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ABSTRACT   

Poverty phenomenon is very substantial topic that determines the future of societies and governments and 

the way that they deal with education, health and economy. Sometimes poverty takes multidimensional trends 

through education and health. The research aims at studying multidimensional poverty in Iraq by using 

panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central 

Statistical Organization in Iraq. We choose classical penalized regression method represented by the Ridge 

Regression. Moreover, we choose another penalized method, which is the Smooth Integration of Counting 

and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. 

Euclidian Distance (ED) was used to compare the two methods and the research conclude that the SICA 

method is better than Ridge estimator with Big Data conditions. 
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1. Introduction 

Poverty in all its shapes is very important material to study due its effect over many psychological and 

economical properties of society, moreover; it is a very important variable in the demographic studies, 

demography science interested in population dynamics and the reason behind changing people composition and 

poverty [3]. Many researchers study poverty through demographical data because poverty itself is a 

multidimensional phenomenon related not only to financial conditions but also related to education and health 

conditions.  

Therefore, demographical data provide searchers with vast information to study poverty. Demographical data 

are multi-types data that can be collected from many sources, there are three main sources for demographical 

data. The first is the digitized data from paper-based on demography over internet, the second is traces of social 

media since more than half the world population is social media sites users so it can make surveys that support 

demographical data, and the last one is the governmental offices like statistical departments and health agencies 

[4].  

The variety in types and sources makes demographical data kind of Big Data as the following definitions 

“Extensive datasets, primarily in the characteristics of volume, velocity and/or variety, that require a scalable 

architecture for efficient storage, manipulation, and analysis” [16], “Big Data is a combination of Volume, 

Variety, Velocity and Veracity that creates an opportunity for organizations to gain competitive advantage in 

today’s digitized marketplace.” [10]. Demographical data is big sets of data that require new and developed 

statistical methods to analyze. The study aims at using new techniques to deal with big data sets that can be 

transformed to be algorithms for application that gives fast and efficient results for big data sets analyzing. We 

are living in era that requires rapidity to take decisions and big data analysis should be fast and reliable system 

that can help managers to take big steps to develop establishments worldwide. Developing new and reliable 

system to deals with vast and huge amount of data is persistent need for many establishments in different sectors 

such as health, industry, marketing, etc. The study consists of nine sections, section 2 is related works,  section 
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3 shows methods for Big Data analysis, section 4 introduce the Ridge regression, section 5 introduce the SICA 

method, section 6 shows the comparison method between estimators, section 7 introduces the demographical 

data under study and results, and section 8 is the conclusion of the study.  

 
2. Literature background 

Big Data issues and challenges attract researches around the world to introduce new statistical methods and 

techniques due to the fast development of technology and life at all aspects, Big Data have been studied by 

many researches such as. 

Hoerl & Kennard [2] (1970) introduced a new regularized shrinkage estimator for the regression coefficients, 

in case of multicollinearity that appear in data with high dimensions and variety of data source, and they call it 

Ridge regression. 

Tibshirani [12] (1996) suggested to use the L1-norm to develop a new penalty function to use on a regularized 

penalized optimization with specific conditions of high dimension and it is called LASSO estimator. 

Knight & Fu [8] (2000) studied the asymptotic properties of the regular penalized estimator, and they presented 

an efficient estimator for the regression coefficients by developing penalty function works under Big Data 

conditions.  

Lv & Fan [7] (2009) studied a family of penalty functions that depend upon the Lp-norm for the regression 

coefficients vector and they introduced new estimator with a mixed Lp-norms penalty functions for Big Data 

analysis. 

Chudik at al [1] (2018) studied a sort of nonparametric estimators for the regression coefficients over a 

penalizing optimization and they introduced the OCMT One-Covariate at Time Multiple testing approach. 

 

3. Methods for big data analysis 

Knowledge about variables under study is the key issue to choose appropriate method of analysis either 

parametric or non-parametric method to analyze Big Data, many approaches have been submitted to analyze 

Big Data most of them aimed at reducing data dimension to avoid poor inference and bad performance of 

parameters under high dimensions conditions. 

Reducing data dimensions attracts attention of many researchers over the world that they present different 

methods like penalizing over parameters or use appropriate prior distribution or select regressors to reduce high 

dimensions data into small sets of data to avert over fitting and improve forecasting. Collecting information and 

summarizing them in to a model is the first step in any statistical method parametric or non-parametric and 

selecting model depends on the nature of Big Data and the knowledge behind them [5]. 

Introducing numerous methods to summarize information from Big Data is the first step before taking an action 

in analysis like Principal Component Analysis, Factor Models, Sparse Principal Component Analysis and Partial 

Least Squares [8]. 

