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Abstract

In this paper we will discuss Newton’s method, its limitations and a theorem which deals
with these limitations. We will be looking in particular at John Hubbard, Dierk Schleicher
and Scott Sutherland’s theorem on finding all roots of complex polynomials by Newton’s
method. It will look at constructing a finite set of points so that for every root of every
polynomial of fixed degree, at least one of the points will converge to a root under Newton’s
map.

1 What is Newton’s Method?
Newton’s method is a way of finding roots of a function. It is an algorithm that is derived from
the first few terms of the Taylor series of a function f(x) in the vicinity of a suspected root.

Reminder: Taylor’s series of f(x) about the point x = x0 + ε is given by f(x0 + ε) =
f(x0) + f ′(x0)ε+ 1

2f
′′(x0)ε2 + · · ·

If we only consider the terms of the first order f(x0 + ε) ≈ f(x0) + f ′(x0)ε we can estimate
the amount of offset ε needs to land closer to the root starting from an initial guess x0. Let
f(x0 + ε) = 0 and solve f(x0 + ε) ≈ f(x0) + f ′(x0)ε for ε = ε0. This gives the equation
ε0 = − f(x0)

f ′(x0) which is the first order adjustment to the root’s position. By letting x1 = x0 + ε0
and calculating a new ε1 we can start a process that can be repeated - working out new xn’s
and εn’s from previous values - which will eventually lead to it converging to a fixed point (i.e.
a root). With a good choice of an initial starting point for the roots position, the algorithm we
have just created can be applied iteratively to obtain xn+1 = xn − f(xn)

f ′(xn) for n = 1, 2, 3, ...

Definition 1.1: If xn is an approximation of a solution of f(x) = 0 and if f ′(xn) 6= 0 the next
approximation is given by

xn+1 = xn −
f(xn)
f ′(xn)

We shall define this as Newton’s Iteration function, denoted by N(x) = x− f(x)
f ′(x) . [3]

Example 1.2: Use Newton’s method to find all the roots of x3− x2− 15x+ 1 = 0 accurate to
six decimal places.

MA3517 Mathematics Research Journal Page 1 Catherine Smith-Dance, 179014869



1 WHAT IS NEWTON’S METHOD?

Remember the formula for Newton’s method: xn+1 = xn − f(xn)
f ′(xn)

First of all we need to choose a starting value x0. One way to establish the interval in which
the roots lie is to draw a rough graph of the function so you can see approximately where the
roots are.
A way to do this is to draw a table of coordinates between some values of x, allowing you to
see roughly where the graph will cross the x-axis and y-axis. If we consider between x = −5
and x = 5, we get the resulting table of coordinates:

x -5 -4 -3 -2 -1 0 1 2 3 4 5
f(x) -74 -19 10 19 14 1 -14 -25 -26 -11 26

As we can see the graph will roughly cross the x axis between x = −4 and −3, x = 0 and 1,
and x = 4 and 5.

Figure 1.1: Rough graph of f(x) = x3 − x2 − 15x+ 1 = 0

Now we have a rough idea for where the roots lie we can pick an initial x0 and begin Newton’s
method to find our first root. We will start with x0 = −3.5.

x1 = x0 −
f(x0)
f ′(x0)

= −3.5− (−3.5)3 − (−3.5)2 − 15 · (−3.5) + 1
3 · (−3.5)2 − 2 · (−3.5)− 15 = −3.44347826

x2 = x1 −
f(x1)
f ′(x1)

= −3.44347826−

(−3.44347826)3 − (−3.44347826)2 − 15 · (−3.44347826) + 1
3 · (−3.44347826)2 − 2 · (−3.44347826)− 15 = −3.44214690

x3 = x2 −
f(x2)
f ′(x2)

= −3.4421469−

(−3.4421469)3 − (−3.4421469)2 − 15 · (−3.4421469) + 1
3 · (−3.4421469)2 − 2 · (−3.4421469)− 15 = −3.4421462

As you can see the second and third iterations have now converged to the same point (up to
seven decimal places), so we stop here and estimate one of the roots as being x ≈ −3.442146

We then follow the same procedure to calculate the other two roots with different starting
points according to where the graph appears to cross the x-axis.
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For x0 = 0.5

x1 = x0 −
f(x0)
f ′(x0)

= 0.5− 0.53 − 0.52 − 15 · 0.5 + 1
3 · 0.52 − 2 · 0.5− 15 = 0.06557977

x2 = x1 −
f(x1)
f ′(x1)

= 0.06557977−

(0.06557977)3 − (0.06557977)2 − 15 · 0.06557977 + 1
3 · (0.06557977)2 − 2 · 0.06557977− 15 = 0.06639235

x3 = x2 −
f(x2)
f ′(x2)

= 0.06639235−

(0.06639235)3 − (0.06639235)2 − 15 · 0.06639235 + 1
3 · (0.06639235)2 − 2 · 0.06639235− 15 = 0.06639231

Again, the second and third iterations have converged to the same point (up to seven decimal
places) and so we stop the iterations and estimate the second root as x ≈ 0.0663923.

