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ABSTRACT   

    In this paper a Gray Wolf Optimization (GWO) algorithm is presented to solve the Competitive Traveling 

Salesman Problem (CTSP). In CTSP, there are numbers of non-cooperative salesmen their goal is visiting a larger 

possible number of cities with lowest cost and most gained benefit. Each salesman will get a benefit when he visits 

unvisited city before all other salesmen. Two approaches have been used in this paper, the first one called static 

approach, it is mean evenly divides the cities among salesmen. The second approach is called parallel at which all 

cities are available to all salesmen and each salesman tries to visit as much as possible of the unvisited cities. The 

algorithms are executed for 1000 times and the results prove that the GWO is very efficient giving an indication of the 

superiority of GWO in solving CTSP.  
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1.  Introduction  

The Traveling Salesman Problem (TSP) is an important classical problem, it is (NP-hard) problem at 

which there is no polynomial time to solve it and find exact solution [1, 2] .Researchers used many 

algorithms in order to find a best solution. TSP idea is finding the shortest tour for salesman that must 

visit a number of cities exactly once and then return to the start city (ie, a Hamiltonian cycle) and between 

each city there is a distance represents the cost of moving form node or city to another one[3, 4]. TSP is 

one of the most studied combinatorial optimization problems that have many applications such as routing, 

operation research, scheduling and transportation routing. TSP has some of types such as Multi Traveling 

Salesman Problem (mTSP) and Competitive Traveling Salesman Problem (CTSP), asymmetric TSP, 

clustered TSP [5, 6]. CTSP is proposed by Fekete in (2004), is a complex non-cooperative problem where 

non-cooperative means that every salesman works to his advantage competitively with other salesmen as 

each salesman looking for increasing profits by trying to travel to the largest possible number of cities that 

have not been visited before by knowing the paths used by the rest of the salesmen[7]. The first salesman 

who arrives at a city will got the benefit and the others will get nothing and they loss the distance cost and 

if more than one salesmen arrives at same time they will share the benefit so that the salesmen aim to 

obtain highest benefit by visiting highest number of cities[8-11]. 

 

2. Competitive traveling salesman problem model 
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    The interaction behavior and the dynamicity of CTSP, there are a number of agents Let M= {1……m} can 

be considered as set related to non-cooperative agents. Those agents must visit (n) cites therefor N= {1….n} 

of cites.  

- Benefit (Bi): with regard to each one of the cities i ∈ {1,….n }, also there have been continuous 

benefits for each city.  

The first agent arriving at a city will obtains the benefit and the other receives zero if they arrived after him 

and if two or more agents visit the same city at same time, they will share the benefits.  

- Cost: when agents travel from city i to city j they have to pay a cost Cij.  

Payoff: it is calculated for each agent by compute the rewards of visiting unvisited sites and calculate the cost 

of traveling and it is computed as: 

 

      𝑢 = ∑ 𝐵𝑗
𝑘0
𝑗=1 − ∑ 𝐶 𝑖(𝑖+1) − 𝐶𝑘1

𝑘−1
𝑖=1                                                                (1) 

 

∑ 𝑩𝒋
𝒌𝟎
𝒌=𝟏  refers to the aggregation reward from   𝑘0 ( 𝑘0 < 𝑘) cites 

• Path: Initially, the salesmen are positioned in various cities. They should be travelling between cities 

and they might not be changing the destination as soon as starting the trip. For completing the travel, 

they must be returning to their departure city.  

• Trip Speed: all salesmen have constant trip’s speed 𝑉𝐾. 

• Common Knowledge: there are a set of knowledge contains the speed, cost of this direction, path 

traveled, rewards and costs.  

The aim of all agents is maximizing the reward and decrease the cost and each agent choses his tour 

independently [4][12]. 

 

3. Related works  

    In 2004, Fekete et.al introduced the Competing Salesmen Problem (CSP) as a new variant of traveling 

salesman problem. They suggested that multiple salesmen compete against each other to visit the largest 

number of nodes instead of cooperating in finding the shortest route. At any given time, all salesmen know 

their opponents’ positions. A salesman wins when he visits more cities than his competitors[13]. 

