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Abstract 

Uses of fossil fuels in transportation and power generation release greenhouse gases. Hydrogen 

has the potential to be an alternative clean energy carrier. Hydrogen fueled proton exchange 

membrane fuel cell (PEMFC) can be used in transportation and stationary power generation to 

reduce greenhouse gas emissions. However, high purity hydrogen is required for PEMFC. In the 

current work, dense Pd-Ag composite membranes with an oxide layer on microporous stainless 

steel substrate (MPSS) were fabricated by surfactant induced electroless plating (SIEP) process 

for hydrogen separation. Prior to palladium/silver metal deposition, the MPSS disc was oxidized 

in stagnant air at 500 ºC for 18 h. A cationic surfactant, dodecyl trimethyl ammonium bromide 

(DTAB) was used in Pd- and Ag-bath for the sequential deposition of metals on MPSS substrates 

to remove the gas bubbles (N2 and NH3) produced during electroless plating. In this work, 4 

CMC and 0.3 CMC (1 CMC = 15.6 mM) of DTAB were used in Pd- and Ag-bath respectively. 

Addition of a high amount of DTAB leads non-uniform Ag deposition and takes longer time to 

fabricate defect free Pd-Ag membrane. However, the average particle sizes were found to be 1.4 

µm to 2.5 µm, which were relatively larger than the Pd-Ag film particle size using 4 CMC of 

DTAB in both Pd- and Ag-bath. Morphological features of the fabricated Pd-Ag membranes at 

pre- and post-annealing conditions were studied by using SEM, XRD, and EDS. The Pd-Ag 

membrane with an oxide layer showed higher permeability and selectivity in comparison to the 

membrane without oxide layer. However, at elevated temperature (550 ºC) the membrane 

showed a sharp decline in selectivity. The hydrogen flux and selectivity (H2/N2) of SIEP 

fabricated Pd-Ag membrane with an oxide layer were found to be 25.83 m
3
/m

2
-h and 500 

respectively at 40 psi and 450 ºC. 
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CHAPTER 1 

Introduction 

Currently, the main energy system in the world is based on fossil fuels that are not 

renewable sources of energy. The global energy demand is increasing day by day, therefore 

escalating the concern about energy supply security [1]. Uses of fossil fuels as an energy source 

in transportation and power generation releases greenhouse gases. Their detrimental effects on 

the environment and consequent global climate change have been intensifying the concern to 

shift the energy sources from fossil fuels to alternative clean energy carrier. 

It is now widely regarded that hydrogen as an alternative clean energy carrier has the 

capability of assisting in issues of environmental emission, sustainability, and energy security 

[1], [2]. According to DOE 2012 data, the United States produces about 9 million metric tons of 

hydrogen annually which is enough to power approximately 36~41 million fuel cell efficient 

vehicles [3]. Proton exchange membrane fuel cell (PEMFC) provides the technology to use this 

hydrogen energy in a highly efficient way in transportation and power generation, with only 

water and heat as byproducts. The use of hydrogen in fuel cell offers significant reduction of 

CO2 emission and ending dependence on imported oil. High purity hydrogen is the fuel of choice 

for PEMFC. 

Hydrogen is the third most abundant chemical in earth’s crust and found invariably in 

chemical compounds such as with oxygen in water, petroleum, and natural gas [2]. Therefore, 

hydrogen must be produced from these resources to utilize it as an energy source. Hydrogen can 

be produced from several feedstocks such as biomass and fossil fuels like natural gas, coal, and 

petroleum. Various process technologies are available for hydrogen production including steam 

reforming, partial oxidation, auto thermal reforming, steam iron, plasma reforming, 
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thermochemical water splitting, and biological processes [4]. Among them steam reforming of 

methane or methanol are the most exercised industrial process [4]. From steam reforming 

reaction CO, CO2, CH4, and N2 are produced as byproducts with H2. As a result, it is necessary 

to separate hydrogen considering the end user’s perspective. There are several existing processes 

for hydrogen separation such as pressure swing adsorption, cryogenic distillation, and membrane 

based separation. 

Among the existing processes, membrane separation process is a very attractive 

alternative technology considering high purity hydrogen production at a lower cost [5], [6]. One 

of the major advantages of using membrane in hydrogen production process is that it can act as 

reactor-separator in simultaneous production and separation of hydrogen at process condition via 

process intensification [7]. There are three major categories of Hydrogen selective membrane 

based on the materials used: a) polymeric membranes, b) ceramic membranes, and c) metallic 

membranes. Polymeric membranes are highly selective but have limited mechanical strength and 

restricted to high temperature application, therefore are not suitable for the steam reforming 

reaction. Ceramic membranes have higher mechanical strength and thermal stability. Lastly, 

higher selectivity and thermal stability of metallic membranes makes it more attractive in the 

application of hydrogen separation [5]. 

In this context, Pd/Pd composite membranes on the porous substrate are best suited for 

hydrogen separation. Vycor glass, porous alumina, and porous metal are some common materials 

used as membrane substrate. Among them porous stainless steels offer several benefits including 

the sturdiness, weldability, closer thermal expansion coefficient to Pd, and can easily set in the 

industrial assemblies than fragile ceramic supports [8], [9]. Pd, Ni, and Pt have outstanding 

characteristics to dissociate and dissolve the hydrogen; therefore, they are best suited metals for 
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membrane application[10]. However, membranes made of Pd have higher capability to transport 

hydrogen through the metal because of their high hydrogen solubility over a wide range of 

temperature [11]. Despite high hydrogen permeability, palladium membranes have some 

limitations: a) α- to β-phase conversion in exposure to hydrogen at or below 298 ºC causes bulk 

and grain boundary defects, and b) hydrogen embrittlement during thermal cycling [11]. 

Pure Pd membrane limitations can be addressed by alloying Pd with other’s metal such as 

Ag, Cu, Au, Y and Ru [11], [12], [13]. Among them, Pd-Ag membranes draw the researcher 

attention most because of alloying Pd with Ag lowering the α- to β-phase transition temperature, 

and at a certain composition (23 wt % Ag) Pd-Ag membrane shows the higher hydrogen 

permeance than pure Pd membrane [14].However, the fabrication of defect free Pd-Ag 

membrane and its reproducibility as well as long term stability are still challenges in this area. 

