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ABSTRACT 

Drivers of Sub-Seasonal to Interannual Shoreline Change at Sunset 

State Beach in Monterey Bay, CA  

by 

Miya Pavlock 

Master of Science in Marine Science 

California State University Monterey Bay, 2020 

 

 Expectations of future change call for a thorough understanding of short- and long-time 

scale processes that impact sandy beaches, as well as tests of coastal change models in a variety 

of coastal settings. However, existing shoreline change models have primarily been developed 

and tested in open coast environments. Therefore, this study takes place in the northern Monterey 

Bay where we investigate the effects of headland sheltering and complex inner shelf bathymetry 

on shoreline change at a sandy dune-backed beach, fronted by a submarine canyon system. 

Twenty months of half-hourly video imagery were used to build a high-resolution time series of 

shoreline and sandbar positions at Sunset State Beach from September 2017 to May 2019. Past 

studies have shown that high magnitudes of winter shoreline erosion in the Monterey Bay occur 

during El Niño periods, when storm tracks over the northeast Pacific Ocean shift southward. This 

motivated the assessment of interannual shoreline variability by extending the shoreline time 

series back to September 2014 with biannual in-situ surveys.  

According to the video derived observations, the shoreline varied by approximately 60 

meters while the sandbar varied by approximately 100 meters in the cross-shore direction.  

Winter shoreline erosion began when nearshore significant wave heights exceeded the 95th 

percentile (1.7m), and a greater magnitude of shoreline erosion occurred with higher average 

winter wave energy. Shoreline accretion appeared to be aided by the sandbar, which acted as a 

source of sediment in the early summer months of 2018. The influence of wave energy and 

direction on shoreline change was tested using an equilibrium shoreline change model and an 

alongshore sediment transport model. Shoreline change at Sunset State Beach depended 

primarily on wave energy, the root-mean-squared error (RMSE) of the equilibrium model alone 

was 6.4m. The addition of alongshore sediment transport to overall shoreline change resulted in a 

modest RMSE reduction to 5.6m, but equilibrium model parameters did not change significantly. 

According to the biannual time series of shoreline observations, high magnitudes of shoreline 

erosion can also occur during non- El Niño periods, due to westerly waves that bypass the Santa 

Cruz headlands and expose the northern Monterey Bay to wave attack. The accuracy of the 

shoreline change models used in this study was limited by annual variability in the summer 

shoreline position, motivating future investigations of temporally variable alongshore sediment 

supply. The results suggest that rather than relying on predictions of an El Niño index to predict 

shoreline change, predictions of the direction of storm tracks over the northeast Pacific Ocean 

could more accurately inform shoreline change predictions at the study site and in similar 

environments. 
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SECTION 1 

INTRODUCTION 

 The changing wave climate in combination with sea level rise is likely to increase coastal 

erosion rates and threaten the economic, social, and cultural value of sandy coasts (Mentaschi, et 

al., 2017; Neumann et al., 2014; Semedo et al., 2013; Zhang et al., 2004). Therefore, projections 

of shoreline change are an increasingly useful tool for coastal managers to enact effective coastal 

management plans. Accurate projections, however, require a thorough understanding of the 

physical drivers of coastal change, as well as observations capable of resolving short and long 

timescale processes that impact sandy coasts. Expectations of future change emphasize the need 

for efficient data collection methods and tests of existing shoreline change models to assess their 

utility in a variety of coastal settings. 

Shoreline change is largely driven by waves which are affected on various timescales by 

controls such as headland sheltering, complex bathymetry, and nearshore sandbars (Hapke et al., 

2016; Harrison et al., 2017; Stive et al., 2002). Headlands can shelter or expose certain stretches 

of beach depending on the shoreline orientation and direction of incoming waves. Complex inner 

shelf and nearshore bathymetry, such as that of submarine canyon systems, can refract or steer 

larger waves and cause alongshore variations in wave height (Munk & Traylor, 1947). In the 

nearshore, sandbars dissipate wave energy as shore-normal incident waves drive sediment 

transport in the cross-shore direction (Hoefel & Elgar, 2003; Lippmann & Holman, 1989; Wright 

& Short, 1984). 

Waves drive shoreline change by mobilizing sand across and alongshore according to 

their magnitude and direction (Komar & Inman, 1970; Wright & Short, 1984). The magnitude of 

shoreline migration due to sediment transport processes can be estimated with simple models 

forced with wave energy and direction (e.g. Yates et al., 2009; USACE 1984). Cross-shore 

sediment transport occurs when waves approach perpendicular to shore, and alongshore sediment 

transport occurs when gradients in alongshore wave conditions develop. Simple shoreline change 

models have been combined to forecast expected change coastal but have primarily been tested 

in open coast environments (e.g. Vitousek et al., 2017).  
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At open coast sandy beaches many studies have found that the shoreline position 

constantly adjusts toward a state of equilibrium with wave conditions, typically eroding rapidly 

during high energy wave conditions and accreting gradually during low energy wave conditions 

(Davidson et al., 2013; Splinter et al., 2014; Yates et al., 2009). Shoreline erosion is generally 

accompanied by offshore sandbar migration, and shoreline accretion is accompanied by onshore 

sandbar migration. High energy waves during storms bring the most erosive waves to coastal 

areas on the order of hours to days, which is a difficult timescale to observe with in-situ 

surveying methods. The rise of video remote sensing has allowed for observations of 

morphologic characteristics before, during, and after storms leading to investigations of the 

drivers of storm erosion and post storm accretion or recovery (Angnuureng et al., 2017; Blossier 

et al., 2017; Burvingt et al., 2017; Coco et al., 2014; Phillips et al., 2017; Senechal et al., 2015; 

Splinter et al., 2014). Angnuureng et al. (2017) for example, suggest that storm driven shoreline 

erosion is controlled by the wave energy of present and previous storms, and post storm recovery 

is primarily modulated by sandbar location at a sandy barred beach in France. We therefore use 

automated video remote sensing in the present study as an efficient method to gather 

observations of shoreline and sandbar location capable of resolving the impacts of individual 

storm events.  

The present study takes place in Monterey Bay, where we investigate the effects of 

headland sheltering and complex inner shelf bathymetry on shoreline change at a sandy dune-

backed beach, fronted by a submarine canyon system. The objectives of this study are twofold: 

1) to define the relationships between shoreline and sandbar positions with wave conditions at 

the study site and 2) to test the drivers of shoreline change with simple shoreline change models. 

First, we explore the ability of the sandbar to dissipate wave energy and buffer the shoreline to 

delay winter erosion by quantifying the relationships between shoreline and sandbar positions 

with wave conditions. Later, shoreline change due to cross- and alongshore sediment transport 

processes are estimated with simple models. If wave energy is a primary driver of shoreline 

change at the study site, it was expected that a simple equilibrium shoreline change model would 

yield accurate predictions of shoreline position based on hourly changes in wave energy. The 

high elevation dune provides an ideal perspective for automated video monitoring which is used 

here in the Monterey Bay to map shoreline and sandbar positions. 
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1a. Study Area 

Monterey Bay in Central California is located approximately 150km south of San 

Francisco and is characterized by sea cliffs and eroding pocket beaches in Santa Cruz, low-lying 

rocky shores in Monterey, and long stretches of sandy dune-backed beaches in between (Figure 

1). River input and the erosion of coastal sea cliffs and dunes act as major sources of sediment in 

the greater Monterey Bay, while offshore sediment transport, losses to the Monterey submarine 

canyon head near Moss Landing, and sand mining in the southern Monterey Bay act as major 

sinks (Griggs & Patsch, 2007). The Monterey submarine canyon system can refract waves as 

they approach from offshore and promote alongshore wave energy gradients, especially apparent 

with the presence of extreme waves approaching from the west (Erikson et al., 2014). The tidal 

regime is semidiurnal with a maximum range of 2m.  

The present study site, Sunset State Beach, is in the northern Monterey Bay and is 

sheltered from northwest swell originating in the northern Pacific Ocean by the Santa Cruz 

headlands, most of the year (Figure 1). Sunset State Beach was selected for this study because it 

is backed by the highest dune in the Monterey Bay, that provides an ideal viewpoint for video 

monitoring. Biannual cross-shore elevation profiles at the study site are characterized by beach 

eroded shorelines and offshore sandbars in the winter, followed by accreted shorelines and 

onshore sandbars during low-energy summer wave conditions (Figure 2, Dingler & Reiss, 2002; 

Stevens et al., 2017).  

