
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Theses Electronic Theses and Dissertations

2014

Using Capec Attack Patterns For Developing Abuse Cases Using Capec Attack Patterns For Developing Abuse Cases

Emmanuel Borkor Nuakoh
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/theses

Recommended Citation Recommended Citation
Nuakoh, Emmanuel Borkor, "Using Capec Attack Patterns For Developing Abuse Cases" (2014). Theses.
245.
https://digital.library.ncat.edu/theses/245

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by North Carolina Agricultural and Technical State University: NC A&T SU Bluford Library's Aggie Digital Collections and Scholarship

https://core.ac.uk/display/327255788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/245?utm_source=digital.library.ncat.edu%2Ftheses%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

Using CAPEC Attack Patterns for Developing Abuse Cases

Emmanuel Borkor Nuakoh

North Carolina A&T State University

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department: Computer Science

Major: Computer Science

Major Professor: Dr. Dorothy Xiaohong Yuan

Greensboro, North Carolina

2014

ii

The Graduate School

North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Emmanuel Borkor Nuakoh

has met the thesis requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2014

Approved by:

Dr. Dorothy Xiaohong Yuan

Major Professor

Dr. Dorothy Xiaohong Yuan

Committee Member

Dr. Anna Huiming Yu

Committee Member

Dr. Sanjiv Sarin

Dean, The Graduate School

Dr. Gerry Vernon Dozier

Department Chair

Dr. Justin Zhijun Zhan

Committee Member

iii

© Copyright by

Emmanuel Borkor Nuakoh

2014

iv

Biographical Sketch

 Emmanuel Borkor Nuakoh obtained his Bachelor of Science Geological Engineering

degree from the University of Mines and Technology, Tarkwa, Ghana. He worked at Noble Gold

Resources Ltd., Bibiani, Ghana, from October 2011 to February 2012 as an Exploration

Geologist. He then went on to work as a Consulting Geologist at Avocet Mining Sarl, Inata,

Burkina Faso and later at Taruga Gold, Dolbel, Niger.

 In January 2013, Mr. Nuakoh enrolled at the North Carolina A & T State University,

Greensboro, USA, to pursue a Master of Science degree in Computer Science. He has played

roles as both Teaching Assistant and Research Assistant. His research in Information Assurance

has led to the publication of two conference papers and is focusing on publishing a journal

article. Secure software engineering and software security are some of his current research

interests.

v

Dedication

This work is dedicated to my mom Mrs. Comfort Nkrumah for her help and guidance

through life. My dad, Mr. Philip Nuakoh, for his support and encouragement. My siblings, Kyei,

Ebenezer, Kwabena, Evelyn and Serwaa for their encouragements and moral support. Love you

guys. God bless you!

vi

Acknowledgments

 I would like to first and foremost acknowledge God for His protection and guidance in

my life. I appreciate the support of my family, my siblings, for pushing me this far, my dad, for

providing financial assistance, and my mom, for always teaching me never to give up. A special

thank you also goes to my professor, Dr. Dorothy Yuan for her guidance, criticisms and financial

support.to make my academic journey a success. My sincere gratitude goes to my committee

members, Dr. Anna Huiming Yu and Dr. Justin Zhan whose efforts and advice have helped

towards the completion of this thesis. I appreciate all the faculty of the department and the staff

of the university for helping nurture my whole well-being not just my education-wise, but an

individual as a whole, especially, Dr. Kevin Bryant, Pr. Shearon Brown, Dr. Torres, Dr. Jinsheng

Xu and Dr. Kenneth Williams of the computer science department, for teaching me and all the

professors that did not teach me, Ms. Rosemary Williams for her warm smiles and tremendous

work in information dissemination, Ms. Loreatha Graves and the staff of ISSO, Ms. Anita

Sanders and the staff of the School of Graduate Studies, not forgetting Mr. Zeb Talley and the

staff of the Office of Career Services for all the careering counselling. Last but not the least, a

very special thank you goes to Dr. Gerry Dozier for making pursuit of my master’s degree a

successful run. Without your efforts, I wouldn’t be where I am.

vii

Table of Contents

List of Figures .. ix

List of Tables .. x

Abstract ... 1

CHAPTER 1 Introduction... 2

CHAPTER 2 Literature Review ... 4

2.1 Attack Patterns ... 4

2.2 Use and Abuse/Misuse Cases .. 6

2.3 Microsoft SDL Threat Modelling .. 7

2.4 A Tool for Retrieving Attack Patterns (TrAP) .. 10

CHAPTER 3 The Methodology for Using CAPEC Attack Patterns to Develop Abuse Cases 13

3.1 Methodology of Developing Abuse Cases Using CAPEC Attack Patterns 13

3.2 Illustrating the Methodology with an Example ... 16

3.2.1 Use Cases for Doctor ... 16

3.2.2 Abuse Cases for Doctor ... 17

3.2.3 Threat Modelling ... 17

3.2.4 Generate Keywords ... 20

3.2.5 Searching Relevant Attack Patterns using TrAP (Tool for Retrieving Attack

Patterns) .. 20

3.2.6 Selecting Attack Patterns for extending an Abuse Case 22

3.2.7 Extending Abuse Cases using selected attack patterns ... 23

CHAPTER 4 Developing Abuse Cases for a Hospital Information System 28

4.1 Using SDL Threat Modelling to Generate Keywords for Selecting Attack Patterns 29

4.2 Searching Attack Patterns using Keywords ... 30

4.3 Selecting Attack Patterns for Extending the Brainstormed Abuse Cases 32

viii

4.4 Extending Abuse Cases with selected Attack Patterns .. 33

4.4.1 Extending “Intercept and Analyze Data” Abuse Case with the selected Attack

Patterns .. 33

4.4.1.1 Abuse Case: “Using Man-in-the-Middle Attack to Intercept and Analyze

Data” .. 34

4.4.1.2 Abuse Case: “Intercept and Analyze HTTP Cookies” 35

4.4.2 Extending “Impersonate Doctor” Abuse Case with the selected Attack Patterns . 37

4.4.2.1 Abuse Case: “Spoof Doctor through Session Exploitation” 38

4.4.2.2 Abuse Case: “Spoof Doctor through Password Brute Forcing” 39

4.4.2.3 Abuse Case: “Spoof Doctor through Phishing” .. 40

4.4.3 Extending “Change Doctor’s Findings” Abuse Case with the selected Attack

Patterns .. 42

4.4.3.1 Abuse Case: “Change Findings Using SQL Injection” 42

4.4.3.2 Abuse Case: “Change Findings through Path Traversal” 45

4.4.3.3 Abuse Case: “Change Findings through File Inclusion” 47

4.5 Finding New Abuse Cases ... 50

CHAPTER 5 Conclusion and Future Research .. 52

References ... 55

Appendix ... 58

ix

List of Figures

Figure 1. An Example Data Flow Diagram (DFD)... 8

Figure 2. Interface of TrAP Showing Attack Patterns Retrieved under Spoofing Threat 11

Figure 3. Using Keyword “session” to Retrieve Attack Patterns in TrAP 12

Figure 4. The Methodology for Developing Abuse Cases Using Attack Patterns 14

Figure 5. Doctor use & misuse case model in HIS ... 18

Figure 6. DFD for HIS .. 18

Figure 7. MSDL Interface Showing Threats and Questions Generated By Tool for Each Threat 19

Figure 8. Closer Look at Questions Generated by MSDL Threat Modeling Tool for Spoofing

Threat of the Findings Process. ... 19

Figure 9. Child Abuse Cases revealed after Extending Brainstormed Ones 50

Figure 10. New Abuse Cases Discovered ... 51

x

List of Tables

Table 1. Threats Affecting Elements (Hernan et al, 2006) ... 10

Table 2. List of Selected Attack Patterns for Spoofing Findings Process using Keywords

generated by SDL Tool ... 20

Table 3. Generated Keywords from Questions provided by SDL Tool for each Element and

Threats... 29

Table 4. Objective Mapping of Applicable Attack Patterns from List of Retrieved Attack Patterns

to Elements and Threats. ... 31

Table 5. Mapping Attack Patterns and Abuse Cases to Applicable Respective Elements 32

1

Abstract

 To engineer secure software, it is imperative to understand attackers’ perspectives and

approaches. This information has been captured by attack patterns. The Common Attack Patterns

Enumeration Classification (CAPEC) repository hosts over 450 attack patterns that contain

information about how attacks have been launched against software. Researches have indicated

that attack patterns can be utilized for developing secure software; however, there exists no

systematic methodology to address this concern. This research proposes a methodology for

utilizing CAPEC attack patterns for developing abuse cases at the requirements stage of the

secure software development lifecycle (SDLC). In previous research, a tool for retrieving attack

patterns (TrAP) was developed to retrieve CAPEC attack patterns according to Microsoft

STRIDE threat categories. This tool also features a search function using keywords. The

proposed methodology starts with a set of initial abuse cases developed through brainstorming.

Microsoft SDL threat modelling tool is then used to identify and rank possible security threats in

the system. The SDL tool generates a series of questions for each threat and these questions are

used to extract keywords that serve as input to the TrAP tool to retrieve attack patterns relevant

to the abuse cases. Keywords can also be system prerequisites or any technology being

implemented in the system. From the list of retrieved attack patterns, the most relevant attack

patterns are selected and used to extend the initial abuse cases. New abuse cases can also be

discovered through this process.

2

CHAPTER 1

Introduction

 To improve the security of computer systems, information, and the cyber space, it is

critical to engineer more secure software. Research has shown that the majority of the security

defects are due to known software defects. To develop secure and reliable software, software

developers must anticipate abnormal behavior. Therefore, software developers need to have the

mindset of an attacker (McGraw, 2006). Attack patterns are valuable resources to help software

developers to think like an attacker. Attack patterns capture attackers’ perspectives and

approaches used by attackers to exploit software. They are valuable resources to help software

developers to think like an attacker and have the potential to be used in each phase of the secure

software development life cycle. However, systematic processes or methods for utilizing existing

attack pattern resources for secure software development are needed.

 The Common Attack Pattern Enumeration and Classification (CAPEC) initiative

sponsored by the Department of Homeland Security and maintained by Cigital hosts over 450

attack patterns along with a comprehensive schema and classification taxonomy. CAPEC

however, is not easy to use, since users have to go through the whole list to get the attack pattern

they are looking for. This does not make using CAPEC for software development attractive to

developers. In our quest to improve the usability of the CAPEC library and make it more user

friendly, we proposed a methodology to utilize CAPEC to develop abuse cases.

