

Naïve Bayes: Machine Learning and Text

Classification Application of Bayes’ Theorem

Owen Baines, University of Leicester

March 2020

Abstract

This paper introduces the basics of classification and machine learning, as well as building an

application of one classification model. The classification model chosen is based on Bayes’

Theorem and adapts it to handle large datasets. The paper also discusses the effectiveness

of the common F1-Score for statistical analysis as well as also introducing a more

meaningful precision-recall measure (Matthews Correlation Coefficient) which is more

suited to machine learning algorithms.

Introduction

What is Machine Learning?

Algorithms are an essential component for computers to be able to solve and understand

problems that we give them. Computers follow human described instructions in order to

transform an input to an output. A very simple example of an algorithm is a sorting

algorithm, which can be broken down to a simple human process that a computer can

follow. There are, however, human processes which do not follow a clearly definable set of

instructions – such as species recognition.

As humans, we do not follow an algorithm to identify species, we follow patterns that we

have learnt over our lives. Computers have, over time, become more powerful and able to

process large datasets and handle increasingly more complex numerical operations – these

advancements increase their ability to not only process operations but store and evaluate

efficiently. A computer can take a human input of pre-sorted photographs of species, with

their associated label, and analyse the pixels to develop its own set of patterns to identify

such a species. The process of teaching a computer how to recognise patterns is the basis of

Machine Learning.[1]

Text Classification

Text Classification problems can be solved by using either hand-coded rules or supervised

algorithms. Hand-coded rules are purpose built by humans to solve a specific text

classification problem. While these can be extremely accurate for simple and clearly defined

problems, they do not scale well with more complicated inputs. Further, it can become

expensive to maintain rule sets to classify a constantly changing classification problem such

as spam emails.

Supervised algorithms handle three inputs (a problem document, defined classes and a pre-

classified training set) and output a single classification determined by the algorithm.

Compared with hand-coded rules, a supervised algorithm can handle increasingly

complicated documents and does not need updating to respond to new trends or changes in

classification problems. Further, a supervised algorithm can also be trained to suit an

individual’s needs such as a spam filter.

Naïve Bayes

Naïve Bayes is a classification algorithm based on Bayes’ Theorem. The algorithm makes two

key assumptions about words within documents, these are that:

- probability of a word occurring is independent of the words around it

- all words are conditionally independent with a class

These assumptions are fundamentally simple and would not hold up in the real world where

the order of words convey contextual information to a human reader that would not

otherwise be conveyed by the same set of words ordered differently. Despite these

assumptions, Naïve Bayes has a high degree of accuracy when predicting classes with only a

small training set.

Derivation

We start off by defining Bayes’ Theorem:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵|¬𝐴)𝑃(¬𝐴)

Where 𝑃(𝐴|𝐵) is the conditional probability of event A occurring after event B an 𝑃(𝐵|𝐴) is

the conditional probability of event B occurring after event A. 𝑃(𝐴) and 𝑃(𝐵) are the

probability of event A and B occurring respectively. ¬ is used to denote “not”, so ¬𝐴 is “not

event A”.[2]

Assuming we have the following variables associated with the input documents for our

classifier:

- 𝐶 is a set of all classes known (𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘})

- 𝑐𝑖 is a class in the set 𝐶

- 𝑁 is the number of training document inputs

- 𝑁𝑐 is the number of training documents with class 𝑐𝑘

- 𝑤 is the set of all words known to the algorithm (a vocabulary; 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑘})

- 𝑤𝑘 is the kth word in a vocabulary

- 𝑛𝑐 is the number of times 𝑤𝑘 occurs in all documents within class 𝑐𝑘

- 𝑛𝑑 is the number of all words in all documents within the class

- 𝑛𝑣 is the size of set 𝑤

- 𝑛𝑡 is the size of the document being analysed

Looking back at Bayes’ Theorem, if we assign events A and B respectively a defined class and

a document input such that 𝑃(𝑐𝑘|𝑤𝑘), we are evaluating the probability of a ‘bag’ of words

being a member of class 𝑐𝑘.

We can define the probability of an input document being assigned a class based on the

total number of training documents and their existing class assignments:

𝑃(𝑐𝑘) =
𝑁𝑐

𝑁

The probability of a word appearing given a certain class can also be defined as:

𝑃(𝑤𝑘|𝑐𝑖) =
𝑛𝑐

𝑛𝑑 + 𝑛𝑣

To complete the derivation, we need to relate these new probability equations back to

Bayes’ Theorem:

𝑃(𝑐𝑖|𝑤𝑘) =
𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖)

𝑃(𝑤𝑘|𝑐𝑖)𝑃(𝑐𝑖) + (1 − 𝑃(𝑤𝑘|𝑐𝑖))(1 − 𝑃(𝑐𝑖))

This equation introduces an issue if we encounter a new word within a class. As we have no

prior probability of 𝑤𝑘 in our class, we will have a probability of 0. To prevent this, we can

apply a method called ‘additive smoothing’ where we artificially inflate the value of 𝑛𝑐 by

one so that the new equation for 𝑃(𝑤𝑘|𝑐𝑖) is:

𝑃(𝑤𝑘|𝑐𝑖) =
𝑛𝑐 + 1

𝑛𝑑 + 𝑛𝑣

To then solve a Naïve Bayes classification problem, we need to find the value of 𝑐𝑖 which

maximises the probability – we therefore write this as:

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∏𝑃(𝑐|𝑤𝑘)

𝑛𝑡

𝑘=1

With an increasing large document to classify, it may be foreseeable that the probabilities

we are multiplying begin to approach the machine precision limit when using floating point

arithmetic. To prevent this having an impact when using this method on a computer, we can

utilise logs to rewrite the 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 equation above to be:

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∑log⁡(𝑃(𝑐|𝑤𝑘))

𝑛𝑡

𝑘=1

Worked Example

Using the data available in Appendix 1, we will consider a training set of 5 random sentences

and attempt to classify a sentence to show how the algorithm works in practice. For class,

‘Accept’ labels where a human felt the text provides enough reason to approve a request,

while ‘Review’ was identified as a request requiring more information or further

consideration.

Text Class

provide a platform for an amateur radio community group to share technical
material and provide educational material

Accept

a university research group wiki for collaboration among the research group and
to make the computational aerodynamics research available

Accept

I will use primarily for literary creation Accept

I would love to create a wiki based upon nature it would be a great business Review

I would like to record and share all of my knowledge related with information
and technology

Review

Before we start calculating individual probabilities, we need to define:

- 𝐶 = {𝐴𝑐𝑐𝑒𝑝𝑡, 𝑅𝑒𝑣𝑖𝑒𝑤}

- 𝑁 = 5

- 𝑁𝐴𝑐𝑐𝑒𝑝𝑡 = 3

- 𝑁𝑅𝑒𝑣𝑖𝑒𝑤 = 2

- 𝑤 = {provide, a, platform, for, an, amateur, radio, community, group, to, share,

technical, material, and, educational, university, research, wiki, collaboration,

among, the, make, computational, aerodynamics, available, I, will, use, primarily,

literary, creation, would, love, create, based, upon, nature, it, be, great, business,

like, record, all, my, knowledge, related, with, information, technology}

- 𝑛𝑣 = 50

- 𝑛𝑑 for Accept is 43 and for Review is 32.

To improve the efficiency of calculating probabilities for one sentence, we can split the

unique words of the new sentence up and only consider those words in each set. For this

example, the sentence we are going to classify is, “a wiki to make my university research

available”.

The probability of our sentence being classified in either class is:

𝑃(𝐴𝑐𝑐𝑒𝑝𝑡) =
3

5
, 𝑃(𝑅𝑒𝑣𝑖𝑒𝑤) =

2

5

Now we need to calculate 𝑃(𝑤𝑘|𝑐𝑖) for each word and class we are interested in

𝑃(𝑎|𝐴𝑐𝑐𝑒𝑝𝑡) =
2 + 1

50 + 43
=

3

93
, 𝑃(𝑎|𝑅𝑒𝑣𝑖𝑒𝑤) =

2 + 1

50 + 32
=

3

82

𝑃(𝑤𝑖𝑘𝑖|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑤𝑖𝑘𝑖|𝑅𝑒𝑣𝑖𝑒𝑤) =

1 + 1

50 + 32
=

2

82

𝑃(𝑡𝑜|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑡𝑜|𝑅𝑒𝑣𝑖𝑒𝑤) =

2 + 1

50 + 32
=

3

82

𝑃(𝑚𝑎𝑘𝑒|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑚𝑎𝑘𝑒|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82

𝑃(𝑚𝑦|𝐴𝑐𝑐𝑒𝑝𝑡) =
0 + 1

50 + 43
=

1

93
, 𝑃(𝑚𝑦|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82

𝑃(𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82

𝑃(𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ|𝐴𝑐𝑐𝑒𝑝𝑡) =
2 + 1

50 + 43
=

3

93
, 𝑃(𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82

𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒|𝐴𝑐𝑐𝑒𝑝𝑡) =
1 + 1

50 + 43
=

2

93
, 𝑃(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒|𝑅𝑒𝑣𝑖𝑒𝑤) =

0 + 1

50 + 32
=

1

82

Next, we need to calculate the probability of a class given the word being present. For

example,

𝑃(𝐴𝑐𝑐𝑒𝑝𝑡|𝑎) =

3
93 ×

3
5

(
3
93 ×

3
5) + (

90
93 ×

2
5)

=
1

21

𝑃(𝑅𝑒𝑣𝑖𝑒𝑤|𝑎) =

3
82 ×

2
5

(
3
82 ×

2
5) + (

79
82 ×

3
5)

=
2

81

To then classify, we need to solve the 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 formula from above, substituting in what

we have calculated so far:

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐∈𝐶

∑log⁡(𝑃(𝑐|𝑤𝑘))