The highest magnitudes of winter erosion at Sunset State Beach have occurred during El 

Niño periods, when storm tracks tend to shift southward in the Pacific Ocean and expose the 

northern Monterey Bay to larger waves (Storlazzi & Griggs, 2000). Dingler & Reiss (2002) 

surveyed cross-shore profiles at beaches throughout the Monterey Bay following a large El Niño 

event and observed that all surveyed beaches recovered on a similar timeline following the storm 

erosion. Their results suggest that sand was transported offshore during storms rather than 

alongshore. The previously observed interannual shoreline variability in Monterey Bay 

motivated additional tests of the shoreline change models on a longer time series of biannually 

surveyed shoreline positions, in addition to the video derived shoreline positions at Sunset State 

Beach.  
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Pacific Ocean and enters the Monterey Bay (c). The blue point near Sunset State Beach 

represents the location of nearshore wave model estimates. 
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Figure 2: Biannual cross-shore beach profiles from Sunset State Beach. The intersect of the Mean High Water (MHW) tidal datum 

defined in Monterey and beach profiles define MHW shorelines. Mean Low Water (MLW) tidal datum with MHW indicates the 

typical tidal range at the study site. Elevation is referenced to NAVD88, where NAVD88 = 0m. Cross-shore distance is referenced to 

the dune base and is increasingly negative toward the west. All data was collected by USGS and is available online via Stevens et al. 

(2017). 
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SECTION 2 

METHODS 

The methods section is presented in three parts. First, the video monitoring station setup 

and methods applied to shoreline and sandbar mapping are described in Section 2a. Then, the 

nearshore wave model used in this study is summarized and validated in Section 2b. Finally, the 

shoreline model equations used to investigate the driving factors of shoreline change at the study 

site are described in Section 2c. 

 

2a. Shoreline and Sandbar Mapping 

A dual camera video monitoring station was installed in September 2017 at Sunset State 

Beach to continuously monitor coastal morphologic change (USGS 2017). Over the past 30+ 

years, video monitoring, also known as Argus monitoring, has become a useful method of 

measuring coastal hydro- and morphodynamic processes (Holman & Stanley, 2007). The Argus 

station used in this study was installed by the US Geological Survey (USGS) concurrent with 

their Fall 2017 nearshore bathymetry and beach topography survey campaign (Stevens et al., 

2017). Shoreline and sandbar positions were mapped using time-exposure (timex) image 

products, made up of the average of all pixel values recorded at a 2Hz frame rate over 10 

minutes, every half hour during daylight hours.  

A combination of ground control points placed on the beach and extracted from personal 

watercraft tracks visible in “bright” image products were used to transform pixel coordinates in 

the oblique imagery to world coordinates. The bright image products contained only the brightest 

pixel values from the timex image products. Image products from both cameras were merged to 

create orthomosaics that were vertically rectified to distant tidal datum elevations. The 

orthomosaics were limited to a 600m2 domain to maintain consistent pixel resolution of 0.5m in 

both the along- and cross-shore directions throughout the study area (Figure 3). We use 20-

months of imagery to build a time series of shoreline and sandbar positions at Sunset State 

Beach.  
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A local along- (x) and cross-shore (y) reference frame was defined to map shorelines and 

sandbars (Figure 3d). The vertical tolerances for image rectification are (z = Mean High Water 

(MHW) = 1.455m and z = Mean Low Water (MLW) = 0.376m) established at the National 

Oceanic and Atmospheric Administration (NOAA) tide gauge in Monterey (Station ID: 

9412450), located approximately 30km south of Sunset State Beach. The tide gauge in Monterey 

is positioned outside of the surf zone at the end of the Monterey Municipal Wharf No. 2 (Figure 

1c).  The origin of the reference frame was defined as the x and y location of the camera system 

at MHW, 1.4m ≤ z ≤ 1.5m for shoreline mapping and MLW 0.3m ≤ z ≤ 0.4m for sandbar 

mapping. The vertical ranges around MHW and MLW used for image rectification were 

determined through trial and error to maximize the quantity of images that were captured near 

times when the water level approximated MHW and MLW. All vertical levels reported in this 

document were referenced to the North American Vertical Datum of 1988 (NAVD88).  

Cross-shore shoreline positions were mapped using the color channel divergence (CCD) 

method, by subtracting the blue from red pixel values at cross-shore transects spaced every 5m 

alongshore (Figure 4a, Andriolo, 2019; Plant et al., 2007). The CCD method was implemented 

using the Shoreline-Mapping-Toolbox available on GitHub (Harley, 2019). Shoreline mapping at 

Sunset State Beach was successful on days when the water appeared bluer and failed on cloudy 

or foggy days when the water appeared greyer. Shorelines were only mapped when imagery 

coincided with MHW during daylight hours and was biased toward days when the water 

appeared bluer, resulting in an irregular time series of shoreline positions. Controlling shoreline 

mapping to MHW ensured that apparent shoreline migration from changes in water level was 

minimized (Moore et al., 2006). The CCD shoreline mapping method resulted in a cross-shore 

accuracy of ±5m for shoreline positions, on par with previous studies (i.e. Angnuureng et al., 

2017; Senechal et al., 2015). However, additional error up to 12m or more was possibly induced 

from variations in nearshore wave setup, according to Angnuureng et al. (2017).   

The cross-shore position of the outer sandbar, defined as the seaward-most high intensity 

band in timex products, was mapped manually at cross-shore transects spaced every 10 meters 

alongshore (Figure 4b). The seaward most band of high intensity pixels corresponded to the 

location of preferential wave breaking in the nearshore, acting as a proxy for the outer sandbar 

position (Lippman & Holman 1989). Sandbar mapping was limited to MLW to reduce any 
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apparent cross-shore migration due to changes in water level. For example, if we assume a 

constant sandbar position, waves of the same height would break farther offshore at low tide than 

at high tide. Mapping sandbar positions using timex products rectified to a low tide level allowed 

wave breaking to be most pronounced (van Enckevort & Ruessink, 2001).  

Figure 3: Dual camera Argus monitoring system at Sunset State Beach (a) and example of study 

area. Panels (b) & (c) show snapshots from camera 1 facing cross-shore and camera 2 facing 

alongshore. Axes in (b) & (c) are defined as image coordinates or pixel counts. An example of a 

rectified and merged orthomosaic (d) shows how each camera domain contributes to the study 

area that stretches 600m in the cross- and alongshore directions. Each pixel in (d) is 0.5 x 0.5m. 

Figure courtesy of Buscombe et al. (2020).    
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In addition to changing water level, previous studies have shown that image based proxy 

sandbar mapping is subject to uncertainties associated with changing wave height (Lippmann & 

Holman, 1990; van Enckevort & Ruessink, 2001). For example, larger waves may break further 

offshore at the seaward base of a sandbar, while smaller waves may break further landward at the 

crest of the sandbar. It is also possible that persistent foam at the preferred location of wave 

breaking may displace detection of the sandbar landward in high energy conditions, when the 

surf zone is saturated (Lippmann & Holman, 1990). In effort to reduce variations in sandbar 

position due to changing wave height, sandbar mapping was limited to times when nearshore 

significant wave heights were less than 1m. Sandbar mapping was further limited by times when 

waves were very small and it was unclear whether the sandbar was not visible in the imagery or 

was not present in the nearshore domain. An accuracy of ±10m was determined by visually 

interpreting the cross-shore range of possible outer bar positions that could have been mapped 

using this method, resulting in accuracy similar to previous studies such as Angnuureng et al. 

(2017) and Senechal et al., (2015).  

The requirements applied to shoreline and sandbar mapping reduced cross-shore 

uncertainty but resulted in an irregular time series, sparse in comparison to the total number of 

image products collected between September 2017 to May 2019. If we consider an average of 8 

hours of daylight per day with two timex products collected per hour, an approximate 10,000 

timex products were collected during the study period at Sunset State Beach. By limiting 

shoreline mapping to MHW and sandbar mapping to MLW, the number of timex products used 

was greatly reduced (Tables 1 & 2). Sandbar mapping was further reduced by limiting wave 

conditions. A U.S. government shutdown prevented data collection in January 2019. 