 This research describes our methodology of utilizing attack patterns for extending abuse

cases. Pauli & Xu (2005) described a use/misuse case model for Hospital Information System

(HIS) in their paper. We would extend their misuse cases using our approach. The most relevant

3

attack patterns retrieved by the tool for retrieving CAPEC attack patterns would be further

refined and used for extending the abuse cases.

 This methodology is utilized to develop abuse cases for a Hospital Information System

(HIS) described in (Pauli & Xu, 2005). Our case study demonstrates that the proposed

methodology could be used to select attack patterns to extend a set of initial abuse cases

generated through brainstorming and discover new abuse cases.

 The rest of the thesis is organized as follows: Chapter 2 provides a literature review on

attack patterns and use and abuse cases, and also introduces Microsoft SDL threat modelling tool

and the tool for retrieving attack patterns (TrAP). Chapter 3 discusses the proposed methodology

for utilizing attack patterns to develop abuse cases. Chapter 4 describes how our proposed

methodology is used for developing abuse cases for HIS. Lastly, chapter 5 concludes the thesis

and raises concern for future work.

4

CHAPTER 2

Literature Review

 This chapter introduces the concept of attack patterns and how they are applied to secure

software development from various researchers point of view. The chapter also briefly

introduces the concept of use and abuse cases. Microsoft SDL threat modelling tool and the tool

for retrieving attack patterns (TrAP) are also introduced in this chapter.

2.1 Attack Patterns

 Attack patterns generalize attacks employed by attackers on software systems. Though a

relatively new concept, attack patterns has received significant research attention in recent times

(Moore, Ellison, & Linger, 2001). Sethi and Barnum (2006) also illustrated that attack patterns

have the potential to be used in each phase of the SDLC, including requirement gathering,

architecture and design, implementation and coding, as well as testing. A number of researches

that have focused on attack patterns and how they are related to this work are discussed below.

 Hoglund and McGraw (2004) described 49 attack patterns in their book “Exploiting

Software: How to Break Code”. Sponsored by the Department of Homeland Security, the

ongoing Common Attack Pattern Enumeration and Classification (CAPEC) initiative collects a

set of publicly available core attack patterns along with a comprehensive schema and

classification taxonomy. Currently CAPEC includes over 450 attack patterns contributed by the

community.

 Sethi and Barnum (2006) illustrated using examples how attack patterns can be utilized in

each phase of the SDLC, a systematic process or method of utilizing existing attack patterns to

develop secure software is lacking. There is little research on how to use attack patterns such as

5

CAPEC in the secure software development life cycle. Towards utilizing CAPEC information

for secure software development.

 Pauli and Engebretson (2008a) proposed a prototype tool that retrieves related CAPEC

attack patterns based on system prerequisites user inputs to the tool. The attack patterns and

mitigation strategies for the attack patterns presented to the user can be used during system

design and implementation. The prerequisites include hardware, operating system, server

configuration and programming language.

 Gegick and Williams (2005) constructed 53 attack patterns that can be used for

identifying security vulnerabilities during software design. These attack patterns were developed

based on four existing vulnerability databases. These attack patterns were represented using

regular expressions to encapsulate the steps that can be used to attack the software application.

These attack patterns were used to identify vulnerabilities via matching a sequence of elements

in a system design that permits the sequence of events in the attack pattern to occur. They used

attack patterns to identify security vulnerabilities, we map CAPEC attack patterns to STRIDE

(Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of

Privilege) to develop abuse cases.

 Pauli and Engebretson (2008b) developed an approach for teaching attack patterns based

on a hierarchy to present information logically. This hierarchy includes the following levels of

abstraction from highest to lowest: vulnerability, attack pattern, exploit, bug and flaw, activation

zone, injection vector, payload, and reward. Students were asked to map CAPEC Release 1 to

the abstraction levels of this hierarchy. The objective of this work is to assist students to learn

and retain information on attack patterns through the mapping process. They mapped attack

6

patterns to abstraction level for teaching, we mapped attack patterns to STRIDE to retrieve

relevant attack patterns from CAPEC to develop abuse case.

 Barnum and Sethi (2007) give a general overview of the structure and content of attack

patterns and explain how they can be applied in each stage of the secure software development

lifecycle. They explained in detail the concept of CAPEC attack patterns with examples to show

their usage as well.

 Wiesauer and Sametinger (2009) developed a taxonomy for security design patterns

using attack patterns. In their taxonomy, they described a criteria for selecting attack patterns

based on security requirements. The purpose of the taxonomy was to help users see relevant

security design patterns when selecting attack patterns. Their work assigned security design

patterns to CAPEC attack patterns and employs the STRIDE model to group attacks into

different categories to classify security patterns, while our work maps CAPEC attack patterns to

STRIDE for developing abuse cases.

 McGraw (2006) mentioned in his book that attack patterns can be used for developing

abuse cases, however, he did not discuss an approach to select and use relevant attack patterns

for developing abuse cases. Our work introduces an approach for selecting and utilizing CAPEC

attack patterns for developing abuse cases.

2.2 Use and Abuse/Misuse Cases

 Use case is a functional description of how a user might interact with a system.

McDermott & Fox (1999) classifies it as an abstract episode of interaction between a system and

its environment. Use cases are represented by UML diagrams and their descriptions. It tells what

the system is intended to be used for, thereby leveraging functional requirements. They describe

the system’s behavior under normal expected use conditions. However, when the system is used

7

in an inappropriate way (abused), we need to have an idea of how the system may behave. This

introduces the concept of abuse/misuse cases.

 Misuse case is a use case from an attacker perspective with the intent to harm the system

(Alexander, 2003). A misuse case might harm an actor of the system, a stakeholder or the system

itself (McDermott, & Fox, 1999). Misuse cases threaten use cases, it is considered as the

opposite form of a use case. Abuse cases serve as a support for developers and elicits security

requirements. Countermeasures are developed to mitigate misuse cases in the form of security

use cases (Tndel, et al. 2010) Some authors maintain a stand that abuse cases and misuse cases

are different. In this research however, abuse cases and misuse cases will be used

interchangeably and carry the same meaning.

 Hope, McGraw & Anton (2004) stated informed brainstorming as the simplest, most

practical method for creating abuse cases.

 McGraw (2006) discussed a process for developing abuse cases. It takes into account, a

set of requirements and standard use cases, and a list of attack patterns. This research focuses on

how to find relevant attack patterns from CAPEC, and how to use these attack patterns to extend

abuse cases and discover new abuse cases.

2.3 Microsoft SDL Threat Modelling

 Software architectural risk analysis refers to the activity of identifying and ranking risks

applied to architecture and design-level artifacts. One risk analysis methodology is Microsoft’s

threat modeling (Meier et al. 2003; Hernan, et al. 2006). It is the process of hypothesizing

potential security threats, evaluating the threats, ranking the threats and suggesting mitigation

strategies. It includes the following steps: (1) Identify assets; (2) Create an architecture overview;

(3) Decompose the application; (4) Identify, document, and rate the threats. Threats are classified

8

into six categories: Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,

and Elevation of privilege (STRIDE). Threats are ranked based on their Damage potential,

Reproducibility, Exploitability, Affected users, and Discoverability (DREAD) (Meier et al.

2003; Hernan, et al. 2006).

 Microsoft Security Development Lifecycle Threat Modeling Tool 3.1.8 is a free tool for

software developers and architects to identify possible security threats and mitigate potential

security risks. It is based on the Microsoft STRIDE framework. The tool requires architectural

information to develop data flow diagrams (DFD) and has the ability to analyze model, describe

environment and generate several reports. The steps of using Microsoft SDL threat modeling tool

3.1.8 are described below:

(1) Draw data flow diagram. The software system needs to first be decomposed into relevant

elements. Each element is analyzed for susceptibility to the threats. Data flow diagrams (DFDs)

are used to represent the decomposition of the system. Figure 1 shows an example DFD diagram

that the MSDL tool presents to users when the tool is ran. The DFDs comprises of the following

elements in relation to the elements of a system: data flows, data stores, processes, external

interactors, and trust boundaries (Hernan, et al. 2006).

User

Commands

Responses

Configuration

Results

My Process Data

Figure 1. An Example Data Flow Diagram (DFD)

 Data flows are represented by arrows and connect interactors, processes and data stores to

each other to show how data flows between the elements of the system. The data flows in figure

1 are “Commands”, “Responses”, “Configuration” and “Results”.

9

 Data stores represent storage repositories where data is stored in the system. They are

represented by two parallel lines with the name of the data store in-between the lines. In figure 1,

the data store is “Data”.

 Processes are represented by circles in the DFD diagram. They represent some kind of

data processing or system configurations are done. The process in figure 1 is My Process. It takes

commands from the User and saves configuration to the Data.

 External interactors are human users or non-human actors such as computers. They are

outside the system and interact in various ways with the system. They might have to cross certain

boundaries to interact with the system. They are represented by rectangular box. User is the

external interactor in figure 1. The commands coming from User cross a trust boundary

represented by a red dotted arc.

 The system may comprise of one or more of the following boundaries: trust, machine,

process or other boundaries. These boundaries represent authentication and/or authorization and

may restrict access to certain areas in the system without authentication or certain resources

without authorization or both.

(2) Analyze model. This step of the Microsoft Threat Modeling process presents all the threat

types associated with all the elements of the DFD model to the developer. The elements refer to

the data flows, the processes, data store and interactors. For each element and for each threat

type to the element, the developer needs to consider a series of questions presented by the tool

and describe the threat impact and how to mitigate the threat. Table 1 illustrates a summary of

the threats that affect the various elements of the DFD.

10

Table 1

Threats Affecting Elements (Hernan et al, 2006)

Element Spoofing Tampering Repudiation

Information

Disclosure

Denial of

Service

Elevation of

Privilege

Data Flows (DF) X X X

Data Stores (DS) X X X

Processes (P) X X X X X X

Interactors (I) X X

(3) Describe environment. During this step, the developers note elements that the system is

linked to, especially third-party code, as well as assumptions made by the developers. The

developers also describe external security notes and document header information.

(4) Generate reports. This step generates several reports for the developer, such as “Bug Report”,

“Recommended Fuzzing”, “Analysis Report”, “Threat Model Report”, etc.

