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ABSTRACT 

Quantifying the Emanation and Decay of Environmental DNA 
from Three Marine Molluscs 

by 
Emily Rose Pierce 

Master of Science in Marine Science 
 

California State University Monterey Bay, 2020 
 

 Environmental DNA (eDNA) is nucleic acids outside of living organisms found in 
air, soil, water, and ice.  It is shed by organisms through waste and other bodily fluids, as 
well as cells sloughed off the outside of an organism.  eDNA breaks down over time, 
especially when exposed to UV, heat, and bacteria.  Scientists can analyze eDNA to identify 
organisms in an area, though the rates at which it is emanated and decayed seem to vary from 
organism to organism, complicating interpretation of results.  The present study sought to 
quantify the rates of emanation and decay through a series of in vitro experiments for three 
species, Mytilus californianus (the California blue mussel), Haliotis rufescens (the red 
abalone), and Lottia scabra (the rough limpet).  Using quantitative PCR (qPCR) to measure 
eDNA, I found that eDNA emanation rates varied based on species, size, and activity level, 
and that rates of decay can be influenced by bacterial activity and time under treatment.  
Small abalone released less eDNA than medium and large abalone over 24 hours, but limpets 
and mussels released the same amount of eDNA per species despite different wet weights.  
Similarly, inverted abalone with soft tissue exposed released more eDNA than in their 
normal posture, but this was not true for limpets or gaping vs non-gaping mussels.  Lastly, 
eDNA degraded over time for all species, mostly in the first 24 hours, and bacteria affected 
abalone eDNA degradation.  In eDNA degradation experiments, nonspecific PCR products 
decreased reliability of measurements over longer time periods.  These data can be used by 
scientists and managers to interpret eDNA signals of these commercially or ecologically 
important molluscs to help protect these species and the communities in which they belong. 
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Introduction 

Species distribution is critical information for managers and scientists seeking to 

protect habitats and populations.  For near-shore marine species, typical intertidal or 

subtidal survey methods can be costly and take a lot of time. Recently, conservation 

biologists have found environmental DNA (eDNA) useful to track the presence or 

absence of animals in an ecosystem.  eDNA is DNA shed by organisms through waste, 

body fluids, or cells shed by the organism and can be found in water, air, ice, and soil 

(Haile et al., 2009; Lydolph et al., 2005; Thomsen and Willerslev, 2015).  In brackish 

waters, scientists have used eDNA to track rare amphibians (Ficetola, et al., 2008; 

Thomsen et al., 2012).  Scientists have also detected blue whales eDNA seawater up to 

two weeks after they’ve left an area (Foote et al., 2012).  eDNA has been detected from 

molluscs in the Great Lakes region in a study looking specifically at invasive molluscs 

(Klymus et al., 2017).  These studies highlight the versatility of using eDNA to detect the 

presence of organisms in a variety of bodies of water. 

Molluscan species such as mussels, limpets, and abalone are critical to food webs 

in California nearshore ecosystems and as seafood dishes.  Mussels, such as Mytilus 

californianus, are thriving intertidal fixtures, but some species of limpets (especially 

Lottia gigantea) and all species of abalone (Haliotis spp.) are threatened or endangered in 

California.  This study will focus on Mytilus californianus (the California blue mussel), 

Haliotis rufescens (the red abalone), and Lottia scabra (the rough limpet).  Limpets and 

abalone are important grazers in these nearshore ecosystems, keeping rocky areas clear of 

algae for recruitment of new organisms, and mussels filter water and serve as food 

sources for sea stars, including a keystone predator.   Populations of these organisms 
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benefit not only the health of our oceans but also growth for California’s economy; 

fisheries of the west coast of the United States alone produce almost $1 billion annually 

(NOAA West Coast Fisheries, n.d.).  While mussels remain abundant, abalone and some 

limpet species have been threatened by overfishing and disease since the late 19th 

century (Roy et al., 2003; Taniguchi et al., 2000).  Methods to track their populations 

through eDNA would be a useful tool for resource managers. However, the meaning of a 

positive signal of a species through eDNA, or the absence of such a signal, remains 

difficult to interpret.   

DNA is quite stable, but certain physical factors can cause degradation (Allentoft 

et al., 2012; Dejean et al., 2011; Strickler et al., 2015; Willerslev et al., 2004).  UV-B 

causes degradation of eDNA in water but UV attenuates with depth in water (Strickler et 

al., 2015).  Bacteria and heat likely work together to degrade eDNA, as heat increases 

bacterial metabolic rate which may influence the rate the bacteria consume the DNA. 

Under experimental treatments, eDNA from aquatic vertebrates was detectable in water 

14 to more than 58 days after removal of animals, though most degradation occurred 

within the first few days (Dejean et al., 2011; Strickler et al., 2015).  The variation in 

accumulation and degradation rates means that study into these rates in more species and 

systems is vital to understanding the behavior of eDNA before it can be used for species 

monitoring. 

The present study aims to fill this gap by characterizing behaviors that lead to 

ambient levels of eDNA, including long term and short term eDNA accumulation, and 

rate of degradation under normal environmental conditions.  I used animals in natural and 

restrained postures (to maximize exposure of soft tissue) to assess accumulation rates in 
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the short term (less than 24 hours) and long term (greater than 24 hours).  Using purified 

DNA, I looked at long term rates of DNA degradation in seawater under two different 

temperature treatments, 3 UV treatments, and in the presence or absence of bacteria.  In 

the end, these data showed that all active animals release eDNA, but rates of eDNA 

shedding by abalone are substantially higher than by mussels or limpets.  Furthermore, 

eDNA shedding happened at similar rates for each species but was greater at higher 

temperature and bacteria loads, and at higher UV intensity. 
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Research questions and hypotheses: 
Question 1: How does eDNA production vary in three molluscan species based on body 
size? 

Hypothesis 1.1: Higher wet weight will lead to greater eDNA release within a 

species.   

 Null hypothesis: Wet weight will not influence eDNA release within a 
species. 

Hypothesis 1.2:  The relationship between body size and amount of eDNA 
released will differ for each species.   

Null hypothesis: The relationship between body size and the amount of 
eDNA released will not differ for each species. 

Hypothesis 1.3: Activity or posture will increase the amount of eDNA each 

individual releases.  

Null hypothesis: Activity level will not change the amount of eDNA each 
individual releases. 

Question 2: How does eDNA degradation vary based on UV, heat, and bacterial activity? 

Hypothesis 2.1: eDNA accumulated in the water from live organisms will 

decrease over time with greater UV, heat, and bacterial level.   

