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Abstract 

Mixed matrix membranes (MMMs) were prepared from Polydimethylsiloxane (PDMS) filled 

with surface-treated fumed silica (SiO2). Techniques (TGA, SEM, and FTIR) were employed to 

characterize the neat membrane (PDMS) and the mixed matrix SiO2-PDMS membrane (SiO2-

PDMS). The results confirmed SiO2-PDMS has improved thermal property over neat PDMS. 

Uniform dispersion of SiO2 within the membrane was observed. Good material interaction 

between PDMS and fumed SiO2 was observed. The effects of SiO2 on the transport pattern and 

permeability of O2, N2, CO2, and CH4 were studied. Results showed that the presence of SiO2 in 

PDMS matrix had a significant impact on N2 transport pattern. The incorporation of SiO2 into 

polymer matrix gave rise to an increase in solubility dominant flux and a corresponding decrease 

in the diffusivity of the gases through the MMMs as evident in the permeability trend of: PCO2 > 

PCH4 > PO2 > PN2. 10% SiO2-PDMS maintained stability under continuous and repeated exposure 

to oxygen. 10% SiO2-PDMS exhibited both improved O2 permeability of about 640 Barrer and 

O2/N2 selectivity of 3.42 against neat PDMS with O2 permeability of about 520 Barrer and O2/N2 

selectivity for O2 over N2 of 2.59.  However, neat PDMS had a fair performance for the 

separation of CO2/CH4 gas pair with CO2 permeability of about 3239 Barrer and selectivity of 

4.16 against 10% SiO2-PDMS with 2967 Barrer and selectivity 4.29. This confirmed that SiO2 as 

nano filler in PDMS is not a suitable material for separation of CO2/CH4 gas pair but could be 

suitable for the separation of CO2/N2 gas pair. 
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1 CHAPTER  1 

Introduction 

1.1 Introduction 

Membrane-based gas and vapor separation has become an important unit operation in the 

chemical industry during the past thirty years [1]. The energy efficiency and simplicity of 

membrane separation equipment make them attractive for solution of fluid-phase separation 

problems. The efficiency of this technology strongly depends on the selection of membrane 

materials, their physico-chemical properties, and the mechanism through which permeation 

occurs. The optimal choice of materials for ultrathin, dense gas separation membranes is much 

more demanding than that of other membrane processes, such as ultrafiltration or microfiltration, 

where pore size and pore size distribution are the key factors [1]. 

Applications of membrane-based gas separation technology tend to fall into three major 

categories: 

1. Hydrogen separation from a wide variety of slower permeating supercritical components

such as CO2, CH4, and N2. 

2. Acid gas (CO2 and H2S) and water separations from natural gas [2].

3. Oxygen enrichment.

The order of the various types of applications given above provides a qualitative ranking 

of the relative ease of performing the three types of separation. The extraordinarily small 

molecular size of H2 makes it extremely permeable and easily collected as a permeant compared 

to the other more bulky gases. But surprisingly, it is difficult to separate H2 from CO2 and H2S, 

although the molecules of these latter gases are clearly much larger. 
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Although H2 has a high diffusivity, because of its low condensibility, it has a very low 

solubility in membranes [3]. Therefore, a more soluble, lower diffusivity gas such as CO2 may 

have a steady-state permeability comparable to that of H2, since the product of solubility and 

diffusivity determines the permeability of a component through the membrane. The reasonably 

high solubilities of CO2, H2S, and H2O in membranes at low partial pressures, coupled with the 

relatively low solubility and diffusivity of the bulky methane molecule, have made possible the 

second type of separations.  By far, the most difficult of the three types of separation shown is 

the last one, involving O2 and N2. The potential market for O2-enriched air for medical and 

furnace applications is considerable. Moreover, N2-enriched air for blanketing of fuels and stored 

foods to provide nontoxic, nonresidual protection from fire and oxygen-breathing pests is an 

interesting possibility. Unfortunately, currently available polymer membranes have only 

moderate selectivities to separate oxygen and nitrogen [4]. The size and shape (and hence 

diffusivity) of O2 and N2 are quite similar; moreover, the solubility of the pair in most 

membranes is similar.  Nevertheless, due to the importance of the problem, processes have been 

designed that are able to produce economical supplies of O2- and N2-enriched air for commercial 

applications. 

Polymeric membranes are low-cost membranes when compared to inorganic membranes 

and thus are widely used materials for gas separation. They have some desired mechanical 

property and flexibility to be processed into different modules. However, despite the advantages 

that polymeric membrane has over inorganic membrane, a greater implementation of polymer 

membranes is hindered by their intrinsic permeability and selectivity limitations. These 

limitations were first identified by Robeson as an upper bound trade-off between permeability 

and selectivity and later more fully characterized by Freeman [5]. To improve polymeric 
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membrane performance, a considerable research effort has focused on the modification of 

polymeric materials by the incorporation of inorganic micro-scaled fillers into polymers,  giving 

rise to the concept of mixed matrix membrane [6, 7]. 

1.2 Research Objectives 

The overall goal of this research is to develop a defect-free nano filler modulated polymer 

gas separation mixed matrix membrane (for production of O2 enriched air) with essential 

properties and potentials for commercialization.  To achieve this goal, the following objectives 

were set to be accomplished: 

1. Research and select polymer candidate as well as functional nano-filler and suitable

solvent; 

2. Develop defect-free, stable, and high performing  mixed matrix membranes (MMM);

3. Perform gas permeation experiments with MMM of different nano-filler compositions;

4. Study the influence of nano-filler on the performance of MMM and establish optimal

MMM composition; 

5. Characterize and document the fundamental microstructure of the membranes using

Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric and differential 

calorimetric analysis (TGA-DSC) and scanning electronic microscope (SEM). 

1.3 Research Outline

This thesis is organized in five chapters, including introduction, Chapter 1. Literature review 

pertinent to this research is presented in Chapter 2. Materials used and methods used to fabricate and 

characterize PDMS MMM in Chapter 3. Results and discussion in Chapter 4 and finally, Chapter 5 

gives the conclusions of the work. 
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2 CHAPTER 2 

3 Literature Review 

2.1 Introduction 

Oxygen constitutes 21 vol.% of the air. It is one of the widely used commodity chemical 

in the world [8]. Oxygen produced from air separation is used in many applications worldwide 

such as medical devices, steel and chemical manufacturing, and most recently carbon capture on 

a large scale. The scale of the operation and the required purity of oxygen determine the method 

of separation [9]. The separation of oxygen from air is a very large business, nearly 100 million 

tons of oxygen are produced every year [10]. This oxygen market is believed to be expanding in 

the coming years because all large-scale clean energy technologies will require oxygen as a feed 

[11].  

There are two fundamental approaches for air separation, which are cryogenic distillation 

and non-cryogenic process. Cryogenic distillation is typically reserved for applications that 

require tonnage quantity of oxygen at ultra-low-temperature. Non-cryogenic process involves the 

separation of air at ambient temperatures using either molecular sieve adsorbents via pressure 

swing adsorption (PSA), or membrane separation process using the polymeric membranes [9]. 

 

2.2 Cryogenic Air Separation 

Cryogenic distillation of air is the conventional technology for producing large quantities 

of oxygen. This technology has been in existence since early 1900s and is still used today to 

produce high purity oxygen [12]. While currently tonnage quantities of oxygen (oxygen 

concentration ≥99%) are carried out by the cryogenic distillation process, this technology is 

noted to be complex, expensive and energy intensive. By cryogenic distillation, the inlet air must 
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be filtered, compressed and chilled to about −185 
◦
C. Thereafter, the liquefied stream is distilled

in large distillation towers to separate air into its component phases (78 vol.% nitrogen, 21 vol.% 

oxygen, 1 vol.% argon and other trace gases), according to their boiling points. The use of 

cryogenic distillation for oxygen supply (oxygen concentration ≥95%) in the field of oxyfuel 

power plant and coal gasification has meanwhile reduced the power generation efficiencies from 

current best practice of around 40–30% [11]. 