2.4 A Tool for Retrieving Attack Patterns (TrAP)

 A tool for categorizing attack patterns based on Microsoft STRIDE framework was

developed by mapping attack patterns to STRIDE categories. Various textual values of

properties such as Severity, Completeness, Attacker Skills, Likelihood of Exploit and etc. were

converted to numerical values to calculate a metric for each attack pattern. The textual values

were in the form of high to low or very high to very low rankings. The conversions were as

follows: high in a textual context was converted to 3 in the numerical context, medium to 2, and

low to 1. Similarly, very high was converted to 5 and very low to 1. The tool calculates a metric

from these values and uses it to rank each attack pattern according to each particular STRIDE

11

category. This ranking puts the attack patterns most relevant to a particular STRIDE category at

the top of the list of retrieved patterns.

 TrAP is implemented in PHP and MySQL and is web-based for easy access (Figure 2

shows the interface of TrAP displaying retrieved attack patterns under the spoofing category).

TrAP is currently running on a localhost server and would be deployed soon to the internet. The

retrieved attack patterns are ranked from most relevant to least relevant under each STRIDE

category (Yuan et al., 2014).

Figure 2. Interface of TrAP Showing Attack Patterns Retrieved under Spoofing Threat

 TrAP also features a keyword search that allows easy access to attack patterns containing

these type of words. The radio buttons in figure 2 are used to toggle between how a user would

like to search for patterns, either from the whole database or from a particular STRIDE type.

12

Figure 3 shows the result of searching for attack patterns in TrAP using the keyword “session”

under the Spoofing threat category.

Figure 3. Using Keyword “session” to Retrieve Attack Patterns in TrAP

13

CHAPTER 3

The Methodology for Using CAPEC Attack Patterns to Develop Abuse Cases

 This chapter introduces our methodology for using CAPEC attack patterns to develop

abuse cases. The approach uses SDL threat modelling to assist in retrieving CAPEC attack

patterns most relevant to the system. These attack patterns are then used to extend a set of initial

abuse cases and discover new abuse cases. We use an example to illustrate the steps of this

methodology.

3.1 Methodology of Developing Abuse Cases Using CAPEC Attack Patterns

 Figure 4 below describes the methodology of developing abuse cases using attack

patterns. Developers develop use cases and brainstorm abuse cases from the use cases

considering the behaviors of the users. Microsoft SDL threat modeling process is followed to

decompose the system architecture into elements and analyze each element for threats. This

process generates questions based on threat type per element. Keywords are extracted from the

questions generated to search for attack patterns using the tool for retrieving attack patterns

(TrAP). Keywords are also generated from the system architecture documentation considering

any technology being implemented in the system. Scanning through the list of attack patterns

generated by TrAP according to STRIDE should also be considered to select relevant attack

patterns that may be missed by keywords search. The retrieved attack patterns are then used to

extend the initially brainstormed abuse cases in and can sometimes introduce new abuse cases

that should be considered for the system.

14

Develop Use

Cases

Use Cases

Abuse Cases

2

1

Run MSDL Tool

Run Attack Pattern

Tool (TrAP)

Architecture

components and

Questions

Generated by

Threat Type

5

3

Attack Patterns 5

System

Architecture and

Design Documents 3

2

List of Selected,

Ranked Attack

Patterns

Extended Abuse

Cases, New

Abuse Cases?

6

6

Input Activity Output

Brainstorm Abuse

Case from

Behavior of Users

Extend Abuse

Cases, Find new

Abuse Cases

6

Generate

Keywords
4

4

List of Keywords
4

5

Requirements Team

1

2

Figure 4. The Methodology for Developing Abuse Cases Using Attack Patterns

 The detailed process depicted in Figure 4 is described below: The numbering in Figure 4

is in correspondence with the order of activity flow.

1. System architecture information is collected and used to develop use cases.

2. The system architecture information and the developed use cases are used in a brainstorming

process to develop initial abuse cases.

15

3. The Microsoft SDL threat modelling tool is then ran to analyze threats that pertain to the

various elements of the system. This is done by first developing a DFD (data flow diagram)

from the system architecture and design documents. The elements of the system are external

interactors, processes, data flows and data stores. This process constitutes the architectural

risk analysis of the system and the output is a list of threats that pertain to the system

elements. The threat types are Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, and Elevation of Privilege (STRIDE). The tool generates questions about

each threat type for each element of the system. These questions are used to extract keywords

for searching attack patterns in TrAP. The elements implement the use cases, which means

the elements have a direct relationship with the use cases and a corresponding relationship

with the abuse cases that threaten the use cases.

4. Keywords are extracted from the questions generated by the SDL tool and system

architecture documentation.

5. These keywords are used to search attack patterns in the Tool for Retrieving Attack Patterns

(TrAP) to select most relevant attack patterns by STRIDE category.

6. The selected attack patterns are used to extend the initially brainstormed abuse cases. The

retrieved attack patterns are ranked in order of relevance by the TrAP tool. Information used

for extending abuse cases is extracted from the “Description” and/or “Example Instance”

section of the attack pattern. The result of this exercise is a document of extended abuse

cases for the system under development. If there are too many abuse cases, remove the ones

with: 1.) Low likelihood of exploit, severity, attacker skills; 2.) Obsolete technology as attack

prerequisites and required resources; 3.) High attacker skills and knowledge required.

Document any new abuse cases that may be discovered during the process.

16

 The “Solutions and Mitigations” section of the attack patterns in conjunction with the

mitigations provided by the threat model analysis can be used to suggest a strong mitigation

strategy for the system. However mitigation strategies are out of scope of this research.

3.2 Illustrating the Methodology with an Example

 In this section, we use an example Health Information System (HIS) based on work done

by Pauli & Xu (2005). In their paper, Pauli & Xu (2005) suggested an approach for design and

analysis of secure software systems based on use and misuse cases. They illustrated their

approach by performing a case study on a security-intensive hospital information system. We

will adopt their hospital information system as an example to illustrate our methodology. For the

purpose of clarification, we simplify the use and abuse case model of their example HIS.

 The following sections introduce using the steps presented in Figure 4 to illustrate how to

develop abuse cases.

 3.2.1 Use Cases for Doctor. The HIS has many users which may include secretaries,

nurses, doctors, pharmacists, IT personnel, business office personnel and administrative

personnel (Pauli & Xu 2005). These user have certain behaviors or interactions closely related to

the HIS security: 1) Secretary entering patient information; 2) Nurse entering preliminary

appointment information; 3) Doctor entering appointment findings; 4) Doctor transmitting

pharmacy orders to the pharmacy; 5) Pharmacist receiving pharmacy order. For the purpose of

this work, we consider only the doctor’s role of entering appointment findings which depends on

the nurse’s role of entering preliminary appointment information.

 The users are given enough permissions to access data they need to execute their job or

parts of the system. The doctor is assigned the following tasks in HIS: 1) patient diagnoses; 2)

treatment prescription; 3) documenting details of the appointment findings into the HIS after the

17

completion of an appointment; 4) entering pharmacy orders to be transmitted to the pharmacy;

and 5) setting the access levels for the nurses and secretaries. For the purpose of illustrating our

methodology, we select one use case based on which abuse cases are developed.

“Enter Appointment Findings” Use Case Description. The doctor logs in to HIS server

using a secure browser. The server authenticates the Doctor and opens a session for him. The

Doctor enters patient appointment findings and transmits pharmacy orders to the pharmacy, and

then logs out.

 Abuse/misuse cases could be developed based on the interactions described in the above

description.

 3.2.2 Abuse Cases for Doctor. An attacker may abuse HIS by changing the doctor’s

appointment findings. The attacker might do so by impersonating the doctor or by intercepting

data packets and analyzing them for further attacks. Figure 5 below shows the use-misuse case

model for the doctor. Use cases are represented by white ovals, black ovals represent abuse

cases.

 3.2.3 Threat Modelling. Microsoft SDL tool is used for performing threat modelling

analysis to find threats pertaining to elements of a system. The system is decomposed into

elements to develop a data flow diagram (DFD). The elements are external interactors, data

flows, processes, and data stores. Figure 6 represents the DFD diagram of HIS. The diagram

depicts interactions between the doctor and the HIS system.

18

Doctor

Enter

Appointment

Findings

Hacker

Change

Doctor’s

Findings

Intercept and

Analyze Packets

Impersonate

Doctor

Includes

Threatens

Includes

Figure 5. Doctor use & misuse case model in HIS

Doctor (D)
Findings (F) Findings Data

(FD)

View (V)

Update (U)
Enter (E)

Retrieve (R)

Figure 6. Data Flow Diagram (DFD) for HIS

 In Figure 6, the doctor has the ability to enter or retrieve appointment findings after he is

successfully authenticated and authorized (red dashed line represents authentication and

authorization) by the system. The Findings process takes the data from doctor, processes it and

sends to the findings data store. The arrows show the data flow between the doctor, the Findings

process and the data store.

 Figure 7 shows the interface of the SDL tool where the threats are generated for each

element. The “Analyze Model” stage of the SDL generates threats accompanied by questions

that address it each threat. The same threats pertains to elements of the same type (as

summarized by Table 1 in section 2.3).

 Figure 8 is a closer look at the questions posed by the tool for the Spoofing threat under

the Findings element.

19

Figure 7. MSDL Interface Showing Threats and Questions Generated By Tool for Each Threat

Figure 8. Closer Look at Questions Generated by MSDL Threat Modeling Tool for Spoofing

Threat of the Findings Process.

20

 3.2.4 Generate Keywords. The questions presented by the SDL tool serve as a useful

resource for extracting keywords used to search for most relevant CAPEC attack patterns. The

keywords may range from words to phrases based on the developer’s discretion. These extracted

keywords are input to the Tool for Retrieving Attack Patterns (TrAP) to search for attack

patterns related to the security concern the Microsoft SDL tool tries to address. The most related

attack patterns would be used in extending the abuse cases.

 For our example, the keywords extracted from figure 8 include: spoofing, credentials,

key, cryptography, password, and authentication.

 3.2.5 Searching Relevant Attack Patterns using the Tool for Retrieving Attack

Patterns (TrAP). TrAP retrieves the most relevant attack patterns from highest to lowest

rankings by STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of

Service and Elevation of Privilege) category.

 Each keyword found from threat modeling was input in the TrAP tool to retrieve a set of

CAPEC attack patterns. We combine all the attack patterned retrieved from all the keywords,

eliminating duplicates and less relevant ones (those with little or no detailed information). For

our example, the resulting attack patterns are listed in Table 2.

