
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 6, No. 3, November 2020, pp. 328-339 328

 https://doi.org/10.26555/ijain.v6i3.484 http://ijain.org ijain@uad.ac.id

Improved point center algorithm for k-means clustering to
increase software defect prediction

Riski Annisa a,b,1,*, Didi Rosiyadi a,b,c,2, Dwiza Riana a,3

a Computer Science Master Program of Sekolah Tinggi Manajemen Informatika dan Komputer Nusa Mandiri, Jakarta, Indonesia
b Universitas Bina Sarana Informatika, Jakarta, Indonesia
c Research Center for Informatics, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia
1 riski.rnc@bsi.ac.id; 2 didi.rosiyadi@lipi.go.id; 3 dwiza@nusamandiri.ac.id

* corresponding author

1. Introduction

The current era’s characteristic is constant technological advances and information that software is
everywhere like Web, mobile, desktop, embedded, or software developed to help achieve goals more
easily, quickly, and efficiently [1]. These advances cause the software system to be bigger and more
complex than before, so it is necessary to prevent software defects. Therefore, predicting the number of
defects in a software module is needed and can help developers allocate limited resources [2].
Furthermore, the predictions software modules’ results are categorized as fault-prone and non-fault-
prone [2]–[7].

Software defect prediction utilizes software metrics and fault data that originate from previous
versions of the current software project or can be retrieved from other similar software projects. Data
software contains learning models that significantly influence the efficacy of software Defect Prediction
techniques [5][8]. A study investigating 3747 defects from 70 software systems developed by 29 Chinese
aviation organizations showed 87% of software defects [9].

Unsupervised machine learning is increasingly being applied to software defect predictions. It is a
useful approach for software practitioners because it reduces the need for labeled training data. Various
software defect prediction models have been proposed to improve software quality over the past few
years, which is increasingly popular using machine learning. This approach can be divided into supervised

A RTIC L E IN F O

ABSTRACT

Article history

Received March 20, 2020

Revised June 8, 2020

Accepted June 22, 2020

Available online November 30, 2020

 The K-Means is a clustering algorithm that is often and easy to use. This
algorithm is susceptible to randomly chosen centroid points so that it
cannot produce optimal results. This research aimed to improve the K-
Means algorithm’s performance by applying a proposed algorithm called
point center. The proposed algorithm overcame the random centroid value
in K-Means and then applied it to predict software defects modules’ errors.
The point center algorithm was proposed to determine the initial centroid
value for the K-Means algorithm optimization. Then, the selection of X
and Y variables determined the cluster center members. The ten datasets
were used to perform the testing, of which nine datasets were used for
predicting software defects. The proposed center point algorithm showed
the lowest errors. It also improved the K-Means algorithm’s performance
by an average of 12.82% cluster errors in the software compared to the
centroid value obtained randomly on the simple K-Means algorithm. The
findings are beneficial and contribute to developing a clustering model to
handle data, such as to predict software defect modules more accurately.

This is an open access article under the CC–BY-SA license.

Keywords

Algorithm

K-means

Cluster

Centroid

Software defect

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Advances in Intelligent Informatics (IJAIN)

https://core.ac.uk/display/327258909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.26555/ijain.v6i3.484
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:riski.rnc@bsi.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v6i3.484&domain=pdf

329 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

methods where training data require labels and unsupervised methods, where data does not need to be
labeled [10].

Many defect prediction approaches have been proposed; the majority of studies are on defect
prediction techniques [7][11]–[18]. Clustering analysis belongs to the unsupervised machine learning
technique of patterns into groups. It is widely used in many fields, such as data mining, machine learning,
pattern recognition, and image processing. The K-Means algorithm is often used among clustering
algorithms because of its simplicity and efficiency [19][20].

One of the clustering grouping techniques is partitional clustering. The most widely used partitional
clustering algorithm is the K-Means cluster, where there is n number of instances partitioned into k
clusters. An optimal centroid is selected for each cluster to located nearby group instances [21][22]. K-
Means begins by choosing the random data point k as the initial set of centroids, which is then increased
by the next two steps. Next, each point is inserted into the nearest centroid cluster. Each cluster’s center
is recalculated as the average of all data points assigned to the cluster [23]–[25]. However, this method’s
main problem is not ensuring optimal results due to the selection of randomly selected centroid [19][26].

