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Abstract 

This paper introduces the basics of classification and machine learning, as well as building an 

application of one classification model. The classification model chosen is based on Bayes’ 

Theorem and adapts it to handle large datasets. The paper also discusses the effectiveness 

of the common F1-Score for statistical analysis as well as also introducing a more 

meaningful precision-recall measure (Matthews Correlation Coefficient) which is more 

suited to machine learning algorithms. 

Introduction 

What is Machine Learning? 

Algorithms are an essential component for computers to be able to solve and understand 

problems that we give them. Computers follow human described instructions in order to 

transform an input to an output. A very simple example of an algorithm is a sorting 

algorithm, which can be broken down to a simple human process that a computer can 

follow. There are, however, human processes which do not follow a clearly definable set of 

instructions – such as species recognition. 

As humans, we do not follow an algorithm to identify species, we follow patterns that we 

have learnt over our lives. Computers have, over time, become more powerful and able to 

process large datasets and handle increasingly more complex numerical operations – these 

advancements increase their ability to not only process operations but store and evaluate 

efficiently. A computer can take a human input of pre-sorted photographs of species, with 

their associated label, and analyse the pixels to develop its own set of patterns to identify 

such a species. The process of teaching a computer how to recognise patterns is the basis of 

Machine Learning.[1] 

Text Classification 

Text Classification problems can be solved by using either hand-coded rules or supervised 

algorithms. Hand-coded rules are purpose built by humans to solve a specific text 

classification problem. While these can be extremely accurate for simple and clearly defined 

problems, they do not scale well with more complicated inputs. Further, it can become 

expensive to maintain rule sets to classify a constantly changing classification problem such 

as spam emails. 

Supervised algorithms handle three inputs (a problem document, defined classes and a pre-

classified training set) and output a single classification determined by the algorithm. 

Compared with hand-coded rules, a supervised algorithm can handle increasingly 

complicated documents and does not need updating to respond to new trends or changes in 

classification problems. Further, a supervised algorithm can also be trained to suit an 

individual’s needs such as a spam filter. 

 

 



Naïve Bayes 

Naïve Bayes is a classification algorithm based on Bayes’ Theorem. The algorithm makes two 

key assumptions about words within documents, these are that: 

- probability of a word occurring is independent of the words around it 

- all words are conditionally independent with a class 

These assumptions are fundamentally simple and would not hold up in the real world where 

the order of words convey contextual information to a human reader that would not 

otherwise be conveyed by the same set of words ordered differently. Despite these 

assumptions, Naïve Bayes has a high degree of accuracy when predicting classes with only a 

small training set. 

Derivation 

We start off by defining Bayes’ Theorem: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|¬𝐴)𝑃(¬𝐴)
 

Where 𝑃(𝐴|𝐵) is the conditional probability of event A occurring after event B an 𝑃(𝐵|𝐴) is 

the conditional probability of event B occurring after event A. 𝑃(𝐴) and 𝑃(𝐵) are the 

probability of event A and B occurring respectively. ¬ is used to denote “not”, so ¬𝐴 is “not 

event A”.[2] 

Assuming we have the following variables associated with the input documents for our 

classifier: 

- 𝐶 is a set of all classes known (𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}) 

- 𝑐𝑖 is a class in the set 𝐶 

- 𝑁 is the number of training document inputs 

- 𝑁𝑐 is the number of training documents with class 𝑐𝑘 

- 𝑤 is the set of all words known to the algorithm (a vocabulary; 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑘}) 

- 𝑤𝑘  is the kth word in a vocabulary 

- 𝑛𝑐 is the number of times 𝑤𝑘  occurs in all documents within class 𝑐𝑘 

- 𝑛𝑑  is the number of all words in all documents within the class 

- 𝑛𝑣 is the size of set 𝑤 

- 𝑛𝑡 is the size of the document being analysed 

Looking back at Bayes’ Theorem, if we assign events A and B respectively a defined class and 

a document input such that 𝑃(𝑐𝑘|𝑤𝑘), we are evaluating the probability of a ‘bag’ of words 

being a member of class 𝑐𝑘. 

We can define the probability of an input document being assigned a class based on the 

total number of training documents and their existing class assignments: 

𝑃(𝑐𝑘) =
𝑁𝑐

𝑁
 



The probability of a word appearing given a certain class can also be defined as: 

𝑃(𝑤𝑘|𝑐𝑖) =
𝑛𝑐

𝑛𝑑 + 𝑛𝑣
 

To complete the derivation, we need to relate these new probability equations back to 

Bayes’ Theorem: 

𝑃(𝑐𝑖|𝑤𝑘) =
𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖)

𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖) + (1 − 𝑃(𝑤𝑘|𝑐𝑖))(1 − 𝑃(𝑐𝑖))
 