Table 2

List of Selected Attack Patterns for Spoofing Findings Process using Keywords generated by

SDL Tool

CAPEC

ID

Attack Pattern Name

21 Exploitation of Session Variables; Resource IDs and other Trusted Credentials

60 Reusing Session IDs (aka Session Replay)

21

Table 2

Cont.

59 Session Credential Falsification through Prediction

37 Lifting Data Embedded in Client Distributions

196 Session Credential Falsification through Forging

98 Phishing

107 Cross Site Tracing

57 Utilizing REST's Trust in the System Resource to Register Man in the Middle

205

Lifting credential(s)/key material embedded in client distributions (thick or

thin)

90 Reflection Attack in Authentication Protocol

70 Try Common(default) Usernames and Passwords

199 Cross-Site Scripting Using Alternate Syntax

69 Target Programs with Elevated Privileges

68 Subvert Code-signing Facilities

97 Cryptanalysis

112 Brute Force

49 Password Brute Forcing

55 Rainbow Table Password Cracking

16 Dictionary-based Password Attack

50 Password Recovery Exploitation

57 Utilizing REST's Trust in the System Resource to Register Man in the Middle

114 Authentication Abuse

22

Table 2

Cont.

11 Cause Web Server Misclassification

136 LDAP Injection

83 XPath Injection

39 Manipulating Opaque Client-based Data Tokens

22 Exploiting Trust in Client (aka Make the Client Invisible)

207 Removing Important Functionality from the Client

5 Analog In-band Switching Signals (aka Blue Boxing)

 3.2.6 Selecting Attack Patterns for extending an Abuse Case. In this section, attack

patterns that are relevant to an abuse case are selected from the list in Table 2. At this point the

table contains attack patterns that are relevant to the specific category of threat, however, the

following points needs to be considered in order to select relevant attack patterns for developing

a specific abuse case:

1. The motivation of the attack pattern should be similar or match the objective of the abuse

case.

2. Any technology implemented by the software should be compared with the prerequisites of

the attack pattern to ensure the right attack pattern is selected for developing abuse case for

that technology.

3. The resources required by the attack pattern should be compared with the resources required

by the abuse case to ensure that the resources required by the attack patterns are not obsolete

compared to that required by the abuse case.

23

4. Attacker skills, likelihood of exploit and severity of the attack pattern should be taken into

consideration to determine whether it is suitable for developing abuse case.

 For example, for the abuse case “Impersonate Doctor”, we select the following attack

patterns: “CAPEC-21 Exploitation of Session Variables, Resource IDs and other Trusted

Credentials”, “CAPEC-60: Reusing Session IDs (aka Session Replay)”, “CAPEC 59: Session

Credential Falsification through Prediction” and “CAPEC-196: Session Credential Falsification

through Forging”.

 3.2.7 Extending Abuse Cases using selected attack patterns. The selected attack

pattern could be used to extend the abuse case “Impersonate Doctor”. We describe how the

attack pattern “CAPEC-21: Exploitation of Session Variables, Resource IDs and other Trusted

Credentials” is used to extend the abuse case below:

 Information displayed in listings 1.1 through 1.3 are excerpts from the attack pattern that

are used for developing the abuse case. Detailed information of the attack pattern can be found

at: http://capec.mitre.org/data/definitions/21.html.

1. Objective: To impersonate the doctor and change appointment findings.

 Listing 1.1 is an excerpt from the attack pattern and gives a brief idea about the attack

pattern and what it is used for. This listing summarizes the attack pattern and contains

information for crafting the objective of the abuse case in consideration.

http://capec.mitre.org/data/definitions/21.html

24

Listing 1.1. Snippet of the Attack Pattern showing the “Description” field for Crafting

Abuse Case Objective.

 Listing 1.2 contains information for creating the following sections of the abuse case.

They may be directly transferred from the attack pattern.

2. Prerequisites: Server software must rely on weak session IDs proof and/or verification

schemes

3. Resource Required: Ability to deploy software on network. Ability to communicate

synchronously or asynchronously with server.

4. Typical Severity: High

5. Likelihood of Exploit: High

6. Attacker Skills Level: Low

 CAPEC-21: Exploitation of Session Variables, Resource IDs and other Trusted
Credentials

Attack Pattern ID: 21
Abstraction: Standard

 Status: Draft

Completeness: Complete

Description

Summary

Attacks on session IDs and resource IDs take advantage of the fact that some software accepts
user input without verifying its authenticity. For example, a message queuing system that allows
service requesters to post messages to its queue through an open channel (such as anonymous
FTP), authorization is done through checking group or role membership contained in the posted
message. However, there is no proof that the message itself, the information in the message

(such group or role membership), or indeed the process that wrote the message to the queue are
authentic and authorized to do so.

Many server side processes are vulnerable to these attacks because the server to server
communications have not been analyzed from a security perspective or the processes "trust" other

systems because they are behind a firewall. In a similar way servers that use easy to guess or

spoofable schemes for representing digital identity can also be vulnerable. Such systems
frequently use schemes without cryptography and digital signatures (or with broken
cryptography). Session IDs may be guessed due to insufficient randomness, poor protection
(passed in the clear), lack of integrity (unsigned), or improperly correlation with access control
policy enforcement points.

Exposed configuration and properties files that contain system passwords, database connection
strings, and such may also give an attacker an edge to identify these identifiers.

The net result is that spoofing and impersonation is possible leading to an attacker's ability to
break authentication, authorization, and audit controls on the system.

http://capec.mitre.org/data/definitions/21.html
javascript:toggleblocksOC('21_Description');

25

7. Knowledge Required: To achieve a direct connection with the weak or non-existent server

session access control, and pose as an authorized user

Listing 1.2 Snippet that may be Transferred Directly to the Abuse Case

8. Crafting Abusive Interaction: Listing 1.3 the “Attack Execution Flow” part of “Description”

is used for crafting the abusive interaction Abusive interaction is created from part of field of

the attack pattern. The “Example Instance” field of an attack patterns with little “Attack

Execution Flow” information may be inferred to craft the abusive interaction. Basically, any

information the developer deems important should be included in the abusive interaction to

build a strong case.

 The “Attack Execution Flow” section typically comprises of “Explore”, “Experiment”

and “Exploit” sections. The “Explore” section may be used for probing the application. The

“Experiment” section might be used for finding out susceptibility to a certain input or query. The

“Exploit” section is used for actually carrying an abuse on the system after the exploration and

experimentation stages are successful. This is used for developing the abusive interaction section

of the abuse case under consideration.

Attack Prerequisites

 Server software must rely on weak session IDs proof and/or verification schemes

Typical Severity

High

Typical Likelihood of Exploit

Likelihood: High

Attacker Skills or Knowledge Required

Skill or Knowledge Level: Low

To achieve a direct connection with the weak or non-existent server session access control, and
pose as an authorized user

Resources Required

Ability to deploy software on network. Ability to communicate synchronously or asynchronously
with server

javascript:toggleblocksOC('21_Attack Prerequisites');
javascript:toggleblocksOC('21_Typical Severity');
javascript:toggleblocksOC('21_Typical Likelihood of Exploit');
javascript:toggleblocksOC('21_Attacker Skills or Knowledge Required');
javascript:toggleblocksOC('21_Resources Required');

26

Listing 1.3 Information for Crafting Abusive Interaction section of Abuse Case

Abusive Interaction. The attacker probes HIS (by spidering all available pages) for

credentials, session tokens, or entry points that bypass credentials altogether and attacking

known bad interfaces. The attacker then fetches many samples of session ids by: 1.) making

many anonymous connections and recording the assigned session ids; 2.) making authorized

connections and recording session tokens or credentials issued; 3.) An attacker gains access to

Attack Execution Flow

Explore

1. Survey the application for Indicators of Susceptibility:

Using a variety of methods, until one is found that applies to the target system. The attacker
probes for credentials, session tokens, or entry points that bypass credentials altogether.

Attack Step Techniques

ID Attack Step Technique Description Environments

1 Spider all available pages env-Web

2 Attack known bad interfaces env-Web env-CommProtocol env-ClientServer env-
Local

Experiment

1. Fetch samples:

An attacker fetches many samples of a session ID. This may be through legitimate access
(logging in, legitimate connections, etc.) or just systematic probing.

Attack Step Techniques

ID Attack Step Technique Description Environments

1 An attacker makes many anonymous connections and records the session

IDs assigned.

env-Web env-
Peer2Peer env-

CommProtocol env-
ClientServer

2 An attacker makes authorized connections and records the session tokens

or credentials issued.

env-Web env-
Peer2Peer env-

CommProtocol env-
ClientServer

3 An attacker gains access to (legitimately or illegitimately) a nearby system

(e.g., in the same operations network, DMZ, or local network) and makes
a connections from it, attempting to gain the same privileges as a trusted
system.

env-Peer2Peer env-

CommProtocol env-
ClientServer

Exploit

1. Impersonate:

An attacker can use successful experiments to impersonate an authorized user or system

2. Spoofing:

Bad data can be injected into the system by an attacker.

27

(legitimately or illegitimately) a nearby system (e.g., in the same operations network, DMZ, or

local network) and makes a connection from it, attempting to gain the same privileges as a

trusted HIS system.

 An attacker who succeeds in compromising the session keys can impersonate the doctor’s

session and have the same capabilities as the doctor. There are two main ways for an attacker to

exploit session IDs.

1.) A brute force attack: involves an attacker repeatedly attempting to query the system with a

spoofed session header in the HTTP request. HIS server might be easily spoofed if it uses a short

session ID by trying many possible combinations so the parameters session-ID= 1234 has few

possible combinations, and an attacker can retry several hundred or thousand request with little

to no issue on their side.

2.) Interception tools such as Wireshark is be used to sniff the wire and pull off any unprotected

session identifiers. The attacker then use these variables to access the HIS application.

9. Post Condition: Attacker successfully exploits session variables and assumes the identity of a

doctor.

28

CHAPTER 4

Developing Abuse Cases for a Hospital Information System

 This chapter illustrates how attack patterns can be used to extend abuse cases for the

Hospital Information System (HIS). Attack patterns contain much useful information for

developing abuse cases. The extended abuse case includes the following information: objectives,

prerequisites, resource required, typical severity, likelihood of exploit, attacker skills or

knowledge required, abusive interaction and post condition.

 To find out how useful a particular attack pattern is for extending the abuse cases, the

following needs to be considered:

1. The objective of the abuse case must correspond to the motivation of the attack pattern.

2. The abuse cases prerequisites in the form of technology being implemented by the system

must tally with the prerequisite required to successfully exploit the system using the attack

pattern.

