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Abstract 

This thesis reports on work in machine learning and high-performance computing for 

structural heath monitoring. The data used are acoustic emission signals, and we classify these 

signals according to source mechanisms, those associated with crack growth being particularly 

significant. The work reported here is part of a larger project to develop an agent-based structural 

health monitoring system. The agents are proxies for communication- and computation-intensive 

techniques and respond to the situation at hand by determining an appropriate constellation of 

techniques. The techniques thus structured are executed by a workflow engine, which is part of 

the contribution reported here. It is critical that the system have a repertoire of classifiers with 

different characteristics so that a combination appropriate for the situation at hand can generally 

be found. The classifiers are trained using machine-learning techniques, and we report on 

investigations we conducted on three supervised and two unsupervised learning techniques to 

determine which techniques are the best to use in a particular situation. 
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CHAPTER 1 

Introduction 

Structural health monitoring (SHM) provides a way to capture structural responses and 

allows for structural conditions to be assessed for various purposes. The monitoring of an 

airplane, for example, minimizes the cost of repair and improves public safety.  In monitoring the 

structure of an airplane, the data must be processed not only in an intelligent and flexible way but 

also in near real-time. 

Our target architecture involves a multiagent system that sends a message to a workflow 

with the specification of the task and its structure. The workflow is set up in a pipeline 

(sequence) pattern where each stage (task) is its own process. Our setup involves agents that 

advocate for computational-intensive techniques. These agents are endowed with enough 

intelligence to be able to reason amongst themselves about which techniques are appropriate for 

the current situation and how those techniques are to be connected in a workflow. An agent 

submits a multitask request to the workflow system and the workflow system attaches input and 

output sources. So the agents are the “brains” and the workflow is the “brawn” [FJK2004]. 

The basic data that we work with consists of acoustic signals that we interpret regarding 

the events that produce them (e.g., crack growth). At the lowest level, for a given data stream, 

the agents in the target system will find techniques to extract features from the stream and 

classification techniques that take vectors of these features as input and produce classifications of 

the corresponding events. The classifiers are trained using machine-learning techniques. A major 

part of the work reported here relates to testing various machine-learning techniques for our 

intended application, using data provided by our mechanical-engineering collaborators.  
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The rest of this thesis is organized as follows: Chapter 2 provides a literature review of 

SHM, machine learning, and agents. Chapter 3 presents the software used. Chapter 4 presents 

results of machine learning in the context of SHM. Chapter 5 describes the overall design and 

implementation of our architecture. Chapter 6 concludes and suggests future work. 
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CHAPTER 2 

Literature Review 

This chapter provides a review of some of the technologies and concepts that will be used 

in the design. It gives a reasonable idea of the system being implemented. The discussion will 

begin with a review of some key points regarding structural health monitoring. Some of the 

research from Farrar, Worden and their colleagues [FWo2007, FLi2007, WFM2007] will be 

discussed. In the second section, the discussion turns to workflows. A scientific workflow is 

utilized to process and classify data. In the proposed design, a scientific workflow is used to 

classify data as well as analyze structures.  

The third section includes a discussion of multiagent systems. The multiagent system 

gives the system collaborative abilities. This section also discusses the use of the Contract Net 

Protocol (CNP) for control and collaboration among agents and the contracting and 

subcontracting of task in the network. In the fourth section, the discussion turns to machine 

learning. This section outlines techniques in dimensionality reduction and supervised and 

unsupervised learning. 

2.1 Structural Health Monitoring 

In general, damage is defined as change introduced into a system that will adversely 

affect its current or future performance [FWo2007]. This idea of damage is meaningless without 

a comparison between two states of the system, one assumed to be the unloaded and undamaged 

state. For mechanical structures, damage can be defined more narrowly as change to the material 

and/or geometric properties of a structural system. Structural health monitoring (SHM) is the 

process of implementing a strategy for damage identification for aerospace, civil and mechanical 
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engineering infrastructure. With regard to maintenance, SHM is used to screen the condition and 

provide real-time information on the integrity of the structure.  

In characterizing the state of damage in a system, we can ask whether there is damage, 

where in the system it is, what kind of damage it is, and how severe it is. Damage prognosis is 

the estimation of the remaining useful life of an engineering system [FLi2007]. Such an 

estimation may be the output from models that predict behavior.  

2.1.1 The Fundamental Axioms of Structural Health Monitoring 

The field of SHM has matured to the point where several fundamental axioms or general 

principles have emerged. Worden and his colleagues [WFM2007] suggest the following seven 

axioms for SHM.  

Axiom I: All materials have inherent flaws or defects. 

Axiom II: The assessment of damage requires a comparison between two system states. 

Axiom III: Identifying the existence and location of damage can be done in an unsupervised 

learning mode, but identifying the type of damage present and the damage severity can 

generally only be done in a supervised learning mode.  

Axiom IVa: Sensors cannot measure damage. Feature extraction through signal processing 

and statistical classification is necessary to convert sensor data into damage information.  

Axiom IVb: Without intelligent feature extraction, the more sensitive a measurement is to 

damage, the more sensitive it is to changing operational and environmental conditions.  

Axiom V: The length- and time-scales associated with damage initiation and evolution 

dictates the required properties of the SHM sensing system. 

Axiom VI: There is a trade-off between the sensitivity to damage of an algorithm and its 

noise rejection capability. 
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Axiom VII: The size of the damage that can be detected from changes in system dynamics is 

inversely proportional to the frequency range of excitation. 

The axioms of importance to this research are axioms III, IV and V.  

2.2 Workflows 

Van der Aalst and his colleague defined a workflow as a collection of tasks organized to 

accomplish some business process [VVa2004]. A workflow system’s primary objective is to deal 

with cases. Each case has its own unique identity and a limited lifetime. Each case has a 

particular state, which consists of three elements: 1) the values of the relevant case attributes, 2) 

the conditions which have been fulfilled and 3) the content of the case. Each case has a range of 

variables used to manage it. Case attributes cannot be used to see how far a case has progressed. 

Rather, conditions are used to determine what tasks have finished and what tasks have yet to be 

performed.  

A task is a logical unit of work [VVa2004]. Tasks are often performed by one or more 

software systems, one or a team of humans, or a combination of these. If anything goes wrong 

during the performance of a task, then the task is restarted from the beginning, which is referred 

to as a rollback. That is, tasks are atomic and are like transactions. A task is not the performance 

of an activity for a specific case; rather, “task” refers to a generic piece of work. The terms 

“work item” and “activity” are used in order not to confuse the task itself and the performance of 

a task in a particular case. A work item is the combination of a case and the task that is about to 

be carried out. A work item is created as soon as it is allowed by the state of the case. The term 

“activity” refers to a work item being performed. A work item becomes an activity when work 

begins on it. 
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A process is the procedure for a particular type of case [VVa2004]. The process indicates 

which tasks need to be carried out and in what order. It is possible, based on the attributes of 

certain cases, to enable special treatment. The order in which tasks are performed is determined 

by the properties of the case. We use conditions to figure out what order is followed. Processes 

are constructed from tasks and conditions as well as subprocesses, which may themselves have 

subprocesses. Explicitly defining subprocesses allows for frequently occurring subprocesses to 

be used repeatedly. A process defines the lifecycle of a case in that it has a beginning and end, 

which mark the start and finish of a case, respectfully. 

Routing determines what tasks need to be performed along a particular branch 

[VVa2004]. There are four basic routing patterns: 1) sequential routing, 2) parallel routing, 3) 

selective routing and 4) routing iteration. Sequential routing is where tasks are carried out one 

after another. In parallel routing, two tasks are performed without the results of one affecting the 

other. Selective routing occurs when there is a choice between two or more tasks. This choice is 

made based on the specific properties of the case. Routing iteration is where a task is performed 

several times. 

2.2.1 Scientific Workflows 

“Scientific workflow” is a term used to describe a set of structured activities and 

computations that come up when solving scientific problems [SVo1996]. A scientific workflow 

allows a scientist to design, execute and communicate analytical procedures repeatedly and with 

minimal effort. These scientific workflows operate on large amounts of heterogeneous data.  The 

three workflow engines that we looked at are Kepler, Pegasus, GridNexus, and Karajan. 

Kepler [ABJ2004] is a scientific workflow engine based on the Ptolemy II project, an 

open source project from the University of California at Berkley that has been used to study 
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heterogeneous modeling, simulation, and design of concurrent systems with a focus on 

embedded systems, particularly those that mixed technologies. The Ptolemy II framework is an 

actor framework for Java. Kepler makes use of a library of reusable processing steps: actors. 

Each actor can have zero or more typed input ports and zero or more typed output ports. The 

actors can be connected into a directed graph through their ports, which allows the data to flow 

between actors. Most of the actors in Kepler run on a local machine, but there are some actors 

that can call services on the web or on the grid. Those actors expose an operation to the user in a 

given Web Service Description Language (WSDL) or Grid Web Service Description Language 

(GWSDL). Each workflow is serialized using a valid instance of an XML schema called 

ModelML (MoML). Kepler has a GUI interface that allows for building and executing 

workflows. 

Pegasus is a scientific workflow project that takes a different approach than Kepler. 