This equation introduces an issue if we encounter a new word within a class. As we have no 

prior probability of 𝑤𝑘  in our class, we will have a probability of 0. To prevent this, we can 

apply a method called ‘additive smoothing’ where we artificially inflate the value of 𝑛𝑐 by 

one so that the new equation for 𝑃(𝑤𝑘|𝑐𝑖) is: 

𝑃(𝑤𝑘|𝑐𝑖) =
𝑛𝑐 + 1

𝑛𝑑 + 𝑛𝑣
 

 

To then solve a Naïve Bayes classification problem, we need to find the value of 𝑐𝑖 which 

maximises the probability – we therefore write this as: 

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∏𝑃(𝑐|𝑤𝑘)

𝑛𝑡

𝑘=1

 

With an increasing large document to classify, it may be foreseeable that the probabilities 

we are multiplying begin to approach the machine precision limit when using floating point 

arithmetic. To prevent this having an impact when using this method on a computer, we can 

utilise logs to rewrite the 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  equation above to be: 

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∑log(𝑃(𝑐|𝑤𝑘))

𝑛𝑡

𝑘=1

 

Worked Example 

Using the data available in Appendix 1, we will consider a training set of 5 random sentences 

and attempt to classify a sentence to show how the algorithm works in practice. For class, 

‘Accept’ labels where a human felt the text provides enough reason to approve a request, 

while ‘Review’ was identified as a request requiring more information or further 

consideration. 

Text Class 

provide a platform for an amateur radio community group to share technical 
material and provide educational material 

Accept 

a university research group wiki for collaboration among the research group and 
to make the computational aerodynamics research available 

Accept 

I will use primarily for literary creation Accept 



I would love to create a wiki based upon nature it would be a great business Review 

I would like to record and share all of my knowledge related with information 
and technology 

Review 

Before we start calculating individual probabilities, we need to define: 

- 𝐶 = {𝐴𝑐𝑐𝑒𝑝𝑡, 𝑅𝑒𝑣𝑖𝑒𝑤} 

- 𝑁 = 5 

- 𝑁𝐴𝑐𝑐𝑒𝑝𝑡 = 3 

- 𝑁𝑅𝑒𝑣𝑖𝑒𝑤 = 2 

- 𝑤 = {provide, a, platform, for, an, amateur, radio, community, group, to, share, 

technical, material, and, educational, university, research, wiki, collaboration, 

among, the, make, computational, aerodynamics, available, I, will, use, primarily, 

literary, creation, would, love, create, based, upon, nature, it, be, great, business, 

like, record, all, my, knowledge, related, with, information, technology} 

- 𝑛𝑣 = 50 

- 𝑛𝑑  for Accept is 43 and for Review is 32. 

To improve the efficiency of calculating probabilities for one sentence, we can split the 

unique words of the new sentence up and only consider those words in each set. For this 

example, the sentence we are going to classify is, “a wiki to make my university research 

available”. 

The probability of our sentence being classified in either class is: 

𝑃(𝐴𝑐𝑐𝑒𝑝𝑡) =
3

5
, 𝑃(𝑅𝑒𝑣𝑖𝑒𝑤) =

2

5
 

Now we need to calculate 𝑃(𝑤𝑘|𝑐𝑖) for each word and class we are interested in 

𝑃(𝑎|𝐴𝑐𝑐𝑒𝑝𝑡) =
2 + 1

50 + 43
=

3

93
, 𝑃(𝑎|𝑅𝑒𝑣𝑖𝑒𝑤) =

2 + 1

50 + 32
=

3

82
 

𝑃(𝑤𝑖𝑘𝑖|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑤𝑖𝑘𝑖|𝑅𝑒𝑣𝑖𝑒𝑤) =

1 + 1

50 + 32
=

2

82
 

𝑃(𝑡𝑜|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑡𝑜|𝑅𝑒𝑣𝑖𝑒𝑤) =

2 + 1

50 + 32
=

3

82
 

𝑃(𝑚𝑎𝑘𝑒|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑚𝑎𝑘𝑒|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82
 

𝑃(𝑚𝑦|𝐴𝑐𝑐𝑒𝑝𝑡) =
0 + 1

50 + 43
=

1

93
, 𝑃(𝑚𝑦|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82
 

𝑃(𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82
 

𝑃(𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ|𝐴𝑐𝑐𝑒𝑝𝑡) =
2 + 1

50 + 43
=

3

93
, 𝑃(𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82
 

𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82
 



Next, we need to calculate the probability of a class given the word being present. For 

example, 

𝑃(𝐴𝑐𝑐𝑒𝑝𝑡|𝑎) =

3
93 ×

3
5

(
3
93 ×

3
5) + (

90
93 ×

2
5)

=
1

21
 

𝑃(𝑅𝑒𝑣𝑖𝑒𝑤|𝑎) =

3
82 ×

2
5

(
3
82 ×

2
5) + (

79
82 ×

3
5)