3. The resource required might be any form of knowledge or resource an attacker might need or

have to be able to exploit the system using the attack pattern. The harder it is for an attacker

to find this resource, the harder it is to abuse the system using this attack pattern.

4. The severity, likelihood of exploit, attacker skills are index properties used to check for

granularity and trim down (by either combining them or removing duplicates altogether) the

list of abuse cases when there seem to be too many attack patterns available for extending a

single abuse case.

5. Abusive interaction is the main description and steps required to attack the system. It gives

information about how to explore the system for variables needed to exploit it and how to

further exploit it when exploration is successful. The “Description” section of an attack

29

pattern should contain enough information to develop the abuse, if not, information in the

“Example Instance” section example could be utilized.

 In addition to extending the already brainstormed abuse cases, new abuse cases might be

discovered.

 The following sections describe the process of developing abuse cases for the HIS. To

keep the scope small, we develop abuse cases for only one use case “Enter Appointment

Findings”. The process illustrated here starts from Step 3 in Figure 1.

4.1 Using SDL Threat Modelling to Generate Keywords for Selecting Attack Patterns

 The SDL tool allows us to develop a data flow diagram (DFD) which is then analyzed for

threats. The tool possesses a feature, “Certify that there are no threats of this type”, that allows

users to consider if the threats exist in the system or not. To certify that the threat is not present,

the user chooses a reason from a list whether the risk is within a trust boundary, mitigated

elsewhere in the system or accepted. Table 3 summarizes the threats that pertain to each element

and the keywords that were extracted from the questions generated by SDL to address the threat.

Table 3

Generated Keywords from Questions provided by SDL Tool for each Element and Threats

Elements Threats Keywords

Doctor

Spoofing spoofing, credentials, key, cryptography, password, and

authentication

Repudiation repudiation, digital signature, timestamp, sequence, log

30

Table 3

Cont.

Data Flows

Tampering Tamper, bits, dataflow, duplicate, overlap, authenticate, keys,

validate, cryptographic, integrity

Information

Disclosure

disclosure, information, authenticate, keys, validate,

cryptographic

Findings

Process

Spoofing spoofing, credentials, key, cryptography, password, and

authentication

Elevation of

Privilege

Elevation, privilege, alter, execution, code, validate, same

origin, LinkDemand, .NET, verification

Findings

Data store

Tampering tamper, alter, data, store, access, resources, datastore, wrap,

discard

Information

Disclosure

information, disclosure, access, data, encrypt, channel,

recovery, storage

4.2 Searching Attack Patterns using Keywords

 TrAP is ran to categorize and rank attack patterns under STRIDE. Under each category,

the keywords in Table 3 from section 4.1 above are input one after the other to search for

relevant attack patterns. These attack patterns are most related to the threats which pertain to the

system as suggested by the SDL tool. The attack patterns are copied in a table and a further

selection is done to choose the ones to use for developing the abuse cases. Keywords may also

include any technology implemented by the system and can be crafted by the developer to

address the security need of the system. In our case, we only limit our keywords to the ones

extracted from the questions generated by SDL.

31

 The attack patterns retrieved using keywords in table 3 are listed in the Appendix. The

selected attack patterns for developing each abuse case are listed in table 4.

Table 4

Objective Mapping of Applicable Attack Patterns from List of Retrieved Attack Patterns to

Elements and Threats.

Elements Threats ID Attack Pattern

Enter &

Retrieve

Findings

Data Flows

Information

Disclosure

&

Tampering

94 Man in the Middle Attack

31 Accessing/Intercepting/Modifying HTTP Cookies

Doctor Spoofing

21

Exploitation of Session Variables; Resource IDs and

other Trusted Credentials

49 Password Brute Forcing

98 Phishing

Findings

Elevation of

Privilege

180

Exploiting Incorrectly Configured Access Control

Security Levels

1

Accessing Functionality Not Properly Constrained by

ACLs

Findings

Data store

Information

Disclosure

&

Tampering

66 SQL Injection

139 Relative Path Traversal

32

4.3 Selecting Attack Patterns for Extending the Brainstormed Abuse Cases

 Table 4 presents a fairly large list of attack patterns. Most of these attack patterns are

related to each other with fewer variations. The keywords search retrieve attack patterns that may

not be very useful in a particular situation, likewise, the keyword search might miss some attack

patterns that are very vital for certain abuse cases. The search may also retrieve attack patterns

that show little relevance in terms of information it entails. Manually going through the list of

attack patterns retrieved by TrAP to select attack patterns is a best practice after keyword search

has been completed. The manual searching process helps capture attack patterns missed by

keyword search.

 Table 5 maps elements to abuse cases to show elements that stand the highest chance of

abuse. The findings process was excluded because it does not have a match with any of the abuse

cases. Mapped attack patterns will be used to extend the abuse cases they are mapped to.

Table 5

Mapping Attack Patterns and Abuse Cases to Applicable Respective Elements

Elements Abuse Case ID Attack Pattern

Enter & Retrieve

Findings Data Flows

(E, R)

Intercept

and Analyze

Data

94 Man in the Middle Attack

31

Accessing/Intercepting/Modifying HTTP

Cookies

Doctor (D)

Impersonate

Doctor

21

Exploitation of Session Variables; Resource IDs

and other Trusted Credentials

49 Password Brute Forcing

98 Phishing

33

Table 5

Cont.

4.4 Extending Abuse Cases with selected Attack Patterns

 After the selection process, we extend our abuse cases using the selected attack patterns.

Our abuse case is “Change Doctor’s Findings” and it includes two intermediary abuse cases:

“Intercept and Analyze Packets” and “Impersonate Doctor”. To change the doctor’s findings,

one has to be able to assume the role of the doctor. This can be done through either an external

attacker spoofing the doctor or causing some level of elevation of privilege if they happen to be

users of the HIS system. The attacker might need to intercept data packets on the wire and

analyze them as an intermediate step to impersonate the doctor. Our assumption is that a

successful impersonation will give the attacker enough privileges to change the doctor’s

findings.

 4.4.1 Extending “Intercept and Analyze Data” Abuse Case with the selected Attack

Patterns. The main objective of this abuse varies from disclosing some secured information to

tampering the information to perform further attack. For the purpose of this research, we assume

that information within the trust boundary is secured from interception. In this case, data coming

from the doctor such as credentials, can easily be captured for further analysis. This limits our

threats scope to tampering and information disclosure threats. We will select attack patterns

Findings – – –

Findings Data store

(FD)

Change

Doctor’s

Findings

66 SQL Injection

139 Relative Path Traversal

193 PHP Remote File Inclusion

34

relating to data flow from the doctor into the HIS system. Majority attack patterns inherently

exploit the system to disclose sensitive information to assist in further attacks.

 Information passing from doctor (client) to HIS server can be disclosed. Before

tampering is done, there has to be some form of information disclosure. This information may be

relevant for a later attack such as impersonating the doctor from captured credentials.

Information disclosure of this nature is mostly a prerequisite for tampering and is always a sub

motivation for tampering.

 In reference to table 5, the most relevant attack patterns for tampering are: “CAPEC-94:

Man in the Middle Attack” and “CAPEC-31: Accessing/Intercepting/Modifying HTTP Cookies”.

These attack patterns would be used to extend the “Intercept and Analyze Packets” abuse case.

As a result, two child abuse cases are generated (see figure 9): “Using Man-in-the-Middle to

Intercept and Analyze Data” and “Intercept and Analyze HTTP Cookies”.

4.4.1.1 Abuse Case: “Using Man-in-the-Middle Attack to Intercept and Analyze Data”

Objectives. Attacker places himself in the communication channel between server and client to

intercept and modify data passing from client to server and vice versa.

Prerequisites: Server software must rely on weak session IDs proof and/or verification schemes

Resource Required: None

Typical Severity: High

Likelihood of Exploit: High

Attacker Skills or Knowledge Required: Level - Low

Abusive Interaction: The attacker probes HIS to determine the nature and mechanism of

communication between the client and server looking for opportunities to exploit. He then inserts

himself into the communication channel initially acting as a routing proxy between the client and

35

the server. The attacker may or may not have to use cryptography. He observes, filters or alters

passed data of its choosing to gain access to change the appointment findings coming from the

doctor to the server.

Post Condition: Attacker places himself between doctor and HIS server and changes

appointment findings.

Solutions and Mitigations:

 HIS should use a public key signed by a certificate authority

 HIS communication should be encrypted using cryptography (SSL)

 HIS should Use strong mutual authentication to always fully authenticate both client and

server.

 HIS should exchange public keys using a secure channel

4.4.1.2 Abuse Case: “Intercept and Analyze HTTP Cookies”

Objectives: Intercept, modify and forward HTTP cookies to server to gain access to HIS.

Prerequisites: Target server software must be a HTTP daemon that relies on cookies.

Resource Required: Ability to send HTTP request containing cookie to server

Typical Severity: High

Likelihood of Exploit: High

Attacker Skills or Knowledge Required:

Skill Level 1: Low

Knowledge Required 1: To overwrite session cookie data, and submit targeted attacks via HTTP

Skill Level 2: High

Knowledge Required 2: Exploiting a remote buffer overflow generated by attack

36

Abusive Interaction: The attacker first obtains a copy of the cookie. The attacker may be a

legitimate end user wanting to escalate privilege, or could be somebody sniffing on a network to

get a copy of HTTP cookies.

Steps:

1. Obtain cookie from local filesystem (e.g. C:\Documents and Settings*\Cookies and

C:\Documents and Settings*\Application Data\Mozilla\Firefox\Profiles*\cookies.txt in

Windows)

2. Sniff cookie using a network sniffer such as Wireshark

3. Obtain cookie from local memory or filesystem using a utility such as the Firefox Cookie

Manager or AnEC Cookie Editor.

4. Steal cookie via a cross-site scripting attack.

5. Guess cookie contents if it contains predictable information.

 The attacker may be able to get doctor from the cookie. HIS assumes that cookies are not

accessible by end users, and have potentially sensitive information in them.

Steps:

1. If cookie shows any signs of being encoded using a standard scheme such as base64, decode

it.

2. Analyze the cookie's contents to determine whether it contains any sensitive information.

 The attacker may be able to modify or replace cookies to bypass security controls in the

application.

Steps:

1. Modify logical parts of cookie and send it back to server to observe the effects.

37

2. Modify numeric parts of cookie arithmetically and send it back to server to observe the

effects.