Pegasus [DBG2004] maps abstract workflows onto grid environments. These abstract workflows 

can be constructed with Chimera or written by the user. In the Chimera system, the inputs are 

partial workflow descriptions of the logical input files, the logical transformations and their 

parameters, as well as the names of the logical output files produced by these transformations. A 

logical input file is a file that may exist or be generated by other application components. These 

abstract workflows are expressed in the Chimera Virtual Data Language (VDL). Chimera chains 

the partial workflows together and produces a XML file that specifies the abstract workflow 

using the DAG XML description schema (DAX). Then Pegasus takes the DAX file produced by 

Chimera and turns it into a submit file that can be run by HTCondor's Directed Acyclic Graph 

Manager (DAGMan) [CKR2007]. In DAGMan, job dependencies are expressed as a directed 

acyclic graph. 
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GridNexus [BFH2005] is a scientific workflow project that is very similar to Kepler. Like 

Kepler, GridNexus is built upon the Ptolemy II framework. But GridNexus has three types of 

modules: Source, Sink and Transformer. A Source module is a module that provides data but 

does not need an input connection from any module. A Sink module is a module that does not 

produce outputs. A Transformer module is a module that takes an input, transforms it and 

produces a new output. GridNexus uses a LISP-like XML-based scripting language, called 

JXPL, which is implemented in Java to serialize workflows. 

The Karajan workflow engine [Las2005] that comes with the Java Commodity Grid kit is 

a derivation of GridAnt. It has added support for flow control constructs such as conditionals. In 

the Karajan workflow engine, a project refers to a workflow project and named projects allow 

workflow projects to be referenced by name. Karajan also has the concept of elements. An 

element is named and has a number of parameters, and once defined, can be reused by name later 

in the code. The Karajan workflow engine supports conditions, loops and choices as well as 

hierarchal graphs. 

Our workflow engine must be a system that can handle the vast amount of data being 

streamed over in a short period. To accomplish this, we used processes and pipes to provide the 

level of concurrency needed to solve the problem in near-real time. This other workflow engines 

do not allowed to be controlled by an agent or agent system. To solve this problem, we used web 

services to submit the pattern of the workflow to the workflow engine, and the workflow engine 

sets up the resources. 

2.3 Agents 

An agent as an autonomous, problem-solving, computational entity that is capable of 

effectively processing data and functioning singularly or in a community within dynamic and 
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open environments [LMP2003]. Agents interact and cooperate with other agents (including both 

people and software) in the environments to which they are deployed. Within the context of a 

given environment, agents contain beliefs, capabilities, choices and commitments. Human 

interaction with a system can be referred to as an agent and may be included in the design for a 

multiagent system, but, for the purposes of the architecture proposed here, the term “agent” 

refers to software agents that make up the control hierarchy for passing, storing and manipulation 

of data.   

There are many benefits of utilizing an agent system for control as well as data 

distribution. In a well-defined agent system, agents can communicate with other agents and users 

as well as propose projects and bid on those proposed projects. Agents’ ability to adapt and solve 

problems makes them ideal for environments where new problems tend to arise and that require 

flexibility and subcontracting ability. A multiagent system [Woo2009] consists of several 

interacting agents, autonomous in nature, that work together to achieve individual and group 

goals. An agent in a multiagent system represents or acts on behalf of users or owners with 

various goals and motivations. In order to successfully interact, agents must be able to cooperate, 

coordinate and negotiate in the same ways humans cooperate, coordinate and negotiate in their 

daily lives.  

The Foundation of Intelligent Physical Agents (FIPA) was an international non-profit 

organization that produced specifications of generic agent technologies [BCG07]; it is now an 

IEEE standards committee. FIPA defines an agent platform (AP) as the physical infrastructure on 

which an agent is deployed. The agent management system (AMS) is a mandatory part of an AP 

that is responsible for the operation management of an AP. The directory facilitator (DF) is an 
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optional part of an AP and provides a yellow page service to the AP. A message transport service 

is provided by the AP to transport FIPA-ACL messages to agents on/ between APs.  

The rest of this section will cover agent communication languages, the contract net 

protocol and agent controlled compute resources. 

2.3.1 Agent Communication Language 

An agent communication language (ACL) [LFi1998] allows for effective communication 

and knowledge exchange between agents despite differences in hardware, operating system, 

architecture, programming language or representation and reasoning systems. In the 1990s, a 

knowledge sharing effort was initiated by the Defense Advanced Research Projects Agency 

(DARPA) to develop protocols for exchanging knowledge between autonomous information 

systems. The two most used ACLs are the knowledge query and manipulation language (KQML, 

which arose from the DARPA knowledge-sharing effort) and the more recent FIPA ACL.  

ACLs are based on speech act theory, which treats communication as a sequence of 

actions [Woo2009]. Performatives are verbs that describe what they do while performing that 

intended act. An example of a performative is confirm. There are three aspects to a speech act: 1) 

a locutionary act, 2) an illocutionary act, and 3) a perlocutionary act. The locutionary act is the 

act of making an utterance (the act of saying something out loud) for example “I warn you that 

smoking cigarettes are bad for your health”. The illocutionary act is the action performed in 

saying something for example “He requested that I stop smoking cigarettes”. The perlocutionary 

act is the act of bringing about an effect for example “He got me to quit smoking cigarettes”. The 

felicity condition of a performative is the condition required for successfully carrying it out. 

Communication between agents is based on message passing, where agents formulate and send 

individual messages to each other.  
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The KQML agent communication language [Woo2009] is a message-based language. 

KQML messages can be crudely thought of as objects (in the sense of object-oriented 

programming). In KQML, every message has a performative (which can be thought of as the 

class of the message) and a number of parameters (which can be thought of as instance 

variables) as shown in table 1. 

Table 1: KQML Parameters 

Parameter Meaning 

:content Content of the message 

:force If the content of the message will ever be denied by the sender 

:reply-with Specifies whether the sender is expecting a reply and if so, the identifier for 
reply 

:in-reply-

to 

Refers to the : reply-with parameter including the dictated identifier. 

:sender Identifier for the sender of the message 

:receiver Identifier for the intended recipient of a message 

The FIPA standard specifies the Agent Communication Language (ACL) [BCG07]. The 

FIPA ACL specifies a standard message language by setting out the encoding, semantics and 

pragmatics of the messages. The FIPA ACL is superficially similar KQML: an outer language 

for messages is defined and twenty performative are also defined. Some of the performatives 

available are shown in table 2. Table 3 shows some of the possible parameters for FIPA ACL. 
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Table 2: FIPA ACL Performatives 

Performative Description 
:accept-proposal The action of accepting a previously submitted proposes to perform an 

action. 
:cfp (call for 

proposal) 
Contains the action to be carried out and any other terms of the 
agreement 

:confirm The sender confirms to the receiver the truth of the content. The 
sender initially believed that the receiver was unsure about it. 

:inform Tell another agent something. The sender must believe in the truth of 
the statement. 

:propose Agent proposes a deal.  
:reject-proposal The action of rejecting a proposal to perform some action during a 

negotiation. 
:request The sender requests the receiver to perform some action. 

Table 3: FIPA ACL Parameters 

Parameter Meaning 

sender Identifies the sender of the message 
receiver Identifies the receiver of the message 
reply-to Identifies the name of the agent who the subsequent meassages are send to 
content Content of the message 
ontology The name of the ontology that is used to give meaning to a symbol 
encoding Specifies the encoding of the content language expression 

2.3.2 The Contract Net Protocol 

The contract net protocol (CNP) is a high level protocol for achieving efficient 

cooperation through task sharing in networks of communicating problem solvers [Smi1980, 

DSm1983].  As the name suggests, the basic metaphor used in the CNP is contracting. This 

technique was inspired by the process that companies use to contract out tenders.  

Each node in the network can, at different times or for different tasks, be a manager or a 

contractor. The CNP controls the flow of collaboration, contracting and subcontracting, 

throughout the network of agents. Agents break down problems or tasks into sub-problems or 

sub-tasks, allowing available agents to bid on the sub-tasks. This coordination and cooperation 

allows the system to monitor more responsively and efficiently. 
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The manager agent decomposes the problem into sub-problems and announces each sub-

problem to all agents (a call for proposals). All potential contractors (those willing to perform the 

announced task) may reply with a bid that includes, for example, information about the resources 

and time needed to solve the sub-problem. The manager reviews the bids and selects the best bid, 

awarding the contract to the agent making that bid. The contractor reports the solution back to 

the manger, which compiles a solution to the overall problem from the solutions to the sub-

problem. Figure 1 is the agent UML of the messages sent. 

 

Figure 1: FIPA Contract Net Interaction Protocol [IEEE2009] 

2.3.3 Agent-Controlled Computing Resources 

This section takes a look at computational resources that are controlled by a multiagent 

system. We take a look at several systems from various researchers in the field. The three 
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systems that we look at are The CONOISE-G architecture [PJL2005], scientific workflow 

system by Buhler and his colleagues [BVi2005] and Poggi and his colleagues [PTT2004]. 

Vidal and his colleagues [BVi2005] proposed an architecture that uses a BPEL4WS 

process description language to impose an initial social order upon a collection of agents. In 

BPEL4WS, a partner is a workflow participant. Each partner has a service type link and the role 

that it will perform as part of the service link. The strategy used is to construct a Petri net for the 

workflow. The Petri net is partitioned based upon partner information. Agents represent the 

partners and execute the workflow in a distributed way. Agents communicate to each other using 

the FIPA ACL. Communication between agents and web services is accomplished using SOAP 

messages.  

