperparameters.  

Under the hierarchical Bayesian models (9), (13) and (17), the Gibbs sampler algorithm is used to sample and 

update the parameters. The full conditional distributions for the three methods above are derivative in Appendix 

to get the posterior distribution. 

3. Simulation scenarios  

In this section, simulation scenarios will be considered to investigating our proposed methods compared to some 

other existing methods; binary regression quantiles (BRQ) which is proposed by [20] and Bayesian lasso binary 

quantile regression (BBRQL) that method was proposed by [6]. Four quantiles are used  𝜏 =
( 0.20,0.40,0.60, 0.80) . For each simulation scenario, random error 휀𝑖 are generated from   four  different 

distributions: Normal distribution with mean (0) and variance (1), 휀𝑖~𝑁(0,1)  mixture of normal distributions 

𝑁(1,1) 𝑎𝑛𝑑 𝑁(−1,1), student distribution with (3) degree of freedom , 휀𝑖~𝑡(3) and Laplace distribution with 

location parameter  (0) and scale parameter (1), 휀𝑖~𝐿𝑎𝑝(0,1). In each simulation scenario, the algorithm run 

13000 iterations and the first 3000 were takeout as burn in. The consideration methods are evaluated based on the 

root mean square error (RMSE) and mean absolute error (MAE). In our study, we will used three simulation 

scenarios, the computations were done by using R package. 

 

3.1. First simulation 

In the first simulation scenario, very sparse model will be used within the model: 

 

𝑦 𝑖 = 5𝑥𝑖𝑗 + 휀𝑖            𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,…… .100 𝑎𝑛𝑑 𝑗 = 1,… ,9. 

 

The covariate variables are generated from the standard Uniform (0,1), where the true parameters of independent 

variables are  𝛽 = (0,5,0,0,0,0,0,0,0). 

The (RMSE) and (MAE) are listed in Table 1. We can readily saw across all the quantile levels, our proposed 

methods (BBCQReg, BLBCQReg and BALBCQReg) have high performance compared to the BRQ and BBRQL. 

 In general, Table (1) show that the (RMSE) and (MAE) for the proposed methods BBCQReg, BLBCQReg and 

BALBCQReg are smaller than that for existing methods. 

Table 1. RMSE and MAE for the first simulation scenario 

Error distributions 

Methods under study 휀𝑖~𝑁(0,1) 휀𝑖~Normal mix  휀𝑖~𝑡(3) 휀𝑖~𝐿𝑎𝑝(0,1) 
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𝐵𝑅𝑄𝜏1=0.20 0.754 (0.147) 0.842 (0.212) 0.645 (0.142) 0.724 (0.154) 

𝐵𝑅𝑄𝜏2=0.40 0.864 (0.154) 0.987 (0.217) 0.749 (0.356) 0.784 (0.128) 

𝐵𝑅𝑄𝜏3=0.60 0.971 (0.318) 0.871 (0.259) 0.741 (0.445) 0.687 (0.154) 

𝐵𝑅𝑄𝜏4=0.80 1.245 (0.341) 1.545 (0.231) 1.754 (0.421) 1.457 (0.215) 

𝐵𝐵𝑅𝑄𝐿𝜏1=0.20 0.647 (0.218) 0.782 (0.317) 0.974 (0.151) 1.245 (0.417) 

𝐵𝐵𝑅𝑄𝐿𝜏2=0.40 0.451 (0.412) 0.841 (0.265) 0.872 (0.124) 0.148 (0.421) 

𝐵𝐵𝑅𝑄𝐿𝜏3=0.60 0.874 (0.145) 0.947 (0.248) 0.974 (0.254) 0.879 (0.457) 

𝐵𝐵𝑅𝑄𝐿𝜏4=0.80 1.974 (0.287) 1.674 (0.574) 1.784 (0.697) 0.975 (0.647) 

BBCQReg 0.412 (0.107) 0.347 (0.119) 0.417 (0.207) 0.292 (0.097) 

BLBCQReg 0.318 (0.108) 0.292 (0.088) 0.642 (0.467) 0.321 (0.247) 

BALBCQReg 0.487 (0.058) 0.347 (0.217) 0.528 (0.092) 0.541 (0.124) 
            In the parentheses are belong to MAE. 