In this study, an algorithm called point center for K-Means clustering was proposed to overcome
early random centroid and focus on problems that occur when software data fails for the software’s cluster
module’s error. The proposed point center algorithm finds the initial centroid of the K-Means algorithm,
then applied to predict the software defect module’s error. The overall error rate of this prediction
approach was compared to the K-Means algorithm with the random centroid. The proposed approach
was used to get the best cluster center value of the K-Means algorithm to prove its effectiveness.

2. Method

2.1. Data and experimental design

This study uses NASA MDP datasets because it is very commonly used for predictive software defects
and can be obtained in the PROMISE repository. From 2000 to 2013 for 64.79% of software defects
research using the NASA MDP dataset [27]. Each NASA MDP dataset consists of several software
modules and attributes characteristics. Modules that contain defects are categorized as prone faults, and
non-defective ones are categorized as non-fault prone. However, they also consist of McCabe and
Halstead complexity attributes in Table 1.

In addition, apart from using NASA MDP datasets (CM1, KC1, KC3, MC2, MW1, PC1, PC2, PC3,
PC4), this study also uses iris datasets [28] that often used for clustering algorithm testing. It has three
classes (Setosa, Viginica, and Versicolor) and 150 samples. Each class is divided into 50 class data and has
four attributes (sepal length, sepal width, petal length, and petal width).

The experiments were using a computer to perform the process of calculation of the proposed
method. The hardware and operating system specifications were a DELL laptop with Intel Core (TM)
processor i5-3340M CPU @ 2.70GHz, 4.00 GB (RAM) memory, and the Windows 10 Pro operating
system 64-bit. Simultaneously, the tools used in this study include Microsoft Excel, RapidMiner, and
Rstudio.

2.2. Point center algorithm

The K-Means algorithm has a weakness in determining the value of random centroid so that the
results are less optimal. This study proposed the algorithm to determine the K-Means centroid’s value
named point center. This algorithm is based on selecting variables X and Y to determine cluster
members. For variable selection, the first stage calculates each attribute’s average using Equation (1).

�̅�𝑗 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 𝑗 = 1,2, … , 𝑝 (1)

where, �̅�𝑗 is the average of each attribute (𝑗 is attribute), 𝑥𝑖 is a data point (𝑖 is the data point of the 1 to
𝑛), and 𝑛 is the amount of data. Then calculate each standard deviation of each attribute through (2).

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 330
 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

𝑆(�̅�𝑗) = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 (2)

Table 1. List of NASA MDP Attribute

Atribut
Dataset NASA MDP

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LOC
counts

LOC_total x x x x x x x x x

LOC_blank x x x x x x x x

LOC_code_and_comment x x x x x x x x x

LOC_comments x x x x x x x x x

LOC_executable x x x x x x x x x

Number_of_lines x x x x x x x x

Halstead Content x x x x x x x x x

Difficulty x x x x x x x x x

Effort x x x x x x x x x

Error_est x x x x x x x x x

Length x x x x x x x x x

Level x x x x x x x x x

Prog_time x x x x x x x x x

Volume x x x x x x x x x

Num_operands x x x x x x x x x

Num_operators x x x x x x x x x

Num_unique_operands x x x x x x x x x

Num_unique_operators x x x x x x x x x

McCabe Cyclomatic_complexity x x x x x x x x x

Cyclomatic_density x x x x x x x x

Design_complexity x x x x x x x x x

Essential_complexity x x x x x x x x x

Misc. Branch_count x x x x x x x x x

Call_pairs x x x x x x x x

Condition_count x x x x x x x x

Decision_count x x x x x x x x

Decision_density x x x x x x x x

Edge_count x x x x x x x x

Essential_density x x x x x x x x

Parameter_count x x x x x x x x

Maintance_severity x x x x x x x x

Modified_condition_count x x x x x x x x

Multiple_condition_count x x x x x x x x

Global_data_complexity x x

Global_data_density x x

Normalize_cyclo_cmplx x x x x x x x x

Percent_comments x x x x x x x x

Node_count x x x x x x x x

Number of attribute 37 21 39 39 37 37 36 37 37

After calculating the average and standard deviation, then specify the center data point of the dataset
variable as in (3).

