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Abstract 

This work entails the research on lanthanide metalloporphyrins for their potential use as 

chemical sensors for benzene and acetonitrile. This research is of importance due to the health 

implications that benzene and acetonitrile cause; benzene is a known carcinogen and acetonitrile 

is a known lung irritant. The use of UV-Vis spectroscopy, Fluorescence spectroscopy, Gaussian 

DFT, and X-ray diffraction crystallography were used in the characterization and analysis of the 

lanthanide porphyrin complexes. Europium, terbium, dysprosium, cerium, and gadolinium were 

the lanthanides used in conjunction with 5,10,15,20-tetraphenylporphyrin, TPP and 5,10,15,20-

tetrakissulfonato porphyrin, TBSP. Based on the luminescence spectroscopy and UV-Vis 

spectroscopy data, an aqueous sensor for acetonitrile and benzene was shown to be promising. 

Among the compounds studied, EuTPP and DyTPP complexes exposed to sodium hydroxide 

showed promising results for sensing acetonitrile due to significant narrowing of the soret band 

and the decrease of Q bands in the UV-Vis spectra, along with the blue shifting of luminescence 

emission spectra. On the other hand, the CeTPP and EuTPP solutions show promise as benzene 

sensors due to the blue shifting of emission luminescence and variation in intensity. Based on the 

lanthanide TBSP complexes, TbTBSP was shown to be a promising sensor for acetonitrile due to 

the narrow soret band, decreased Q bands, and blue shifted emission spectra. EuTBSP, DyTBSP, 

and TbTBSP were shown to be promising for benzene sensors. Benzene stabilized the TBSP at a 

higher energy state, S2, to facilitate the energy transfer to the lanthanide ions. 
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CHAPTER 1 

Introduction 

1.1. Fundamentals and Properties of Luminescence  

Luminescence is defined as the emission of light from a substance that has been excited 

and is relaxing down to the ground state from an excited state with the emission of photons 

(Wiedemann, 1888). The term luminescence was coined by Eilhardt Wiedemann in 1888, 

although it had been observed for centuries among every nation. The earliest records of 

observation date back to Chinese literature between 1500-1000 B.C (Harvey, 1957). 

Luminescence encompasses a broad range of subcategories due to the different means of exciting 

electrons. Eilhardt Wiedemann specifically categorized luminescence into ten types: fluorescence, 

phosphorescence, thermoluminescence, electroluminescence, galvanoluminescence, 

sonoluminescence, triboluminescene, crystalloluminescence, chemiluminescence, and 

bioluminescence (Goldberg Marvin & Weiner Eugene, 1989). 

 
The two main modes of luminescence are fluorescence and phosphorescence. 

Fluorescence is the emission of light, due to an allowed electronic transition from a ground state 

to an excited state. Both states will have the same singlet spin multiplicity. Fluorescence has a 

short lifetime in the 10
-9

 second range. Phosphorescence is a process where the initial excitation 

from a ground state to an excited state with the same spin multiplicity, undergoes intersystem 

crossing to the triplet state and relaxes down to the ground state. The lifetime for 

phosphorescence is longer than that of fluorescence and lasts from microseconds to milliseconds 

to minutes (Goldberg Marvin & Weiner Eugene, 1989). In 1935, Jablonski developed a visual 

diagram to explain the theory behind luminescence. His diagram briefly and efficiently describes 

how an electron is excited from a ground state to an excited state, resulting in fluorescence    
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Figure 1.1. The Jablonski diagram showing the absorption and emission mechanism. 

In the case of fluorescence, an electron at the ground state, S0, absorbs energy and is 

excited to an excited state of the same multiplicity, S1. As the state loses energy it will relax non-

radiatively down to the ground state, causing the emission of photons; the photons are perceived 

as emitted light. If this process doesn’t emit photons as it relaxes from the excited state, then it 

has undergone a process called non-radiative decay. In the non-radiative decay process, the 

energy that was supposed to be emitted as photons is instead emitted as phonons, lattice 

vibrations or heat (Vij, 1998). A phonon is defined as a unit of vibrational energy that exists from 

oscillating atoms within a crystal lattice (Grimvall, 1981).
 
 

In the case of phosphorescence, the intersystem crossing from an excited singlet state to a 

excited triplet state is the reason for the “forbidden” transition term. Through vibrational 

relaxation, the electron relaxes from the excited triplet state to various meta-stable triplet states 

before it finally reaches the S0, ground state. The relaxation can occur radiatively or non-

radiatively, releasing light and heat, respectively (Wiedemann, 1888). 

http://www.google.com/imgres?q=jablonski+diagram&um=1&hl=en&sa=N&rlz=1R2SKPB_enUS354&biw=1093&bih=401&tbm=isch&tbnid=6wWnr8sEt4wxIM:&imgrefurl=http://web.uvic.ca/ail/techniques/epi-fluorescence.html&docid=CE5K5mGy6SPLOM&w=504&h=331&ei=4IGLTsS0J8m2twfLsq2lCg&zoom=1&iact=rc&dur=156&page=2&tbnh=150&tbnw=229&start=4&ndsp=4&ved=1t:429,r:0,s:4&tx=109&ty=71
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Luminescence is a vital tool that can be used to conduct at least five important physical 

measurements: the emission wavelength, the excitation wavelength, the excited state lifetime, 

emission polarization, and the quantum yield (Bequerel, 1907). Luminescence techniques have a 

wide array of applications in sensors for volatile organic compounds, nerve gases, and 

photodynamic cancer research (Vij, 1998). 

1.2. Role of Lanthanides in Sensor Applications 

 The Lanthanides are a family of elements that were first discovered in Scandinavia in 

1794 by Johan Gadolin. Since then, the majority of lanthanide ores are found in the minerals, 

Monazite, Bastnasite, and Xenotime (Cotton, 2006). Lanthanides are known for their optical 

properties due to their f-f orbital characteristics. They have a wide range of coordination numbers, 

coordination geometries that are determined by steric hindrance, small crystal field splitting and 

preferably bond to hard base ligands (Wulfsberg, 2000).  

 The electronic transition properties of lanthanides are responsible for them exhibiting 

fluorescence or phosphorescence. For example europium exhibits phosphorescence from its main 

emission band at 615 nm due to the transition from the 
5
D0 excited state to the 

7
FJ ground state-

manifold. Holmium on the contrary, exhibits fluorescence type luminescence from its main 

emission band at 540 nm. The emission band at 540 nm is due to the transition from 
5
S2 excited 

state to the 
5
I8 ground state manifold (J.-C. G. Bunzli & Piguet, 2005). 

 The optical properties of lanthanide systems are interesting due to their emission of color 

in the visible region of the electromagnetic spectrum as a result of f-f electronic transition from 

the shielded 4f. Since the 4f shell is shielded, it is disturbed minimally by the outside ligand, 

allowing the lanthanide retains its characteristic luminescent color (Binnemans, 2009). The 

characteristic colors of lanthanides are shown in table 1. 
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Table 1 

 Luminescent Lanthanides
9
 

Lanthanide Electronic Transition Color Luminescence Type 

Dysprosium 
4
F9/2  

6
HJ Yellow (570 nm) Phosphorescence 

Europium 
5
D0  

7
FJ Red (620 nm) Phosphorescence 

Samarium 
4
G5/2  

6
HJ Orange (590 nm) Phosphorescence 

Terbium 
5
D4  

7
FJ Green (550 nm) Phosphorescence 

 

 Lanza, et al. (Lanza, Varga, Kolonits, & Hargittai, 2008) expounds on the validity of the 

non reactivity of the 4f shell electrons in bonding. Their experiment sought further correlation 

between 4f shell electrons on the structural characteristics using dysprosium trichloride in 

particular. It was found that the electron configurations of the 4f shell electrons don’t alter the 

geometry of dysprosium trichloride monomer. Their reasoning being that the 4f shell electrons are 

down deep below the 5s
2
 and 5p

6
 shells, thus deep away from valence region that’s responsible 

for bonding and geometric configurations (RusCic, Goodman, & Berkowitz, 1983). They 

conducted other experiments only varying the lanthanide used, and came upon the same 

conclusion, thus validating that 4f shell electrons are minimally affected (Dolg, 1998). 

 Although lanthanides are known for their color characteristics, they are also known for 

providing a low intense luminescence. The inherently unaffected f-f transitions in lanthanides ions 

can be enhanced through indirect excitation (Hebbink, 2002). The case of direct excitation is 

when energy is directly added to the lanthanide ion in order to excite the electrons to an excited 

state. The case for indirect excitation is through the use of sensitizers; these are molecules, 

compounds, or complexes that are able to absorb energy and transfer it to the lanthanide ion to 
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compensate for the poor luminescence intensity of the ion (Bequerel, 1908). In order for the 

sensitizer to be effective, then it has to be in close proximity to the lanthanide ion to bond directly 

or allow for resonant electron energy transfer (A.S., 1995). The definition of resonant electron 

energy transfer is the non-radiative transfer of an electronic excitation from a donor molecule to 

an acceptor molecule in close proximity, 50-100 nm wavelength distances (Tokmakoff, 2011). 

  Sensitized fluorescence was first discovered by Cairo and Franck in 1922 (Cario, 1922). 

In an experiment consisting of a mixture of thallium and mercury vapors in a tube, selective 

excitation of the mercury atoms produced only the thallium emission suggesting the energy 

transfer from the donor mercury atoms to the acceptor thallium atoms (Maynard et al., 2009). 

Maynard, et al. (J. C. K. Bunzli, N.; Gunnlaugsson, T.; Stomeo, F. , 2008) also expounded on the 

effects of dual donor sensitization on the europium ion. The dual donors used were the 

tetracyanoplatinate complex and the organic terpyridine organic anion as shown in Figure 1.2. 

The terpyridine absorbed in the UV region and was able to transfer energy to the Eu
3+

 ion through 

a sensitization process (J. C. K. Bunzli, N.; Gunnlaugsson, T.; Stomeo, F. , 2008). 

 

Figure 1.2. Structure of terpyridine and tetracyanoplatinate. 

The coordination is through the nitrogen atoms to the lanthanide, Ln
3+

 ion by the 

tetracyanoplatinate functions as a sensitizer by donating energy, and it also functions as a bridging 

ligand by expanding the lattice network connecting multiple Eu
3+

 cores. The Eu
3+

 is coordinated 

to the terpyridine and tetracyanoplatinate; the intensity is higher and the 
5
D0  

7
FJ emission band 

is more narrow and intense (J. C. K. Bunzli, N.; Gunnlaugsson, T.; Stomeo, F. , 2008). 
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1.2.1. Europium studies. Europium was first isolated and named in 1901. It is one of the 

most reactive lanthanides, in that it oxidizes in air leading to an explosion hazard if temperatures 

exceed 150°C. Europium can form stable complexes in its divalent state, Eu
2+

, or in its trivalent 

state, Eu
3+

. Although it isn’t found free in nature, it can be extracted from mineral ore’s, such as 

monazite, bastnasite, and xenotime through various chemical and physical processes (Szabadvary, 

1998). 

 Europium has been studied extensively since its discovery due to its optical properties; it 

has been used in luminescence research, sensor applications, and biomedical assays. Europium is 

currently being investigated for its use in white light emitting diodes (Liu et al., 2012). Europium 

producing red light, a primary color, can be used in conjunction with other lanthanides in white 

light production (Luo, 2007). 

 Organic chromophores, organic compounds that are able to absorb light energy and 

transfer energy, are extensively used in Europium luminescent research to transfer energy. 

Cryptates have been shown to sensitize europium luminescence by absorbing UV light, 

transferring energy through LMCT, and exhibits low back transfer rates, which can decrease 

luminescence efficiency (J. G. Santos, Dutra, Junior, Freire, & da Costa Junior, 2012).  

 Terrestrial and marine toxins pose a threat to humans and animals alike. Saxitoxin is a 

paralytic shellfish toxin that has caused increasing concern in Southeast Asian and Pacific waters. 

Chromophores with europium incorporated into the structure have been used as sensors for 

saxitoxin. The chromophore has a moiety that hydrogen bonds with saxitoxin increases the 

luminescence emission intensity and increasing the quantum yield by more than 50 percent (He et 

al., 2011). Other lanthanides can be investigated in whether or not they also have an affinity for 

the chromophore that was used in the europium metal study.
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1.2.2. Dysprosium applications. Dysprosium was first purely isolated in 1950 

(Szabadvary, 1998). Dysprosium exists in its trivalent state and is commonly used in nuclear 

reactors, sonar systems and as neutron absorbers (Szabadvary, 1998). Dysprosium like any other 

trivalent lanthanides is paramagnetic. Its uses aren’t as numerous as europium, yet it is used 

consistently and reliably in few roles that it is employed.  

 Dysprosium is being studied in thermal reactors and cancer imaging due to it serving as an 

electron trap for in vivo imaging (Risovany, Zakharov, Muraleva, Kosenkov, & Latypov, 2006). 

It was proven to enhance luminescence imaging when excited through x-ray irradiation, providing 

a persistent red codopant luminescence (Bessiere et al., 2013; Maldiney et al., 2011). Dysprosium 

is also used in studies with phthalocyanine films due to the physicochemical properties and 

electrochromic behavior. They are susceptible to environment and used for sensor materials (de 

Saja & Rodríguez-Méndez, 2005). Although they were great photosensitizers, their luminescence 

profile was temperature dependent, being red shifted after heating and blue shifted when heated to 

350 K(Basova, Gürek, Ahsen, & Ray, 2007).
 

1.2.3. Terbium usages. Terbium was isolated from the mineral ore, bastnasite. It is 

commonly used in sensor devices, assays, LED lighting, and other biomedical uses. Terbium is 

often used due to its excitation wavelength in the UV region and emission wavelength in the 

visible part of the electromagnetic spectrum, 545 nm (Szabadvary, 1998). 

 Terbium has recently been used with an organic macrocycle as a chelating agent for Zn
2+

 

ions in the extracellular matrix. Terbium along with the organic ligand N,N,N’,N’-{2,6-

bis(3’aminomethyl-1’-pyrazolyl)-4-[N,N-bis(2-picolyl)aminomethylenepyridine]} tetrakis (acetic 

acid), BBATA as a chelating agent for Zn
2+

. In the absence of Zn
2+

, the lanthanide-organic agent 

luminescence profile is quenched (Ye et al., 2010).
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 Terbium has also recently been used in the biomedical industry for the detection of 

neurotransmitters. Kamruzzaman, et al. (Kamruzzaman, Alam, Lee, Kim, & Kim, 2012) devised a 

method in which terbium could be used to chelate to epinephrine, norepinephrine, and dopamine 

in order to act as sensor for detection of quantitative amounts of catecholamines in blood serum. 

The data was successful resulting in enhanced terbium luminescence directly proportional to the 

concentration of the catecholamine (Kamruzzaman et al., 2012). 

 Zu-Jin, et al. (Lin, Yang, Liu, Huang, & Cao, 2012) investigated the use of terbium in 

metal organic frameworks for the use of gas absorption studies. Microwave synthesis reduced the 

energy and time consumption while providing metal organic framework crystals comparable to 

regular solvothermal synthesis techniques. The microwave assisted synthesized techniques. The 

microwave assisted synthesized crystals offered structures that retained CO2, H2, and CH4 gases 

(Lin et al., 2012).
 

1.2.4. Gadolinium studies. Gadolinium was first isolated in 1901 from xenotime ore. 

Gadolinium has many uses, but primarily used in the biomedical industry as a MRI contrast agent. 

 Jongdoo, et al. (Lim et al., 2012) devised a practical use for gadolinium to be combined 

with dendrimers. The combination of the two will cause a slower pharmokinetic reaction of 

gadolinium in the organism, thus less Gd
3+

 used, reduced chance of kidney toxicity, and easier 

mode of excretion (Lim et al., 2012). 

 Que, et al. (Que & Chang, 2006) synthesized a gadolinium complex for chelating copper 

ions. A chelating agent has an affinity for a metal and withdraws it from a solution.  It is one of 

the first successful copper selective gadolinium magnetic resonance sensors. The lanthanide 

organic ligand shows a constricted conformation in the absence of Cu
2+

, but upon the 

coordination of Cu
2+

 the complex relaxes and extends (Que & Chang, 2006).
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1.2.5. Cerium applications. Cerium was first isolated in 1803. It is commonly used in arc 

lighting, catalytic converters, and flint in cigarettes. Cerium is the most abundant lanthanide 

found free in nature and in allanite, bastnasite, and monazite (Szabadvary, 1998). 

 Ornatska, et al. (Ornatska, Sharpe, Andreescu, & Andreescu, 2011) had used cerium 

nanoparticles as chromogenic indicators for the detection of glucose. They were able to 

successfully produce results by immobilizing the cerium and enzyme into paper bioassay; the 

analyte was then added and color change occurred based on oxidation of Ce
3+

 to Ce
4+

. The color 

changes from a white color to an orange color for the oxidized form (Ornatska et al., 2011).
 

 
Tanaka, et al. (Sreeremya, Thulasi, Krishnan, & Ghosh, 2011) used cerium to produce 

nanocrystals by using ammonium hydroxide. These nanocrystals show a red shift compared to 

nanocrystals produced by other methods.  This is a cost effective and time effective method that 

has many applications (Sreeremya et al., 2011).  

1.3. Silver Usage in Devices 

Silver, a transition metal has been used in many instances; it is usually used as an oxidant, 

antibacterial, electric devices, and electrochemical sensors (Wohrle, 2008). Its uses have 

increased with the knowledge of nonmaterial. This is due to it being very versatile in that it is also 

stable; this allows for it to be used in the production of coins.  

 Kong, et al. (Kong & Jang, 2008) have devised a method of incorporating silver 

nanofibers with rhodanine nanofibers in order to create a highly efficient antimicrobial material. 

