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Abstract 

In this study, several new compounds containing N-based donor ligands and group 11 

transitions metal complexes were prepared and studied through luminescence, infrared, Raman, 

and other spectroscopic techniques. The coordinating N containing ligands used in this study 

were terpyridine (terpy) and phenanthroline (phen) derivatives, and TPAO 

(triazaphosphaadamantane oxide). TPAO was used to substitute some of the H2O quencher and 

to probe whether it could also act as an effective sensitizer. The photoluminescence studies show 

characteristic f-f emissions of the Tb
3+

 and Eu
3+

 ions. For the Tb
3+

 complexes the strongest band 

(hypersensitive band) was observed ~ 540nm corresponding to the
5
D4

7
F5 transition, while for 

Eu
3+

 complexes the band at 615nm corresponding to the 
5
D0 → 

7
F2 transition dominates. The 

excitation spectra in both systems provides a strong band at 358 nm corresponding to * 

transition the terpy ligand and 380nm for Au(CN)2
-
. Terpy with phenanthroline derivatives 

were also explored which yielded four new compounds – 

[Tb(H2O)4(Au(CN)2)(C22H17N3)(TPAO)]Cl3 (1) ,[Eu(H2O)4(Au(CN)2)(C22H17N3)]Cl3 (2), 

[Tb(H2O)4(Au(CN)2)(C22H17N3)]Cl3 (3) and [Eu(H2O)4Au(CN)2(Phen)]Cl3 (4). New 

understanding regarding the mode of interaction is reported as well as spectroscopic data of these 

complexes. 
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1 CHAPTER 1 

Introduction 

1.1 Luminescence 

Luminescence was first discovered by Sir G. G. Stokes in 1852 
1
. Luminescence is also 

one of the most sensitive spectroscopic techniques that are used today. It comes from the root 

(Lume=light), which can be defined as a spontaneous emission of radiation from an 

electronically or vibrationally excited species 
2
. To classify all forms of light that are not solely 

conditioned by the rise of temperature, Eilhardt Wiedeman introduced the term 

“luminescenz”
1-2

. Due to the modes of excitation luminescence can be separated into different 

categories. These categories are:  chemiluminescence (is the phenomenon in which a chemical 

reaction leads to the emission of light without incandescence), bioluminescence (emission of 

visible light by living organisms), electroluminescence (emission of light caused by electric 

discharge in a gas), cathodoluminescence (luminescence caused by irradiation with electrons), 

radioluminescence (luminescence that is induced by radiation from a radioactive material), 

thermoluminescence (phosphorescence produced by the heating of a substance), and 

photoluminescence ( emission of light that occurs form direct photoexcitation of the emitting 

species). Photoluminescence is one of our main research goals. 
3
 

Photoluminescence has two well-known forms which are fluorescence and 

phosphorescence. Fluorescence is the radiative decaying from the exciting state to the ground 

state of the same multiplicity, which makes these types of transitions „allowed” 
4
. The emissive 

rate for fluorescence is usually near 10
8
 per seconds 

5
. The lifetime for fluorescence is 10

-8
 per 

seconds, since the emissive rate is relatively fast it causes the lifetime to very low 
5
. The 

lifetime determines the average time a fluorophore remains in the excited state 
6
. The second 
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type of photoluminescence is phosphorescence, which is the radiative decaying from the 

exciting state to a ground state with different multiplicity 
5
. These types of transitions are not 

allowed. The emissive rate for phosphorescence is very slow, which makes the lifetime relative 

fast. The lifetime for the phosphorescence ranges from milliseconds to seconds, depending 

solely on deactivation process
2
. 

In the 19
th

 century G. G. Stokes identified the difference between fluorescence and 

phosphorescence by the duration of emission after excitation of the species 
2
. Later studies 

showed that G.G. Stokes criterion were insufficient because there are long-lived fluorescence 

and short-lived phosphorescence 
2
. However, in 1929 Francis Perrin identified the difference 

between fluorescence and phosphorescence by spin multiplicity. For fluorescence spin 

multiplicity is retained 
1
S1

1
S0, whereas phosphorescence involves a change in spin multiplicity 

1
S1

3
T1 (shown in figure 1.1)

2
 . 

 

Figure 1.1. Jablonski Energy Diagram 
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Photoluminescent complexes are those that emit radiation after it has been electronically 

excited.  These complexes also deal with nonradiative decaying
7
. Luminescence from lanthanide 

(III) ions is the result of completion between radiative and non –radiative pathways in the 

relaxation of an electronically excited species 
7
. “The multitude of electronic energy level due to 

the f electrons allows for  a rich cascade of radiative and non –radiative relation processes in 

excited lanthanide ions” 
7
. 

 Radiative transitions in the free lanthanide ions theoretically only allow magnetic dipole 

(MD) transitions to be allowed 
7
. This is done by the change in the total angular momentum (∆J) 

of the electrons.  Europium (III) emission at 590 nm is an example of a MD transition.  

However, radiative transitions differ when placed into a coordination environment. When 

coordination takes place electric dipole (ED) transitions are induced as ligand field mixing odd-

parity configuration slight in the 4f
n
 to 5d

0
 configurations 

7
. There are transitions that acquire 

both MD and ED contributions. For example, terbium (III) emission spectrum is dominated by 

both MD and ED transitions 
7
. MD and induced ED transitions of lanthanide ions are weak when 

compared to transitions that are fully allowed. 

 Non-radiative deactivation in luminescent lanthanide complexes is as important as 

radiative luminescence. This process of molecular high-energy vibration in organic ligands and 

solvents makes non-radiative relation of excited lanthanide ions much more efficient 
7
. The aim 

when developing luminescent lanthanide complexes are to protect the ion from quenches, such as 

O-H vibrations of water, which are good quenchers of lanthanide luminescence 
7
. Tb(III) and Eu 

(III) complexes prevent a real challenge for non-radiative deactivation in complexes near-
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infrared luminescent ions that are intrinsically more sensitive to quenching by molecular 

vibrations 
7
. 

1.2 Lanthanides 

Scandinavia is the birth place for lanthanide chemistry
8
. Gadolinite also known as earth 

yttria was discovered in 1794 by Johann Gadoline 
8
. However, in the early 1840s Swede C. G. 