There are several methods to synthesize Pd/Pd-alloy composite membranes such as 

chemical vapor deposition, magnetron sputtering, physical vapor deposition, electroplating and 

electroless plating. The current work’s target was to fabricate defect free Pd-Ag membrane using 

electroless plating process. The problem associated in fabrication of Pd-Ag membranes by 

electroless plating methods are control of microstructure and pinhole formation which decrease 

the selectivity. As a result, membrane thickness is needed to be high enough to synthesize dense 

and defect free membrane. However, it is observed in the literature that hydrogen permeance 

decreases with membrane thickness. To control the microstructure of deposited thin Pd film, Dr. 

Ilias previous research group has patented a process called surfactant induced electroless plating 

(SIEP) [15]. Another research group of Dr. Ilias lab extended SIEP process to fabricate Pd-Ag 

membrane [16]. They used same concentration of surfactant (4 CMC of DTAB) in Ag bath based 

on the assumption that 4 CMC of DTAB in Ag bath will act similarly as it does in Pd bath. 
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However, the use of 4 CMC of DTAB in Ag bath decreases the plating rate and leads poor 

surface coverage. In this research, the purpose was to observe how different compositions of 

surfactant affect the microstructure and the performance of the Pd-Ag membrane. Another 

purpose was to investigate the behavior of Pd-Ag membranes introducing an oxide layer as a 

diffusion barrier fabricated by SIEP. In summary, the major tasks that had been done to fulfill the 

above mentioned objectives were: 

1) To fabricate dense Pd-Ag membranes on MPSS by SIEP process with an oxide layer as a 

diffusion barrier. Pre- and post- heat treated membranes were characterized by SEM, 

XRD, and EDX to understand the morphology of the deposited film. 

2) To fabricate dense Pd-Ag membranes on MPSS by SIEP process using different 

compositions of surfactant to understand the effect of surfactant on microstructure, and 

3) To investigate H2 permeability of Pd-Ag membranes to study the hydrogen transport at 

the temperature range of 250–550 ºC and at the trans-membrane pressure range of 20–

100 psi. 

This thesis is organized in five chapters, including introduction, Chapter 1. Literature 

review pertinent to this research is presented in Chapter 2. Then, materials and methods are 

described to fabricate Pd-Ag membrane in Chapter 3. First part of Chapter 4 discusses about the 

microstructure analysis of the Pd-Ag membranes along with full characterization where the later 

part of Chapter 4 discusses the performance of Pd-Ag membranes, in terms of H2 transport 

behavior, and gas separation criterion. Finally, Chapter 5 gives the conclusion and some 

recommendations for future work. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

Hydrogen can be used as an energy carrier alternative to fossil fuel which has the ability 

to address the issue of energy security, global climate change due to greenhouse gases, and local 

air pollution [17]. In recent years, hydrogen demand is growing continuously which motivated 

the research in development of hydrogen production and separation [18]. Regardless of the 

production process, hydrogen needs to be separated from other byproducts and therefore 

hydrogen separation is a key step in high purity hydrogen production system.  

There are several industrial process exits for gas separation such as pressure swing 

adsorption, cryogenic distillation, polymer membrane diffusion, metal hydride separation, and 

membrane separation. The selection of process for the gas separation depends mostly on the 

product purity, and recovery percentage. Pressure swing adsorption is widely used in industrial 

scale to separate hydrogen from the mixture of gases. The advantages of this process are to bring 

down the impurities in the lower level and produce high purity of hydrogen (99.99 %) [5]. 

Cryogenic distillation is a very low temperature process, therefore, required a high amount of 

energy. However, very high purity hydrogen is not practical with this system. Other than 

pressure swing adsorption and cryogenic distillation, membrane separation process has drawn the 

researcher interest due to its low energy consumption, low operating cost, and minimizing unit 

operation [19]. Moreover, membrane has the capability to act as a reactor-separator unit for the 

simultaneous production and separation of hydrogen via process intensification. Palladium based 

membranes are the strong contender for this application. The comparisons among various gas 

separation technologies are given in Table 1.
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Table 1 

Comparison of H2 Separation Technology [19] 

Technique Principle Typical feed gas 

Hydrogen output (%) 

Scale of use Comments 
Purity Recovery 

Pressure swing 

adsorption 

Selective adsorption 

of impurities from 

gas stream 

Any hydrogen rich 

gas 
99.999 70-85 Large 

The recovery is 

relatively low as 

hydrogen is lost in 

the purging step 

Cryogenic 

distillation 

Partial condensation 

of gas mixture at 

low temperatures 

Petrochemical and 

refinery off-gases 
90-98 95 Large 

Pre-purification step 

necessary to remove 

CO2, H2S, and water 

Palladium 

membrane 

diffusion 

Selective diffusion 

of hydrogen through 

a palladium alloy 

membrane 

Any hydrogen 

containing gas 

stream 

≥ 99.9999 Up to 99 
Small to 

medium 

Sulfur-containing 

compounds and 

unsaturated 

hydrocarbon impair 

permeability 

Metal Hydride 

Separation 

Reversible reaction 

of hydrogen with 

metals to form 

hydrides 

Ammonia purge gas 99 75-95 
Small to 

medium 

Hydrogen absorption 

poisoned by O2, N2, 

CO and S 

Polymer 

Membrane 

Diffusion 

Differential rate of 

diffusion of gases 

through a permeable 

membrane 

Refinery off-gases 

and ammonia purge 

gas 

92-98 > 85 
Small to 

large 

He, CO2 and H2O 

may also permeate 

the membrane 
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2.2 Pd Membrane for Hydrogen Separation 

Membranes are defined as an inter-phase between two bulk phases, that act as a selective 

barrier and allows only the passages of a specific constituent from the feed bulk phase [4]. The 

bulk phase containing the components that permeate through membrane is called permeate side 

and the bulk phase containing the retentate components is called retentate side. Ability to 

dissociate and dissolve hydrogen is the key characteristics of a metal to act as a membrane for 

hydrogen separation. In the periodic table, metallic components belong to group 10 (Ni, Pt and 

Pd), and some elements in groups 3-5 have the ability to dissociate and dissolve the hydrogen. 

Figure 1 shows the hydrogen solubility of different metallic components [11]. Solubility is given 

in units of standard cm
3
 of H2 per 100 g of metal. 

 

Figure 1. Comparison of hydrogen solubility in several metals at 1 atm. 