Null hypothesis: eDNA accumulated in the water from live organisms will 
not change over time under different conditions of UV, heat, and bacteria. 
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Methodology: 
Animal care and selection 

All of the abalone used for this project were generously donated or purchased 

from Monterey Abalone Company.  Mussels and limpets were collected on the Moss 

Landing Jetty (36.8078°, -121.7897°), Pigeon Point Lighthouse (37.1829°, -122.3944°), 

and Pleasure Point (36.9557°, -121.9717°).  Using swabs of foot or body wall, I 

confirmed performance of molecular methods for each individual in my experiments by 

using the polymerase chain reaction (PCR) to amplify DNA using custom species-

specific primers designed to avoid co-amplification of non-target DNA (Table 1).  Each 

species amplified well only with the correct primer set through PCR, thus all animals in 

the study were able to be detected by these molecular techniques and non-specific 

amplification was avoided.  Length, width, wet weight, and pedal area or gape angle were 

measured for each individual at the beginning of the experiment (Appendix A Tables 1a-

1c) to sort the animals into different size classes.  Pedal area was measured by allowing 

the abalone and limpets to relax on a piece of glass with a clear centimeter squared grid 

attached (Appendix A Figure 1).  Pictures were taken from below and analyzed in ImageJ 

by comparing the amount of pixels within a square centimeter to a freehand drawn 

outline of the molluscan foot (Appendix A Figure 1).  Similarly, to measure aperture, 

mussels were left in an aquarium tank until they opened; photographs of the openings 

were measured in ImageJ (Appendix A Figure 2). 

 Abalone, limpets, and mussels were kept alive in 56 L tanks with aerated, non-

recirculating seawater at the Moss Landing Marine Laboratories.  The tanks were cleaned 

of algal growth and waste weekly.  Rocks with microalgae were included to feed the 

limpets, while abalone were fed thawed frozen Macrocystis pyrifera.  Mussels were 
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sustained by natural particulates in the seawater system. A seawater system failure prior 

to experiments led to the death of some individuals, thus the study organisms consisted of 

survivors, potentially a nonrandom draw from the natural population but not biased 

across treatments.   

 During experiments, animals were placed in 473 mL (pint) sized jars with 

unfiltered seawater covered with Parafilm or metal lids.  No water flowed through but a 

bubbler was kept in each jar.  Animals were only isolated for a maximum of six days, at 

which point some animals became moribund and the experiments were ended.  During 

these experiments animals were not fed.  Jars were kept in a seawater table to regulate 

temperature between 11-13 oC. 

 
Primer design and testing 

Using the IDT PrimerQuest tool 

(https://www.idtdna.com/Primerquest/Home/Index) and twenty reference sequences per 

species acquired from GenBank (Appendix A Table 2), I designed three sets of forward 

and reverse primers for the polymerase chain reaction (PCR) for each study 

species.  These primers were tested on DNA extracted from each species using the 

Qiagen DNeasy Blood and Tissue Kit (© Qiagen 2013-2018).  I used a gradient PCR 

with annealing temperatures ranging from 45-65 oC, melting and extension temperatures 

of 94 and 72 respectively, and 27 cycles.  Products were checked on a 3% MetaPhor 

agarose gel (Lonza) with a Fisher Ultra Low Range DNA Ladder to check for the 

predicted amplicon sizes.  The optimal temperature was 56° C for each of the primer sets.  

Each primer set was designed to be species-specific and did not amplify other organisms 
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in this study.  One set of primers with the clearest, brightest band on the MetaPhor gel 

was chosen for the rest of the experiments (Table 1).  

 
Table 1: Primers used for this study. 

 
PRIMER 
NAME 

PRIMER SEQUENCE ANNEALING 
TEMPERATURE 

ABQPCRF1 CATCCTTAACCCTGCTCCTAAC 56 °C 

ABQPCRR1 GCTAAGTCTACTGATGCTCCTG 56 °C 

MUSQPCRF1 GGATGGACTATTTATCCACCTCTATC 56 °C 

MUSQPCRR1 GAGAGCTAAGTCCTGCTAAGTG 56 °C 

LIMQPCRF3 CCCTTCTTGTTGCCGCTATT 56 °C 

LIMQPCRR3 GGTCGAAGAAGGCTGTGTTAAT 56 °C 
 
DNA extraction 

 Following homogenization of the water sample by swirling or inverting a closed 

container three times, a fixed volume of water was filtered through a GF/F 0.7 µm, 25 

mm diameter glass fiber filter (Deiner et al., 2015).  Filters were then added to a 2 mL 

centrifuge tube submerged in the first two reagents from the Qiagen DNeasy blood and 

tissue kit (© Qiagen 2013-2020) and placed in a 56 oC shaking incubator for 24 hours.  I 

followed the manufacturer’s recommendations during the following steps for DNA 

extraction except I decreased elution volume from their recommendation of 200 µL down 

to 80 µL unless otherwise stated.  For every set of extractions I also did a blank 

extraction control to test for contamination of the extraction kit. 

qPCR  

 qPCR was done using the StepOnePlus ™ Real-Time PCR System 

(ThermoFisher) and KAPA SYBR® FAST Universal 2X qPCR Master Mix (™ Life 

Technologies).  Each reaction contained 7.8 μL of water, 10 μL of master mix, 1 μL of 
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template DNA, and 0.4 μL (10 µM) each of forward and reverse primers and High 

ROX.  After heating to 95 °C for twenty seconds, each well was subjected to 40 cycles of 

95 °C for three seconds to melt templates, 56 °C for twenty seconds to anneal primers, 

and 72 °C for thirty seconds to extend primers, with fluorescence read during the 

extension phase.  After the 40 cycles completed, a melting curve was produced, heating 

in increments of 0.3 °C from 60 °C to 95 °C with fluorescence read at each increment.   

 Between fifteen and eighteen wells in the qPCR reaction plate were DNA 

standards used to make a standard curve relating fluorescence and starting template DNA 

concentration.  DNA standards were made from genomic DNA that was quantified using 

QuantIT PicoGreen and diluted ten-fold 5-6 times in nuclease free water.  To ensure 

precision, each of these 5 or 6 dilutions were repeated in the plate three times.  One no-

template control was also included in each plate.  The rest of the wells contained eDNA 

extraction product with unknown DNA concentrations. 

 Analysis of the data generated from the qPCR run included the following quality 

controls: ensuring that each of the unknown samples conformed well to the standard 

curves, that negative controls from extractions and PCR showed no sign of DNA, and 

that the melting curve for each individual of the same species were similar.  DNA 

concentration data was imported into R for statistical analysis. 

 
24 hour eDNA accumulation assay 

 Individuals of each species were divided up into three size classes: small, 

medium, and large (Table 2) based on length and were separated into bleach-cleaned 

mason jars.  Each jar contained one individual and was filled to the brim with water from 

the Moss Landing Marine Laboratories seawater pump, then covered in Parafilm.  Four 
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organisms of each size class were used, for a total of 12 samples.  A bleached air bubbler 

was connected to an air line and placed into each mason jar to ensure that the 

environment did not become hypoxic.  The jars were kept in the aquarium room in a bath 

of non-recirculating seawater, keeping them near ambient ocean temperatures throughout 

the experiment.  The time that the animal was placed into a jar filled with water was 

recorded.  A 15 mL sample was taken after the 24 h time period by filtering the water 

through a GF/F filter. 