Previous observations of shoreline change in the Monterey Bay suggest annual variability 

in summer shoreline position, which motivated the investigation of a longer time series of 

shoreline positions at Sunset State Beach. MHW shoreline positions were extracted from the 

beach profiles surveyed by USGS (Figure 2). The latest publicly available data from USGS at the 

time of this study was from September 2017, so biannual shoreline positions were extracted from 

the video derived imagery to build a five-year time series of shoreline positions, from September 

2014 to May 2019. The 5-year time series of biannual shoreline positions is used later, in the 
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shoreline modeling portion of this study to test the influence of cross- and alongshore sediment 

transport processes on shoreline change at Sunset State Beach. 

 

Table 1: Quantity of shoreline extractions per month. 203 total timex products were mapped, but 

only 126 were used in shoreline modeling, shown in brackets. Grey boxes indicate months when 

shoreline mapping requirements were unmet, and no shorelines were mapped. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2017 - - - - - - - - 22 

[12] 

40 

[20] 

9  

[7]  

14 

[10] 

2018 4  

[3] 

7  

[6] 

13 

[8] 

6  

[3]  

0 

[0] 

1 

[1] 

8 

[4] 

20 

[11] 

10 

[9] 

19 

[13] 

9 

[7] 

11 

[5] 

2019 0 

[0] 

1 

[1] 

3 

[2] 

6 

[4] 

0 

[0] 

- - - - - - - 

 

Table 2: Quantity of sandbar extractions per month. 80 total timex products were used. Grey 

boxes indicate months sandbar mapping requirements were unmet, and no sandbars were 

mapped. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2017 - - - - - - - - - 6 8 6 

2018 2 4 4 9 7 8 6 6 1 0 2 1 

2019 0 0 2 5 3 - - - - - - - 
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Figure 4: Example of shoreline (a) and sandbar (b) position mapping using rectified time exposure image products. The cross-shore 

shoreline position was mapped every 5 meters alongshore (cross hatches along blue line), while the cross-shore position of the outer 

sandbar was mapped every 10m alongshore (points along red line).  
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2b. Waves 

The magnitude of wave energy and direction of wave approach were required to relate 

wave conditions to shoreline and sandbar positions, as well as force the shoreline change models 

used in this study. Modeled values of hourly nearshore wave statistics were gathered from the 

Coastal Data Information Program Monitoring and Prediction nearshore wave model for the 20-

month study period (CDIP MOP). CDIP MOP produces wave estimates at 15m depth, spaced 

every 200m alongshore in central and northern California (O’Reilly et al., 2016). CDIP MOP 

uses offshore directional wave buoys to initialize the linear spectral wave propagation model 

including wave periods between 2-30 seconds, not including wave generation by local winds. To 

validate the CDIP MOP model near Sunset State Beach (CDIP MOP transect #SC024), USGS 

deployed a Nortek Acoustic Doppler Current Profiler (ADCP) for two months in the winter of 

2017-18 collocated with the CDIP MOP model estimates. Between early December 2017 to the 

end of January 2018, nearshore significant wave height modeled by CDIP MOP ranged between 

0.31m to 3.31m while waves measured by the ADCP ranged between 0.39m to 3.34m. During 

the two month ADCP deployment, in-situ wave characteristics closely matched with those 

predicted by CDIP MOP (RMSE = 0.13, r2 = 0.91), justifying use for the duration of the study 

period (Figure 5). However, another ADCP deployment may be necessary to verify the utility of 

CDIP MOP nearshore wave predictions at other times of the year. 
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Figure 5: Modeled vs. measured nearshore significant wave height for December 2018 – 

January 2019. An Acoustic Doppler Current Profiler (ADCP) was co-located with CDIP MOP 

nearshore wave predictions in 15m depth offshore of Sunset State Beach. The gradual 

bathymetric slope from the inner shelf to the nearshore in Monterey Bay forces waves to have 

little variation from shore normal by the time they reach the nearshore. The points are colored by 

wave direction clockwise from true north, shore normal incident waves approach Sunset at 242˚ 

(green colored points). The linear slope is just less than 1 (dashed line) at 0.93m. ADCP data 

were collected and shared courtesy of Kurt Rosenberger of USGS.  

 

2c. Shoreline Model Equations 

Shoreline change due to cross- and alongshore sediment transport is estimated using 

simple shoreline change models, in three experiments. In the first experiment, shoreline change 

due to cross-shore sediment transport is estimated using a simple equilibrium shoreline change 

model, assuming shore-normal incident waves (Yates et al., 2009). In the second experiment, 

shoreline change due to alongshore sediment transport is tested using the Coastal Engineering 

and Research Center (CERC) equation (USACE, 1984). In the final model experiment, the 

equilibrium and CERC models are combined to test the overall influence of wave energy and 
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wave direction to the observed shoreline change at Sunset State Beach. In general, the modeling 

workflow consisted of estimating initial model parameters from previous studies, optimizing the 

model parameters to Sunset State Beach, and testing the model skill against shoreline 

observations. 

 According to the equilibrium shoreline change model proposed by Yates et al. (2009), 

shoreline change over time 
𝑑𝑆

𝑑𝑡
 𝑖𝑛 [

𝑚

𝑑𝑎𝑦
 𝑜𝑟 

𝑚

ℎ𝑜𝑢𝑟
], 

(1) 
𝑑𝑆

𝑑𝑡
= 𝐶± √𝐸  (∆𝐸) 

depends on the energy-shoreline disequilibrium ∆𝐸 [𝑚2], where 

(2) ∆𝐸 =  𝐸 −  𝐸𝑒𝑞(𝑆). 

When ∆𝐸 = 0, the shoreline is assumed to be in equilibrium with wave energy, so 

theoretically, no shoreline change would occur if a constant wave energy persisted. The energy-

shoreline disequilibrium is defined as the difference between the current wave energy 𝐸 and 

estimated wave energy equilibrium 𝐸𝑒𝑞, which is a linear function of shoreline position, 𝑆 [𝑚], 

where  

(3) 𝐸𝑒𝑞(𝑆) = 𝑎𝑆 + 𝑏. 

The equilibrium shoreline change model has four free parameters: an erosion/accretion 

coefficient 𝐶±  [energy−2  ∙ time−1 in  𝑚−2 ∙ ℎ𝑟−1], a linear slope 𝑎 [ 
wave energy

meter
  in

𝑚2

𝑚
], and y-

intercept 𝑏 [wave energy in 𝑚2]. The accretion parameter 𝐶+ is used when ∆𝐸 < 0 and 

accretion is required for the shoreline to reach equilibrium, while the erosion parameter 𝐶−  is 

used when ∆𝐸 > 0 and erosion is required for the shoreline to reach equilibrium with wave 

conditions. The parameters 𝑎 and 𝑏 define the linear relationship between the shoreline position 

and equilibrium wave energy. Equation (3) estimates the observed average wave energy that 

caused no shoreline change during the study period. The e-folding scale ([𝑎𝐶±𝐸
1

2]−1) where 

(𝐸 =  
𝐻𝑠

2

16
), or the time to shoreline adjustment, is inversely proportional to significant wave 

height and can be used to calculate the theoretical timescales of shoreline erosion and accretion.  
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For consistency with previous studies by Yates et al. (2009, 2011), the temporal mean 

from the time series of shoreline positions was removed. Additionally, nearshore significant 

wave height 𝐻𝑠 [𝑚] was converted to a proxy for nearshore wave energy 𝐸 [𝑚2] to enable 

parameter comparisons with Yates et al. (2009, 2011), where 

 

(4) 𝐸 =
1

16
𝐻𝑠2. 

In the first model experiment, the equilibrium shoreline change model was tested using 

the 20-month time series of video derived shorelines and the biannual time series of USGS 

surveyed shorelines at Sunset State Beach. Initial estimates of equilibrium model parameters 𝑎 

and 𝑏 were calculated using a linear fit between observed 𝑆 and the averaged wave energy 

between shoreline position observations, 𝑆, following Yates et al. (2009). The number of 

shoreline observations used in shoreline modeling was reduced in this step to one observation per 

day to reduce noise in shoreline change rate calculations within shoreline mapping uncertainty 

(Table 1). 𝐶± was estimated by solving equations (1), (2), and (3) using shoreline change 

calculations from observations and the initial estimates of 𝑎 and 𝑏. However, the initial 

parameter estimates resulted in unreasonable shoreline predictions. The time between observed 𝑆 

ranged from 1 to 57 days, which smoothed wave energy between shoreline observations 

significantly, thereby deeming this method of initial parameter estimation ineffective. Therefore, 

model parameters calculated by Yates et al. (2009, 2011) were enlisted as initial parameter 

estimates at Sunset State Beach.  