The nanofiber is effective against gram negative and gram positive bacteria and yeast. Silver has 

also been used in several studies to attach to nitrogen heterocycles. Many nitroaromatics are 

hazardous to health and are produced from cigarette smoke, and industrial sources (Rosenkranz, 

1980). Maduraiveeran, et al. (Maduraiveeran & Ramaraj, 2009) successfully  used silver 
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nanoparticles to bind to nitrobenzene and characterized the results using cyclic voltametric 

curves, UV-Vis, X-ray diffraction and fluorescence spectroscopy. Silver has also been used as a 

sensor for heavy metals in the body. Research indicates that an excess of Cu
2+

 in the human body 

can cause kidney damage and neurodegenerative problems. Kirubaharan, et al. (Kirubaharan et 

al., 2012) devised a procedure in which silver nanoparticles are used for the extraction of Cu
2+

 

ions; a dye, Rh6G is used to track the progress of the reaction in which Cu
2+

 displaces the dye 

from its Ag
+
 attachment. Successful results were characterized by fluorescence spectroscopy, X-

ray diffraction and UV-Vis spectroscopy (Kirubaharan et al., 2012). 

1.4. Sodium Applications 

 Sodium, an alkali metal has many biological and industrial uses. Sodium cations are 

essential for electrical signal conduction in nerve cells. It is also used in heat transfer agents 

(Szabadvary, 1998). 

Sodium has been shown to increase the luminescence efficacy of single-walled carbon nanotubes. 

These nanotubes have the potential uses for photonics and sensor applications. Duque, et al. 

(Duque, Pasquali, Cognet, & Lounis, 2009) noticed that when carbon nanotubes were dispersed in 

liquid suspensions containing sodium anions such as sodium dodecylbenzene sulfonate or sodium 

deoxycholate, there was an enhancement of luminescence, decrease of decay time and narrow 

emission bands. This proved that sodium salts beneficially alter the environment of carbon 

nanotubes (Duque et al., 2009). 

 Sodium has also been used in everyday applications such as hand warmers. By taking 

advantage of the chemical properties of sodium acetate trihydrate it has been shown that when it 

reacts with water it behaves exothermically. This process also causes rapid crystallization to occur 

(Jackson & Dicks, 2012). 
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 Sodium salts have also been used to affect crystal morphology and kinetics. Burrows, et 

al., devised an experiment that showed that with increasing sodium nitrate concentration, the 

growth rate of crystals increased and influenced ordered aggregation (Burrows, Hale, & Penn, 

2012). It continues to be investigated in its affect as a solvent system for other crystal systems. 

1.5. Porphyrin Versatility and Functionality  

Porphyrins are some of the most versatile molecules and their derivatives are found in the 

heme group of hemoglobin, petroleum, chlorophyll α, and chlorophyll β. Figure 1.8 shows the 

similarities in the tetrapyrrole derivatives. The main structure of the porphyrin molecule is 

classified as a tetrapyrrole (Baker, 1978). In order to explore on how porphyrin is found in those 

three places, a common source has to be found. The crude oil that is trapped in the Earth’s crust 

first derived from decayed plant and animal remains.  

 

Figure 1.3. Similarities of the heme, chlorophyll α, and tetrapyrrole core. 

Muniyappan, et al., published an article in which two types of porphyrin are found in 

petroleum. There are etio-porphyrin and phyllo porphyrin; etio-porphyrin is the porphyrin that is 

derived from hemoglobin in animals. It is a necessity in animals because the tetrapyrrole binds to 

iron (Muniyappan, 1955). With iron bound to the tetrapyrrole, it is able to bind four oxygen atoms 
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to it and transport oxygen to tissues in animal/human body (Voet, Pratt, & Voet, 2008). Pyllo-

porphyrin is derived from the chlorophyll in plants; it is a vital component in the life process of 

plants. The porphyrin component of chlorophyll is responsible for harvesting light from the sun 

and electron transport. This is due to porphyrin having large absorption coefficients in the visible-

near infrared region (T. D. Santos et al., 2010). 

 The absorption coefficient is defined as the change in energy of the wave of light that is 

proportional to the thickness of the layer of material (Harris, 2007). Due to the high absorption 

coefficient, Santos, et al., used porphyrins in combination with titanium oxide films in solar cells. 

Their research found that zinc porphyrins were better suited for solar cells rather than titanium 

oxide porphyrin due to the higher, faster injection dynamics, and higher singlet excited state 

energies (T. D. Santos et al., 2010). 

 Tin-porphyrin complexes were used in metal organic frameworks to degrade sulfides and 

phenols (Xie, Yang, Zou, & Wu, 2011). Herbicides, pesticides, and insecticides contain large 

amounts of phenols and sulfides which aid in pollution, thus the need for a material to degrade the 

toxic substances into a less harmful derivative (Lente, 2004). This was achieved by immobilizing 

the porphyrin complex in the following purple crystal framework: 

[Zn2(H2O)4Sn
IV

(TPYP)(HCOO)2]•4NO3•DMF•4H2O. The Zn2(H2O)4 was used as a  bridging 

ligand to create the framework with the Sn
IV

(TPYP)  and acted as reaction centers. The nitrate 

group, NO3 acted as counter ions to balance the charge of the porous crystal; the DMF is solvent 

that was trapped in the crystal lattice. The crystal successfully photo oxidized 1,5-

dihydroxynapthalene in the presence of oxygen and xenon light source into a less harmful 5-

hydroxynaphthalene-1,4-dione. Their compound was also successful in photo oxidizing sulfide 

into 94 percent sulfoxide and 6 percent sulphone (Xie et al., 2011).
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 Porphyrins’ versatility aids in it being perfect for sensor applications. Wang, et al., 

investigated the effect that free base porphyrins and metalloporphyrins had on the removal of 

Benzo[a]pyrene (B[a]P), and N-Nitrosamines (TSNAs) from mainstream cigarette smoke (Wang 

et al., 2011). In their research there were several types of free base porphyrins added to filters. 

Metalloporphyrins were used to attract gases that consisted of hard bases. The free core of the free 

base porphyrin allows the nitrogen atoms to attract the hard acids from the gases. The increased 

concentration of porphyrin added to the filter, increased the amount of TSNAs and B[a]Ps that 

were filtered out of the cigarette smoke (Zhang, 2002). 

 Porphyrins are also used for sensing and intervention purposes non-directly related to 

volatile organic compounds. Ozawa, et al., published work on the use of boronated porphyrin 

TABP-1 in U-87 MG intracerebral human glioblastoma xenografts. The boronated porphyrin 

complexes were successfully shown to reduce the concentration of tumor cells due to direct 

injection without having to concede to intravenous injections. Direct injections are more 

beneficial due to the lack of harmful side effects that are brought on by intravenous injections 

such as degradation into toxic simpler substances and difficult passage through the blood brain 

barrier (Ozawa et al., 2004).
 

1.6. Acetonitrile Awareness and Implications 

Acetonitrile is a gas that is emitted through biogenic and anthropogenic means. The vast 

majority of volatile organic compounds that are emitted into the atmosphere are biogenic in 

nature, being that nature itself is the cause. The small amounts of emitted volatile organic 

compounds that are left are those of anthropogenic nature, being that human beings cause its 

emission into the atmosphere (Girard, 1994). Examples of anthropogenic v.o.c.s are those emitted 

from vehicle exhaust, coal burning, smoke stacks, and other industrial emissions.  
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 Acetonitrile and benzene are two of the many volatile organic compounds that need 

sensing apparatuses due to their harmful nature to living organisms. Many studies have been done 

on the toxicity of acetonitrile and benzene on living organisms. Jones, et al. published a scientific 

journal on the effects of acetonitrile on the bone marrow and peripheral blood tissue of laboratory 

mice (Jones, Fox, Elliott, & Moore, 2001). Their studies showed that acetonitrile was toxic 

because it is metabolized into cyanide (Greenberg, 1999). The indirect effect of cyanide 

production causes ataxia, convulsions, urine stains, and increases breathing rate. They also found 

that it increases the incidence of micronucleated cells due to cyanide-mediated stimulation of 

erythropoiesis (Jones et al., 2001). 

 Another study, that investigated V.O.C. effects, by Wang, et al., examined the correlation 

between acetonitrile concentration and the dehydration of phospholipid membranes of surface 

tissue; surface tissue was examined due to the modes of contact with acetonitrile by living 

systems are inhalation, ingestion, and skin absorption (Wu, Wang, Tao, & Yu, 2010). Their 

studies found that at 4 weight percent acetonitrile, there was a tighter packing of the phospholipid 

bilayer; the packing mode and the hydration properties of the lipid polar groups didn’t change. 

When 12 weight percent acetonitrile was added then it does dehydrate the carbonyl group of 

phospholipids (Wu et al., 2010).
 
The affects of acetonitrile were tested on various other animals 

and insects for evidence of the harmful effects that are produced. 

 Petersen, et al., published a scientific article on the effect of acetonitrile on spider mites. 

The spider mites, Tetranychus urticae Koch, in their study were natural pests that fed on and 

damaged the African spider plant, Gynandropsis gynandra L (Nyalala, Petersen, & Grout, 2011). 

Their studies found that acetonitrile was the major volatile organic compound that was emitted 

from each part of the plant. Spider mites upon exposure to 2.5 µL concentration acetonitrile were 
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rendered immobile. When the affected spider mites were then introduced to pure air without 

acetonitrile concentration, only 10 percent regained their mobility. Thus acetonitrile was proved 

an effective repellant against spider mites based on how its prescence, it can render the spider 

mites disabled. (Nyalala et al., 2011). 

1.7. Benzene Awareness and Implications 

Benzene is a known carcinogen on the EPA toxic compounds list (Carletti & Romano, 

2002). The BP oil spill created an environment in which there were large amounts of crude oil 

submerged below ocean water, in marshes, and on the coastlines of beaches (Kujawinski et al., 

2011). Crude oil emits benzene, toluene, and xylene into the atmosphere. Kalf, et al., conducted 

studies on the effects of benzene on humans and concluded that benzene is a myelotoxin that 

causes blood dyscrasias and multiple other ailments (Kalf, 1987). 

 Benzene is a known bone marrow toxicant and carcinogen; its industrial uses range from 

gasoline additives to the use as a solvent for manufacturing rubber, drugs, and explosives ("Case 

Studies in Environmental Medicine: Benzene Toxicity," 2000). Chen, et al., expounded on the 

effects of benzene on the bone marrow of B6C3F1 mice. When the mice metabolized the benzene, 

it caused the redox cycling of ring-hydroxylated benzene metabolites which yields peroxynitrite 

and other NO-derivatives. Nitric oxide is a contributor to benzene metabolism and can form 

nitrated derivatives that account for bone marrow toxicity (Chen et al., 2004). 

 Singh, et al., investigated the effects of benzene, toluene, and xylene on the genotoxicity 

and apoptosis in Drosophila melanogaster. Their studies showed that of the three volatile organic 

compounds, benzene caused the most damage to cells because it enhanced the activity of pro-

apoptotic proteins in the Drosophila. The increased exposure time to all three of the volatile 

organic compounds yielded greater cell death (Singh et al., 2011). 
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 This study will attempt to coordinate luminescent lanthanides, porphyrins, benzene and 

acetonitrile for the potential use as a sensor. The porphyrin’s ability to sensitize and donate 

energy to the lanthanide makes it a better complex to sense the fluorescence change once the 

volatile organic compound alters the lanthanide properties. Sensing benzene and acetonitrile 

before they reach unhealthy levels is the main preventative measure to reduce the amount of 

people seriously affected.  
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CHAPTER 2 

Experimental Methods 

2.1. Chemical Reagents 

 The chemicals used, acetonitrile, ethanol, diethyl ether, benzene, EuCl3 • 6H2O, TbCl3 • 

6H2O, Dy(N03)3 • 5H2O, TPP 5,10,15,20-tetraphenylporphyrin, TBSP 5,10,15,20-

tetrakisbenzylsulfonyl porphyrin, and NaCl were purchased from Sigma Aldrich without further 

purification. 

2.2. Material Synthesis 

2.2.1. Synthesis of Dy(TPP). A solution made by mixing 1.26 mg of Dy(N03)3 • 5H2O 

and 0.82 mg TPP in 10 mL DMF. The solution was sonicated for 3 minutes. 

2.2.2. Synthesis of Dy(TPP) CH3CN. A test tube containing 1.34 mg of Dy(N03)3 • 5H2O 

and 0.8 mg of TPP in 10 mL of DMF and 5 mL of CH3CN was sonicated for 3 minutes. 

2.2.3. Synthesis of Dy(TPP) C6H6. A 1.28 mg Dy(N03)3 • 5H2O, 0.81 mg TPP, 10 mL 

DMF and 5 mL of benzene was sonicated in a test tube for 3 minutes. 

2.2.4. Synthesis of Eu(TPP). A solution made by mixing 2.4 mg of EuCl3 • 6H2O and 

0.83 mg of TPP in 10 mL of DMF. The solution was then sonicated for 3 minutes. 

2.2.5. Synthesis of Eu(TPP) CH3CN. A 2.4 mg EuCl3 • 6H2O, 0.85 mg TPP, 10 mL 

DMF, and 5 mL of CH3CN was mixed in a test tube and sonicated for 3 minutes.  

2.2.6. Synthesis of Eu(TPP) C6H6. In a test tube 2.4 mg of EuCl3 • 6H2O was mixed with 

0.9 mg TPP in 10 mL of DMF and 5 mL of benzene. The solution was then sonicated for 3 

minutes.  

2.2.7. Synthesis of Eu(TPP) (Eu-a). The synthesis of EuTPP complex (Eu-a) proceeded 

as follows: 2.66 mg of 5,10,15,20-tetraphenylporphyrin was dissolved in 9 mL of Et2O in a 25 
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mL beaker which resulted in a purple solution. A second 25 mL beaker contained 12.15 mg of 

EuCl3 • 6H2O dissolved in 8 mL of EtOH, which resulted in a clear solution. The two were mixed 

together to form a green solution, which was transferred to a 25 mL round bottom flask and 

refluxed for 5 hours. Solution was then cooled to room temperature then transferred to a 50 mL 

beaker covered with parafilm and aluminum foil. After one week green solution turned to yellow 

solution; after another week yellow solution turned orange color. Luminescence studies collected 

on all three aliquots.  

2.2.8. Synthesis of Eu(TPP) (Eu-b). The synthesis of EuTPP complex (Eu-b) proceeded 

as follows: 3.77 mg of 5,10,15,20-tetraphenylporphyrin was dissolved in 9 mL of Et2O in a 25 

mL beaker which resulted in a purple solution. A second 25 mL beaker contained 17.95 mg of 

EuCl3 • 6H2O dissolved in 9 mL of EtOH, which resulted in a clear solution. The two were mixed 

together to form a green solution, which was transferred to a 25 mL round bottom flask and 

refluxed for 5 hours. Solution was then cooled to room temperature then transferred to a 50 mL 

beaker, layered 10 mL of benzene, and covered with parafilm and aluminum foil. 

2.2.9. Synthesis of Eu(TPP) (Eu-c). The synthesis of EuTPP complex (Eu-c) proceeded 

as follows: 2.39 mg of 5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O in a 25 

mL beaker which resulted in a purple solution. A second 25 mL beaker contained 11.3 mg of 

EuCl3 • 6H2O dissolved in 10 mL of EtOH, which resulted in a clear solution. The two were 

mixed together to form a green solution, which was transferred to a 25 mL round bottom flask 

and refluxed for 5 hours. Solution was then cooled to room temperature then transferred to a 50 

mL beaker, layered 10 mL of acetonitrile, and covered with parafilm and aluminum foil. 

Endothermic reaction occurred resulting in condensation on outside of beaker. 
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2.2.10. Synthesis of Eu(TPP) (Eu-d). The synthesis of EuTPP complex (Eu-d) proceeded 

as follows: 2.25 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O, 

sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 mL 

beaker contained 10 mL of 3.746 x 10
-4

M NaOH solution. The two beakers were mixed into a 50 

mL round bottom flask and solution stayed purple. The reaction was refluxed for 3 hours when 

9.45 mg EuCl3 • 6H2O dissolved in 11 mL of EtOH was added to reaction vessel, then refluxed 

for 3 additional hours. The reaction was cooled to room temperature, transferred to 50 mL beaker, 

covered with parafilm and aluminum foil. 

2.2.11. Synthesis of Eu(TPP) (Eu-e). The synthesis of EuTPP complex (Eu-e) proceeded 

as follows: 2.62 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O, 

sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 mL 

beaker contained 10 mL of 3.746 x 10
-4

M NaOH solution. The two beakers were mixed into a 50 

mL round bottom flask and solution stayed purple. The reaction was refluxed for 3 hours when 

10.54 mg EuCl3 • 6H2O dissolved in 10 mL of EtOH was added to reaction vessel, then refluxed 

for 3 additional hours. The reaction was cooled to room temperature, transferred to 50 mL beaker, 

layered with 10 mL benzene, covered with parafilm and aluminum foil. The layering resulted in 

an endothermic reaction. 

2.2.12. Synthesis of Eu(TPP) (Eu-f). The synthesis of EuTPP complex (Eu-f) proceeded 

as follows: 2.10 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O, 

sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 mL 

beaker contained 10 mL of 3.746 x 10
-4

M NaOH solution. The two beakers were mixed into a 50 

mL round bottom flask and solution stayed purple. The reaction was refluxed for 3 hours when 

12.58 mg EuCl3 • 6H2O dissolved in 10 mL of EtOH was added to reaction vessel, then refluxed 
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for 3 additional hours. The reaction was cooled to room temperature, transferred to 50 mL beaker, 

layered with 10 mL acetonitrile, covered with parafilm and aluminum foil. The layering resulted 

in an endothermic reaction. 

2.2.13. Synthesis of Dy(TPP) (Dy-a). The synthesis of DyTPP complex (Dy-a) proceeded 

as follows: 2.29 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O, 

sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 mL 

beaker contained 9.18 mg Dy(NO3)3 • 5H2O dissolved in 10 mL of EtOH, sonicated for 3 minutes 

and added to the first beaker then refluxed for 6 hours. The reaction was still purple in color. The 

reaction was cooled to room temperature, transferred to 50 mL beaker, covered with parafilm and 

aluminum foil.  