𝑚 = [�̅�𝑎�̅�𝑏]

where 𝑚 is the first midpoint, �̅�𝑎 is the maximum value of the average of the standard deviation (SD)
and �̅�𝑏 is the average value of the minimum SD. Then, calculate it by the Euclidean distance (4).

𝑑𝑖𝑚 = ((𝑥𝑖 − �̅�𝑎)2 + (𝑥𝑖 + �̅�𝑏)2)
1

2 𝑖 = 1,2, … , 𝑛

331 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

where 𝑑𝑖𝑚 is the Euclidean distance for the first midpoint data point. 𝑥𝑖 is the calculated data point (𝑖
is datapoint of 1 to 𝑛), �̅�𝑎 is the maximum value of the average of matrix 𝑚, and �̅�𝑏 is the average value
of the minimum standard deviation of matrix 𝑚. To calculate the distance between each data point and
the starting point. Then, Equation (5) is used to select variables X as a first variable and Y as a second
variable of the cluster center member.

𝑣 = [�̅�𝐼�̅�𝐼𝐼]

where 𝑣 is the matrix or midpoint of the first and second variables, �̅�𝐼 is the minimum value of the
average of candidate cluster and �̅�𝐼𝐼 is the average of the maximum SD of the candidate cluster. Datapoint
based on the selection of variables of the Equation (5) with the highest distance Euclidean data on the
Equation (4) selected as the first candidate of the initial center point (𝑐1). Then, calculate the Euclidean
distance (6).

𝑑𝑖𝑐(𝑙) = ((𝑥𝑖𝐼 − �̅�𝑐𝑘𝐼)
2

+ (𝑥𝑖𝐼𝐼 + �̅�𝑐𝑘𝐼𝐼)
2

)

1

2
 where 𝑖 = 1,2, … , 𝑛 (6)

The highest distance data point in Equation (6) is chosen as the second point center candidate (𝑐2).
Where 𝑐𝑘 obtained based on the point center point, do until the Equation (6) is equal to 𝑐𝑘 distance
previously to get the k value obtained from the final cluster 𝑐(𝑘−1) . Then the cluster members of each

point are determined by candidate point center and variable 𝑋 and 𝑌.

2.3. K-Means Clustering Algorithm

The K-Means algorithm is a simple method for partitioning a given dataset into a specified number
of clusters k. This algorithm has been discovered by several researchers from various disciplines, especially
Lloyd (1957, 1982), Forgey (1965), Friedman and Rubin (1967), and McQueen (1967). K-Means at
non-convex costs also explain that integration is only for local optimality, and the algorithm is usually
quite sensitive to the initial centroid location [29].

K-Means is a fairly simple clustering algorithm that partitioned datasets into clusters of k. This
technique’s main principle is to compile a partition or centroid/average of a set of data. The K-Means
algorithm starts with forming a cluster partition initially, then iteratively clustered the partition is
repaired until there is no significant change in the cluster partition [30].

K-Means initializes the cluster by randomly generating k data points, while the proposed method of
giving initial K-Means centroid values is not random. This is usually done by producing uniformly
random values for each dimension. Each K-Means iteration consists of two steps: i) cluster assignments
and ii) centroid updates. Determine the centroid k points, then group the data to form a k cluster, with
the centroid points of each cluster being the pre-selected centroid points. Update the centroid point
value with (7).

𝜇𝑘 =
1

𝑁𝑘
∑ 𝓍𝑞

𝑁𝑘
𝑞=1

where 𝜇𝑘 is centroid point of the 𝑘-cluster, 𝑁𝑘 the amount of data in the 𝑘 cluster, and 𝑞 data on 𝑘 -
cluster. Repeat the grouping and update the centroid value until the value from the centroid point no
longer changes.

2.4. Proposed Method

This research is a proposed method to determine initial centroid value using an algorithm called
point center as the determinant of initial centroid value on K-Means clustering (Fig. 1). The steps of
the proposed method to determine the initial centroid value by using the point center algorithm are as
follows:

Step 1: At this step, the preliminary data processing was used to check and eliminate the missing data
using RapidMiner 7.3 Library application. Each dataset with empty or missing supporting value need to

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 332
 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

fill out and ensure it was numerical using the Replace Missing Value operator. Since replacing was only
on data and did not impact an attribute, this change could be applied in all data copies. In this case, the
value assignment procedure was applied to fill the blank information based on the average data value.
Then, the data was stored back in the form of excel for subsequent data processing.