 

3.2. Second simulation 

In the second simulation scenario, we will used dense case within the true our model: 

 

𝑦 𝑖 = 0.85𝑥𝑖1 + 0.85𝑥𝑖2 + 0.85𝑥𝑖3 + 0.85𝑥𝑖4 + 0.85𝑥𝑖5 + 0.85𝑥𝑖6 + 0.85𝑥𝑖7 + 0.85𝑥𝑖8

+ 휀𝑖                                       𝑤ℎ𝑒𝑟𝑒 𝑖 = 1. . .100 

The independent variables also are generated from the standard Uniform (0,1). where the true parameters of 

independent variables, including the intercept, are 𝛽 = 0,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85.  

In Table 2, we show the summary of the RMSE and MAE for the five methods under study. From this table we 

can see that clearly our three proposed methods BBCQReg, BLBCQReg and BALBCQReg are get the smallest 

values of RMSE and MAE during all error distribution.  

 

Table 2. RMSE and MAE for the second simulation scenario. 

Error distributions 

Methods under study 휀𝑖~𝑁(0,1) 휀𝑖~Normal mix  휀𝑖~𝑡(3) 휀𝑖~𝐿𝑎𝑝(0,1) 

𝐵𝑅𝑄𝜏1=0.20 0.865 (0.215) 0.926 (0.219) 0.743 (0.211) 0.682 (0.197) 

𝐵𝑅𝑄𝜏2=0.40 0.925 (0.129) 0.869 (0.186) 0.795 (0.254) 0.659 (0.156) 

𝐵𝑅𝑄𝜏3=0.60 0.828 (0. 398) 0.936 (0.359) 0.854 (0.523) 1.225 (0.524) 

𝐵𝑅𝑄𝜏4=0.80 1.678 (0.354) 1.892 (0.245) 1.828(0.502) 1.871 (0.547) 

𝐵𝐵𝑅𝑄𝐿𝜏1=0.20 0.781 (0.326) 0.745 (0.492) 0.624 (0.125) 0.598 (0.438) 

𝐵𝐵𝑅𝑄𝐿𝜏2=0.40 0.645 (0.641) 0.648 (0.128) 0.846 (0.065) 0.648 (0.154) 

𝐵𝐵𝑅𝑄𝐿𝜏3=0.60 0.924 (0.105) 0.862 (0.135) 0.792 (0.121) 0.754 (0.214) 

𝐵𝐵𝑅𝑄𝐿𝜏4=0.80 2.542 (0.412) 1.524 (0.321) 1.421 (0.654) 1.135 (0.266) 

BBCQReg 0.354 (0.057) 0.451 (0.110) 0.531 (0.198) 0.311 (0.158) 

BLBCQReg 0.298 (0.175) 0.304 (0.091) 0.521 (0.350) 0.214 (0.114) 

BALBCQReg 0.385 (0.124) 0.218 (0.017) 0.124 (0.063) 0.411 (0.151) 

       In the parentheses are belong to MAE 

 

 

3.3. Third simulation 

In the third simulation scenario, we will used sparse case with in the true our model: 

 

𝑦 𝑖 = 3𝑥𝑖1 + 𝑥𝑖2 + 𝑥𝑖5 + 휀𝑖                                      𝑤ℎ𝑒𝑟𝑒 𝑖 = 1. . .100 
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Similar to second Simulation the independent variables also are generated from the standard Uniform (0,1). 

Where the true parameters of independent variables, including the intercept, are 𝛽 = 0,3,1,0,0,1,0,0,0.   

 

Table 3. RMSE and MAE for the third simulation scenario. 

     Error distributions 

Methods under study 휀𝑖~𝑁(0,1) 휀𝑖~Normal mixture  휀𝑖~𝑡(3) 휀𝑖~𝐿𝑎𝑝(0,1) 

𝐵𝑅𝑄𝜏1=0.20 0.954 (0.124) 0.857 (0.195) 0.695 (0.247) 0.726 (0.215) 

𝐵𝑅𝑄𝜏2=0.40 0.845 (0.254) 0.695 (0.251) 0.647 (0.154) 0.652 (0.224) 

𝐵𝑅𝑄𝜏3=0.60 0.765 (0. 259) 0.854 (0.135) 0.625 (0.185) 0.684 (0.128) 