Yates et al. (2009) calculated model parameters for a beach in southern California with 

lower wave energy and Yates et al. (2011) calculated model parameters for a beach in northern 

California with higher wave energy compared to Sunset State Beach. Therefore, the model 

parameters 𝑎 and 𝐶± calculated by Yates et al. (2009, 2011) were averaged under the hypothesis 

that the averaged parameters would provide accurate predictions of shoreline change at Sunset 

State Beach. The site-specific parameters 𝑏 and the initial shoreline position (𝑆0) were 

determined specifically for Sunset State Beach, since they relate around the temporal mean and 

is different from site to site. 
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Using the averaged Yates et al. (2009, 2011) model parameters, parameter optimization 

procedures were used to improve hourly model estimates of shoreline position by adjusting 

model parameters to yield the best overall fit between model predictions and shoreline 

observations. Each parameter and 𝑆0 were optimized using a simulated annealing (SA) 

framework to find the best combination of parameters. SA works by minimizing a cost function 

between model predictions and observations and finds the global minimum within the four-

dimensional parameter space (Glover, Jenkins, & Doney, 2011). All parameter optimization 

procedures were implemented using the MATLAB Optimization Toolbox.  

In the second model experiment, the CERC equation was used to test the influence of 

wave direction in addition to wave energy at the study site (USACE 1984). Shoreline change due 

to alongshore sediment transport (
𝑑𝑆

𝑑𝑡
) was then calculated using a finite difference between 

sediment transport volumes 400m north and 400m south of Sunset State Beach (
𝑑𝑄

𝑑𝑦
) at CDIP 

MOP transects SC026 and SC022, where 

(5) 
𝑑𝑆

𝑑𝑡
=  

1

𝐻𝑐𝑙
 
𝑑𝑄

𝑑𝑦
. 

The depth of closure (𝐻𝑐𝑙), defined as the seaward limit of sediment transport, was set to 

10m. The alongshore sediment transport volume, 𝑄, is a function of time and alongshore 

distance which depends on one free parameter 𝐾, alongshore radiation stress (𝑆𝑥𝑦), and phase 

velocity at breaking (𝐶𝑝) (Crosby et al., 2016).  

(6) 𝑄 =  𝐾 𝑆𝑥𝑦 𝐶𝑝  

The initial estimate for 𝐾 was set at 0.6 following the results of Crosby et al., 2016 and 

𝑆𝑥𝑦 values were acquired from CDIP MOP. The depth at which waves were breaking was 

estimated at approximately 1.3 times the significant wave height, yielding similar estimates of 

breaker depths to those calculated by Camenen & Larson, 2007. 𝐶𝑝 was calculated assuming 

intermediate waves. Parameter optimization was conducted for all parameters except 𝐻𝑐𝑙, using 

SA, described previously. The parameter  𝐻𝑐𝑙  is inversely related to the parameter 𝐾 so was not 

expected to alter the shoreline model results since 𝐾 was optimized.  



17 
 

 

In the final model experiment, the equilibrium model and CERC equation, (1) and (5), 

were combined to test the influence of wave energy and wave direction to the observed shoreline 

change at Sunset State Beach, where overall shoreline change over time is 

(7) 
𝑑𝑆

𝑑𝑡
=  𝐶± √𝐸  (∆𝐸) +  

1

𝐻𝑐𝑙
 
𝑑𝑄

𝑑𝑦
. 

The combined model was tested on the 20-month time series of video derived 

observations as well as a biannual time series of shoreline positions to quantify the overall 

contribution cross- and alongshore sediment transport to observed shoreline change at Sunset 

State Beach. 
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SECTION 3 

RESULTS

 The results section is presented in two parts. First, the relationships between shoreline, 

sandbar, and nearshore waves are described in Section 3a. Second, the results of the three 

modeling experiments are shown in Section 3b. 

 

3a. Shoreline, Sandbar, and Waves 

The relationships between shoreline and sandbar positions with wave conditions were 

quantified to investigate the ability of the sandbar to buffer the shoreline and delay winter 

shoreline erosion. Shoreline and sandbar positions were mapped within a 600m alongshore 

stretch of beach. Alongshore shoreline and sandbar variability were defined by the standard 

deviation of each shoreline or sandbar position within the 600m study area. 

Alongshore shoreline variability ranged between 2m to 8m throughout the study period, 

with a median variability of 4m (Figure 6) From September to December 2017, the shoreline 

eroded by a total of about 32m and accreted by a total of 45m from December 2017 to June 

2018. From late August to early December of 2017, the shoreline remained relatively stable but 

slowly eroded by approximately 10m during these 3 months. Larger wave events in mid-late 

December corresponded with 22m of shoreline erosion over the course of 2-3 weeks. By late 

January the shoreline accreted by 15m and continued to accrete through the spring until June 

2018, when the shoreline reached a stable position 10m seaward of the stable shoreline position 

in the previous year. The shoreline remained stable in the summer of 2018 until the onset of large 

wave events drove approximately 58m of erosion during the winter of 2018-2019. With 

sustained high wave energy in winter of 2018-2019, the shoreline remained eroded into March 

2019 and began to accrete under lower energy conditions in mid-late March 2019.  The shoreline 

remained stable from June to early November 2018, then eroded further to a total of about 55m 

by February 2019. Significant shoreline erosion was only observed when waves exceeded the 

95th percentile, 1.7m (Figure 6). 

Compared to the shoreline, the sandbar at Sunset State Beach had a greater cross-shore 

range in position and alongshore variability (Figure 6). Alongshore sandbar variability ranged 
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between 2m to 23m, with a median variability of 7m. Increased sandbar variability generally 

corresponded to 3D morphologies where rip channels and cuspate sandbar formations were 

apparent in the timex products. From September 2017 to late March 2018 the sandbar gradually 

migrated 100m seaward during the 6-month period. This migration then reversed direction and 

the sandbar migrated 100m landward over the following 5 months, until early August 2018.  By 

November 2018, the sandbar migrated seaward nearly as far as in the previous year, however 

very few sandbar positions were extracted from the imagery during the winter of 2018 – 2019. 

By March 2019 the alongshore variability of the sandbar reached its maximum and the sandbar 

remained at a variable seaward position until the end of the study period. 

The sandbar generally migrated offshore as wave energy increased and onshore as wave 

energy decreased. Sandbar positions correlated more strongly with wave heights (r2 = 0.40) 

better than shoreline positions (r2 = 0.25) (Figure 7). This pattern is more apparent in 2017-2018 

(referred to as year 1) than 2018-2019 (year 2) due to the greater quantity of observations (Figure 

7). The sandbar was farthest seaward in the spring of both years (green points) and the farthest 

landward in the fall (blue and purple points).  

Sandbar positions were only extracted from imagery when CDIP MOP significant wave 

height was reported at less than 1m (Figure 7). Since waves tend to break at distinct depths 

(smaller waves in shallower water and larger waves in deeper water), the approximate elevation 

at wave breaking was calculated when sandbar positions were mapped to confirm that observed 

sandbar migration was not an artifact of waves breaking at various depths. The beach slope at 

Sunset State Beach was approximately 0.03 based on survey data in fall 2017 (Figure 2) and the 

elevation where waves were expected to break ranged by 0.93m (calculated following Camenen 

& Larson (2007)). The expected depth at wave breaking corresponded to a 27m cross-shore 

range, while the observed range of sandbar migration was approximately 100m during the study 

period. According to the survey data the cross-shore profile at Sunset State Beach became 

steeper in winter months, which reduced the cross-shore range of wave breaking. Since the 

observed range in sandbar position was an order of magnitude greater than the cross-shore range 

of depth where waves were expected to break, it is unlikely that requirements applied to sandbar 

mapping influenced the observed range of migration significantly. 
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Shoreline and sandbar positions were inversely correlated; the sandbar migrated seaward 

while the shoreline eroded under high energy conditions and vice versa, with certain exceptions 

(Figure 8). The relationship was mainly driven by seasonal changes in wave energy but was 

weaker than expected due to differences in the timing of sandbar and shoreline migration. For 

example, the sandbar migrated offshore consistently from September 2017 to April 2018 before 

reversing direction, while the shoreline remained static until the first wave event exceeding 1.7m 

in December 2017. In late September 2017 and early November 2017, the significant wave 

height did exceed 1.7, but did not affect the shoreline position since the events were very short. 