Step 2: Calculate the point center algorithm to get 𝑘 value and point center value as the initial centroid.

Fig. 1. Step of algorithm center point.

Step 3: Calculate the cluster value based on the initial centroid on the K-Means algorithm. Then process
it to the point center algorithm and the obtained value of 𝑘.

Step 4: Calculate the error rate and the Rand index obtained from the K-Means calculation’s confusion
matrix. The testing performs by comparing the obtained proposed algorithm clusters and the available
clusters by K-Means. The grouping of data obtained using the clustering algorithm was a predicted label,
while the dataset label value was actual. The final process was comparing and classifying them.

The K-Means algorithm is an unsupervised learning algorithm without labels; However, in the
proposed algorithm, a label was needed as a comparison and to measure the performance of this testing
algorithm. The two clusters’ appeal’s total value could be presented using the confusion matrix in Table
2.

Table 2. Confusion Matrix

 Actual

False (non-faulty) True (faulty)

Predicted
False (non-faulty) True Negative (A) False Positive (B)

True (Faulty) False Negative (C) True Positive (D)

333 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

Table 2 calculates error value and rand index (accuracy) as in (8) and (9).

𝐸𝑟𝑟𝑜𝑟 =
𝐵+𝐶

𝐴+𝐵+𝐶+𝐷

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝐴+𝐷

𝐴+𝐵+𝐶+𝐷
 (9)

Furthermore, the results obtained are compared with simple K-Means algorithm calculations by the
same evaluation technique.

3. Results and Discussion

This section discusses the results of the measurements of the results obtained by comparing the
measurement results using simple K-Means and K-Means using the proposed method called Point
Center K-Means (PCKM). The dataset tested was ten datasets consisting of an iris dataset having 3
clusters and 9 NASA MDP datasets (PC1, PC2, PC3, MW1, CM1, KC1, KC3, and MC2), each of which
had 2 clusters.

The Iris dataset experiment used 3 classes (Setosa, Versicolor, Virginica), and 150 sample data. Then,
Each sample data has 4 attributes: sepal length, sepal width, petal length, petal width. The proposed
algorithm calculation starts with calculating the average value and the standard deviation value of each
attribute presented in Table 3.

Table 3. Statistics descriptive of the Iris Dataset.

Statistics Sepal length Sepal width Petal length Petal width

�̅�𝒋 5.8433 3.0540 3.7587 1.1987

𝒔(𝒙𝒋) 0.8281 0.4336 1.7644 0.7632

After getting the average value and standard deviation, then set the data center point. The center
data point is determined as 𝑚 = [5.8433, 3.0540] obtained from the sepal length and sepal width
attributes then calculate the first center point candidate (𝑐1) obtained from the maximum Euclidean
distance.

Next, determine the variables X and Y, namely 𝑝 = [1.1987 , 3.7587] for the center point obtained
from the attributes of petal width (𝑥𝐼) and petal length (𝑥𝐼𝐼). To determine the second point center
candidate (𝑐2) and the next point center candidate (𝑐𝑘) was using the euclidean formula. Then, the
value of the distance was 𝑑1 = 2.1878 , 𝑑2 = 5.6921, 𝑑3 = 6.2626, because the four attributes’
distance value was the same as before, the third distance, the number of clusters in this dataset is 3
clusters (𝑘). Then the point center points obtained from the cluster membership were 𝑐1 =
[2; 6.4], 𝑐2 = [0.2; 1], and 𝑐3 = [2.3; 6.9]. The obtained point center was used to calculate the
clustering data using the K-Means. This process was done using the R tool by entering the point center
value first and then clustering them based on the 𝑘 value. The updated centroid value was 𝑐1 =
[1.36; 4.3], 𝑐2 = [0.244; 1.464], and 𝑐3 = [2.05; 5.63].