In our study, we select regression model with many explanatory variables in the form 

  

𝑦 = 𝑋𝛽 + 𝜀                                                                                                                                            … (1) 

 

Where 𝑦 represents (n × 1) independent variable vector and 𝑋 is (n × p) explanatory variables matrix containing 

large number of variables and 𝜀 is (n × 1) random error vector and 𝜷 is (p × 1) parameters vector. Regression 

models are commonly used in diverse statistical application with different kinds and types of data and sometimes 

researches choose regression models as starting models to improve them later or develop them in new kinds of 

models. 

4. Ridge regression  

Ridge regression is a kind of penalized regression which is simply a linear approach to deal with large sets of 

data, in equation (1) the basic idea of OLS method is estimate  𝛽 that minimizes the errors 𝜀 where 𝜀1, … , 𝜀𝑛 are 

independent identically distributed random variables with mean equal to zero and variance 𝜎2. In other words, 

to find the estimators that minimize 𝜀′𝜀 this optimization leads to the OLS estimators of parameters 𝜷𝑂𝐿𝑆 =
(𝑋′𝑋)−1𝑋′𝑦 [24]. 
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Under same assumption, the penalized regression minimizing errors subject to additional condition called 

penalty function.  

 

𝛽̂𝑃𝑅 = arg min
𝛽

1

𝑛
(𝜀′𝜀 + 𝑓(𝜆, 𝛽))                                                                                            … (2) 

 

Where 𝑓(𝜆, 𝛽) is the penalty function used to minimize the sum of squared errors where 0 < 𝜆 < 1  in common 

searches 𝜆 < 0.3 is a complexity parameter that controls the amount of shrinkage the larger the value of λ, the 

greater the amount of shrinkage, there are many kinds of penalty functions that make a rise of different types of 

estimators. Ridge regression was first submitted by [2] Hoerl and Kennard 1970 by minimizing 𝛽 throughout a 

Lp-norm penalty function ‖. ‖𝑝 where the Lp-norm is ‖𝛽‖𝑝 = ∑ |𝛽𝑖|𝑝𝑛
𝑖=1  . Moreover, they used the L2-norm as 

a penalty function in the following form. 

 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = arg min
𝛽

1

𝑛
(𝜀′𝜀 + 𝜆𝐼‖𝛽‖2)                                                                                         .. (3) 

 

Where I is (𝑝 × 𝑝) identity matrix and by solving the optimization in (3) we will apply shrinkage over 𝛽 which 

minimize the sum of square errors, Ridge regression achieves sparse recovery and have some very good qualities 

and it is a  good choice for high dimensions and Big Data analysis.  

In terms of matrices, the optimization in (3) will be as follows. 

 

𝐿(𝛽) = (𝑦 − 𝑋𝛽)
′

(𝑦 − 𝑋𝛽) + 𝜆𝐼𝛽′𝛽       

𝐿(𝛽) = 𝑦′𝑦 − 2𝛽𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽 + 𝜆𝐼𝛽′𝛽 

By differentiating with respect to 𝛽 and equalize to zero [15]. 

0 = −2𝑋′𝑦 + 2𝑋′𝑋𝛽 + 2𝜆𝐼𝛽 

𝑋′𝑦 = (𝑋′𝑋 − 𝜆𝐼)𝛽 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = (𝑋′𝑋 − 𝜆𝐼)−1𝑋′𝑦                                                                                                      … (4) 

 

Ridge regression is also highly recommended in case of multicollinearity problem. 

 

5. Smooth integration of counting and absolute deviation  

Smooth integration of counting and absolute deviation (SICA) method was first submitted by Lv &Fan 2009 

[7] who presented a shrinkage method of penalized kind that meet model selection and sparse recovery 

problems. They started with the regression model in (1) and assumed that 𝜃 is the true regression coefficients 

vector, which theoretically goes to zero under shrinkage assumptions, but could be a small positive values to 

the true regression coefficients 𝜃 to be a nonzero vector that used to develop the penalty function. Penalized 

regressions usually use one order of Lp-norm for the parameter that the researchers wish to estimate like L2-

norm in Ridge regression. Lv & Fan suggested to use mixture of  Lp-norms that contain a ratio between L1 and 

L2-norm as a penalty function to make shrinkage over 𝛽, and they chose a penalty function that was studied by 

[9] Nikolova which is  as follows. 