The problem that arises between agents and grid computing [PTT2004] that needs to be 

solved concerns the execution of applications/services that are composed of large sets of 

independent or loosely coupled tasks. This kind of problem requires intelligent movement of 

tasks between nodes to reduce the cost of communication for managing the interaction between 

remote agents. This also requires intelligent task composition and generation to manage new 

interactions and tasks defined during execution. To adapt JADE for grid applications, a new type 

of agent are needed, one that supports 1) rule-based creation and composition of tasks and 2) 

mobility of code at the task level.  Two new agents were created to handle the adaptation: 1) 

BeanShell Agents and 2) Drools Agents. A BeanShell agent integrates with the BeanShell 

scripting engine inside of a JADE agent and provides an API for interacting with the BeanShell 

agent through FIPA ACL. The BeanShell agent ontology describes the AgentAction objects used 

to submit tasks and manipulate BeanShell variables. A drools agent integrates with the drools 

rule engine. A Drools agent exposes an API that allows the manipulation of the drool agent 
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internal working memory. The drool agent’s ontology describes AgentAction objects that allow 

one to add rules and to assert, modify and retract facts. 

The CONOISE-G architecture [PJL2005] has several different agents, including system 

agents and service providers (SPs). Service providers advertise their services to a yellow pages 

(YP). The process of forming a virtual organization (VO) starts with a Requester Agent (RA). 

The RA, a SP acting on behalf of the user, analyzes the requester's service requirements. The RA 

searches the YP for relevant providers, and then invites the providers found to bid for the 

requested service. The Quality Agent (QA) and the trust component, respectively, assess the 

quality and trustworthiness of the bids. The Clearing Agent (CA) combines the price structure 

along with the outcome of the QA to determine what service providers will come together to 

form an optimal VO for the requester. The VO is formed at this point, and the role of the VO 

Manager (VOM) is taken on by the RA. The VOM is responsible for making sure that each 

member of the VO provides its services according to the contract. During the VO’s operation 

phase, the VOM can request a Quality of Service (QoS) consultant to monitor services provided 

by a member of the VO. Members of the VO may call upon the Policy Agent to investigate 

disputes over service provisioning.  

2.3.4 JADE 

The Java Agent Development Environment (JADE) [BCG07] is a framework for 

developing agent applications in compliance with FIPA standards. JADE makes FIPA standard 

assets available to the programmer through object-oriented abstraction. The JADE 

communication architecture offers flexible messaging. JADE chooses the most appropriate 

method of transportation and uses state-of-the-art object distribution technology embedded inside 

the Java Runtime Environment (JRE). The JADE system has one or more agent containers, each 
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living in a separate Java Virtual Machine (JVM) and delivering runtime environment support to 

some JADE agents. The JADE execution model is based on behavior abstraction and tries to 

limit the number of threads. The Behaviour (spelled in the British fashion as JADE comes from 

Italy, an EU partner of the UK) abstraction models agent tasks as a collection of behaviours that 

are scheduled and executed to carry out the agent’s duties.  

A JADE system has three distinctive properties.  First of all, JADE agents are 

autonomous and proactive. To achieve this, each agent has its own thread of execution but 

cannot provide callbacks. Each agent runs on its own thread to control its lifecycle and decide 

which actions to perform and when to perform them. Secondly, JADE agents have the right to 

refuse, and agents are loosely coupled. The receiving agent decides which messages to refuse 

and what actions are performed at which priority. Thirfly, the system is peer-2-peer (P2P). Each 

agent has a unique name or agent identifier (AID). Agents can join or leave the system by 

registering or deregistering with the AMS. Agents can look up other agents by AID using the 

services provided by the DF. 

2.4 Machine Learning 

The results of machine learning allow us to look at the problem of structural damage 

identification at a more sophisticated level. We may then address a multitude of issues and 

provide diagnoses of the problems. Of particular interest are Axiom III of Worden and his 

colleagues, which that unsupervised learning can be used for identifying the existence and 

location of damage but identifying the type and severity of damage can only be done with 

supervised learning. Supervised learning tries to generalize responses based on a training set with 

the correct responses indicated. Unsupervised learning tries to categorize the inputs based on 
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their similarities and not from labeled data. This section covers PCA as well as unsupervised and 

supervised learning. 

2.4.1 Principal Component Analysis 

Machine learning is generally facilitated by reducing the dimensionality of the data. For 

this, we use principal component analysis (PCA) [Bis2006]. PCA is an algorithm that centers the 

data by subtracting off the mean then choosing the eigenvector of the data covariance matrix 

with the largest eigenvalue. It places an axis in that direction, and then incrementally and 

similarly places the other axes orthogonally to their predecessors in a way maximizing the 

possible variation. The number of axes is chosen to be fewer than the number of axes 

(dimensionality) of the original data set. The data is thus reduced in dimensionality while most of 

the variation is retained.  

2.4.2 Unsupervised Learning 

Recall that unsupervised learning allows for data to be classified based on similarity and 

does not rely on labeled data. Worden and his colleagues suggest that unsupervised learning can 

be used to determine the existence and location of damage. The k-means algorithm [Bis2006] 

classifies n observations into k clusters. The value of k is set by the user. The cluster centers are 

distributed randomly at first, and a data point is assigned to the cluster nearest it in terms of 

Euclidean distance. Each cluster center is then updated to be the average of the points assigned to 

it. The data points are reassigned to clusters and the cluster means are recomputed. This process 

is repeated until the distance of the data points and the centers are within some threshold or some 

maximum number of iterations is reached.  

A self-organizing map (SOM) [Bis2006] is a type of neural network used to produce a 

low-dimensional, discretized representation of the space of the training data. A SOM identifies 
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features across the range of input patterns. Neurons compete to be activated, and only one is 

activated at any one time. A SOM has only two layers: an input and output layer. The neurons in 

the output layer are arranged into a lattice, that is, a partial-ordered set where every two elements 

has a unique least upper bound and a unique greatest lower bound. A SOM needs very little to no 

preliminary data cleansing [DHS1999]. 

2.4.3 Supervised Learning 

Recall that supervised learning allows for generalization based on a training set. Worden 

and his colleagues suggest that damage type and severity can only be done using supervised 

learning. An artificial neural network (ANN) is a computational model based on the structure 

and functions of a biological neural network [Bis2006]. 

 

Figure 2: Artificial Neural Network [Wik2014a] 

In a feed-forward neural network, or multilayer perceptron, input vectors are put into 

input nodes and fed forward in the network--see Figure 2. The inputs and first-layer weights 

determine whether the hidden nodes will fire. The output of the neurons in the hidden layer and 

the second-layer weights are used to determine which of the output layer neurons fire. The error 

between the network output and targets is computed using the sum-of-squares difference. This 
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error is fed backward through the network to update the edge weights in a process known as back 

propagation.  

Support vector machines (SVMs) [DHS1999] rely on preprocessing to represent patterns 

in the data in a high dimension, usually higher than the original feature space, so that classes that 

are entangled in the original space are separated by hyper-planes at higher dimension. In a bit 

more detail, if the training data are linearly separable, we select from all pairs of hyperplanes that 

separate the data points (with no data points between them) those two that have the maximum 

distance between them—see Figure 3. If we replace the dot product in distance computations 

with a nonlinear “kernel function,” then we can fit the maximum-margin hyperplane in a 

transformed feature space. If the transformation is nonlinear and the transformed space high 

dimensional, then the classifier is a hyperplane in the high-dimensional feature space but 

nonlinear in the original input space. Training a SVM involves choosing a nonlinear function 

that maps the data to a higher-dimensional space. Choices are generally decided by the user’s 

knowledge of the problem domain.  SVMs can reduce the need for labeled training instances.  

 

Figure 3: Support Vector Machine [Wiki2014b] 

Naïve Bayes classifiers form a supervised learning technique that belongs to a family of 

classifiers based on Bayes’ theorem with a strong assumption about the independence of the 
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feature values [DHS1999]. Bayes’ theorem states that ���|�� = 	
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. For example, we 

would like to know whether or not we should play tennis given that it is sunny outside. Using 

Bayes’ theorem, we can express this as ��������� = �����|����������� = ���� =
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. Two events are independent if the 

occurrence of one does not affect the probability of the other.  

Assumptions and the underlying probabilistic model allow us to capture any uncertainty 

about the model.  This is generally done in a principled way by determining the probabilities of 

the outcomes.  Bayes classifiers were introduced to solve diagnostic and predictive problems.  

Bayesian classification provides practical learning through the use of algorithms, prior 

knowledge, and observation of the data in combination.  A Gaussian naïve Bayes classifier 

assumes that the conditional probabilities follow a Gaussian or normal distribution. 

2.4.4 Machine Learning for SHM 

Most previous work on machine learning for SHM has targeted bridges; we consider 

mature, representative work in this area and then turn to research that has targeted aircraft, which 

is our domain. Figueiredo and his colleagues performed an experiment on a three-story frame 

aluminum structure that used a load cell and four accelerometers [3]. For each test of state 

conditions, the parameters were estimated by using a least squares technique applied to time-

series from all four accelerometers and stored into feature vectors. They used four machine 

learning techniques in an unsupervised learning mode: 1) auto-associative neural network 

(AANN), 2) factor analysis (FA), 3) singular value decomposition (SVD), and 4) Mahalanobis 

squared distance (MSD).  

An auto-associative neural network [Kra1992] is a type of feedforward neural network 

that is trained to produce an approximation of an identity mapping between network inputs and 
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outputs using backpropagation or similar learning procedures.  Factor analysis (FA) [Bis2006] is 

a statistical method that is used to describe variability among observations and correlates 

variables in terms of a potentially lower number of unobserved variables called factors. Singular 

value decomposition (SVD) [KLa1980] takes a high dimensional and highly variable set of data 

points and reduces this set to a lower dimensional space clearly exposing the substructure of the 

original data and ordering it from the most variation to the least. The difference between PCA 

and SVD is that SVD calculates variance by squaring the singular values1 and PCA calculates 

variance by the eigenvalues of the covariance matrix. Mahalanobis distances provide a powerful 

method of measuring how similar some set of conditions is to a reference set of conditions. 