Mosander separated earth into their component oxides, which we know as cerium and lanthanum 

today
8
. Henry Moseley was the first to analysis different lanthanides using X-ray in 1907

8
. He 

also showed that there were 14 lanthanides ranging from Lanthanum (atomic number 57) to 

Lutetium (atomic number 71), which are all electropositive
5, 8-9

. These lanthanides are known as 

“rare earth metals”. 

These rare earth metals exhibits numerous features, which differentiate them from the d-

block metals. Lanthanides coordination number ranges from six to twelve
8
. For Terbium and 

Europium which is used in our research group the coordination number could be eight or nine. 

Ligand steric determines coordination geometries rather than the crystal field effects
8
. 

Lanthanides have small crystal-field splitting and very sharp electronic spectra
8
. Lanthanide 

favors the +3 oxidation state. Since the 4f orbitals are well shielded by the 5s
2
 and 5p

6
 orbitals 

they do not participate directly in bonding, and this makes spectroscopic and magnetic properties 

uninfluenced by ligands
8
. “They form labile „ionic‟ complexes that undergo facile exchange of 

ligand”
8
. These Ln

3+
 ions do not extend past the xenon core, because there is no longer s and d 

electrons
5
 . Ln

3+
 ions are hard Lewis acids that have high affinity to hard bases, such as oxygen 

and nitrogen. Electronic spectra of lanthanide systems have a variety of colors, 
1
. Lanthanides 

actual absorption bands are associated with f-f electronic transitions which are Lapporte 

forbidden transitions 
1
. These f-f transitions have large numbers of weak and sharp bands. The 
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absorption bands of these transitions are closely related to the emission spectrum corresponding 

to the ion 
1
. In addition there are also electron-transfer bands, which have broad, intense bands 

that are found in the UV region for selected lanthanide systems including, cerium, samarium and 

europium ions 
1
 . 

 When considering coordination of all trivalent lanthanides ligand, it occurs 

predominantly via ionic bonding interactions. The ionic bonding interactions of trivalent 

lanthanides leads to a strong preference for negatively charged donor groups (hard bases). 

Trivalent lanthanides prefer coordinating to water molecules and hydroxide ions, so while in 

aqueous solution ligands with negatively charged oxygen will bind strongly. Even though Ln
3+

 

prefer ligands donors groups that have negative charged oxygen they will also bind to ligands 

with neutral donors such as nitrogen and oxygen. However in order for Ln
3+

 to bind to ligands 

with neutral donor site it must have donor site that is a hard base.  

Coordination of lanthanides electric dipole transitions are favored as the ligand field 

mixes odd parity configurations. Coordinating chromophores absorb energy, several lines of 

absorption and emission is due to electric dipole transition 
3a

. Both magnetic dipole and electric 

dipole transitions of lanthanide ions are weak compared to fully allowed transition in organic 

chromophores 
3a

 . Lanthanides excited state is relaxed by radiative process and non-radiative 

process. Organic chromophores have high energy vibrations. Because of organic chromophores 

the excitation energy of lanthanide complexes can be dissipated by vibrations of surrounding 

matrix through a process known as multi-phonon relaxation
3a

 . The efficiently in lanthanides 

undergo multi-phonon relation, which is due to low energy gap that cause immediate decay to 

take place from the higher excited state to low lying excited state 
3a

.  
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1.2.1 Terbium. Carl Gustaf Mosander was the first to discover and first isolate terbium 

in the mid-1800s.  Terbium (Tb) is a block F, group 3, period 6 element. Terbium atom has a 

Van der Waals radius of 221 ppm and radius of 177 pm 
10

. Tb (III) is a hard acid and has a 

coordination number of nine. Tb (III) interacts great with hard bases such as oxygen. Even 

though Tb (III) prefers harder bases they will also react with nitrogen which is a softer base. 

Terbium also forms stable chelates with negative charged donating ligands. Terbium shows 

intense emission bands at 490, 545, and 590 nm, corresponding to 
5
D4

7
F6, 

5
D4

7
F5, 

5
D4

7
F4, 

and 
5
D4

7
F3 transitions, respectively. The emission band of Tb

3+
 at 545nm is the most sensitive, 

as shown in figure 1.2. Terbium is used in green phosphors in fluorescent lamps and color TV 

tubes. 

 

Figure 1.2. Emission spectrum of terbium (III) 
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1.2.2 Europium. Europium (Eu) is a chemical element found in the lanthanide series 

with an atomic number of 65. Europium is named after Europe. It is rare earth metal that is 

silvery white soft metal. In the lanthanide series europium is the softest and least dense. It also is 

very easy to oxidize in the air. Europium is a ductile metal that crystallizes in a body-centered 

cubic lattice 
4
.  The most common oxidation state of europium is +3. Europium (III) generally 

has a coordination number of eight or nine. Europium properties are influenced by its half-filled 

electron shell. Eu
3+

 ions have relatively large energy gap between the lowest emission level and 

the ground state
10

 . Europium (III) has emission bands at 580, 590, 613, 650, 690, and 710nm 

corresponding to the 
5
D0

7
F0, 

5
D

7
F1, 

5
D0

7
F2, 

5
D0

7
F3, 

5
D0

7
F4, and 

5
D0

7
F5 transitions, 

respectively. Eu (III) most intense band is at 613nm. However, at 580nm (
5
D0

7
F0) the 

transition is a forbidden transition and is weak. This transition is prohibited due to the selection 

rules
11

 .  

1.3 Energy Transfer 

 There has been a wide range of studies/observations on emission for lanthanide ions 

under various conditions. Since Lanthanide ions have very intense luminescent properties and 

have long luminescent lifetimes and line-like emission they are used as phosphors and lasers
12

. A 

great number of lanthanide ion exhibits materials containing lanthanide ions have been used as 

phosphors and laser materials because of their sharp, intensely luminescent f-f electronic 

transitions. In particular, a number of lanthanide complexes display a bright and narrow emission 

lines. Because lanthanide ion have low extinction coefficient it makes direct photoexcitation 

difficult. This can be overcome by using energy transfer process from organic chromophores to 

lanthanide ions. 
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  The lanthanide ions Eu(III), and Tb(III) have large energy gap between lowest 

luminescent excited states to highest ground state manifold
12b, 13

. Hence these ions show strong 

visible luminescence because of the reduced vibrational quenching that could bridge the gap of 

non-radiative pathway. The luminescence intensity and excited state lifetime is linearly 

proportional to the number of quenchers present inside the inner coordination sphere of 

lanthanide ion
14

. Quenching can be overcome by incorporating chromophores. Chromophores 

generally help remove solvent and water molecule from the inner coordination sphere of the 

lanthanide ions.  Hence, chromophores assist in the enhancing luminescence of lanthanides 
9
. 