In 2013, Kendall and Li have offered new type related to TSP, where a few salesmen are planning on 

visiting a few cities, also the relation between then have been non-cooperative. The salesman gets award if he 

visits a city that has not been visited by other salesmen. They have to pay the cost of traveling to a city. The 

aim of each salesman is to visit the largest number of cities that have not been visited before with minimum 

travel traveling distance. All salesman must be predicting the competitor’s tours in the case when they plan 

their tour. The researchers provided hyper-heuristic algorithm for the purpose of solving such problem, such 

includes low-level heuristic could be utilized for building tour, also high-level heuristics utilized for choosing 

among low-level heuristic at each one of the decision points. The simulation results of the study indicated that 

the suggested algorithms achieved good results in computing CTSP’s approximate solutions, also the 

algorithm has the ability for inheriting excellent features related to low-level heuristic [14]. 

Mohtadi and Nogondarian in 2014 presented a game theoretic approach to solve TSP in the competitive 

situations. Furthermore, they used game theory as a mathematical model to test the problems. They used 

genetic and tabu search algorithms. Experimental results showing that the computational error has been in in 

sensible range. Furthermore, Tabu search algorithm created certain solutions with optimum quality, also not 

much time has been required [4][15, 16]. 

In 2015, Li and Kendall presented hyper-heuristic approach for generating games’ adaptive strategies. On 

the basis of low-level heuristic, the hyper-heuristic game player has the ability of generating the strategies that 

are adapting to co-player’s behavior as well as dynamics of the game, also introduced hyper-heuristic game 

player for three games iterated prisoner dilemma (IPD), CTSP, as well as the repeated Go of spiel. The study 



 PEN Vol. 8, No. 3, July 2020, pp.1331- 1344 

1333 

alpha

beta

delta

omega

utilized RN+2opt, RN, NN+2opt, as well as NN. High-level algorithm has been identifying heuristics that 

have been used through the other agents and after that selecting from the low-level heuristics. Furthermore, 

the study’s computational results indicated that the hyper-heuristic game player outperforming the low-level 

heuristic in the dynamic as well as repeated games and also the hyper-heuristic game player generating 

adaptive approaches in the case when low-level heuristics have been deterministic. The straightforward 

heuristic selection approaches could be utilized for construing automated game players in various games[17, 

18].  

In 2016 Mohannad Abdul-Sattar and Belal Al-Khateeb applied ant colony optimization algorithm for solve 

CTSP. They used two different approaches to solve the CTSP, the first approach divided the cities among 

salesmen in order to approve the ability of ACO algorithm in solving the CTSP and then compared the 

obtained results with Nearest Neighbors (NN) and Random Neighbors (RN) algorithms, the obtained results 

prove that ACO algorithm was better than the other strategies. The second approach uses unspecified number 

of cities as each salesman will try to visit as much as possible cities according to the salesman’s strategy. In 

this approach, two directions are taken, the first one uses the same plan for each salesman, while the other 

uses an update plan, for each salesman, ACO algorithm results were better than another algorithm (NN & RN 

& ACS algorithm with the first approach) [3]. 

 

4. Difficulty of CTSP 

        In CTSP the salesmen behavior is not corporative each salesman dose not known the other salesmen plan 

and each salesman wont to obtain maximum benefit by visiting the largest number of unvisited nodes so that 

we need efficient tools to find the optimal track that achieves the largest revenues rapidly, traditional approach 

has been extremely slow to find the exact solutions so that we proposed using heuristic approach to find 

approximate salutations, this approach is simple and easy: because it is inspired from very simple biological 

behavior and flexible because it can be applied without change in its structure, also it is a derivation-free 

mechanisms and can avoid local optima because of its stochastic nature. One of the heuristics approaches is 

swarm intelligence, it is term that describes the collective behavior of autonomic decentralized systems, it 

deals with the simulation of the behavior of less intelligent pings with limited possibilities such as ant, birds 

and fish, which at a same time exhibit a highly intelligent social behavior. It preserves information that is 

related to search space throughout iteration, sometimes utilizing memory for saving optimum solution and 

typically having not much parameters to alter[19-22]. GWO is one of swarm intelligence algorithms that will 

used in this paper to solve the competitive travelling salesmen problem.  