Mahalanobis squared distance (MSD) is a measure of the number of standard deviations a point 

is from the mean of a distribution. Specifically, where D is the Mahalanobis distance of point x 

from the mean m of the independent variables and C is the covariance matrix of the independent 

variables, we have  () = �* −,�-C/0�* −,� 

In the work by Figueiredo et al. reviewed here, first the features from all undamaged 

states were taken into account. Then those feature vectors were split into training and testing 

sets.  In this case, a feed-forward neural network was used to build-up the AANN-based 

algorithm to perform mapping and de-mapping. The network had ten nodes in each of the 

mapping and de-mapping layers and two nodes in the bottleneck layer. The network was trained 

using back-propagation. The type I error is the false positive indication of damage and type II 

error is the false negative indication of damage. The AANN- and MSD- based algorithms 
                                                 
1 For a simple definition of singular value, consider the special (yet common) case of M an m × m real square matrix 
with positive determinant. We have in general (not just this case) M = UΣV∗. In our special case, U, V∗, and Σ are 
real m × m matrices as well. Σ is a diagonal matrix and can be regarded as a scaling matrix. U and V are unitary m × 
m matrices (with V* in general the complex conjugate of V); U and V∗ can be viewed as rotation matrices. So UΣV∗ 
can be intuitively interpreted as a composition of three geometrical transformations: a rotation, a scaling, and 
another rotation. The diagonal elements of Σ are non-negative and are the singular values of M. In 2D, the singular 
values can be interpreted as the semiaxes of an ellipse; this generalizes to n dimensions. If some of the singular 
values of M are zero, then the singular value decomposition reduces the dimension.  
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performed better at detecting damage, with a type II error of 1.3% (for the AANN) and of 1.0% 

(for the MSD).  The SVD- and FA- based algorithms performed better at avoiding false 

indications of damage, with a type I error of 2.2% (for the FA) and of 6.2% (for the SVD). 

Esterline and his colleagues [EKS2010] (also targeting aircraft) ran an experiment with 

two approaches. Their first approach used as training instances experimental data with eighteen 

traditional acoustic emission features, such as reverberation frequency, amplitude and duration, 

to train a SVM, while their second approach used six correlation coefficients between basic 

modes and waveforms from simulation data also to train a SVM. A correlation coefficient is 

computed between an observed waveform and each of the seven base modes. The vector of all 

six correlation coefficients characterizes the waveform. This signature can be compared against 

similar signatures produced by known sources (such as various stages of crack growth or forms 

of fretting), perhaps ones produced in simulation, in an attempt to identify the source from the 

characteristics of the acoustic emission. The SVM with the second approach performed as well 

or better than the SVM using the first approach, suggesting the superiority of a set of correlation 

coefficients over a substantial set of traditional acoustic emission features for learning to identify 

the source of acoustic emissions. 
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CHAPTER 3 

Software 

This chapter provides a discussion of the different software packages that were used for 

this work. The software at the center of this work is the Python programming language. This 

chapter covers software for numerical and scientific computing. It also covers software for 

machine learning as well as the hierarchical data format 5 used for this work. 

3.1 Python Software 

The Python programming language is an interactive, interpreted object-oriented language 

[San1999]. Python provides high level structures like lists, associative arrays (called dictionaries) 

and other construct similar to the Perl programming language. It has an extremely simple, 

elegant and easy to read syntax yet is a powerful general purpose programming language. Python 

is extended through the use of modules (most written in Python, others in C or C++) to provide 

operations such as string manipulation and Perl-style regular expressions. C or C++ 

programmers can embed a Python interpreter into larger applications. The Python interpreter can 

be extended or embedded into a C program by including Python.h in your .c or .h file. 

NumPy [Oli07] is a Python package for numerical computing, which adds powerful 

mathematical functions into the Python environment. The key features of NumPy are: 

• A powerful N-dimensional array object 

• A list of sophisticated techniques such as broadcasting [Num2012] 

o Broadcasting in this context is the ability for smaller dimensional arrays to be 

either extended or replicated in order to work with arrays with larger dimensions. 

• A host of tools specialized for integrating C/C++ and Fortran code 
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• Functions that are useful in linear algebra, Fourier transform, and random number 

generation 

SciPy [JOP2007] is an open source Python library that is built on top of NumPy for 

scientific computing. Utilizing SciPy, complex mathematic problems can be easily and 

systematically processed. 

The Pandas library for Python [Mck2011] attempts to bridge the gap between scientific 

computing and statistical and database languages. Pandas provides functions equivalent to those 

in statistical languages (such as R) and database languages (such as SQL), but it also provides 

many features such as hierarchal indexing. Pandas provides support for structured tabular 

datasets (similar to R). 

3.2 Software for Machine Learning 

There are several software packages available for machine learning. Each of these 

packages has its own set of strengths and weaknesses. For our implementation, we chose scikit-

learn [PVG2011] for k-means clustering, support vector machine and Gaussian naive Bayes. 

This is mainly because scikit-learn uses the Python programming language and is a mature and 

widely used framework for machine learning. We also chose Pybrain [SBW2010] for feed-

forward neural networks. Pybrain is a mature framework for creating and simulating neural 

networks. In addition to scikit-learn, we use WEKA [HFH2009] because it has a large supporting 

community, and it is easy to add other machine learning techniques to it. 

3.2.1 Scikit Learn 

Scikit-learn [PVG2011] is a powerful machine learning library for the Python 

programming language. It provides a state of the art implementation of well-known and popular 

machine learning techniques. Unlike many other machine learning toolkit in Python, scikit-learn 
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incorporates compiled code for efficiency. Specifically, it uses the libSVM package for SVMs 

and the LibLinear package for generalized linear models. Scikit-learn was developed with the 

intentions of providing a solid implementation rather than a bunch of features. 

3.2.2 PyBrain 

PyBrain [SBW2010] is a versatile machine learning package written in python for 

application of and research on premier machine learning techniques such as deep-belief neural 

networks. The only packages required by PyBrain is SciPy and NumPy. The PyBrain library has 

several different types of trainable algorithms and architectural components as well as 

specialized data sets and benchmark tests and environments.  

3.2.3 WEKA 

The Waikato Environment for Knowledge Analysis (WEKA) [HFH2009] is a state-of-

the-art unified workbench that gives researchers easy access to techniques in machine learning. 

WEKA provides a collection of machine learning and data preprocessing techniques for 

researchers and practitioners alike. One of the major advantages of WEKA is that it is modular, 

so new learning techniques can be added through the simple API. 

3.3 Hierarchical Data Format 5 

The hierarchical data format 5 (HDF5) [HDF2014] is a file format for storing and 

managing large quantities of data. HDF5 provides support for a large number of commonly used 

datatypes. It is designed for efficient I/O that is also fast and flexible. HDF5 has two major types 

of objects: 1) datasets and 2) groups. A dataset is a multidimensional array of homogeneous data. 

A group is a container structure that can hold datasets and other groups. Resources in a HDF5 

can be accessed using the POSIX-style syntax /path/to/resource. 
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CHAPTER 4 

Machine Learning 

Following Axiom III from Worden and his colleagues [WFM2007], our research to date 

has used two unsupervised and three supervised learning techniques for different aspects of the 

SHM problem. The results of machine learning allow us to look at the problem of damage 

identification at a more sophisticated level. We may then address a multitude of issues and 

provide diagnoses of the problems. The unsupervised learning techniques are k-means and self-

organizing maps (SOM). Supervised learning techniques are support vector machines (SVMs), 

naive Bayes (NB) classifiers, and feed-forward neural networks (FNNs). For each technique 

except SOM, we tested a version with principal component analysis (PCA) as a frontend to 

reduce the dimensionality of the data (usually to three principal components), and we tested 

another version without PCA. The objective is to explore these techniques and note their 

characteristics so that various combinations of them may be used appropriately in various 

circumstances. The code for the supervised learning techniques is in Appendix B. 

The approach followed here can be generalized for exploring the characteristics of 

machine-learning techniques for monitoring various kinds of structures. One must first determine 

what signals are appropriate for monitoring the structures, (For example, acoustic signals are 

appropriate for monitoring metallic structures while signals propagated through optical fiber are 

appropriate for bridge type structures.) One then determines the sensor and communication 

infrastructure. Finally, one determines the characteristics of various supervised and unsupervised 

learning techniques for monitoring the structures in question (given the signals and infrastructure 

chosen). Admittedly, the repertoire of techniques explored here is far from complete, but we 

have included the ones most often encountered in structural health monitoring. Our dataset 
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consists of a set of 60 samples from the work reported by Esterline and his colleagues 

[EKS2010].  

4.1 Supervised Learning Results 

We used a stratified 5-fold cross-validation on the 60 data point. To compare supervised 

learning techniques, we used classification accuracy, the number of samples classified correctly 

over the number of samples in the dataset. We also compared techniques on how long the 

classifiers they trained took to classify 12 data points in our test set. 

We ran a SVM with four types of kernel functions: linear, radial basis (RBF, with γ = 

0.03125), polynomial and sigmoid. A sigmoid function, known as a squashing function, maps an 

axis to a finite interval – see figure 4. 