3. Modify cookie bitwise and send it back to server to observe the effects.

4. Replace cookie with an older legitimate cookie and send it back to server to observe the

effects. This technique would be helpful in cases where the cookie contains a "points

balance" for a given user where the points have some value. The user may spend his points

and then replace his cookie with an older one to restore his balance.

Post Condition: Attacker successfully subverts security controls on HIS server

Solutions and Mitigations:

 Design: Use input validation for cookies

 Design: Generate and validate MAC (Message Authentication Code) for cookies

 Implementation: Use SSL/TLS to protect cookie in transit

 Implementation: Ensure HIS server implements all relevant security patches, many

exploitable buffer overflows are fixed in patches issued for the software.

 4.4.2 Extending “Impersonate Doctor” Abuse Case with the selected Attack

Patterns. To impersonate the doctor, an attacker might spoof the login process. The main

motivation of this attacker might be limited to assuming identity, however, he can further exploit

the system by performing tampering, information disclosure, or denial of service attacks.

In spoofing a doctor, the attacker is trying to assume the identity of a doctor. He does so by

launching a number of attacks to first probe the system and then attack the authentication

scheme. There are several attack patterns that can be used to build spoofing abuse cases to

impersonate a valid user. We select three to extend the “Impersonate Doctor” abuse case:

“CAPEC-21: Exploitation of Session Variables, Resource IDs and other Trusted Credentials”;

38

“CAPEC-49: Password Brute Forcing” and “CAPEC-98: Phishing”. As a result, the following

child abuse cases were formed (see figure 9): “Spoof Doctor through Session Exploitation”,

“Spoof Doctor through Password Brute Forcing”, and “Spoof Doctor through Phishing”.

4.4.2.1 Abuse Case: “Spoof Doctor through Session Exploitation”

Objectives: To impersonate the doctor and change appointment findings.

Prerequisites: Server software must rely on weak session IDs proof and/or verification schemes

Resource Required: Ability to deploy software on network. Ability to communicate

synchronously or asynchronously with server.

Typical Severity: High

Likelihood of Exploit: High

Attacker Skills Level: Low

Knowledge Required: To achieve a direct connection with the weak or non-existent server

session access control, and pose as an authorized user

Abusive Interaction: The attacker probes HIS (by spidering all available pages) for credentials,

session tokens, or entry points that bypass credentials altogether and attacking known bad

interfaces. The attacker then fetches many samples of session ids by: 1.) making many

anonymous connections and recording the assigned session ids; 2.) making authorized

connections and recording session tokens or credentials issued; 3.) An attacker gains access

(legitimately or illegitimately) to a nearby system (e.g., in the same operations network, DMZ, or

local network) and makes a connection from it, attempting to gain the same privileges as a

trusted HIS system.

39

 An attacker who succeeds in compromising the session keys can impersonate the doctor’s

session and have the same capabilities as the doctor. There are two main ways for an attacker to

exploit session IDs.

1.) A brute force attack involves an attacker repeatedly attempting to query the system with a

spoofed session header in the HTTP request. A web server that uses a short session ID can be

easily spoofed by trying many possible combinations so the parameters session-ID= 1234 has

few possible combinations, and an attacker can retry several hundred or thousand request with

little to no issue on their side.

2.) Interception tools such as Wireshark is be used to sniff the wire and pull off any unprotected

session identifiers. The attacker then use these variables to access the HIS application.

Post Condition: Attacker spoofs session ID and assumes doctor’s identity to change appointment

findings.

4.4.2.2 Abuse Case: “Spoof Doctor through Password Brute Forcing”

Objectives: To impersonate an authorized the doctor

Prerequisites:

 An attacker needs to know the doctor’s username.

 The system uses password based authentication as the one factor authentication mechanism.

 An application does not have a password throttling mechanism in place. A good password

throttling mechanism will make it almost impossible computationally to brute force a

password as it may either lock out the user after a certain number of incorrect attempts or

introduce time out periods. Both of these would make a brute force attack impractical.

Resource Required: A powerful enough computer for the job with sufficient CPU, RAM and

HD. Exact requirements will depend on the size of the brute force job and the time requirement

40

for completion. Some brute forcing jobs may require grid or distributed computing (e.g. DES

Challenge).

Typical Severity: High

Likelihood of Exploit: Medium

Skills Level: Low

Knowledge Required: A brute force attack is very straightforward. A variety of password

cracking tools are widely available.

Abusive Interaction: The attacker tries to determine the password policies of HIS by

determining: 1.) the minimum and maximum password lengths allowed; 2.) the formats of

allowed passwords (whether they are allowed or required to contain special characters or

numbers); 3.) Account lockout policy (a strict account lockout policy will prevent brute force

attacks). Given the finite space of possible passwords dictated by the password policy

determined in the previous step, the attacker tries all possible passwords for a known doctor’s

user ID until application/system grants access by: 1.) Manually or automatically entering all

possible passwords through HIS's interface. Start with the shortest and simplest possible

passwords, because if allowed to do so, most users tend to select such passwords; 2.) Performing

an offline dictionary attack or a rainbow table attack against a known password hash.

Post Condition: Attacker determines correct password for a doctor’s user ID and obtains access

to the HIS system.

4.4.2.3 Abuse Case: “Spoof Doctor through Phishing”

Objectives: Attacker (https://www.Heatlh.com) masquerades as HIS (https://www.Health.com)

and does business with doctor, gathers credentials and then logs in as the doctor.

Prerequisites:

https://www.heatlh.com/
https://www.health.com/

41

 An attacker needs to have a way to initiate contact with the victim. Typically that will happen

through e-mail.

 An attacker needs to correctly guess the entity (HIS) with which the doctor does business and

impersonate it.

 An attacker needs to have a sufficiently compelling call to action to prompt the doctor to take

action.

 The replicated website needs to look extremely similar to the original HIS website and the

URL used to get to that website needs to look like the real URL of the HIS system.

Resource Required: Some web development tools to put up a fake website.

Typical Severity: Very High

Likelihood of Exploit: High

Attacker Skills: Medium

Abusive Interaction: An attacker creates https://www.Heatlh.com which resembles

https://www.Health.com, the HIS website that he is trying to impersonate. The attacker’s website

has a login form for the victim to put in his authentication credentials.

Steps:

1. Attacker spiders http://www.Health.com to get copies of web pages.

2. He manually saves copies of required web pages from Health.com.

3. Attacker then creates new web pages that have the https://www.Health.com’s look and feel,

but contain completely new content.

 The attacker sends an e-mail to the doctor about a possible login abuse action against HIS

website (https://www.Health.com) by placing the link https://Heatlh.com/suspicious_activity.php

https://www.heatlh.com/
https://www.health.com/
http://www.health.com/
https://www.health.com/
https://www.health.com/
https://heatlh.com/suspicious_activity.php

42

in the email. Once the doctor clicks on the link included in the e-mail pointing to the attacker’s

website, he is required to change his password and his credentials are compromised.

Steps:

1. Send the doctor a message from a spoofed legitimate-looking e-mail address that asks him to

click on the included link.

2. Place phishing link in post to online forum.

Post Condition: Once the attacker captures these login credentials through phishing, he can

leverage this information by logging into HIS to change the doctor’s appointment findings.

 4.4.3 Extending “Change Doctor’s Findings” Abuse Case with the selected Attack

Patterns. “Impersonate Doctor” and “Intercept and Analyze Data” are sub-abuse cases of

“Change Doctor’s Findings” abuse case. The main motivation of the attacker to manipulate the

findings might first be to gain privileges as doctor or to disclose information, analyze the bits and

tamper it.

 To tamper with the doctor’s findings, an attacker might try to directly get access to the

file that the findings data are saved in and then change them. Tampering affects the integrity of

the data through forgery. The attack patterns: “CAPEC-66: SQL Injection”; “CAPEC-139:

Relative Path Traversal” and “CAPEC-193: Remote File Inclusion” are selected for extending

the “Change Doctor’s Findings” abuse case. As a result, three child abuse cases are formed (see

figure 9): “Change Findings Using SQL Injection”, “Change Findings through Path Traversal”

and “Change Findings through File Inclusion”.

4.4.3.1 Abuse Case: “Change Findings Using SQL Injection”

Objectives: To bypass the application completely to talk directly to the database, causing

information disclosure and granting ability to modify data in the findings database.

43

Prerequisites:

 SQL queries used by HIS application to store, retrieve or modify data.

 User-controllable input that is not properly validated by the HIS application as part of SQL

queries.

Typical Severity: High

Likelihood of Exploit: Very High

Skill Level: Low

Knowledge Required: It is fairly simple for someone with basic SQL knowledge to perform SQL

injection, in general. In certain instances, however, specific knowledge of the database employed

may be required.

Abusive Interaction: First take an inventory of the functionality exposed by HIS.

Steps:

1. Spider HIS web sites for all available links

2. Sniff network communications with HIS application using a utility such as Wireshark.

Determine the user-controllable input susceptible to injection. For each user-controllable input

suspected to be vulnerable to SQL injection, attempt to inject characters that have special

meaning in SQL (such as a single quote character, a double quote character, two hyphens, a

parenthesis, etc.). The goal is to create a SQL query with an invalid syntax.

Steps:

1. Use web browser to inject input through text fields or through HTTP GET parameters.

2. Use a web application debugging tool such as Tamper Data, TamperIE, WebScarab,etc. to

modify HTTP POST parameters, hidden fields, non-freeform fields, etc.

3. Use network-level packet injection tools such as netcat to inject input

44

4. Use modified client (modified by reverse engineering) to inject input.

 After determining that a given input is vulnerable to SQL Injection, hypothesize what the

underlying query looks like. Iteratively try to add logic to the query to extract and modify

information in the findings database.

Steps:

1. Use public resources such as "SQL Injection Cheat Sheet" at

http://ferruh.mavituna.com/makale/sql-injection-cheatsheet/, and try different approaches for

adding logic to SQL queries.

2. Add logic to query, and use detailed error messages from the server to debug the query. For

example, if adding a single quote to a query causes an error message, try : "' OR 1=1; --", or

something else that would syntactically complete a hypothesized query. Iteratively refine the

query.

3. Use "Blind SQL Injection" techniques to extract information about the database schema.

Post Condition: Attacker achieves goal of unauthorized system access to change doctor’s

appointment findings.