 

5. GWO algorithm   

     This algorithm simulates the hierarchy as well as the mechanism of hunting of the gray wolves which have 

been suggested via Ali Mirjalili in 2014. There have been four gray wolves’ types (alpha, beta, delta as well as 

omega) simulating the steps to hung, encircle as well as attack. The Figure 1 shows the strict social hierarchy 

of gray wolves 

. 

 

 

 

 

 

 

 

 

Figure 1. The hierarchy related to The Gray Wolves Groups 
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The alpha represents the optimal solution and the second is beta then delta and omega at last. Grey wolves 

mostly search according to the position of the alpha, beta, and delta. They diverge from each other to search 

for prey and converge to attack prey. The search agent may be in any location between the current location 

and the prey’s location and the pseudo code of GWO in figure 2 explain how the algorithm solve the 

optimization problems. [23-26]. 

 

 

• Initialize the population of the gray wolf 𝑋𝑖 (I =1,2,…..n ) 

• Initialize a, A,C 

• Calculate every search agent’s fitness  

• 𝑋𝛼represents the optimal search agent  

• 𝑋𝛽 represents the second optimal search agent  

• 𝑋𝛿represents the third optimal search agent  

While (t is smaller than the maximum number of iterations) 

          For every one of the search agents  

• Update the current search agent’s positions according to the equation 8.2 

• End For  

• Update a,A,C 

• Calculate the fitness values for each search agent 

• Update 𝑋𝛼, 𝑋𝛽&𝑋𝛿   

• i=i+1 

• End While 

• Output 𝑋𝛼 

 

Figure 2. GWO pseudo code 

 

6. Problem representation  

CTSP can be represented as a graph, where nodes represent the cites that each salesman will visit and the 

arrows represent the ways that each salesman used to move from one city to another and the length of them 

represents the distances or cost. 

 

7. GWO solution generation  

The construction of solution consists of some stages that are started with determining the time, restrictions 

and predefined relationship and then creates initial population that represented as the pack of wolves that 

spread among nodes; this called initial system case for solution[27, 28]. 
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After solution construction, the system begins to work through movement of wolves from node (city) to 

another in order to build solutions and in hope to find the best solution, the memory saves three optimal 

solutions and update it when find better solutions.Building solutions process will continue until finding the 

best possible solution or achieve stop condition; the gray wolf optimization is a dynamic algorithm because it 

avoids local solutions by the ability to changing locations within the hierarchy such as the alpha may be 

converting to delta if he be very old and beta candidate to be alpha. 

 

8. Proposed Gray Wolf System (GWOS) 

    Two approaches to solve competitive traveling salesman problem are taken. The first one is static and the 

second one is dynamic, the static means dividing cites among salesmen or agents equally and the dynamic 

means no dividing of nodes (cities) and each agent tries to visit largest numbers of cites as possible according 

his strategy.     

 

8.1 Initialization  

    It is an important stage in solution construction. It provides data and other requirements and then submits it 

in acceptable form to algorithm to be able to start its function.                                                                                                                        

8. 2 Preparing   

    It consists of multi sages; the first stage is reading the problem dataset information. In the dataset, each city 

has two points, one of them on X-axis and the second on the Y-axis. The distance between each city and other 

cites calculates by the following equation:                                                                                                  

Dis ( i,j) = √(𝑋 𝑖 − 𝑋 𝑗 )
2 + (𝑌 𝑖 − 𝑌 𝑗 )

2                                                         (2)  

𝑋 𝑖 and 𝑦𝑖  represents the city (I) points on x-axis and y-axis so 𝑋 𝑗  and 𝑌 𝑗  represent the city (J) points on x-

axis and y-axis, this equation will used to compute the distances between all cites. The result of this step is 

two dimensional array that contains values that represent the distances between cites, in this step the salesmen 

will know the number of cities that they must be visit it.  