Chromophores also provides alternate pathway for energy transfer and they enlarge the Stokes 

shift
9
.  

 

Figure 1.3. Energy transfer diagram of luminescent lanthanide complexes 
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1.4 Ligands 

Ligands are molecules or ions that bind to a central atom to form a complex molecule. 

They are either neutral or negatively charged molecules, and are usually known as electron 

donors or bases, whereas the metal functions as the Lewis acid or electron acceptor. Ligands 

provided the electron for the bond to the central metal, which in this case Tb
3+

 or Eu
3+

.  The 

ligands that are being proposed in this research have nitrogen binding sites.  There has been 

several synthesis using nitrogen donor ligands, such as terpyridine ligands.  These terpyridine 

ligands are used to form complexes with different lanthanides, such as Tb
3+

 and Eu
3+

.  These 

lanthanides are used because of their luminescent properties, and because they are enhanced by 

the absorbent chelating ligands. 

Organic ligands are currently used in research to help enhance the luminescence because 

they are efficient sensitizers for the luminescence of Ln (III) ions, meaning that Ln (III) ions 

have a low molar absorption coefficient
15

.  Coordinating Ln (III) ions to organic ligands 

(polydentate ligand) with multiple binding sites helps to change the overall symmetry of the 

complexes as well as decreases the coordination number of Ln (III) ions. In addition to 

polydentate ligands reducing coordination site to Ln (III) ions, decrease the non-radiative energy 

loss therefore, increase luminescence
16

. Figure 1.4 shows how chromophore (organic ligands) 

operates as an antenna, absorbing light then transferring this excitation to the metal ion, which 

can then deactivate by undergoing its typical luminescent emission 
6-7

. The usual impediment in 

lanthanide ion systems is that direct absorption of the f-f excited states is very inefficient. Hence, 

a light harvesting ligand is essential to enhance the emission from the metal cation site. Donor 

ligands used for such applications usually have strong absorbance in the UV region and transfer 

their excited energy to the acceptor lanthanide ions. 
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Figure 1.4. Energy transfer when chomophores act as an antenna 

1.4.1 Terpyridine Ligands.  Terpyridines (also known as terpy) are N-donor ligand that 

contains three nitrogen donor binding sites, which is consider as a tridentate ligand. This 

asymmetric tridentate ligands 4'-(4-methylphenyl)-2 2' 6' 2''-terpyridine, is used in this research 

because of its high binding affinity to form complexes with ternary rare earth metals, which have 

very intense emission
17

. This N-heterocyclic ligand features makes it useful in ability to absorb 

excitation near-UV radiations and channel it to the Ln(III) ions
15

. Since the terpy ligand is a 

donor system that absorbs in the UV region and has been shown to undergo energy transfer 

processes with select lanthanide cation; a number of compounds have been reported to contain 

terpy, or derivatives thereof that act as light harvesting antenna and can subsequently transfer 

absorbed energy to coordinated Ln
3+

 cations.  One of our research aims is to prepare compounds 

that contain multiple donor species that can cooperatively enhance the lanthanide emission. In 

doing so we hope to (1) broaden the energy range for donor light harvesting and (2) create 

systems with highly efficient lanthanide luminescence via cooperative energy transfer from the 

donor groups. In this study we used a combination of an organic ligand and group 11 transition 

metal complexes as dual sensitizers of the lanthanide emission. 
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Figure 1.5. 4'-(4-methylphenyl)-2 2' 6' 2''-terpyridine 

1.4.2 Phenanthroline Ligands.  Phenanthroline is an N-donor ligand with two nitrogen 

donor binding sites. This bidentate ligand plays an important role in lanthanide complexes. 

“Phenanthroline   is a rigid planar, hydrophobic, electron poor heteroaromatic system whose 

nitrogen atoms are beautifully placed to act cooperatively in cation binding” 
16-18

. In aqueous 

solution phenanathroline act as a weak base, and also form octahedral complexes with first row 

transition metals 
18

. Since phenanthroline is basic it attracts Ln (III) ions increasing its binding 

affinity to form complexes. Octahedral complexes have been study such as [M(phen)]
2+

, 

([Mn(phen)]
2+

), and ([Cu(phen)]
2+

) which are very stable complexes and exhibit great entropic 

contribution due to the hydrophobic nature
16, 18-19

. 

  5-Nitro-1, 10-phenanthroline is a phenanthroline derivative that is used in this researcher 

shown in Figure 1.5. This derivative is bidentate ligands due to the two nitrogen donor sites that 

can bind to metals such as Tb
3+

 and Eu
3+

. However, since phenanthroline  is hydrophobic 

solubility in water seems unlikely. However, phenanthroline is slightly soluble in water, and very 

soluble in other polar solvents. 
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Figure 1.6. 5-Nitro-1, 10-phenanthroline 

 In this research we are using organic ligands, such as phenanthroline and terpyridine 

ligands, which are electron donors and are used as strong chelating agents. These ligands have 

multiple donor sites, which can coordinate to lanthanide ions. The overall goals of this research 

are to successful coordinate terbium or europium to the nitrogen donor site to sensitive and 

enhance the luminescence intensity of the lanthanide ions. Enhancing the luminescence of the 

lanthanide is accomplished by excited state energy transfer from the allowed ligand based 

excitation to the lanthanide f-excited level. A current interest in our lab is rationally designing 

system where the weak lanthanide emission can be enhanced through a cooperative effect of 

multiple donor systems. Hence, in this project we are aspiring to coordinate a transition metal 

complex as the second donor. The potassium dicyanoaurate (I) is thus coordinated as a second 

donor to the lanthanide ion. In doing this we are hoping to see energy transfer from the 

dicyanoaurate (I) to the lanthanide excited state which may assist in the enhancement of the 

luminescence efficiency of the lanthanide ion.  
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2 CHAPTER 2  

Experimental Methods 

2.1 Materials 

Solvents used in this study for synthesis are acetonitrile, ethanol, methanol, and distilled 

water. Metals used EuCl3•6H2O, and TbCl3•6H2O hexahydrate. Selected ligands used were 5-

Nitro-1, 10-phenanthroline, 4'-(4-methylphenyl)-2, 2‟:6‟, 2”-terpyridine (Terpy), 2, 2′-Dithiobis 

(5-nitropyridine) (DTNP), and potassium dicyanoaurate (I) (KAu (CN) 2). All chemicals were 

from Sigma-Aldrich and used without further purification. 1, 3, 5-triaza-7-phosphaadamantane-

7-oxide (TPAO) was prepared as described in the literature 
20

. 