To test if activity or posture affected eDNA release, medium sized organisms 

were placed into a glass beaker with 60 mL of water.  A 15 mL sample of seawater was 

taken after 2 h of unconstrained behavior (apart from being in a jar) during which their 

behavior was videotaped continuously and used to track animal behavior.  For the 

experimental portion of the experiment, fourteen mussels were slightly propped open 

with a 32 mm x 1.5 mm diameter stainless steel rod between their valves to prevent 

closure and placed in separate 200 mL glass beakers.  Fourteen limpets were placed 

upside down to encourage foot and head motion, and they were unable to right 

themselves.  Fourteen abalone were also placed upside down, using 1.5 cm diameter 

Velcro circles that were glued near the apex of their shell, on the bottom of a 200 mL 

glass beaker containing 60 mL of seawater.  The same animals were left for 2 h while 

being videotaped.  To analyze the differences between individuals acting normally and 

individuals in a different behavioral state, I used a paired t-test on the DNA 

concentrations generated from qPCR. 
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Table 2: Size classifications for each species. 
 SMALL MEDIUM LARGE 

LIMPET 0.9-1.2 cm 1.3-1.5 cm 1.7-2.1 cm 

MUSSEL 1.7-2.2 cm 2.6-3.2 cm 4.4-5.1 cm 

ABALONE 1.3-1.7 cm 2.2-2.5 cm 4-4.4 cm 

 

Degradation assay 

 DNA was extracted as described above from foot tissue of four limpets, abalone, 

and mussels and pooled to create a stock solution of DNA that could be equally aliquoted 

into the treatment plates.  The extraction method was the same as others in this study, but 

I added 200 uL of elution buffer at the final step to increase the volume and yield of DNA 

extracted. I used qPCR, using methods and standards described above, to confirm that 

DNA concentrations were detectable in these stocks.  qPCR was chosen over other 

methods to quantify DNA because I had extra wells in qPCR plates during quantification 

of activity study eDNA.  To each of the wells on a 6-cell well plate I added 10 mL of 

seawater and sufficient DNA to achieve a starting concentration of about 6 ng/uL.   I then 

took an initial DNA concentration reading by immediately processing one replicate. 

For this experiment, change over time in DNA concentration was measured in 

seawater from the MLML seawater system that passes through a sand filter, and from 

seawater that was passed through a 0.4 μm filter to remove particles and then autoclaved 

to kill any bacteria.  I added 10,000 units of penicillin (ThermoFisher #15140122) to 500 

mL for a concentration of 20 units/mL to the filtered and autoclaved seawater to keep 

bacterial growth at bay.  Both of these water treatments were aliquoted into 17 mL 

culture wells before the stock DNA was added.  
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 Three levels of UV light and two temperatures were used to expose the plates to 

conditions mimicking a natural environment.  Maximum tide pool temperatures in Santa 

Cruz, CA, near to where limpets and mussels were collected can exceed 20 °C (Leong et 

al., 2018).  The culture well plates were placed in cold (10 °C) and room temperature 

(~20 °C) rooms.  UV-B in the Northern Hemisphere ranges from 0-250 mW/m2 and 

reaches its peak near middle of summer (Kerr et al., 1994).  Three UV levels were 

achieved by placing a UV lamp (REPTI ZOO Reptile Full Spectrum UVA + UVB Sun 

Lamp, 100 W) above the cell wells, which were arranged on vertically spaced shelves to 

experience 60 mW/m2 and 24 mW/m2 UV-B.  A zero detectable UV treatment was 

achieved by placing the plates in a double lined cardboard box .  After 0.25, 0.5, 0.75, 1, 

2, 3, 4, 7, 14 and 21 days, 10 mL of water was removed and immediately filtered as 

described above.  The filter was then extracted following the extraction method above.   

 To see what effect heat, UV, bacterial level, and elapsed time have on eDNA 

degradation, I used a Randomized Block ANOVA after collecting the data and 

comparing the AIC values for multiple models.  The data were blocked by temperature, 

UV, and bacterial treatment in the analysis.  The randomized block ANOVA is ideal for 

data where each block undergoes the same multiple treatments.  This design decreases the 

amount of experimental error by looking at the differences between the blocks and is 

ideal for data that are linearly related in some way.   

Flow cytometry 

 To measure the filter feeding clearance rate of the mussels for these experiments, 

I used a culture of Porphyridium spp., a single-celled red algae, along with flow 

cytometry to measure the change in cell concentration over 24 hr.  I measured cell 
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concentration at the beginning of the study and put 1 mL of the culture into 12 jars 

containing the same mussels from the 24 hour accumulation study and one jar with no 

animals present to measure the change in cell concentration 24 hours in the absence of 

grazing.  Jars were kept in the aquarium room at the ambient temperature of the seawater 

system (11-13o C), each with a bubbler placed into it to keep cells suspended and oxygen 

levels up.  Jars experienced some natural light due to the small windows to this room and 

some brief moments of artificial light, but this was consistent across treatments.  8 mL 

samples of water were taken from each of the jars after 24 hours and analyzed again 

using flow cytometry.  Any cell growth in the control jar was subtracted from the final 

clearance rate. 

 I also used flow cytometry to analyze the amount of bacterial growth, if any, 

during the degradation study.  One mL of abalone DNA- treated water from each 

degradation plate was preserved in 0.5% formaldehyde, then stored them in the 

refrigerator until the samples could be analyzed at the same time.  For the analysis, I used 

an Attune acoustic focusing cytometer from Applied Biosystems.  The entire milliliter 

sample was used and placed into an individual cuvette along with 2 μL of 100X SYBR 

Green.  Samples were left to incubate on the counter for 10 minutes before 100 μL of 

each sample was run through the flow cytometer at a rate of 25 μL per minute.  We also 

ran a negative control of MilliQ water.  The flow cytometer was first calibrated with 1 

μm beads, which helped set the x axis gate for particle size.  The y axis gate selects for 

nucleic acid containing particles.  The gates were consistent across samples. 

 
 
 
 



 

 

13 

Modeling 
 
 To assess how eDNA might spread in the ocean, I created a model in R using the 

package Plotly (Sievert, 2018).  The overall goal of the model is to see how far eDNA 

might be able to travel over a 24-hour period.  In the model, an animal is placed on a pier 

piling and sheds eDNA at a rate taken from experimental values in this study.   The 

model represents ocean movement in the winter, when waves are larger, and in the 

summer, when waves are much calmer.  The wave data came from USGS wave databases 

and represent maximum wavelength and height.  These data were used to calculate the 

Stokes drift, or average shoreward wave particle velocity from Denny (1988) 

! = #$%
!

4' ( )
cosh	(212)
245ℎ!(17)89 

where H is maximum wave height, L is maximum wavelength, k is the wavenumber 

(related to the wavelength), s is the position in the water column, d is the bottom depth, 

and 9 is the angular frequency.  Stokes drift has been shown to be a major contributor to 

onshore movement of particles in the nearshore (Monismith and Fong, 2004).  Tides are 

modeled as a sine wave with the same period as semidiurnal tides.  The model includes a 

factor for simple diffusion by creating a random number, representing the “random walk” 

idea of diffusion (Figure 1).  The random number was a combination of two randomly 

generated numbers multiplied by each other; the first was a random number between 0 

and 1, the second was a random integer between -1 and 1.  Under these conditions, the 

particle could move up to one meter up or down in an hour.  Lastly, eDNA is shed at a 

constant rate, but disappears over time due to degradation by heat, bacteria, and UV. 

 The data, code, and implications of this model can be found in various locations 

throughout this document.  The Stokes drift calculation, a major driver in the movement 
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of particles towards shore, is presented in the results.  Additional factors that may move 

particles toward or away from the shore but are not included in the model, such as 

upwelling and tidal excursion, can be found in the discussion.  Lastly, the code to run the 

model with stokes drift and diffusivity can be found in the appendix (Appendix B). 