After collecting knowledge about the problem such as number of cities and distances of it, the wolves pack 

distributes randomly, this step represents the population.  

The population is firstly initialized randomly and then uses the equation below to determine the destination.  

D⃗⃗ =ǀC ⃗⃗⃗  . 𝑋𝑝 (t) − x ⃗⃗ (t)ǀ                                                    (3)  

Where: 𝑋𝑝 Represents the prey’s position vector. A, C represent the vector of the coefficient. X represents the 

gray wolves’ position vector. 

 

𝐴 =2𝑎 ⃗⃗⃗  . 𝑟 ⃗⃗ 1 − 𝑎                                                                                                  (4) 

𝐶 ⃗⃗  ⃗=2𝑟 ⃗⃗  2                                                                                                           (5)     

𝑎 ⃗⃗⃗  = 2 (1 −
𝑖𝑡

𝑁
)                                                                                                (6)   

Where the component of 𝑎  linearly decrease from 2 to 0 throughout the iterations, it represents the initialized 

value and N is maximum iterations number, and 𝑟1⃗⃗⃗⃗ , 𝑟2⃗⃗⃗⃗  random vectors [0-1].[29, 30]. 

 

Because of there are three candidate solutions in this algorithm we must use equation for the best three types 

so that we shall use the equations below to create population:  

D⃗⃗ α = ǀC1
⃗⃗⃗⃗  . X ⃗⃗⃗  α − X⃗⃗  ǀ , D⃗⃗ β = ǀC⃗ 2 . X⃗⃗ β − X ⃗⃗⃗  ǀ , D⃗⃗ δ = ǀC⃗ 3. X⃗⃗ δ − X⃗⃗ ǀ                       (7) 
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X⃗⃗ 1 = X⃗⃗ α − A⃗⃗ 1. (D⃗⃗ α), X⃗⃗ 2 = X⃗⃗ β − A⃗⃗ 2. (D⃗⃗ β), X⃗⃗ 3 = X⃗⃗ δ − A⃗⃗ 3. (D⃗⃗ δ)                (8) 

(X⃗⃗ t+1) =  
X⃗⃗ 1+X⃗⃗ 2 +X⃗⃗ 3

3
                                                                                 (9)  

The wolves change their position in accordance with the alpha and the prey’s position until achieves the 

optimal tour or number of iterations condition or exploring for another prey better than the last.                                                                                                   

After initializing and preparing the number of cities for each salesman, then the cities will be divided equally 

among salesmen and number of wolves for each salesman [26]. 

 

8.3 Solution construction by GWO  

After initialization and preparing stages, the algorithm starts to move from the start node to other nodes 

that determined for each salesman in initialization stage. 

The wolves move from node to another until amount to prey (the goal node) and then return to start node. To 

create a path from start node to goal node wolves will use the equation below in order to determine the next 

node in particular node 

 X⃗⃗ (t+1) =  {
ǀC ⃗⃗⃗  . XP(t) − A ⃗⃗  ⃗. D ⃗⃗  ⃗if A ⃗⃗  ⃗ < 1  explotation      

   else                          A ⃗⃗  ⃗ ≥ 1 exploraton         
                              (10)      

Where X⃗⃗ (t+1) is the next position or updating position for each wolf after use the equation (7) and C ⃗⃗⃗   a 

coefficient vector contain random values simulate the impact of the obstacles to the approaching preys in the 

nature calculated by equation (5), and 𝐴 ⃗⃗  ⃗ represent as a coefficient vectors it is also random value and 

calculated by equation (4) and D ⃗⃗  ⃗ is the direction of prey finally XP the position of prey. After determining the 

city to be traveled and the salesman the wolves' locations are updated based on current locations and using the 

equation (7). The using of random values with 𝐴 ⃗⃗  ⃗ greater than 1 or less than 1 to compel wolves of diverging 

from the prey to emphases explorations and allow search globally and diverge from prey for the sake of 

finding a better prey [27][28][29].   