2.2.14. Synthesis of Dy(TPP) (Dy-b). The synthesis of DyTPP complex (Dy-b) 

proceeded as follows: 2.18 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of 

Et2O, sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 

mL beaker contained 17.49 mg Dy(NO3)3 • 5H2O dissolved in 10 mL of EtOH, sonicated for 3 

minutes and added to the first beaker then refluxed for 6 hours. The reaction was still purple in 

color. The reaction was cooled to room temperature, transferred to 50 mL beaker, layered with 10 

mL of benzene, covered with parafilm and aluminum foil. The layering resulted in an 

endothermic reaction. 

2.2.15. Synthesis of Dy(TPP) (Dy-c). The synthesis of DyTPP complex (Dy-c) proceeded 

as follows: 2.96 mg of  5,10,15,20-tetraphenylporphyrin was dissolved in 10 mL of Et2O, 

sonicated for 3 minutes in a 25 mL beaker, which resulted in a purple solution. Another 25 mL 

beaker contained 11.88 mg Dy(NO3)3 • 5H2O dissolved in 10 mL of EtOH, sonicated for 3 

minutes and added to the first beaker then refluxed for 6 hours. The reaction was still purple in 
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color. The reaction was cooled to room temperature, transferred to 50 mL beaker, layered with 10 

mL of acetonitrile, covered with parafilm and aluminum foil. The layering resulted in an 

endothermic reaction.  

2.2.16. Synthesis of Eu(TBSP). A 6.2 mg EuCl3 • 6H2O, 0.9 mg TBSP were mixed in a 4 

mL solution of a 3:1 H2O:EtOH. The solution was then sonicated for 2 minutes. 

2.2.17. Synthesis of Dy(TBSP). A test tube containing 9.62 mg of Dy(NO3)3 • 5H2O, 1.2 

mg TBSP, 4 mL of a 3:1 H2O:EtOH solution was sonicated for 2 minutes. 

2.2.18. Synthesis of Tb(TBSP). A test tube containing 8.9 mg of TbCl3 • 6H2O, 0.77 mg 

TBSP, 4 mL of 3:1 H2O:EtOH solution was sonicated for 2 minutes.  

2.2.19. Synthesis of Eu(TBSP) CH3CN. The synthesis of EuTBSP CH3CN proceeds as 

follows: 9.15 mg EuCl3 • 6H2O, .90 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of CH3CN was added and 

solution was sonicated for 3 minutes. 

2.2.20. Synthesis of Dy(TBSP) CH3CN. The synthesis of DyTBSP CH3CN proceeds as 

follows: 9.62 mg Dy(NO3)3 • 5H2O, 1.28 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of CH3CN was added and 

solution was sonicated for 3 minutes. 

2.2.21. Synthesis of Tb(TBSP) CH3CN. The synthesis of TbTBSP CH3CN proceeds as 

follows: 8.93 mg TbCl3 • 6H2O, 0.77 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of CH3CN was added and 

solution was sonicated for 3 minutes. This sample was prepared and collected using the same 

procedure as the other lanthanide, TBSP, and solvent experiments. Attention to the ambient 

conditions was noted as well. 
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2.2.22. Synthesis of Eu(TBSP) C6H6. The synthesis of EuTBSP benzene proceeds as 

follows: 9.24 mg EuCl3 • 6H2O, 1.08 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of benzene was added and 

solution was sonicated for 3 minutes.  

2.2.23. Synthesis of Dy(TBSP) C6H6. The synthesis of DyTBSP benzene proceeds as 

follows: 11.37 mg Dy(NO3)3 • 5H2O, .87 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of benzene was added and 

solution was sonicated for 3 minutes. 

2.2.24. Synthesis of Tb(TBSP) C6H6. The synthesis of TbTBSP benzene proceeds as 

follows: 12.45 mg TbCl3 • 6H2O, 1.15 mg 5,10,15,20-tetrakisbenzylsulfonyl porphyrin were 

dissolved in 4 mL of a 3:1 H2O:EtOH solution in a test tube. A 2 mL of benzene was added and 

solution was sonicated for 3 minutes. 

2.2.25. Synthesis of Na(TPP). A mixture of 0.5 mg TPP, 2.65 mg NaCl, and 3 mL of a 

2:1 EtOH:H2O solution was sonicated for 2 minutes. 

2.2.26. Synthesis of Na(TBSP). A test tube containing 2.3 mg of NaCl, 0.4 mg TBSP, and 

3 mL of a 2:1 EtOH:H2O solution was sonicated for 2 minutes. 

2.2.27. Synthesis of Ag(TBSP). A solution of 13.3 mg AgNO3, 2.8 mg TBSP, 5 mL of a 

3:2 EtOH:H2O was sonicated for 2 minutes. 

2.2.28. Synthesis of Ag(TPP). A solution of 3.49 mg of AgNO3, 0.4 mg TPP, and 5 mL 

of Et2O was sonicated for 2 minutes.  

2.2.29. Synthesis of Ce(TBSP). A test tube containing 23.5 mg of Ce(NO3)3•6H2O, 2.2 

mg of TBSP, and 10 mL of a 3:2 H2O:EtOH solution was sonicated for 3 minutes.  
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2.2.30. Synthesis of Ce(TPP). A solution containing 7.2 mg Ce(NO3)3•6H2O, 0.6 mg of 

TPP, and 10 mL of Et2O was sonicated for 3 minutes in a test tube. 

2.2.31. Synthesis of Gd(TBSP). A 32.5 mg Gd(NO3)3•6H2O, 2.5 mg TBSP, and 10 mL of 

3:2 H2O:EtOH solution was sonicated for 3 minutes in a test tube.  

2.2.32. Synthesis of Gd(TPP). A test tube containing 8.5 mg of Gd(NO3)3•6H2O, 0.6 mg 

of TPP, and 10 mL of Et2O was sonicated for 3 minutes. 

2.2.33. Synthesis of Ce(TPP) CH3CN. A test tube containing a mixture of 7.15 mg of 

Ce(NO3)36H2O, 0.5 mg of TPP, 3 ml of acetonitrile, and 10 ml of Et2O was sonicated for 2 

minutes. 

2.2.34. Synthesis of Ce(TPP) C6H6. A solution containing 9.62 mg of Ce(NO3)36H2O, 

1.4 mg of TPP, 3 ml of benzene, and 10 ml of DMF was sonicated for 2 minutes in a test tube.  

2.2.35. Synthesis of Gd(TPP) CH3CN. A mixture of 8.53 mg of Gd(NO3)36H2O, 0.5 mg 

of TPP, 3 ml of acetonitrile, and 10 ml of Et2O was sonicated for 2 minutes in a test tube.  

2.2.36. Synthesis of Gd(TPP) C6H6. A test tube containing 6.9 mg of Gd(NO3)36H2O, 

5.6 mg of TPP, 3 ml of benzene, and 10 ml of DMF was sonicated for 2 minutes. 

2.2.37. Photoluminescence spectroscopy. Photoluminescence measurements were 

obtained using a photon technology international (PTI) spectrometer. The instrument uses a Ushio 

-75Xe xenon arc lamp. It is also equipped with a Hamamatsu R928P photomultiplier tube. It uses 

a LPS-220B power supply unit, a Brytebox and a MD-5020 motor driver. The monochromator is 

a model 101M f/4 0.2-meter Czerny-Turner with a 4 nm/mm bandpass. The detector is a model 

814 analog/photon-counting photomultiplier detector. FeliX32 software purchased from photon 

technology international was used to collect emission and excitation data.   
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 For liquid samples, a quartz cuvette was used for the collection of emission and excitation 

data at room temperature. Solid samples were placed in borosilicate capillary tubes annealed by 

heating to exclude exposure to oxygen for air sensitive complexes and to ensure sample integrity. 

Photoluminescence spectra were collected both at room temperature and liquid nitrogen 

temperatures; the liquid nitrogen temperature data was collected using a cold-finger dewar for the 

samples encapsulated by borosilicate capillary tubes. The data that was collected from the 

spectrometer was transferred to Microsoft Excel spreadsheet for analysis. 

2.2.38. UV-Vis spectroscopy. The UV-Vis spectroscopy data was collected on a 

Shimadzu spectrometer model UV-2401PC/2501PC. The instrument has a wave length range of 

190 nm to 1100 nm and a resolution of 0.1 nm. The wavelength accuracy is ± 0.3 nm. An R-928 

photomultiplier detector was used for detection. The instrument operates with a double beam 

summing feed-back photometric system. A 50 Watt halogen lamp and deuterium lamp is used as 

light sources. Spectra for liquid samples were collected using quartz cuvettes at a slow scan rate. 

Data was transferred from the spectrometer to Microsoft Excel spreadsheet.  

2.2.39. X-ray diffraction crystallography. X-ray diffraction crystallography data was 

collected using a Bruker AXS Smart X2S system. The instrument uses a CCD 485 Breeze 

detector and a Ricor K535 power supply unit. It uses an Oxford Cryosystems desktop cooler, AD 

51 dry air unit, and a Pfeifer vacuum model DUO 2.5. The images were collected by transferring 

data from the X-ray apparatus to the computer using Apex, Xshell, and Mercury software; they 

were then analyzed, refined, and interpreted based on the previous three software packages. 

Crystal samples were mounted on micromount needles purchased from the Bruker Corporation, 

using Paratone-N oil purchased from Hampton Research. Another batch of crystal data was 

collected when using UV light curable adhesive to mount the crystal to the micromount.  
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CHAPTER 3 

Results and Discussion 

 

3.1. PL of (TPP) 

 

Figure 3.1. PL of TPP excitation spectra. 

The above figure 3.1 contains the excitation spectra of TPP dissolved in Et2O. The red 

spectrum was monitored at 652 nm, while the blue spectrum was at 722 nm. The two spectra 

show similar profile with only variation being the peak intensities. The major characteristic TPP 

excitation peaks are observed at 345 nm (broad), 440 nm (sharp), 504 nm (broad), 530 nm 

(broad), 549 nm (broad), and 600 nm (broad). There is a negative slope from the peak at 345 to 

the shoulder at 380 nm. 

The peak shown at 440 nm is consistent with the wavelength required to promote the 

molecule from the ground state to the second excited state. The subsequent peaks at 504, 530, 

547, 560, and 600 nm have an average spacing of ~1200 cm
-1

 indicating vibronic coupling 

between the electronic transition and the ring system.  
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Figure 3.2. PL of TPP emission spectra. 

Figure 3.2., shows the emission spectra for TPP dissolved in Et2O. These spectra show the 

characteristic TPP emission bands at 652 nm (sharp), and 719 nm (broad). When excited at 440 

nm the TPP shows the maximum intensity, whereas excitation at 386 nm provides the lowest 

intensity. The peak intensity of the low energy emission band at 719 nm is nearly independent of 

the wavelength, except when excited at 386 nm.  

3.2. PL of EuCl3•6H2O  

 

Figure 3.3. EuCl3•6H2O photoluminescence excitation spectra. 
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 The figure 3.3., shows the excitation spectra of EuCl3 •6H2O consisting of two different 

profiles based on the monitoring wavelength. When monitored at 650 nm, the spectrum shows 

broad band at 420 nm, whereas when monitored at other wavelengths the profiles show sharp 

bands at 370, 393, 401, and 473 nm characteristics of f-f transitions within Eu
3+

 ion.  

 The overall excitation bands and their respective assignments given in parenthesis: 327 

nm (
7
F1 

5
H3), 370 nm (

7
F1  

5
L8), 381 nm (

7
F1  

5
L7), 401 nm (

7
F1  

5
L6), 420 nm (

7
F1  

5
D3), 473 nm (

7
F1  

5
D2). All of the peaks that are below 400 nm are located in the ultraviolet 

region of the electromagnetic spectrum. The peaks at 420 nm and 473 nm show in the violet and 

blue region of the electromagnetic spectrum.  

 

Figure 3.4. EuCl3•6H2O photoluminescence emission spectra. 

 The figure 3.4., shows the emission profile of EuCl3•6H2O with its prominent peaks at 

593, 613, 620, 650, and 700 nm. The 593 and 700 nm peaks are sharp, whereas the 650 nm peak 

is broad. The most intense peak usually occurring at 615 nm is split to a doublet producing sharp 

peaks at 613 and 620 nm. The emission spectra are very low in intensity. The emission peaks, 

characteristic to europium salts, correspond to the transitions that arise from photons being 

emitted from an excited state to various electronic ground state manifolds. The wavelengths, 
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along with the transitions are listed as follows: 593 nm 
5
D0  

7
F2, 613 nm 

5
D0  

7
F3, 620 nm 

5
D0 

 
7
F3, 650 nm 

5
D0  

7
F4, and 700 nm 

5
D0  

7
F6. These ground state to excited state transitions 

occur at different wavelengths although they emit in the red portion of the electromagnetic 

spectrum.  

3.3. PL of Eu(TPP) Complexes  

 

Figure 3.5. PL of Eu(TPP)(Eu-a) green solution emission spectra. 

Figure 3.5., shows the alteration in spectra from the previous TPP dissolved in Et2O alone. 

There is red shift from the 650 nm peak to a peak at 705 nm and disappearance of the peak 

observed at 719 nm. There is also a tenfold decrease in emission intensity along with the 

appearance of a small peak at 640 nm which corresponds to europium salt peak; there’s a broad 

band spanning 530 nm to 607 nm.  

The emission intensity at 705 nm increases with the excitation wavelength. When excited 

at 512 nm and 467 nm, the profiles show slight deviation from the other profiles. Rather than a 

non-luminescent beginning part of the spectrum, a very broad band, albeit very weak spanning the 

520-600 nm range band is observed along with a sharper (but weak) band, small band at 640 nm.  
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Figure 3.6. PL of Eu(TPP)(Eu-a) green solution excitation spectra. 

Figure 3.6 shows the excitation spectra of EuTPP (Eu-a) green solution with a broad band 

at 380 nm, and sharper bands at 427, 467, 512, and 550 nm. The most prominent spectrum was 

collected when monitored at 705 nm which corresponds to the emission maximum. The least 

prominent spectra were monitored at 550 and 512 nm. 

 

Figure 3.7. PL of Eu(TPP)(Eu-a) yellow solution excitation spectra. 
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In Figure 3.7 is shown the change in the excitation spectrum from the green solution. 

There are four major peaks shown at 375 (broad), 427, 514 (broad), and 544 nm. The yellow 

solution retains the prominent broad band peak at 380 nm. The small broad band that was at 427 

on the green solution excitation spectrum has now become more prominent and sharper in the 

yellow solution.  

The band at 514 nm becomes more pronounced and defined as it more than quadruples in 

intensity. The band at 544 nm becomes more pronounced as it doubles in intensity. The broad 

band maximizing at 467 nm is from monitoring at the broad emission peak at 540 of the emission 

spectrum. There are two different profiles in the excitation spectrum with three different spectra. 

When monitored at 648 nm and 716 nm the same profile exists although differing in intensity. 

 

Figure 3.8. PL of Eu(TPP)(Eu-a) yellow solution emission spectra. 

Figure 3.8 shows the emission spectra of EuTPP (Eu-a) yellow solution. The 650 and 715 

nm peaks are characteristic of TPP. The spectra show maxima at 545 nm (broad), 647 nm and 715 

nm. The maxima have blue-shifted from 652 nm to 647nm and from 719 nm to 715 nm in these 

spectra compared to the TPP spectrum. There is an even distribution of intensity that is 

wavelength dependent, although the intensity of the 647 nm maximum has decreased by a factor 

of 4. The smaller 715 nm peak decreased in intensity by a factor of 2.  
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Figure 3.9. PL of Eu(TPP)(Eu-a) orange solution excitation spectra. 

In Figure 3.9 is shown the excitation spectra of the orange solution of EuTPP (Eu-a). 

There are three broad maxima in the spectra at 408 nm, 448 nm, and 526 nm. There is a small 

shoulder at 380 nm. The peaks have shifted and the intensity has vastly diminished showing the 

great affect europium has on altering excitation spectra. 

 

Figure 3.10. PL of Eu(TPP)(Eu-a) orange solution emission spectra. 

Figure 3.10 shows the emission spectra of the orange EuTPP (Eu-a) solution with maxima 

at 650 nm and 712 nm. The broad band spanning 530 nm to 600 nm is still persistent in the 

orange solution. There is a broad peak at 698 nm when the sample was excited at 447 nm; 

consistent with the broad emission band that was seen in the green solution of EuTPP (Eu-a).  
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Figure 3.11. PL of Eu(TPP)(C6H6)(Eu-b) green solution excitation spectra. 

The above figure, (Figure 3.11), shows the excitation spectra with maxima at 373 nm, 391 

nm, 431 nm and 462 nm. Both the 373 and 431 bands are observed at a blue shifted position when 

compared with the original TPP excitation bands at 380 and 440 nm, respectively. The 462 nm 

peak, however, is consistent with the original although it has lower intensity for the entire 

spectrum. The subsequent bands after the 462 nm wavelength were silenced.  

 

Figure 3.12. PL of Eu(TPP)(C6H6)(Eu-b) green solution emission spectra. 

The above figure, (3.12), shows a broad peak maximizing at 698 nm, which is shifted 

compared with the peak at 705 nm when Eu(TPP) (Eu-b) wasn’t layered with benzene. There are 

also smaller characteristic peaks at 590, 610, 615, and 647 nm. These smaller peaks are most 
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prominent when the spectrum is excited at 360 nm or 391 nm. The 590, 610, and 615 nm are 

characteristic bands for europium salt when it’s dissolved in ethanol. The appearance of these 

smaller peaks shows that europium and benzene influence the natural emission characteristics of 

TPP and benzene is able to influence the expression of europium emission peaks. 

 

Figure 3.13. PL of Eu(TPP)(C6H6)(Eu-b) yellow solution excitation spectra. 