2.2 Experimental 

2.2.1 Synthesis of [Tb(H2O)4(Au(CN)2)(C22H17N3)(TPAO)]Cl3,1 This synthesis was 

carried out using 0.0710g of TPAO, 0.0720g of  terpy, 0.0500g of TbCl36H2O, and 0.0819g of 

KAu(CN)2. terpy and TPAO were placed in a 50mL round bottom flask and dissolved in 5mL of 

MeCN and 5mL MeOH allowed to heat and stir for 5 min TbCl3 and KAu(CN)2 were placed in a 

separate vial and 4 mL of EtOH and 2 mL of distilled water was added and heated for 5 minutes. 

Then TbCl3 and KAu(CN)2 were placed into a beaker. Then slowly added the TPAO and Terpy 

solution, then covered with parafilm and let slowly evaporate.  

2.2.2 Synthesis of [Eu(H2O)4(Au(CN)2)(C22H17N3)]Cl3, 2.  A 0.1164g of terpy, 0.1179g 

of EuCl3, and 0.1061g of KAu(CN)2 was measured out and placed in a 25mL round bottom 

flask. Then add 5mL of EtOH, 5mL of MeOH, and 5mL of acetone. Allowed solution to heat 

and stirred for 5 minute. The solution was then filtered and covered with parafilm and allowed to 

slowly evaporate. 
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2.2.3 Synthesis of [Tb(H2O)4(Au(CN)2)(C22H17N3)]Cl3,3. A 0.1202 g of terpy, 0.0817g 

of TbCl3, and 0.0800g of KAu(CN)2 was measured out and placed in a 25 mL round bottom 

flask. Then add 5mL of EtOH, 5mL of MeOH, and 5 mL of acetone. Allowed solution to heat 

and stir for 5 minute. The solution was then filtered and covered with parafilm and allowed to 

slowly evaporate. 

2.2.4 Synthesis of [Eu(H2O)4Au(CN)2(Phen)]Cl3,4.  A 0.01237g of Phen, 0.01279g of 

EuCl3, and 0.01191g of KAu(CN)2 was measured out and placed in a 25mL round bottom flask. 

Then add 5mL of EtOH, 5mL of MeOH, and 5mL of acetone. Allowed solution to heat and stir 

for 5 minute. The solution was then filtered and covered with parafilm and allowed to slowly 

evaporate. 

2.3 Spectroscopic Methods 

The characterization of the research samples where done using various techniques, 

amongst the spectroscopic methods, which includes IR, Raman, and luminescence instruments. 

The IR spectra were collected using Shimadzu IRPrestige21 Fourier-Transform infrared 

spectrophotometer using potassium bromide (KBr) pellets. Steady-state emission and excitation 

were collected on a Photon Technology (PTI) photomultipler detection system. Raman data was 

collected using Horiba XploRA Raman Confocal Microscope System. 

2.4 X-ray Crystallographic Studies 

The X-ray data was collected using the SMART X2S single X- ray diffractometer using 

the Mo-Kα radiation. X-ray quality crystals were selected from under a microscope to check the 

polarizability and color.  The single crystals are measured in mm under the microscope. The 

single crystal is mounted on a pin and loaded into the instrument. The SMART X2S 

automatically places the crystal on the goniometer head, aligns the sample and begins collecting 
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data on a CD-R. Once data is collected from the CCD detector were interpreted and integrated 

with the program AXS from Bruker. The structure was solved and refined using the SHELXTL 

Software Package. The final anisotropic full-matrix least-squares refinement on F2 with 

variables converged at R1, for the observed data and wR2 for all data. The goodness-of-fit, 

largest peak in the final difference electron density synthesis and the largest hole with an RMS 

deviation was considered. On the basis of the final model, the density and F(000) is calculated. 

Although several crystals were mounted and analyzed in this work, unfortunately none of the 

targeted compounds crystallized with suitable quality and feature for full data collection and/or 

provided acceptable solutions. 

2.5 Photoluminescence Measurement 

The luminescence spectra were collected using a Photon Technology International (PTI) 

spectrometer (model QM-7/SE). The system uses a high intensity Xe source for excitation. 

Selection of excitation and emission wavelengths are conducted by means of computer 

controlled, autocalibrated “QuadraScopic” monochromators and are equipped with aberration 

corrected emission and excitation optics. Signal detection is accomplished with a PMT detector 

(model 928 tube) that can work either in analog or digital (photon counting) modes. All of the 

emission spectra presented are corrected to compensate for wavelength dependent variation in 

the system on the emission channel. The emission correction files which were generated by 

comparison of the emission channel response to the spectrum of a NIST traceable tungsten light 

were used as received from Photon Technology International (PTI). The emission correction was 

conducted in real time using the PTI provided protocol. The instrument operation, data 

collection, and handling were all controlled using the advanced FeliX32 fluorescence 

spectroscopic package. The steady state emission and excitation spectra were collected upon 
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continuous excitation (without introducing any time delay). The PTI system uses a high intensity 

xenon lamp for excitation sources. Signal detection is accomplished with a PMT detector. This 

PMT detector can work either in analog or digital modes. However, digital (photon counting) 

modes are used in this research. Data manipulation was achieved by the FeliX32 fluorescence 

package. This instrumentation was set up in a dark room to avoid possible interference from 

visible light. Samples were introduced into the luminescence instrument by means of sealed 

borosilicate capillary tubes.  