2.3 Swing Adsorption-based Systems 

Swing adsorption (SA) is one of the technologies used in the production of oxygen from 

air separation. This technology is suitable for small to medium-scale plant (20–100 tons/day); 

hence, it is not applicable to large-scale (100–300 tons/day and beyond) production of oxygen, 

which is typically carried out by cryogenic distillation processes. Swing adsorption process 

seems to be the best alternative because of the matured technology, adsorbents availability as 

well as a low cost energy, and highly efficient gas separation system [13]. Vacuum swing 

adsorption (VSA), pressure swing adsorption (PSA), temperature swing adsorption (TSA) and 

hybrid vacuum-pressure swing adsorption (VPSA) or temperature–pressure swing adsorption 

(TPSA) systems are the variation of this technology. Most of these systems are relied entirely on 

zeolites to trap nitrogen in order to produce oxygen with purities from 90% to 95%. It is noted 

that the zeolites A and X are the most important component as an adsorbent in the oxygen-

pressure swing adsorption (O2-PSA) process [14]. 
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2.4 Membrane Air Separation Technology 

 

Gas separation using membrane technology is a dynamic and growing field.  Separation 

of gases by membranes offer a number of benefits over other conventional gas separation 

technologies, such as low capital and operating costs, lower energy requirement and, generally 

ease of operation and fabrication, etc. Current applications of gas separation membranes include: 

CO2 capture, volatile organic compound (VOC) removal, air/gas dehumidification (gas 

dehydration), oxygen and nitrogen enrichment, and organic vapor removal from air or nitrogen 

streams [5, 15].   

Polymeric membranes are widely used materials for gas separation because they have 

some desired mechanical property and the flexibility to be processed into different modules 

unlike inorganic membranes. However, polymeric membrane is hindered by their intrinsic 

permeability and selectivity limitations. These limitations were first identified by Robeson [16] 

as an upper bound trade-off between permeability and selectivity and later more fully 

characterized by Freeman [5]. To improve polymeric membrane performance, a considerable 

research effort has focused on the modification of polymeric materials by the incorporation of 

inorganic micro-scaled fillers into polymers [6, 7]. 

 

2.4.1 Inorganic Membranes. Inorganic membranes can be classified into two major 

categories based on its structure: porous inorganic membranes and dense (non-porous) inorganic 

membranes. Microporous inorganic membranes have two different structures: symmetric and 

asymmetric; and include both amorphous and crystalline membranes [17]. Inorganic membranes 

are usually fabricated from metals, ceramics, or pyrolyzed carbon [18]. These membranes 
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generally exhibit far better chemical, mechanical, thermal, and pressure stabilities and much 

higher gas fluxes or selectivities than polymer membranes. Inorganic membranes such as 

ceramic membranes have ability for absolute selectivity for gas separation at about 593 
0
C [5]. 

Inorganic molecular sieves like zeolites and carbon molecular sieves possess better diffusivity 

selectivity than polymeric materials. The accurate size and shape discrimination resulting from 

the narrow pore distribution ensures superior selectivity [19]. Even with their superior selectivity 

and/or permeability at high temperatures and pressure when the organic-based membranes 

cannot operate, the major disadvantage of these membranes lies on their substantially higher cost 

and difficulty to scale up the membrane area without defects; especially accounting for their 

synthesis which involves high temperature processes and therefore, specialized equipment [20]. 

 

2.4.2 Polymer Membranes. Polymeric membranes have variety of important industrial 

applications of which gas separation is very important. For gas separation, the permeability and 

selectivity of the membrane material determines its performance and the efficiency of the gas 

separation process. Based on flux density and selectivity, a membrane can be classified broadly 

into two classes:  porous and nonporous. A porous membrane is a rigid, highly voided structure 

with randomly distributed inter-connected pores. The separation of materials by porous 

membrane is mainly a function of the permeate character and membrane properties, such as the 

molecular size of the membrane polymer, pore-size, and pore-size distribution. A porous 

membrane is very similar in its structure and function to the conventional filter. In general, only 

those molecules that differ considerably in size can be separated effectively by microporous 

membranes. Porous membranes for gas separation do exhibit very high levels of flux but with 
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low selectivity values. Microporous membranes are characterized by the average pore diameter 

d, the membrane porosity, and tortuosity of the membrane [21].  

Nonporous or dense membranes on the other hand have high selectivity properties but the 

rates of transport of gases through the medium are usually low. An important property of a 

nonporous dense membrane is that even permeants of similar sizes may be separated if their 

solubility in the membrane differs significantly. A dense membrane can be prepared by melt 

extrusion, where a melt is envisioned as a solution in which the polymer in both solute and 

solvent. In the solution-casting method, dense membranes are cast from polymer solutions 

prepared by dissolution of a polymer in a solvent vehicle to form a sol. This is followed by 

complete evaporation of the solvent after casting. Polymer membranes have gained popularity in 

isolating carbon dioxide from other gases. These membranes are elastomers formed from 

crosslinked copolymers of high molecular weights. They are prepared as thin films by extrusion 

or casting. They demonstrate unique permeability properties for carbon dioxide together with 

high selectivity towards H2, O2, N2, and CH4 [21].  

 

2.5 Polymeric Membrane Materials 

Basically there are two types of polymeric membranes widely used commercially for gas 

separations: glassy and rubbery polymers. Glassy polymers are rigid and glass-like and operate 

below their glass transition temperatures (Tg). They have low chain intrasegmental mobility and 

long relaxation times. Rubbery polymers on the other hand, are flexible and soft, and they 

operate above their Tg. They exhibit the opposite characteristics, namely high intrasegmental 

mobility and short relaxation times [22]. Mostly, rubbery polymers show a high permeability, but 

a low selectivity, whereas glassy polymers exhibit a low permeability but a high selectivity. 



10 

 

 

Glassy polymeric membranes dominate industrial membrane separations because of their high 

gas selectivities, along with good mechanical properties. There are few rubbery polymers other 

than silicone polymers, particularly polydimethylsiloxane (PDMS), which can be used in gas 

separations. Glassy polymers such as polyacetylenes, poly[1-(trimethylsilyl)-1-propyne] 

(PTMSP), polyimides, polyamides, polyarylates, polycarbonates, polysulfones, cellulose acetate, 

and poly(phenylene oxide) polymers are extensively studied as polymeric materials for gas 

separations [23]. 

 

2.6 Mixed Matrix Membrane (MMM) 

Robeson predicted an upper limit for the performance of polymeric membranes in gas 

separation in early 1990 [24]. Figure 1 shows the performance of various membrane materials 

available for the separation of O2/N2. The figure presents O2 permeability (Barrer) on the 

horizontal axis and the membrane selectivity for O2 over N2 on the vertical axis (both on a 

logarithmic scale). For the polymeric materials, a rather general trade-off exists between 

permeability and selectivity, with an ‘‘upper-bound’’ evident in Figure 1. When materials with 

separation properties near this limit were modified based on the traditional structure– property 

relation, the resultant polymers have permeability and selectivity tracking along this line instead 

of exceeding it. On the other hand, as shown on Figure 1, the inorganic materials have properties 

lying far beyond the upper-bound limit for the organic polymers [25]. Though tremendous 

improvements had been achieved in tailoring polymer structure to enhance separation properties 

during the last two decades, further progress exceeding the trade-off line seems to present a 

severe challenge in the near future. Likewise, the application of inorganic membranes is still 

seriously hindered by the lack of technology to form continuous and defect-free membranes, the 
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extremely high cost for the membrane production, and handling issues (e.g., inherent brittleness) 

[26]. In view of this challenge (limitations of inorganic and organic membranes), a new approach 

is needed to provide an alternate and cost-effective membrane with separation properties well 

above the upper-bound limit between permeability and selectivity [25]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Membrane Performance for O2/N2 Gas pair Separation [24, 25].   

 

One of the most promising approaches is the development of mixed matrix membrane. 