Before the first large wave event in year 1 (Figure 8, points 2-5) and year 2 (Figure 8, points 12-

15), the shoreline position remained relatively stable while the sandbar migrated offshore, 

deviating from the linear relationship. After the first large wave event when the shoreline had 

eroded in each year (Figure 8, points 6-10 for year 1 & points 17-23 for year 2), the sandbar 

continued migrating offshore, while the shoreline accreted much more rapidly in year 1 than in 

year 2. 
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Figure 6: Time series of all imagery mapped shoreline and sandbar positions. In the top panel, the black points represent the 

alongshore averaged sandbar or shoreline position mapped from imagery and the grey envelope indicates the alongshore 

variability, or standard deviation of the 600m stretch of sandbar or shoreline. The envelope is interpolated between observations 

so does not necessarily represent observed change. The bottom panel shows CDIP MOP nearshore significant wave height near 

Sunset State Beach and the dotted line suggests a wave energy - shoreline erosion threshold at the 95th percentile, 1.7m at 

Sunset State Beach. 
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Figure 7: Cross-shore sandbar position vs. nearshore significant wave height (Hs) for year 1: October 2017 – August 2018 (left) and 

year 2: September 2018 – April 2019 (right). Data is colored by month of year (January = 1, February = 2, etc.). Sandbar position was 

positively correlated with wave height, the overall r2 = 0.40 for all sandbar observations. 
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Figure 8: Weekly shoreline vs. sandbar positions at Sunset State Beach colored, r2 = 0.57 and linear slope is  

-0.47m (black line). Since shoreline and sandbar positions were not observed at the same time during the 

study period, the time series were synchronized and interpolated to display weekly observations and are 

colored by time. Monthly positions are outlined in black and numbered beginning at 1 in October 2017 

(darkest blue). 
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According to the video derived shoreline positions, the seasonal pattern at Sunset State 

Beach was generally described by rapid shoreline erosion with high energy waves and gradual 

accretion with low energy waves. Shoreline erosion and accretion depended on both wave energy 

and the previous shoreline position, suggesting an equilibrium shoreline response (Figure 9). 

Accreted shorelines exposed to high energy conditions were generally observed to erode (red 

points in Figure 9) and eroded shorelines exposed to low energy conditions were observed to 

accrete (blue points in Figure 9). There were some exceptions in the time series (where blue 

points fell above the equilibrium state (black line in Figure 9), or red points fell below), but the 

seasonal equilibrium response dominated the observed shoreline change patterns.  

 

Figure 9: Shoreline change rate 
𝑑𝑆

𝑑𝑡
 between consecutive shoreline observations and averaged 

wave energy at Sunset State Beach. The black line shows the linear fit (r2 = 0.25) used to 

determine initial parameters (y-intercept 𝑏 = 0.037𝑚, slope 𝑎 =  −0.00081 𝑚2/𝑚). The black 

line represents an estimated equilibrium state where no shoreline change is expected according to 

shoreline position and wave energy. 
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3b. Shoreline Modeling 

 Three model experiments were conducted to test the contribution of cross- and 

alongshore sediment transport processes to observed shoreline change at Sunset State Beach. In 

the first model experiment, an equilibrium shoreline change model was used to test the influence 

of cross-shore sediment transport to shoreline change at Sunset State Beach. In the second model 

experiment, the CERC equation was used to test the influence of alongshore sediment transport 

to shoreline change at the study site. In the third model experiment, the equilibrium shoreline 

change and CERC models were combined to test the contribution of wave energy and wave 

direction to observed shoreline change at Sunset State Beach. Each experiment was conducted to 

test the drivers of shoreline change at the study site, which is sheltered by headlands and fronted 

by a submarine canyon system with irregular bathymetry.  

In the first model experiment, a simple equilibrium shoreline change model was tested to 

quantify the influence of shore-normal incident wave energy to shoreline change with 20 months 

of video derived observations. Shoreline predictions using the averaged parameters from Yates et 

al. (2009, 2011) predicted shoreline change with a root mean squared error (RMSE) of 8.0m 

(Table 3). For comparison, the model parameters calculated at Ocean Beach and ran directly at 

Sunset State Beach resulted in an RMSE of 9.1m and those calculated at Torrey Pines resulted in 

an RMSE of 7.9m (Table 3). After optimizing the equilibrium model parameters at Sunset State 

Beach, the equilibrium shoreline model reaches an RMSE of 6.4m. For comparison, the 

optimized RMSE values for both Ocean Beach and Torrey Pines approximate 5m (Yates et al. 

2009, 2011). The optimized equilibrium model (grey line in Figure 10) shows rapid erosion at 

the onset of winter in both years, consistent with observations. The shoreline position is 

overestimated in the fall of 2017 but underestimated in the fall of 2018. The shoreline erosion 

observed in the winter of 2017-18 is underestimated, while the shoreline erosion in the winter of 

2018-19 is better represented by the equilibrium model.  
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Table 3: Shoreline modeling parameters, associated sensitivity, and model skill for each model experiment using 20 months of 

video derived shoreline positions. Grey rows indicate parameters calculated by Yates et al. (2009, 2011) and the green rows show 

parameters optimized at Sunset State Beach. The parameter 𝑏 and the initial shoreline position from the optimized equilibrium 

model parameters (Eq) was used to run the Ocean Beach, Torrey Pines, and Averaged parameters at Sunset. RMSE is reported for 

the model runs between fall 2017 and spring 2019, according to imagery mapped shorelines. Parameter sensitivity is defined as the 

range of parameter values where the RMSE varied less than 10%, calculated for optimized parameters.   

 

 𝒂 

 [𝟏𝟎𝟑 𝒎𝟐/𝒎] 

𝒃 

[𝒎𝟐] 

𝑪− 

[𝒎−𝟐 ∙ 𝒉𝒓−𝟏] 

𝑪+  

[𝒎−𝟐

∙ 𝒉𝒓−𝟏] 

𝑺𝟎 

[𝒎] 

K RMSE 

[𝒎] 

Initial 

Estimate 
-0.81  0.037 -17.72 -28.047 5.45 - 27.3 

Ocean Beach -3.6 0.064 -0.54 -0.83 0.012 - 9.1 

Torrey Pines -4.5  0.064 -1.38 -1.16 0.012 - 7.9 

Averaged -4.0 0.064 -0.96 -1.00 0.012 - 8.0 

Optimized 

(Eq) 

 

-2.2 ± 1 

 

0.064 ± 0.5  -1.02 ± 0.5  -1.02 ± 0.5 

-14.60 ≤  

0.0020  

≤ 4.02 

- 6.4 

Optimized 

(Eq & CERC) 
-2.8 ± 1 0.081 ± 0.5 -1.05 ± 0.5 -1.04 ± 0.5 

-10.12 ≤  

0.048 

≤ 3.61 

0.61 ± 0.3 5.6 
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The optimized parameters 𝑎, 𝐶±, and typical significant wave heights for erosion and 

accretion events at Ocean Beach, Torrey Pines, and Sunset State Beach were used to compute the 

timescales of erosion and accretion. The e-folding scale ([𝑎𝐶±𝐸
1

2]−1) where (𝐸 =  
𝐻𝑠

2

16
), or the 

time to shoreline adjustment, is inversely proportional to significant wave height. Following 

Yates et al. (2011), theoretical wave events of 𝐻𝑠 = 1𝑚 and 𝐻𝑠 = 4𝑚 were considered to 

represent accretional and erosional shoreline adjustment to maintain comparability between sites 

(Table 4). If 𝐻𝑠 = 4𝑚 wave conditions were sustained, it would take Sunset State Beach 19 

days, just under three weeks, to erode to an equilibrium shoreline position. On the other hand, if 

𝐻𝑠 = 1𝑚 conditions were sustained, it would take Sunset State Beach 74 days, just over two 

months, to accrete to an equilibrium shoreline position.  

 

Figure 10: Equilibrium shoreline model predictions using optimized parameters for image 

mapped shorelines from fall 2017 to spring 2019. Hourly model predictions are shown in black 

for the Equilibrium model expanded with CERC and grey for the equilibrium model alone. 

Shorelines mapped by imagery are shown by red points. Wave energy is shown in light grey 

according to the right axis.  
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Table 4: Erosion and accretion timescales. Ocean Beach and Torrey Pines values were 

calculated by Yates et al. (2011) and the ± values represent alongshore averages over 

approximately 7km of beach. Timescales at Sunset State Beach were determined in the present 

study for alongshore averaged shorelines along 600m of beach, so ± values are not reported. 