For x0 = 4.5

x1 = x0 −
f(x0)
f ′(x0)

= 4.5− 4.53 − 4.52 − 15 · 4.5 + 1
3 · 4.52 − 2 · 4.5− 15 = 4.38095238

x2 = x1 −
f(x1)
f ′(x1)

= 4.38095238−

(4.38095238)3 − (4.38095238)2 − 15 · (4.38095238) + 1
3 · (4.38095238)2 − 2 · (4.38095238)− 15 = 4.37575386

x3 = x2 −
f(x2)
f ′(x2)

= 4.37575386−

(4.37575386)3 − (4.37575386)2 − 15 · (4.37575386) + 1
3 · (4.37575386)2 − 2 · (4.37575386)− 15 = 4.37575386

Again, the second and third iterations have converged to the same point (up to 8 decimal
places) and so again stop the iterations and estimate the final root as x ≈ 4.37575386.

So the roots of x3 − x2 − 15x+ 1 = 0 accurate to six decimal places are:

x ≈ −3.442146, x ≈ 0.066392, and x ≈ 4.375754
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2 Problems with Newton’s Method
There are three major ways in which Newton’s method can fail: when x0 is the critical point;
when there is no root to find; and if the initial starting point (x0) or iteration coincides with a
cycle.

2.1 Critical Point
One of the conditions of Newton’s method is f ′(xn) 6= 0. So if we were to choose an initial
starting point, x0, such that f ′(x0) = 0, then Newton’s method will not converge to a root.
This can be seen when considering the function f(x) = x3 + 1. If we choose the initial starting
point to be x0 = 0 then we can see that f ′(x) = 3x2 ⇒ f ′(0) = 0 and so Newton’s method
cannot be carried out. This can be illustrated by looking at the graph (Figure 2.1); as you can
see the tangent line at x = 0 never intersects with the x-axis.

Figure 2.1: Graph of f(x) = x3 + 1 (red) and x = 1 (blue)

2.2 No Roots
For Newton’s method we are only considering roots in the real plane. So if we are to consider
a function such as f(x) = x2 + 1 we will see that it has roots in the complex plane but not in
the real plane (shown in the graph, as the function never crosses the x-axis). Therefore in this
case Newton’s method will not work, as the iterations will never converge to a root.

Figure 2.2: Graph of f(x) = x2 + 1
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2.3 Periodic Cycle
The third way Newton’s method may fail is if the initial starting point or an iteration coincides
with a cycle. For example, consider the function f(x) = x3 − 2x + 2 and the initial starting
point x0 = 1.

x1 = 1− 13 − 2 · 1 + 2
3 · 12 − 2 = 0;x2 = 0− 03 − 2 · 0 + 2

3 · 02 − 2 = 1

As you can see the iterations have started to cycle, so no matter how many iterations you carry
out you will just have alternating answers between 1 and 0, and it will never converge to a root.

3 Newton’s Method in the Complex Plane
A solution to one of the problems brought up in Section 2 is to consider Newton’s method in
the complex plane. Newton’s method can be easily generalised to the complex plane, such that
for z = a+ bi, N(z) = z − f(z)

f ′(z) .

What we have not previously discussed, is that you can view Newton’s method as essentially
drawing a tangent to the curve and following the tangent to where it crosses the x-axis. If a
bad initial starting point is chosen then this means that the tangent to the curve will cross the
x-axis a huge distance away from the roots of the function. The way that Newton’s method
works, will also mean that the second iteration will flip the tangent from one side of the root
to the other side. This behaviour of expanding a small area into a large area, results in fractals
occurring when considering Newton’s method at all points on the curve.

Definition: A fractal is a never-ending pattern that repeats itself at different scales.
When considering Newton’s method in the complex plane the fractals that appear are really
fascinating. Below are some examples of fractals created from Newton’s method in the complex
plane (called Newton fractals).