 

Figure 4: Sigmoid function [Wik2014c] 

Table 4 displays the accuracy with which our SVMs classified 12 data points in our five 

validation sets. The SVMs were also trained with a PCA frontend and run on the same data. 

Table 5 displays the resulting average classification accuracy and timing. The mean for all our 

results is for 26 runs. 
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Table 4: Average accuracy and timing of the SVM without PCA (12 points, 26 runs) 

Kernel Function 
  

RBF Linear Polynomial Sigmoid 

Min Max Min Max Min Max Min Max 

Avg Accuracy  0.83 0.83 0.88 0.88 0.7 0.7 0.87 0.87 

Accuracy Std  0.11 0.11 0.041 0.041 0.067 0.067 0.11 0.11 

Timing Avg. 
(msec.)  
(12 classification)  0.078 0.14 0.074 0.15 0.075 0.089 0.092 0.11 

Timing Std  0.0016 0.084 0.0017 0.11 0.0013 0.016 0.0032 0.026 
Table 5: Average accuracy and timing of the SVM with PCA (12 points, 26 runs) 

Kernel Function 
  

RBF Linear Polynomial Sigmoid 

Min Max Min Max Min Max Min Max 

Avg Accuracy  0.78 0.78 0.85 0.85 0.62 0.62 0.77 0.77 

Accuracy Std  0.15 0.15 0.06 0.06 0.08 0.08 0.12 0.12 
Timing Avg. 
(msec.)  
(12 classifiations)  0.08 0.22 0.08 0.13 0.08 0.10 0.10 0.12 

Timing Std  0.00031 0.26 0.00037 0.06 0.00024 0.03 0.00064 0.031 
A Gaussian naïve Bayes classifier was trained and run with and without PCA. Table 6 

shows the resulting average classification accuracy and timing. 

Table 6: Average accuracy and timing of the Gaussian naive Bayes classifier (12 points, 26 

runs) 

   Gaussian NB w/o PCA  Gaussian NB w/ PCA 

Min.  Max.  Min.  Max.  

Avg Accuracy  0.78 0.78 0.78 0.78 

Accuracy Std  0.085 0.085 0.1 0.1 
Timing Avg. (msec.)  
(12 classifications)  0.18 0.25 0.19 0.23 
Timing Std  0.0035 0.097 0.0032 0.042 

A FNN classifier was trained and run with and without PCA. Table 7 shows the resulting 

average classification accuracy, timing, giving means and standard deviations. 
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Table 7: Average accuracy and timing of the FNN (12 points, 26 runs) 

   FNN w/o PCA  FNN w/ PCA 

Min.  Max. Min. Max. 

Avg Accuracy  0.50 0.73 0.50 0.83 

Accuracy Std  0.0 0.12 0.0 0.0 
Timing Avg. (msec.)  
(12 classifications)  1.62 2.45 1.16 1.50 
Timing Std  0.0052 0.85 0.023 0.23 

Regarding accuracy, not that the minimum and maximum averages over twelve data 

points in the validation sets were the same for all techniques except FNN. Generally, the highest 

accuracy was with the SVMs. The best overall was the SVM with linear kernel function and 

without PCA (88% accuracy), the second best was the SVM with sigmoid kernel function and 

without PCA (87%), and the third best was the SVM with linear kernel function and with PCA 

(85%). Of the SVMs, the worst was the one with polynomial kernel function, both without (70%) 

and with (62%) PCA. All SVMs did worse with PCA but not by much in the case of the linear 

kernel function. Gaussian NB had the same accuracy with and without PCA (viz., 78%), slightly 

better than the SVM with polynomial kernel function and without PCA, about the same as SVM 

with sigmoid kernel function and with PCA. The minimum average accuracy of FNN over 26 

runs was the same with and without PCA (viz., 50%), well below the accuracy of the other 

methods. Its maximum average accuracy over 26 runs, however, was comparable to that of the 

others; this improved with PCA: from 73% to 83%.  

We turn now to the average time to classify twelve data points (both the minimum 

average over 26 runs and the maximum average over the 26 runs). SVM without PCA and with 

RBF, linear, or sigmoid kernel function took in range 0.078-0.15 msec. SVM with polynomial 

kernel function and without PCA took at most (averaging over the 12-point validation sets) 0.089 

msec. PCA slowed down the SVMs by a negligible amount except in the case of the RBF kernel 
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function, where the maximum average went from 0.14 msec. without PCA to 0.22 msec. with 

PCA. Gaussian NB performed about the same with and without PCA, in the range 0.18 to 0.25 

msec., which is slightly slower than the SVMs. FNN without PCA took in the range 1.62 to 2.45 

msec. on average to classify twelve data points, more than ten times slower than the SVMs. PCA 

sped up FNN by 30-40%, to times in the range 1.16 to 1.50 msec.  

Regarding the impact of PCA, it slows down and reduces the accuracy of the SVMs, has 

little effect on NB, and speeds and improves the accuracy of FNN. Reducing the dimensionality 

appears to lose information used by the highly accurate SVMs but actually improves the less 

accurate FNN, for which the lost information was apparently obfuscating. These results confirm 

that FNN is more susceptible to the curse of dimensionality. The linear transformation done by 

PCA, which reduces dimensionality, actuality slowed things a bit for the SVMs, which do their 

own dimensionality transformation. The time to reduce the dimensionality, however, results in 

faster classification for the more dispersed FNN.  

4.2 Unsupervised Learning Results 

Regarding unsupervised learning techniques, we first ran k-means clustering without 

PCA with k equal to 3, 4, 5 and 6. Our dataset is split into 30 samples in our training set and 30 

samples in our test set. Then we ran k-means clustering with PCA with k again equal to 3, 4, 5 

and 6. Table 8 shows the times taken to classify 30 data points without PCA, and Table 9 shows 

the same times with PCA. All times are in the narrow range 0.16-0.18 msec. 

Table 8: Time (msec.) for Kmeans w/o PCA to classify 30 points (26 runs) 

Technique Kmeans 3 Kmeans4 Kmeans5 Kmeans6 
mean 0.16 0.18 0.17 0.16 
st. dev. 0.03 0.07 0.03 0.02 
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Table 9: Time (msec.) for Kmeans w/ PCA to classify 30 points (26 runs) 

Technique Kmeans 3 Kmeans 4 Kmeans 5 Kmeans 6 

mean 0.17 0.17 0.18 0.17 
st. dev. 0.07 0.03 0.03 0.02 

Figures 4-7 show the clusters for k = 3-6, respectively, when PCA with three components 

was used so that points may be plotted in three dimensions. Note that k = 4 identifies four 

visually convincing clusters.  

 

Figure 5: k-means with 3 clusters with PCA (30 data points) 

 

 

Figure 6: k-means with 4 clusters with PCA (30 data points) 
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Figure 7: k-means with 5 clusters with PCA (30 data points) 

 

Figure 8: k-means with 6 clusters with PCA (30 data points) 

We ran a SOM with 3, 4, 5 and 6 output neurons. Table 13 shows the time (in 

milliseconds) it took each of the SOM instances to classify all 30 data points in our test set. 

Clearly, the SOMs took much longer than did the k-means classifiers.  

Table 10: Timing of the SOM 

Technique SOM 3 SOM4 SOM5 SOM6 

mean 409.62 445.38 617.31 600.00 
st. dev, 13.11 17.49 8.74 11.66 
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Table 11 shows the sizes of the clusters for the SOMs with 3, 4, 5, and 6 output neurons. 

Twenty-six runs produced no variation in cluster sizes for any of the SOMs. In the table, the 

right-side column gives the sizes of the clusters in the order cluster 0, cluster 1, and so on. 

Clusters of exactly the same size are found with three and four output neurons, but the four case 

adds an empty “cluster”. Indeed, the partition of the set of data points into three clusters gives the 

least variation in cluster size.  

Table 11: Mean cluster sizes for various SOMs (26 runs), ordered as cluster 0, cluster 1, etc. 

SOM3: 14, 7, 9 
SOM4: 14, 7, 0, 9 
SOM5: 7, 2, 5, 5, 11 
SOM6: 5, 11, 5, 0, 2, 7 

The four sharp clusters (as per k-means with k = 4) can be anticipated given our 

experimental set-up, as we expect signals from four different sources. First of all, there are 

signals from the crack growth itself, but incremental crack growth deeper in the specimen 

produces waveforms with rather different characteristics from those produced on the surface, and 

this difference is enough to pull the crack data into two distinct clusters. Next, there is friction 

where the specimen is attached, accounting for a third cluster. Finally, the electrical environment 

produced a consistent kind of noise, giving rise to a fourth cluster. We conjecture that the SOMs 

tend to find only three clusters because there is a sort of continuum of data points between those 

related to deep crack growth and those related to crack growth at the surface; a SOM preserves 

the topological properties of the input space, and these intermediate points apparently pull 

together otherwise disparate clusters.  
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CHAPTER 5  

Architecture 

The problem with monitoring the structure of an airplane is that data must be processed 

not only in an intelligent and flexible way but also in near real-time. Our solution involves a 

multiagent system that sends a message to a workflow engine with the specification of the tasks. 

We set up our workflow in a sequence (pipeline) pattern where each task (stage) is its own 

individual process. In our setup, agents are advocates for certain computation-intensive 

techniques. These agents have enough intelligence so that they can work out which techniques 

are appropriate for the current situation and how these techniques must connect to each other in a 

workflow. An agent submits a multitask request to the workflow system and attaches input and 

output sources. So agents are the brains and the workflow is the brawn. The first section below 

presents the entire target architecture, which is under development. The second and last section 

presents what has actually been implemented.  