Solutions and Mitigations:

 Strong input validation - All user-controllable input must be validated and filtered for illegal

characters as well as SQL content. Keywords such as UNION, SELECT or INSERT must be

filtered in addition to characters such as a single-quote (') or SQL-comments (--) based on the

context in which they appear.

 Use of parameterized queries or stored procedures - Parameterization causes the input to be

restricted to certain domains, such as strings or integers, and any input outside such domains

http://ferruh.mavituna.com/makale/sql-injection-cheatsheet/

45

is considered invalid and the query fails. Note that SQL Injection is possible even in the

presence of stored procedures if the eventual query is constructed dynamically.

 Use of custom error pages - Attackers can glean information about the nature of queries from

descriptive error messages. Input validation must be coupled with customized error pages

that inform about an error without disclosing information about the database or application.

4.4.3.2 Abuse Case: “Change Findings through Path Traversal”

Objectives: An attacker bypasses input validation on HIS by supplying a specially constructed

path utilizing dot and slash characters for the purpose of obtaining access to findings database

file and changing doctor’s findings.

Prerequisites: The HIS application must accept a string as user input, fail to sanitize

combinations of characters in the input that have a special meaning in the context of path

navigation, and insert the user-supplied string into path navigation commands.

Typical Severity: High

Likelihood of Exploit: High

Attacker Skills or Knowledge Required:

Skill Level 1: Low

Knowledge Required 1: To inject the malicious payload in a web page

Skill Level 2: High

Knowledge Required 2: To bypass non trivial filters in the application

Resources Required: None

Abusive Interaction: Using a browser or an automated tool, follow all public links on HIS web

site, record all the links found and pick out the URL parameters that may related to access to

files.

46

Steps:

1. Use a spidering tool to follow and record all links. Make special note of any links that

include parameters in the URL.

2. Use a proxy tool to record all links visited during a manual traversal of the web application.

Make special note of any links that include parameters in the URL. Manual traversal of this

type is frequently necessary to identify forms that are GET method forms rather than POST

forms.

3. Use a browser to manually explore the website and analyze how it is constructed. Many

browsers plug-ins are available to facilitate the analysis or automate the URL discovery.

 Possibly using an automated tool, request variations on the identified inputs and send

parameters that include variations of payloads.

Steps:

1. Use a list of probe strings as path traversal payload. Different strings may be used for

different platforms. Strings contain relative path sequences such as "../".

2. Use a proxy tool to record results of manual input of relative path traversal probes in known

URLs.

 Inject path traversal syntax into identified vulnerable inputs to cause inappropriate

reading, writing or execution of findings data file. A successful attack allows reading HIS

directories or files which we would not normally be allowed to read. The attacker could also

access data outside the web document root, or include scripts, source code and other kinds of

files from external websites. Once there is access to the findings data file, the doctor findings is

modified.

Steps:

47

1. Manipulate findings data file and its path by injecting relative path sequences (e.g. "../").

2. Download findings data file, and modify the file

Post Condition: The attacker accesses the content findings data store and modifies the doctor’s

appointment findings.

Solutions and Mitigations:

 Design: Input validation. Assume that user inputs are malicious. Utilize strict type, character,

and encoding enforcement

 Implementation: Perform input validation for all remote content, including remote and user-

generated content.

 Implementation: Validate user input by only accepting known good. Ensure all content that is

delivered to client is sanitized against an acceptable content specification -- whitelisting

approach.

 Implementation: Prefer working without user input when using file system calls

 Implementation: Use indirect references rather than actual file names.

 Implementation: Use possible permissions on file access when developing and deploying

web applications.

4.4.3.3 Abuse Case: “Change Findings through File Inclusion”

Objectives: To control an improperly sanitized "include" or "require" call through an insecurely

configured PHP runtime environment to point to findings data store file to load and execute

arbitrary code remotely available from HIS to change doctor’s findings.

Prerequisites: HIS application server must allow remote files to be included in the "require",

"include", etc. PHP directives

Typical Severity: High

48

Likelihood of Exploit: High

Attacker Skills or Knowledge Required:

Skill Level 1: Low

Knowledge Required 1: To inject the malicious payload in a web page

Skill Level 2: Medium

Knowledge Required 2: To bypass filters in the application

Resources Required: Ability to send HTTP request to a web application. Ability to store PHP

scripts on a server

Abusive Interaction: Using a browser or an automated tool, an attacker follows all public links

on HIS web site. He records all the links he finds.

Steps:

1. Use a spidering tool to follow and record all links. Make special note of any links that

include parameters in the URL.

2. Use a proxy tool to record all links visited during a manual traversal of the web application.

Make special note of any links that include parameters in the URL. Manual traversal of this

type is frequently necessary to identify forms that are GET method forms rather than POST

forms.

3. Use a browser to manually explore the website and analyze how it is constructed. Many

browser's plugins are available to facilitate the analysis or automate the URL discovery.

 The attack variants make use of a remotely available PHP script that generates a uniquely

identifiable output when executed on the target application server. Possibly using an automated

tool, request variations on the inputs surveyed before. Send parameters that include variations of

49

payloads which include a reference to the remote PHP script. Record all the responses from the

server that include the output of the execution of remote PHP script.

Steps:

1. Use a list of probe strings to inject in parameters of known URLs. The probe strings are

variants of PHP remote file inclusion payloads which include a reference to the attackers'

controlled remote PHP script.

2. Use a proxy tool to record results of manual input of remote file inclusion probes in known

URLs.

 Success in exploiting the vulnerability, enables execution of server-side code within the

application. The malicious code has virtual access to the same resources as the HIS application.

If required, include shell code in the script to execute commands on the server under the same

privileges as the PHP runtime is running with.

Steps:

1. Malicious PHP script that is injected through vectors identified during previous phase and

executed by the application server to execute a custom PHP script.

Post Condition: The attacker's script is executed on the HIS server.

Solutions and Mitigations:

 Implementation: Perform input validation for all remote content, including remote and user-

generated content

 Implementation: Only allow known files to be included (whitelist)

 Implementation: Make use of indirect references passed in URL parameters instead of file

names

50

 Configuration: Ensure that remote scripts cannot be include in the "include" or "require" PHP

directives

 Figure 9 provides an overview of all the child abuse cases generated through extending

the initial brainstormed abuse cases.

Doctor

Enter

Appointment

Findings

Hacker

Change

Doctor’s

Findings

Intercept and

Analyze Packets

Impersonate

Doctor

Includes

Threatens

Includes

Change Findings

Using SQL

Injection

Change Findings

through Path

Traversal

Change Findings

Through File

Inclusion

Using Man-in-the-

Middle to Intercept

and Analyze Data

Intercept and

Analyze HTTP

Cookies

Spoof Doctor

through Password

Brute Forcing

Spoof Doctor

through Session

Exploitation

Spoof Doctor

through Phishing

Capec-66
Capec-193

Capec-139

Capec-94

Capec-31
Capec-98

Capec-49

Capec-21

Figure 9. Child Abuse Cases revealed after Extending Brainstormed Ones

4.5 Finding New Abuse Cases

 Figure 9 shows abuse cases revealed after extending the brainstormed ones. After

extending the abuse cases, we discovered new abuse cases, namely: “Repudiate Doctor”,

“Impersonate Findings Process” and “Enter Appointment Findings as Nurse”.

 SDL analysis shows us that a doctor can be impersonated and/or repudiated against. The

abuse case “Repudiate Doctor” is when another doctor is able to enter or change appointment

findings s another doctor and totally deny doing so. “Impersonate Findings Process” allows an

attacker to place himself as a trusted findings process of HIS. He then collects all appointment

findings coming from doctor, modifies it and forwards it to the HIS server. A nurse has the role

51

to enter preliminary appointment information in HIS (Pauli & Xu, 2005). In the abuse case

“Enter Appointment Findings as Nurse”, the attacker elevates the privileges of the nurse’s

process by bypassing the ACL’s confining the findings process to only the doctor users of HIS.

If there are ACL’s protecting various elements or the mechanism is weak, the attacker leverages

the vulnerability to perform this attack.

Doctor

Enter

Appointment

Findings

Hacker

Change

Doctor’s

Findings

Intercept and

Analyze Packets

Impersonate

Doctor

Includes

Threatens

Includes

Impersonate

Findings Process

Enter Appointment

Findings as Nurse

Threatens

Threatens

Doctor

Threatens

Enter Appointment

Findings and Deny

Figure 10. New Abuse Cases Discovered

52

CHAPTER 5

Conclusion and Future Research

 Attack patterns are gaining attention in both research and usage in the secure software

development field. This research provides an approach for utilizing CAPEC attack patterns for

developing abuse cases. The most useful attack patterns are the most informative and relevant for

the system under development. It is not an easy exercise however, to find relevant attack patterns

from the CAPEC library which might be useful enough for developing abuse cases. A Tool for

Retrieving Attack Patterns (TrAP) was developed to make it easier to retrieve relevant attack

patterns from CAPEC library.

 An abuse case developer should be able to think about rigorous actions against the

software under development. We proposed a systematic method to use relevant CAPEC attack

patterns for developing abuse cases.

 This method utilizes attack patterns to develop abuse cases using Microsoft SDL threat

modelling to aid the selection of most relevant attack patterns. The methodology follows the

following process: 1.) develop use and abuse cases form software architecture documentation; 2.)

decompose the software into elements and run SDL threat modelling analysis to model threats in

the various elements; 3.) extract keywords from questions generated for STRIDE threat types by

SDL tool; 4.) use keywords to search for attack patterns in the TrAP tool based on STRIDE

threat types; 5.) select relevant attack patterns from the search results and extend abuse cases

using information contained in the attack patterns.

 After searching for the attack patterns, the list should be checked ensure solid abuse cases

are built from the most relevant attack patterns retrieved. Key word search might retrieve related

attack patterns or patterns that are related to each other, but might have motivations that vary

53

slightly form the objectives of the abuse case. This following process should be followed to

select relevant attack patterns: 1.) compares the attack motivation of the attack patterns to the

objective of the abuse case to make sure they match; 2.) checks for special technology

implemented in the software against the attack prerequisites of the attack patterns to make sure

attack prerequisites are not obsolete; 3.) checks the resources required by the attack pattern to

view its viability to be practical enough for developing abuse cases; 4.) checks the attacker skills

needed to exploit the software to see the level of skill and knowledge might be required to

exploit software using the pattern; 5.) checks likelihood of exploit and severity of attack to find

out how the attack pattern is suited for building a well-grounded abuse case for the software

being developed.