 

𝑓(𝜆, 𝛽) = 𝜆
(𝑎+1)‖𝛽‖1

𝑎+‖𝛽‖1
                                                                                                                  … (5) 

 

Where a is a constant 𝒂 > 𝟎 a very small number that is supposed to be non-negative small number [7]. It is  

clear from the penalty function in (5) that it is a ratio between two L1-norms and that makes the evaluation of 

𝛽  difficult somehow, there they suggested to upgrade the denominator in (5) to be quadratic and to use the true 

regression coefficients 𝜃 instead of 𝛽. The result is a penalty function that is equivalent to be a ratio between 

L1 and L2-norms and achieve the sparse recovery over 𝛽 as follows. 

 

𝑓(𝜆, 𝛽) = 𝜆
(𝑎+1)‖𝛽‖1

(𝑎+‖𝜃‖1)2                                                                                                                  … (6) 
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Many approaches submitted to estimate 𝜃 some of them assume 𝜃 to be the 𝛽̂𝑂𝐿𝑆 , but the ordinary least square 

estimator assume 𝑋′𝑋 to be full rank matrix with non-singular condition. Here, Lv & Fan suggested to use 

𝜃 = 𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)+𝑋′𝑦 .Where + here represents the Moore-Penrose inverse or sometimes called 

Pseudoinverse which allows to solve any least squares system [11] for the matrices that have rank deficient by 

using minimum norm for each column in the solution matrix so if 𝐺 is (𝑝 × 𝑝) matrix the Moore-Penrose inverse 

be as follows: 

 

𝐺+ = 𝐿(𝐿′𝐿)−1(𝐿′𝐿)−1𝐿′𝐺′ 
 

Where 𝐿 is a simple extension of usual Cholesky factorization of non-singular matrices with removing zero 

rows, then 𝐿 is a (𝑝 × 𝑟) matrix with rank equal to 𝑟 where 𝐺′𝐺 = 𝐿𝐿′. The SICA estimator is the solution of 

the following optimization [7]. 

 

𝛽̂𝑆𝐼𝐶𝐴 = arg min
𝛽

(2−1𝜀′𝜀 + 𝜆𝑤‖𝛽‖1)                                                                                     … (7)  

 

Where 𝑤 =
(𝒂+𝟏)

(𝒂+‖𝜽‖𝟏)𝟐 and by using the terms of matrices. 

 

𝐿(𝛽) = (2−1 (𝑦 − 𝑋𝛽)
′

(𝑦 − 𝑋𝛽) + 𝜆𝑤𝑐𝛽′) 

 

Where c is a (𝑝 × 1) ones vector and by simplifying  the equation above we get: 

 

𝐿(𝛽) = (2−1(𝑦′𝑦 − 2𝑋′𝛽 + 𝛽′𝑋′𝑋𝛽) + 𝜆𝑤𝑐𝛽′) 

 

By differentiating with respect to 𝛽 and equalize to zero we can evaluate : 

𝟎 = −𝑋′𝑦 + 𝑋′𝑋𝛽 + 𝜆𝑤𝑐 

𝑋′𝑦 − 𝜆𝑤𝑐 = 𝑋′𝑋𝛽 

𝛽̂𝑆𝐼𝐶𝐴 = (𝑋′𝑋)+ (𝑋′𝑦 − 𝜆𝑤𝑐)                                                                                                   … (8) 

 

6. Comparison method 

Comparison among estimators is a main process in any statistical or scientific research that could help the 

researchers to determine the best statistical method of analyzing or model selection. Moreover, it helps them to 

create conclusions and take practical decisions. There are various statistical methods of comparison that are 

established over a specific assumption or theoretical groundings [14]. In statistics, the most common comparison 

method is the Mean Square Errors MSE but with high dimensions and the variety of data types and sources, 

MSE could lead to wrong imagination and poor understanding that could not help to create efficient decisions 

for the researchers. In our study, we have chosen the Euclidian Distance as a method of comparison due the 

high dimensions of data and the different types of data under study. Euclidian Distance is effective method to 

compare among estimators vectors and does not need any theoretical base to apply and its formula for a (𝑝 × 1) 

estimator vector as follows [6]. 

 

   𝐸𝐷(𝛽) =
√𝛽1

2+𝛽2
2+⋯+𝛽𝑝

2

𝑝
                                                                                             … (9) 

Euclidian Distance in (9) is divided by p that gives a weight to the victor dimension and as it gets smaller 

as better the estimator is. 

 

7. Data and results 

Before getting in to the data details we need to show short explanation to the concept of the Multidimensional 

Poverty Index MPI, this index was submitted by Alkire & Santos in 2011 [13] who studied various cases of 
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poverty and sorted them out into three main topics (Education, Health, and Living Standards). These topics are 

divided into 10 indicators and they are calculated for a group of families as follow. 