Mixed matrix membranes are normally defined as the incorporation of a solid (nano particles) 

into polymer matrix. The solid (dispersed) phase is the inorganic nano-scaled particles while the 

continuous phase is the polymer matrix [27].  Proper incorporation of the nano-scaled particles 

into a suitable continuous phase usually alters the molecular packing of the polymer and could 

result in membrane with higher selectivity, permeability, or both. At the same time, the fragility 
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inherent in the inorganic membranes may be avoided by using a flexible polymer as the 

continuous matrix [25]. The investigation of MMMs for gas separation was first reported in 

1970s with the discovery of a diffusion time lag effect for CO2 and CH4 when adding 5Å zeolite 

into rubbery polymer polydimethylsiloxane (PDMS) [27]. In this work, Paul and Kemp found 

that the addition of 5A into the polymer matrix caused very large increases in the diffusion time 

lag but had only minor effects on the steady-state permeation. 

 

 

Figure 2.  Schematic of: (a) Neat polymer and (b) Mixed Matrix Membrane (MMM) 

 

2.6.1 The effects of inorganic particles on membrane performance. The addition of 

inorganic fillers into polymer matrix can significantly alter the transport patterns of one or 

several gases through the MMM when compared to that of neat polymeric matrix. The gas 

transport can be enhanced in several ways. First,  the incorporated filler particles could change 

the properties of  the  polymer, which in turn will favor the overall transport of the penetrant gas 

[28]. This effect is mainly significant for particles that are well dispersed within the polymer 

matrix, where the fractional free volume can be greatly modified [29]. Second, the presence of 

filler particles may alter the molecular packing of the polymer chains near its surface, and impart 

great effect on the transport of large penetrates relative to small ones. Therefore, the noticeable 
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effect on selectivity of the gas pair involving gases with significant size difference like CO2/He 

can be observed [28]. Third, the filler may act as physical crosslinker to reduce the chain 

segment mobility, thus increasing Tg and selectivity [30]. 

The interface between the inorganic particles (dispersed phase) and the polymer matrix 

(continuous phase) could determine the path to be passed through by one of the penetrant gases 

over the others [31]. This characteristics allows the selective transport of certain gases hence 

improved selectivity is expected, or in some cases, it can also result in increased permeability by 

reducing the path length of the permeate molecules. 

The effect of the inorganic dispersed phase on the mixed matrix membrane properties is 

related to its chemical structure, surface chemistry and the type of particles; inorganic particles 

used for MMMs can be classified into porous and nonporous fillers [25]. For porous filler 

materials, the shape and size of the pores can control sorptive selectivity of the favored 

permeating species. The best established example of porous materials with this sieving 

characteristic is the micro-scaled alumino-silicate zeolites and carbon molecular sieve that have 

been traditionally featured by their intrinsically high separation capacities. In fact, the formation 

and gas separation properties of MMM using these conventional inorganic fillers have been well 

documented [25, 28, 32]. Nano-scaled fillers, such as silica, carbon nano tubes (CNTs) and 

layered silicate clay are typically characterized by intrinsically low separation capacities, In spite 

of that, a larger interfacial area between the fillers and the polymer matrix per unit volume of the 

fillers can be achieved and these have of recent attracted great attention due to their superior 

permeation properties [33]. The variation in the properties of these fillers have different effect 

may in the separation performance of the resulting MMM [28]. Porous and nonporous fillers 
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each has different effect on the mixed matrix membrane and can be related to their structure and 

their pore size.  

2.6.2 Effect of porous inorganic materials. Porous fillers usually act as molecular 

sieving agents in the polymer matrix and separate gas molecules by their shape or size. Due to 

their concise apertures, porous inorganic particles usually exhibit high permeability and 

selectivity which is above the Robeson upper bound [34]. Therefore when these highly selective 

porous fillers are added to the polymer matrix, they selectively allow the desired component to 

pass through the pores and thus a mixed matrix membrane, whose permselectivity is higher than 

that of the neat polymeric membrane, can be obtained. In other words, addition of suitable 

porous inorganic fillers to a suitable polymer matrix not only increases the permeability of the 

desired component but also increases the overall selectivity of the desired component relative to 

the undesired component. That is, addition of porous fillers to the polymer matrix is an ideal way 

to overcome the traditional permeability-selectivity tradeoff of the polymeric membranes. The 

improvement of membrane performance due to addition of porous fillers into polymer matrix 

holds only when a defect free membrane is fabricated [35]. 

Besides the molecular sieving mechanism, adding rigid materials with large pore sizes 

(the materials with pore dimensions much larger than the penetrants) into the polymer matrix can 

induce selective surface flow of special components in the pores of the particles. In this case the 

more condensable or adsorbable component can adsorb and diffuse selectively through the 

particles and thus the less adsorbable component permeates more slowly [36]. Consequently, 

when feed gas mixture includes condensable components, selective surface flow must be 

considered. For example, in hydrocarbon drying and air drying, because of the presence of 

condensable and small water vapor molecule in the feed, and in dew point adjustment of natural 
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gas, because of the insufficient size difference between the feed gas components, a combination 

of surface flow and molecular sieving mechanisms may occur. While in the separation of 

nitrogen from hydrocarbon mixtures, hydrocarbons from air, H2S from CH4 and CO2 from N2 or 

CH4, the selective surface flow can be considered as the major mechanism for transport of the 

condensable components through the membrane which is filled with large pore size particles [35, 

36]. 

2.6.3 Effect of inorganic nonporous materials.  Unlike porous particles, nonporous 

material fillers can improve the separation properties of the resultant mixed matrix membranes 

by increasing the matrix tortuous pattern and decreasing the diffusion of the larger molecules 

[37]. Also nonporous inorganic materials may disrupt the polymer chain packing and increase 

the free volume between polymer chains and thus increase gas diffusion. For example, Ahn et al. 

[38] showed that with addition of 20 vol.% nonporous silica particles into the polysulfone 

matrix, the void volume increases from nearly 0.2% to 2.8%. This small increase in void volume 

along with the insufficient polymer chain packing causes an increase in the total free volume. 

The increase in free volume increases the diffusion and solubility coefficients of the silica filled 

polymer and causes an increase in the permeability of the penetrants, as proved by Ahn et al. for 

all test gases (H2, He, O2, CO2, N2 and CH4). For example, they reported that with addition of 20 

vol.% silica to the polysulfone matrix, the CO2 and CH4 permeabilities increase by 212% (from 

6.3 to 19.7 Barrer) and 400% (from 0.22 to 1.10 Barrer), respectively [38]. The hydroxyl and 

other functional groups on the surface of these nanomaterials may also interact with polar gases 

(CO2 and SO2) and thus improve the penetrant solubility in the resulting mixed matrix 

membranes [39]. 
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2.6.4 Material selection for MMM. Suitable material selection for both the matrix and 

the inorganic phase is key to developing a defect-free MMM. Polymer properties as well as 

inorganic phase properties can affect mixed matrix membranes morphology and separation 

performance [25]. Usually highly selective polymers can result in mixed matrix membranes with 

better separation performance. For instance, glassy polymers with superior gas selectivity are 

preferred to highly permeable but poorly selective rubbery polymers [40]. Though, glassy 

polymers are better than rubbery polymers, but because of their rigid structure, poor adhesion 

between the polymer phase and the external surface of the particles is a major problem when 

used in the preparation of mixed matrix membranes [41].  

Therefore, in the selection of the matrix phase, gas separation properties and the 

compatibility between the two phases must be considered.  Zeolites and carbon molecular sieves 

(CMS) are the most commonly used porous inorganic fillers for mixed matrix membrane 

development[34]. These materials have hydrophobic internal surfaces and are being used in 

industry to separate air by adsorption of oxygen and to remove carbon dioxide from landfill 

gases. Other porous inorganic fillers used as dispersed phase in MMM are metal organic 

frameworks, activated carbon and carbon nanotubes [41]. When a porous material is used as 

filler in the polymer matrix, its pore size distribution, surface chemistry and functional groups 

must be consistent with the gas molecules pairs. For example, activated carbon is suitable for 

carbon dioxide/methane separation because it has a higher adsorption selectivity for CO2 (polar 

gas) than for CH4 (non-polar compound) but this filler is not suitable for oxygen/nitrogen 

separation [41].  