Because of having higher hydrogen solubility of Pd over a wide range of temperature, 

only Pd membranes show the outstanding ability to diffuse hydrogen through it. As Pd 

membrane has higher hydrogen diffusion rate, therefore, Pd membranes have significantly drawn 

the attention of researchers for hydrogen separation and purification. 
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2.3 Hydrogen Permeation through Pd Membrane 

Broadly, gas separation mechanism can be classified into four categories: a) Knudsen 

diffusion, b) molecular sieving, c) surface diffusion, and d) solution diffusion [20]. Knudsen 

diffusion occurs when the pore diameter of the effective barrier layer is smaller than the free 

mean path of the gas molecule being separated. Molecular sieving occurs based on the relative 

pore size of barrier layer and gas molecules. Surface diffusion becomes dominant when the gas 

molecule is adsorbed on the membrane surface significantly. Due to the concentration gradient, 

gas molecules diffuse through the bulk of the solid surface. In solution diffusion mechanism, gas 

molecules are separated based on the solubility and diffusivity of the gas molecules in the 

effective solid barrier. The mechanism of hydrogen permeation through the dense palladium 

membranes follows solution diffusion mechanism. The steps involved in hydrogen transport 

through the palladium membranes are: 1) diffusion of molecular hydrogen to the surface of the 

palladium membrane on high pressure side, 2) reversible dissociative adsorption on the 

palladium surface, 3) dissolution of atomic hydrogen into the bulk metal, 4) atomic hydrogen 

diffusion through the bulk metal, 5) association of hydrogen atom on the palladium surface, 6) 

desorption of molecular hydrogen from the surface on the low pressure side, and 7) diffusion of 

molecular hydrogen away from the surface [21]. The transport phenomena depicted in Figure 2. 

Each of the steps is characterized by an intrinsic forward and reverse rate. If one step becomes 

slower than the others, than the slower step control the overall hydrogen permeation [22]. The H2 

transport solution-diffusion mechanism can be described by the following equation [23]  

 0 exp  - 
H n n

H f p

Q E
N P P

t RT

 
  

 
       (1) 
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where    is the molar flux of hydrogen (mol m
-2 

s
-1

),     is H2 permeability through pure 

palladium film (mol m
-1

 s
-1 

Pa
-n

), t is the membrane thickness (m or μm), E is the activation 

energy (J mol
-1

), R is the universal gas constant (J mol
-1 

K
-1

), n is the Sievert’s law index, and 

 and f pP P  are the partial pressures of hydrogen on the high and low pressure sides (Pa), 

respectively. The value of index n depends on the limiting transport mechanism of hydrogen 

permeation through palladium or its alloy membrane. 

 

Figure 2. Transport mechanism of hydrogen through Pd membrane [16]. 
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2.4 Metallurgical Properties of Pd and its Alloy Metals 

Understanding the metallurgical properties of palladium is very important to implement 

palladium membranes as a hydrogen separation unit in the process of simultaneous hydrogen 

production and separation. In this context, many studies are conducted to understand the 

palladium-hydrogen or palladium alloy-hydrogen system. The palladium hydrogen phase 

diagram is given in Figure 3. 

 

Figure 3. Phase diagram of palladium-hydrogen system [24]. 

As depicted in Figure 3, Pd hydride has two phases named α-phase, which dominates in 

low hydrogen concentration, and β-phase, which dominates in high hydrogen concentration. This 

two phase makes an envelope a-b-c. Phase transition is one of the important characteristics of 

Pd-H phase diagram which occurs in hydrogen concentration within palladium bellow the critical 

temperature and pressure of 298 ºC and 20 psi respectively [25]. In Figure 3, line a-c represents 

αmax that shows the maximum solubility of hydrogen in α-phase, and line b-c represents βmin that 

shows the minimum solubility of hydrogen in β-phase. In the abc region, both α- and β-phase 

coexist, and there is a continuous transformation from α- to β-phase with an increase of hydrogen 

concentration. Both of the phases have the same pure Pd face-centered cubic lattice and only 
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differ in their lattice constants. It is observed that at room temperature the crystal unit cell lattice 

parameter of hydrogen free Pd increases from 0.3890 nm to 0.3895 nm for the α-phase and up to 

0.410 nm for the β-phase [19], [26]. Hydrogen permeability in the β-phase region is found higher 

than the α-phase and reached a maximum value around 200 ºC. However, it is undesirable to 

operate Pd membrane in this condition due to the phase transition which causes lattice strain and 

results in distortion, dislocation multiplication, and hardening of Pd membrane. Thus, 

consecutive hydrogen adsorption/desorption cycle below the critical point causes grain defects 

and complete loss of hydrogen selectivity. This phenomenon is called hydrogen embrittlement 

[27]. Hydrogen embrittlement can be minimized by operating the membrane above 300 ºC in 

hydrogen atmosphere and ensuring the cooling of membrane at dehydrogenated conditions [19]. 

However, this approach will narrow down its application.  

In this context, Pd can be alloyed with other metallic elements such as Ag, Cu, Au, Ni, Pt 

and Y to alleviate embrittlement [11], [12], [13]. Using Pd alloy film as a membrane offers 

several benefits including minimizing hydrogen embrittlement by lowering critical temperature, 

higher permeability in comparison to pure Pd membrane, and cost reduction. Several studies 

show that hydrogen permeability depends on average bond distance of alloys in case of binary 

system. The larger atomic distance facilitates the hydrogen permeation process as it controlled by 

the diffusion of atomic hydrogen through the metal lattice [23]. 

Addition of Cu in Pd considerably minimizes the α- to β-phase transition, increases 

permeability and sulfur tolerance [28], [29]. Addition of 40 % (wt) Cu in Pd increases the 

permeability up to 1.5 times of pure Pd membrane at 350 ºC [30]. Alloying of Au with Pd also 

reduces the embrittlement phenomenon and increases sulfur resistance. Addition of 15 % (wt) 

Au in Pd gives higher permeability than pure Pd membrane [30]. Many works have been done on 
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Pd-Ag alloy due to its higher permeability and thermal stability compared to pure Pd membrane 

[19]. Hydrogen solubility increases with the Ag % (wt) and becomes higher at 23 % (wt) Ag, 

whereas, hydrogen diffusivity decreases with increasing of Ag % (wt). At 350 ºC and 23 % (wt) 

Ag in Pd shows 1.7 times higher hydrogen permeability than pure Pd [14]. Hydrogen 

permeability data for different palladium alloys have shown in Figure 4. 

 

Figure 4. Rate of diffusion of hydrogen in palladium and number of palladium binary alloys (T = 

540 ºC and P = 50 psi)[19]. 