 The challenges developers might face adopting this methodology is generating keywords

for searching attack patterns. Since the same questions might be asked for the same threat

pertaining to various elements, this might present a limitation of use of the retrieved/selected

attack patterns. To subvert this challenge however, developers should scan through the list of

retrieved attack patterns to manually search for relevant attack patterns by STRIDE threat type.

The manually searched attack patterns should be combined with the ones searched using the

keywords to remove duplicates. Attack patterns should then be selected from the combined list to

develop the abuse cases. Also, in the case where many similar attack patterns can be used for

developing the same abuse case, deciding between combing information from one or more attack

patterns or choosing an attack pattern over the other might pose as a difficult challenge. Users

should be familiar with CAPEC attack patterns and Microsoft SDL in order to apply this

methodology successfully.

54

 Our future work will focus on using attack patterns for architectural risk analysis, design,

and developing test cases.

55

References

Alexander, I. (2003). "Misuse cases: Use cases with hostile intent." Software, IEEE 20.1: 58-66.

Barnum, S, & Sethi, Amit. (2007). Attack Patterns as a Knowledge Resource for Building Secure

Software. Retrieved January 15, 2013, from http://capec.mitre.org/documents/Attack_Patterns-

Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf

CAPEC: Common Attack Pattern Enumeration and Classification, retrieved from http://capec.mitre.org/

Gegick, M., & Williams, L. (2005, May). Matching attack patterns to security vulnerabilities in

software-intensive system designs. In ACM SIGSOFT Software Engineering Notes (Vol. 30, No.

4, pp. 1-7). ACM.

Hernan, S., Lambert S., Ostwald, T., and Shostack, A. (2006). Uncover Security Design Flaws Using

The STRIDE Approach, retrieved from http://msdn.microsoft.com/en-

us/magazine/cc163519.aspx#S3

Hope, P., McGraw, G., & Anton, A. I. (2004). "Misuse and abuse cases: getting past the positive,"

Security & Privacy, IEEE, vol.2, no.3, pp.90, 92

Hoglund, G., McGraw, G. (2004). Exploiting software: how to break code: Addison-Wesley.

McDermott, J.; Fox, C. (1999). "Using abuse case models for security requirements analysis," Computer

Security Applications Conference, 1999. (ACSAC '99) Proceedings. 15th Annual (pp.55, 64).

IEEE.

McGraw, G. (2006). Software Security: Build Security In, Addison-Wesley Professionals.

Meier, J.D., Mackman, A., Dunner, M., Vasireddy, S., Escamilla, R., & Murukan, A. (2003). Chatper 3

Threat Modeling, retrieved from http://msdn.microsoft.com/en-us/library/ff648644.aspx

Microsoft, SDL Threat Modeling Tool 3.1.8, retrieved from

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=2955

http://capec.mitre.org/documents/Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf
http://capec.mitre.org/documents/Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf
http://capec.mitre.org/
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S3
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S3
http://msdn.microsoft.com/en-us/library/ff648644.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=2955

56

MITRE. (2012). Common Attack Pattern Enumeration and Classification. Retrieved January 13, 2013,

from http://capec.mitre.org/index.html

Moore, A., P., Ellison, R., J., & Linger, R., C. (2001). Attack Modeling for Information Security and

Survivability. Retrieved January 15, 2013, from

http://www.sei.cmu.edu/library/abstracts/reports/01tn001.cfm

Pauli, J. J., & Engebretson, P. H. (2008a, 7-9 April 2008). Hierarchy-Driven Approach for Attack

Patterns in Software Security Education. Paper presented at the Information Technology: New

Generations, 2008. ITNG 2008. Fifth International Conference on.

Pauli, J. J., & Engebretson, P. H. (2008b, 7-9 April 2008). Towards a Specification Prototype for

Hierarchy-Driven Attack Patterns. Paper presented at the Information Technology: New

Generations, 2008. ITNG 2008. Fifth International Conference on.

Pauli, J. J., & Xu, D. (2005, April). Misuse case-based design and analysis of secure software

architecture. In Information Technology: Coding and Computing, 2005. ITCC 2005.

International Conference on (Vol. 2, pp. 398-403). IEEE.

Sethi, A., & Barnum, S. (2006). “Attack Pattern Usage”, retrieved from https://buildsecurityin.us-

cert.gov/bsi/articles/knowledge/attack/588-BSI.html

Tndel, I. A., Jensen, J., & Rstad, L. (2010, February). Combining misuse cases with attack trees and

security activity models. In Availability, Reliability, and Security, 2010. ARES'10 International

Conference on (pp. 438-445). IEEE.

Wiesauer, A., & Sametinger, J. (2009, July). A Security Design Pattern Taxonomy based on Attack

Patterns. In International Joint Conference on e-Business and Telecommunications (pp. 387-

394).

http://capec.mitre.org/index.html
http://www.sei.cmu.edu/library/abstracts/reports/01tn001.cfm
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/588-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/attack/588-BSI.html

57

Yuan, X., Nuakoh, E. B., Beal, J. S., & Yu, H. (2014, April). Retrieving relevant CAPEC attack patterns

for secure software development. In Proceedings of the 9th Annual Cyber and Information

Security Research Conference (pp. 33-36). ACM.

58

Appendix

List of attack patterns retrieved under Spoofing threat using keyword search in TrAP.

CAPEC

ID Attack Pattern Name

21 Exploitation of Session Variables; Resource IDs and other Trusted Credentials

60 Reusing Session IDs (aka Session Replay)

59 Session Credential Falsification through Prediction

37 Lifting Data Embedded in Client Distributions

196 Session Credential Falsification through Forging

98 Phishing

107 Cross Site Tracing

57 Utilizing REST's Trust in the System Resource to Register Man in the Middle

205 Lifting credential(s)/key material embedded in client distributions (thick or thin)

90 Reflection Attack in Authentication Protocol

70 Try Common(default) Usernames and Passwords

199 Cross-Site Scripting Using Alternate Syntax

69 Target Programs with Elevated Privileges

68 Subvert Code-signing Facilities

97 Cryptanalysis

112 Brute Force

49 Password Brute Forcing

55 Rainbow Table Password Cracking

16 Dictionary-based Password Attack

59

List of attack patterns retrieved under Spoofing threat using keyword search in TrAP.

Cont.

50 Password Recovery Exploitation

57 Utilizing REST's Trust in the System Resource to Register Man in the Middle

114 Authentication Abuse

11 Cause Web Server Misclassification

136 LDAP Injection

83 XPath Injection

39 Manipulating Opaque Client-based Data Tokens

22 Exploiting Trust in Client (aka Make the Client Invisible)

207 Removing Important Functionality from the Client

5 Analog In-band Switching Signals (aka Blue Boxing)

List of attack patterns retrieved under Elevation of Privilege threat using keyword search in

TrAP.

CAPEC

ID

Attack Pattern Name

66 SQL Injection

84 XQuery Injection

275 DNS Rebinding

180 Exploiting Incorrectly Configured Access Control Security Levels

77 Manipulating User-Controlled Variables

110 SQL Injection through SOAP Parameter Tampering

1 Accessing Functionality Not Properly Constrained by ACLs

60

List of attack patterns retrieved under Elevation of Privilege threat using keyword search in

TrAP.

Cont.

10 Buffer Overflow via Environment Variables

104 Cross Zone Scripting

86 Embedding Script (XSS) in HTTP Headers

135 Format String Injection

6 Argument Injection

107 Cross Site Tracing

4 Using Alternative IP Address Encodings

34 HTTP Response Splitting

92 Forced Integer Overflow

57 Utilizing REST's Trust in the System Resource to Register Man in the Middle

21 Exploitation of Session Variables; Resource IDs and other Trusted Credentials

163 Spear Phishing

35 Leverage Executable Code in Nonexecutable Files

22 Exploiting Trust in Client (aka Make the Client Invisible)

62 Cross Site Request Forgery (aka Session Riding)

23 File System Function Injection; Content Based

237 Calling Signed Code From Another Language Within A Sandbox Allow This

207 Removing Important Functionality from the Client

65 Passively Sniff and Capture Application Code Bound for Authorized Client

61

List of attack patterns retrieved under Elevation of Privilege threat using keyword search in

TrAP.

Cont.

259 Passively Sniffing and Capturing Application Code Bound for an Authorized Client

During Patching

187 Malicious Automated Software Update

177 Create files with the same name as files protected with a higher classification

256 Resource Manipulation

122 Exploitation of Authorization

List of attack patterns retrieved under Information Disclosure and Tampering threats using

keyword search in TrAP.

CAPEC

ID Attack Pattern Name

66 SQL Injection

275 DNS Rebinding

51 Poison Web Service Registry

136 LDAP Injection

267 Leverage Alternate Encoding

110 SQL Injection through SOAP Parameter Tampering

87 Forceful Browsing

31 Accessing/Intercepting/Modifying HTTP Cookies

21 Exploitation of Session Variables; Resource IDs and other Trusted Credentials

62

List of attack patterns retrieved under Information Disclosure and Tampering threats using

keyword search in TrAP.

Cont.

7 Blind SQL Injection

37 Lifting Data Embedded in Client Distributions

83 XPath Injection

86 Embedding Script (XSS) in HTTP Headers

6 Argument Injection

101 Server Side Include (SSI) Injection

163 Spear Phishing

196 Session Credential Falsification through Forging

98 Phishing

222 iFrame Overlay

219 XML Routing Detour Attacks

107 Cross Site Tracing

58 Restful Privilege Elevation

91 XSS in IMG Tags

132 Symlink Attack

205 Lifting credential(s)/key material embedded in client distributions (thick or thin)

48 Passing Local Filenames to Functions That Expect a URL

95 WSDL Scanning

12 Choosing a Message/Channel Identifier on a Public/Multicast Channel

11 Cause Web Server Misclassification

63

List of attack patterns retrieved under Information Disclosure and Tampering threats using

keyword search in TrAP.

Cont.

111 JSON Hijacking (aka JavaScript Hijacking)

65 Passively Sniff and Capture Application Code Bound for Authorized Client

259

Passively Sniffing and Capturing Application Code Bound for an Authorized Client

During Patching

18 Embedding Scripts in Nonscript Elements

170 Web Server/Application Fingerprinting

215 Fuzzing and observing application log data/errors for application mapping

169 Footprinting

121 Locate and Exploit Test APIs

112 Brute Force

	Using Capec Attack Patterns For Developing Abuse Cases
	Recommended Citation

	tmp.1590772691.pdf.ljowj