The above Figure 3.13 shows the excitation spectra of Eu(TPP) (Eu-b) layered in benzene 

after it has changed from a green colored to a yellow solution. Three maxima are located at 416, 

438, and 457 nm. There are three distinctly, different profiles existing in the excitation spectrum; 

two are similar when monitored at 713 nm and 698 nm, whereas when monitoring at 650 nm the 

profile is vastly different. The peaks at 438 nm and 457 nm are absent and a small broad peak at 

513 nm appears. The spectral profile exhibited when monitored at 560 nm and magnified four 

times is completely different from the other two profiles. The excitation peaks arising at 438 nm 

and 457 nm are in the blue region of the electromagnetic spectrum, with the peak at 513 nm is 

located in the green portion of the spectrum. 
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Figure 3.14. PL of Eu(TPP)(C6H6)(Eu-b) yellow solution emission spectra. 

The spectra shown in Figure 3.14 correspond to the emission profile of the yellow solution 

of Eu(TPP) (Eu-b) that was layered in benzene. There are several maxima at 649, 697, and 715 

nm. There is a small peak that appears at 617 nm, corresponding to Eu
3+

 f-f transition when the 

compound is excited at 340 nm. There are three behaviors coexisting in this emission profile.  

When the solution is excited at 437 or 456 nm then the predominant peak maximum is 

observed at 697nm; this corresponds to the excitation spectra when it was monitored at 698 nm. 

When excited at 381, and 396 nm, two peaks are seen maximizing at 649 and 697 nm. When 

excited at 413 and 513 nm, the spectrum produces maxima at 649 and 715 nm; these correspond 

to the excitation profile when it was monitored at the 650 nm. Instead of no observed 

luminescence at the beginning of the emission spectra from 360 to 630 nm, there is luminescence 

activity when benzene was added, resulting in an europium maximum at 617 nm and broad band 

spanning 460 to 600 nm. The different profiles observed in this emission profile signify that there 

are two independent species in solution that show independent emissions when excited at their 

respective wavelengths.  
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Figure 3.15. PL of Eu(TPP)(C6H6)(Eu-b) orange solution excitation spectra. 

 In Figure 3.15 are shown broad excitation bands with maxima at 421 nm and 477 nm. The 

lower profile in blue is the excitation spectrum when monitored at 600 nm. There is a sharp peak 

occurring at 287 nm due to instrumental artifact. 

 

Figure 3.16. PL of Eu(TPP)(C6H6)(Eu-b) orange solution emission spectra. 

 The spectrum in figure 3.16., shows coherent profiles that maximize at 557 and 300 nm 

dependent on the excitation wavelength. There is a small shoulder appearing at 477 nm. The 

emission profile shows maxima in the ultraviolet and green region of the electromagnetic 

spectrum respectively.  
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Figure 3.17. PL of Eu(TPP)(CH3CN)(Eu-c) green solution excitation spectra. 

Figure 3.17 shows the excitation profile of the green solution of Eu(TPP) (Eu-c) layered 

with acetonitrile. There are two maxima 404 and 472 nm, with small shoulders at 520 and 560 

nm. All three monitoring wavelengths produce similar spectra with varying intensities. The broad 

band at 404 nm is shifted from 380 nm; the 472 nm peak is shifted from the 467 nm as in the 

Eu(TPP) (Eu-c) green solution with no layering. These spectra show a peak at 472 nm instead of 

the pronounced peak at 440 nm in the TPP excitation spectra; the peaks at 520 and 560 nm are 

absent in comparison to their distinct peaks in the TPP excitation spectra.  

 

Figure 3.18. PL of Eu(TPP)(CH3CN)(Eu-c) green solution emission spectra. 

Figure 3.18 shows the emission profile of the Eu(TPP) (Eu-c) green solution when it was 

layered with acetonitrile. There is one maximum at 699 nm; its intensity is the highest, smoothest, 

and least peaks in the beginning of the spectra than the other EuTPP spectra. Its intensity is also 
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wavelength dependent. This is due to the addition of acetonitrile. There is a coherent distribution 

of the intensity due to the excitation wavelength. The most prominent peak is due to excitation at 

396 nm. The least prominent peak is due to excitation at 523 nm. The alteration of the spectra due 

to europium is consistent.  

 

Figure 3.19. PL of Eu(TPP)(CH3CN)(Eu-c) yellow solution excitation spectra. 

Figure 3.19 shows the excitation profile of the yellow solution of Eu(TPP) (Eu-c) layered 

with acetonitrile. The maxima show broad peaks at 393, 433, 445, 524, 554, and 597 nm. The 

subsequent peaks are much smoother and more pronounced than previous Eu(TPP) spectra. The 

first and second broad peaks show up at 524 and 554 nm, compared to the peaks at 514 and 544 

nm of the Eu(TPP) (Eu-a) yellow solution which wasn’t layered with any other solvent. 

 The sharp peak at 433 nm is comparable in shape to the sharp peak seen in the TPP 

excitation profile; the height in comparison to the other peaks is lower than the TPP profile, 

suggesting the energy transfer from the porphyrin to the europium. The maximum at 400 nm 

corresponds to 
7
F0  

5
L6 europium transition. This leads to the energy transfer and alteration of 

the porphyrin profile. 
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Figure 3.20. PL of Eu(TPP)(CH3CN)(Eu-c) yellow solution emission spectra. 

The spectra shown in figure 3.20 has no luminescence from 450 to 620 nm, but has two 

maxima at 648 nm and 716 nm; it continues to show a smoother spectra than the others and even 

distribution of wavelength dependent intensity. It shows similar spectra compared to the TPP, the 

only differences are a 3 nm blue shift of the entire spectra and decrease in luminescence intensity. 

 

Figure 3.21. PL of Eu(TPP)(Eu-d) purple solution in NaOH excitation spectra. 

The spectra shown in figure 3.21., depict the excitation spectra of Eu(TPP) (Eu-d) when a 

NaOH solution was added. There are maxima shown at 389, 438, 513, 530, 551 and 600 nm. The 

excitation profile is wavelength dependent with consistent spectra.  
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This excitation spectrum is most consistent with the original excitation spectra of TPP. The 

differences being a deviation from 383 nm peak in the original compared to the 389 nm, and the 

504 peak to the 513 nm peak. There is an even plateau leading to the peak that appears at 389 nm 

before descending to a non luminescent area. 

 

Figure 3.22. PL of Eu(TPP)(Eu-d) purple solution in NaOH emission spectra. 

The emission spectra of figure 3.22 shows the luminescence behavior of Eu(TPP) (Eu-d) 

when NaOH was added. The maxima are shown at 652 and 716 nm. Compared to the original 

TPP emission spectra, the spectra are consistent in 652 nm wavelength, and slight deviation from 

719 to 716 nm for the lower emission peak. The 652 nm peak of Eu(TPP) (Eu-d) has increased in 

intensity and the 716 nm peak decreased in intensity compared to the original TPP emission 

spectra. The beginning part of the emission spectra from 370 to 630 nm shows no luminescent 

activity as they approach the major peak.  Excitation at 438 nm leads to the most intense peak at 

652 nm, while the peaks at 716 nm are comparable in intensity. 
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Figure 3.23. PL of Eu(TPP)(C6H6)(Eu-e) purple solution in NaOH excitation spectra. 

The excitation spectra of Eu(TPP) (Eu-e) when NaOH and benzene were added is shown 

in figure 3.23. The maxima are shown at 393 nm (broad), a shoulder at 406, 438 (sharp), 519 

(broad), 555 (broad), and 600 nm (broad). The intensity of the 393 nm and 519 nm peaks are 

greater than the 438 nm peak. In the TPP original spectra, the 440 nm was more intense than the 

383 and 530 nm peaks. The positive slope to the maximum at 393 nm, a transition of europium 

corresponding to 
7
F0  

5
L6 is prevalent in all three excitation profiles. 

This spectrum also shows that the 519, 555, and 600 nm peaks are descending in intensity 

whereas in the TPP spectra they’re of the same intensity. The 504 and 530 nm peaks have 

disappeared to form a new peak at 519 nm. With the addition of benzene the 438 nm peak 

decreased in intensity, thus benzene facilitates the transfer of energy from porphyrin to the 

europium.  

The three profiles on the excitation profile show consistent spectra with differing 

intensity; monitoring at 648 nm exhibits the most intense excitation spectrum. Monitoring at 714 

nm exhibits the second lowest excitation spectrum. When monitoring at 687 nm the least intense 

spectrum is produced with the similar profile.  
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Figure 3.24. PL of Eu(TPP)(C6H6)(Eu-e) purple solution in NaOH emission spectra. 

The emission spectra in figure 3.24., show the profiles when NaOH and benzene are added 

to Eu(TPP). The maxima are shown at 648 and 714 nm. There are no peaks at the beginning of 

the spectra and the intensity is decreased compared to the TPP emission spectra. There is a 4 nm 

blue shift of the major maximum and a 5 nm peak shift of the lower peak maximum compared to 

the TPP original spectra. The intensity continues to show wavelength dependence. 

 

Figure 3.25. PL of Eu(TPP)(CH3CN)(Eu-f) purple solution in NaOH excitation spectra. 

The excitation profile of Eu(TPP) (Eu-f) when NaOH and acetonitrile was added is shown 

in figure 3.25. The spectra show maxima at 387, a shoulder at 405, 433, 515, 553, and 600 nm. 

The 387 and 515 nm peaks are more intense than the 433 nm peak. The reverse is opposite in the 
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original TPP spectrum. There is a 7 nm blue shift in the 440 nm peak to 433 nm. There are 3 

broad peaks, starting with 515 nm that decrease in intensity in the same manner as Eu(TPP) (Eu-

e). The 504 and 530 nm peaks aren’t evident in this spectrum, but there is the formation of a 515 

nm peak. The intensity is shown to be wavelength dependent.  

 

Figure 3.26. PL of Eu(TPP)(CH3CN)(Eu-f) purple solution in NaOH emission spectra. 

Figure 3.26., shows the emission profile of Eu(TPP) (Eu-f) when NaOH and acetonitrile 

were added to the solution. Sodium hydroxide was added to see the effect that pH has on the 

solution studies and on the deprotonation of the pyrrole nitrogens. The spectra show maxima at 

648 and 714 nm.  

The intensity of the maximum peak decreased compared to the original TPP band, while 

the 716 nm peak stayed unchanged in intensity. The intensities are wavelength dependent and 

there is a 4 nm and 5 nm shift of the maxima from 652 nm to 648 nm and from 719 nm to 714 

nm, respectively. The emission spectra show more distribution between the spectrum at the 

maxima at 648 and 714 nm. The most intense band is exhibited when excited at 390 nm.  
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Figure 3.27. PL of EuTPP(TPP)(CH3CN)(Eu-f) yellow solution in NaOH excitation spectra. 

Figure 3.27 shows the excitation profile of the yellow solution of EuTPP (Eu-f). The 

change in color occurred after one week of slow diffusion. The change in color is the indication 

for porphyrin complexes in aqueous solution that there is a change in the dielectric constant of the 

solvent. This change stabilizes the porphyrin and complex that was formed at various energy 

states. There is a change in the excitation profile compared to the previous purple colored 

solution. The maxima are shown at: shoulder 383, 401, 431, 519, 561, and 593 nm. There is a 

positive slope to the peak at 401 nm, while bypassing a maximum at 383 nm.  

The 401 nm peak corresponds to a europium transition from 
7
F0  

5
L6; this shows 

energetic interaction between the ligand and the lanthanide, europium. The 431 nm peak is blue 

shifted 9 nm from the original TPP at 440 nm and decreased in intensity where it appears in a 

region the original doesn’t show luminescence intensity. The peaks at 519, 561, and 593 nm still 

show a decrease in intensity compared to the profile of TPP. The excitation spectra of Figure 

3.27., shows two similar profiles differing in intensity. The most intense profile being monitored 

at 646 nm; the least intense profile was monitored at 714 nm.  
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Figure 3.28. PL of Eu(TPP)(CH3CN)(Eu-f) yellow solution in NaOH emission spectra. 

Figure 3.28 exhibits the emission spectra showing no luminescence intensity from 400 to 

630 nm, while traversing to the maxima at 646 and 714 nm. The intensities are wavelength 

dependent and show similar profiles to the original TPP spectra. The intensities are distributed in 

a uniform manner compared to other Ln(TPP) complexes. The most intense spectrum is excited at 

405 nm; the least intense spectrum is excited at 596 nm. The peak at 405 nm corresponds to the 

europium 
7
F0  

5
L6 transition. The peak at 714 nm shows more distribution in its intensities at 

various excitation wavelengths. The maxima are blue shifted 8 nm and 5 nm from 652 nm to 646 

nm and 719 nm to 714 nm, respectively. The acetonitrile has an effect on the interaction between 

the europium and porphyrin to cause the blue shift in maxima.   

The overall intensity is lower. With the addition of acetonitrile there is a greater affect on 

the intensity of the 714 nm peak with respect to excitation wavelength. The most intense spectrum 

results upon excitation with 405 nm band while the least intense spectrum results upon excitation 

at 596 nm. The lower maximum at 714 nm also decreases to almost no luminescence intensity. 
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3.4. PL of Dy(TPP) Complexes 

 

Figure 3.29. PL of Dy(TPP)(Dy-a) purple solution excitation spectra. 

Figure 3.29., shows maxima at 347, 391, 440 (sharp), 506, 531, 550, and 600 nm. This 

spectrum shows the most similarity to the original TPP excitation spectra; the only major 

deviations are the 8 nm and 1 nm shift in maxima from 383 nm to 391nm and 440 nm to 441 nm. 

The peaks at 506, 531, and 550 nm are at the same intensity level. The intensity is wavelength 

dependent. 

 

Figure 3.30. PL of Dy(TPP)(Dy-a) purple solution emission spectra. 
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Figure 3.30 shows maxima at 652 nm and 714 nm and a quiet front tail of the spectra from 

360 to 630 nm showing no luminescence intensity. The emission maxima are consistent with that 

of the TPP emission profile. The intensity is wavelength dependent. The overall intensity has 

decreased in an uniformed manner.  

 

Figure 3.31. PL of Dy(TPP)(C6H6)(Dy-b) purple solution excitation spectra. 

The excitation spectra shown in figure 3.31 has maxima at 346, 386, 443, 502, 535, 550, 

600 nm. The spectra are consistent in their similarity to the excitation spectra of TPP. The 

negative slope from the 346 to 386 nm peak still persists. The differences arise in the 3 nm shift 

and intensity decrease of the maxima from 440 to 443 nm. The intensity of the peaks at 502, 535, 

and 550 nm are the same.  

The spectrum is wavelength dependent. The two profiles are the result of being monitored 

at 650 and 716 nm. The most intense spectrum corresponds to the spectra monitored at 650 nm. 

There is a descending slope from the 346 nm peak to the 386 nm shoulder peak. The peak at 443 

nm resumes its greater intensity over the longer wavelength maxima. The longer wavelength 

maxima resume comparable intensity without the consistent decrease as observed in the previous 

excitation spectra of the europium porphyrin complexes. 
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Figure 3.32. PL of Dy(TPP)(C6H6)(Dy-b) purple solution excitation spectra. 

The spectra of Dy(TPP)(C6H6) (Dy-b) in figure 3.32 consist of the emission profile with 

maxima at 652 nm and 716 nm. The beginning shows no luminescence intensity and the emission 

intensity is wavelength dependent, with the most intense spectrum excited at 444 nm. The least 

intense spectrum is excited at 386 nm. 

 

Figure 3.33. PL of Dy(TPP)(CH3CN)(Dy-c) purple solution excitation spectra. 

Figure 3.33., shows the excitation profile of Dy(TPP)(CH3CN) (Dy-c) layered with 

acetonitrile. The spectra show maxima at 349, 384, 440, 448, 510, 530, 552, and 600 nm. The 

blue spectrum, monitored at 648 nm is more consistent with TPP excitation profile with regards to 
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the proximity of the 440 nm peak compared to 437 nm; its subsequent peaks are at similar 

wavelengths but deviate in that they descend in intensity unlike the original TPP excitation 

spectra. The intensity of the 440 nm peak is lower than every other peak on the spectrum when 

monitored at 648 nm. The red spectrum, monitored at 680 nm and green spectrum (monitored at 

717 nm) are more consistent with the original TPP excitation spectra with regards to the same 

level intensity of the subsequent peaks, but they deviate from TPP in that the 440 nm peak is red 

shifted to 448 nm.   

 

Figure 3.34. PL of Dy(TPP)(CH3CN)(Dy-c) purple solution emission spectra. 

The emission profile of Dy(TPP)(CH3CN) (Dy-c) is shown in Figure 3.34. When layered 

with acetonitrile; the maxima are shown at 648, 680, and 717 nm. The emission spectra show two 

different wavelength dependent profiles. When excited at 440, 448, and 458 nm a broad peak at 

680 nm appears on the emission profile; this indicates that there is a separate species in solution. 

When excited at the other wavelengths, the similar porphyrin spectrum is observed.   
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Figure 3.35. PL of Dy(TPP)(CH3CN)(Dy-c) yellow solution excitation spectra. 

The excitation profile of the yellow Dy(TPP)(CH3CN) (Dy-c) solution in acetonitrile is 

shown in figure 3.35. The maxima are shown at 389, 406, 435, 444, 521, 554, and 597 nm. The 

overall intensity of the spectra has decreased. The peaks that were shown at 504 nm and 530 nm 

have disappeared and one peak at 521 nm is present. The subsequent peaks re-establish the 

descending intensity order compared to the equal intensity displayed in the TPP excitation 

spectra; this is owing to the greater interaction of the metal and porphyrin core. The positive slope 

is re-established with the changing dielectric constant. The peak at 435 nm has decreased in 

intensity to where it is now lower than the intensity of the 389 nm and 504 nm maxima. 

Unlike previous spectra, the 389 nm peak is more intense than the rest of the peaks of the 

excitation spectra. The three spectra show similar profiles with only a slight change in the shape 

of the peak appearing around 440 nm. When monitored at 682 nm, there was the largest change of 

the peak with it red shifting to 444 nm and becoming broader while keeping the other profile 

characteristics. When monitoring at 682 nm, while keeping the overall spectral characteristics 

consistent, the shift to 444 nm is indicative of a species present similar to the main species.  
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Figure 3.36. PL of Dy(TPP)(CH3CN)(Dy-c) yellow solution emission spectra. 