The effect of the nonporous inorganic material on MMM separation potential is different 

from porous inorganic materials with sieving function; interaction between polymer-chain 
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segments and nanofillers as well as functional groups on the surface of the inorganic phase must 

be factored in material selection [39]. When silica was incorporated into a polyimide matrix, the 

polymer chain packing was altered, resulting to increased oxygen and nitrogen permeation rates 

[42]. Also, adding TiO2 to the polyimide matrix can increase the CO2/CH4 and H2/CH4 

selectivity because interactions of CO2 and H2 with TiO2 are stronger than TiO2–CH4 

interactions. Silica, TiO2 and fullerene (C60) are the most common impermeable inorganic 

particles used for nanocomposite mixed matrix membrane development [43]. 

 

2.6.5 Polydimethylsiloxane (PDMS) MMM. The development of a defect-free MMM 

with the desired properties and enhanced membrane performance depends on the proper 

selection of the polymer and filler materials, their structural and physiochemical properties, and 

the ratios of their concentrations [44]. One of the  favorable base polymers that is commonly 

used for developing MMMs for gas separation is PDMS [45]. Figure. 3 (PDMS structure) shows 

an unusual combination of an inorganic chain similar to silicates, associated with high surface 

energy, and organic methyl side groups, with low surface energy. The Si-O-Si linkages result in 

good thermal stability, low chemical reactivity and significant resistance to oxygen, ozone and 

UV light. On the other hand, PDMS exhibits very poor mechanical properties at room 

temperature as a consequence of low intermolecular forces between polymer chains, and it has a 

very low Tg (−123°C) [46, 47].  PDMS has been widely used for MMM applications due to its 

ideal properties, which include low cost, biocompatibility, nontoxicity, and ease of fabrication. 

  PDMS offers one of the highest permeability coefficients for a wide range of gas species 

and it provides a very modest selectivity[16]. This creates the opportunity to utilize fillers to 

provide enhanced selectivity of PDMS to target gasses.  
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Figure 3.  Chemical Structure of PDMS   Figure 4.  Fumed Silica [48] 

 

2.6.6 Fumed silica. Intensive research in silica/polymer MMM system have shown that 

the addition of non-porous nanosized fumed silica (which has opposed properties with porous 

inorganic fillers) has great potential to affect polymer chain packing and high free- volume, 

which consequently bring about alteration in the gas separation properties of the resultant 

membrane. Due to the non-permeability of the nonporous silica particles, the addition of this 

filler into the polymer matrix does not directly contribute to the change of transport property, but 

it alters the molecular packing of the polymer chains, resulting in an improvement of the 

permeation as well as the selectivity [28]. Addition off nano-fumed silica into polymer matrix 

can give rise to two outcomes: (i) increase of polymer free volume without creating non-selective 

voids which in turn results in increased gas permeation properties and (ii) formation of free 

volume elements that are large enough to permit non-selective Knudsen transport hence resulting 

in a decrease in selectivity [49]. Also, the presence of silica particles is reported to induce the 

morphology change at the interface resulting in the increased amorphous region of the MMM as 

well as giving  rise to increased  mean distance between the polymer chains through the 
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reduction of the polymer chain packing density at the interface between the two phases. In such 

case, the polymer structure stiffness ascribed to the increased tortuosity and restricted segmental 

motion has resulted in higher diffusivity and diffusivity selectivity by disrupting inter-chained 

packing. An increasing polymer backbone stiffness, likewise plays a more determining role in 

the polymer separation performance in comparison with the solubility factor [50]. 

2.7 Transport Mechanism of Gases through Dense Membrane 

The transport of gas molecules through polymer membrane and the ability of the 

membrane to separate gas mixtures were observed and described analytically over a century ago. 

Graham suggested that permeation of a penetrant molecule through a dense (i.e. nonporous) 

polymer membrane proceeded by a three step solution-diffusion mechanism. In this model, 

penetrant molecules first dissolve into the high pressure (upstream) face of the membrane, 

diffuse across the membrane to the low pressure (downstream) side, and desorb (or evaporate) 

from this face. Membrane materials currently used in gas separation applications are understood 

to permeate and separate small molecules based on this mechanism [51]. 

According to the solution-diffusion model, the permeation of gas molecules through 

membranes is controlled by two major parameters: diffusivity coefficient (D) and solubility 

coefficient (S). The diffusivity is a measure of the mobility of individual molecule passing 

through the voids between the polymeric chains in a membrane material. The solubility 

coefficient equals the ratio of the dissolved penetrant concentration in the upstream face of the 

polymer to the upstream penetrant partial pressure. The permeability (P) representing the ability 

of molecules to pass through a membrane is defined as 

P = DS  (1) 
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The ability of a membrane to separate two molecules, for example, A and B, is the ratio 

of their permeabilities, called the membrane selectivity, 

 

αAB = PA/PB       (2) 

Since P is the product of D and S, Eq. (2) may be rewritten as 

 

αAB = (DA/DB) (SA/SB)                                  (3) 

 

Therefore, the difference in permeability is resulted not only from diffusivity (mobility) 

difference of the various gas species, but also from difference in the physicochemical 

interactions of these species with the polymer that determine the amount that can be 

accommodated per unit volume of the polymer matrix [52]. The balance between the solubility 

selectivity and the diffusivity selectivity determines the selective transport of the component in a 

feed mixture. Research related to the development of polymers membranes with improved gas 

separation performance focuses on manipulation of penetrant diffusion coefficient via systematic 

modification of either/both polymer chemical structure, superstructure, chemical or thermal post 

treatment of the membrane. Solubility selectivity may also be increased by altering polymer 

structure to increase the solubility of one component in a mixture [53].  

 

2.8 Techniques for Characterization of Mixed Matrix Membrane (MMM) 

There are different characterization methods used in the analysis of the chemical 

structure, microstructure and morphology, as well as the physical properties, of mixed matrix 

membranes. Several of these techniques are specific for characterization of particular properties 
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of nanocomposites, and the properties of nanocomposites are also discussed correspondingly. To 

fully understand structure-property relationships, several characterization techniques are often 

employed [48]. The properties of the nanocomposites strongly depend on their composition, the 

size of the particles, interfacial interaction, etc. [54].  The interfacial interaction between polymer 

and silica (which depends on the preparative procedure) strongly affects the mechanical, thermal, 

and other properties of the nanocomposites. The internal surfaces (interfaces) are critical in 

determining the properties of nanofilled materials since silica nanoparticles have high surface 

area-to-volume ratio, particularly when the size decreases below 100 nm. 

This high surface area-to-volume ratio means that for the same particle loading, 

nanocomposites will have a much greater interfacial area than microcomposites. This interfacial 

area leads to a significant volume fraction of polymer surrounding the particle that is affected by 

the particle surface and has properties different from the bulk polymer (interaction zone). Since 

this interaction zone is much more extensive for nanocomposites than for microcomposites, it 

can have significant impact on properties [55]. 

 

2.8.1 Chemical structure - Fourier transform infrared (FTIR). FTIR is used for the 

analysis of polymer/silica nanocomposites chemical structure. FTIR spectrometry is widely used 

to show the formation of nanocomposites especially for those prepared by the sol-gel reaction, in 

which process a silica network can be formed. The major peak at about 1100 cm
-1

 (varying with 

different samples in the range of 1000-1200 cm
-1

) that is attributed to the asymmetric stretching 

vibrations of Si-O-Si bonds of silica can be found in the hybrids. If the condensation reaction is 

not complete, Si-OH groups will also exist. FTIR spectra can also supply evidence of the 

existence of hydrogen bonding or covalent bonding between organic and inorganic phases [48].  
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Figure 5 shows FTIR spectra of SiO2 with Si-DMS. Unmodified SiO2 was characterized by a 

broad band peak between 3,000 cm
−1

 and 3,700 cm
−1

, related to the silanol groups (Si-OH) on 

the SiO2 surface. Decline in silanol peak signal was associated with the appearances of three new 

absorbances at 912 cm
−1

, 2,148 cm
−1

 and 2,967 cm
−1

 which are attributable to Si-H bending near 

the Si-O bands, Si-H stretching and C-H asymmetric stretching, respectively [56-58]. 