Fig. 2 presents the division of clusters based on the proposed algorithm, from the grouping the
number of 𝑐1 was 54 data, 𝑐2 was 50 data, and 𝑐3 as 46 data. The comparison between the label clusters
obtained with the actual class labels could be presented in Table 4. Based on Table 2, equations (8) and
(9) could be calculated, and getting the error rate in Table 4 was 5.3%, and the Rand Index was 94.7%.
Compared with the simple K-Means, which determine the initial centroid randomly, the results are
presented in Table 4 with an error rate of 10.7% and a Rand Index of 89.3%.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 334
 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

Fig. 2. Iris dataset centroid and its cluster using the proposed algorithm.

Table 4. Confusion matrix of the Iris dataset using the proposed Method and K-Means.

Actual

Proposed method PCKM Iris

Actual

K-Means Iris
Setosa Versicolor Virginica Setosa Versicolor Virginica

Predicted
Setosa 50 0 0 50 0 0

Versicolor 0 48 2 0 48 2

Virginica 0 6 44 0 14 36

Furthermore, each NASA MDP dataset is calculated using a point center algorithm to get the initial
centroid value, which had been then calculated using the K-Means clustering algorithm (PCKM). A
confusion matrix is presented in Table 4. Then each dataset had been recalculated using K-Means. The
initial centroid clustering by randomly generating data and the confusion matrix results are also presented
in Table 5.

Table 5. Confusion matrix NASA MDP using the Proposed method and K-Means.

Datasets

A
(True Negative)

B
(False Positive)

C
(False Negative)

D
(True Positive)

PCKM K-Means PCKM K-Means PCKM K-Means PCKM K-Means

PC1 697 697 1 1 60 60 1 1

PC2 1562 1557 15 15 7 12 1 1

PC3 984 984 140 140 1 1 0 0

PC4 1207 1202 171 171 14 19 7 7

MW1 231 210 25 21 6 27 2 6

CM1 300 300 42 42 2 2 0 0

KC1 1740 1740 283 283 31 31 42 42

KC3 158 156 31 29 5 8 6 7

MC2 82 82 38 38 1 1 6 6

The proposed method algorithm can determine the number of clusters (𝑘) and the initial centroid
value of the K-Means algorithm from the experimental results. Table 6 shows the results of calculating
the number of clusters (k) using ten test datasets.

C3

C1

C2

335 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

Table 6. Number of clusters.

Datasets
Number of
attributes

Data count Cluster count
Proposed
method

Iris 4 150 3 3

PC1 37 759 2 2

PC2 36 1585 2 2

PC3 37 1125 2 2

PC4 37 1399 2 2

MW1 37 264 2 2

CM1 37 344 2 2

KC1 21 2096 2 2

KC3 39 200 2 2

MC2 39 127 2 2

Table 4 compares the number of clusters (k) of actual labels with the number of clusters (k) obtained
through the proposed method. The number of clusters (k) obtained using the proposed method followed
the actual number of cluster labels. Using the proposed method algorithm determined the number of
clusters of the K-Means algorithm at first and the initial centroid value. Experiments using R tools were
carried out two to three times on the K-Means algorithm that getting a random centroid value. The
results showed that each experiment’s centroid value was changed, but the error rate was the same.

The proposed method for clustering aimed to determine the initial centroid value. Then, the centroid
value is implemented by the K-Means method. A comparison between the proposed method and the
K-Means that used the initial randomly are shown in Table 7. The simple K-Means test and the
proposed method show that the error results using the proposed method are lower than the K-Means
method. The difference in error value with ten datasets between them is 13.1%.

Table 7. Method test results based on percentage error level.

Datasets K-Means (%)
The proposed
method (%)

Difference
(%)

Iris 10.7 5.3 5.4

PC1 0.08 0.08 0

PC2 1.7 1.4 0.3

PC3 12.5 12.5 0

PC4 13.6 13.2 0.4

MW1 18.2 11.7 6.5

CM1 12.8 12.8 0

KC1 15 15 0

KC3 18.5 18 0.5

MC2 30.7 30.7 0

Total 133.78 120.68 13.1

 The comparison result between simple K-Means and the proposed method using ten datasets (Table
7) obtained five datasets (Iris, PC2, PC4, MW1, KC3) showed that the proposed method got the lower
errors. The proposed method produced an initial centroid value from the experimental results because
it affects the cluster center’s fixed value. The error rate is lower than the simple K-Means, and it gets a
random centroid value affecting the cluster center result did not fix.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 336
 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

The proposed algorithm had a better Rand Index value on the NASA MDP dataset, such as the PC2,
PC4, MW1, and KC3. However, the other NASA datasets were having a level comparable to simple K-
Means (Table 8). Rand index is between 0 and 1, a value close to 1 means the perfect rand index, and
the value seen from the high rand index.