Figure 3.36 shows the emission profile of the yellow solution of Dy(TPP)(CH3CN) (Dy-

c). Emission maxima are observed at 646, 682, and 713 nm. The emission profile displays two 

different spectral profile dependent upon the excitation wavelength. When excited at 444 nm and 

458 nm there appears a broad peak at 682 nm. When excited at the other wavelengths, the spectra 

resume the similar TPP emission profile. The intensity of the major maxima is decreased in 

comparison to the intensity of the 652 nm peak of the TPP emission profile. The intensity of the 

lower maximum peak is relatively unchanged.  

The beginning part of the emission spectrum from 410 to 630 nm shows no luminescent 

activity. The spectra with a maxima appearing at 682 nm when excited at 444 nm and 458 nm 

could be due to those excitation wavelengths stabilizing a different species in solution with the 

help of the addition of acetonitrile and the change in dielectric constant of the aqueous solution. 

The other species shows luminescent behavior different and independent of the original TPP 

spectra with a decrease in the 646 nm peak forming the 682 nm peak. 
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3.5. PL of Ce(TPP) Complexes 

 

Figure 3.37. PL of Ce(TPP) excitation spectra. 

In  Figure 3.37 are shown the excitation peaks at 375, 418, 446, 522, 550, and 604 nm. 

There are three different excitation profiles depending on the monitoring wavelength. When 

monitored at 650 nm, the excitation profile shows a shoulder at 375 nm, broad peak maximum at 

418 nm and smaller peaks at 446, 522, 550, and 604 nm. When monitored at 714 nm, which 

corresponds to the smaller porphyrin emission peak, the excitation profile shows maxima at 417 

and 446 nm.  

When monitored at 714 nm instead of 650 nm there is decrease in the intensity of the band 

at 418 nm and a slight increase in intensity of the broad band at 446 nm. The peaks at longer 

wavelengths are no longer present.  When monitored at 677 nm, the excitation spectrum that is 

produced is similar in character to the spectrum that was monitored at 650 nm; the difference 

being the 28 nm red shift and disappearance of the 522, 550, and 604 nm peaks. There are two 

species in solution, one corresponding to the porphyrin maxima at 650 and 714 nm giving similar 

excitation spectra. The other profile corresponds to the other species in solution giving a different 

profile maximizing at 446 nm and vastly decreased longer wavelength maxima. 
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Figure 3.38. PL of Ce(TPP) emission spectra. 

In Figure 3.38 the emission spectra of two different profiles is shown with maxima at 650, 

677, and 714 nm. The standard porphyrin peak at 650 nm is still present, whereas the peak at 714 

isn’t present except when excited at 418 nm. When excited at 446 nm, there is a completely 

different emission profile that is produced, with a maximum at 677 nm. 

 

Figure 3.39. PL of Ce(TPP)(CH3CN) excitation spectra. 

The excitation spectra of Ce(TPP)(CH3CN) in figure 3.39., more closely resembles that of 

lanthanide porphyrin complexes. The spectrum shows bands at 387, 436, 482, 519, 553, and 600 

nm. Monitoring the excitation at 648 nm provides the most intense band than when monitored at 

716 nm.  
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The two profiles show the same characteristic peaks. The 436 nm peak is the most intense 

peak with a small shoulder at 406 nm. The peaks at 519, 533, and 600 nm are similar to the TPP 

peaks but these are more distinct, red shift, combine and decrease in the intensity as the 

wavelength increases, showing interaction between the metal and the porphyrin core.  

 

Figure 3.40. PL of Ce(TPP)(CH3CN) emission spectra. 

The spectra in Figure 3.40 exhibits the emission profile of Ce(TPP) when layered with 

acetonitrile. The maxima are shown at 648 nm and 714 nm. Compared to the original TPP 

emission profile the peaks are blue shifted 4 nm. The most intense band appears when excited at 

436 nm. The emission profile is wavelength dependent.  

There is no luminescent activity present in the beginning portion of the emission spectrum 

from 400 nm to 630 nm. The emission profile shows a uniformed distribution of intensity in the 

maxima of the spectra with respect to the excitation wavelength. The most intense spectrum 

appears when excited at 436 nm. The least intense spectrum appears when excited at 600 nm.  
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Figure 3.41. PL of Ce(TPP)(C6H6) excitation spectra. 

Figure 3.41., the excitation profile exhibits maxima shown at 394, 440, 482, 490, 523, 

555, and 600 nm. Although monitored at two different wavelengths, the profile is similar, varying 

in intensity. There is a small shoulder at 407 nm on the broad band of 394 nm.  

 

Figure 3.42. PL of Ce(TPP)(C6H6) emission spectra. 

The spectra, shown in figure 3.42., exhibits emission maxima at 650 and 716 nm. The 

spectra show wavelength dependency and there is a slight 2 nm red shift in the spectrum that was 

excited at 440 nm. There is no luminescent activity in the beginning portion of the spectra. 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

350 390 430 470 510 550 590 

In
te

n
si

ty
 

Wavelength, nm 

CeTPP benzene excitation spectra 

Em 650  Ex 350-620 

Em 716  Ex 370-620 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

410 450 490 530 570 610 650 690 730 

In
te

n
si

ty
 

Wavelength, nm 

CeTPP benzene emission spectra 

Ex 555  Em 570-740 

Ex482  Em 500-740 

Ex 523  Em 540-740 

Ex 490  Em 510-740 

Ex 600  Em 620-740 

Ex 440  Em 460-740 

Ex 394  Em 410-740 



58 

 

3.6. PL of Gd(TPP) Complexes 

 

Figure 3.43. PL of Gd(TPP) excitation spectra. 

The excitation spectra in figure 3.43., show maxima at 350, 386, 437, 480, 491, 512, 526, 

550, and 600 nm. The peak at 437 nm is the most intense with the four peaks decreasing in 

intensity at 512, 526, 550, and 600 nm respectively. The two profiles are similar with the only 

difference being the luminescence intensity.  

 

Figure 3.44. PL of Gd(TPP) emission spectra. 

Figure 3.44 shows the emission spectra with maxima at 646 and 714 nm. When excited at 

437 nm the spectrum red shifts 2 nm. Although wavelength dependent the spectra tend to group 

together instead of being evenly spread apart like the previous emission spectra.  
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Figure 3.45. PL of Gd(TPP)(CH3CN) excitation spectra. 

In Figure 3.45 is shown the excitation spectra of Gd(TPP) when layered with acetonitrile. 

The spectra show maxima at 388, 405, 437, 482, 521, 552, and 600 nm. The most intense peak is 

observed at 437 nm. There is a reduction of 4 peaks to 3 peaks shown at 521, 552, and 600 nm. 

The two excitation profiles are similar with only differences in the intensity based on the 

monitoring wavelength.  

 

Figure 3.46. PL of Gd(TPP) (CH3CN) emission spectra. 

The maxima of the spectra in figure 3.46 consist of peaks at 648 and 714 nm. The 

emission spectra are wavelength dependent with the most intense band showing when excited at 

437 nm. There is no luminescent activity in the beginning of the spectra with the most intense 

spectrum being excited at 437 nm.  
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Figure 3.47. PL of Gd(TPP)(C6H6) excitation spectra. 

In Figure 3.47is given the excitation spectra which show band maxima at 389, 442, 481, 

490, 512, 533, 555, and 600 nm. The most intense band is at 442 nm. The spectra resume the 

similarity of the original TPP excitation spectra; the main difference is the red shifting and 

decrease in emission intensity. 

 

Figure 3.48. PL of Gd(TPP)(C6H6) emission spectra. 

The emission spectra show maxima at 646 and 714 nm in figure 3.48. The spectral 

intensity is wavelength dependent but the intensity isn’t spread evenly. The most intense band is 

the spectrum that was excited at 442 nm. There is no luminescence intensity in the beginning tail 

of the emission spectra from 400 to 630 nm. 
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3.7. PL of Ag(TPP) Complex 

 

Figure 3.49. PL of Ag(TPP) excitation spectra. 

The spectrum of Ag(TPP) excitation in figure 3.49., shows broad peaks at 386, 520, 551, 

601 nm and a sharp peak at 436 nm. The 436 nm peak is of the highest intensity. There is a small 

shoulder on the 386 nm peak that appears at 405 nm. The three peaks occurring at 520, 551, and 

601 nm decrease in intensity, unlike the excitation spectra of original TPP. The lower excitation 

spectrum is the result of being monitored at 716 nm.  

 

Figure 3.50. PL of Ag(TPP) emission spectra. 

Figure 3.50 shows the emission spectrum of Ag(TPP) and its wavelength and intensity 

dependent characteristics. The peaks shown are at 646 nm and 716 nm. The largest peak observed 

is excited at 436 nm.  There is an even distribution of spread between each spectrum shown in the 
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spectra. The beginning tail shows no luminescence activity from 400 to 630 nm, like previous 

Ln(TPP) complexes. The emission profile is similar in the appearance of the maxima at 646 nm 

and 716 nm which are both blue shifted from the original TPP emission profile. This proves that 

the smaller atomic radii and smaller charge of silver doesn’t majorly affect the emission profile. 

3.8. PL of Lanthanide (TPP) Combined Complexes 

 

Figure 3.51. PL of Ln(TPP) combined excitation spectra. 

The combined spectra of the lanthanides with TPP are illustrated in figure 3.51. The 

standard TPP spectrum is shown in purple with peaks at 340, 388, 436, 472, 482, 510, 530, 548, 

and 600 nm. The spectrum that most closely resembles the TPP is that of the DyTPP complex 

(Dy-a) purple solution, which was exposed to sodium hydroxide and retained its color. The 

Dy(TPP) complex (Dy-a) spectrum is close in intensity to the TPP except in relation to the 436 

nm peak; there is a decrease in intensity and a slight red shift in the peak maximum.  

The Gd(TPP) spectrum exhibits similar peak maxima as TPP; the differences arise in that 

the beginning peaks are higher in intensity and exhibit a different profile. The 348 nm peak has 

red shifted to 351nm and the 388 peak remains consistent with the original TPP although higher 

in intensity. The 436 nm peak has blue shifted and decreased in intensity compared to the original 

peak at 440 nm. The peaks at 472, 482, and 492 nm are the lowest of all the spectra, whereas the 
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peaks at 510, 526, 551, and 600 nm are only slightly less intense than the original TPP peaks at 

similar wavelengths. The Eu(TPP) complex (Eu-d) purple solution spectrum is similar to the 

original TPP being the differences are the beginning peaks intensities at 351 and 388 nm. The 

peaks of Eu(TPP) complex (Eu-d) purple solution are identical in position to the peaks of 

Gd(TPP), although higher in intensity. The 436 nm peak is blue shifted and more intense than the 

original peak located at 440 nm. 

The Ce(TPP) spectrum shows maxima at 375, 418, 446, 522, 550, and 604 nm. Its 

spectrum shows its most intense luminescence where the other graphs have the lowest. The 

Eu(TPP) complex (Eu-a) green solution spectrum isn’t consistent with the majority of the 

characteristic peaks, decreased intensity and no luminescent peak at 440 nm.  

 

Figure 3.52. PL of Ln(TPP) combined emission spectra. 

Figure 3.52 shows the combined lanthanides and TPP emission spectra with band maxima 

at 652 and 719 nm. The spectrum of the Eu(TPP) complex (Eu-d) maxima at 652 and 716 nm. 

The spectrum of Gd(TPP) shows maxima at 646 nm and 714 nm. The spectrum of Dy(TPP) 

complex (Dy-a) purple solution shows maxima at 652 nm and 714 nm.  
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The spectrum of Ce(TPP) shows a maximum at 677 nm. The spectrum of Eu(TPP) 

complex (Eu-a) green solution shows a maximum at 705 nm. The Ce(TPP) and Eu(TPP) complex 

(Eu-a) green solution changes the most from the original TPP spectrum. The intensity of the 

Eu(TPP) complex (Eu-a) green solution and Gd(TPP) is greater than the intensity of TPP original 

spectrum. There is no luminescence intensity in the beginning tail of the spectra.  

 

Figure 3.53. PL of Ln(TPP)(CH3CN) excitation spectra. 

In Figure 3.53 is shown a comparison of the excitation spectra of the lanthanides 

complexes in acetonitrile. The TPP spectrum shows maxima at 344, 388, 440, 472, 482, 505, 530, 

550, and 600 nm. The emission profile of Gd(TPP) shows maxima at 388, 405, 437, 482, 521, 

552, and 600 nm. The major peak is blue shifted from 440 nm to 437 nm and there is a 

combination of the 505 nm and 530 nm peaks to form the 521 nm broad peak. The beginning 

peak and structure changes from the TPP spectrum structure in that the 388 nm peak is more 

intense and there is a positive slope to 388 nm instead of a negative slope towards the 388 nm 

peak.  

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

300 340 380 420 460 500 540 580 620 

In
te

n
si

ty
 

Wavelength, nm 

Lanthanide TPP acetonitrile excitation 
spectra 648 nm 

HTPP 

GdTPP 

CeTPP 

EuTPP(Eu-c) 

EuTPP(Eu-f) 

DyTPP(Dy-c) 



65 

 

 The emission profile of the Ce(TPP) spectrum layered with acetonitrile shows maxima at 

387, 405, 436, 482, 519, 553, and 600 nm. The positive slope to the 388 nm peak is similar to the 

Gd(TPP) spectra only being lower in intensity. The major peak is also blue shifted from 440 nm 

to 436 nm; there is also a combination of the 505 and 530 nm peaks to form the 519 nm broad 

peak. There is a decrease in intensity from the 520, 550 and 600 nm peaks.  

 The emission profile of Eu(TPP) complex (Eu-f) purple solution layered with acetonitrile 

shows maxima at 365, 390, 405, 435, 482, 518, 554, and 597 nm. There is also a positive slope 

towards the peak at 390 nm; the major peak is blue shifted from 440 nm to 435 nm. There is also 

a combination of the 505 and 530 nm peaks to form the 518 nm. The major peak shows a 

decreased luminescence as well possibly due to the addition of sodium hydroxide. 

 The emission profile of Dy(TPP) complex (Dy-c) purple solution shows maxima at 350, 

381, 440, 483, 511, 527, 553, and 597 nm. This profile is the most similar to the TPP spectrum 

being that the 350 and 381 nm peaks are consistent with each other and the major peak didn’t blue 

shift although it decreased in intensity. The two peaks at 511 nm and 527 nm are similar to the 

TPP peaks at 505 nm and 530 nm. The cluster of peaks appearing from 470 nm to 490 nm is 

similar to the original and increased in intensity compared to the other Ln(TPP) acetonitrile 

complexes.  

The emission profile of the Eu(TPP) complex (Eu-c) green solution shows maxima at 396, 

470, 523, and 563 nm. This shows the largest change from the original TPP spectrum with a 

decrease luminescence profile and appearance of peaks. The 396 nm peak appears where all other 

complexes show no luminescent activity. The 470 nm peak is also uncharacteristic of porphyrin 

and lanthanide porphyrin complexes; this is reason for an energy transfer process and the result of 

the change in the solvent dielectric constant stabilizing at different energy states. 
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Figure 3.54. PL of Ln(TPP)(CH3CN) emission spectra. 

The spectra shown in figure 3.54 represent the emission profile of the Ln(TPP) layered 

with acetonitrile. The original TPP shows emission maxima at 652 nm and 719 nm. The emission 

profile of Ce(TPP) shows maxima at 648 nm and 714 nm; there is a 4 nm and 5 nm blue shift in 

the emission maxima respectively. The emission profile of Gd(TPP) shows maxima at 648 nm 

and 714 nm; the intensity is higher than the original TPP although the maxima are blue shifted 4 

nm and 5 nm respectively.  

The emission profile of Eu(TPP) (Eu-f) shows maxima at 648 nm and 714 nm; this is 

similar to the previous although the intensity is lower than the TPP emission spectrum. The 

emission profile of Dy(TPP) complex (Dy-c) purple solution shows maxima at 648 nm and 682 

nm; the intensity is lower and there is a red shift in the major peak. There is a small shoulder at 

the 648 nm peak. The emission profile of Eu(TPP) complex (Eu-c) green solution shows maxima 

at 699 nm with no luminescence activity at 648 nm; the emission is centered closer the lower 

maximum due to the dielectric constant and other mechanisms occurring in solution. 
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Figure 3.55. PL of Ln(TPP)(C6H6) excitation spectra. 

Figure 3.55 shows the excitation spectra of Ln(TPP)(C6H6) complexes. The excitation 

profile of TPP shows maxima at 344, 386, 440, 481, 505, 529, 550, and 600 nm. There is a 

negative slope going from the 344 nm peak to the 386 nm peak. The major peak maxima shows at 

440 nm and the peaks from 470 nm to 550 nm are comparable in intensity. There is no peak at 

405 nm. 

 The excitation spectrum of Ce(TPP) shows maxima at 394, 405, 440, 482, 490, 523, 555, 

and 600 nm. There is a positive slope leading up to the 394 nm. The major peak at 440 nm is 

more intense than the TPP peak at 440 nm. The peaks at 505 and 529 nm were combined to form 

the 523 nm. There is a decrease in intensity from the 529 nm peak to the 600 nm peak.  

 The excitation spectrum of Gd(TPP) shows maxima at 350, 389, 442, 481, 490, 512, 533, 

555, and 600 nm. There is a slight plateau from the 350 nm to the 389 nm peak. The major peak 

at 442 is red shifted from the original 440 nm wavelength and is less intense. The peaks at 502 nm 

and 535 nm haven’t combined but are similar to the 505 nm and 529 nm peaks of the TPP 

excitation spectrum; where the TPP peaks are comparable in intensity, the Gd(TPP) excitation 

spectrum’s 529 nm to 600 nm peaks decrease in intensity. 
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 The excitation spectrum of Dy(TPP) complex (Dy-b) purple solution shows maxima at 

346, 386, 443, 502, 535, 550, and 600 nm. The entire spectrum is most similar to the TPP 

spectrum in corresponding peak wavelengths, the difference being the decreased luminescence 

and 3 nm red shift of the major peak. The intensity of the 502 nm to 550 nm has the 

characteristics of a plateau just as the TPP spectrum. There is no peak at 405 nm like the other 

spectra.  