5.1 Target Architecture 

The prototype of the workflow currently handles the processing of a datastream in terms 

of the feature extraction and classification techniques. The feature extraction techniques derive 

correlation coefficients computed between an observed waveform and six reference waveforms 

which are generated from numerical simulations of acoustic emission events. The classification 

techniques, as discussed in the previous chapter, are Gaussian naïve Bayes, support vector 

machine, feed-forward neural network, k-means clustering and self-organizing maps. The feature 

extraction and classification techniques that get used are determined by two instances of the 

contract net protocol. Eventually, the system will be set up so that, after the contract net protocol 

has finished, a monitor agent will send the names of the feature extraction and classification 
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techniques to the data agent, which will send these names to the workflow engine through web 

services. Then the workflow engine will put the ID of the job, the IP address or host name of the 

machine and the port number of the running workflow engine into a NoSQL DB, as shown in 

figure 9.  

 

Figure 9: The workflow system in context 

Then the workflow engine will send the ID of the job to the data agent.  The data agent 

will wake up the input and output daemon processes, sending them the ID of the job. The input 

and output daemon processes will query the DB for the address of the machine and the port 

number of the running workflow engine based on the ID of the job. The input daemon will read 

the data from the mote (small battery-operated sensor node that is part of a wireless sensor 

network) and write it to a UDP socket. The output daemon will read data from a TCP socket and 

write it to a database.  

Each node in figure 10 is a process, and arrows show pipes from one process to the next. 

 

Figure 10: Workflow structure for classifying acoustic events, setup using the sequence pattern. 
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The feature extractor, or (better) the feature master, will control one or more slaves, depending 

on the choice of feature extraction techniques. Figure 10 shows the Feature master and its slaves. 

 

Figure 11: Example of the feature master and its slaves 

The output of each slave (sub-vectors of the overall feature vectors) will go into another buffer, 

where the feature master will assemble the full feature vectors by matching timestamps.  The full 

vectors will be written on the pipe to the classifier process.  

After the data is sent to the output daemon, it may be stored along with the configuration 

in the database, where it could be accessed by the multiagent system or anybody who would like 

to view it. With our workflow system, multiple workflows can be run at the same time. And a 

given workflow can run multiple tasks at the same time. Figure 12 shows the flow of the overall 

architecture. 

 

Figure 12: Flow of the overall architecture, with a workflow shown at the bottom. 
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5.2 Implementation 

In our implementation, the daemon processes that we defined in our target system were 

not implemented nor were the connections to the multiagent system. Our Pattern Driven 

Multiprocess Workflow (PaDMuW) engine was implemented in Python. An agent or user can 

submit the setup of their desired workflow to the workflow engine via web services. 

 The WSDL file contains the description of the web service as well as any ports or 

complex types required by the methods exposed by the web service--see Appendix A. The 

workflow is set up using web services. The WSDL file defines two complex types: 1) 

WorkflowModule and 2) Connection. The WSDL file also defines an array for each of these 

two types: 1) WorkflowModuleArray and 2) ConnectionArray. The 

WorkflowModuleArray describes all of the active modules that are in the workflow. The 

ConnectionArray describes the connections to the active modules. After the web service is 

called, the WorkflowModuleArray and ConnectionArray are passed to an instance of the 

bootstrap class is created.  

Figure 13 shows the definition of the WorkflowModule type as defined by the web 

service (in the WSDL file). The WorkflowModule complex type defines the interface expected 

for a module in the workflow. This includes the canonical name for the module (viz., "name"), 

the name of the class (viz., "module_class"), the name for the module’s location on the 

physical disk ("module_location"), and the arguments to the module ("module_args"). 

We used the spyne package for python to implement our web 
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service.

 

Figure 13: The definition of the WorkflowModule type as defined by the web service 

Also in the WSDL file, the Connection complex type defines the interface expected for 

the connections coming into and out of each module. Each connection is identified by the 

canonical name given in the workflow module of the module to which it connects. Figure 14 

shows the definition of the Connection type as defined in the WSDL file. 

 

Figure 14: The definition of the Connection type as defined by the web service 

PaDMuW has various module classes for the various kinds of tasks (such as data input, 

file output, feature extraction, and classification of feature vectors). Each module class inherits 

from the Module abstract base class, shown in Figure 15. The Module abstract base class 

inherits from the Process class, which spawns processes. In our system, each of the created 

modules can have one of three statuses: 1) Created, 2) Running and 3) Exited. The Module class 

also takes in an instance of the Messaging class, which encapsulates the communication 

    <xs:complexType name="Connection"> 

        <xs:sequence> 

            <xs:element name="out_ports" type="xs:string" minOccurs="0"  

nillable="true"/> 

            <xs:element name="in_ports" type="xs:string" minOccurs="0"  

nillable="true"/> 

        </xs:sequence> 
    </xs:complexType> 

    <xs:complexType name="WorkflowModule"> 
        <xs:sequence> 

            <xs:element name="name" type="xs:string" minOccurs="0"  

nillable="true"/> 

            <xs:element name="module_class" type="xs:string"  

minOccurs="0" nillable="true"/> 

            <xs:element name="module_location" type="xs:string"  
minOccurs="0" nillable="true"/> 

            <xs:element name="module_args" type="tns:stringArray"  

minOccurs="0" nillable="true"/> 

        </xs:sequence> 

    </xs:complexType> 
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between modules. The administrator provides a concrete run() method to override the abstract 

run() method; the concrete method has all of the code that is required to run the concrete 

module. 

Figure 15: The implementation of the abstract Module class 

Modules communicate using pipes. Each module has zero or more pipes into and out of 

it. This communication between modules is encapsulated in class Messaging, shown in Figure 

16. The Messaging class has two pipe attributes, one for the pipes coming into a module, and 

one for the pipes going out of it. Pipes are used in our case as a way to pass data between 

modules. Method send() sends an object to the other end of the pipe, where recv() receives 

it; recv() blocks until there is an object to be received. 

import abc 

from multiprocessing import Process 

import types 

from const import * 

from Message import * 

 

class Module(Process): 

    __metaclass__ = abc.ABCMeta 

    def __init__(self, name, messaging): 

        Process.__init__(self) 

        if not isinstance(name, types.StringType): 

            raise Exception("Name must be a string") 

        self.status = STATUS_CREATED 

        self.name = name 

        self.mess = messaging 

    @abc.abstractmethod 

    def run(self): 
        return 
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Figure 16: The implementation of the Messaging class 

An instance of class Bootstrap is created for each job. It is passed a specification of the 

workflow: the modules and how they are connected. An instance of Bootstrap sets up each 

module, with the connections into and out of it, and it starts each module. The code for class 

Bootstrap is shown in Figure 15. An instance of Bootstrap takes in the 

WorkflowModuleArray and the ConnectionArray and sets up the workflow. 

from  multiprocessing import Pipe 

import types 

class Messaging(object): 

    def __init__(self, inports, outports): 

        if len(inports) == 1: 

            self.inports = inports[0] 

        elif len(inports) > 1: 

            self.inports = inports 

        if len(outports) == 1: 

            self.outports = outports[0] 

        elif len(outports) > 1: 

            self.outports = outports 

    def recv(self): 

        if isinstance(self.inports, types.ListType): 

            temp = [] 

            for i in self.inports: 

                temp.append(i.recv()) 

            return tuple(temp) 

        else: 

            return self.inports.recv() 

    def send(self, data): 

        if isinstance(self.outports, types.ListType): 

            for i in self.outports: 

                i.send(data) 

        else: 
            self.outports.send(data) 
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Figure 17: The implementation of the Bootstrap class 

Data streams from the wireless sensor network are simulated with data streams from an 

hdf5 file. The Input module reads acoustic emission data from an HDF5 dataset. Figure 18 

shows the run() method of the Input module. The Output module takes the classification and 

writes it out to a file. 

import types 

import sys 

from multiprocessing import Pipe 

from Message import * 

class Bootstrap(object): 

    def __init__(self, modules, connections): 

        self.modules = modules 

        self.conns = connections 

        self.mod = [] 

        self.inPorts = {} 

        self.outPorts = {} 

        for i in self.modules: 

            self.inPorts[i.name]=[] 

            self.outPorts[i.name]=[] 

    def run(self): 

        for i in self.mod: 

            i.start() 

    def setup(self): 

        for i in self.conns: 

            p1,p2 = Pipe() 

            self.inPorts[i.in_ports].append(p1) 

            self.outPorts[i.out_ports].append(p2) 

        for i in self.modules: 

            if i.module_location not in sys.path: 

                sys.path.append(i.module_location) 

            module = __import__(i.module_name) 

            class_ = getattr(module, i.module_class) 

            if i.module_args is not None: 

                instance = class_(i.name, Messaging(self.inPorts[i.name],  

self.outPorts[i.name]), *i.module_args) 

            else: 

                instance = class_(i.name, Messaging(self.inPorts[i.name],  

self.outPorts[i.name])) 
            self.mod.append(instance) 
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Figure 18: The implementation of the run method for the Input module  

      def run(self): 

        self.status = STATUS_RUNNING 

        f = h5py.File("Waveforms.hdf5", "r") 

        data = f.get('CrackGrowth') 

        for i in data: 

            self.mess.send((i, time.clock())) 

        self.mess.send(-1) 

        self.status = STATUS_EXIT 
        self.f.close() 
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CHAPTER 6 

Conclusion 

For structural health monitoring (SHM), a structure is monitored in near real-time. SHM 

involves observing the civil or mechanical structure over time using periodically spaced 

measurements, extracting the damage-sensitive features, and statistically analyzing these features 

to determine the current state of system health. With regard to maintenance, SHM is used to 

screen the condition and provide real-time information on the integrity of the structure.  