 

 
 

Figure 5. FTIR Spectra of the Fumed SiO2 and Si-DMS Nanoparticles [56]. 

 

2.8.2 Microstructure - differential scanning calorimetry (DSC). Crystallization 

behaviors of mixed matrix membrane are usually analyzed by DSC. For PDMS-silica 

nanocomposite, DSC scans of the membranes samples shown in Figure 6 were used to determine 

the transition glass temperatures (Tg). This analysis was performed due to the sensitivity of Tg 

values to structural changes within the PDMS matrix. The Tg values were determined by tracing 

the heat flows before and after the transition, followed by obtaining the middle temperature of 
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the tangent line. The obtained Tg values are listed in Table 1. It is obvious that pure PDMS has 

lower Tg values compared to the PDMS MMMs [56].  

 

Figure 6. DSC scans of Neat PDMS and PDMS MMMs [56] 

 

Table 1 

Calculated FF and Tg Values in Neat PDMS and PDMS MMM [56]. 
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2.8.3 Morhpology –Transmission electron microscope (TEM), scanning electron 

microscope (SEM), and atomic force microscopy (AFM) are powerful microscopy techniques 

used study the morphology of nanocomposites. TEM is a microscopy technique in which a beam 

of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it 

passes through. It is difficult to receive details of some samples due to low contrast resulting 

from weak interaction with the electrons; this can partially be overcome by the use of stains such 

as phosphotungstic acid and RuO4. At times the organic components of the sample would be 

decomposed by the electron beam; this can be circumvented using cryogenic microscopy (cryo-

TEM), where the specimen is measured at liquid nitrogen or liquid helium temperatures in a 

frozen state.  The recent application of electron energy loss spectroscopy imaging techniques to 

TEM (ESI-TEM) can provide information on the composition of polymer surfaces. This is a very 

useful technique for the characterization of colloidal nanocomposite particles [48]. The scanning 

electron microscope (SEM) is a type of electron microscope that produces images of a sample by 

scanning it with a focused beam of electrons. The electrons interact with atoms in the sample, 

producing various signals that can be detected and that contain information about the sample's 

surface morphology and composition. SEM images have a characteristic 3-D appearance and are 

therefore useful for judging the surface structure of the sample. Aside the emitted electrons, X-

rays are also produced by the interaction of electrons with the sample. These can be detected in a 

SEM equipped for energy-dispersive X-ray (EDX) spectroscopy [48, 59]. Figure 7 shows the 

SEM and EDX Si-mapping photography of a PMMA/silica nanocomposite film containing 50 

wt% silica. [60] From the SEM photography, aggregation of silica was not observed. The 
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fracture surface was very dense. Both the SEM and EDX Si-mapping results indicated the 

homogeneous dispersion of the silica in the polymer matrix. 

Figure 7. (a) SEM and (b) EDX-Si mapping Microphotographs of a PMMA-silica [60]. 

2.9 Air Separation 

Membrane-based air separation is relatively new but is likely to be one of the most 

important since nitrogen and oxygen are the second and third most produced chemicals, 

respectively, in the world. In 1989, 53.8 billion pounds (24.5 billion kg) of nitrogen and 37.4 

billion pounds (17.0 billion kg) of oxygen were produced [61]. Though most of this production 

was accomplished by cryogenic distillation of air, membrane processes are becoming 

increasingly attractive for smaller capacity and lower purity plants. 

Membrane-based separation of nitrogen from oxygen is limited because most commercial 

membranes have O2/N2 selectivities ranging from 3.5 to 5.5 [62] . Nitrogen can be economically 

produced using membranes at concentrations up to 99.5% purity, but membranes are most 

efficient producing N2 in the 95-98% purity range. It is difficult to produce oxygen economically 



26 

 

 

with a purity of more than 35% using membranes. Such oxygen-enrich air finds limited use in 

combustion processes and medical applications [62]. 

 

           2.9.1 Current polymeric membrane performance in air separation. The O2/N2 

separation remains the widely studied gas pair with more data existing 

 

Table 2  

Experimental Data Points close to the present Empirical Upper bound for O2/N2 [63]. 

Polymer P(O2) barrers α(O2/N2) Reference 

Polyimide (BPDA-ODA) 0.079 19.8 [18] 

Polyimide (BPDA-ODA) 0.170 14.2 [18] 

Polyetherimide (3d: cyclohexyl 

substituted indan unit in main 

chain) 

0.90 11.2 [19,20] 

Polypyrrolone 

(6FDA/PMDA/(25/75)-TAB) 

1.01 10.3 [21] 

Sulfonated brominated PPO 

(60% DBr;32.9% DSul.) 

12.6 7.4 [22] 

Sulfonated brominated PPO 

(60% DBr;32.9% DSul.) 

(D=degree of ) 

14.0 7.0 [22] 

Polyimide (BADBSBF-BTDA) 18.0 9.0 [23] 

Poly[1-phenyl-2-p-

(trimethylsilyl)phenylacetylene] 

1550 2.98 [24] 

PIM – 1 370 4.0 [25] 

PIM – 7 190 4.5 [25] 
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the literature than any of the other pairs. Numerous data points show intensity just below the 

original upper bound with a few data points emerging above allowing for a new upper bound 

relationship (Figure 8). The key points defining the new upper bound are tabulated in Table 2. 

The position of the one data point above the present upper bound (P(O2) = 18 barrers; (O2/N2) = 

9.0) is questioned as only one significant figure was noted for nitrogen permeability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Upper bound Correlation for O2/N2 Separation [63]. 

 

  

10 1000 10
4
 



28 

 

 

Two data points (PIM-1 and PIM-7) are worth noting as these are based on ladder polymeric 

structures (PIM = polymers of intrinsic microporosity) thus approaching the molecular sieving 

type structures necessary to yield high separation capabilities. Several polyimide variants also 

comprise points near on the upper bound. 

 

2.10 Applications of O2 Enriched Air 

2.10.1 Oxygen-enriched combustion. When a fuel is burned, oxygen in the combustion 

air chemically combines with the hydrogen and carbon in the fuel to form water and carbon 

dioxide, releasing heat in the process. Air is made up of 21% oxygen, 78% nitrogen, and 1% 

other gases. During air–fuel combustion, the chemically inert nitrogen in the air dilutes the 

reactive oxygen and carries away some of the energy in the hot combustion exhaust gas. An 

increase in oxygen in the combustion air can reduce the energy loss in the exhaust gases and 

increase heating system efficiency. The benefits include but not limited to: 

 Increase efficiency. The flue gas heat losses are reduced because the flue gas mass 

decreases as it leaves the furnace. There is less nitrogen to carry heat from the furnace. 

 Lower emissions. Certain burners and oxy-fuel fired systems can achieve lower levels of 

nitrogen oxide, carbon monoxide, and hydrocarbons. 

 Improve temperature stability and heat transfer. Increasing the oxygen content allows 

more stable combustion and higher combustion temperatures that can lead to better heat 

transfer. 

 Increase productivity. When a furnace has been converted to be oxygen enriched, 

throughput can be increased for the same fuel input because of higher  flame temperature, 

increased heat transfer to the load, and reduced flue gas [64]. 
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  2.10.2 Other applications. In the chemicals and petrochemicals industries, oxygen is used 

as a reagent to improve the efficiency of a large number of processes. In the metallurgy and steel 

industries, it is also used for combustion and to adjust the carbon content of steel [65]. 

During combustion processes, oxygen enables to reduce the quantity of fuel used, and 

thus CO₂ emissions. Oxygen also lowers the formation of nitrogen oxides (NOx) that are 

noxious substances for both human beings and the environment. Oxygen-based combustion 

concentrates CO₂ into industrial fumes. This is the first step of the carbon capture and 

storage process. 

Oxygen is also used in the process of eco-friendly paper bleaching and thus helps 

to avoid the use of chlorine-based substances. It also enhances the efficiency of water treatment 

plants by increasing biological activity. 