2.5 Phase Diagram Analysis of Pd and Pd-Ag System 

One of the major problems in Pd/Pd alloy composite membrane is the intermetallic 

diffusion of support metals (Fe, Cr, Ni) into the dense Pd active layer which causes low 

hydrogen permeation and non uniform Pd layer at higher temperature. Analysis of the phase 

diagram is necessary to understand the different metal-metal interaction or single metal phase 

behavior at various temperatures. For the fabrication of Pd-Ag membrane on MPSS, three 
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different systems: a) Pd-PSS binary system, b) Ag-PSS binary system, and c) Pd-Ag-PSS ternary 

system are important to investigate thoroughly. These phase diagrams help us to select the 

suitable temperature during the annealing process and give the information of intermetallic 

diffusion. The Pd-Fe phase diagram has given in Figure 5. 

 

Figure 5. Phase diagram of palladium-porous stainless steel system [31]. 

Pd-Fe phase diagram has two important characteristics. First, the phase separation occurs 

in the Fe rich region less than 10 % (wt) Pd due to the size mismatch among αFe-, δFe-, and γFe-

phases. Second, there are two ordered phases namely FePd and FePd3 exist in the Pd rich region 

greater than 62 % (wt) of Pd bellow 800 ºC [32]. However, a continuous solid solution of Pd and 

γFe exists over the entire composition range of Pd at higher temperature (900 ºC). The Ag-Fe 
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phase diagram (Figure 6) has depicted that both in the solid and liquid phase the mutual 

solubility of Ag or Fe is very low, and no stable alloys of appreciable compositions form under 

the equilibrium conditions [33]. 

 

Figure 6. Phase diagram of silver-stainless steel system [34]. 

The maximum solubility of αFe in Ag is 0.0065 % (atomic) and the solubility of Ag in 

αFe is 0.0002 % (atomic) as reported in the literature [35]. In the Pd-Ag-PSS ternary system, 

annealing below the Tammann temperature (TTammann = 640 ºC for Pd and TTammann = 550-560 ºC 

for PSS 316L) forms Pd rich Pd-Ag alloy phase, whereas, annealing above the Tammann 

temperature produces simultaneously Pd rich Pd-Fe and Pd rich Pd-Ag phases. Ag rich Pd-Ag 

and Fe rich Pd-Fe phases are also observed if the annealing temperature goes beyond both the 

Tammann temperature. It is also observed that the Pd rich Pd-Fe layer between the support and 

the Pd-Ag barrier layer interface is not harmful to the permeability of the hydrogen [8]. 
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2.6 Pd and Pd-Alloy Membranes Fabrication Techniques 

Pd and Pd-alloy membrane can be synthesized by using various techniques such as 

chemical vapor deposition, physical vapor deposition, electroplating deposition, and electroless 

plating. Among them, electroless plating method can deposit palladium onto a metal substrate of 

any geometric shape and type (conductive or non conductive) more economically. A short 

description of each method is given below. 

2.6.1 Chemical vapor deposition. Chemical vapor deposition (CVD) is a method where 

a volatile precursor of coating materials is thermally decomposed adjacent to the heated substrate 

to form a thin film [36]. Ye et al. [11] first reported this method for the formation of a Pd 

composite membranes using PdCl2 as precursor on α-Al2O3 disk as substrate. In CVD method, it 

is necessary to have Pd precursor having high volatility and good thermal stability which are the 

key characteristics for short processing time and high yield [37]. Generally, precursors used for 

this method are PdCl2, Pd(acetylactonate)2, Pd(C3H5)2, Pd(C3H5)(C5H5) and Pd(C5H5)2 [38]. One 

of the major advantages of this fabrication method is better film quality and capability of 

fabricating very thin (< 2 μm) Pd or Pd alloy films [11]. The limitations of CVD method are 

requirement of high purity constituents and strict process conditions, high cost of the precursors, 

and contamination of the film by the constituents of organometallic complex such as carbon. 

2.6.2 Physical vapor deposition. In Physical vapor deposition (PVD) processes, the 

targeted metal is vaporized from a solid precursor at an atomic level and vaporized atoms are 

transported through a vacuum or low pressure gaseous environment to the substrate, where it 

condenses [39]. PVD techniques are very useful to deposit thin film of single metal or alloy. 

PVD is similar to CVD except that chemical decomposition reactions are not occurred in the 

surface reactions because in PVD the precursors are pure metals in the elemental state and in 
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CVD the precursors are chemical compounds in a vaporized state [39]. The main categories of 

PVD process are magnetron sputtering deposition, vacuum deposition, arc deposition, and ion 

plating. A PVD technique provides better control of the film composition, phase and thickness. 

However, the equipment used in PVD process is usually expensive due to the requirement of 

high vacuum and power density to evaporate the target material. In addition, the geometry of the 

substrate is also limited to a flat shape which restricts its practical applications. 

2.6.3 Electroplating deposition. Electroplating deposition (EPD) is an electrochemical 

process in which metal ions from the electrolyte deposited upon a substrate by the act of electric 

current. In EPD process, substrate act as a cathode and the positive metallic ions are reduced to 

metal and deposited on the substrate. This method requires very simple equipment and can easily 

control the film thickness by controlling electroplating time and current density [40]. However, it 

is not possible to deposit metal on nonconductive substrate by this method. It is suitable for the 

conducting support materials such as stainless steel. 

2.6.4 Electroless plating. Electroless plating (ELP) is a method in which metal deposited 

on a substrate by the reduction of metal complex ions in solution with the help of a chemical 

reducing agent without applying any external electric current. ELP can produce films of metals, 

alloys, compounds, and composite on both conductive and nonconductive substrate. It provides 

several advantages such as ability to deposit metals on surfaces of complex geometry, good 

adhesion to the substrate, and require simple equipment and low investment [41]. Thus, it is 

widely used in the area of circuit boards, radio frequency interference shielding for computers, 

corrosion and wear resistant metal surfaces, lightweight plated plastics, and membrane 

fabrication processes. Kikuchi et al. and Uemiya et al. first applied this technique to fabricate Pd 

and Pd alloy composite membranes [42]. Some major drawbacks of ELP are that the process 
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involved several steps and time-consuming in nature, and it uses toxic chemicals and generate 

hazardous liquid waste. 