 

Figure 1: a simplified diagram of how different oceanic forces affect eDNA movement in the 
water column for use in this code. 
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Results 
1.1 and 1.2 Animal size or weight and eDNA released (accumulation study) 

Larger animals generated more eDNA than small animals when normalized to wet 

weight of each animal. I found significant differences between small and large 

individuals in the amount of eDNA released (Two-Way ANOVA F=7.414, Tukey HSD, 

p=0.00274) and medium and large individuals (Two-Way ANOVA, Tukey 

HSD, p=0.0179) over a 24 hour period.  In general, abalone generated more eDNA than 

limpets or mussels (Figure 2). There was a significant difference of eDNA exuded 

between Haliotis sp. and Lottia sp. when normalized by wet weight (Two-Way ANOVA 

F=9.675, Tukey HSD, p=0.000396) and Mytilus sp. and Haliotis sp. (Two-Way ANOVA, 

Tukey HSD, p=0.0255) but not between Mytilus and Lottia (Figure 3).  Values for 

measured eDNA concentrations can be found in Table 3.   

 
Figure 2: eDNA shed by mussels (Mytilus californianus), abalone (Haliotis rufescens), 

and limpets (Lottia scabra) normalized by wet weight. The bar is the median and the 
whiskers represent the lower and upper quartiles.  Open circles represent outliers. 
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A.                                                                                B. 

C. 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 3: Boxplots showing eDNA released by each organism over 24 hours grouped by 

their size classes.  Mussels (Mytilus californianus), (a) do not release eDNA based on 
size, nor do limpets (Lottia scabra) (b).  Small abalone, (Haliotis rufescens), put off less 

eDNA than medium and large abalone (c) 
 

Table 3. Average eDNA emanated in 24 hours with standard deviation in ng/µL  
 Abalone Limpet Mussel 

Small 0.0855±0.05 0.0043±0.004 0.0517±0.04 

Medium 0.1208±0.05 0.0038±0.003 0.0259±0.02 

Large 0.1666±0.2 0.0053±0.003 0.0341±0.02 

 

1.3 Activity level and eDNA release 

 Some animals escaped treatment by removing aperture wedges (mussels) or 

breaking free and righting themselves (abalone).  Specifically, four mussels escaped 
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treatment but three of them lasted at least half the time, four abalone escaped and two of 

them lasted at least half the time, and no limpets escaped treatment.  Abalone with 

exposed tissue excreted more eDNA than normally situated abalone (Paired T-Test, t=-

1.8137, p=0.04643) (Figure 4).  This pattern did not hold for L. scabra or M. 

californianus; both species released very little eDNA during this period (Figure 

5).  Despite size differences, all mussels cleared the same amount of water over the 24-

hour time period (Appendix A Figure 3) 

 
Figure 4: Boxplot showing the amount of eDNA shed from inverted and righted individuals of 

each species.  The y-axis shows eDNA shed in ng/μL.  As these were paired data and the statistics 
were based on the comparison between one individual in different treatments, I did not normalize 
these data to wet weight.  The bar is the median and the whiskers represent the lower and upper 

quartiles.  Open circles represent outliers. Bracketed bars with asterisk indicates a significant 
difference. 
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Figure 5: The same graph as above, zoomed in on the mussel and limpet data to show the 

differences on a smaller scale. 
 
2.1 eDNA degradation rates 

This study quantified the degradation of spiked eDNA over time in sea water 

under various environmental treatments.  eDNA concentrations decreased over time, 

especially in the first 24 hours in each of the treatments, though the factors that 

influenced this degradation varied from species to species (Figure 6).  For the first 48 

hours when the most degradation occurred, elapsed time affected mussel eDNA 

(Randomized Block ANOVA F1, 66=9.209, p=0.00344) (Appendix A Table 6) and limpet 

eDNA (Randomized Block ANOVA F1, 81=12.468, p=0.000686) (Appendix A Table 

7).  For abalone eDNA, bacterial activity (Randomized Block ANOVA F1, 81=5.111, 

p=0.02645) (Appendix A table 5) and elapsed time (Randomized Block ANOVA F1, 

81=7.343, p=0.00821) affected the rate of degradation.  According to the flow cytometric 

measurements, the antibiotic, autoclaved, filtered seawater started at bacterial 

concentrations around 12,000 ppm.  Aquarium room seawater had concentrations of 
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about 50,000 ppm.  By the end of the experiments, treated and ambient seawater had 

risen to about 20,000 and about 70,000 respectively. 

 

Figure 6a Abalone 

 

Figure 6b Mussel 
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Figure 6c Limpet 

 
 

Figure 6 a, b, c: Degradation plots for each of the study species.  Each graph represents 
the remaining DNA since the initial addition at day 0.  In the title of each graph, you can 

see the UV treatment, bacterial conditions, and temperature.  In general, the top row 
graphs are all high UV, middle is low UV, bottom is no UV.  The right two columns are 
samples with reduced bacteria, the left two are samples with ambient bacteria.  The first 
and third column are samples stored at a warmer temperature, second and fourth were 

stored at the cooler temperature. 
 
 To put these values into context, I calculated the half-life of the eDNA based on 

the concentrations at time zero and day 1 across all treatments (Table 4).  Half of the 

abalone and mussel eDNA degraded twelve hours after addition, whereas limpet DNA 

degraded more rapidly.   

Table 4. Average eDNA half-life for each species 
 Abalone Limpet Mussel 

Half-life (hours) 12.77 3.577 16.91 

Following each run of the qPCR machine, a melting curve is generated by 

measuring the temperature at which the PCR product melts on a range from 65 °C to 95 

°C (Figure 7).  The melt curve can be used to compare length and sequence of PCR 

product without sequencing or running a gel.  Melt curves from qPCR showed an 
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increase in variation of melting temperatures in more degraded samples, suggesting 

amplification of non-target fragments (Figure 8). 

 
Figure 7: A typical melt curve for two targets, green is PCR product from the abalone 
Haliotis rufescens, blue is PCR product from the mussel Mytilus californianus.  Single 
major peaks for each species indicate that the majority of PCR product is a single target 

(COI). 
 

 
Figure 8: Two melt curves from the degradation experiments of abalone (Haliotis 

rufescens) eDNA.  Left are qPCR melt curve results from day zero through day three, 
right are melt curve results from day 4 through 21.  Different colors represent the row 

that each sample was measured in on the 96 well qPCR plate (A-H).  Peaks at melt 
temperatures higher or lower than the expected temperature (~80 °C) indicate 

accumulation of non-specific products. 
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Modeling: 

 The basic model generated here suggests that eDNA can travel away from the 

point of origin quickly, even in the summertime when waves are smaller.  Velocities were 

calculated based on USGS significant wave heights (Table 3) at a region just south of 

Moss Landing (36.7636 o, -121.8173 o), where some of the largest waves are observed 

within Monterey Bay (Erikson et al., 2014). in the winter and summer, eDNA could 

move up to 0.377 m/s towards shore in the winter and up to 0.065 m/s in the summer.  

This five-fold difference in speed can be attributed to the larger waves and longer 

wavelength in the winter.  This means that eDNA particle transport in the ocean could be 

up to 234 m/h in the summer and up to 1357.2 m/h in the winter towards shore.  Thus, an 

animal’s eDNA could be detected hundreds if not thousands of meters away from where 

the animal actually is, even if the eDNA degrades quickly.  Diffusion and tides also 

affected particle movement, though based on this model, Stokes drift is the main 

contributor to shoreward movement. 