 Erosion Timescale (days) Accretion Timescale (days) 

Ocean Beach 43 ± 39 107 ± 66 

Torrey Pines 9 ± 4 52 ± 29 

Sunset State Beach 19 74 

  

  

According to observations, the shoreline was in an erosional state for approximately 18 

days and an accretional state for approximately 219 days in year 1. A wave event exceeding 

1.7m (95th percentile) occurred on January 10, 2018 but only lasted 12 hours. About 8 days later, 

another wave event exceeding 1.7m lasted for about 2 days. Compared to the 74-day accretion 

timescale, the time between wave events was only 8 days in year 1 and the shoreline was unable 

to recover prior to the second large wave event. In year 2, the shoreline was in an erosional state 

for 125 days and appeared to actively be accreting at the end of the study period. Wave events 

exceeding 1.7m occurred beginning in late November 2018 and tended to reoccur every three 

weeks until early March of 2019. Since the time between wave events was much less than the 

accretion timescale, the shoreline was unable to accrete during the prolonged stormy period. The 

shoreline was able to begin accreting much sooner with the shorter duration of wave events 

exceeding 1.7m in year 1, compared to the longer duration in year 2. 

In the second model experiment, shoreline change due to alongshore sediment transport 

was computed using the CERC equation to investigate the influence of wave direction to overall 

shoreline change at Sunset State Beach. The direction and magnitude of sediment transport is 

proportional to the alongshore radiation stress (equation 6), where positive values indicate 

northward sediment transport and negative values indicate southward sediment transport (Figure 

11a). Shoreline change occurs when the alongshore radiation stress diverges alongshore, causing 

a loss or gain of sediment from a discrete point on the beach. This happened for example, in 
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winter 2, when the alongshore radiation stress drove northward sediment transport to the north of 

Sunset State Beach and southward sediment transport to the south (Figure 11a).  

The maximum sediment transport divergence in winter 2 corresponds to the highest 

estimated rate of cumulative shoreline change due to alongshore sediment transport during the 

20-month study period (Figure 12b). The cumulative shoreline change shows the amount of 

expected shoreline change over time due to the alongshore sediment transport gradient. During 

the 20-month study period, approximately 40m of shoreline erosion was attributed to alongshore 

sediment transport processes (Figure 12b). According to the cumulative shoreline change 

calculation due to alongshore sediment transport processes, no shoreline accretion occurred 

during the study period.  

The magnitude of shoreline erosion due to alongshore sediment transport processes 

increased when offshore waves approached from the west. Waves measured at an offshore buoy 

approached from the northwest in year 1 (Figure 12c), while offshore waves approached from 

the west in year 2 (Figure 12d). A lower magnitude of shoreline erosion occurred due to 

alongshore sediment transport in winter 1, likely because wave conditions measured at the 

offshore buoy approached from the northwest and Sunset State Beach was better protected from 

incoming waves by the Santa Cruz headlands. Greater alongshore sediment transport divergence 

occurred as waves approached the shoreline in winter of year 2, possibly contributing to a greater 

magnitude of winter shoreline erosion than in the previous year.  
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Figure 11: Panel (a) shows alongshore radiation stress (Sxy) 400m north of Sunset State Beach in 

red and 400m south in blue. Sunset Sxy is colored by CDIP MOP nearshore mean wave direction 

(Dm) relative to shore-normal: red colors are waves coming from the north and driving 

southward sediment transport. Panel (b) shows cumulative cross-shore shoreline change (dS) 

predicted by the CERC equation. Sediment transport was always negative (southward) between 

September 2017 and June 2019. Offshore spectral density and direction of offshore waves are 

shown in panels (c) and (d), outside of the Monterey submarine canyon system (from National 

Data Buoy Center station 46042). The black diagonal lines indicate the shoreline orientation 

Sunset State Beach. The rings of each polar plot represent wave frequencies, that range between 

0.02 to 0.485 Hz, plotted on a log scale. Wave periods ranged between 4 to 23.5 seconds and 

spectral density ranged from 0 to 0.086 m2/Hz/deg in winter 1 and 0 to 0.095 in winter 2. Mean 

spectral density was 3.5e-3 and 4.8e-3 m2/Hz/deg in (c) and (d) respectively, while the median 

was 4.5e-4 and 8.9e-4. 
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In the final modeling experiment, the equilibrium and CERC models were combined to 

estimate overall shoreline change due to cross- and alongshore sediment transport processes. 

During the 20-month time period, the combined shoreline change model achieved an RMSE of 

5.6m, a modest improvement from the 6.4m RMSE by the equilibrium model alone. Every 

parameter changed slightly with the addition of the CERC equation, but all adjustments were 

within the ranges of parameter sensitivity (Table 3).  

In the biannual time series, the shoreline erosion magnitude was variable from year to 

year and appeared to be partially forced by the average wave energy observed during periods of 

winter erosion, rather than a short-lived wave energy maximum (Table 5). For example, the 

highest waves on record in the Monterey Bay were observed in September 2017, but the winter 

of 2015-2016 had a greater average wave energy and corresponding shoreline erosion rate. 

Contrarily, the maximum amount of shoreline erosion was observed in 2018-2019 even though a 

moderate average wave energy was observed. Annual variability of the summer shoreline 

positions from 2014 – 2019 was not captured by any of the shoreline model experiments, as 

model predictions returned to approximately the same cross-shore position each year (Figure 12). 

 

Table 5: Multivariate ENSO index (MEI.v2) for December/January of each winter are reported 

(ESRL NOAA). Red text = El Niño and blue text = La Niña winters. Significant wave height 

(𝐻𝑠 from CDIP MOP) was averaged while the shoreline was eroding. The erosion rate was 

defined as the cross-shore erosion in meters per day while the shoreline was eroding.  

 2014 – 15  2015 – 16  2016 – 17 2017 – 18 2018 – 19 

ENSO Index 0.2 1.9 -0.4 -0.8 0.1 

Average Hs [m] 0.99 1.25 1.17 0.77 1.10 

Erosion Rate [m/day] -0.12  -0.29 -0.18 -0.05 -0.34 
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Figure 12: Biannual shoreline positions and nearshore significant wave height. The top panel shows biannual surveyed MHW 

shoreline positions (red boxes) (Stevens et al. 2017) extended with shorelines mapped using imagery (red circles). Biannual 

observations were extracted from the shorelines mapped using imagery in September and March of each year, following the 

sampling schedule of Stevens et al., (2017). The temporal mean was removed: positive positions correspond to accreted 

shorelines and negative positions correspond to eroded shorelines. The bottom panel shows hourly CDIP MOP nearshore 

significant wave height (𝐻𝑠) from September 2014 to May 2019. 
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SECTION 4 

DISCUSSION 

 The present study took place in Monterey Bay, where we investigated the effects of 

headland sheltering and complex inner shelf bathymetry on shoreline change at a sandy dune-

backed beach, fronted by a submarine canyon system. The objectives of this study were twofold: 

1) to define the relationships between shoreline and sandbar positions with wave conditions at 

the study site and 2) to test the drivers of shoreline change with simple shoreline change models. 

The drivers of shoreline change at Sunset State Beach are discussed in Section 4a, including a 

discussion of the role of the sandbar to shoreline change and wave impacts to sub-seasonal, 

seasonal, and interannual shoreline change. The sources and potential impacts of uncertainty in 

the results are examined in Section 4b and recommendations for future studies and coastal 

management are summarized in Section 4c.  

 

4a. Drivers of Shoreline Change 

In the first part of the study, the relationships between shoreline and sandbar positions 

were quantified to test the ability of the sandbar to delay winter shoreline erosion. Instead, the 

results suggest that a threshold in wave energy was the primary driver of early winter shoreline 

erosion. Nearshore significant wave heights exceeded the 95th percentile during the first storm 

event in the winter of 2017-2018 and 2018-2019, causing winter shoreline erosion to begin 

(Figure 6). The 95th percentile of wave height has been used to define storm events around the 

world and appears to be an accurate definition of storm events at the present study site (Harley et 

al., 2009, Angnuureng et al., 2017, Phillips et al., 2017). To better forecast future winter 

shoreline erosion, this results of the present study suggest that knowledge of the timing of the 

first storm of the winter that would drive waves over the 95th percentile in the nearshore could be 

helpful for accurate predictions of the timing of winter beach erosion. 