 The excitation spectrum of Eu(TPP) complex (Eu-e) purple solution shows maxima at 

393, 406, 438, 519, 535, and 600 nm. The beginning part of the spectrum resumes the positive 

slope towards 393 nm and the shoulder at 406 nm returns. The major peak is blue shifted from 

440 nm to 438 nm and is less intense than the TPP major peak at 440 nm. The peaks at 505 nm 

and 529 nm combine to form the 519 nm peak. The intensity of the 519 nm to 600 nm peaks 

decrease in intensity, unlike the TPP excitation spectrum. The intensity of the cluster of 470 nm to 

490 nm peaks is lower than the TPP cluster. 

 The excitation spectrum of Eu(TPP) complex (Eu-b) green solution shows maxima at 373, 

431, and 462 nm. This spectrum changes the most from the TPP spectrum and is the most 

consistent. The 431 and 462 nm peaks are most intense when the other spectra are least intense. 

This shows that even with the addition of benzene the profile stays consistent and maintains the 

peaks at 373 and 462 nm which are blue shifted compared to the same complex with acetonitrile 

added. This excitation spectrum shows that there is a direct energy transfer coupled with another 

intricate process occurring between the europium and the porphyrin; this intricate process is still 

consistent with the involvement of benzene on the excitation spectra for lanthanides and 

porphyrin. This observation would make the europium porphyrin complex a candidate for the 

sensor for benzene and acetonitrile.  
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Figure 3.56. PL of Ln(TPP)(C6H6) emission spectra. 

In Figure 3.56 the emission profile of the lanthanides, TPP, and benzene complexes are 

given. The emission profile of TPP shows maxima at 652 and 719 nm, while the emission profile 

of Ce(TPP) shows maxima at 650 and 716 nm. The emission profile of Gd(TPP) shows maxima 

at 646 and 714 nm. The emission profile of Dy(TPP) complex (Dy-b) purple solution shows 

maxima at 652 and 716 nm.  

The emission spectrum of Eu(TPP) complex (Eu-e) purple solution shows maxima at 648 

and 714 nm. The emission profile of Eu(TPP) complex (Eu-b) green solution shows a maximum 

at 698 nm. Aside from blue shifts of the major peak, the complex that shows the greatest change 

is Eu(TPP) complex (Eu-b) green solution; there is no luminescence activity at the 648 nm peak 

but shifts from the 716 nm to shorter wavelength at 698 nm. The 714 to 719 nm peak is consistent 

in its intensity although different lanthanides were used; the major difference is in the major peak 

intensities with Ce(TPP) and Gd(TPP) being more intense than the TPP emission profile with 

respect to the maxima occurring at 650 and 646 nm, respectively. 
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3.9. PL of (TBSP) 

 

Figure 3.57. PL of TBSP excitation spectra. 

The excitation spectra of TBSP, seen in figure 3.57 have maxima at 336, 388, 459, 478, 

482, 490, 501, 538, 563, and 587 nm. The excitation spectra show two different profiles; when 

monitored at 648 nm and 714 nm similar spectra are produce, but when monitored at 682 nm, a 

different profile has emerged. When monitored at 682 nm, the peak at 459 is more prominent than 

in the other excitation profiles. The peaks at 482, 490, and 501 nm are decreased in relative 

intensity compared to the 459 nm peak; those peaks show comparable intensity unlike the other 

excitation profile that is shown.  

 The intensity of the excitation profile when monitored at 648 nm is the most intense 

compared to the similar profile when monitored at 714 nm. The intensity of the excitation profile 

when monitored at 682 nm is lower than the profile monitored at 714 nm at all points except for 

the maxima at 459 nm. Although there are differences between the 450 nm to 520 nm portion of 

the graph, all three spectra show similar excitation profile character from 530 nm to 610 nm. 

Peaks and remnants of the same peaks can be seen in all three spectra; all descend in a negative 

slope after 610 nm. All three show no luminescence activity from the 390 nm to 430 nm range.  
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Figure 3.58. PL of TBSP emission spectra. 

In Figure 3.58 is given the emission profile of TBSP and its maxima at 648, 682, and 714 

nm. The beginning portion of the emission spectra doesn’t show any luminescence intensity from 

500 to 620 nm. There are two emission profiles seen in the spectra; one being two dominant peaks 

at 648 nm and 714 nm, and the other profile with a dominant peak at 682 nm and a small shoulder 

at 650 nm. When excited at 459 nm, the emission spectrum with a maximum at 682 nm is 

produced, indicating a new species is stabilized at the excitation wavelength. When excited at all 

other peak wavelengths, the emission profile with maxima at 648 nm and 714 nm is produced; the 

most intense spectrum is excited at 501 nm. 

With the first profile showing maxima at 648 nm and 714 nm, there isn’t a great deviation 

in the emission intensity compared to that of the TPP emission spectra. The ratio between the 

height of the 648 nm and 714 nm maxima isn’t as large as the TPP; this is due to the electron 

withdrawing sulfonyl groups. The other profile showing a maximum at 682 nm is still persistent 

although this porphyrin is different than the tetraphenylporphyrin; this shows that the other 

species is still present and stabilized at that excitation wavelength.  
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3.10. PL of Lanthanide (TBSP) Combined Complexes  

 

Figure 3.59. PL of Ln(TBSP) excitation spectra. 

The excitation profile of Ln(TBSP) when monitored at 646 nm is shown in figure 3.59. 

The TBSP spectrum shows maxima at 336, 388, 478, 482, 490, 501, 538, 563, and 587 nm. There 

is a small broad band at 336 nm. There are three other broad bands with the first having three 

distinctive sharp maxima peaks. There is a decrease in intensity between the three intense broad 

bands.  

 The Tb(TBSP) excitation spectrum is most consistent with the TBSP excitation spectra, 

thus showing maxima at 338, 457, 478, 482, 490, 501, 549, 563, and 591 nm. The intensity of the 

Tb(TBSP) spectra is lower than the TBSP. There are four broad bands in total, with the most 

intense three broad bands being of comparable intensity.  

 The Eu(TBSP) excitation spectrum shows maxima at 338, 458, 478, 482, 490, 501, 512, 

554, and 591 nm. This excitation spectrum is similar to the TBSP spectrum in the beginning 

portion from 338 nm to 388 nm; afterwards, it changes from the original profile character. It 

develops prominent peaks at 512, 554, and 591 nm. 
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 The Dy(TBSP) excitation spectrum shows maxima at 345, 389, 458, 476, 482, 490, 501, 

511, 531, 554, and 592 nm. The excitation profile shows a similar negative slope from 345 nm to 

389 nm; there is then no luminescence activity until a peak maximum occurs at 458 nm. The 

similar cluster of maxima at 476, 482, and 501 nm are shown. Three prominent peak maxima 

emerge at 511, 554, and 592 nm with a small shoulder appearing at 531 nm. Unlike the previous 

excitation spectra, the three prominent peaks are more intense than the cluster of maxima at the 

470 nm to 501 nm range. This alteration of the excitation spectrum shows that there is an 

observable reaction occurring changing the excitation spectrum.  

 The excitation spectrum of Ce(TBSP) shows maxima at 393, 437, 523, 553, and 593 nm. 

This excitation profile deviates from the most from the others. There is a positive slope going 

from 330 nm to the peak maximum at 393 nm. There is also a small broad band at 437 nm where 

in the other lanthanide TBSP spectra there was luminescence inactivity. The cluster of bands that 

had showed up at the 470 nm to 501 nm range is absent while there are three distinct broad bands 

that decrease in intensity, arise at 523, 553, and 593 nm. This shows a greater interaction between 

the cerium and porphyrin in the way that it alters and decreases the spectrum as in the previous 

lanthanide porphyrin complexes in aqueous solution.  

 The excitation spectrum of Gd(TBSP), yellow spectrum, shows maxima at 331, 403, 523, 

553, and 595 nm. This spectrum is the least intense of all the spectra and differ the most from all 

the other spectra. There is a small broad peak at 403 nm and three small remnants of broad peaks 

at 523, 553, and 595 nm. The maximum at 403 nm is intense where the other profiles don’t show 

luminescence intensity. There is a small sharp band at 331 nm. The difference in this spectrum 

compared to the rest shows the direct interaction and alteration of spectrum due to gadolinium and 

porphyrin interaction, thus quenching the excitation and altering the profile the most.  
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Figure 3.60. PL of Ln(TBSP) emission spectra excited at 482 nm. 

The emission spectra of Ln(TBSP) shown in figure 3.60 has the emission maxima at 648 

nm and 712 nm. The emission profile of Tb(TBSP) shows maxima at 657 nm and 712 nm; this is 

a 9 nm red shift in the most intense peak. The emission spectrum of Eu(TBSP) shows maxima at 

649 nm and 700 nm; this is a 1 nm red shift and 12 nm blue shift respectively. The emission 

profile of Dy(TBSP) shows emission maxima at 653 nm and 709 nm; this is a 5 nm red shift and 

3 nm blue shift respectively. The emission profile of Ce(TBSP) shows a maximum at 645 nm; this 

is a 3 nm blue shift. The emission spectrum of Gd(TBSP) shows a maximum at 656 nm; this is an 

8 nm red shift. 

The intensity of the highest maxima decreases in intensity from the TBSP, Tb(TBSP), 

Eu(TBSP), Dy(TBSP), Ce(TBSP), and Gd(TBSP) respectively. The intensity of the smaller 

maxima also decreases until disappearance, as seen in the Ce(TBSP) and Dy(TBSP). Based on the 

emission profile, Ce(TBSP) and Gd(TBSP) quench the emission most compared to the other 

complexes. The beginning portion of the emission spectra shows no luminescence activity from 

500 nm to 600 nm, just like previously seen in the other lanthanide porphyrin complexes whether 

acetonitrile, benzene or no additional solvent was added to the reaction mixture.  
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Figure 3.61. PL of Ln(TBSP) emission spectra excited at 459 nm. 

The above spectra figure 3.61., show the emission profile of lanthanide TBSP complexes. 

The emission TBSP shows a maximum at 687 nm. The spectrum of Eu(TBSP) shows a maximum 

of 665 nm. The emission of Tb(TBSP) shows a maximum at 672 nm. The Dy(TBSP) emission 

spectrum shows a maximum at 674 nm. The emission profile of Ce(TBSP) shows a maximum at 

657 nm. The emission profile of Gd(TBSP) shows a maximum at 645 nm. The emission profiles 

of cerium and gadolinium TBSP are quenched and blue shifted the most compared to the other 

spectra. All of the emission spectra of lanthanide TBSP complexes have blue shifted maxima 

emission profiles when excited at 459 nm. 

All of the lanthanide TBSP complexes show a decrease in intensity being Tb(TBSP), 

Dy(TBSP), Ce(TBSP), and Gd(TBSP). The only complex that enhances the luminescence 

spectrum profile is that of the Eu(TBSP); this shows that there is energy transfer from the metal to 

the porphyrin. The single maximum appearing is consistent whether lanthanides are added to the 

porphyrin. This shows that the stabilized species is still prevalent with the addition of lanthanides 

in the solution when it is excited at 459 nm.  
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Figure 3.62. PL of Ln(TBSP)(CH3CN) excitation spectra. 

In Figure 3.62 is shown the excitation profile of the combined lanthanide, TBSP and 

acetonitrile complexes. This spectrum shows three different excitation profiles. One profile is that 

of the TBSP which shows a negative slope in the beginning peak, no peak in the 440 nm area, and 

three broad bands including the intense cluster peaks. The second profile shows positive slopes to 

a maximum peak, intense sharp peak at 440 nm region, and the emergence of three distinct broad 

peaks with the decrease in cluster peaks intensity. The third profile shows negative slope from 

one maximum to another, a sharp peak in the 440 nm region, relatively comparable cluster 

intensity, and four distinct broad peaks with decreasing luminescence intensity. 

The TBSP spectrum shows maxima at 336, 388, 478, 482, 490, 501, 538, 563, and 587 

nm. There is a small broad band at 336 nm with negative slope and a trough at 520 nm.. There are 

three other broad bands with the first having three distinctive sharp maxima peaks. There is a 

decrease in intensity between the three intense broad bands, but there isn’t a uniform conformity 

between the three peaks of the TBSP excitation spectrum. 
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 The excitation spectrum of Tb(TBSP) shows maxima at 360, 388, 437, 482, 490, 516, 554, 

and 594 nm. There is a broad, plateau, band from 360 nm to 388 nm. There is a sharp intense 

peak at 437 nm; the cluster of peaks from 470 nm to 490 nm is still prevalent. There are three 

distinct broad peaks descending in intensity at 516, 554, and 594 nm. This spectrum is the most 

intense of the compared lanthanide, TBSP, acetonitrile complexes.  

 The excitation spectrum of Gd(TBSP) shows maxima at 333, 395, 438, 482, 490, 521, 

556, and 597 nm. There is a sharp band at 333 nm, followed by a positive slope to a maximum at 

395 nm. There is a sharp peak at 438 nm. The small cluster of peaks from 470 nm to 490 nm 

remains. There are three distinct broad peaks descending in intensity with maxima at 521, 556, 

and 597 nm. 

 The excitation spectrum of Ce(TBSP) shows maxima at 334, 388, 401, 437, 482, 490, 521, 

556, and 595 nm. The spectrum shows a sharp peak at 334 nm, followed by a positive slope to 

two maxima at 388 nm and 401 nm. There is a sharp peak at 437 nm followed by three distinct 

broad peaks at 521, 556, and 595 nm. The three peaks descend in intensity. 

 The excitation spectrum of Dy(TBSP) shows maxima at 344, 380, 440, 482, 490, 511, 

530, 553, and 593 nm. There is a negative slope from the 344 nm peak to the 380 nm shoulder. 

There is a sharp peak at 440 nm, followed by the cluster of peaks at 472 nm and 482 nm. There 

are four distinct broad peaks at 511, 530, 553, and 593 nm. These four peaks also descend in 

intensity.  

 The excitation spectrum of Eu(TBSP) shows maxima at 347, 379, 439, 482, 490, 511, 530, 

553, and 593 nm. There is a negative slope from the 347 nm peak to the 379 nm shoulder. There 

is a sharp peak at 439 nm, followed by the cluster of peaks at 472, 472, and 490 nm. There are 

four large, descending peaks at 511, 530, 553, and 593 nm. 
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Figure 3.63. PL of Ln(TBSP)(CH3CN) emission spectra 

The above emission spectra figure 3.63 show the lanthanide, TBSP, acetonitrile 

complexes. The spectra show one type of emission profile with two distinct maxima. The TBSP 

emission spectrum shows maxima at 650 nm and 710 nm. The Tb(TBSP) emission spectrum 

shows maxima at 647 nm and 711 nm. The emission spectrum of Eu(TBSP) shows maxima at 

647 nm and 711 nm. The emission spectrum of Dy(TBSP) shows maxima at 647 nm and 711 nm. 

The emission spectrum of Gd(TBSP) shows maxima at 649 nm and 715 nm. The emission 

spectrum of Ce(TBSP) shows maxima at 649 nm and 717 nm. All of the lanthanide, TBSP, 

acetonitrile complexes show a blue shift in the major maximum peak; the latter peak is red 

shifted.   

The beginning portions of the emission spectra show no luminescent activity from 540 nm 

to 610 nm. The intensity of the major maximum is decreased for the Ce(TBSP) acetonitrile 

layered and the lower maxima is red shifted compared to the original TBSP emission spectrum. 

The intensity of the major maximum is increased for the Gd(TBSP), Dy(TBSP), Eu(TBSP), and 

Tb(TBSP) acetonitrile complexes.  
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Figure 3.64. PL of Ln(TBSP)(C6H6) excitation spectra. 

The figure 3.64 corresponds to the excitation profiles of lanthanide, TBSP, benzene 

complexes. The spectra show three different profiles; one being of the original TBSP, the second 

profile containing Dy(TBSP) and Tb(TBSP), and the third profile containing Eu(TBSP), 

Ce(TBSP), and Gd(TBSP). The first profile of the TBSP spectrum shows maxima at 336, 388, 

478, 482, 490, 501, 538, 563, and 587 nm. There is a small broad band at 336 nm. There are three 

other broad bands with the first having three distinctive sharp maxima peaks. There is a decrease 

in intensity between the three intense broad bands. 

 The excitation profile of the Eu(TBSP) shows maxima at 383, 401, 439, 521, 555, and 598 

nm. There is a positive slope leading to the maxima at 383 nm and 401 nm. The peak at 401 nm 

corresponds to a europium excitation peak. There is a sharp peak at 439 nm, followed by the 

reduced intensity of cluster peaks from 470 nm to the 490 nm range. There are three distinct 

broad peaks descending in intensity from 521, 555, and 598 nm wavelengths. This spectrum is 

more intense than the TBSP spectrum. 
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The excitation profile of the Ce(TBSP) shows maxima at 381, 398, 441, 521, 558, and 598 

nm.  There is a positive slope leading to maxima at 381 nm and 398 nm. The maximum at 398 

isn’t as pronounced as the broad peak at 401 nm of the Eu(TBSP) spectrum. There is a sharp peak 

at 441 nm, followed by a reduced intensity cluster peaks. There are three distinct broad bands 

appearing at 521, 558, and 598 nm.  

 The excitation spectrum of Gd(TBSP) shows maxima at 386, 401, 438, 521, 558, and 598 

nm. There is also a positive slope leading from the 386 nm peak to the 401 peak. There is a sharp 

peak at 438 nm and the cluster of peaks from 470 nm to 490 nm. There are three distinct broad 

peaks descending in intensity from the 521, 558, and 598 nm wavelengths.  