Table 5: Variables to calculate towards shore wave velocity 

 Maximum Wave 
Height (H) 

Maximum 
Wavelength (L) 

Period (T) 

Summer 1.92 m 99.801 m 10.7 s 

Winter 5.05 m 150.32 m 15.6 s 

 
 
 
 
 
 
 
 
 
 



 

 

23 

Discussion 
 
 eDNA analyzed with molecular techniques is becoming an increasingly popular 

way to detect species in the environment.  However, detection of eDNA may say little 

about the abundance or proximity of individuals of a species, depending on its rate of 

production, persistence, and dispersion. This study was intended to investigate these 

issues for three molluscan species. Abalone were found to release eDNA at a rate 

consistent with body size and posture.  Smaller abalone exuded less eDNA than medium 

and large sized abalone.  Further, abalone forced to expose their soft tissue released more 

eDNA than abalone in a relaxed, normal posture.  These results were not consistent for 

limpets and mussels; size and posture had no effect on eDNA release.  eDNA rates of 

production vary between species and these rates should be assessed for other species 

before attempts to quantify abundance or proximity in the field. 

 eDNA persistence was measured under treatments of three UV levels, two 

temperatures, and two bacterial treatments.  Elapsed time affected eDNA breakdown for 

nucleic acids from all species and most of that degradation occurred in the first 24-hours.  

Bacterial activity affected degradation of abalone eDNA, but none of the other treatments 

had a statistical influence on eDNA persistence for abalone, limpets, or mussels.  

Variation in measured eDNA concentrations from degraded eDNA and experimental 

error added noise to the analysis of these data so refined methods and more replicates in 

future studies may find more of an effect from UV and heat on eDNA degradation. 
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eDNA accumulation over 24 hours 

         The purpose of this experiment was to address whether wet weight of an animal 

affects the amount of eDNA they release.  I found that size class affected how much 

eDNA each species emanated with large animals exuding the most eDNA.  Between 

species, I found that abalone exuded more eDNA than limpets and mussels, but mussels 

and limpets exuded a similar amount of eDNA.  Few other studies have looked into 

specific eDNA accumulation rates, but one study found that over a 1-2 day period, 3 

Cyprinus carpio (carp) put off more eDNA than one fish (Takahara et al., 2012).  This 

suggests that for some species, biomass is correlated to the amount of eDNA released, 

even amongst higher organisms such as vertebrates, though it seems to vary between 

species and should be measured for each target. 

Movement of water for ventilation or filter feeding may play roles in some of 

these differences, as well as physical differences between species. Physical differences, 

such as associated microbes, activity level, body geometry, amount of exposed tissue or 

another inter-species mechanism likely drive this pattern and were investigated in this 

study.  Careful measurements of mussel aperture and abalone and limpet pedal area 

showed that although mussels have a lot of surface area internally, they do not open very 

wide and are not exposed all the time (Appendix A Tables 1a-1c).  Limpets and abalone 

had comparable pedal area to weight ratios but in most cases I noticed the abalone 

traveled further during the 24-hour period than the limpet, though these observations are 

anecdotal as no cameras were set up to measure distance moved.  Metabolic rate between 

species could affect the amount of eDNA released and further studies should quantify the 

metabolic rates of study organisms (Takahara et al., 2012). Finally, DNA in feces might 
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be affected by the length of alimentary tract, rate of cells sloughing into the tract, and rate 

of fecal production (Klymus et al., 2015; Turner et al., 2015). 

eDNA accumulation with activity 

To test how activity levels might affect eDNA emanation rates, I subjected 

experimental animals to conditions that forced their soft tissue to be exposed such as 

keeping them inverted (abalone and limpets) or keeping their valves open (mussels).  I 

found that abalone forced to expose their soft tissue released more eDNA than righted 

abalone, but this pattern was not true for limpets and mussels.  Although this 

experimental design forced activity through the exposure of soft tissue, animals did move 

a lot during the tests while inverted or propped open.  I attempted other treatments to 

cause animals to be hyperactive such as addition of a predator or food, but small 

predators were ineffective, and algae inhibited DNA extractions.   

Using a paired t-test, I found that abalone exude more eDNA when “active,” but 

mussels and limpets exuded the same amount of eDNA whether active or passive.  The 

intention was for the wedge to increase time that mussels spent ventilating, but instead 

may have created an unnatural stress that actually reduced respiration and feeding rates, 

therefore leading to no difference in eDNA exudation between the treatments.  For 

example, mussels have been shown to change growth rates and reproduction rates quickly 

during the stress of field transplantation, meaning they have a quick response to abnormal 

situations and may have changed metabolic processes during this stressful experiment 

(Petes et al., 2007).   

Limpets appeared passive and unable to ever right themselves and would die 

within a few days if left prone on their shells in the tanks during the experimental 
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period.  Abalone readily righted themselves if unrestrained, and during this experiment 

made attempts to flip over despite being attached with Velcro.  This difference in activity 

level between limpets and abalone may have led to the difference in amount of eDNA 

shed seen in this experiment.  Tests of metabolic rates for each species may inform future 

eDNA studies of these species. 

eDNA degradation 

I treated 10 mL water samples containing DNA from the three species to three 

levels of UV, two concentrations of bacteria, and two temperatures for a maximum of 21 

days to see how quickly the eDNA would degrade.  Most of the degradation occurred in 

the first 24 hr.  DNA was detectable by PCR up to 21 days after the addition of DNA, but 

those full data are not presented here because unexplained variation between qPCR trials 

and samples complicated analysis of results.  Variability in measured eDNA 

concentrations increased with more degraded samples (Appendix A Figure 10).  77 

samples and 18 standards were arrayed on a single 96-well qPCR plate; therefore, two 

runs were necessary for the entire experiment.  In the second qPCR run, the DNA 

concentrations jumped to near starting concentrations.  Either randomizing time points 

across different runs of the qPCR, or utilizing a higher-capacity instrument, would help 

manage such experimental error. 

Assumptions in these experiments were that SYBR green qPCR reactions were 

specific to the COI gene.  Validation experiments showed that PCR primers were specific 

to the intended target, and that PCR reactions were relatively free of artifacts such as 

primer-dimer that can contribute to the total SYBR green-stained double stranded DNA. 

However, the melt curves suggest that as time goes on in the degradation study, non-
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target double stranded DNA is produced.  Unexpected spikes in measured DNA 

concentrations may be due to primer dimerization or a concatenation of partial PCR 

products. Use of SYBR green qPCR may yield inaccurate estimates of eDNA 

concentrations unless extraneous fluorescence can be subtracted. Probe-based qPCR 

(e.,g., Taqman) might be a better tool to measure amplifiable eDNA in the presence of 

degradation products. 

Elapsed time since DNA addition affected limpet and mussel eDNA degradation, 

while both elapsed time and bacterial count affected abalone DNA degradation rate.  UV 

did not seem to have an impact on eDNA degradation over the 21-day period.  This may 

be because the range of UV in this experiment ranged from 60 mW/m2 to 0 mW/m2 but 

natural average summer Northern hemisphere maximum UV reaches as high as 250 

mW/m2 (Kerr et al., 1994).  Future study should use a larger range of UV treatments 

during degradation experiments. 