Table 1. MPI calculation indicators 

Indicators 
Households 

Weights 
1 2 3 .. 

Household size      

Education  

1- No one has completed five years of schooling     1/6 

2- At least one school-aged child not enrolled in school     1/6 

Health 

3- At least one member is malnourished      1/6 

4- One or more children have died     1/6 

Living Standards 

5- No electricity      1/18 

6- No access to clean drinking water     1/18 

7- No access to adequate sanitation       1/18 

8- House has dirt floor     1/18 

9- Household has no car and owns at most one bicycle, motorcycle, 

radio, refrigerator, telephone or television   

    
1/18 

10- Household uses dirty cocking fuel       1/18 

Score ci ( sum of each deprivation multiplied by its weight      

Is the house hold poor ( c > 0.33)      

Censored data c(k)      

   

MPI calculation depends upon two main variables, first one is 𝐻 which is called the proportion of incidence, 

which is as following. 

 

 𝐻 =
𝑞

𝑛
                                                                                                                                       … (10) 

   

Where 𝑞 is the number of the people who suffer from multidimensional poverty, and 𝑛 represents the total 

number of people in the group of families.  

Second variable is 𝐴, it is called the intensity of poverty which is the average of deprivation of multidimensional 

poverty and can be expressed as: 

 

𝐴 =
∑ 𝑐𝑖(𝑘)𝑛

𝑖=1

𝑞
                                                                                                                              … (11) 

 

Where finally the Multidimensional Poverty Index is. 

 

𝑀𝑃𝐼 = 𝐻𝐴                                                                                                                                ... (12) 

 

We have gotten sets of surveys data from the Central Statistical Organization IRAQ represent 300 group 

of families, and from it we get the MPI vector (300 × 1) by equations (10),(11),(12) and it here 

represents our independent variable vector 𝑦. We also have gotten data from surveys for the same 

groups for age and sex and many biological and social properties, we have 100 variables from different 

types quantitative, ordinal, nominal …etc., as detailed and classified in Appendix. Then these variables 
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will represent the explanatory variables matrix 𝑋 with (300 × 100) where 𝑛 = 300 , 𝑝 = 100. 

Estimators is evaluated for both Ridge and SICA methods according to equations (4),(8) and ED was 

calculated according to (9). We assume 𝑎 = 1 × 10−4 [7] and we choose two values for  𝜆  it is 

respectively [0.15, 0.3 ].  

 
Figure 1. Euclidian Distance ED for Ridge and SICA methods, λ = 0.15  

From Figure 1,  when 𝜆 = 0.15 and the values of ED for the both methods, we can notice that the Ridge 

Estimator is very close to the SICA estimator in many points of 𝑝 (number of variables) , but when 𝑝 > 75 we 

can see that SICA estimator gives a better performance than Ridge estimator. In addition, the difference between 

the two methods get quite bigger as 𝑝 goes larger. 

  
Figure 2.  Euclidian distance for Ridge and SICA methods,  λ = 0.3  

From Figure 2, when 𝜆 = 0.3 we can see that the Euclidian Distance ED get quite bigger between the two 

methods Ridge estimator and SICA estimator when 𝑝 gets bigger as we add more variable to the sample.  

 

Table 2.  The Euclidian distance values for both methods 

 𝝀 = 𝟎. 𝟏𝟓 𝝀 = 𝟎. 𝟑  𝝀 = 𝟎. 𝟏𝟓 𝝀 = 𝟎. 𝟑 

p Ridge SICA Ridge SICA p Ridge SICA Ridge SICA 

5 0.0020 0.0014 0.0029 0.0014 50 0.4159 0.3005 0.6132 0.3004 

10 0.4888 0.3532 0.7208 0.3531 55 0.0869 0.0628 0.1281 0.0628 
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 𝝀 = 𝟎. 𝟏𝟓 𝝀 = 𝟎. 𝟑  𝝀 = 𝟎. 𝟏𝟓 𝝀 = 𝟎. 𝟑 

15 0.0171 0.0124 0.0252 0.0124 60 0.0187 0.0135 0.0275 0.0135 

20 0.1494 0.1079 0.2203 0.1079 65 0.0012 0.0008 0.0017 0.0008 

25 0.0016 0.0012 0.0024 0.0012 70 0.7043 0.5088 1.0385 0.5088 

30 0.2237 0.1616 0.3298 0.1616 75 0.0031 0.0023 0.0046 0.0023 

35 0.0055 0.0040 0.0081 0.0040 80 0.5421 0.3916 0.7993 0.3916 

40 0.2854 0.2062 0.4208 0.2062 85 0.1584 0.1145 0.2336 0.1145 

45 0.3313 0.2393 0.4884 0.2393 90 0.8773 0.6338 1.2935 0.6338 

50 0.4159 0.3005 0.6132 0.3004 100 0.0815 0.0589 0.1202 0.0589 

 

 

 

8. Conclusions 

Based on the employed data and results, we can determine that the both methods are equivalent somehow when 

the number of variables 𝑝 are quite small relative to the sample size, and when 𝑝 gets large relative to the sample 

size we can determine that SICA estimator is notably better than Ridge estimator with Big Data conditions.  
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Appendix: Demographical Data details. 