                                                                     

8.4 Position updating  

    After searching and finding the best location by alpha and determining the next city, salesman traveling to it 

and all other wolves changes its direction based on the alpha wolf. Algorithm1 shows the proposed static 

GWO method, where (L) represents the number of unvisited cities that determined for each salesman and (S) 

represent the visited city of it. Algorithm 1 shows the proposed static GWO method, where (L) represents the 

number of unvisited cities that determined for each salesman and (S) represent the visited city of it. 

 

Algorithm 1: Static GWOS.       

                    INPUT: get the dataset information  

1. Compute the distances between cities according to the equation (2). 

2. Set the number of salesmen. 

3. Setting the number of cities for every salesman. 

4. Setting the number of wolves for each salesman. 

5. Setting the start city for each salesman. 

Solution  

6. Find the tour for each salesman (L) 

   For i = 1 to the number of the salesmen  

       For j = 1 to the number of the cities         

           For k =1 to the number of the wolves   

                  Find the next city (S) by equation (8)                 
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                        The best agent is alpha  

                        The 2nd best agent is beta    

                        The 3rd best agent is delta  

             End for  

       

   L=L-S              

         Update city (S) by equation (9) 

         Tour =S   

        Return to start city  

      End for  

  End for  

  Find the best tour by equation (1) for each salesman  

End  

OUTPUT: the best tour.  

 

Algorithm 2 shows the proposed parallel GWO method, where (L) represents the number of unvisited cities 

that determined for each salesman and (S) represent the visited city of it. 

 

                           Algorithm 2: Parallel GWOS.  

 

1. Compute the distances between cities according to the equation (2). 

2. Set the number of salesmen. 

3. Set the number of cities  

4. Set the number of wolves for each salesman. 

Solution   

5. Find the start city for each salesman  

6. Find the first move for each salesman  

For i= 0 to number of salesman  

     Find the next cities according to equation (8)  

     Calculating the fitness of every one of the agents   

 

Xα represents the optimal search agent  

Xβ represents the second optimal agent  

Xδ represents the third optimal agent  

Update position of the current search agent by equation (9)  

7. Find the tour for each salesman  

    Number of city = number of city -1  

   While (number of city >0)  

        Identify which salesman begin first according equation (2)    

        Find the next city by equation (8) 

     

    Update position by equation (9) 

        Number of cites = number of cites -1  

    End while  

   Return to start city  

  For i= 1 to the number of the salesmen   

      For j=1 to the number of the cities  

          Update position by equation (9) 

     End for  

  End for 

OUTPUT: best tour for each salesman 

9. Experimental setup and results 
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 This section presents the experimental results of the proposed system. Several tests are applied to evaluate 

the performance of the proposed system.   

9.1 General system implementation  

The proposed system will apply set of tests on a dataset that is presented by Li and Kendal with 20 cities, 

the system contains two parts  

- Static Gray Wolf Optimization. 

- Parallel Gray Wolf Optimization. 

The first step to test gray wolf optimization is load cities from dataset, then the system will compute 

distances between all cities using equation (2). The next step is to specify start city for each salesman then the 

system will generate path for each salesman by using algorithm 1. 

The last step is to find the best path with maximum sales by using equation (1), in this step, the system gets 

the information for each salesman then compute fitness function between summation of path and summation 

of sales, the maximum value that means this salesman has the best path and best sales. Table (1) shows the 

distances between dataset cities. 

 

Table 1. Distances between cities 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 97 55 21 49 70 63 33 61 85 78.4 21 71 43 79 27.9 54.6 48.2 94.9 79.25