Heat alone at the levels in this study would not be enough to completely degrade 

DNA, because DNA is stable at temperatures far above and below that used in this 

experiment. The literature suggests that heat acts to degrade eDNA by increasing the 

metabolic rate of bacteria and enzyme activity that would break the DNA down (Dejean, 

et al., 2011; Strickler, et al., 2015).  Bluegill sunfish and Idaho giant salamander 

exhibited similar degradation rates to these molluscs, where 90% of eDNA was degraded 

in about 24 hours with no stressors or natural light levels, respectively (Maruyama et al., 

2014; Pilliod et al., 2014).  American bullfrogs and European flounder eDNA reached 

90% degradation after about seven days under light and temperature treatments, 

suggesting great variation in eDNA degradation rates for chordates (Strickler et al., 2015; 
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Thomsen et al., 2012).  More species-specific studies of eDNA degradation are 

imperative to understanding variation and causation of differences in eDNA breakdown 

rates.  Composition of eDNA may also affect degradation, free DNA or eDNA in feces 

may degrade faster due to lack of protection and/or bacterial level, though further study is 

needed to confirm or deny this. 

Modeling 

In order to show how eDNA might spread in a nearshore ecosystem, I designed a 

movement model in R where eDNA concentrations and metadata can be added.  With my 

calculations of diffusivity, Stokes drift, and other factors, I was able to show that eDNA 

can travel far from its point of origin and still be detectable.  The model showed that 

eDNA emanated from an animal moves quickly towards shore and may accumulate in 

very shallow areas.  Depending on how close the animal in question is to the shore, the 

swash zone or beach area may be an excellent place to sample for eDNA as it likely 

accumulates there.  Furthermore, it must be noted that because eDNA can travel over 

1000 m in an hour, it may be difficult to pinpoint the exact location of an animal based on 

eDNA, especially on days with larger waves.  However, these values represent maximum 

wave heights during summer and winter, there may be days in the summer with small 

waves, where other forces control the velocity.  For example, upwelling winds generated 

in the spring and summer lead to surface water being pulled offshore, which may lead to 

eDNA traveling away from the shore.  Data from Monterey Bay suggest that upwelling 

may move water up to 2 cm/s or up to 72 m in one hour (Drake et al., 2005).  Though 

offshore transport may be of smaller magnitude than potential onshore transport, wind 

direction should be considered when predicting eDNA position.  Tidal excursion may 



 

 

29 

also impact the toward shore movement of particles, moving a maximum of 1.7 km in a 

tidal period, though tidal currents move in an ellipse, so much of this distance is 

alongshore movement (Petruncio, 1993).  This value was calculated with a tidal 

amplitude of 12 cm/s, an expected value for tidal amplitude from the area I calculated 

Stokes drift for (Peteruncio, 1993). 

The half-life of eDNA will also influence how far away from the organism the 

eDNA will be detectable.  Calculated half-life values are comparable to similar studies 

with carp, where eDNA half-life was calculated to be 6.31 h (Maruyama et al., 2014).  As 

the particles move, they also become more dispersed in the water column.  Half-life may 

represent a feasible radius of detection of an organism due to how the particles would 

dilute and degrade, though lower limits to detection using qPCR should be considered.  

For limpets and assuming no losses during extraction, the low half-life calculated in this 

study would lead to a potential range of detection up to 835 m in the summer and 4845 m 

in the winter, calculated based on modeled toward shore velocities.  Mussels and abalone 

eDNA have a longer half-life, leading to a potential toward shore detection range of 2960 

m in the summer and 22.96 km in the winter for mussels, and 2988 m in the summer and 

17.33 km in the winter.  Other eDNA studies have suggested that dilution can decrease 

detectability of eDNA even 25 m away from the target in stream ecosystems, where 

between 56% and 83% of PCR samples couldn’t detect freshwater pearl mussels 

(Stoeckle et al., 2015).  These limits to detection should be studied in the natural 

environment due to the complexity of fluid dynamics and variability of eDNA 

concentration measurements. 
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Diffusivity or the diffusion coefficient was an important calculation in my model 

to help particles move up and down in the water column.  During the half-life of the 

eDNA, particles may have moved an average of 3.03 m for abalone, 3.49 m for mussels, 

and 1.61 m for limpet up or down in the water column.  Calculated diffusivities in the 

ocean range from about 3x10-4 m2/s near to surface down to about 1x10-4 m2/s in the deep 

ocean (Arzel and de Vediere, 2016, Cronin et al., 2015).  The average calculated 

diffusivity for my model was near 2x10-4 m2/s, putting it at a similar magnitude to 

calculated values in the ocean.  

Had my results suggested that UV or heat affect eDNA degradation, these factors 

could have been added to the model.  Future study should include these factors as the 

swash zone can be a high UV, high heat, and even high shear force area of the ocean.  As 

a particle moves up and down in the water column, the temperature and UV it is exposed 

to may slow degradation rates.  Freshwater studies have shown that eDNA persists longer 

in more turbid lakes, where UV can’t penetrate as deep (Eichmiller et al., 2016). 

Applicability and future study 

 Overall, this study showed the viability of detecting marine molluscan species 

using eDNA with molecular tools in a laboratory setting.  Other studies have shown that 

eDNA can be detected in the field, which should be the next step for this research.  For 

molluscs, scientists have looked for eDNA from invasive species such as quagga and 

zebra mussels, Dreissena spp., the New Zealand mudsnail Potamopyrgus antipodarum, 

and laver spiral shell Peringia ulvae (Ardura et al., 2015; Clusa et al., 2017; Goldberg et 

al., 2013; Peñarrubia et al., 2016; Williams et al., 2017).  These bivalves and gastropod 

are commonly spread to different locations on vessels, either on the hull or in ballast 
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(Ardura et al., 2015; Bij de Vaate, 2010; Johnson and Carlton, 1996).  Once a population 

has been established, they spread quickly, clogging municipal water transportation pipes 

and pumps, affect phytoplankton and therefore the productivity of lakes, and also may 

outcompete indigenous invertebrates (Cohen and Weinstein, 1998).  For this reason, the 

detection of these molluscs using eDNA must work when the molluscs are at low density 

in the system and they are more easily eradicated. 

 For Haliotis spp., all seven species in California (H. rufescens, H. corrugata, H. 

cracherodii, H. folgens, H. sorenseni, H. kamtschatkana, H. walallensis) are now found 

at low densities.  Following the rise of the abalone fishery in the late 1940’s, H. rufescens 

and H. corrugata were caught commercially and later H. cracherodii, H. folgens, and H. 

sorenseni were added to the mix and subsequently overharvested (Taniguchi et al., 

2000).  In the late 1980’s several species of abalone were also affected by Withering Foot 

Syndrome, an infectious disease which began affecting abalone around the Channel 

Islands due to increasing water temperatures (Lafferty & Kuris, 1993).  These stressors 

together have kept California abalone populations at low levels.  Due to other studies that 

suggest molluscan eDNA can be detected at low levels, the detection of abalone eDNA in 

coastal waters may help scientists and managers find and protect endemic abalone 

populations (Hawk and Geller, 2018). 