Table 8. Rand Index values testing of the Proposed method and K-Means.

Datasets K-Means Proposed method

Iris 0.893 0.947

PC1 0.92 0.92

PC2 0.983 0.986

PC3 0.875 0.875

PC4 0.864 0.868

MW1 0.82 0.883

CM1 0.872 0.872

KC1 0.85 0.85

KC3 0.815 0.82

MC2 0.69 0.69

After calculating the proposed method’s performance on ten test datasets, 9 of them were NASA
MDP datasets that used a sample of clustering software modules as defective and non-defective. The
proposed algorithm captured cluster errors of software (Table 9).

Table 9. Software defect modules number used in the proposed method testing.

Datasets
Number of
attributes

Module
count

Defective
module

count

Proposed Method
Error Rate (%)

PC1 37 759 61 0.08

PC2 36 1585 16 1.4

PC3 37 1125 140 12.5

PC4 37 1399 178 13.2

MW1 37 264 27 11.7

CM1 37 344 42 12.8

KC1 21 2096 325 15

KC3 39 200 36 18

MC2 39 127 44 30.7

Total 329 7899 869 115.38

Table 9 presents the number of software modules and the number of defective module labels in the
NASA MDP datasets. To capture cluster errors in software with the K-Means point center clustering
algorithm (PCKM) can be seen from the obtained error level. From the 9 NASA MDP datasets (PC1,
PC2, PC3, PC4, MW1, CM1, KC1, KC3, and MC2), the total error total of 115.38 was calculated, and
got approximately 12.82% of the PCKM captured cluster errors of software defect modules.

4. Conclusion

This paper proposed an algorithm for calculating the initial centroid value of the K-Means algorithm
called the central point algorithm. Besides calculating the initial centroid value, the point center

337 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

algorithm can also determine the number of clusters. This algorithm was based on selecting variables X
and Y to determine the cluster members and opposed ten datasets. The 9 of the approved datasets are
datasets for software defect estimates. The proposed method’s results in the Iris, PC2, PC4, MW1, and
KC3 datasets got lower error results. The higher Rand Index value was shown in some datasets, such as
PC2, PC4, MW1, and KC3. Another experimental result showed that the proposed algorithm could
improve the performance of K-Means by 12.82% cluster errors in the software defect modules compared
to the simple K-Means algorithm. This proposed method could be useful for other data type clustering
because it produces better accuracy than the simple K-Means method. Nevertheless, further research
will be conducted as the next research stage by applying the proposed K-Means point center algorithm
to other research objects, such as biomedical datasets. Also, It still open to compare the results of the
proposed K-Means point center algorithm with other clustering algorithms.

Acknowledgment

We would like to thank the magister of computer Science, STMIK Nusa Mandiri, Jakarta, Indonesia,
to commence this research in the first instance, do the necessary research work, and use departmental
data.

Declarations

Author contribution. All authors contributed equally to the main contributor to this paper. All authors
read and approved the final paper.
Funding statement. The research has been funded by STMIK Nusa Mandiri, Jakarta, Indonesia.
Conflict of interest. The authors declare no conflict of interest.
Additional information. No additional information is available for this paper.

References

[1] M. G. Siavvas, K. C. Chatzidimitriou, and A. L. Symeonidis, “QATCH - An adaptive framework for software
product quality assessment,” Expert Syst. Appl., vol. 86, pp. 350–366, Nov. 2017, doi:
10.1016/j.eswa.2017.05.060.

[2] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software defect prediction,” Neurocomputing,
vol. 385, pp. 100–110, Apr. 2020, doi: 10.1016/j.neucom.2019.11.067.

[3] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, “Software defect number prediction: Unsupervised vs
supervised methods,” Inf. Softw. Technol., vol. 106, pp. 161–181, Feb. 2019, doi:
10.1016/j.infsof.2018.10.003.