High energy wave conditions were expected to drive rapid shoreline erosion. The results 

of this study suggest that a higher average winter wave energy drove more shoreline erosion than 

a short-lived energy maximum. The highest winter waves on record were recorded in 2017 
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offshore of the Monterey Bay, but did not drive enhanced shoreline erosion because the high 

wave event was much shorter in duration than the erosion timescale at Sunset State Beach (Table 

4). The magnitude of shoreline erosion each year appeared to depend not only on average wave 

energy, but also the extent of shoreline recovery each summer. The largest magnitude of erosion 

was observed when the shoreline reached the maximum seaward position, observed in the winter 

of 2015-2016 and 2018-2019 (Table 5). The shoreline was also accreted in 2014-15, but the 

average wave energy was low so did not result in a high magnitude of erosion (Figure 11). 

The results of this study further suggest that the sandbar aids summer shoreline accretion, 

rather than act to delay winter erosion. The shoreline eroded rapidly with high waves and 

accreted gradually with low waves, while the sandbar migrated both offshore and onshore 

gradually (Figure 9). These results agree with a study by Angnuureng et al. (2017), which 

suggests that shoreline recovery is primarily modulated by sandbar position according to a 

multiple linear regression. When wave conditions calm at the end of winter, the sandbar appears 

to become a source of sediment to replenish the eroded shoreline. This is true near Capitola, 

under 5km north of Seacliff State Beach, where the City of Capitola installs a nearshore sandbar 

in the early summer months to aid shoreline accretion (USACE et al., 2013). Further studies are 

required to conclude whether the presence of a sandbar delays winter erosion, but it is possible 

that the shoreline would have eroded sooner than was observed if the sandbar were not present at 

Sunset State Beach. 

In the second part of the study, the results of the shoreline modeling experiments suggest 

that wave energy was the dominant driver of shoreline change at Sunset State Beach (Figures 10 

& 11). Offshore waves that approached from the west in winter 2018-2019 increased the 

magnitude of winter shoreline erosion at Sunset State Beach, because they bypassed the Santa 

Cruz headlands and exposed the Monterey Bay to wave attack (Figure 12d). Though shoreline 

change due to alongshore sediment transport increased when offshore waves approached from 

the west, the RMSE of the combined equilibrium and CERC models was only modestly 

improved compared to the equilibrium shoreline change model alone (Table 3). We conclude 

that the influence of alongshore sediment transport is not a significant driver of shoreline change 

at Sunset State Beach. However, if this study were conducted in a different location within the 

Monterey Bay, we could have seen different results (Figure 13).  
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The alongshore wave energy gradient in the northern Monterey Bay becomes more 

pronounced in the winter, suggesting higher magnitudes of alongshore sediment transport north 

of latitude 36.9 and south of latitude 36.86 (Figure 13). CDIP MOP estimates of alongshore 

radiation stress, a proxy for sediment transport, suggest that shoreline change due to alongshore 

sediment transport may increase in the winter depending on the alongshore stretch of beach 

considered in calculations. Error in shoreline orientation and nearshore wave estimates are 

associated with CDIP MOP, so these estimates should be validated for accuracy (O’Reilly et al., 

2016). Previous studies in the northern Monterey Bay have suggested erosion hotspots, which 

are attributed to the presence and migration of rip channels in the nearshore (Quan et al., 2013; 

Orzech et al., 2010). Our results suggest that erosion hotspots in the northern Monterey Bay 

could also be driven by wave refraction by the Monterey submarine canyon system. 
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Figure 13: Averaged significant wave height (Hs) and alongshore radiation stress (Sxy) in the 

northern Monterey Bay. Winter (Nov, Dec, Jan) averages are shown in red and summer (Jul, 

Aug, Sep) averages in blue. The North and South horizontal lines denote the alongshore stretch 

of beach used to calculate shoreline change due to alongshore sediment transport in the present 

study.  
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The accuracy of the shoreline change models used in this study was limited by the annual 

variability in summer shoreline position (Figure 11). This contributes to the disparity in model 

skill between Sunset State Beach (RMSE = 6.4m) and the sites treated by Yates et al. (2009, 

2011) (RMSE ~5m), because the sites treated by Yates et al. generally returned to the same 

cross-shore position each summer. The shoreline at Sunset State Beach appeared to take several   

years to recover after a highly erosive winter, agreeing with the findings of Dingler & Reiss 

(2002). The magnitude of winter shoreline erosion corresponded somewhat with interannual 

variability in average winter wave energy, associated with the El Niño Southern Oscillation, 

except during the winter 2018-2019 (Table 5).  

During the winter of 2018-2019, offshore waves approached from the west and exposed 

the northern Monterey Bay to high energy wave conditions. Previous studies have shown that El 

Niño events drive high cliff and shoreline erosion in the Monterey Bay and west coast of the US 

(Barnard et al., 2017; Moore & Griggs, 2002; Quan et al., 2013; Thornton et al., 2006). North of 

the Sunset State Beach are sea cliffs, which if eroded during periods of high wave energy, could 

provide temporally variable pulses of sediment to the beach and nearshore. Such pulses of 

sediment could explain the annual variability in summer shoreline position, depending on the 

rate of alongshore sediment transport. In order to fully understand the influence of temporally 

variable sediment supply, the rate of sediment transport from the north of Sunset State Beach as 

well as the volume of sediment transported should be quantified.  

The highest magnitudes of winter erosion at Sunset State Beach have historically 

occurred during El Niño years, when storm tracks tend to shift southward in the Pacific Ocean 

and expose the northern Monterey Bay to larger waves (Storlazzi & Griggs, 2000). The results of 

the present study show that high magnitudes of shoreline erosion can also occur during non- El 

Niño periods (Figure 12d). The high magnitude of shoreline erosion in 2015-2016 occurred 

during an El Niño period, but the high magnitude of shoreline erosion in 2018-2019, was during 

a non- El Niño period (Table 5). We suggest that rather than relying on predictions of an El Niño 

index to predict shoreline change, information regarding the direction of storm tracks could more 

accurately inform shoreline change predictions.  
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4b. Sources and Potential Impacts of Uncertainty  

Video monitoring is subject to several sources of uncertainty that are discussed here but 

are not expected to have significantly altered the results of our study. Uncertainty associated with 

our results could have resulted from wave setup, the use of distant water levels in image 

rectification, and changes in still water level.  

Wave setup occurs when momentum is transferred from wind to waves and then to shore 

(FEMA, 2005). Setup can cause water levels to be higher as they approach the shore depending 

on the level of momentum transfer, which increases with larger waves and steeper surf zones. 

Wave setup could act to displace the shoreline position landward, more than otherwise expected 

when only considering water levels outside of the surf zone, as we in the present study. Including 

estimates of nearshore setup to shoreline positions would likely result in shoreline position 

uncertainties upwards of 12m during high energy wave conditions (Angnuureng et al., 2017). 

Quantifying the amount of setup could help to identify a more accurate image rectification 

elevation to reduce uncertainty in morphologic mapping. Setup corrections were not applied in 

this study due to the lack of publicly available bathymetric data during the 20-month study 

period, at the time this study was conducted. 

Further, the use of distant water levels during image rectification at Sunset State Beach 

may have added uncertainty to the mapped shoreline and sandbar positions. The maximum water 

level residual observed between the Monterey Tide Gauge and Seacliff State Beach, 10cm 

(Appendix 1), corresponds to a <1m cross-shore error according to beach profile surveyed in 

September 2017. This could have acted to displace the MHW shoreline at seaward by <1m at 

Sunset State Beach in August and October 2019, which contributed minimally to the overall 

uncertainty of shoreline positions. This displacement is expected to be higher in winter months, 

so further analysis of water level residuals during a variety of atmospheric and oceanographic 

conditions in the Monterey Bay will be necessary to fully quantify the uncertainty in shoreline 

and sandbar positions derived from imagery rectified to distant water levels. 

Long-term sea level rise during the study period was minimal in the Monterey Bay. The 

estimated sea level rise trend calculated at the Monterey Tide Gauge is approximately 1.57 

millimeters per year, summing to a five-year total of 7.85mm (NOAA Tides and Currents).  

However, the interannual variability in sea level due to changes in ocean temperature, periods of 
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upwelling vs. downwelling, atmospheric pressure, among other oceanographic properties, may 

be greater than the long-term trend. The uncertainty due to interannually variable sea level rise is 

unknown in terms of the present study but is expected to be on the order of centimeters 

according to Chelton & Davis (1982). Centimeters of variability in sea level will not have 

affected the shoreline mapping conducted in the present study, since 10cm results in a <1m 

cross-shore error. 