N: Nominal - Q: Quantitative – O: Ordered – B: Binary (0,1)   

N Variable Type N Variable Type 

1 Household type N 26 Highest grade completed at that level B 

2 Line number Q 27 Age 4-24 Q 

3 Relationship to the head Q 28 
Check: Ever attended school or any Early 

Childhood Education programmed 
B 

4 Sex N 29 
Attended school during current school 

year(2017-2018) 
B 

5 Month of birth O 30 
Level of education attended current school 

year(2017-2018) 
N 

6 Age Q 31 
Grade of education attended current school 

year(2017-2018) 
O 

7 Line number of woman age 15 - 49 Q 32 
Attended public school current school 

year(2017-2018) 
B 

8 Line number of man age 15 - 49 Q 33 School tuition in the current school year B 

9 Line number for children age 0-4 Q 34 Material support in the current school year B 

10 Member age 0-17 Q 35 
Attended school previous school 

year(2016-2017) 
B 

11 Is natural mother alive B 36 
Level of education attended previous 

school year(2016-2017) 
B 

12 Does natural mother live in HH B 37 
Grade of education attended previous 

school year(2016-2017) 
O 

13 Natural mother's line number in HH Q 38 Day of interview Q 

14 Where does natural mother live B 39 Month of interview O 

15 Is natural father alive B 40 Area N 

16 Does natural father live in HH B 41 Region/Governorate N 

17 Natural father's line number in HH Q 42 Region N 

18 Where does natural father live B 43 Mother's line number Q 

19 
Line number of mother or primary 

caretaker for children 0-17 years of age 
Q 44 Father's line number Q 

20 Line number Q 45 Education of household head O 

21 Age Q 46 Functional difficulties B 

22 Age 4 and above B 47 Health insurance B 

23 
Ever attended school or Early 

Childhood Education programmed 
B 48 Age at beginning of school year Q 

24 Highest level of education attended N 49 Mother’s education O 

25 Highest grade attended at that level N 50 
Mother's functional disabilities (age 18-49 

years) 
B 

  

 

 

 

 

 

 

 

Appendix: Demographical Data details (continued)  

 

N Variable Type N Variable Type 

51 
Mother's functional disabilities (age 18-

49 years) 
B 76 child no attending B 
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52 Father’s education O 77 any child not attend B 

53 Household sample weight Q 78 
Household has all school age children up to 

class 8 in school 
B 

54 Combined wealth score R 79 Woman's line number Q 

55 Wealth Quintile O 80 Women BH B 

56 Percentile Group of com1 Q 81 
Total child death for each women (birth 

recode) 
Q 

57 Urban wealth score Q 82 
Total child death for each women in the last 5 

years (birth recode) 
Q 

58 Wealt Quintile Urban Q 83 Result of woman's interview O 

59 Percentile Group of urb1 Q 84 Ever given birth B 

60 Rural wealth score Q 85 Ever had child who later died B 

61 Wealth Quintile Rural Q 86 Boys dead B 

62 Percentile Group of rur1 Q 87 Girls dead B 

63 Primary sampling unit Q 88 Women WM B 

64 Stratum Q 89 Martial B 

65 Household ID Q 90 Native language of the Respondent B 

66 Individual ID Q 91 Translator used B 

67 Highest educational level attended O 92 Rank number of the selected child O 

68 Highest year of education completed O 93 Child line number O 

69 
Total number of years of education 

accomplished 
Q 94 Child's age Q 

70 Child education u 6 Q 95 Consent for interview girls 15-17 Q 

71 years of education u 6 Q 96 Consent for interview boys 15-17 Q 

72 
Household has at least one member with 

6 years of education  
Q 97 Consent for Water Quality Testing B 

73 
Attended school during current school 

year 
B 98 Respondent to HH questionnaire B 

74 child schooled B 99 Number of HH members Q 

75 
No missing school attendance for at least 

2/3 of the school aged children 
B 100 Native language of the Respondent B 

 

 