𝐵𝑅𝑄𝜏4=0.80 1.845 (0.121) 1.913 (0.182) 1.772(0.231) 1.647 (0.315) 

𝐵𝐵𝑅𝑄𝐿𝜏1=0.20 0.645 (0.254) 0.628 (0.205) 0.692 (0.254) 0.855 (0.358) 

𝐵𝐵𝑅𝑄𝐿𝜏2=0.40 0.851 (0.234) 0.705 (0.206) 0.877 (0.301) 0.705 (0.242) 

𝐵𝐵𝑅𝑄𝐿𝜏3=0.60 0.953 (0.181) 0.765 (0.104) 0.854 (0.314) 0.824 (0.247) 

𝐵𝐵𝑅𝑄𝐿𝜏4=0.80 1.664 (0.193) 1.547 (0.405) 1.625 (0.431) 1.685 (0.371) 

BBCQReg 0.465 (0.102) 0.354 (0.152) 0.365 (0.112) 0.282 (0.106) 

BLBCQReg 0.354 (0.205) 0.216 (0.103) 0.342 (0.116) 0.354 (0.214) 

BALBCQReg 0.265 (0.084) 0.312 (0.117) 0.225 (0.098) 0.257 (0.101) 

        In the parentheses are belong to MAE. 

 

As same as Table 1 and Table 2, Table 3 show the values of RMSE and MAE of all methods proposed and 

existing. This table showing that proposed methods BBCQReg, BLBCQReg and BALBCQReg are better than the 

other existing methods BRQ and BBRQL. Whereas the results showing that the RMSE and MAE for the 

proposed methods BBCQReg, BLBCQReg and BALBCQReg are smaller than that for the other methods existing 

method (BRQ and BBRQL). In this paper, we will use another procedure for the evaluating the methods under 

study is parameters estimations in direct way. Figure 1 shows plot of parameter estimations in the second 

simulation. From the Figure 1, it can see that our proposed methods are estimated the parameters very close to the 

true parameters compared with other methods. As the result, our proposed methods have high efficiency 

compared with previous methods. 
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Figure 1. Plot of parameter estimations in in direct way for the second simulation to the methods 

under study. 

 

 

4. Real data  

To clarification our proposed methods for (BBCQReg, BLBCQReg and BALBCQReg) and compare with  𝐵𝑅𝑄  

and 𝐵𝐵𝑅𝑄𝐿 approaches, the data of Pima Indians have been considered, these data set available in the caret 

package in R programs, from [23]. The Pima Indians Diabetes data consists of (532) observations of which 200 

are test positive observations and 332 are test positive observations. The important part in the study of Pima 

Indians is in achieving the relationship between diabetic according to WHO criteria, (diabetes) and eight 

independent variables. The seven  independent variables are  𝑋1: Number of pregnancies code by (npreg), 𝑋2: 

Plasma glucose concentration in an oral glucose tolerance test code by (glu), 𝑋3: diastolic blood pressure (mm 

Hg) code by (bp), 𝑋4: triceps skin fold thickness (mm) code by (skin), 𝑋5:  body mass index (weight in kg/(height 

in m)\^2) code by (bmi), 𝑋6:  diabetes pedigree function code by (ped) and 𝑋7: age in years code by (age). 

As same as Section three, in this section we compare our proposed methods with the previous two existing 

methods are assessed based on the mean squared error (MSE).  
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Table 4. MSE for the methods under comparison 

Methods 
𝑡 = 0.16 𝑡 = 0.33 𝑡 = 0.50 𝑡 = 0.66 𝑡 = 0.83 

MSE MSE MSE 
MSE MSE MSE MSE MSE 

BRQ 12.674 12.435 11.102 11.009 11.003    

BBRQL 11.414 11.341 10.652 10.766 10.112    

BBCQReg      8.734   

BLBCQReg       8.104  

BALBCQReg        6.485 

 

 

From the results are listed in Table 4, the MSE of our proposed methods Bayesian Binary composite quantile 

regression model, Bayesian lasso penalty for binary composite quantile regression and Bayesian adaptive lasso 

penalty for binary composite quantile regression are 8.734,8.104 and 6.485 respectively. Where, the MSE 

generated by our proposed methods are much smaller than MSE generated by BRQ and BBRQL methods via all 

quantile levels. So, our methods have performance better than previous methods (BRQ and BBRQL).  