For patients with respiratory ailments, the blood in the lungs is not able to get sufficient 

Oxygen. The administration of Oxygen-enriched air, otherwise known as Oxygen therapy, helps 

to improve the lives of patients who suffer from COP (Chronic Obstructive Pulmonary Disease). 

Oxygen is also used to treat cluster headaches, a less common and even more painful ailment 

than a migraine headache. 

Oxygen can also sometimes be administered at pressure that exceeds atmospheric 

pressure, in hyperbaric chambers, for example in the treatment of Carbon monoxide poisoning or 

deep sea diving accidents [65]. 
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4 CHAPTER 3 

5 Materials and Method 

 

3.1 Materials 

3.1.1 Polydimethylsiloxane  

           PDMS was supplied by Dow Corning Corporation, USA. The specification and properties 

are listed in Table 3. 

Table 3  

PDMS (Sylgard 184 silicone elastomer) Specification 

Property Unit Result 

One or Two Part - Two 

Color - Colorless 

Viscosity (Base) cP 

Pa-sec 

5100 

5.1 
Viscosity (Mixed) cP 

Pa-sec 

3500 

3.5 
Thermal Conductivity Btu/hr ft 

0
F 0.15 

Specific Gravity (Cured) - 1.03 

Working Time at 25 
0
C (Pot Life-hours) hrs 1.5 

Cure Time at 25 
0
C hrs 48 

Heat Cure Time at 100 
0
C minutes 35 

Heat Cure Time at 125 
0
C minutes 20 

Heat Cure Time at 150 
0
C minutes 10 

Durometer Shore - 43 

Dielectric Strength volts/mil 

kV/mm 

500 

19 
Volume Resistivity Ohm*cm 2.9E+14 

Dissipation Factor at 100 Hz - 0.00257 

Dissipation Factor at 100 Hz - 0.00133 

Dielectric Constant 100 Hz - 2.72 

Dielectric Constant 100 Hz - 2.68 

Linear CTE (by DMA) ppm/
0
C 340 

Tensile Strength PSI 

MPa 

Kg/cm
2
 

980 

6.7 

69 

Refractive Index @ 589 nm 1.4118 

Refractive Index @ 632.8 nm 1.4225 

Refractive Index @ 1321 nm 1.4028 

Refractive Index @ 1554 1.3997 
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3.1.2 Aerosil R974 (Evonik, USA) is a hydrophobic funed silica after-treated with DDS 

(dimethyldichlorosilane) based on a hydrophilic fumed silica with a specific surface area of 

200m
2
/g 

 

Table 4 

Aerosil R974 Specification 

Parameters Specification Limits Actual Values 

BET surface area 150 - 190 157 m
2
/g 

pH 3.70 - 5.00 4.48 

Moisture 0.5 0.30% 

Carbon content 0.70 - 1.30 0.97% 

Typical value of SiO2 content is > 99.8% (based on the ignited substance  

 

3.1.3 Aerosil R202 (Evonik, USA) is hydrophobic fumed silica after-treated with PDMS 

(polydimethylsiloxane) 

Table 5 

 Aerosil R202 Specification 

Parameters Specification Limits Actual Values 

BET surface area 80 - 120 88 m
2
/g 

pH 4.0 - 6.00 5.2 

Moisture  0.5 0.30% 

Carbon content 3.5 – 5.0 4.8% 

 

3.2 Preparation of Membrane 

The PDMS MMMs were prepared through solution casting. Required quantity of fumed 

silica (0, 5, 10, and 15 w% based on PDMS content) was dispersed in right amount of solvent 

(toluene) and stirred for 30mins and further mixed by ultrasonification for 30min to ensure 



32 

 

 

mixing at molecular level. The solvent was used to enhance even dispersion of the silica and to 

control the viscosity of the polymer solution. The PDMS elastomer part A was added into the  

 

 

Figure 9.  Laboratory Procedure for Preparing PDMS MMM 
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dispersion, stirred for 30min and sonicated for 30mins. Then part B of the elastomer was added 

into the mixture and further subjected to 30mins stirring and 60mins sonication. The PDMS 

MMM solution was then poured into disposable aluminium weighing dishes for 12 hrs drying at 

ambient condition. The samples were vacuum –dried for 24hr at room temperature. After drying, 

the samples were annealed under vacuum at 80
o
C for another 24hrs. The membrane films were 

peeled from aluminium dishes and stored for use. Figure 9 shows the laboratory procedure 

developed in making PDMS MMM.  

 

 

 
 

 

Figure 10.  Pictorial Steps for Synthesis of SiO2-PDMS 

Key: 

1. Fume hood for formation and mixing of polymer-silica solution 

2. Water bath/sonicator  for molecular dispersion of silica in polymer matrix 

3. Disposable aluminium weighing dish for membrane solution casting 
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4. Oven for controlled vacuum drying and annealing 

5. Digital micrometer for estimating membrane thickness 

6. Membrane film housed in membrane cell holder 

7. Loaded membrane cell holder ready for permeation test 

 

3.3 Membrane Characterization 

3.3.1 Thermal gravimetric analyzer. TGA (TA SDT Q600) was used to analyze the effects 

of silica on the thermal property of PDMS matrix samples under the protocol outlined below:   

 Select gas 2 (air)  

 Flow rate 100mL/min  

 Equilibrate at 50
o
C  

 Isothermal for 30min 

 Ramp 5.000
o
C/min to 750.000

o
C 

 Isothermal for 30min 

 Flow rate 0mL/min 

3.3.2 Scanning electron microscope (SEM). SEM analyses of the samples were 

employed using Hitachi S-4800 field emission-scanning electron microscope to investigate the 

level of homogenous dispersion of silica in the polymer matrix. 

 

3.3.3 Fourier transform infrared spectroscopy (FTIR).  The FTIR spectra were 

recorded using Shimadzu IR Prestige-21 Fourier transform infrared (FTIR) 8300 spectrometer 

equipped with mercury-cadmium-telluride (MCD) detector. 
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3.3.4 Gas permeation tests. Pure gas permeations through PDMS MMMs were 

performed at different feed pressures (4.8-35 Psig), through active membrane surface area of 

13.8 cm
2
 at room temperature. Gas flow rates at the permeate stream were measured using 

bubble flow meter. Prior to measurements, the system was allowed to attain steady state 

condition.  Permeability (P) in Barrer (10
-10

 cm
3
-cm (STP)/cm

2
 s cm Hg) and ideal selectivity are 

determined according to Eqs 3 and 4 where J is the gas flux through membrane (cm
3
/cm

2
 s), l is 

the thickness (cm) while p1 and p2 are the pressures (cm Hg) at the feed and permeate streams, 

respectively. Data generated from the pair of O2 and N2 and CO2 and CH4 permeation tests were 

used to plot graphs of gas flow rates (ml/min) against pressure (Psi); selectivity for O2 over N2 

and CO2 over CH4 were determined from the ratio of the slopes of the graphs. The transport 

patterns of O2, N2, CO2, and CH4 were also gleaned and analyzed from the gas permeation tests. 

 

 

 

 

 

 

 

  

           

       

       

(3) 

(4) 
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Figure 11. Schematic Laboratory Scale Set-up for Single Gas Permeation Test 
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7 CHAPTER 4 

Results and Discussion 

4.1 Fumed Silica and PDMS MMM Thermal Analysis 

The thermal stability and degradation of the fumed silica (SiO2), neat PDMS and SiO2-

PDMS were examined using TGA as shown on Figure 12.  

 

Figure 12. TGA Analysis of Fumed Silica, Neat PDMS and SiO2-PDMS  

 

The surface treated fumed silica had a total weight loss of 8.094% which may be 

attributed to the PDMS on SiO2 surface and trace ambient contamination. Neat PDMS exhibited 

a significant weight loss of 94.20% with almost no char residue after the TGA test. This was due 

to the loss of methyl groups on the Si-O backbone [66]. The PDMS MMM with 5% wt, 10% wt, 
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and 15%wt silica loadings had 67.97%, 62.65, and 50.18% weight loss respectively as depicted 

on Figure 12 and Table 6.  