 Lottia spp. are also threatened by human harvest for consumption.  Preferential 

harvest of larger individuals in a population can lead to overall shrinking size among 

remaining individuals (Castilla & Duran 1985; Branch & Moreno 1994; Jackson & Sala 

2001).  Even species that are not harvested tend to be smaller in environments where 

other species are harvested (Jackson & Sala 2001; Keough et al. 1993).  One study 
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compared L. gigantea size measurements from museum data and data from Cabrillo 

National Marine Reserve (CNMR) (an area where species collection is prohibited) to data 

collected in the field at beaches in Los Angeles, Orange, and San Diego counties and 

found that L. gigantea at the human-impacted sites were significantly smaller than 

previous L. gigantea collected in the field and those at CNMR (Roy, et al., 2003).  Again, 

human harvest is having an impact on these gastropods and eDNA may provide insights 

into species range, which may benefit from further protection to retain larger individuals 

within the populations. 

 Mytilus spp. are found worldwide and while they are not threatened, they can be 

invasive due to their ability to adapt to different conditions and prevalence in nearshore 

ecosystems.  Due to the complexity of the Mytilus genome, mussels can also hybridize 

with each other and spread out, further complicating the picture (Braby & Somero, 

2005).  M. trossulus, a native species, can hybridize with M. galloprovincialis, sometimes 

hybridizing along a gradient of salinity and temperature.  eDNA may be useful to assess 

population gradients and to detect new invasive species of mussels with the proper 

primers. 

 There are many applications and further study to be done with these data, but all 

require careful technique.  Following in the recommendation of Dejean et al. (2011), the 

most important aspect of any eDNA study is to ensure that one has the most specific 

primers for the study species (Dejean et al., 2011).  This includes testing the primers on 

multiple targets and optimizing PCR conditions.  Furthermore, because eDNA may be in 

very low concentrations, care must be taken to extract the samples without 

contamination.  Dejean et al. (2011) recommends having a dedicated room to extracting 
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and working with rare DNA, similar to what one might have for ancient DNA.  Lastly, 

processing the maximum number of samples possible in each batch is crucial to 

maintaining consistency of these results.  This was an issue I ran into in my thesis, as, due 

to time and budget constraints I was only able to take one sample per treatment for the 

degradation study.  This may have contributed to high variability in estimated eDNA 

concentrations, compounded by qPCR mismeasurement of amplification artifacts in 

degradation experiments.  If budget is not a consideration, replicates of treatments should 

be assessed. 

 Though processing eDNA samples in the laboratory requires a lot of care, 

collecting samples to test for presence or absence using eDNA can be fairly simple.  In 

the UK, researchers are putting citizen scientists to work, collecting water samples from 

35 ponds to sample for a threatened newt, Triturus cristatus (Biggs et al., 2015).  The 

newt lives in turbid waters, making it difficult to find using normal survey 

methods.  Eighty-six volunteers were given basic instructions for how to collect water 

samples and collected 30 mL samples from ponds.  Over 90% of samples analyzed 

resulted in accurate detection of the great crested newt.  Citizen science projects like this 

could prove useful in the future of this project to map the regions where molluscs live on 

the California coast. 
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Conclusions 

This study is the first to look at the emanation and decay rates of eDNA from H. 

rufescens, L. scabra, and M. californianus.  It showed promising evidence that eDNA 

from these molluscan species can be detected at low levels with the correct primers and 

PCR conditions, making this research plausible for field studies.  Furthermore, it was 

found that eDNA from these species can be detected at least three weeks following the 

removal of the organism from the system.  Generally, eDNA was at its highest 

concentration in the first 24 h, while older eDNA falls to a very low level even though it 

was detectable for many days. This behavior can provide an opportunity to distinguish 

the recent presence of an animal versus a lingering older signal. Detected eDNA should 

be used to detect the presence of species of interest in the marine environment, though 

more research is needed to assess the temporal and spatial scope of the method for more 

species due to variation in the rates of emanation and degradation
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Supplemental figures and tables: 

Table 1. Study animal morphometrics (In ID, L=large, M=medium, S=small) 
Tables 1a, b, c: These tables contain metadata for experimental animals.  The animal name 
represents the species, size class, and individual number within a size class.  Measurements 

of length were measured in centimeters and wet weight was measured in grams. 
 

Table 1A: Haliotis rufescens morphometrics 
 

Individual 

ID 

Wet weight 

(g) 

Width 

(cm) 

Length 

(cm) 

Pedal area 

(cm^2) 

Pedal area/wet 

weight 

1AbL1 14.82 2.8 4.3 6.402698864 0.4320309625 

1AbL2 13.506 2.4 4 7.361430396 0.5450488965 

1AbL3 17.524 3 4.4 6.79702381 0.3878694253 

1AbL4 12.06 2.4 4.1 9.42821558 0.7817757529 

1AbM1 3.382 1.4 2.4 2.350584795 0.6950280294 

1AbM2 2.834 1.2 2.2 1.617024448 0.570580257 

1AbM3 4.041 1.5 2.5 3.417360285 0.845671934 

1AbM4 3.275 1.3 2.3 3.038877551 0.9279015423 

1AbS1 1.22 0.8 1.5 1.461080586 1.197607038 

1AbS2 1.172 0.8 1.5 1.201358093 1.025049568 

1AbS3 0.927 0.6 1.3 1.457407407 1.572176276 

1AbS4 1.465 0.9 1.7 1.443885449 0.9855873371 

 

Table 1B: Lottia scabra morphometrics 
 

Individual 

ID 

Wet 

weight 

(g) 

Width 

(cm) 

Length 

(cm) 

Height 

(cm) 

Pedal area 

(cm^2) 

Pedal area/wet 

weight 

SL1 0.644 0.9 1.1 0.4 0.1792850519 0.2783929377 

SL2 0.589 0.6 0.9 0.4 0.4539241623 0.7706692059 

SL3 0.612 0.9 1.2 0.4 0.480142213 0.7845460996 

SL4 0.349 0.4 0.9 0.3 0.4118209118 1.180002613 
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ML1 0.889 0.9 1.3 0.7 0.6082405935 0.6841851446 

ML2 1.179 0.9 1.4 0.4 0.9686256504 0.8215654372 

ML3 1.019 1 1.5 0.4 1.275415445 1.251634391 

ML4 0.794 0.7 1.3 0.5 0.5250365497 0.6612551004 

LL1 2.831 1.7 2.1 1.7 0.9778669043 0.3454139542 

LL2 2.501 1.2 1.8 0.9 1.186177249 0.474281187 

LL3 2.127 1.4 1.9 0.7 1.903422619 0.8948860456 

LL4 2.653 1.2 1.7 0.7 1.086655405 0.4095949512 

 

Table 1c: Mytilus californianus morphometrics 

Individual 

ID 

Length 

(cm) 

Width 

(cm) 

Depth 

(cm) 

Wet weight 

(g) 

Aperture 

(degrees) 

MS1 2 1 0.5 2.683 5.072 

MS2 1.7 0.6 0.5 2.35 4.348 

MS3 2 1 0.6 3.024 4.925 

MS4 2.2 1 0.6 3.165 3.987 

MM1 2.6 1.2 0.9 5.493 4.158 

MM2 3.2 1.5 1 7.05 4.229 

MM3 3 1.3 0.9 5.749 4.321 

MM4 3 1.4 1 5.176 4.328 

ML1 4.4 1.8 1.5 15.829 3.351 

ML2 5.1 1.7 1.7 20.904 4.592 

ML3 4.7 2 1.7 21.399 4.712 

ML4 4.8 1.8 1.6 17.335 4.089 
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Figure 1: A photograph showing how pedal area was measured for abalone and limpets. 