2.6 Raman Studies 

Raman data were collected using the Horiba XploRA Raman Confocal Microscope 

System. Raman spectroscopy techniques are used to observe vibrational, rotational, and other 

low-frequency modes in a system. One thing that Raman systems rely on is inelastic scattering of 

the monochromatic light. The monochromatic light usually comes from the laser in the near 

infrared, near UV or visible range. The laser light interacts with phonons and molecular 

vibrations resulting in the energy of the laser photons being shifted. The shift that occurs gives 

information about the vibrational modes.  
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CHAPTER 3  

Results 

3.1 Infrared, photoluminescence, and Raman studies of compound 1 

3.1.1 Infrared spectroscopy of 1. Figure 3.1 shows a weak band at 2146 and 2156 cm
-1

 

assignable to the CN stretching from Au(CN)2
-
. The weak band at 2983 cm

-1
 and 3001 cm

-1
 is 

due to the CH symmetric stretch for a sp
3
 hybridized bond.  The broad band around 3320cm

-1 
is 

due to OH, which could be due to the solvents of choice and/or coordinated H2O.  

 

Figure 3.1.  Infrared spectrum of compound 1 

3.1.2 Raman studies of 1. The Raman spectrum of compound 1 shown below and 

observed at 2165 cm
-1

confirms the coordination of the cyanide group to the lanthanide center as 

can be seen in Figure 3.2.   The stretching frequency was observed at a blue shifted position 

when compared with the uncoordinated CN stretch in KAu(CN)2 which is usually observed at ~ 

2145 cm
-1

. 
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Figure 3.2. Raman spectrum of 1 

3.1.3 Photoluminescence studies of compound 1. The luminescence data of 1 shows the 

f-f characteristic transitions of Tb
3+

 in the spectra obtained.  The emission spectrum of 1 was 

collected at room temperature in a range of 450 nm to 625 nm upon excitation at 378 nm, which 

is shown in Figure 3.3 below. The most intense band is at 540 nm (hypersensitive band) when 

excited at 378 nm, which corresponds to 
5
D4 

7
F5 transition of Tb

3+
. Figure 3.3 also show other 

well defined brands at 483, 578, and 615 nm, which are also characteristic of Tb
3+

. When 

collecting the spectrum under liquid nitrogen the Tb
3+

 profile intensity increases, shown in 

Figure 3.4 below. 
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Figure 3.3. Emission spectrum of 1collected at room temperature upon excitation 378nm 

 

Figure 3.4. Emission spectrum of 1 collected under Liq. N2 and excited at 378 nm 

The emission spectrum of 1 was collected at room temperature in a range of 440 nm to 

625 nm upon excitation at 343, 350, and 385 nm, which are shown in Figures 3.4, 3.6, and 3.7 

below. Figure 3.4 and 3.6 was collected at room temperature.  Both spectra show the 
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hypersensitive band is at 542 nm when excited at 343 nm and 350 nm, which corresponds to 
5
D4 


7
F5. When exciting the two spectra under liquid nitrogen there is no difference except an 

increase in intense, shown in Figures 3.5 and 3.7.  Figure 3.8 show s hypersensitive and at 

541nm when excited at 385 nm.  The hypersensitive band for Tb
3+

 corresponds to 
5
D4 

7
F5 

transition. The peak assignments are listed in Table 3.1, which highlight the corresponding 

energy and assignment transitions respectively to the wavelengths that are seen in the spectra. 

 

Figure 3.5. Emission spectrum of 1 collected at room temperature upon excitation at 343 nm 
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Figure 3.6. Emission spectrum of 1 collected under Liq. N2 and excited at 343 nm 

 

Figure 3.7. Emission spectrum of 1 collected at room temperature and excited at 350 nm 
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Figure 3.8. Emission spectrum of 1 collected under Liq. N2 and excited at 350 nm 

 

Figure 3.9. Emission spectrum of 1 collected at room temperature upon excitation at 385 nm 
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Figure 3.10. Emission spectrum of 1 collected under Liq. N2 and excited at 385 nm 

Table 3.1  

Emission peak positions and assignments for compound 1   

 

Wavelength (nm) 

 

Wavelength (cm
-1

) 

 

Peak Assignments 

485 nm 20619 5
D4

7
F6 

541 nm 18484 5
D4

7
F5 

579 nm 17271 5
D4

7
F4 

582 nm 17182 5
D4

7
F3 

615 nm 16260 5
D4

7
F2

 

 

The excitation spectrum shown in Figure 3.11 corresponds to compound 1. The spectrum 

was collected at room temperature and monitored at 540 nm.  The figure shows broad bands 

centered at 348 nm and 385 nm corresponding to the terpy ligand and Au(CN)2
-
, respectively. 

The weak sharp bands at 404 and 413 nm correspond to f-f transitions within the Tb
3+

ion.  Figure 
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3.12 was collected under liquid nitrogen shows a broad shoulder around 345 nm and a more 

intense broad band at 382 nm. The assignments of the peaks are given in Table 3.2, which 

highlight the transition energies corresponding to the wavelengths that are seen in the spectra. 

 

Figure 3.11.Excitation spectrum of 1 collected at room temperature when monitored at 540 nm 

 

Figure 3.12. Excitation spectrum of 1 collected under Liq. N2 and monitored at 540 nm 

Excitation spectrum of Figure 3.13 was collected at room temperature and monitored at 

488 nm.  The excitation spectrum shown in Figure 3.13 has two broad bands at 347 and 382 nm 
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that correspond to the terpy ligand and Au(CN)2
-
. Figure 3.14 was collected under liquid nitrogen 

while monitoring at the 488 nm emission line. The excitation spectrum shows a broad shoulder 

around 350 and a more intense broad band at 384 nm.  

 

Figure 3.13. Excitation of spectrum of 1 collected at room temperature when monitored at 

488nm 

 

Figure 3.14. Excitation spectrum of 1 collected under Liq. N2 and monitored at 488 nm 
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Table 3.1  

Excitation peak positions and assignments for compound 1  

Wavelength (nm) Wavelength (cm-1) Peak Assignment 

348 nm 28818  
5
D2

7
F6 

385 nm 25974 5
D3

7
F6 

406 nm 24631 5
D3

7
F6 

411 nm 24331 5
D3

7
F6 

 

3.2 Infrared, Raman, and photoluminescence’s studies of Compound 2 

3.2.1 Infrared spectroscopy of 2.  Figure 3.15 shows bands at 2158cm
-1

, 2183cm
-1

, and 

2140cm
-1

 which corresponded to the CN stretching. The 2158cm
-1

 band which is a strong band is 

due to the coordination of the Au(CN)2
-
. However, the stretching at 2183cm

-1
 and 2140cm

-1
 are 

uncoordinated CN bonds from Au(CN)2
-
. The OH stretching around 3320cm

-1
 could be due to 

the solvent of choice, which are MeOH and EtOH. The CC Stretching at around 1604cm
-1

 is due 

to the methyl group on the aromatic ring. 