2 97 0 53 100 62 29 35 95 56 32.3 40.1 80 78 58 75 71.8 48.8 73.7 30.2 58.25

3 55 53 0 67 51 38 21 42 57 31.2 59.5 34 80.4 14 36 41.4 41.7 61.7 41.2 27.66

4 21 100 67 0 42 72 70 54 54 94.9 74.1 37 57.1 54 96 29.1 53 37 104 94.01

5 49 62 51 42 0 34 41 67 12 67.5 31.6 44 29.7 40 87 22.1 14.1 12 75 77.82

6 70 29 38 72 34 0 17 74 30 38 22.7 55 54.6 36 71 43.8 20.2 45.9 43.4 56.73

7 63 35 21 70 41 17 0 60 42 27 39.7 45 66.6 23 54 40.9 27.5 52.5 35.4 40.36

8 33 95 42 54 67 74 60 0 78 72.5 90 24 95.3 38 52 46.1 66.4 72 82.2 57.45

9 61 56 57 54 12 30 42 78 0 67.1 20.5 55 25.1 47 93 34 14.9 19.2 73.3 81.27

10 85 32 31 95 67 38 27 72 67 0 59.6 65 92 42 43 66.5 53.9 79.4 10 26.17

11 78 40 60 74 32 23 40 90 21 59.6 0 68 38.2 54 93 50.6 24.3 39.7 63.5 79.4

12 21 80 34 37 44 55 45 24 55 64.7 68.3 0 71.6 23 60 22.4 44 48.4 74.6 58.55

13 71 78 80 57 30 55 67 95 25 92 38.2 72 0 69 117 49.2 39.4 23.4 98 106

14 43 58 14 54 40 36 23 38 47 42.5 54.1 23 69.3 0 48 27.5 32.6 49.1 52.4 41.59

15 79 75 36 96 87 71 54 52 93 43.2 93.5 60 117 48 0 74.8 77.8 97.4 49.2 17.03

16 28 72 41 29 22 44 41 46 34 66.5 50.6 22 49.2 27 75 0 26.8 26.1 75.7 69.05

17 55 49 42 53 14 20 28 66 15 53.9 24.3 44 39.4 33 78 26.8 0 26.1 61.1 66.57

18 48 74 62 37 12 46 52 72 19 79.4 39.7 48 23.4 49 97 26.1 26.1 0 87 88.77

19 95 30 41 104 75 43 35 82 73 10 63.5 75 98 52 49 75.7 61.1 87 0 32.39

20 79 58 28 94 78 57 40 57 81 26.2 79.4 59 106 42 17 69.1 66.6 88.8 32.4 0  

 

The first row and first column in this table represent the number of cities (nodes), the other cells represent 

distances between these nodes depending on the location of node using x-axes and y-axes.  

9.2 Experimental Results: This section shows all the obtained results for static and parallel gray wolf 

optimization methods that are proposed to solve the CTSP problem.   

9.2.1 Number of Wolves: In order to determine the most number of wolves to be used in the experiments, 

different number of wolves are tested. The obtained results with 1000 iterations indicate that the best number 

of wolves is 4-7 wolves for 10 cities and 3-5 for 20 cities as shown in the table (2) and Figure (3). 
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Table 2. The effects of the numbers of wolves in GWOS 

 

Number of 

Cities for 

Each 

Salesman 

Number of 

Salesmen 

Numbers of 

Wolves Best Track Cost Benefit 

10 2 3 1 422.6184 1025 

10 2 4 2 541.94 1175 

10 2 5 2 541.94 1175 

10 2 6 2 541.94 1175 

10 2 7 2 573.2 1250 

10 2 8 2 541.94 1000 

10 2 9 2 474.395 1000 

10 2 10 1 422.618 1050 

10 2 11 1 422.618 1050 

10 2 12 1 422.618 1050 

20 2 3 2 850.337 2100 

20 2 4 2 909.85 2175 

20 2 5 2 909.85 2175 

20 2 6 1 729.342 1825 

20 2 7 1 729.342 2025 

20 2 8 1 729.342 2025 

20 2 9 1 729.342 1825 

20 2 10 1 729.342 2025 

20 2 11 1 729.342 2025 

20 2 12 1 729.342 1950 

 

Form table 2 that above various numbers of cities and salesman we can denote the best results obtained when 

the number of wolves (4-7) wolf for various number of cities and the Figure 3 show the carve of benefits 

based on number of wolves. 

 

 

Figure 3. The number of wolves benefits (2 Salesmen and 10 Cities) 
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The orange carve represents benefit and the blue for number of wolves, from this Figure we can denote the 

proposed system achieve the maximum benefit when the number of wolves (4-7). 