2.7 Substrate Materials and its Modification for ELP 

Palladium itself without any support such as palladium foil can act as a membrane for 

hydrogen separation. Due to low mechanical strength palladium foil thickness should be high 

enough, but thicker palladium layer decreases hydrogen permeability. Different types of 

substrate such as vycor glass, ceramics, and stainless steel are used to lower the membrane cost 

and as well as to increase the hydrogen permeability and selectivity [11]. Porous vycor glass 

supports are capable of withstanding at high temperature along with high porosity but are 

mechanically fragile [11]. Porous ceramic supports have several benefits as a substrate for Pd 

composite membrane. The advantages of ceramic substrates are: a) they can form into a variety 

of shapes with controllable pore sizes, b) they have higher thermal and mechanical stability, and 

c) they facilitate high hydrogen permeability [43]. Currently, metals are widely used as a 

substrate for the fabrication of Pd membranes. Sturdiness, the ability to weld, closer thermal 

expansion coefficient to that of palladium, and ease of fabrication due to conductive property 

makes stainless steel more attractive than others support materials [43], [44]. 

It has been reported that the substrate top layer features significantly affected the quality 

of the Ag/Pd deposition [45]. The intermetallic diffusion at the interface between the palladium 

film and the substrate at high temperature may deteriorate the performance of the palladium alloy 

membrane [46]. Using a diffusion barrier could prevent the intermetallic diffusion between the 

two neighboring layers. Ma et al. [47] introduced an oxide-layer as intermetallic diffusion barrier 

between the palladium alloy layer and the stainless steel substrate. Nam and Lee [8] introduced 

colloidal silica sol layer by sol gel techniques between the palladium alloy layer and the stainless 
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steel substrate as an intermetallic diffusion barrier. Wang et al. [48] modified the porous stainless 

steel support with zirconium oxide particles before Pd deposition. Ayturk et al. [49] developed a 

method named bi-metal multi-layer (BMML) deposition technique in which a porous Pd-Ag 

intermetallic diffusion barrier layer was introduced, prior to the hydrogen selective layer. Yepes 

et al. [46] used wash coating to make a thin film of γ-Al2O3 on the PSS surface.  

2.8 Synthesis of Pd and Pd-Ag Membranes by Electroless Plating Process 

Electroless plating is an autocatalytic deposition process and involves the presence of a 

chemical reducing agent in solution to reduce metallic ions to the metal state [50]. 

Electrochemically, an electroless deposition reaction is the combination of two independent 

electrode reactions named as cathodic partial reaction (i.e. metal ion reduction) and the anodic 

partial reaction (i.e. oxidation of reducing agent). The reducing agent supplied the electrons that 

required for the reduction of the metal ions. Common Pd metals sources for electroless plating 

are PdCl2, Pd(NH3)4Cl2, Pd(NH3)(NO3)2, and Pd(NH3)4Br2). AgNO3 salt is the common source of 

Ag metal for the electroless plating process. In both Pd- and Ag-bath, ethylene-di-amine tetra-

acetic acid (EDTA), ethylene-di-amine (EDA), and ammonium hydroxide (NH4OH) are used as 

complexing agent and solution stabilizer. Hydrazine (NH2NH2), sodium phosphinate 

monohydrate (NaH2PO2.H2O), and tri-methyl-amine-borane are some common reducing agents 

used in the electroless plating process [51]. 

The fabrication of Pd-Ag membrane involves several steps including pretreatment of 

substrate, activation of substrate and Pd or Ag electroless deposition. Activation of substrate 

helps to shorten the induction period for the autocatalytic decomposition reaction of the 

metastable complexes of Pd salts on the substrate and to initiate the electroless plating process. 
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In a conventional electroless plating process, the substrate is activated by acidic SnCl2 and PdCl2 

solution. This activation and sensitization step can be described by the following reaction: 

2 2 4Pd Sn Pd Sn              (2) 

The reaction steps for Palladium and Silver deposition in electroless plating bath are shown 

below: 

In Pd-bath, 

2 0 0

3 4 3
2Pd(NH )  + 4e      2Pd  + 8NH ,           E 0.0 V

 
   

- - 0

2 4 2 2
N H  + 4OH   N  + 4H O + 4e ,                 E 1.12 V   

3 4 2 2 4 4
2Pd(NH ) Cl  + N H  + 4NH OH     

0

2 3 4 2
2Pd  + N  + 8NH  + 4NH Cl + 4H O    (3) 

In Ag-bath, 

+ - 0 0

3 2 3 
4Ag(NH )  + 4e  4Ag  + 8NH ,                 E 0.61 V      

- - 0

2 4 2 2
N H  + 4OH   N  + 4H O + 4e ,                  E 1.12 V   

3 2 3 2 4 4
4Ag(NH ) NO  + N H  + 4NH OH     

0

2 3 4 3 2
4Ag  + N  + 8NH  + 4NH NO  + 4H O   (4) 

Currently, hydrazine based electroless plating bath is very attractive. Rhoda first 

developed hydrazine based bath using Pd(NH3)4Cl2 as Pd metal source [52]. The observations 

reported by Rhoda [52] were: a) plating rate increased within the temperature range of 40-80 ºC 

and precipitation occurred in the absence of stabilizer EDTA salt above 70 ºC bath temperature, 

and b) plating rate decreased with time due to the catalytic decomposition of hydrazine by 

palladium. Based on his findings, hydrazine based electroless plating was studied by many 

research groups over the years and introduced modification to apply this process successfully in 

the fabrication of dense hydrogen selective Pd-composite membrane [51]. 
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2.9 Surfactant Induced Electroless Plating (SIEP) 

In conventional electroless plating (CEP), oxidation-reduction reaction between the Pd 

precursor and reducing agent (hydrazine) results in metallic deposition of Pd on a solid surface. 

During the electroless plating process, NH3 and N2 gas bubbles are produced from the oxidation-

reduction reaction between Pd complex and hydrazine. These gas bubbles hinder uniform Pd-

film deposition while adhering to the substrate surface and in the pores, which eventually create 

micro-porosity in the deposited film [15]. To improve the deposition characteristics and surface 

morphology of Pd and Pd-alloy layers, many researchers have introduced different techniques to 

the synthesis routes over the years and continuously modified the CEP technique. The 

modifications that reported in the literature are: (a) using osmosis in combination with electroless 

plating that produces smaller grain size and denser Pd film, (b) using combined method of ELP 

and CVD to repair the surface defects of Pd fabricated by ELP, and (c) stirring the plating bath 

solution or rotating the substrates at a certain speed to remove the mass transfer barrier during 

elertoless plating. 