The target architecture described here aims to provide a workflow engine that allows for 

data to be processed in near real-time. Our target setup has a multiagent system with agents that 

advocate for various feature extraction and machine learning techniques. The agents bid on 

which techniques should be connected together in a workflow. The lead agent then 

communicates this specification to the workflow engine. The workflow engine sets up the 

workflow then attaches input and output sources.  

We have currently implement key parts of the target architecture in Python. One job has 

multiple modules and connections (pipes). Module classes are extension of the Module abstract 

base class. For each job, a user or agent uses web services to tell the workflow engine what 

arguments it takes: where the modules reside on disk, the name of the module classes, the 

canonical names of the modules. In the larger implementation, there will be daemon process 

controlling data input and information output and a NoSQL database to store the information and 

for job setup.  

The basic data that we work with consists of acoustic signals that we interpret regarding 

the events that produce them (e.g., crack growth). At the lowest level, for a given data stream, 

the agents in the target system will find techniques to extract features from the stream and 
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classification techniques that take vectors of these features as input and produce classifications of 

the corresponding events. The classifiers are trained using machine-learning techniques.  

Following Axiom III from Worden et al [WFM2007], we used two unsupervised and 

three supervised learning techniques to look at the different aspects of SHM. The results of these 

learning techniques will allow us to look at the problem of damage identification at a higher level 

of sophistication.  The unsupervised learning techniques are k-means and self-organizing maps 

(SOM). Supervised learning techniques are support vector machines (SVMs), naive Bayes 

classifiers, and feed-forward neural networks (FNNs). We tested a version with principal 

component analysis (PCA) as a frontend to reduce the dimensionality of the data (usually to 

three principal components) for each technique with SOM being the exception and we tested 

another version without PCA. Of all of the supervised learning techniques the SVM with the 

RBF kernel was the most accurate, but the SVM with a linear kernel function performed the 

fastest. Of the unsupervised learning techniques, the SOM with four clusters had the three 

clusters the SOM with three clusters had. Its fourth cluster was empty, suggesting that there 

really are just three clusters among the data.  

Future work will investigate other types of machine learning techniques such as weak, 

ensemble and semi-supervised learning. We will also look into machine learning techniques that 

work for other types of material such as carbon fiber laminate. We also plan on investigating 

other agent collaboration patterns. Finally, we will look into dimensionality reduction techniques 

and try to determine what features are the most important and how to make them dominate.  
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Appendix A 

This WSDL file with the definitions of the complex types WorkflowModule, 

Connection, WorkflowModuleArray and  ConnectionArray with the description of the 

Web service. 

<wsdl:definitions  

  xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"  
  xmlns:tns="shm.wf"  

  xmlns:plink="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"  

  xmlns:xop="http://www.w3.org/2004/08/xop/include"  

  xmlns:soap12env="http://www.w3.org/2003/05/soap-envelope/"  

  xmlns:senc="http://schemas.xmlsoap.org/soap/encoding/"  

  xmlns:s1="module"  
  xmlns:s0="connection"  

  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  

  xmlns:xs="http://www.w3.org/2001/XMLSchema"  

  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

  xmlns:senv="http://schemas.xmlsoap.org/soap/envelope/"  
  xmlns:soap12enc="http://www.w3.org/2003/05/soap-encoding/"  

  targetNamespace="shm.wf" name="Application"> 

    <wsdl:types> 

    <xs:schema targetNamespace="module"  

      elementFormDefault="qualified"> 

      <xs:import namespace="shm.wf"/> 

      <xs:complexType name="WorkflowModule"> 
        <xs:sequence> 

          <xs:element name="name" type="xs:string" minOccurs="0"  

             nillable="true"/> 

          <xs:element name="module_class" type="xs:string"  

           minOccurs="0" nillable="true"/> 

         <xs:element name="module_location" type="xs:string"  
           minOccurs="0" nillable="true"/> 

        <xs:element name="module_name" type="xs:string" minOccurs="0"  

          nillable="true"/> 

        <xs:element name="module_args" type="tns:stringArray"  

          minOccurs="0" nillable="true"/> 

        </xs:sequence> 
      </xs:complexType> 

      <xs:complexType name="WorkflowModuleArray"> 

        <xs:sequence> 

          <xs:element name="WorkflowModule" type="s1:WorkflowModule"  

            minOccurs="0" maxOccurs="unbounded" nillable="true"/> 

        </xs:sequence> 

      </xs:complexType> 
      <xs:element name="WorkflowModule" type="s1:WorkflowModule"/> 

      <xs:element name="WorkflowModuleArray"  

        type="s1:WorkflowModuleArray"/> 
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    </xs:schema> 

    <xs:schema targetNamespace="connection"  

      elementFormDefault="qualified"> 

      <xs:complexType name="Connection"> 
        <xs:sequence> 

          <xs:element name="out_ports" type="xs:string" minOccurs="0"  

            nillable="true"/> 

          <xs:element name="in_ports" type="xs:string" minOccurs="0"  

            nillable="true"/> 

        </xs:sequence> 
      </xs:complexType> 

      <xs:complexType name="ConnectionArray"> 

        <xs:sequence> 

          <xs:element name="Connection" type="s0:Connection"  

            minOccurs="0" maxOccurs="unbounded" nillable="true"/> 

        </xs:sequence> 
      </xs:complexType> 

      <xs:element name="Connection" type="s0:Connection"/> 

      <xs:element name="ConnectionArray" type="s0:ConnectionArray"/> 

    </xs:schema> 

    <xs:schema targetNamespace="shm.wf"  

      elementFormDefault="qualified"> 

      <xs:import namespace="connection"/> 
      <xs:import namespace="module"/> 

      <xs:complexType name="stringArray"> 

        <xs:sequence> 

          <xs:element name="string" type="xs:string" minOccurs="0"  

            maxOccurs="unbounded" nillable="true"/> 

        </xs:sequence> 
      </xs:complexType> 

      <xs:complexType name="runWorkflowResponse"> 

        <xs:sequence> 

          <xs:element name="runWorkflowResult" type="xs:integer"  

            minOccurs="0" nillable="true"/> 

        </xs:sequence> 
      </xs:complexType> 

      <xs:complexType name="runWorkflow"> 

        <xs:sequence> 

          <xs:element name="mod" type="s1:WorkflowModuleArray"  

            minOccurs="0" nillable="true"/> 

          <xs:element name="conn" type="s0:ConnectionArray"  
            minOccurs="0" nillable="true"/> 

        </xs:sequence> 

      </xs:complexType> 

      <xs:element name="stringArray" type="tns:stringArray"/> 

      <xs:element name="runWorkflowResponse"  

        type="tns:runWorkflowResponse"/> 

      <xs:element name="runWorkflow" type="tns:runWorkflow"/> 
    </xs:schema> 

  </wsdl:types> 

  <wsdl:message name="runWorkflow"> 

    <wsdl:part name="runWorkflow" element="tns:runWorkflow"/> 
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  </wsdl:message> 

  <wsdl:message name="runWorkflowResponse"> 

    <wsdl:part name="runWorkflowResponse"  

      element="tns:runWorkflowResponse"/> 
  </wsdl:message> 

  <wsdl:service name="WorkflowService"> 

    <wsdl:port name="Application" binding="tns:Application"> 

      <soap:address location="http://localhost:8000/"/> 

    </wsdl:port> 

  </wsdl:service> 
  <wsdl:portType name="Application"> 

    <wsdl:operation name="runWorkflow" parameterOrder="runWorkflow"> 

      <wsdl:input name="runWorkflow" message="tns:runWorkflow"/> 

      <wsdl:output name="runWorkflowResponse"  

        message="tns:runWorkflowResponse"/> 

    </wsdl:operation> 
  </wsdl:portType> 

  <wsdl:binding name="Application" type="tns:Application"> 

    <soap:binding style="document"  

      transport="http://schemas.xmlsoap.org/soap/http"/> 

    <wsdl:operation name="runWorkflow"> 

      <soap:operation soapAction="runWorkflow" style="document"/> 

      <wsdl:input name="runWorkflow"> 
        <soap:body use="literal"/> 

      </wsdl:input> 

      <wsdl:output name="runWorkflowResponse"> 

        <soap:body use="literal"/> 

      </wsdl:output> 

    </wsdl:operation> 
  </wsdl:binding> 

</wsdl:definitions> 

  



54 
 

 

Appendix B 

Supervised Machine Learning Code 

We present code for the supervised learning techniques (Gaussian naïve Bayes, feed-

forward neural net, and support vector machines with various kernel functions) with and without 

principal component analysis (PCA). There is a file for each technique, with and without PCA. 