[4] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The Impact of Using Regression Models to Build
Defect Classifiers,” in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
2017, pp. 135–145, doi: 10.1109/MSR.2017.4.

[5] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level
software defect prediction using deep-learning model on static code features,” Expert Syst. Appl., vol. 147, p.
113156, Jun. 2020, doi: 10.1016/j.eswa.2019.113156.

[6] R. Moussa and D. Azar, “A PSO-GA approach targeting fault-prone software modules,” J. Syst. Softw., vol.
132, pp. 41–49, Oct. 2017, doi: 10.1016/j.jss.2017.06.059.

[7] A. Boucher and M. Badri, “Predicting Fault-Prone Classes in Object-Oriented Software: An Adaptation of
an Unsupervised Hybrid SOM Algorithm,” in 2017 IEEE International Conference on Software Quality,
Reliability and Security (QRS), 2017, pp. 306–317, doi: 10.1109/QRS.2017.41.

[8] Z. Sun, J. Zhang, H. Sun, and X. Zhu, “Collaborative filtering based recommendation of sampling methods
for software defect prediction,” Appl. Soft Comput., vol. 90, p. 106163, May 2020, doi:
10.1016/j.asoc.2020.106163.

[9] F. HUANG and B. LIU, “Software defect prevention based on human error theories,” Chinese J. Aeronaut.,
vol. 30, no. 3, pp. 1054–1070, Jun. 2017, doi: 10.1016/j.cja.2017.03.005.

https://doi.org/10.1016/j.eswa.2017.05.060
https://doi.org/10.1016/j.neucom.2019.11.067
https://doi.org/10.1016/j.infsof.2018.10.003
https://doi.org/10.1109/MSR.2017.4
https://doi.org/10.1016/j.eswa.2019.113156
https://doi.org/10.1016/j.jss.2017.06.059
https://doi.org/10.1109/QRS.2017.41
https://doi.org/10.1016/j.asoc.2020.106163
https://doi.org/10.1016/j.cja.2017.03.005

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 338
 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

[10] N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsupervised learning techniques for software
defect prediction,” Inf. Softw. Technol., vol. 122, p. 106287, Jun. 2020, doi: 10.1016/j.infsof.2020.106287.

[11] Q. Huang, X. Xia, and D. Lo, “Supervised vs Unsupervised Models: A Holistic Look at Effort-Aware Just-
in-Time Defect Prediction,” in 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 159–170, doi: 10.1109/ICSME.2017.51.

[12] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-objective effort-aware just-in-time software
defect prediction,” Inf. Softw. Technol., vol. 93, pp. 1–13, Jan. 2018, doi: 10.1016/j.infsof.2017.08.004.

[13] R. Chang, X. Shen, B. Wang, and Q. Xu, “A novel method for software defect prediction in the context of
big data,” in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, 2017, pp. 100–104,
doi: 10.1109/ICBDA.2017.8078785.

[14] A. Boucher and M. Badri, “Software metrics thresholds calculation techniques to predict fault-proneness:
An empirical comparison,” Inf. Softw. Technol., vol. 96, pp. 38–67, Apr. 2018, doi:
10.1016/j.infsof.2017.11.005.

[15] S. Singh and R. Singla, “Classification of defective modules using object-oriented metrics,” Int. J. Intell.
Syst. Technol. Appl., vol. 16, no. 1, p. 1, 2017, doi: 10.1504/IJISTA.2017.081311.

[16] M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, and D. Yang, “Automated change-prone class prediction on
unlabeled dataset using unsupervised method,” Inf. Softw. Technol., vol. 92, pp. 1–16, Dec. 2017, doi:
10.1016/j.infsof.2017.07.003.

[17] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-Level Defect Prediction: Unsupervised vs. Supervised
Models,” in 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), 2017, pp. 344–353, doi: 10.1109/ESEM.2017.48.

[18] J. Liu, Y. Zhou, Y. Yang, H. Lu, and B. Xu, “Code Churn: A Neglected Metric in Effort-Aware Just-in-
Time Defect Prediction,” in 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2017, pp. 11–19, doi: 10.1109/ESEM.2017.8.

[19] E. Zhu, Y. Zhang, P. Wen, and F. Liu, “Fast and stable clustering analysis based on Grid-mapping K-means
algorithm and new clustering validity index,” Neurocomputing, vol. 363, pp. 149–170, Oct. 2019, doi:
10.1016/j.neucom.2019.07.048.