 

Figure 3.15. Infrared spectroscopy of compound 2 
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3.2.2 Raman studies of 2. The Raman spectrum of compound 2 shows the coordination 

of CN to the Eu
3+

. The CN stretching peaks are observed at 2138, 2146, and 2179 cm
-1

 as shown 

in Figure 3.16 below. The former two appear as a doublet. 

 

Figure 3.16. Raman Spectrum of 2 

3.2.3 Photoluminescence studies of 2. The emission spectra of 2 were collected at room 

and liquid nitrogen. The emission spectra of 2 are shown in Figures 3.17 and 3.18.  The spectra 

were collected upon excitation at 378nm and show characteristics of Eu
3+

 bands.  The most 

intense peak is observed at 615 nm corresponding to 
5
D0 

7
F2 transition, which is noted in table 

3.3 below. The emission spectra of 2 shown in Figures 3.19 and 3.20 were collected at room 

temperature and under liquid nitrogen upon excitation at 343nm, showing characteristics of Eu
3+

 

bands.  The emission spectra of Figure 3.21 and 3.22 were collected at room temperature when 

exiting it at 385 and 400 nm, which shows the characteristics of Eu
3+

.  Figure 3.22 hypersensitive 

band is at 611 nm, which corresponds to 
5
D0 

7
F3 transition.  Other Eu

3+
 bands are also 
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observed at 590, 647, 688, and 697 nm.  When collecting the emission spectrum under liquid 

nitrogen the intensity increase which is shown in Figure 3.23 below. 

 

Figure 3.17. Emission spectrum of 2 collected at room temperature upon excitation with 378 nm 

 

Figure 3.18. Emission spectrum of 2 collected under Liq. N2 and excited at 378 nm 
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Figure 3.19. Emission spectrum of 2 collected at room temperature upon excitation with 343 nm 

 

Figure 3.20. Emission spectrum of 2 collected under Liq. N2 and excited at 343nm 
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Figure 3.21. Emission spectrum of 2 collected at room temperature upon excitation with 385 nm 

 

Figure 3.22. Emission spectrum of 2 collected at room temperature upon excitation at 400 nm 
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Figure 3.23. Emission spectrum of 2 collected under Liq. N2 and excited at 400 nm 

Table 3.3 

 Emission peak positions and assignments for compound 2  

 

Wavelength (nm) 

 

Wavelength (cm
-1

) 

 

Peak Assignments 

578 nm 17301 5
D0

7
F0 

590nm 16949 5
D0

7
F1 

595nm 16806 5
D0

7
F1 

615nm 16260 5
D0

7
F2 

620nm 16129 5
D0

7
F2

 

625nm 16000 5
D0

7
F2 

649nm 15408 5
D0

7
F3 

653nm 15314 5
D0

7
F3 

680nm 14706 5
D0

7
F4 
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Table 3.3 

Cont. 

690nm 14493 5
D0

7
F4 

696nm 14367 5
D0

7
F5 

702nm 14245 5
D0

7
F5 

710nm 14084 5
D0

7
F5 

  

All of the excitation spectra of 2 were collected at room temperature and liquid nitrogen. 

Figures 3.24, 3.25, and 3.26 were directly excited at one of Eu
3+

 characteristic bands.  The 

excitation spectra for compound 2 show broad bands that are uncharacteristic of f-f transitions. 

All of the excitation spectra for compound 2 contain sharp f-f transition bands around 430nm.   

 

Figure 3.24. Excitation spectrums of 2 when monitored at 590 nm 
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Figure 3.25. Excitation of 2 collected under Liq. N2 and monitored at 590nm 

 

Figure 3.26. Excitation spectrum of 2 when monitored at 615 nm 
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Table 3.2  

Emission peak positions and assignments for compound 2  

Wavelength (nm) Wavelength (cm-1)  Peak Assignment 

402 nm 24875 5
L6 

7 
F0 

 

Another emission spectrum of compound 2 was collected at room temperature, while 

exciting at 381 nm and ranging from 525 nm to 700 nm to determine if there is any energy 

transfer from the ligand to the metal ion. When exciting at 381 nm characteristic bands from the 

Eu
3+

 are observed around 615 nm, as shown in Figure 3.27.   

 

Figure 3.27. Emission spectrum of 2 collected at room temperature upon excitation with 381 nm 
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3.3 Infrared, photoluminescence, and Raman studies of Compound 3 

3.3.1 Infrared spectroscopy of 3. Figure 3.28 shows bands at 2151cm
-1

, 2217cm
-1

, and 

2226cm
-1

 which corresponded to the CN stretching. The medium stretching at 2151cm
-1

 

corresponds to the coordinated CN from Au(CN)2
-
. There is a strong broad OH band at 3308cm

-

1
, which could possibly be due to the solvent of choice, which are MeOH and EtOH and MeCN. 

There is also overlapping of sp
3
 hybridization of CH at 3196 cm

-1
. The strong CC stretching at 

1625cm
-1

 is due to the aromatic ring. 