 

Table 6  

TGA Analysis of Fumed Silica, Neat PDMS and PDMS MMM 

Sample  Weight % loss 

Fumed Silica  8.09 

Neat PDMS                                           94.20 

5% SiO2-PDMS                           67.97 

10% SiO2-PDMS                         62.65 

15% SiO2-PDMS                           50.18 

 

 

All the SiO2-PDMS samples exhibited a similar degradation pattern to the neat PDMS in 

temperature range with degradation onset from between 200-325 
O
C and most abrupt at 400

O
C.  

Ideally, the organic parts of the SiO2-PDMS should be completely lost during the heating, 

leaving behind silica residue equal to silica weight percent added to PDMS matrix. However, all 

the SiO2-PDMS samples had residues much higher than their respective silica contents (amount 

silica incorporated into the polymer matrix). This shows that the PDMS MMM did not totally 

degrade during the heating period because the silica had altered the thermal property of the 

polymer matrix. It is known that SiO2 has superior heat insulation property and as fillers in 

PDMS, they can act as mass transport barriers by slowing down the release of produced volatile 

organics during thermal decomposition [48].  The higher residue weight (than the actual silica 

weight added to PDMS matrix), thus indicates a level of interaction between the polymer and 

silica chains and hence the improved thermal property (stability) of the PDMS MMM [67]. 
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4.2 PDMS MMM Morphology 

SEM analyses of the samples were carried out using Hitachi S-4800 field emission-

scanning electron microscope. Samples were mounted on aluminum stubs with the help of two 

sided carbon tape. In order to avoid the charging, samples were coated with a thin layer of 

palladium.  

 

Figure 13. SEM Images of (a 1&2) Neat PDMS X35&X30K; (b1&2) 5%SiO2-PDMS X35 &X30k; 

(c1&2) 10%SiO2-PDMS X35 & X30k; (d1&2) 15% SiO2 PDMS X45 & 20K; (e1) 5% SiO2 –

PDMS-5 X30k  
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The dispersion of the surface-treated fumed silica in the PDMS matrix was investigated 

at different SEM magnifications (X35, X45, X20K and X30K). Figure 13a1 and a2 showed the 

surface and cross-section images of neat PDMS at X35 and X30K magnifications respectively. 

The surface images of the neat PDMS and the PDMS MMMs at X 35 and X45 on Figure 13. a1 – 

d1 all indicated the presence of dirt or dust (foreign) particles on the surface of membrane. The 

foreign particles could have settled on the membrane surface during solution casting and drying 

or must have been attracted during material handling (i.e. handling of membrane film). Foreign 

particles that got attracted to the surface of the membrane during material handling may not have 

any significant effect on the performance of the membrane; however, this depends on the nature 

of the particle. Dirt that settled on the surface of the viscous membrane solution after casting and 

through drying could affect the performance of the membrane. The cross-section images of all 

the composite membranes showed uniform distribution of the fumed silica; confirming good 

compatibility between the two phases. Good dispersion of the silica could be attributed to its 

hydrophobic nature and the silica surface treatment with PDMS as well as the laboratory 

procedure used in the synthesis of the membranes.  

 

4.3 PDMS MMM Structure 

In order to understand the structural effects of silica addition to PDMS matrix, FTIR 

spectra were recorded using Shimadzu IR Prestige-21 Fourier transform infrared (FTIR) 8300 

spectrometer equipped with mercury-cadmium-telluride (MCD) detector as shown on fig.15. All 

the samples exhibited a moderate intensity peak at 2960 cm
-1

.  These bands correspond to the 

symmetric C-H bond stretching vibrations of the (CH3) alkyl chains of the PDMS molecule.  The 

absence of hydroxyl bond vibrations between 3200 cm
-1

 and 4000 cm
-1

 signified that all the 
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surface OH groups of the fume silica were consumed through bonding with the alkyl chains of 

the PDMS molecule. The absorption bands around 1257 cm
-1

 and 1012 cm
-1

 are attributed to the 

asymmetric stretching vibrations of Si-O-Si bonds. The intense peak between 788 cm
-1

 and 790 

cm
-1

could be attributed to the symmetric Si-O-Si bond vibrations [57].  

No conspicuous spectral difference was observed when the silica loading was increased from 

10% to 15%. 

 

 

 

Figure 14.  FTIR Spectra of Neat and PDMS MMM 
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4.4 Pure Gas Permeation Tests 

4.4.1 Transport Pattern of O2 and N2 through Neat PDMS and 10%SiO2-PDMS 
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Figure 15. Transport Pattern of O2 and N2 through Neat PDMS membrane at 30 psig 

The transport of O2 and N2 through neat PDMS membrane exhibited similar trend for 

both gases as shown on Figure 15; the gas flux (permeability) through the neat PDMS membrane 

increased slightly with time before attaining steady state flow rate. The incorporation of surface 

treated nano fumed silica into the PDMS matrix altered the N2 flux pattern through the 

membrane as illustrated on Figure 16. Unlike the N2 transport pattern observed in neat PDMS 

membrane, the gas (N2) flux decreases with time before attaining steady state. The transport of 

O2 through neat PDMS and PDMS MMM has the same pattern. Five PDMS MMMs with 
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different silica loading were subjected to gas permeation tests, all exhibited similar altered trend 

of N2 flux observed on Figure 16.  
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Figure 16.  Transport Pattern of O2 and N2 through 10% SiO2-PDMS at 30 psig 

 

The incorporation of the silica altered the molecular packing of the polymer chains such 

that the transport of N2 through it is affected. Goh and Ismail [28] reported that the addition of 

silica to polymer matrix gave rise to an increase in solubility and a corresponding decrease in the 

diffusivity of the gases through the MMMs, resulting in an enhanced permeability of more 

condensable gas (e.g. CO2) in the polymer matrix and reduction in the permeability of the non-
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condensable (e.g. N2) gas, thereby changing the dominant gas permeation mechanism from 

diffusion to solution diffusion. They also pointed out that, the reduced diffusivity of the gases 

can be related to the restricted motion of the gas molecules in the polymer phase and formation 

of pathways with more tortuosity in the polymer upon the addition of silica particles.  The altered 

transport pattern of N2 through PDMS MMM on Figure 16 tends to confirm Goh and Ismail’s 

report. So it can be concluded that the incorporation of fumed silica into PDMS matrix is 

responsible for the reduction of N2 gas permeability with time before attaining steady state 

condition as observed in SiO2-PDMS. Therefore, tailoring a SiO2-PDMS with the ability to 

continuously and progressively slowdown the flux of N2, while at the same time increasing the 

flux of O2 for a long runtime before attaining steady state; this would result to an excellent 

membrane performance. 

 

Figure 17. Transport Pattern of O2/N2 through Neat PDMS and SiO2-PDMS 

 

Figure 17. depicts the observed transport patterns of O2 and N2 through neat PDMS 

membrane and silica modulated PDMS membrane. 
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4.4.2 Effect of pure O2 on PDMS MMM. To verify if continuous exposure  of SiO2-

PDMS to O2  has any effect on its stability,  pure O2 gas permeation test was conducted at 30 

psig on a 10% SiO2-PDMS MMM for 3hrs each day for three days as shown on Figure 18. 

Incorporation of silica is known to have significant effect on the molecular packing of the 

membrane and could affect its stability. As illustrated on Figure 18, the graphs of O2 

permeability for three days and other subsequent (similar) tests not included in this report 

superimposed each other; implying that the flux of O2 through SiO2-PDMS at the same operating 

condition with different runtimes remained the same. This shows that the PDMS MMM 

exposures to O2 did not alter its property in terms of reactivity or stability wise.  
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Figure 18.  Effect of O2 on PDMS MMM at 30 psi 
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4.4.3 Membrane performance for separation of O2/N2 
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Figure 19: (a) Neat PDMS; (b) 10% SiO2-PDMS Performance for O2/N2 Separation 

PO2/PN2 = 2.59 

PO2 = 520 Barrer 

(b) PO2/PN2 = 3.42 

PO2 = 640 Barrer 

(a) 
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Gas permeation tests on Figure 19a showed that the O2 permeability for neat PDMS 

membrane was about 520 Barrer, with selectivity for O2 over N2 of 2.59. On the other hand, the 

10% SiO2-PDMS membrane not only exhibited much higher selectivity (3.42 for O2), but also a 

higher O2 permeability of 640 Barrer (Figure 19b.). The improved performance of the composite 

membrane could be attributed to the modified packing polymer matrix and phase separation of 

the membrane by the addition of the well dispersed silica nanoparticles in PDMS matrix. 