 

4c. Recommendations for Future Studies 

With continued work, Argus monitoring will improve our ability to forecast coastal 

change and has the potential to provide near-real time updates of coastal conditions, a valuable 

resource for coastal managers and communities. With improved projections of coastal change, 

communities can become proactive rather than reactive to the future of coastal change and 

increasing their resilience into the future of enhanced coastal hazards. Two worthwhile next steps 

are presented here. 

The nearly 20-month time series of shoreline and sandbar positions highlights the utility 

of Argus monitoring stations. Such monitoring should be continued, but steps can be taken to 

reduce the manual effort in mapping shoreline and sandbar positions in order to provide near 

real-time updates of coastal morphology, in turn improving operational projections of coastal 

change. This has been accomplished in Australia, at the University of New South Wales’ Water 

Research Laboratory, where researchers have automated the CCD shoreline mapping method and 

provide weekly updates of shoreline position to various interested coastal management groups. 

In Australia, the water is blue more of the time, where in the Monterey Bay, foggy and cloudy 

days inhibit this shoreline mapping method. Further exploration of the utility of different color 

channels should be explored to determine a more reliable CCD shoreline mapping method 

specific to the Monterey Bay and other grey areas around the world. It should also be possible to 

implement an automated sandbar mapping method, exploiting differences in pixel intensity in the 

nearshore. Sandbar mapping was done manually in this study, but some combination of image 

processing and thresholding would likely move us toward an automated workflow.  

The performance of the equilibrium shoreline change model was likely influenced by 

time variable alongshore sediment flux. By quantifying alongshore sediment transport using 
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video imagery at Sunset State Beach, the contribution of alongshore processes could become 

clearer. This could be done using computer vision methods to track sequential migration of rip 

channels and other nearshore features at Sunset State Beach, suggesting a proxy for the 

magnitude of alongshore sediment transport in the style of Orzech et al. (2010). These estimates 

could then be compared to bulk alongshore sediment transport estimates using the Coastal 

Engineering and Research Center (CERC) formula to verify the results of this study (USACE 

1984).  

 

4d. Recommendations for Coastal Managers

The findings of this study inform resource management activities within the domain of 

NOAA’s Monterey Bay National Marine Sanctuary (MBNMS). With sea level rise, local and 

regional management groups have formed to address the impacts of climate change to coastal 

communities (USACE et al., 2013). Two topics of current interest to coastal management are 

provided here, as well as how this study can inform their undertaking.  

 First, the last remaining sand mining plant in the U.S. is located in the southern Monterey 

Bay and has contributed to enhanced shoreline erosion in the area (Thornton et al., 2006). Due to 

public nuisance, the Monterey Bay community has voted for its closure in December of 2020 

(California Coastal Commission, 2017). There is much interest in the region to monitor changes 

that are expected to occur following the sand plant’s closure. Argus monitoring would provide an 

efficient means of monitoring coastal change around the sand mining plant to improve our 

understanding of the impact of coastal sand mining to downcoast communities. Given the strong 

community interest, Argus monitoring has the potential to provide rapid updates to community 

members, which would be difficult to provide using traditional survey methods that are time 

intensive.  

 Second, the Monterey community has been considering the installation of a coastal water 

desalination plant to help alleviate water shortages in the area. This involves the installation of a 

nearshore intake pipe to draw seawater from near the coast into residential areas. This study 

reveals rapid shoreline migration that occurs up to 350 meters away from the dune crest. 

Consideration to the placement of the desalination intake pipe should be given to the cross-shore 
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range of sandbar migration, so that the intake pipe does not get obstructed by rapidly moving 

sand in the nearshore zone.   
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SECTION 5 

CONCLUSIONS 

The present study took place in Monterey Bay, where we investigated the relationships 

between shoreline and sandbar positions with wave conditions, and the influence of cross-and 

alongshore sediment transport to shoreline change. The effects of headland sheltering and 

complex inner shelf bathymetry on shoreline change at a sandy dune-backed beach, fronted by a 

submarine canyon system were investigated using video monitoring, in-situ surveys, and simple 

shoreline change models.  

We observed that winter shoreline erosion occurred once nearshore significant wave 

heights exceeded 1.7m, the 95th percentile. Rather than delay winter shoreline erosion, the 

sandbar aided in shoreline recovery as it migrated onshore gradually, corresponding with gradual 

shoreline accretion. The shoreline eroded rapidly during high energy wave conditions and 

accreted gradually with low energy wave conditions, exhibiting an equilibrium shoreline 

response. The duration of high energy wave events or storms in the winter corresponded with 

higher shoreline erosion magnitudes, where higher average winter wave energy drove higher 

magnitudes of shoreline erosion.  

 A simple equilibrium model represented shoreline change at Sunset State Beach. Model 

predictions of shoreline position were not significantly improved by the addition of an 

alongshore sediment transport term. We conclude that the primary driver of shoreline change at 

the study site is wave energy, which was observed to increase when the offshore waves 

approached from the west. The southward shift in wave direction resulted in reduced sheltering 

by the Santa Cruz headlands, exposing the northern Monterey Bay to increased wave attack. 

Shoreline change model performance was degraded by annual variability in the summertime 

shoreline position, which may be influenced by temporally variable alongshore sediment supply. 

We suggest that rather than relying on predictions of an El Niño index to predict shoreline 

change, information regarding the direction of storm tracks could more accurately inform 

shoreline change predictions.  
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APPENDIX 1 

WATER LEVELS IN MONTEREY BAY 

A radar water level sensor was installed at Seacliff State Beach, approximately 10km 

north of the Sunset State Beach (Figure 14), to quantify uncertainty in shoreline and sandbar 

positions extracted from imagery rectified to distant datum elevations. The Nile 502 sensor 

collected water level measurements once per second and reported the 6-minute averaged water 

level during all hours of the day. It was hypothesized that local wind driven setup from the south 

to north Monterey Bay, or vice versa, may drive variations in water level. South to north wave 

setup could cause higher water levels in the northern Monterey Bay than those observed in the 

south with southerly winds, for example. Previous studies similarly lacking a nearby tide gauge 

have used tide models or pressure sensors in the nearshore to estimate local water levels 

(Angnuureng et al., 2017; Stokes et al., 2015). Considering the bathymetric variability, semi-

enclosed geography, and lack of previous measurements of water levels in the northern Monterey 

Bay, we chose to install a radar water level sensor nearby Sunset State Beach.  

Tide gauges around the U.S. are historically in-water acoustic sensors, upkept by the 

National Oceanic and Atmospheric Administration (NOAA). Interestingly, NOAA is moving 

toward using radar water level sensors in their tide monitoring network across the U.S. to reduce 

servicing effort and cost, so has begun testing radar water level sensors like the one installed at 

Seacliff State Beach against the historic acoustic sensors. According to tests between similar 

models of acoustic and radar sensors in semi-enclosed coastal regions, NOAA determined that 6-

minute measurements collected concurrently were comparable within 1cm, encouraging the use 

of a radar sensor in the present study (Heitsenrether & Davis, 2011). 

The sensor was installed at Seacliff State Beach in August 2019, outside of the surf zone, 

to maintain comparability to the Monterey tide gauge. The pier at Seacliff was the closest 

structure extending outside of the nearshore to Sunset State Beach at the time of this study. To 

ensure that the sensors at Seacliff and Monterey were referenced to the same vertical datum and 

water levels were directly comparable, both sensors were surveyed concurrently using a static 

GPS for four hours following the Seacliff sensor installation in August 2019. Preliminary results 

comparing water levels between Seacliff and Monterey suggest diurnal fluctuations in water 

level residuals, as well as more sustained residuals during the week of August 22 and in late 
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September 2019 (Figure 15). Further analysis of water level residuals will be necessary to fully 

quantify error; it is expected that residuals between the north and south will diverge the most 

during the winter when local winds are high.  

 

 

Figure 14: Radar water level sensor at Seacliff State Beach.  
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Figure 15: Comparison between total water levels at Seacliff State Beach and the Monterey Wharf. Water levels in the top panel are 

georeferenced to NAVD88; a 0m water level corresponds to the elevation of NAVD88. Positive residuals in the bottom panel indicate 

times when the Monterey tide gauge reported higher water levels than those in Seacliff. GPS surveying and data processing was 

performed by Joshua Logan of USGS. 
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