 The excitation spectrum of Tb(TBSP)shows maxima at 380, 405, 417, 433, 521, 558, and 

598 nm. There are three distinct broad peaks at 598, 558, and 521 nm. The cluster peaks have 

been reduced to show almost no luminescence activity. There is no peak at the 440 nm 

wavelength, but a peak at 433 nm appears along with two maxima at 417 nm and 405 nm 

corresponding to a terbium excitation peak. There is also a shoulder at 380 nm. 

 The excitation spectrum of Dy(TBSP) shows maxima at 388, 404, 420, 426, 521, 558, and 

598 nm. There are three distinct broad peaks descending in intensity at 521, 558, and 598 nm. The 

cluster peaks intensity has been reduced and no peak is shown at the 440 nm area. There are 

maxima at 420, 404, and a shoulder at 388 nm. 

 Although there are three different profiles shown in the excitation spectra, all of the 

lanthanide TBSP benzene complexes show a sharp excitation peak at 333 nm, and three distinct 

broad peaks at 521, 558, and 598 nm. These alterations show that benzene molecule may causes a 

consistent deviation of spectra of the lanthanide TBSP from the original TBSP excitation profile; 

this is due to the stabilizing of the higher energy state of porphyrin by benzene.  
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Figure 3.65. PL of Ln(TBSP)(C6H6) emission spectra excited at 400 nm. 

The above spectra in figure 3.65 show the emission profiles of the TBSP alone and of the 

lanthanide TBSP benzene complexes while excited at 400 nm. The TBSP emission profile shows 

maxima at 648 nm and 710 nm. The Eu(TBSP) complex emission profile shows maxima at 648 

nm and 711 nm. The Ce(TBSP) complex emission profile shows maxima at 651 nm and 713 nm. 

The Gd(TBSP) complex emission profile shows maxima at 650 and 713 nm. 

 The Tb(TBSP) complex emission profile shows maxima at 650 nm and 713 nm. The 

Dy(TBSP) complex emission profile shows maxima at 652 nm and 713 nm. The most intense 

major band corresponds to the Eu(TBSP) complex. All of the lanthanide TBSP complexes show a 

red shift in the major emission peak maxima and the lower emission peak maxima. The beginning 

portion of the emission spectra shows very little luminescence activity from 420 to 620 nm, with a 

broad band maximizing at 438 nm, when excited at 400 nm. The ratio between the maxima peaks 

at 648 nm and 710 nm is larger compared to when the complexes are exposed to acetonitrile or no 

solvent at all. With no solvent added, acetonitrile added, and benzene added the ratios between the 

maxima are 2.09, 2.05, and 4.72 respectively.  
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Figure 3.66. PL of Ln(TBSP)(C6H6) emission spectra excited at 365 nm. 

The above spectra figure 3.66., show the emission profile of TBSP alone and of the 

lanthanide, TBSP, benzene complexes when excited at 365 nm. The TBSP emission profile shows 

maxima at 648 nm and 710 nm. The Eu(TBSP) complex shows maxima at 648 nm and 711 nm. 

The Ce(TBSP) complex emission spectrum shows maxima at 651 nm and 713 nm. The 

Gd(TBSP) complex emission spectrum shows maxima at 650 nm and 713 nm.  

The Tb(TBSP) complex emission spectrum shows maxima at 650 nm and 713 nm. The 

Dy(TBSP) complex emission spectrum shows maxima at 652 nm and 713 nm. The emission 

spectra of TBSP and Eu(TBSP) benzene complex don’t show a sharp peak maximum at 713 nm; 

they show a round broad peak at 711 nm. The emission spectra of Ce(TBSP), Gd(TBSP), 

Tb(TBSP), and Dy(TBSP) benzene complexes show a sharp peak maximum at 713 nm. There is 

luminescence activity at the beginning of the spectra in a broad band with a maximum at 438 nm. 

The most intense spectra are listed in order from Eu(TBSP), TBSP, Gd(TBSP), Ce(TBSP), 

Tb(TBSP), and Dy(TBSP) benzene complexes. The Eu(TBSP) is much more intense compared to 
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the rest of the spectra. The TBSP, Ce(TBSP), and Gd(TBSP) benzene complexes are comparable 

in intensity where the Tb(TBSP) and Dy(TBSP) benzene complexes are the least intense among 

the compared spectra. There is luminescent activity in the beginning portion of the emission 

spectra, a broad band and smaller other peaks. 

 

Figure 3.67. PL spectra of Ln(TBSP)(C6H6) emission spectra excited at 334 nm.  

The above spectra in figure 3.67 reveal the similarities of the emission spectra of 

lanthanide TBSP benzene complexes when excited at 334 nm. The spectra show consistent peak 

maxima at 358, 380, and 443 nm. There is a sharp peak at 358 nm, broad band at 380 nm and 

broad band at 443 nm. The most intense spectrum corresponds to the Dy(TBSP) benzene 

complex, also show a characteristic dysprosium band at 571 nm. The second most intense band 

corresponds to the Tb(TBSP) benzene complex, displaying a characteristic terbium band at 542 

nm. The third most intense band corresponds to the Eu(TBSP) benzene complex showing a 

characteristic europium band at 615 nm. The two least intense bands correspond to the Gd(TBSP) 

and Ce(TBSP) benzene complexes, respectively.  

 The presence of the lanthanide peaks show that the projected lanthanide was present in the 

system and that its luminescence was greatly reduced. The lanthanide energy is transferred to the 

TBSP ligand and the benzene layered environment allows for some lanthanide emission to be 

observed. 
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3.11. UV-Vis Spectroscopy of Lanthanide (TPP) Combined Complexes 

 

Figure 3.68. UV-Vis spectroscopy of Ln(TPP) complexes 

The above spectra in figure 3.68 show the UV-Vis spectroscopic, absorbance peaks of 

TPP and lanthanide TPP complexes. The absorbance of TPP shows characteristic maxima at 281, 

364, 395, 421, 513, 549, 586, and 647 nm. The Ce(TPP) shows maxima at 238, 414, and 434 nm. 

There are no absorbent peaks shown after the 434 nm peak. The Dy(TPP)  shows maxima at 374, 

401, 414, 416, 513, 549, 586, and 647 nm. There is no broad peak at 281 nm, but there is a small 

shoulder at 374 nm followed by a narrow soret peak at 416 nm with small shoulders at 401 nm 

and 416 nm. The characteristic peaks at 513, 549, 586, and 647 nm are greatly reduced in 

absorbance compared to the TPP absorbance spectrum.  

 The Eu(TPP)  spectrum shows maxima at 270, 401, 414, 513, 549, 586, and 647 nm. 

There is a small broad peak at 270 nm, followed by a sharp peak with a small shoulder at 401 nm. 

There is no broadening of the 414 nm peak. The 513, 549, 586, and 647 nm peaks are reduced in 

absorbance compared to the TPP absorbance spectrum.  
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 The Gd(TPP)  absorbance spectrum shows maxima at 305, 360, 386, 513, 549, 586, and 

647 nm. There is a single large broad band with three small maxima at 305, 360, and 386 nm. 

There is no evidence of a sharp peak at 414 nm but the Gd(TPP)  spectrum does show the 

characteristic Q band peaks at 513, 549, 586, and 647 nm.   

 

Figure 3.69. UV-Vis spectroscopy of Ln(TPP)(CH3CN) complexes 

The above spectra in figure 3.69., show the UV-Vis spectroscopic, absorbance peaks of 

TPP and lanthanide TPP acetonitrile complexes. The absorbance of TPP shows characteristic 

maxima at 281, 364, 395, 421, 513, 549, 586, and 647 nm. The Ce(TPP)  spectrum shows maxima 

at 231, 267, 375, 395, 415, 512, 545, 588, and 647 nm. There are two small peaks at 231 nm and 

267 nm. There is a large peak at 395 nm with small shoulders at 375 nm and 415 nm. The 

characteristic peaks show at 512, 545, 588, and 647 nm.  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

200 270 340 410 480 550 620 690 760 

A
b

so
rb

an
ce

 

Wavelength, nm 

Lanthanide TPP acetonitrile UV-Vis 

TPP 

CeTPP CH3CN 

DyTPP(Dy-c) 

EuTPP(Eu-c) 

EuTPP(Eu-f) 

GdTPP CH3CN 



86 

 

 The Gd(TPP)  spectrum shows maxima at 233, 273, 372, 407, 420, 512, 545, 588, and 647 

nm. There is a broad peak at 233 nm and a small broad peak at 273 nm. There is a large broad 

peak at 407 nm with small shoulders at 372 nm and 420 nm. The characteristic peaks are 

decreased in absorbance and observed at 512, 545, 588, and 647 nm. 

 The Eu(TPP)  complex (Eu-f), sodium hydroxide added, yellow solution spectrum shows 

maxima at 214, 327, 415, 512, 545, 588, and 647 nm. There is a broad peak at 214 nm and at 327 

nm. There is a sharp soret band peak at 415 nm followed by the characteristic decreased Q band 

absorbance peaks at 512, 545, 588, and 647 nm. The Dy(TPP) complex (Dy-c), sodium hydroxide 

added, purple solution spectrum shows maxima at 206, 415, 512, 545, 588, and 647 nm. There is 

a broad band at 206 nm followed by a large single peak at 415 nm and the characteristic peaks at 

512, 545, 588, and 647 nm. There is a decrease in the absorbance of the last four peaks.  

 For the TPP organic ligand, a decrease in the absorbance of the last four peaks shows 

efficient coordination of a metal in the porphyrin core center. The decrease is also attributed to the 

increase in the symmetry that is formed when the lanthanide coordinates to the porphyrin core. 

The symmetry of the porphyrin complex transitions from D2h to D4h symmetry.  

The narrowing of the major band around 412 nm shows that a metal is coordinated at the 

center of the pyrrole ring of porphyrin ligands. The addition of acetonitrile causes the cerium and 

gadolinium complexes to resume the characteristic profile of a porphyrin UV-Vis spectrum, 

although there is still broadening in the 415 nm soret band peak. With the addition of other 

lanthanides, the broad peak that shows up at 281 nm is no longer present as shown in the original 

TPP UV-Vis spectrum. Of all the lanthanide porphyrin acetonitrile combinations that were 

conducted, the Dy(TPP) complex showed the best and greatest deviation in that it was 

coordinated better 281 nm peak disappeared the most and reduction in Q band peaks.  
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Figure 3.70. UV-Vis spectroscopy of Ln(TPP)(C6H6) complexes. 

 The above spectra in figure 3.70 show the UV-Vis spectroscopic, absorbance peaks of 

TPP and lanthanide TPP benzene complexes. The absorbance of TPP shows characteristic 

maxima at 281, 364, 395, 421, 513, 549, 586, and 647 nm. The Gd(TPP) complex shows maxima 

at 269, 374, 402, 416, 514, 549, 586, and 647 nm. There is a broad band with a sharp intense 

absorbance peak at 269 nm, followed by a large broad peak at 402 nm with shoulders at 374 nm 

and 416 nm. The decreased absorbent characteristic peaks occur at 514, 549, 586, and 647 nm. 

 The Ce(TPP) complex shows maxima at 269, 374, 410, 416, 514, 549, 586, and 647 nm. 

There is a broad band with a sharp intense peak at 269 nm followed by a large broad peak at 410 

nm with shoulders at 374 nm and 416 nm. The decreased, absorbent, characteristic Q band peaks 

are observed at 514, 549, 586, and 647 nm. The last four peaks are decreasing in absorbance and 

the broadening of the 415 nm soret peak is decreased. The shoulder at 374 nm has decreased in 

intensity and the 415 nm peak is comparable to the Gd(TPP) complex 415 nm peak absorbance.  
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 The Dy(TPP) complex (Dy-b), sodium hydroxide added, purple solution shows maxima at 

216, 241, 371, 415, 514, 549, 586, and 647 nm. There is a sharp peak at 216 nm, followed by a 

broad band with a maximum at 241 nm. There is sharp single peak at 415 nm with a shoulder at 

371 nm. The last four characteristic Q band peaks at 514, 549, 586, and 647 nm have diminished 

in absorbance to almost baseline. With the most decreased absorbance of the last four peaks and 

the single sharp peak at 415 nm, the Dy(TPP) complex (Dy-b), sodium hydroxide added, purple 

solution is a good candidate for a sensor for benzene.  

3.12. UV-Vis Spectroscopy of Lanthanide (TBSP) Combined Complexes 

 

Figure 3.71. UV-Vis spectroscopy of Ln(TBSP) complexes. 

 The UV-Vis spectra of TBSP in figure 3.71 show band maxima at 405, 413, 416, 516, 

550, 587, and 650 nm.  There is a large peak that corresponds to the soret peak at 413 nm with 

shoulders at 405 nm and 416 nm. There are four characteristic Q band peaks at 516, 550, 587, and 

650 nm. The Tb(TBSP) complex spectrum shows maxima at 217, 274, 417, 514, 547, 588, and 

647 nm. There is a large broad peak at 274 nm with a small shoulder at 217 nm.  
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There is a sharp, single peak at 417 nm, corresponding to the soret band, followed by the 

decreased, absorbent peaks at 514, 547, 588, and 647 nm. This spectrum shows a narrower 417 

nm band with decreased subsequent bands compared to the TBSP spectrum. According to the 

profile, the Tb(TBSP) would be a good candidate based on the altering of the soret band and Q 

peaks. 

 The Eu(TBSP) complex spectrum shows maxima at 280, 371, 400, 411, 416, 514, 547, 

588, and 647 nm. There is a broad band at 280 nm, followed by shoulders at 371, 400, and 416 

nm. There is large broad band with a maximum at 411 nm corresponding to the soret band, 

followed by the four subsequent bands at 514, 547, 588, and 647 nm. This spectrum shows a 

broader 416 nm peak than the TBSP original spectrum; it also shows that the subsequent peaks 

are similar in absorbance intensity. There is peak at 280 nm that isn’t present in the original TBSP 

spectrum.  

 The Dy(TBSP) complex spectrum shows maxima at 280, 417, 514, 547, 588, and 647 nm. 

The broad band at 280 nm is still consistently present with a sharp, narrow 417 nm peak. The 

subsequent peaks have been diminished in absorbance intensity. These characteristics show that 

the combination of dysprosium and TBSP leads to more efficient energy transfer in the complex 

along with the increase in the symmetry of the resulting complex in solution. 

 The Ce(TBSP) complex spectrum shows maxima at 291, 378, 400, 411, 416, 514, 547, 

588, and 647 nm. The absorbance of this spectrum doesn’t start at the baseline like the other 

lanthanide (TBSP) spectra. The broad peak that was at 280 nm is red shifted to 291 nm with a 

large, broad, soret peak at 411; the peaks at 400 nm and 416 nm are shoulders. The subsequent Q 

band peaks at 514, 547, 588, and 647 nm are higher in absorbance than the TBSP spectrum. There 

is also a broadening of the 416 nm peak with an increase in the intensity of the soret band.  
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 The Gd(TBSP) complex spectrum shows maxima at 312, 359, 433, 498, and 713 nm. This 

spectrum differs from the other spectra due to its large, broad bands at 433, 498, and 713 nm. The 

broad peak at 359 nm is similar to the other spectra that have broad bands in the 370 nm range. 

Further studies will be conducted to account for the Gd(TBSP) deviation in UV-Vis spectrum. 

  

Figure 3.72. UV-Vis spectroscopy of Ln(TBSP)(CH3CN) complexes. 

 The UV-Vis spectroscopy of TBSP in figure 3.72., shows maxima at 405, 413, 416, 516, 

550, 587, and 650 nm.  There is a soret peak at 413 nm with shoulders at 405 nm and 416 nm. 

There are four characteristic peaks at 516, 550, 587, and 650 nm. The Ce(TBSP) complex shows 

maxima at 266, 370, 412, 516, 550, 587, and 650 nm. There is a large, broad peak at 266 nm, 

followed by a shoulder at 370 nm. There is a large peak at 412 nm, followed by the subsequent 

bands at 516, 550, 587, and 650 nm. 

 The spectrum of the Gd(TBSP) complex shows maxima at 264, 370, 415, 417, 516, 550, 

587, and 650 nm. There is a broad band at 264 nm followed by a shoulder at 370 nm and 417 nm. 

The large peak is observed at 415 nm, which is then followed by the intense, absorbent, 

subsequent peaks at 516, 550, 587, and 650 nm. 
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 The Eu(TBSP) complex spectrum shows maxima at 279, 416, 516, 550, 587, and 650 nm. 

The broad band at 279 nm is much less absorbent than the cerium and gadolinium complexes 

spectra. There is a soret band at 416 nm with the observed peaks at 516, 550, 587, and 650 nm 

representing the Q bands. The Dy(TBSP) and Tb(TBSP) complexes spectra show the same profile 

as that of the Eu(TBSP) with differences being the lower intensity 416 nm peak. The narrowing of 

the 416 nm peak, decreased absorbance intensity of subsequent peaks and consistent precision 

between Eu(TBSP), TBSP, Dy(TBSP), and Tb(TBSP) complexes imply that these could be used 

as sensors for acetonitrile.  

 

Figure 3.73. UV-Vis spectroscopy of Ln(TBSP)(C6H6) complexes. 

 Figure 3.73 shows the UV-Vis spectra of lanthanide TBSP benzene complexes. The UV-

Vis spectroscopy of TBSP shows maxima at 405, 413, 416, 516, 550, 587, and 650 nm.  There is 

a large soret peak at 413 nm with shoulders at 405 nm and 416 nm. There are four characteristic 

Q band peaks at 516, 550, 587, and 650 nm. The Gd(TBSP) complex shows maxima at 275, 364, 
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403, 421, 518, 552, 593, and 648 nm. There is a broad band at 275 nm, followed by shoulders at 

364 nm and 403 nm. There is a large broad peak at 421 nm observed, followed by Q band peaks 

at 518, 552, 593, and 648 nm. The 275 nm peak isn’t observed in the TBSP UV-Vis spectrum; the 

subsequent peaks are of higher absorbance intensity. The spectrum of Gd(TBSP) when exposed to 

benzene re-established its conformity to a similar profile as the TBSP.   