Figure 20. Upper Bound Correlation for O2/N2 Separation [63] 
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  The  L. Robeson’s O2/N2 upper bound relationship has numerous data points that shows 

an intensity just below the original upper bound with a few data points emerging above allowing 

for a new upper bound relationship (Figure 20) [63]. Our 10% SiO2-PDMS performance was 

slightly above the original upper bound but below the new upper bound. This indicates that the 

composite membrane has the potential to be commercialized should it possess all the other 

desirable properties of polymer membrane such as stability, reproducibility, processibility, low 

production cost, etc.  

 

Table 7 

 Performances of Synthesized Neat PDMS and PDMS MMM  

 

 

 

 

 

 

* The term SiO2-PDMS stands for membrane with 10:1 degree of crosslinking. When different 

degree of crosslinking is used other than 10:1, the ratio would be stated.  

 

The table above shows data for the performances of membranes under study; of all the 

membranes synthesized, 10% SiO2-PDMS exhibited the best performance; others showed 

improvement over the neat PDMS.  

Membrane *Crosslinking PO2 

(Barrer) 

Selectivity 

(O2/N2) 

Neat PDMS 10:1 520 2.59 

5% SiO2-PDMS 10:1 410 3.34 

5% SiO2-PDMS 5:1 517 3.28 

10% SiO2-PDMS 10:1 640 3.42 

15% SiO2-PDMS 10:1 521 2.76 

15% SiO2-PDMS 5:1 393 2.83 

25% TEOS-PDMS [68]  370 3.45 

15% SiO2-PDMS [56] 10:1 - 2.50 
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4.4.4 Transport Pattern of CO2 and CH4 through Neat PDMS and 10%SiO2-PDMS 
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Figure 21.  Transport Pattern of CO2 and CH4 through Neat PDMS at 15 psig 

 

CO2 and CH4 have the same pattern of transport through unmodified PDMS. They both 

maintain constant fluxes through the membrane from the time the first gas permeation data were 

collected to the end of test (Figure 21). Both gases also maintain similar transport pattern through 

silica modified PDMS membrane. Figure 22 shows the graphs of CO2 and CH4 permeabilities, 

where both fluxes increased with time before attaining steady state. The incorporation of fumed 

silica in the polymer matrix as earlier discussed has the ability to alter the molecular packing of 

the polymer membrane chains. But then, this has no obvious benefit in comparison to its effects 



50 

 

 

on membrane performance when using O2 and N2 as a pair of gas as illustrated on Figure 16. 

Therefore, MMM (SiO2-PDMS) does not have advantage over neat (PDMS) polymer membrane 

in CO2/CH4 separation. 

Time (min)

0 20 40 60 80 100 120 140 160 180 200

P
e
rm

e
a

b
ili

ty
 (

B
a
rr

e
r)

0

500

1000

1500

2000

2500

3000

3500

CO2

CH4

 

Figure 22. Transport Pattern of CO2 and CH4 through 10% SiO2-PDMS at 15 psig 
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4.4.5 Pure gas permeabilities through neat PDMS and 10% SiO2-PDMS 
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Figure 23. Pure Gas Permeabilities through Neat PDMS at 15 psig 

 

Figures 23 and 24 illustrate the pure gas permeabilities of O2, N2, CO2, and CH4 in neat 

PDMS and 10% SiO2-PDMS. The permeability values ( for all the pure gases) from the neat 

PDMS membrane were similar to those found in literature [56]. However, the permeability 

values for CO2 and CH4 in 10% SiO2-PDMS both decreased significantly relative to the values in 

the neat membrane but had almost the same selectivity as the neat PDMS shown on Figure 24. 

The neat and modified PDMS both have similar permeability trend of: PCO2 > PCH4 > PO2 > PN2;   
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with corresponding penetrant gas critical temperatures (Tc) of 30.95
0
C, -82.65

0
C, -118.55

0
C, and 

-146.55
0
C [69].  
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Figure 24.  Pure Gas Permeabilities through 10% SiO2-PDMS at 15 psig 

 

For the two membranes, the permeabilities of CH4 were much more than those N2 and O2 

even with CH4 having a the kinetic diameter (3.80 Å) greater than N2 (3.64 Å) and O2 (3.46Å).  

This could imply that gas solubility played more dominant role than diffusivity (gas molecule 

size dependent)   in the transport of the penetrant gases through the membranes. Hence, higher 

Tc indicates higher gas condensability and therefore, higher solubility in the modified and 

unmodified membranes. Therefore, the permeability trend observed from the membranes  is 
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typical for the tested gases since their relative permeabilities were mainly influenced by their 

relative solubilities [56].   

 

4.4.6 Membrane Performance for separation of CO2/CH4 
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   Figure 25. Neat PDMS Performance for CO2/CH4 Separation    

 

Gas permeation tests on Figure 25 illustrates that the CO2 permeability for neat PDMS 

membrane was about 3239 Barrer, with selectivity for CO2 over CH4 of 4.16. On the other hand, 

the 10% SiO2-PDMS membrane exhibited a much lower permeability of 2967 Barrer with 

almost the same selectivity for CO2 over CH4 of 4.29 with the neat membrane (Figure 26). The 

CO2 selectivities obtained from this study are higher than those reported in literatures [56, 69], 

PCO2/PCH4 = 4.16 

PCO2 = 3239 Barrer 
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though they fall way below Robeson’s upper bound correlation for CO2/CH4 separation (Figure 

27).          
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 Figure 26. 10% SiO2-PDMS Performance for CO2/CH4 Separation       

 

The decline in the permeabilities of CO2 and CH4 in 10% SiO2-PDMS could also be 

attributed to the modified packing patterns of the chains and morphology of the membrane as a 

result of the addition silica nanoparticles in PDMS matrix. The silica used for this study is 

obviously not suitable for membrane designed for separation of mixture of CO2 and CH4. Other 

fillers like zealot and carbon nanotubes could be more useful.  

 

 

PCO2/PCH4 = 4.29 

PCO2 = 2967 Barrer 
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Figure 27. Upper bound Correlation for CO2/CH4 Separation 
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8  

9 CHAPTER 5  

Conclusions 

Polydimethylsiloxane (PDMS) and surface-treated fumed silica were used to prepared 

mixed matrix membrane (SiO2-PDMS) with different loadings of silica in the PDMS matrix. To 

enhance uniform dispersion and to avoid agglomeration of the nanosized silica particles in the 

membranes, toluene was used to control the viscosity of the polymer-silica solution.  Techniques 

employed to characterize the synthesized neat PDMS and SiO2-PDMS membrane confirmed 

good material compatibility between PDMS and fumed silica. SiO2-PDMS exhibited an 

improved thermal property compared to neat PDMS. The presence of silica in the polymer 

enhanced the ease of material fabrication. The incorporation of surface treated nano fumed silica 

into the PDMS matrix altered the molecular packing of the polymer chains. The presences of 

silica in PDMS matrix changed the N2 transport pattern through the membrane. Unlike the N2 

transport pattern observed in neat PDMS where the flux increased with time, N2 flux through 

SiO2-PDMS decreased with time before attaining steady state. The incorporation of silica into 

polymer matrix gave rise to an increase in solubility dominant flux and a corresponding decrease 

in the diffusivity of the gases through the MMMs. SiO2-PDMS  maintained stability under 

continuous and repeated exposure  to O2. 10% SiO2-PDMS exhibited improved performance 

over neat PDMS for O2/N2 gas pair; whereas, neat PDMS had fair performance than 10% SiO2-

PDMS for the separation of CO2/CH4 gas pair. This implies that silica as nano filler in PDMS is 

not a suitable material for separation of CO2/CH4 gas pair. It could find useful application for 

CO2/N2 separation. 
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