From all above it is possible to conclude that the use of a large number of wolves (more than 7 wolves) with a 

few cities leads to negatively affects the exploration and exploitation properties of the algorithm and adopt 

local solutions therefore, we notice an increase in total costs when increasing the number of wolves and a 

decrease in total benefits. 

The number of wolves is an important factor to obtaining the optimal possible solution and most influences in 

problems which the number of cities is large. 

9.2.2 Static Gray Wolf Optimization System (GWOS) 

    In this method, each salesman has the same number of cites at which each salesman has 10 cities from the 

20 city CTSP, where the benefit is set to 150 for each city. The obtained results are then compared with Ant 

Colony Optimization, Nearest Neighbors (NN) and Random Neighbors (RN). 

The Nearest Neighbor Algorithm (NN) Examines all the cities that have not been visited before and chooses 

the nearest one. 

The Random Neighbor Algorithm (RN) Randomly selects the next city from the list of unvisited cities. 

The results that are shown in tables (3), (4) and (5) prove the performance of GWOS as it has outperformed 

the other selected algorithms in best and average results for all tests, which proves the ability of GWOS in 

solving CTSP in static situation.  

Table 3. Best results of two salesmen with 20 static cites and 1000 iteration  

Algorithms Benefit 

Salesman 1 Salesman 2 

NN NN 869.82 945.99 

NN RN 869.82 696.65 

NN ACS 869.82 1034.14 

RN NN 805.77 945.99 

RN RN 805.77 696.65 

RN ACS 805.77 1034.14 

ACS NN 1029.47 945.99 

ACS RN 1029.47 757.74 

ACS ACS 1029.47 1034.14 

GWOS NN 1175 945.68 

GWOS RN 1000 757.74 

GWOS ACS 1175 1034.14 

GWOS GWOS 1575 1050 

NN GWOS 869.82 1050 

RN GWOS 805.77 900 

ACS GWOS 1029 1175 

 

Table 3 shows the results of using GWOS and compare it with other algorithms that uses same dataset. 

GWOS outperformed the rest of other algorithms, this reflect the efficiency of GWOS to solve CTSP.  
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Table 4. Best results of 1000 executions for two salesmen and static 20 cities 

Algorithm Best benefit 

Nearest Neighbor (NN) 945.99 

Random Neighbor (RN) 869.82 

Ant Colony System (ACS) 1043 

Gray Wolf Optimization System (GWOS) 1575 

 

Table 4 above show the best results for each algorithms that uses same dataset, the results show GWOS 

achieve higher benefit than other algorithms that uses the same dataset and then ACS in second level the NN 

and RN. 

  

Table 5.  Average Results of 1000 Executions for Two Salesmen with 20 Static Cities 

 

Algorithm Average of benefit 

Nearest Neighbor (NN) 945.99 

Random Neighbor (RN) 869.82 

Ant Colony System (ACS) 1043 

Gray Wolf Optimization (GWOS) 1052.885 

 
In table 5 the average of benefits that obtained when applying algorithms on the same dataset. It is show the 

GWOS exceed on other algorithms and obtain higher benefits than others.  

   

9.2.3 Parallel Gray Wolf Optimization System (GWOS) 

     In this approach, all cities are available for all salesmen. Each salesman will choose the next city form the 

available cities list. The salesman who arrives firstly will get all benefit and the others will lose the cost of 

travel therefore the salesmen must avoid visiting the visited cities, if more than one salesman coincides in 

same city at same moment the benefit will divided among them. The results of GWOS are compared with RN, 

NN and ACS algorithms. Nine salesmen and 20 parallel CTSP will uses and the compares with the results of 

the other algorithms. The results are shown in tables (6) and (7). 