 

Figure 3.28. Infrared spectrum of compound 3 

3.3.2 Raman studies of 3. The Raman spectrum of compound 3 shows the coordination 

of CN to the Tb
3+

.   The CN stretching peak of compound 3 is at 2164cm
-1

 shown in Figure 3.29 

below. 
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Figure 3.29. Raman spectrum of 3
 

3.3.3 Photoluminescence studies of compound 3 The emission spectrum of 3 was 

collected at room temperature and under liquid nitrogen upon excitation at 343 nm,378 nm and 

381 nm is shown in Figure 3.29, 3.30 and 3.31, and 3.32  below. The emission is monitored at 

378 nm and 343 nm to determine if there is any energy transfer from Au(CN)2
- 
to the lanthanide, 

Tb
3+

.  The most intense band is around 542 nm when excited at 343 nm and 378 nm, which both 

peaks corresponds to 
5
D4 

7
F5 transition, which is shown below.  
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Figure 3.30. Emission spectrum of 3 was collected at room temperature upon excitation at 

343nm 

 

Figure 3.31. Emission spectrum of 3 collected under Liq. N2 and excited at 378nm 
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Figure 3.32. Emission spectrum of 3 was collected at room temperature upon excitation at 

378nm 

 

Figure 3.33. Emission spectrum of 3 was collected at room temperature upon excitation at 

381nm 
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The emission spectrum of 3 was also collected when exciting at 385 and 400nm, which is 

the wavelength for the terpy ligand.   In Figures 3.34 and 3.35 the most intense peak is at 542nm, 

which corresponds to 
5
D4

7
F5 transition for Tb

3+
. 

 

Figure 3.34. Emission spectrum of 3 was collected at room temperature upon excitation at 

385nm 

 

Figure 3.35. Emission spectrum of 3 was collected at room temperature upon excitation at 

400nm 



41 

 

 

Table 3.3  

Emission peak positions assignments for compound 3  

 

Wavelength (nm) 

 

Wavelength (cm
-1

) 

 

Peak Assignments 

487 nm 20533 5
D4

7
F6 

542nm 18450 5
D4

7
F5 

583nm 17152 5
D4

7
F4 

619nm 16155 5
D4

7
F3 

 

Excitation in Figure 3.36 and 3.37 were monitored at 490 nm and 600 nm, which have 

broad bands at 340 and 375nm respectively.  These two bands correspond to the ligand and  

KAu(CN)2. Excitation spectra of Figure 3.38 and 3.39, and Figure 3.40 were monitored at 541 

and 540, and 586 nm.  

 

Figure 3.36.  Excitation spectrum of 3 when monitored at 490 nm 
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Figure 3.37. Excitation spectra of 3 when monitored at 600 nm 

 

Figure 3.38. Excitation spectrums of 3 when monitored at 541 nm 
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Figure 3.39. Excitation spectrum of 3 collected under Liq. N2 monitoring at 540 nm 

 

Figure 3.40. Excitation spectrum of 3 when monitored at 586 nm 

3.4 Infrared and photoluminescence studies of Compound 4 

3.4.1 Infrared studies of 4 Figure 3.41 shows a medium stretch at 2136cm
-1

 which 

corresponds to the CN stretching from KAu(CN)2.  The weak stretching at 3022 cm
-1

 is due to 
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the CH band, which is sp3 hybridized.  The broad band around 3342 cm
-1

 is OH, which is 

possible due solvent choice. 

 

Figure 3.41. Infrared spectrum of 4 

3.4.2 Raman studies of compound 4. Figure 3.42 shows the Raman spectra of Eu
3+

 

complex. This shows CN stretching at 2141 cm
-1

, which indicates that it is Raman active 

 

Figure 3.42. Raman spectrum of compound 4 
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3.4.3 Photoluminescence studies of compound 4. The emission spectrum of 4 was 

collected at room upon excitation with 343 nm and 378 nm as shown in Figure 3.43 and 3.45 

shown below. When monitored at 343 nm and 378nm the most intense band is around 615nm, 

which corresponds to 
5
D0

7
F2.  In Figure 3.46 the emission was excited at 343 nm and collected 

under liquid temperature. When collected under liquid nitrogen the 
5
D0

7
F1 and 

5
D0

7
F4 

increased significantly.  When exciting at 466 nm there are very weak Eu
3+

 bands which is 

shown in Figure 3.49 below. 

 

Figure 3.43. Emission spectrum of 4 collected at room temperature upon excitation at 343nm 
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Figure 3.44. Emission spectrum of 4 collected under Liq. N2 and excited at 343nm 

 

Figure 3.45. Emission spectrum of 4 collected at room temperature upon excitation at 378nm                                                           
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Figure 3.46. Emission Spectra of 4 collected at room temperature when monitored at 375 nm 

 

Figure 3.47. Emission spectrum of 4 collected at room temperature when excited at 395 nm 
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Figure 3.48. Emission spectrum of 4 collected at room temperature upon excitation at 399 nm 

 

Figure 3.49. Emission spectrum of 4 collected at room temperature upon excitation at 466 nm 
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Figure 3.50. Emission spectrum of 4 collected at room temperature upon excitation at 404 nm 

 

Figure 3.51. Emission spectrum of 4 collected at room temperature when excited at 420 nm 
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Table 3.4  

Emission peak positions and assignments for compound 4 

 

Wavelength (nm) 

 

Wavelength (cm
-1

) 

 

Peak Assignments 

578 nm 17301 5
D0

7
F0 

590nm 16949 5
D0

7
F1 

595nm 16806 5
D0

7
F1 

615nm 16260 5
D0

7
F2 

620nm 16129 5
D0

7
F2

 

625nm 16000 5
D0

7
F2 

649nm 15408 5
D0

7
F3 

653nm 15314 5
D0

7
F3 

680nm 14706 5
D0

7
F4 

 

690nm 14493 5
D0

7
F4 

696nm 14367 5
D0

7
F5 

702nm 14245 5
D0

7
F5 

710nm 14084 5
D0

7
F5 

 

All excitation spectrums of 4 were collected at room temperature and liquid nitrogen.   

Figure 3.52 excitation spectrum collected upon emission at 590nm. Figure 3.53 was monitored at 

560nm and shows a broad band around 382 nm, and more sharp bands around420-520nm.   
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Figure 3.52. Excitation spectrum of 4 collected at room temperature when monitored at 590nm 

 

Figure 3.53. Excitation spectra of 4 collected at room temperature when monitored at 560 nm 
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Figure 3.54. Excitation spectra of 4 collected at room temperature when emitted at 466 nm 

 Excitation spectra shown in Figures 3.55 and 3.56 were collected at room temperature 

and liquid nitrogen upon emission at 615 nm.  Monitoring at 615 nm gives direct excitation of 

the lanthanide, which gives a broad should at 382 at 398 nm.   