Figure 3.1: Newton’s fractal yielded via
solving log(z4)exp(z4)− i = 0 [7]

Figure 3.2: Newton’s Fractal yielded via
solving exp(z4)− i = 0 [7]

As you can see this means that choosing the initial starting point for Newton’s method is very
important. This brings us nicely onto the theorem of John Hubbard, Dierk Schleicher and Scott
Sutherland, on how to find all roots of complex polynomials.
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Theorem 3.1: For every d ≥ 2 there is a set Sd consisting of points in C with the property
that for every polynomial p ∈ Pd and each of its roots, there is a point s ∈ Sd in the basin of
the chosen root. [6]

Before we jump straight into how the theorem works however, we will first discuss a few
important properties of Newton’s Method that are used in Theorem 3.1.

3.1 Fixed Points
Definition 3.2: A point x0 is a fixed point of a function f(x) if and only if f(x0) = x0 (i.e.
a fixed point is a root of f(x)). Moreover, the point x0 is called an attracting fixed point if
|f ′(x0)| < 1. [1]

An attracting fixed point (x) is when an initial point x0 is iterated and it always converges to
x. Therefore...
Remark 3.3: If a root is an attracting fixed point in Newton’s Iteration function, then New-
ton’s method will converge to that root.

Theorem 3.4: ξ is a root of a function f of multiplicity k > 0 if and only if ξ is a fixed point
of N(x) (Newton’s Iteration function). Moreover, such a fixed point is attracting. [1]

The above theorem highlights that the fixed points of N(x) are the roots of f(x), and since all
fixed points are attracting fixed points when considering Newton’s method, we can see that a
sequence occurs as you iterate N(x) : x0, x1 = N(x0), x2 = N(x1), . . . which will converge to
the root of f(x).

3.2 Basins of Attraction
When considering functions with multiple roots (e.g. Example 1.2) we notice that when choos-
ing different starting points and carrying out Newton’s method, each respective sequence of
iterations converges to a different root. Even though the initial starting points in Example 1.2
are relatively close together, their iterations converged to completely different roots; so we must
consider which initial points lead to which roots.

Definition 3.5: If ξ is a root of f(x), the basin of attraction of ξ is the set of all num-
bers x0 such that Newton’s method starting at x0 converges to ξ, i.e. B(r) = {x0|xn =
Nn(x0) converges to ξ}. [10] In other words, the basin of attraction is the points whose orbits
attract to x0.

Definition 3.6: The immediate basin of attraction for x0 is the largest neighbourhood
around x0 contained in the basin of attraction. It can also be considered as the connected
component of the basin containing the root.
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3.3 Channels to Infinity
Remark 3.7: The point at ∞ is on the boundary of the immediate basin of every root and
there are simple arcs in the immediate basin of each root that connect the root to the point at
infinity.

Definition: A simple arc is simply a curve that is injective, i.e. it does not cross itself.

Definition 3.8: An access to infinity is a collection of sets of homotopic paths connecting
the root to ∞.

Definition: Two paths with common endpoints are called homotopic if one can be
continuously deformed into the other leaving the end points fixed and remaining within
its defined region.

Theorem 3.9: If m is the number of critical points of p(z) in the immediate basin of a root ξ,
then the immediate basin of ξ has exactly m distinct accesses to infinity. [6]

Proposition 3.10 If the number of critical points of the Newton map within some immediate
basin is m, counting multiplicities, then this basin has a channel to infinity with width at least

π
log(m+1) . In particular, every basin has a channel with width at least π

log(d) , where d is the degree
of the polynomial. [6]

With these definitions, remarks and theorems in mind, we can now begin to look at how
Theorem 3.1 works. We first of all need to let Pd be the space of the polynomials of degree d,
normalised so that all their roots are in the open unit disk D.

Definition: Let f(x, y) be a polynomial of degree d: f(x, y) = a0x
d+a1x

d−1y+a2x
d−2y2+

... + ady
d + .... f is said to be normalised if the first non-zero term in the sequence

a0, a1, a2, ..., ad is equal to 1. [4]
Definition: The (open) unit disk can be considered to be the region in the complex
plane defined by z : |z| < 1, where |z| is the complex modulus, i.e. it is the interior of a
circle of radius 1. [12]

Since all roots are in the open unit disk D, this means that every circle centred at the origin
but outside of D intersects every channel to infinity and hence every such circle intersects the
immediate basin of each root. Furthermore, since there is also a lower bound on the width of
these channels, this allows for a set Sd to be created which contains at least one point that will
converge to each root, by choosing sufficiently many points spaced along the circle where Sd is
finite.

Henceforth, we can now find all roots of all complex polynomials.
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