 

5.  Conclusion 

In this paper, Bayesian binary composite quantile regression approach is proposed for estimating the model. In 

binary composite quantile regression lasso and the adoptive lasso penalty are considered for selecting variables in 

a Bayesian framework.  We developed a Bayesian hierarchical model for the lasso and adaptive lasso penalty 

methods, whereas   Gibbs sampler algorithm was adopted for posterior inference. 

 Simulation examples and real data were considered to compare our proposed methods BBCQReg, BLBCQReg 

and BALBCQReg with other methods, BRQ and BBRQL with different quantiles. Based on the simulation 

scenarios the RMSE and MAE of our proposed methods BBCQReg, BLBCQReg and BALBCQReg are smaller 

than the RMSE and MAE of the other existing methods BRQ and BBRQL. 

The numerical study signify that the proposed methods offers substantial improvement over the other two 

methods. So that, we concluded that our proposed methods perform better than the other two existing methods. 
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Appendix 

I. Gibbs sampler Bayesian binary composite quantile regression 

The conditional distribution  𝑓(𝛽𝑘|𝑦 𝑖, 𝑋, 𝛽−𝑘, 𝑏𝜏, 𝑢𝑖, 𝑤, 𝑘), where  𝛽−𝑘 is the parameters vector excepting   𝛽𝑘 , is 

normal  

𝑓(𝛽𝑘|𝑦 𝑖, 𝑋, 𝛽−𝑘, 𝑏, 𝑢, 𝑤, 𝐾) ∝  𝑓(𝑦 𝑖|𝑋, 𝛽, 𝑏, 𝑢, 𝑤, 𝐾) × 𝜋(𝛽) 
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The conditional distribution  𝑓( 𝑢𝑖|𝑦 𝑖, 𝑋, 𝛽, 𝑏 , 𝑢−𝑖, 𝑤, 𝐾) , where 𝑢−𝑖  is the variable 𝑢 excepting the component 

𝑢𝑖 is given by  

𝑓(𝑢𝑖|𝑦 𝑖 , 𝑋, 𝛽, 𝑏 , 𝑢−𝑖, 𝑤, 𝐾) ∝  𝑓(𝑦 𝑖|𝑋, 𝛽, 𝑏, 𝑢, 𝑤, 𝐾) × 𝜋(𝑢𝑖|𝜏) 
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 So the conditional distribution of  𝑢𝑖 is generalized inverse Gaussian 𝐺𝐼𝐺(𝑢𝑖, 𝐴, 𝐵) where 𝐴 =
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Follow   [10] the conditional distribution 𝑓(𝑤|�̌�𝑖 , 𝑋, 𝛽, 𝑏, 𝑢, 𝐾) is given as follow  

𝑓(𝑤|𝑋, 𝑦 𝑖 , 𝛽, 𝑏𝜏𝑘
, 𝑢𝑖, 𝑘) 𝛼 ∏ 

𝑞

𝑗=1

𝑤
𝑗

𝑛𝑗+𝛿𝑗
 

 ∝ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑛1 + 𝛿1, ………… . . , 𝑛𝑞 + 𝛿𝑞) 

Where 𝑛𝑗 is the summation of the objects 𝑘𝑖𝑗 in the 𝑗𝑡ℎ  cluster, i.e. ∑  𝑛
𝑖=1 𝑘𝑖𝑗.  

The conditional distribution  𝑓(𝑘𝑖| 𝑋, 𝑦 𝑖 , 𝛽, 𝑏, 𝑢, 𝑤, 𝑘−𝑖) can be shown as ([10]) 

𝑓(𝑘𝑖| 𝑋, 𝑦 𝑖 , 𝛽, 𝑏, 𝑢, 𝑤, 𝑘−𝑖)  

∝ ∏ 

𝑞

𝑗=1

{𝑤𝑗𝑒𝑥𝑝 [−
1

4𝑢𝑖
(𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖
′𝛽 − 𝜃𝑢𝑖)

2
]}

𝑘𝑖𝑗

 

∝  𝑀𝑖𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1, �̂�1, ……… . . , �̂�𝑞) 