 Introducing surface active compounds with suitable structures into the plating bath 

solution is another promising remedy to lessen the surface pinholes problem. Chen et al. [53] 

investigated the effects of surfactants in an electroless nickel plating-bath where hydrogen gas is 

evolved during the plating process. The observations reported by Chen [53] were (a) addition of 

a small amount of surfactant increases the deposition rate by 25 % compared to the surfactant 

free plating-bath, (b) surfactant can minimize the formation of micro pitting on the deposited 

film, and (c) excessive use of surfactant results in inferior surface quality and slow deposition 

rate. To address the similar issue, Ilias et al. investigated the palladium deposition on micro-

porous stainless steel (MPSS) substrate in the presence of anionic, cationic, and nonionic 
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surfactants in ELP process, which they called surfactant induced electroless plating process 

(SIEP) [15], [54]. Among various types of surfactant, it was found that cationic surfactant 

effectively activates the process of grain nucleation and agglomeration in the deposition process. 

A cationic water soluble surfactant named dodecyl trimethyl ammonium bromide (DTAB) is 

found effective in this application. The role of surfactant in this process is to remove the adhered 

NH3 and N2 gas bubbles (plating bath reaction products) from the substrate surface and the pores 

to provide control of Pd-deposition rate and Pd-grain size distribution [54]. 

 

Figure 7. Hypothesized mechanism of gas bubbles removal by surfactant (DTAB) in SIEP. 

In SIEP, the surfactant takes part in reduction reaction and reduces the plating time. 

However, how surfactant takes part in the reaction has not confirmed yet. It is hypothesized that 

the surfactant removes the gas bubbles by forming micelle. Micelles are formed above a certain 

surfactant concentration level which is called critical micelle concentration (CMC). The gas 

bubbles produced from the reaction bath (NH3 and N2) adsorbed on the substrate surface. The 

micelles reduced the surface tension between the bubbles and substrate; as a result, the gas 

bubble comes up from the substrate surface. As the surfactant removes the gas bubbles from the 

targeted surface, which ultimately leads uniform metal deposition during electroless plating.  



24 

 

 

 

In SIEP technique, the observations reported by Ilias et al. [55] were following: a) 

addition of surfactant decreases the Pd plating time compared to the surfactant free bath, b) using 

SIEP dense Pd membrane can be fabricated with lower thickness than conventional EP, and c) 

deposited Pd grains size were reduced from 8 μm (EP) to about 2 μm (SIEP). Table 2 and Figure 

8 have shown the effect of different CMC of surfactant on the characteristics of Pd membrane 

fabricated by SIEP. 

Table 2 

Measured Pd-film Thickness by Weight-gain Method and SEM Cross-section Analysis of SIEP 

MPSS-Pd Composite Membranes [55] 

Membrane 

Sample 

DTAB 

Concentration 

(CMC) 

Deposition 

Time 

(h) 

Pd-film thickness (m) measured 

by 

Weight-gain SEM analysis 

Pd-MPSS (A) 0.5 22 23 22.5 

Pd-MPSS (B) 2 16 17.8 18.3 

Pd-MPSS (C) 3 13 14 13.5 

Pd-MPSS (D) 4 10 8.5 8.5 

Pd-MPSS (E) 0 28 28.5 27.5 

 

Table 2 shows that the film thickness and plating time of the fabricated Pd membrane by 

conventional electroless plating becomes higher than SIEP. For Pure Pd membrane, 4 CMC of 

DTAB in reaction becomes more effective to reduce the plating time as well as film thickness. 
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Figure 8. Helium flow rate as a function of Pd film thickness of different membranes fabricated 

at varied CMCs of DTAB surfactant [55]. 

Moreover, thermal stability test for SIEP produced Pd membranes were carried out and 

found thermally stable for a period of 1200 h under thermal cycling of 300 – 450 – 300 °C at 15 

psi pressure [56]. Pd–Cu membrane was also found stable and retained hydrogen permeation 

characteristics for over three months of operation under the same condition [57]. 
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2.10 Conclusion 

SIEP is a modified technique of CEP. It offers higher hydrogen permeability with low 

thickness compared to the CEP membrane[15], [54]. Although many works have been done on 

Pd-Ag composite membrane by electroless plating method, in this research our interest is to 

study the Pd-Ag membrane properties fabricated by SIEP. It is believed that the surfactant will 

facilitate the uniform Pd/Ag deposition on MPSS substrate and reduce the membrane thickness 

with higher perm-selectivity. For fabricating Pd-Ag membrane, it is important to optimize the 

surfactant (DTAB) concentration in both Pd- and Ag-bath. In the previous work, the effective 

surfactant amount had already been established for Pd-bath. Therefore, to control the 

microstructure of the Ag it is essential to find out the optimum amount of DTAB in Ag-bath. The 

intermetallic diffusion between the deposited film and the MPSS substrate reduces the 

permeability. Substrate modified with oxide layer has the ability to prevent intermetallic 

diffusion. Therefore, an oxide layer can introduce at the interface between the substrate and 

deposited film for the comparative H2 permeation study of Pd-Ag membrane with and without 

oxide layer. 
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CHAPTER 3 

Materials and Methods 

3.1 Membrane Synthesis 

 3.1.1 Substrate. Micro-porous stainless steel (MPSS, 316L) discs of grade were used as 

the substrate for membrane fabrication. Substrates were supplied by Mott Metallurgical 

Corporation, Farmington, CT. The dimension of the MPSS discs was 1 inch in diameter and 

0.062 inch in thickness with average pore size of 0.2 µm as per manufacturer’s product 

information. Figure 9 shows the photograph of the substrates. 

 

Figure 9. Membrane support (MPSS 316 L disc). 

3.1.2 Substrate pretreatment. In this work, combination of Islam [54] and Rahman [16] 

fabrication procedure were followed to synthesize Pd-Ag membrane. The fabrication procedure 

starts with the substrate cleaning. To remove any sticky particle or external dust the substrates 

were gently rubbed by a metal brush and followed by tape water washing. Then substrates were 

cleaned by a freshly prepared basic cleaning solution to remove oil, grease, corrosion products, 

and other’s contaminants that adhered to the top surface of the substrate [58] Chemicals used for 

the cleaning solution are given in the Table 3. For cleaning, substrates dipped in the fresh 

cleaning solution (20 ml solution in 50 ml beaker) were kept in the ultrasonic bath for 30 min at 

60 ºC temperatures and followed by washed with DI water. This cycle was repeated three times. 
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Due to the basic nature of the cleaning solution, substrates needed to wash thoroughly to make 

its surface neutral (pH 7). For surface neutralization, substrates dipped in the DI water were kept 

in the ultrasonic bath twice for 20 min each and followed by dipped in the isopropanol (fisher 

scientific) solution for 15 min. Finally, cleaned substrates were dried at 120 ºC overnight in an 

oven. For the oxide layer, substrates were oxidized at 500 ºC in stagnant air for the period of 18 h 

in an oven at a heating and cooling rate of 4
 
ºC per min. 