[20] S. Khanmohammadi, N. Adibeig, and S. Shanehbandy, “An improved overlapping k-means clustering
method for medical applications,” Expert Syst. Appl., vol. 67, pp. 12–18, Jan. 2017, doi:
10.1016/j.eswa.2016.09.025.

[21] A. Kaur, S. K. Pal, and A. P. Singh, “Hybridization of Chaos and Flower Pollination Algorithm over K-
Means for data clustering,” Appl. Soft Comput., vol. 97, p. 105523, Dec. 2020, doi:
10.1016/j.asoc.2019.105523.

[22] A. Fadaei and S. H. Khasteh, “Enhanced K-means re-clustering over dynamic networks,” Expert Syst. Appl.,
vol. 132, pp. 126–140, Oct. 2019, doi: 10.1016/j.eswa.2019.04.061.

[23] P. Fränti and S. Sieranoja, “How much can k-means be improved by using better initialization and repeats?,”
Pattern Recognit., vol. 93, pp. 95–112, Sep. 2019, doi: 10.1016/j.patcog.2019.04.014.

[24] H. Ismkhan, “I-k-means−+: An iterative clustering algorithm based on an enhanced version of the k-means,”
Pattern Recognit., vol. 79, pp. 402–413, Jul. 2018, doi: 10.1016/j.patcog.2018.02.015.

[25] S. K. Majhi and S. Biswal, “Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer,”
Karbala Int. J. Mod. Sci., vol. 4, no. 4, pp. 347–360, Dec. 2018, doi: 10.1016/j.kijoms.2018.09.001.

[26] N. Nidheesh, K. A. Abdul Nazeer, and P. M. Ameer, “An enhanced deterministic K-Means clustering
algorithm for cancer subtype prediction from gene expression data,” Comput. Biol. Med., vol. 91, pp. 213–
221, Dec. 2017, doi: 10.1016/j.compbiomed.2017.10.014.

[27] R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction : Research Trends , Datasets
, Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, pp. 1–16, 2015, Available at: Google Scholar

https://doi.org/10.1016/j.infsof.2020.106287
https://doi.org/10.1109/ICSME.2017.51
https://doi.org/10.1016/j.infsof.2017.08.004
https://doi.org/10.1109/ICBDA.2017.8078785
https://doi.org/10.1016/j.infsof.2017.11.005
https://doi.org/10.1504/IJISTA.2017.081311
https://doi.org/10.1016/j.infsof.2017.07.003
https://doi.org/10.1109/ESEM.2017.48
https://doi.org/10.1109/ESEM.2017.8
https://doi.org/10.1016/j.neucom.2019.07.048
https://doi.org/10.1016/j.eswa.2016.09.025
https://doi.org/10.1016/j.asoc.2019.105523
https://doi.org/10.1016/j.eswa.2019.04.061
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1016/j.patcog.2018.02.015
https://doi.org/10.1016/j.kijoms.2018.09.001
https://doi.org/10.1016/j.compbiomed.2017.10.014
https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=R.+S.+Wahono%2C+%E2%80%9CA+Systematic+Literature+Review+of+Software+Defect+Prediction%E2%80%AF%3A+Research+Trends+%2C+Datasets+%2C+Methods+and+Frameworks%2C%E2%80%9D+J.+Softw.+Eng.%2C+vol.+1%2C+no.+1%2C+pp.+1%E2%80%9316%2C+2015.&btnG=

339 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 3, November 2020, pp. 328-339

 Annisa et al. (Improve point center algorithm for k-means clustering to increase software defect prediction)

[28] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Hum. Genet., vol. 7, no. 2,
pp. 179–188, 1936, doi: 10.1111/j.1469-1809.1936.tb02137.x.

[29] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1–37, Jan. 2008, doi:
10.1007/s10115-007-0114-2.

[30] S. F. Hussain and M. Haris, “A k-means based co-clustering (kCC) algorithm for sparse, high dimensional
data,” Expert Syst. Appl., vol. 118, pp. 20–34, Mar. 2019, doi: 10.1016/j.eswa.2018.09.006.

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.eswa.2018.09.006