Where  

�̂�𝑗 =
𝑤𝑗𝑒𝑥𝑝 [−

1
4𝑢𝑖

(𝑦 𝑖 − 𝑏𝜏𝑗
− 𝑥𝑖

′𝛽 − 𝜃𝑢𝑖)
2
]

∑  
𝑞
𝑗=1 𝑤𝑗𝑒𝑥𝑝 [−

1
4𝑢𝑖

(𝑦 𝑖 − 𝑏𝜏𝑗
− 𝑥𝑖

′𝛽 − 𝜃𝑢𝑖)
2
]
 

II.   Gibbs sampler   Bayesian lasso binary composite quantile regression: 

 The conditional distribution of  𝑢, 𝑏, 𝑤 and 𝐾  will be as same as that in Appendix I. The conditional 

distribution of  𝛾2  is a Gamma distribution   

𝑓(𝛾2| 𝑋, 𝑦 𝑖 , 𝛽, 𝑏 , 𝑢, 𝑠, 𝑤, 𝐾) 𝛼 𝑓(𝑠|𝛾2) × 𝜋(𝛾2) 

  

∝ (𝛾2)𝑝+𝑎−1𝑒𝑥𝑝{−(
1

2
∑  

𝑝

𝑘=1

𝑠𝑘 + 𝑏)𝛾2} 

∝  𝐺𝑎𝑚𝑚𝑎(𝑝 + 𝑎,
1

2
∑  

𝑝

𝑘=1

𝑠𝑘 + 𝑏) 

The conditional distribution   𝑓(𝛽𝑘|𝑋, 𝑦 𝑖, 𝛽−𝑘 , 𝑏 , 𝑢, 𝑠, , 𝛾2, 𝑤, 𝐾), where 𝛽−𝑘 is a parameters vector excepting 𝛽𝑘  

is a normal distribution  

𝑓(𝛽𝑘|𝑋, 𝑦 𝑖 , 𝛽−𝑘, 𝑏 , 𝑢, 𝑠, , 𝛾2, 𝑤, 𝐾)𝛼 𝑓(𝑦 𝑖|𝑋, 𝛽, 𝑏 , 𝑢, 𝑠, , 𝛾2, 𝑤, 𝐾) × 𝜋(𝛽𝑘|𝑠𝑘) 

 

∝  𝑒𝑥𝑝 {−
1

2
[(∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
+

1

𝑠𝑘
)𝛽𝑘

2 − 2∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

𝑘𝑖𝑗𝑥𝑖𝑘𝑦 𝑖
∗

2𝑢𝑖
𝛽𝑘  ]} 
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∝  𝑁

[
 
 
 
 ∑  

𝑞
𝑗=1 ∑  𝑛

𝑖=1 (
𝑘𝑖𝑗𝑥𝑖𝑘𝑦 𝑖

∗

2𝑢𝑖
)

∑  
𝑞
𝑗=1

∑  𝑛
𝑖=1 (

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
) + (

1
𝑠𝑘

)

 ,
1

∑  
𝑞
𝑗=1

∑  𝑛
𝑖=1 (

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
) + (

1
𝑠𝑘

)
]
 
 
 
 

 

 

𝑦 𝑖 = 𝑦 𝑖 − 𝑏𝜏𝑗
− 𝑥𝑖,−𝑘

′ 𝛽−𝑘 − 𝜃𝑢𝑖 

The conditional distribution   𝑓(𝑠𝑘|𝑋, 𝑦 𝑖 , 𝛽 , 𝑏 , 𝑢, 𝑠−𝑘 , 𝛾2, 𝑤, 𝐾), where  𝑠−𝑘 is the variable 𝑠 excepting the 

component 𝑠𝑘  is generalized inverse Gaussian  

𝑓(𝑠𝑘|𝑋, 𝑦 𝑖 , 𝛽 , 𝑏 , 𝑢, 𝑠−𝑘, 𝛾
2, 𝑤, 𝐾)𝛼 𝜋(𝑠𝑘|𝛾2) × 𝜋(𝛽𝑘|𝛾2) 

 