=
2

81
 

To then classify, we need to solve the 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  formula from above, substituting in what 

we have calculated so far: 

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∑log(𝑃(𝑐|𝑤𝑘))

𝑛𝑡

𝑘=1

 

𝐶𝐴𝑐𝑐𝑒𝑝𝑡 = ∑log(𝑃(𝐴𝑐𝑐𝑒𝑝𝑡|𝑤𝑘))

8

𝑘=1

= log(
1

21
)+log (

3

94
) + log(

3

94
) + log(

3

94
) + log(

3

187
) + log(

3

94
)

+ log(
1

21
) + log (

3

94
) ≈ −11.9192 

𝐶𝑅𝑒𝑣𝑖𝑒𝑤 = ∑log(𝑃(𝑅𝑒𝑣𝑖𝑒𝑤|𝑤𝑘))

8

𝑘=1

= log(
2

81
) + log(

1

61
) + log(

2

81
) + log(

2

245
) + log(

2

245
) + log (

2

245
)

+ log(
2

245
) + log(

2

245
) ≈ −15.4409 

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐𝑖∈𝐶

𝐶𝑐𝑖 

Given our largest classification value is produced by using the ‘Accept’ argument, 

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐴𝑐𝑐𝑒𝑝𝑡. We would then classify the sentence “a wiki to make my university 

research available” with the label of ‘Accept’. 

Accuracy and Precision 

For testing the precision of an algorithm, statistics takes a preference to use the F1 score. 

An F1 score is the harmonic mean between the precision and recall of a statistical test. 

While an F1 score is a useful evaluator of a test’s accuracy and precision, it can be 

misunderstood easily and does not consider fully the four elements of a confusion matrix. 

The F1 score favours a test which has a high accuracy of true positives, rather than an 

accuracy between both true positives and true negatives. An F1 score ranges between 1 and 

0, where 1 represents perfect recall and precision. 



A confusion matrix is made up of: True Positives (TP), True Negatives (TN), False Positives 

(FP) and False Negatives (FN). 

The preferred test for the accuracy of a binary classification algorithm is the Matthews 

Correlation Coefficient which is a modification of the Pearson Product-Moment Correlation 

Coefficient. The Matthews Correlation Coefficient as derived by Giuseppe Jurman is: 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

The possible values range between -1 and +1, where a score of -1 is deemed to be “perfect 

misclassification” and +1 is “perfect classification”.[3] In machine learning, all algorithms 

strive for a Matthew Correlation Coefficient score of +1 meaning the algorithm classifies 

perfectly for any theoretical predictive input given. 

Assuming we classified a test set of 100 and produced a confusion matrix like the one 

below: 

 Known Outcome 

Predicted Outcome 

 Accept Review 

Accept 47 11 

Review 3 39 

We can interpret the confusion matrix as follows: 

- True Positives = 47 

- True Negatives = 39 

- False Positives = 3 

- False Negatives = 11 

Using this, we can calculate the Matthews Correlation Coefficient as follows: 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

=
(47 × 39) − (3 × 11)

√(47 + 3)(47 + 11)(39 + 3)(39 + 11)
= 0.7294 

Therefore, the above confusion matrix would represent an algorithm which is predicting to a 

considerable degree of accuracy. 

Conclusion 

To evaluate the effectiveness of the Naïve Bayes, we are going to see how the Matthews 

Correlation Coefficient changes as the training set increases in size. The code used to 

automate the Naïve Bayes calculations can be found under Appendix 2 and the full data set 

used can be found under Appendix 1. 



 

 

Figure 1 – Matthews Correlation Coefficient for Training Set Sizes 

Looking at the figure above, the Naïve Bayes classification algorithm that we have derived 

does not perform to a high degree of accuracy on the dataset we are applying it to. The 

scores though do suggest the classification has a weak correlation – meaning it is not 

random but rather there is some accuracy. 

The conclusion we can draw is that Naïve Bayes is too simplistic of a classification algorithm 

for the application we have investigated in this paper, and more complex methods such as 

artificial neural networks may be better suited to the understanding of how humans 

interpret and classify certain sentences with respect to whether they convey enough 

information to be able to draw intelligent conclusions from. 

Although Naïve Bayes seems too simplistic here, it would perform effectively in classifying in 

sentimental analysis where words convey a clearly defined and unambiguous meaning such 

as positive and negative reviews on websites. This paper provides a derivation of Bayes’ 

Theorem that can be used for such an analysis and provides modifications to the theorem to 

account for real world problems such as new data and exponentially large datasets. 
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Appendices 

Appendix 1: https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-

Comments-Result.csv 

Appendix 2: https://github.com/OwenBaines/TextClassify/blob/master/res/naiiveBayes.m 

https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-Comments-Result.csv
https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-Comments-Result.csv
https://github.com/OwenBaines/TextClassify/blob/master/res/naiiveBayes.m