 

Figure 3.55. Excitation spectra of 4 collected at room temperature when emitted at 615 nm 
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Figure 3.56. Excitation spectrum of 4 collected under Liq. N2 and monitoring at 615 nm 
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CHAPTER 4 

Discussion 

4.1 Vibrational Studies 

 The IR spectrum of 1 shown in Figure 3.3 has a strong broad band assignable to OH at 

3327 cm
-1

.  The stretching of the sp
3
 hybridized CH is observed at 2983 and 3001 cm

-1
. A 

medium doublet band is observed at 2146 and 2156 cm
-1 

which corresponds to the CN stretching 

frequency. The Raman studies of 1 also show a more intense singlet CN band at 2165 cm
-1

. 

Similarly, the IR spectrum of compound 2 shows the CN stretching at the same wavenumber as 

compound 1, although the  Raman data of 2 shows the CN stretching at 2141 cm
-1

, which is 

slightly blue shifted when compared to compound 1.  The IR spectra of compound 3 show a CN 

stretching with values between compounds 1 and 2. Both the IR and Raman spectra of compound 

4 are observed at red shifted positions when compared to the other three compounds.  This red 

shift indicates that electron density increase at the CN bond suggesting that the phen ligand is 

more pi-donor than the terpy ligand causing weakening of the CN bonds. 

4.2 Photoluminescence studies of Tb
3+

 complexes (1 and 3) 

  Compounds 1 and 3 exhibits uniform bright green luminescence characteristics of Tb
3+

 

emission. The excitation spectra of 1 and 3 was collected at room temperature and under liquid 

nitrogen and monitored at the Tb
3+

 hypersensitive peak at 540 nm and corresponds to 
5
D4 → 

7
F5 

transition.  The spectrum shows a broad band at 347 nm assignable to the  transitions 

corresponding to the terpy ligand.  Another broad band is also observed at 384nm assignable to 

the charge transfer transition within the Au(CN)2
-
 system.  The weak and sharp peaks at 403 and 

413 nm are assignable to f-f transition within the Tb
3+

ion.  The dominant broad bands, which are 

centered at 347 nm and 384 nm, are uncharacteristic of f-f transitions. Observation of 
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characteristic Tb
3+

 emission lines upon excitation into these broad bands unambiguously 

demonstrates that the sensitized emission is achieved through antenna effect of terpyridine-based 

π-π* intraligand triplet states and Au-based triplet transitions. The emission spectra of 

compounds 1 and 3 were also collected at room temperature and under liquid nitrogen.  The 

complexes have sharp bands at 487, 540, 579, and 615 nm attributable to 
5
D4 → 

7
F6, 5, 4, 3 

transitions of Tb
3+

, respectively.   

Comparison of the emission intensities at the broad bands (347 and 384 nm) and at the f-f 

direct excitation lines indicates that the sensitized emission is significantly dominant indicating 

that the ligand-centered and the charge transitions are the principal route for the delivery of 

excited energy into the terbium‟s 4f
 n

 electronic levels. 

4.3 Photoluminescence Studies of Eu
3+

 Complexes (2 and 4) 

The excitation spectra of compounds 2 and 4 were collected by monitoring at the 615 nm 

emission line.  Both compounds show a broad band at 370 nm, indicating a 

 transitions 

within the phen and terpy ligands.  The excitation spectra of both compounds also contain sharp 

f-f transition at longer wavelengths.  The dominance of the broad band uncharacteristic of f-f 

transition within the Eu3+ electronic levels clearly indicates that ligand and CT transfer  

The emission spectra of compound 2 and 4 show all the characteristics of Eu
3+

.  The emission 

spectra of compounds 2 and 4 both show 
5
D0

7
F0 transition which is an f-f forbidden transition.  

Even though 
5
D0

7
F0 transition is forbidden it may gain intensity through J mixing due the 

crystal field effect under low symmetry. The point symmetry of the 
5
D0

7
F0 transition should 

have both magnetic dipole allowed and electric dipole allowed transitions.  All spectra of 

compound 4 show the maximum number of splitting (three) for the 
5
D0

7
F1 transition, which 

indicates that the europium ion occupies low site symmetry.  In contrast, compound 2 splits into 
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a doublet suggesting that higher site symmetry occupation.  When exciting both Eu
3+

 complexes 

at 378 nm, the intensity ratio of the hypersensitive 
5
D0

7
F2 transition to the magnetic dipole 

5
D0

7
F1 transition is 1.22 for compound 2 and 1.88 for compound 4 suggesting the dominance 

of electric dipole transition in this system.  The phen ligand has a greater electric dipole effect 

than the terpy ligand on the Eu
3+

 environment.  When the compounds are monitored under liquid 

nitrogen temperature there is an increase in intensity of the electric dipole 
5
D0

7
F1 transition. 

Compound 2 shows five well-defined lines for the 
5
D0

7
F4 which is  partially allowed by 

magnetic dipole contribution,  whereas for compound 4 there are four well-defined lines 

indicating a point symmetry of c2v. When compound 4 is excited at 343 and 378 nm excited state 

energy transfer from the phen and the Au(CN)2
- 
to the lanthanide is clearly evident.  The 

sensitized emission intensity is significantly higher than the direct f-f excitation as can be 

observed in the intensity differences of the 343 nm vs. the 466 nm excitations, respectively.  

Finally the dominance of the electric diploe transition in these systems clearly indicates that the 

Eu
3+

 ion occupies a non centrosymmetric site occupation. 
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3 CHAPTER 5 

Conclusion 

 This work shows four new compounds that have been successfully synthesized and 

characterized. Detail vibrational and photoluminescence studies including IR and Raman 

spectroscopy were conducted in these microcrystalline powdered products. This research has 

shown that both the ligand and transition metal complex coordinated the lanthanide center can 

sensitize the emission and resulting in significant emission enhancement. The new complexes 

that were studied are [Tb(H2O)2(Au(CN)2)(C22H17N3)(TPAO)]Cl3 1, 

[Eu(H2O)5(Au(CN)2)(C22H17N3)]Cl3 2, [Tb(H2O)4(Au(CN)2)(C22H17N3)]Cl3 3, and 

[Eu(H2O)3Au(CN)2(Phen)]Cl3,4. Each one of these complexes shows a dual donor 

intramolecular energy transfer, both from the ligand and from Au(CN)2
-
.  
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