Each dot square is a square centimeter so using ImageJ I was able to compare the amount of 
pixels within the square centimeter to a freehand drawn outline of the molluscan foot. 

 

 
Figure 2: A photograph showing how shell aperture was measured for each experimental 

mussel.  Animals were placed in a line into an aquarium tank with running water and a 
bubbler oriented and watched for 2 hours.  As each mussel opened, images were taken to be 

analyzed with the “angle” tool in ImageJ. 
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Figure 3: A barplot showing the amount of cells cleared by large, medium, and small 

mussels over 24-hours compared to the starting concentrations. 
 
 
 
Table 2. Genbank accession numbers for COI sequences used in primer design. 

Haliotis 

rufescens 

EU636201.1, DQ297549.1, DQ297547.1, DQ297545.1, DQ297543.1, 

DQ297541.1, DQ297540.1, DQ297535.1, DQ297533.1, DQ297531.1, 

DQ297526.1, DQ297525.1, DQ297524.1, DQ297523.1, DQ297522.1, 

DQ297521.1, DQ297509.1, DQ297508.1, DQ297510.1, DQ297507.1 

Mytilus 

californianus 

MK091880.1, MK037177.1, MF544563.1, KF643561.1, KF643953.1, 

KF643867.1 

KY454037.1, KY454036.1, MG431277.1, MG431276.1, MG431275.1, 

MG431274.1, MG431273.1, MG431268.1, MG431266.1, MG431264.1, 

MG431262.1, MG431260.1, MG431258.1, MG431257.1, GQ902240.1 

Lottia scabra  KJ006004.1,KJ006003.1,KJ006002.1,KJ006001.1,KJ006000.1,KJ005999.1,KJ

005998.1,KJ005997.1,KJ005996.1, KJ005995.1, KJ005994.1, KJ005993.1, 

KJ005992.1, KJ005991.1, KJ005990.1, KJ005989.1, KJ005988.1, KJ005987.1, 

KJ005986.1, KJ005985.1 
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Table 3. eDNA per weight vs size class and species (normalized for weight)  
  
  Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F 

value 

P value 

(p<0.05) 

Size 

Class 

2 14.17 7.084 7.414 0.002337 * 

Species 2 18.49 9.245 9.675 0.000544 * 

Residuals 31 29.62 0.956     

  
Shapiro-Wilk normality test   

w=0.98382 p=0.865 

  
Tukey HSD post hoc test Comparison p-value 

Size class Medium-Large 0.0179464 * 

  Small-Large 0.0027368 * 

  Small-Medium 0.7436693 

Species Lottia-Haliotis 0.0003960 * 

  Mytilus-Haliotis 0.0255458 * 

  Mytilus-Lottia 0.2647470 

 
Table 4. Activity and eDNA off put results  
One tailed Paired t-test t-value degrees of freedom p value 

(p<0.05) 

Haliotis rufescens -1.8137 13 0.04643 * 

Mytilus californianus 0.16845 13 0.5656 

Lottia scabra 0.86752 13 0.7993 
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Table 5. Degradation – abalone 
Randomized Block ANOVA 

  Degrees of 

freedom 

Sum of 

squares 

Mean 

square 

F 

value 

p value 

(p<0.05) 

Bacterial 

treatment 

1 0.1685 0.16851 5.111 0.02645 * 

UV treatment 2 0.1744 0.08721 2.645 0.07712 

Temperature 1 0.0362 0.03625 1.099 0.29751 

Day since 

addition 

1 0.2421 0.24209 7.343 0.00821 * 

Residuals 81 2.6704 0.03297     

  

 
Figure 4. A plot showing the normality of the residuals from the randomized block ANOVA 
on M. californianus.  As long as the majority of the black dots are within the gray region, the 

residuals are normal enough for the assumptions of the statistical test to be met. 
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Table 6. Degradation – mussel 
Randomized Block ANOVA 

  Degrees of 

freedom 

Sum of 

squares 

Mean 

square 

F 

value 

p value 

(p<0.05) 

Bacterial 

treatment 

1 60.2 60.75 2.189 0.14379 

UV treatment 2 48.1 24.05 0.874 0.42220 

Temperature 1 6.4 6.37 0.231 0.63220 

Day since 

addition 

1 253.5 253.48 9.209 0.00344 

* 

Residuals 66 1816.8 27.53     

  
 

 
 
Figure 5. A plot showing the normality of the residuals from the randomized block ANOVA 

on H. rufescens.  As long as the majority of the black dots are within the gray region, the 
residuals are normal enough for the assumptions of the statistical test to be met. 
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Table 7. Degradation – limpet 
Randomized Block ANOVA 

  Degrees of 

freedom 

Sum of 

squares 

Mean 

square 

F 

value 

p value 

(p<0.05) 

Bacterial 

treatment 

1 49 48.6 0.986 0.323568 

UV treatment 2 45 22.7 0.461 0.632343 

Temperature 1 8 7.8 0.158 0.692321 

Day since 

addition 

1 614 614.0 12.468 0.000686 

* 

Residuals 81 3989 49.2     

 

 
 
Figure 8. A plot showing the normality of the residuals from the randomized block ANOVA 

on L. scabra.  As long as the majority of the black dots are within the gray region, the 
residuals are normal enough for the assumptions of the statistical test to be met. 
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Figure 9. Bacterial concentrations of antibiotic autoclaved seawater, aquarium room sea 
water, and open ocean seawater measured by the flow cytometer at the beginning of the 

experiment.  Concentrations were measured as ppm. 
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Figure 10. Measured eDNA concentrations during the start and end of the degradation study.  
Concentrations after day 2 or 3 were measured on a separate qPCR plate, potentially leading 

to error in measurements.  Furthermore, creation of double stranded DNA from degraded 
nucleic acids or primers could have led to spikes in measured DNA concentrations. 
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APPENDIX B 

ENVIRONMENTAL DNA MOVEMENT CODE 
 



 

 

 

#You can read in a file containing the data, generated in a loop or by hand.  Make sure this csv 

is in the same directory you use R in. 

modeldata=read.csv("ThesismodeldataS.csv", header=TRUE) 

library(plotly) 

df <- modeldata  

#Many of the following can be edited once your data is loaded in.  I loaded in data containing X 

(towards shore velocity), Diffusiony (tides and diffusion), age (age of the particle since 

creation), and DNA particle (a number representing each individual particle) 

base <- modeldata %>% 

  plot_ly(x = ~X, y = ~Diffusiony, size = ~age, color = ~age, 

          text = ~DNA.particle, hoverinfo = "text") %>% 

  #setting the range and axes labels 

  layout(xaxis = list(type = "linear", range = c(-3,7000), title="Distance traveled towards shore"), 

yaxis = list(range = c(0, 10), title="Height from bottom (Depth)"), title="eDNA movement in 

summer") 

base %>% 

  #This section creates the slider on the bottom of the graph so you can see the model at 

different times 

  add_markers(data = modeldata, frame = ~timenumeric, title="time") %>% 

  hide_legend() %>% 

  animation_opts(frame = 1000, transition = 0, redraw = FALSE) 
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