Gaussian Naïve Bayes with PCA 

from sklearn.cross_validation import StratifiedKFold 

import numpy as np 

from sklearn.metrics import accuracy_score 
from sklearn.naive_bayes import GaussianNB 

import time 

from sklearn.metrics import accuracy_score 

from sklearn.decomposition import PCA 

 

classifier = GaussianNB() 
X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 

y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 

 

cv = StratifiedKFold(y, n_folds=5) 

 

X_temp = PCA(n_components=3).fit_transform(X, y) 

 
timing = [] 

accuracy = [] 

timingStd = [] 

accuracyStd =[] 

 

i = 0 
while i <= 25: 

    tempTiming = [] 

    tempAccuracy = [] 

    for train, test in cv: 

        classifier = classifier.fit(X_temp[train], y[train]) 

        t1 = time.clock() 
        P = classifier.predict(X_temp[test]) 

        t2 = time.clock() 

        tempAccuracy.append(accuracy_score(y[test], P)) 

        tempTiming.append((t2-t1)*1000) 

    i += 1 

    accuracy.append(np.array(tempAccuracy).mean()) 
    accuracyStd.append(np.array(tempAccuracy).std()) 

    timing.append(np.array(tempTiming).mean()) 

    timingStd.append(np.array(tempTiming).std()) 
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Gaussian Naïve Bayes without PCA 

from sklearn.cross_validation import StratifiedKFold 

import numpy as np 

from sklearn.metrics import accuracy_score 

from sklearn.naive_bayes import GaussianNB 
import time 

from sklearn.metrics import accuracy_score 

 

classifier = GaussianNB() 

X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 

y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 
 

cv = StratifiedKFold(y, n_folds=5) 

 

timing = [] 

accuracy = [] 

timingStd = [] 
accuracyStd =[] 

 

i = 0 

 

while i <= 25: 

    tempTiming = [] 
    tempAccuracy = [] 

    for train, test in cv: 

        classifier = classifier.fit(X[train], y[train]) 

        t1 = time.clock() 

        P = classifier.predict(X[test]) 

        t2 = time.clock() 

        tempAccuracy.append(accuracy_score(y[test], P)) 
        tempTiming.append((t2-t1)*1000) 

    i += 1 

    accuracy.append(np.array(tempAccuracy).mean()) 

    accuracyStd.append(np.array(tempAccuracy).std()) 

    timing.append(np.array(tempTiming).mean()) 

    timingStd.append(np.array(tempTiming).std()) 
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Feed-forward Neural Net without PCA 

import numpy as np 

from pybrain.datasets            import ClassificationDataSet 

from pybrain.tools.shortcuts     import buildNetwork 

from pybrain.supervised.trainers import BackpropTrainer 
from sklearn.cross_validation import StratifiedKFold 

import time 

from sklearn.metrics import accuracy_score 

def data(trainSet, trainClass, testSet, testClass): 

    input_size = trainSet.shape[1] 

    trndata = ClassificationDataSet(input_size, 1, nb_classes=6) 
    input_size = testSet.shape[1] 

    tstdata = ClassificationDataSet(input_size, 1, nb_classes=6) 

    for i, k in zip(trainSet, trainClass): 

        trndata.appendLinked(tuple(i), (k,)) 

    for i, k in zip(testSet, testClass): 

        tstdata.appendLinked(tuple(i), (k,)) 
    trndata.assignClasses() 

    tstdata.assignClasses() 

    trndata._convertToOneOfMany() 

    tstdata._convertToOneOfMany() 

    return trndata, tstdata 

X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 
y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 

cv = StratifiedKFold(y, n_folds=5) 

timing = []; accuracy = []; timingStd = []; accuracyStd =[] 

i = 0 

while i <= 25: 

    fnn = buildNetwork( 6, 8, 6, bias=False, outputbias=False) 

    tempTiming = [] 
    tempAccuracy = [] 

    for train, test in cv: 

        trndata, tstdata = data(X[train], y[train], X[test], y[test]) 

        trainer = BackpropTrainer(fnn, dataset=trndata, momentum=0.1, 

                                  verbose=False, weightdecay=0.01)     

        trnerr,valerr = trainer.trainUntilConvergence(dataset=trndata, 
                                                      maxEpochs=500) 

        t1 = time.clock() 

        P = trainer.testOnClassData(dataset=tstdata ) 

        t2 = time.clock() 

        tempTiming.append((t2-t1)*1000) 

        tempAccuracy.append(accuracy_score(y[test], P)) 
    i+=1 

    timing.append(np.array(tempTiming).mean()) 

    timingStd.append(np.array(tempTiming).std()) 

    accuracy.append(np.array(tempAccuracy).mean()) 

    accuracyStd.append(np.array(tempAccuracy).std()) 
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Feed-forward Neural Net with PCA 

from pybrain.datasets            import ClassificationDataSet 

from pybrain.tools.shortcuts     import buildNetwork 

from pybrain.supervised.trainers import BackpropTrainer 

from sklearn.cross_validation import StratifiedKFold 
import time 

import numpy as np 

from sklearn.metrics import accuracy_score 

from sklearn.decomposition import PCA 

 

def data(trainSet, trainClass, testSet, testClass): 
    input_size = trainSet.shape[1] 

    trndata = ClassificationDataSet(input_size, 1, nb_classes=6) 

    input_size = testSet.shape[1] 

    tstdata = ClassificationDataSet(input_size, 1, nb_classes=6) 

    for i, k in zip(trainSet, trainClass): 

        trndata.appendLinked(tuple(i), (k,)) 
    for i, k in zip(testSet, testClass): 

        tstdata.appendLinked(tuple(i), (k,)) 

    trndata.assignClasses() 

    tstdata.assignClasses() 

    trndata._convertToOneOfMany() 

    tstdata._convertToOneOfMany() 
    return trndata, tstdata 

 

X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 

y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 

 

X_temp = PCA(n_components=3).fit_transform(X, y) 

 
cv = StratifiedKFold(y, n_folds=5) 

 

timing = [] 

accuracy = [] 

timingStd = [] 

accuracyStd =[] 
 

i = 0 

 

while i <= 25: 

    fnn = buildNetwork( 3, 6, 6, bias=False, outputbias=False) 

    tempTiming = [] 
    tempAccuracy = [] 

    for train, test in cv: 

        trndata, tstdata = data(X_temp[train], y[train], X_temp[test], 

                                y[test]) 

        trainer = BackpropTrainer(fnn, dataset=trndata, momentum=0.1,  

          verbose=False, weightdecay=0.01)     

        trnerr,valerr = trainer.trainUntilConvergence(dataset=trndata,  
          maxEpochs=500) 
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        t1 = time.clock() 

        P = fnn.activateOnDataset(tstdata) 

        t2 = time.clock() 

        tempTiming.append((t2-t1)*1000) 
    tempAccuracy.append(accuracy_score(y[test], P.argmax(axis=1))) 

    i+=1 

    timing.append(np.array(tempTiming).mean()) 

    timingStd.append(np.array(tempTiming).std()) 

    accuracy.append(np.array(tempAccuracy).mean()) 

    accuracyStd.append(np.array(tempAccuracy).std()) 
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Support Vector Machine without PCA 

from sklearn.metrics import accuracy_score 

from sklearn.decomposition import PCA 

from sklearn.cross_validation import StratifiedKFold 

import time 
from sklearn import svm 

 

X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 

y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 

 

kernels = ['rbf','poly','sigmoid','linear'] 
cv = StratifiedKFold(y, n_folds=5) 

timing = {} 

accuracy = {} 

timingStd = {} 

accuracyStd ={} 

 
for j in kernels: 

 

    classifier =  svm.SVC(kernel=j ,probability=True, C=2048, 

                          gamma=0.03125) 

 

    i = 0 
    timing[j] = [] 

    accuracy[j] = [] 

    timingStd[j] = [] 

    accuracyStd[j] = [] 

 

    while i <= 25: 

        tempTiming = [] 
        tempAccuracy = [] 

        for train, test in cv: 

            classifier = classifier.fit(X[train], y[train]) 

            t1 = time.clock() 

            P = classifier.predict(X[test]) 

            t2 = time.clock() 
            tempAccuracy.append(accuracy_score(y[test], P)) 

            tempTiming.append((t2-t1)*1000) 

        i += 1 

        accuracy[j].append(np.array(tempAccuracy).mean()) 

        accuracyStd[j].append(np.array(tempAccuracy).std()) 

        timing[j].append(np.array(tempTiming).mean()) 
        timingStd[j].append(np.array(tempTiming).std()) 
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Support Vector Machine with PCA 

import numpy as np 

from sklearn.metrics import accuracy_score 

from sklearn.decomposition import PCA 

from sklearn.cross_validation import StratifiedKFold 
import time 

from sklearn import svm 

 

X = np.loadtxt('testrun50.txt', delimiter=',', dtype=float) 

y = np.loadtxt('testrun50class.txt', delimiter=',', dtype=float) 

 
X_temp = PCA(n_components=3).fit_transform(X,y) 

 

kernels = ['rbf','poly','sigmoid','linear'] 

cv = StratifiedKFold(y, n_folds=5) 

 

 
timing = {} 

accuracy = {} 

timingStd = {} 

accuracyStd ={} 

 

for j in kernels: 
 

 

    classifier =  svm.SVC(kernel=j ,probability=True, C=2048,  

                          gamma=0.03125) 

 

    i = 0 

    timing[j] = [] 
    accuracy[j] = [] 

    timingStd[j] = [] 

    accuracyStd[j] = [] 

 

    while i <= 25: 

        tempTiming = [] 
        tempAccuracy = [] 

        for train, test in cv: 

            classifier = classifier.fit(X_temp[train], y[train]) 

            t1 = time.clock() 

            P = classifier.predict(X_temp[test]) 

            t2 = time.clock() 
            tempAccuracy.append(accuracy_score(y[test], P)) 

            tempTiming.append((t2-t1)*1000) 

        i += 1 

        accuracy[j].append(np.array(tempAccuracy).mean()) 

        accuracyStd[j].append(np.array(tempAccuracy).std()) 

        timing[j].append(np.array(tempTiming).mean()) 

        timingStd[j].append(np.array(tempTiming).std()) 
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