Table 3 

Chemical Composition of Cleaning Solution 

Name of Chemicals Supplier Composition 

Na3PO4.12H2O (ACS Reagent grade, 99.4 %) Alfa Aesar 45 g/L 

Na2CO3 (ACS Grade, ≥ 99.5 %) Alfa Aesar 65 g/L 

NaOH (ACS Grade, 97 %) Alfa Aesar 45 g/L 

Industrial Detergent (Liqui-Nox
R
) Alconox 5 ml/L 

 

3.1.3 Sensitization and activation. Before Pd/Ag plating, substrates were activated by 

seeding with Pd nuclei to initiate the electroless plating process. Sensitization and activation 

solution were prepared by using reagent grade tin (II) chloride dihydrate (Sigma-Aldrich, 98 %) 

and palladium (II) chloride (Alfa Aesar, 99.9 %) in hydrochloric acid (ACS Reagent grade, 37 

%). The chemical composition of the sensitization and activation solutions is given in Table 4. 

Before the activation steps, the bottom part and the periphery of substrates were sealed by 

paraffin film and scotch tape. The activation procedure consisted of first dipping the substrate in 

the sensitizing solution (20 ml solution in 50 ml beaker) for 5 min and then in activation solution 

(20 ml solution in 50 ml beaker) for another 5 min with an intermediate washing of DI water. 
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Intermediate washing helps to prevent drag out of sensitizing solution to activation solution, as 

well as by-products of Sn
+
 hydrolysis such as Sn(OH)1.5Cl0.5 and other hydroxyl chlorides [59]. 

After that, the cycle ends with dipping of the activated substrate in 0.1N HCl solution to prevent 

hydrolysis of Pd
+
 [59]. The complete cycle was repeated at least for 4 times until an uniform 

dark brown color appeared on the substrate surface [16]. Finally, activated substrates were dried 

in an oven for 1 h at 60 ºC. 

Table 4 

Chemical Composition of Sensitization and Activation Solutions 

Name of Chemicals Supplier 
Sensitization 

Solution 

Activation 

Solution 

SnCl2.2H2O (ACS Reagent grade, 98 %) Sigma-Aldrich 1 g/L - 

PdCl2 (ACS Reagent grade, 99.9 %) Alfa Aesar - 0.1 g/L 

HCl (ACS Reagent grade, 37 %) Sigma-Aldrich 1 ml/L 1 ml/L 

Temperature 
 

20 ºC 20 ºC 

Time 
 

4-6 min 4-6 min 

pH 
 

2-3 2-3 

 

3.1.4 Pd and Ag electroless plating. After the activation of substrates with Pd nuclei, Pd 

and Ag were deposited sequentially by surfactant induced electroless plating method. The 

chemical composition of electroless plating Pd and Ag bath used in the lab are shown in Table 5. 

The preparation procedure for Pd /Ag bath solution (1 liter) consisted of adding Pd/Ag salt into 

300 ml DI water and shake vigorously until complete dissolution. After the dissolution of Pd/Ag 

salt, Na2EDTA (40gm) was added and dissolved completely then followed by adding 198 ml of 

NH4OH (28 wt %) into the solution. Finally, DATB was added by shaking it gently until 

complete dissolution. The solution was then made 1 liter by adding DI water. In this research, 

Pd/Ag bath solution was prepared at least 5 h before the Pd/Ag electroless plating. Pd/Ag 
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deposition was carried out in an electroless plating bath at a temperature of 60 ºC. Firstly, the 

plating solution (20 ml solution in 50 ml beaker) was heated for 10 min in water the bath and 

then reducing agent N2H4 was added. After 1 min, substrates were dipped in the plating solution 

and kept there for 1 h. Each one h later solution was replaced by a fresh one to maintain the 

plating rate. In between the changing solutions, substrates were rinsed with hot DI water. No 

further deposition was performed after 3-4 cycles. When the deposition was complete, substrate 

were dipped into the hot DI water for 30 min at 80
 
ºC to make the substrate surface neutral (pH 

7). Finally, substrates were dried in an oven at 120
 
ºC overnight. The whole procedure for 

activation to Pd/Ag deposition need to repeat several times until the He flux becomes zero. The 

plating process started with Pd layer and end with final Pd layer. In between, Ag and Pd layer 

were deposited sequentially and tried to maintain the weight ratio of Pd:Ag = 77:23. 

Table 5 

Chemical Composition of Pd-bath and Ag-bath Solutions 

Name of Chemical Supplier Pd-bath Ag-bath 

Pd(NH3)4Cl2.H2O (10 wt %) Sigma-Aldrich 4 gm/L - 

AgNO3 (ACS grade, ≥ 99.9 % metal basis) Alfa Aesar - 0.519 gm/L 

Na2EDTA (≥ 99 %) Acros Organics 40.1 gm/L 40.1 gm/L 

NH4OH (ACS grade, 28 %) Fisher Scientific 198 ml/L 198 ml/L 

NH2-NH2 (1.0 M) Sigma-Aldrich 5.6 mM 5.6 mM 

DTAB (90 %) Sigma-Aldrich 4 CMC 0.3-4 CMC 

Time 
 

60 min 75 min 

Temperature 
 

60 ºC 60 ºC 

pH 
 

11-12 11-12 
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3.2 Membrane Post Treatment 

For the membrane annealing, the fabricated Pd-Ag membranes were heat treated in a gas 

tight diffusion cell. The set up was similar to the one reported by Islam et al. [54]. The heat 

treatment set up is shown in the Figure 10. During the heat treatment process, first, membranes 

were heated to a temperature of 500 ºC from the room temperature in the presence of nitrogen 

gas. At 500 ºC nitrogen gas was switched to hydrogen and kept the membrane for 18 h. After 18 

h again hydrogen gas was switched to nitrogen and brought down the temperature to ambient 

condition. During the heat treatment period, the feed side pressure was always kept at15 Psi and 

the permeate side was equal to the atmospheric pressure. The ramping rate of temperature during 

heating and cooling was maintained 2
 
ºC per min. 