 The Ce(TBSP) complex shows maxima at 295, 375, 400, 425, 516, 552, 593, and 648 nm. 

There is broad band at 295 nm, followed by shoulders at 375 nm and 400 nm; a broad major peak 

is observed at 425 nm along with the subsequent peaks at 516, 552, 593, and 648 nm. The 

Eu(TBSP) complex shows maxima at 273, 375, 403, 413, 417, 514, 552, 593, and 648 nm. The 

sharp band at 273 nm is followed by shoulders at 375, 403, and 417 nm. There is a large peak at 

413 nm, followed by peaks at 514, 552, 593, and 648 nm.  

 The Tb(TBSP) complex shows maxima at 405, 420, 515, 553, 593, and 648 nm. The 

shoulder is observed at 405 nm with a large, single peak soret band at 420 nm and subsequent 

peaks at 515, 553, 593, and 648 nm. The Dy(TBSP) complex shows maxima at 270, 405, 419, 

519, 553, 593, and 648 nm. There is a small peak at 270 nm, followed by a shoulder at 405 nm 

and a large single peak at 419 nm. The subsequent Q band peaks at 519, 553, 593, and 648 nm are 

of reduced intensity but are of higher absorbance intensity than the TBSP spectrum subsequent 

peaks.  

 This UV-Vis spectra shows how the interaction of the lanthanide, porphyrin, and benzene 

behave compared to the acetonirile and no volatile organic compound added spectra. The 

benzene, due to the Hard Acid Soft Base Theory, HSAB, would interact with the porphyrin more 

than the lanthanide to create a change in the UV-Vis spectra. The acetonitrile which interacts 

through its nitrogen atom would be classified more as a hard base to interact with the lanthanide. 
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3.13. UV-Vis Spectroscopy of Metallo (TPP) and (TBSP) Complexes 

 

Figure 3.74. UV-Vis spectroscopy of metallo(TPP) complexes. 

 In Figure 3.74 is shown the UV-Vis spectrum of TPP, Ag(TPP), and Na(TPP) complexes. 

The TBSP shows maxima at 405, 413, 416, 516, 550, 587, and 650 nm.  There is a large peak at 

413 nm, the soret band with shoulders at 405 nm and 416 nm. There are four characteristic peaks 

at 516, 550, 587, and 650 nm.  

The Na(TPP) has completely quenched absorbance spectrum, where as the Ag(TPP) 

spectrum shows maxima at 236, 372, 400, 410, 512, 545, 586, and 646 nm. There is a small broad 

peak at 236 nm, a small shoulder at 372 nm, a large peak soret band peak at 410 nm and the 

decreased, absorbent Q bands at 512, 545, 586, and 646 nm.  

 The Ag(TPP) complex was used due to silver having a smaller radius than the lanthanides, 

thus it is able to sit inside of the porphyrin core and affect the UV-Vis spectra. The soret band is 

narrowed and the Q bands are decreased showing the interaction between the metal and the 

porphyrin. This spectrum is similar to the lanthanide porphyrin UV-Vis spectra. 
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Figure 3.75. UV-Vis spectroscopy of metallo(TBSP) complexes. 

 Figure 3.75 shows the UV-Vis spectra of the TBSP and metallo(TBSP) complexes 

maxima. The TBSP shows maxima at 405, 413, 416, 516, 550, 587, and 650 nm. There is a large 

peak at 413 nm corresponding to the soret band, with shoulders at 405 nm and 416 nm. There are 

four characteristic Q band peaks at 516, 550, 587, and 650 nm.  

The Ag(TBSP) shows almost identical spectrum to the TBSP in the only difference is the 

appearance of a broad peak at 302 nm, absent broad peak at 230 nm, and increased absorbance at 

the 405 nm shoulder. It doesn’t show the difference in the profile as shown in the Ag(TPP) UV-

Vis spectrum. 

 The Na(TBSP) shows a different profile than the previous two spectra. The Na(TBSP) 

shows maxima at 310, 357, 418, 512, 547, 586, and 644 nm. There is no large peak in the 416 nm 

range, corresponding to the soret band, but there is a leveling off of a broad band at 418 nm. The 

512 nm peak is broader than the 512 nm peak of TBSP and Ag(TBSP) complexes. The last four 

peaks at 512, 547, 586, and 644 nm are consistent with TBSP but have a higher absorbance; this 

could be due to the sodium interaction with the sulfonyl groups as well.  
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3.14. X-ray Diffraction of (TPP) 

 

Figure 3.76. X-ray diffraction of TPP. 

 The x-ray crystallography diffraction result that was collected is shown in figure 3.76. The 

figure shows with clarity the pyrrole ring system with the blue atoms labeled as nitrogen, grey 

atoms as carbon, and white atoms as hydrogen. The black shaded areas around the carbon-carbon 

bonds indicate areas for more refinement to be done. The pyrrole ring system is in one plane with 

no distortion or puckering due to the resonance stabilization. The figure also shows the phenyl 

rings in the meso position of the porphyrin ring. The phenyl rings are in perpendicular planes to 

one another. The phenyl rings in the five and fifteen position are in the same plane; the phenyl 
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rings in the ten and twenty position are in the same plane and orientation as one another. Two of 

the pyrrole nitrogens have hydrogens attached and the other two nitrogens are unprotonated. This 

particular x-ray structure doesn’t show the double bonds of the pyrrole rings nor phenyl rings of 

the system.  

Table 2 

X-ray Crystallography data of TPP 

Chemical formula C44H32N4 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a= 6.434, b= 10.441, c= 12.358 

α= 95.881°, β= 99.302°, γ= 101.194° 

Z 1 

F(000) 324 

Reflections collected 14714 

Goodness-of-fit 1.037 

Final R indices 2171 data; I>2σ(I) 

R1= 0.0416, wR2= 0.1185 

 

 Table 2., shows the crystal data that was collected; the TPP crystallized as triclinic and a 

P-1 space group. The unit cell dimensions such as the length and angles validate the space group 

and crystal system. The Z parameter signifies that only one monomeric TPP unit that is composed 

in the unit cell of the crystal. The R1 value is 4.16% with a wR2 value of 11.85%. A total of 

14,714 reflections collected from this x-ray crystal structure. 
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Figure 3.77. X-ray diffraction pattern of side view TPP stacking. 

 The x-ray diffraction crystallography result that was collected is shown in figure 3.77. The 

figure shows four TPP molecules in a stacked arrangement with the first and fourth directly above 

and below one another. The second and third are shifted from alignment to the right and left 

respectively. In each of the four TPP molecules, the phenyl rings in the five and fifteen position 

are in the same plane and orientation. The phenyl rings in the ten and twenty position are in the 

same plane and orientation as one another. The pyrrole ring system is still in one plane and no 

puckering occurred due to resonance stabilization. This side view of the stacking arrangement 

shows where possible benzene and acetonitrile compounds can interact with the porphyrin and 

alter the luminescence properties. 
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Table 3 

X-ray Crystallography data of TPP stacking 

Chemical formula C44H32N4 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a= 12.383, b= 12.855, c= 20.898 

α= 101.067°, β= 95.740°, γ= 99.315° 

Z 4 

F(000) 1296 

Reflections collected 39380 

Goodness-of-fit 1.076 

Final R indices 1600 data; I > 2σ(I) 

R1= 0.1090, wR2= 0.4083 

 

Table 3 shows the x-ray crystallography data for the TPP crystal. The compound 

crystallizes in a triclinic system and the space group is P-1. The unit cell dimensions a, b, c, α, β, 

and γ are given in the table. The Z value states that there are 4 repeating monomeric units in the 

unit cell. The R1 value is at 10.90 %. There were 39380 reflections collected for this particular 

structure. 

 

 

 

 



99 

 

CHAPTER 4 

Conclusion 

Lanthanide porphyrin aqueous complexes were successfully synthesized in the formation 

of sensors for benzene and acetonitrile. The blue shifts in the major emission peak (648 nm), 

change in the profile of the excitation spectra, the narrowing of the soret band (416 nm) and 

decrease of the Q bands in the UV-Vis spectra show how benzene and acetonitrile affect 

lanthanide porphyrin complexes. A decrease and narrowing of the soret band along with a 

decrease of intensity in Q bands show coordination between metal and porphyrin core. Shifts in 

the emission spectra show interaction between voc and lanthanide complex. X-ray diffraction data 

shows the stacking profile of TPP and the possible channels in which acetonitrile and benzene can 

affect the characterization results. Gaussian studies shown in the Appendix section show the 

electron densities and energies of the two HOMO and two LUMO states. The Dieke diagram is 

also referenced in the Appendix section correlating the energy of the porphyrin with those of the 

lanthanides and substantiating the reasoning for benzene facilitating the energy transfer from an 

excited state porphyrin to the various lanthanides. 
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CHAPTER 5 

Lanthanide Dual Donor Systems 

5.1. PL of KLa[Pt(CN)4]2•8.75H2O Complex 

 

Figure 5.1. PL of KLa[Pt(CN)4]2•8H2O complex excitation spectra. 

 Figure 5.1 shows the excitation spectra of the KLa[Pt(CN)4]2•8H2O complex. The broad 

band maximum at 367 nm corresponds to the tetracyanoplatinate excitation peak. The sharper 

peaks are of the Lanthanum moiety; these peaks appearing at 450, 469, and 480 nm. The five 

spectra are similar in character and peak position with the only difference being the intensity 

which was dependent on the monitoring wavelength.  

The most intense excitation peak was monitored at 515 nm which was the maxima of the 

emission spectrum corresponding to the tetracyanoplatinate species. The two next most intense 

excitation spectra were monitored at 550 nm and 491 nm. The two lowest intensity excitation 

spectra were monitored at 482 nm and 472 nm. Each of the excitation spectra were monitored at 

different wavelengths of the same single broad emission peak spectrum. This was done to see if 

there was a major change in the excitation profile based on the monitoring wavelength. 
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Figure 5.2. PL of KLa[Pt(CN)4]2•8H2O complex emission spectra. 

 Figure 5.2., is the emission spectrum of the KLa[Pt(CN)4]2•8H2O complex. The spectra 

show a broad peak with a maximum at 515 nm. The intensity of the peak maxima is affected by 

the exciting wavelength, with the most intense being excited at 467 nm. When excited at 450, 

367, and 396 nm, the intensity of the emission peak maximum decreases. The broad peak at 515 

nm corresponds to the tetracyanoplatinate. 

 

Figure 5.3. PL of KLa[Pt(CN)4]2•8H2O complex excitation spectra liquid nitrogen temperature. 

 The excitation spectra of the KLa[Pt(CN)4]2•8H2O complex at liquid nitrogen temperature 

is shown in figure 5.3. The spectra show that same profiles as those of the room temperature 

spectra with minor variations such as the increase in intensity of the spectra monitored at 482 nm; 
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its intensity is comparable to the spectra monitored at 562 and 521 nm. The spectrum monitored 

at 482 nm has developed an enhanced band at 419 nm when exposed to liquid nitrogen 

temperatures. The spectrum monitored at 562 nm shows an enhanced peak at 480 nm at liquid 

nitrogen temperature compared to room temperature.  

 

Figure 5.4. PL of KLa[Pt(CN)4]2•8H2O complex emission spectra liquid nitrogen temperature. 

 The emission profile of KLa[Pt(CN)4]2•8H2O complex at liquid nitrogen temperature is 

shown in figure 5.4. All of the spectra show a maximum at 540 nm. The most intense spectrum 

was produced when excited at 467 nm. The intensity decreases as excited at 450, 364, 395, 375, 

419, and 341 nm.  

The spectra show a 25 nm red shift in the maximum position from 515 nm to 540 nm. This 

red shift is a common phenomenon that happens with tetracyanoplatinate complexes. This shift 

was induced by the liquid nitrogen temperature creating a smaller stacking distance of the 

tetracyanoplatinate arrangement. This smaller arrangement causes a red shift in the emission 

maximum compared to at room temperature, where the stacking profile of the tetracyanoplatinate 

is farther apart from one another. 
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5.2. PL of K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O Complex 

 

Figure 5.5. PL of K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O excitation spectra. 

 Figure 5.5 shows the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex excitation 

spectra. The most intense spectrum was monitored at 487 nm, where the second most intense 

spectrum was monitored at 570 nm wavelength. The characteristics and profile of the two spectra 

are similar with differences being the intensity and extension of the spectrum monitored at 570 

nm.  

The excitation spectrum shows characteristic broad band at 350 nm corresponding to 

tetracyanoplatinate peak, a broad band at 420 nm corresponding to the gold dicyanide, and 

smaller, sharper peaks at 459 nm and 482 nm corresponding to the dysprosium excitation peaks 

from the 
6
H15/2

4
I15/2 and 

6
H15/2  

4
F9/2 transitions. The tetracyanoplatinate and gold cyanide 

bands are more intense than the lanthanide excitation transitions. The more intense and overlap of 

donor ligands give rise to a better opportunity for ligand to metal energy transfer to take place. 

These ligands overlap the 
6
H15/2 

4
M15/2 + 

6
P7/2 (351 nm) and 

6
H15/2  

4
G11/2 (428 nm) transitions 

of dysprosium. 
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Figure 5.6. PL of the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex emission spectra. 

 The room temperature emission spectra of the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O 

complex is shown in figure 5.6. The spectra show sharp peaks at 476, 487, and 572 nm. These 

sharp peaks correspond to the dysprosium emission peaks from the 
4
F9/2  

6
H15/2 and 

4
F9/2  

6
H13/2, transitions respectively. The 476 nm peak is more intense than the 487 nm maximum, and 

both are more intense than the 572 nm transition.  

The 572 nm shows an intense single peak at room temperature. The 572 nm transition 

shows increased intensity dependent on the excitation wavelength; this is due to the intensity of 

the exciting source wavelength and the profile of this peak doesn’t change with increasing 

intensity. There is a small broad band at 440 nm corresponding to the gold dicyanide moiety in 

the complex. The intensity decreases when excited at 423, 341, 459, and 482 nm. When the 

spectrum is excited at 341 nm there is a large upward increase; this is due to the instrumental 

constraints of the fluorimeter approaching a limit based on the excitation wavelength and ending 

wavelength on the spectrum x-axis. 

0 

5000 

10000 

15000 

20000 

25000 

360 400 440 480 520 560 600 640 680 720 

In
te

n
si

ty
 

Wavelength, nm 

KDyPtCNAuCN emission spectra 

Ex 341  Em 360-660 

Ex 423  Em 440-740 

Ex 459  Em 480-740 

Ex 482  Em 500-740 



105 

 

 

Figure 5.7. PL of the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex excitation spectra at 

liquid nitrogen temperature. 

 In figure 5.7., it shows the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex excitation 

spectra at liquid nitrogen temperatures. The profile shows similar spectra that have maxima at 

350, 416, 420, 458, and 482 nm. The 350 nm broad band corresponds to the tetracyanoplatinate, 

the 416 nm and 420 nm bands correspond to the gold dicyanide. The intensity of the 

tetracyanoplatinate and gold dicyanide bands increased in the liquid nitrogen temperature profile, 

where as the intensity of the dysprosium bands stayed relatively constant as in the room 

temperature profile.  

 The excitation spectra at liquid nitrogen temperature show two different profiles. One 

profile shows dominant  broad peaks at 350 nm and 416 nm, where as the other profile shows 

absent luminescence in that region and a broad peak maximizing at 420 nm followed by the 

dysprosium transitions at 458 nm and 482 nm. This is evident of temperature still affecting the 

tetracyanoplatinate and bridging ligands by enhancing and creating excitation spectra with two 

different profiles, while keeping the dysprosium transitions relatively constant. 
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Figure 5.8. PL of the K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex emission spectra at 

liquid nitrogen temperature. 

 Figure 5.8., shows the photoluminescence emission spectra of the 

K2[Dy(H2O)4(Pt(CN)4)2](Au(CN)2)•2H2O complex at liquid nitrogen temperatures. The emission 

spectra shows two different profiles; one profile with the sharp peaks attributed to the dysprosium 

emission transitions, the other profile shows that of the tetracyanoplatinate at 540 nm and gold 

cyanide ligand at 460 nm and 480 nm with quenched dysprosium emission. This shows that at 

liquid nitrogen temperature there is some energy transfer as well as a complete quenching of 

lanthanide emission based on excitation wavelength.  

 The profile which shows the dysprosium transitions shows a change in the peaks of the 

4
F9/2  

6
H15/2 and the 

4
F9/2 

6
H13/2 transitions. In the room temperature spectrum the 572 nm 

transition was a single peak but at liquid nitrogen temperatures the single peak is split into a 

triplet. In the room temperature spectrum the 487 nm peak was a doublet with the first peak more 

intense than the latter; now at liquid nitrogen temperature the latter peak is more intense than the 
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first peak of the 487 nm transition. This is significant, due to a change in temperature the same 

complex can go from all dysprosium lanthanide emission to a combination emission of both 

lanthanide and ligand emission. This change in major emission peaks observed is also based on 

the excitation wavelength. The tetracyanoplatinate ligand still shows the 25 nm red shift along 

with enhanced gold dicyanide emission.  
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Appendix 

 

Figure     Porphyrin Gaussian energy calculations. 

 

Figure     Porphyrin and lanthanide energy diagram, Gaussian and Dieke calculations. 
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Figure     Porphyrin energy transitions. 

 

Figure     Gaussian data HTPP second HOMO 160. 
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Figure     Gaussian data HTPP HOMO 161. 

 

Figure     Gaussian data HTPP LUMO 162. 
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Figure     Gaussian data HTPP second LUMO 163. 

 

Figure     Gaussian data TBSP second HOMO 240. 
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Figure     Gaussian data TBSP HOMO 241. 

 

Figure     Gaussian data TBSP LUMO 242. 
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Figure     Gaussian data TBSP second LUMO 243. 
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