∝ 𝑠𝑘

−
1
2 𝑒𝑥𝑝 𝑒𝑥𝑝 {−

1

2
(𝛽𝑘

2𝑠𝑘
−1 + 𝛾2𝑠𝑘)}  

𝛼 𝐺𝐼𝐺(𝑠𝑘 , 𝛽𝑘 
2 , 𝛾2) 

 

III.    Gibbs sampler Bayesian adaptive lasso binary composite quantile regression 

As same as we mentioned in Appendix II the conditional distribution for  𝑢, 𝑏, 𝑤 and 𝐾 will not be change. The 

conditional distribution of 𝜂𝑘
2 is a Gamma distribution and derivative as follows 

𝑓(𝜂𝑘
2/ 𝑋, 𝑦 𝑖 , 𝛽, 𝑏 , 𝑢𝑖, 𝑟, 𝜂−𝑘

2 , 𝑤, 𝑘)  ∝  𝑓(𝑟|𝜂𝑘
2) × 𝜋(𝜂𝑘

2|𝑐, 𝑑) 

  

∝ (𝜂𝑘
2)

𝑐
𝑒𝑥𝑝 𝑒𝑥𝑝 (−(

𝑟𝑘
2

+ 𝑑) 𝜂𝑘
2)  

∝ 𝐺𝑎𝑚𝑚𝑎 (𝑐 + 1, (
𝑟𝑘
2

+ 𝑑)) 

The conditional distribution  𝑓( 𝑟𝑘/ 𝑋, 𝑦 𝑖 , 𝛽, 𝑏 , 𝑢, 𝑟−𝑘, 𝜂𝑘
2, 𝑤, 𝑘), where 𝑟−𝑘 is the variable 𝑟 excepting the 

component 𝑟𝑘 is a generalized inverse Gamma distribution and given by  

𝑓( 𝑟𝑘/ 𝑋, 𝑦 𝑖 , 𝛽, 𝑏 , 𝑢𝑖, 𝑟−𝑘, 𝜂𝑘
2, 𝑤, 𝑘) 𝛼 𝑓(𝑟𝑘|𝜂𝑘

2) ×  𝜋(𝛽𝑘|𝜂𝑘
2) 

∝ (𝑟𝑘)−
1
2𝑒𝑥𝑝 {−

1

2
( 𝛽𝑘

2𝑟𝑘
−1 + 𝜂𝑘

2𝑟𝑘) 

 

𝛼 𝐺𝐼𝐺(𝑟𝑘, 𝛽𝑘 
2 , 𝜂𝑘

2) 

The conditional distribution of 𝛽𝑘 is a normal distribution and shown as follow:  

𝑓(𝛽𝑘|𝑋, 𝑦 𝑖 , 𝛽−𝑘, 𝑏 , 𝑢, 𝑟, , 𝜂𝑘
2, 𝑤, 𝐾) ∝  𝑓(𝑦 𝑖|𝑋, 𝛽, 𝑏 , 𝑢, 𝑟, , 𝜂𝑘

2, 𝑤, 𝐾) × 𝜋(𝛽𝑘|𝑟𝑘) 
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∝ 𝑒𝑥𝑝{−
1

2
[(∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
+

1

𝑟𝑘
)𝛽𝑘

2 − 2∑ 

𝑞

𝑗=1

∑ 

𝑛

𝑖=1

𝑘𝑖𝑗𝑥𝑖𝑘𝑦 𝑖
∗

2𝑢𝑖
𝛽𝑘 ]} 

∝ 𝑁

[
 
 
 
 ∑  

𝑞
𝑗=1 ∑  𝑛

𝑖=1 (
𝑘𝑖𝑗𝑥𝑖𝑘𝑦 𝑖

∗

2𝑢𝑖
)

∑  
𝑞
𝑗=1

∑  𝑛
𝑖=1 (

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
) + (

1
𝑟𝑘

)

 ,
1

∑  
𝑞
𝑗=1

∑  𝑛
𝑖=1 (

𝑘𝑖𝑗𝑥𝑖𝑘
2

2𝑢𝑖
) + (

1
𝑟𝑘

)
]
 
 
 
 

 

 

𝑦 𝑖
∗ = 𝑦 𝑖 − 𝑏𝜏𝑗

− 𝑥𝑖,−𝑘
′ 𝛽−𝑘 − 𝜃𝑢𝑖 

 

 

 

 

 

 