 

Table 6. Best Results of 1000 Executions for Nine Salesmen for 20 Parallel Cities  

 

Algorithm Benefit 

Nearest Neighbor (NN) 1634.28 

Random neighbor (RN) 1152 

Ant Colony System(ACS) 1826 

Gray Wolf Optimization System (GWOS) 2175 

 

Table 7. Average Results of 1000 Executions for Nine Salesmen with 20 Parallel Cities 

 

Algorithm Average of Benefit 

Nearest Neighbor (NN) 1569.43 

Random neighbor (RN) 1113.62 

Ant Colony System(ACS) 1560.42 

Gray Wolf Optimization System (GWOS) 1951.633 
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The results in tables (6) and (7) reflect the efficiency and superiority of GWOS. Those results prove 

the ability and success of GWOS in solving CTSP over than NN, RN and ACO in parallel situation. 
Table (6) shows the best results that obtained when applying multi algorithms that used same dataset. The 

results show GWOS achieved the best benefit. 

Table (7) shows the average of obtained benefit for each algorithm, GWOS achieved the highest benefit than 

other algorithms. This clearly reflects the superiority of GWOS.                                                                                    

9.3 Statistical Results of GWOS and the Selected Algorithms  

    To verify the obtained results in tables (3) and (6). T-test applied for two samples in order to check the 

efficiency (GWOS) with the highest payoff compared with other algorithms. The T-value will be compared 

with T-critical value, if the t-value is smaller than the t-critical value, the null hypothesis will be rejected. 

Alpha level assumed (0.05) it is the stander value of alpha for these tests. Assume the null hypotheses is there 

are no statistical differences between the (GWOS) and other algorithms. The results shown in tables (8) and 

(9).  

 

Table 8. T-test for GWOS and Other Selected Algorithms in Static System 

 

t-Test: Two-Sample Assuming Equal Variances 

  GWOS OTHERS 

Mean 1116.667 912.52 

Variance 10208.33 19923.9292 

Observations 3 3 

Pooled Variance 15066.13   

Hypothesized Mean Difference 0   

Df 4   

t Stat 2.036981   

P(T<=t) one-tail 0.055663   

t Critical one-tail 2.131847   

P(T<=t) two-tail 0.111325   

t Critical two-tail 2.776445   

 
From table (8), we can notice the value of t Stat < t critical for one tail and two tail and the value of P(t<=t) 

two tail > alpha (0.05) that means the results of GWOS are better than other algorithms in static system.  

 

Table 9. T-test for GWOS and other selected algorithms in parallel system 

 

t-Test: Two-Sample Assuming Equal Variances 

     

 GWOS Others 

Mean 1728.333 1537.426667 

Variance 214658.3 120604.4261 

Observations 3 3 

Pooled Variance 167631.4  
Hypothesized Mean Difference 0  

Df 4  
t Stat 0.57107  

P(T<=t) one-tail 0.299253  
t Critical one-tail 2.131847  
P(T<=t) two-tail 0.598506  

t Critical two-tail 2.776445   
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The results in table (9) show that t Stat < t critical for one tail and two tail and the value of P(t<=t) two tail > 

0.05, this show that GWOS results is statically better than other algorithms for solving CTSP in parallel 

system. 

   

10. Conclusion 

    In this paper we used GWOS to solve CTSP, at which GWOS has been created and implemented. Two 

methods are used to prove efficiency of GWOS, the first one is the static method, its idea is to divide cites 

evenly among salesmen and each salesman must find the best track that increases benefits and decreases the 

cost. The tests and results proves the efficiency of our system compared with other selected algorithms 

(Nearest Neighbors, Nearest Random and Ant Colony System) and the results are shown in tables (3, 4, and 

5).                                                                                                                           

The parallel method, in this manner all cites is available to all salesman but the salesman must visit the 

unvisited city in order to obtain full benefit of this city. If the salesman visits a visited city, he will pay the 

cost of arrive only and not obtain any benefit and if more than one salesman coincides at same city the benefit 

will be divided among them. Many datasets were tested and the experiments results prove the superiority of 

GWOS over others, to increase the dynamics of exploration and exploitation salesmen are used in the 

experiments and the results was validating our expectations and are shown in tables (6 and 7). The salesmen 

visited all cites to obtain grater benefits unlike other algorithms that visited less number of cities.   

Based on above we can have concluded that GWOS algorithm proved its ability and efficacy in solving CTSP 

providing a new and good way to find the optimal path with the lowest costs, time and highest returns that can 

be used in many areas. 
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