𝑛𝑡

𝑘=1

𝐶𝐴𝑐𝑐𝑒𝑝𝑡 = ∑log⁡(𝑃(𝐴𝑐𝑐𝑒𝑝𝑡|𝑤𝑘))

8

𝑘=1

= log(
1

21
)+⁡log (

3

94
) + log(

3

94
) + log(

3

94
) + log(

3

187
) + log(

3

94
)

+ log(
1

21
) + log (

3

94
) ≈ −11.9192

𝐶𝑅𝑒𝑣𝑖𝑒𝑤 = ∑log⁡(𝑃(𝑅𝑒𝑣𝑖𝑒𝑤|𝑤𝑘))

8

𝑘=1

= log(
2

81
) + log(

1

61
) + log(

2

81
) + log(

2

245
) + log(

2

245
) + log (

2

245
)

+ log(
2

245
) + log(

2

245
) ≈ −15.4409

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax
𝑐𝑖∈𝐶

𝐶𝑐𝑖⁡

Given our largest classification value is produced by using the ‘Accept’ argument,

𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐴𝑐𝑐𝑒𝑝𝑡. We would then classify the sentence “a wiki to make my university

research available” with the label of ‘Accept’.

Accuracy and Precision

For testing the precision of an algorithm, statistics takes a preference to use the F1 score.

An F1 score is the harmonic mean between the precision and recall of a statistical test.

While an F1 score is a useful evaluator of a test’s accuracy and precision, it can be

misunderstood easily and does not consider fully the four elements of a confusion matrix.

The F1 score favours a test which has a high accuracy of true positives, rather than an

accuracy between both true positives and true negatives. An F1 score ranges between 1 and

0, where 1 represents perfect recall and precision.

A confusion matrix is made up of: True Positives (TP), True Negatives (TN), False Positives

(FP) and False Negatives (FN).

The preferred test for the accuracy of a binary classification algorithm is the Matthews

Correlation Coefficient which is a modification of the Pearson Product-Moment Correlation

Coefficient. The Matthews Correlation Coefficient as derived by Giuseppe Jurman is:

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

The possible values range between -1 and +1, where a score of -1 is deemed to be “perfect

misclassification” and +1 is “perfect classification”.[3] In machine learning, all algorithms

strive for a Matthew Correlation Coefficient score of +1 meaning the algorithm classifies

perfectly for any theoretical predictive input given.

Assuming we classified a test set of 100 and produced a confusion matrix like the one

below:

 Known Outcome

Predicted Outcome

 Accept Review

Accept 47 11

Review 3 39

We can interpret the confusion matrix as follows:

- True Positives = 47

- True Negatives = 39

- False Positives = 3

- False Negatives = 11

Using this, we can calculate the Matthews Correlation Coefficient as follows:

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

=
(47 × 39) − (3 × 11)

√(47 + 3)(47 + 11)(39 + 3)(39 + 11)
= 0.7294

Therefore, the above confusion matrix would represent an algorithm which is predicting to a

considerable degree of accuracy.

Conclusion

To evaluate the effectiveness of the Naïve Bayes, we are going to see how the Matthews

Correlation Coefficient changes as the training set increases in size. The code used to

automate the Naïve Bayes calculations can be found under Appendix 2 and the full data set

used can be found under Appendix 1.

Figure 1 – Matthews Correlation Coefficient for Training Set Sizes

Looking at the figure above, the Naïve Bayes classification algorithm that we have derived

does not perform to a high degree of accuracy on the dataset we are applying it to. The

scores though do suggest the classification has a weak correlation – meaning it is not

random but rather there is some accuracy.

The conclusion we can draw is that Naïve Bayes is too simplistic of a classification algorithm

for the application we have investigated in this paper, and more complex methods such as

artificial neural networks may be better suited to the understanding of how humans

interpret and classify certain sentences with respect to whether they convey enough

information to be able to draw intelligent conclusions from.

Although Naïve Bayes seems too simplistic here, it would perform effectively in classifying in

sentimental analysis where words convey a clearly defined and unambiguous meaning such

as positive and negative reviews on websites. This paper provides a derivation of Bayes’

Theorem that can be used for such an analysis and provides modifications to the theorem to

account for real world problems such as new data and exponentially large datasets.

References

[1] Alpaydin, E. (2010). Introduction to Machine Learning. Cambridge, Mass.: MIT Press,

pp.1-2.

[2] Cichosz, P. (2015). Data mining algorithms. John Wiley & Sons, Incorporated pp. 118-

126.

[3] Chicco, D., Jurman, G. The advantages of the Matthews correlation coefficient (MCC)

over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6 (2020).

MCC

of

Test

Set

Training Set Size

Appendices

Appendix 1: https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-

Comments-Result.csv

Appendix 2: https://github.com/OwenBaines/TextClassify/blob/master/res/naiiveBayes.m

https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-Comments-Result.csv
https://github.com/OwenBaines/TextClassify/blob/master/res/Miraheze-Requests-Comments-Result.csv
https://github.com/OwenBaines/TextClassify/blob/master/res/naiiveBayes.m