3.3 Membrane Characterization 

For microstructure analysis of the fabricated membranes, scanning electron microscopy 

(SEM) equipped with energy dispersive spectroscopy (EDS) was used. Grain sizes of the 

fabricated membrane were determined using point-to-point measurements from representative 

SEM images. Elemental quantification and EDX metal mapping was carried out on Zeiss EVO 

LS10 SEM equipped with OXFORD INCA X-act detector. The statistical distributions were 

estimated in a fixed cross sectional area of the membrane from the SEM image. The phase 

analysis of the membranes were carried out using Bruker D2 Phaser Diffractometer equipped 

with a 1D Lynxeye detector, utilizing Cu Kα (λ = 1.5405 Å) radiation, operated at 30 kV and 10 

mA using a step width of 0.014° and a 2-theta range of 20° - 90°. H2 permeability and selectivity 

studies were carried out at temperature range from 250-550 ºC and at 20-100 psi transmembrane 

pressures. Prior to the permeability test, the membrane was washed with hot DI water and iso-

propanol solution respectively, and followed by 2 h drying under nitrogen environment. During 
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the permeability test, the temperature ramping was 5 ºC/min. The membrane was placed in 

diffusion cell using two graphite gaskets, one in top and the others in the bottom. The dimensions 

for both gaskets were OD = 25.6 mm and ID = 20 mm 

PCV

FCVPCV

PI

TI

Diffusion Cell

 Flow 

measurement

device

H2 He

Membrane 

holder

Membrane 

 

Figure 10. Experimental set-up for gas permeability test through membrane (FCV - flow control 

valve, TI - K - type thermocouple, PCV - pressure control valve)  

 

.
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CHAPTER 4 

Results and Discussions 

4.1 Introduction 

In this research, Pd-Ag composite membranes with an oxide layer on MPSS were 

fabricated by SIEP process. Successful fabrication of thin, dense and defect free Pd-Ag 

composite membrane largely depends on the deposited Pd or Ag layer microstructure. The 

substrate surface roughness, fabrication technique, bath parameters, and operating conditions 

may have significant influence on the microstructure of Pd-Ag composite membrane. In this 

work, Pd-Ag composite membranes were fabricated by SIEP process using different 

concentration of surfactant (DTAB) in Ag bath while keeping the other parameters such as bath 

composition, bath parameters, operating conditions used in our previous work. An oxide layer 

also introduced to study the intermetallic diffusion characteristics and its effect on the hydrogen 

permeability. Two types of Pd-Ag membrane based on two different surfactant concentrations 

were studied in this work. In the first type, Pd-Ag membrane without oxide layer was fabricated 

by using 4 CMC of DTAB in both Pd- and Ag-bath. In the second type, Pd-Ag with oxide layer 

was fabricated by using 4 CMC and 0.3 CMC of DTAB in Pd- and Ag-bath respectively. In this 

work, second type of Pd-Ag membrane was fabricated by SIEP. All the data for first type 

membranes were taken as a reference from the previous work [16]. 

In the following section, membrane characterization and hydrogen permeability studies 

are presented to analyze the microstructure and performance of the Pd-Ag composite 

membranes. Instrumental analyses such as scanning electron microscopy (SEM), energy 

dispersive spectroscopy (EDS), and X-ray diffraction (XRD) were carried out to characterize the 

membrane for microstructure analysis, grain size distribution, grain agglomeration, and metal 
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composition. Hydrogen permeability tests were carried out at temperature of 250-550 ºC and 

transmembrane pressure of 20-100 psi.  

4.2 Microstructure Analysis 

4.2.1 Study of Pd-Ag membranes microstructure. The PSS disc was oxidized in 

stagnant air at 500 ºC for 18 h prior to palladium/silver metal deposition on the substrate surface. 

The oxide layer at the interface between palladium/silver metal and the substrate could function 

as the intermetallic diffusion barrier [47], [58]. The weight gain of the substrate was found 0.36 

% of the original weight. Change of helium flux was measured 17.4 % after the oxidation that 

indicates a decrease in the porous size of MPSS substrate. Top surface SEM images of bare 

substrate and substrate with oxide layer (Figure 11) shows that that the oxidation does not 

constrict the internal pore system. The weight of the oxide layer depends on the oxidation 

temperature. The weight gain of the oxide layer increases with the oxidation temperature. 

However, the oxidation had little effect on the pore size of the MPSS even at 800 ºC oxidation 

temperature [60]. 

 

Figure 11. SEM images of clean substrate (a) MPSS top surface [56] (b) Modified MPSS with 

oxide layer. 

(b) (a) 
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The surface topology of fabricated Pd-Ag film on MPSS was analyzed by SEM images. 

Figure 12 shows the top view of Pd-Ag membrane. For the fabrication of this Pd-Ag membrane, 

we followed the sequential SIEP process that ended with Pd deposition. The Pd-Ag film shows 

finer grain size as well as the agglomeration of the grains. Figure 13 also shows the top view of 

Pd-Ag membrane in which the sequential SIEP process ended up with Ag deposition. The 

apparent uniformity of the agglomeration is not that high as it was observed for pure Pd 

membrane in previous work [55]. 

To explain the non-uniformity of agglomeration in case of Pd-Ag membrane, we need to 

look at the fabrication process. The sequential steps of the deposited film were Pd-Ag-Pd-Ag-Pd. 

Deposition was made in such a way that the Pd to Ag weight ratio in each step was 77:23. Ag 

particle deposition has special trend. To examine the Ag particles deposition trend, one Pd-Ag 

membrane was prepared which consist of three Pd layers (60 min plating time each) and 

followed by three Ag layer (75 min plating time each). Figure 14 shows the SEM image of the 

top layer of Pd-Ag at different magnification. The Pd and Ag deposition morphology are 

completely different. From the Figure 14, we can confer that the Pd deposition covers the whole 

surface including the cavity areas of the substrate that is in agreement with the previous work 

[54]. In the case of Ag, little or no silver deposition was likely to have occurred in the cavity 

areas, which mean existence of dendritic growth of Ag. Therefore, they make elevated region 

surroundings the cavity that may be responsible for the non-uniform agglomeration of Pd-Ag 

membrane. Similar observations were also reported by Rahman [16] and Ayturk et al. [49]. So, 

the CMC of DTAB needs to be increased to prevent the dendritic Ag growth. It was observed 

that 4 CMC of DTAB in Ag-bath leads poor surface coverage and decreases the plating rate, and 

without DTAB the Ag-bath solution becomes unstable during electroless plating. 
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Figure 12. SEM images of Pd-Ag membrane fabricated by SIEP using 4 CMC and 0.3 CMC of 

DTAB in Pd- and Ag-bath respectively.

(a) Pd-Ag at 2.5 K (5 kV) 

 

(b) Pd-Ag at 3 K (5 kV)  

 

 



 

 

 

 

 

 

Figure 13. SEM images of Pd-Ag membrane fabricated by SIEP using 4 CMC and 0.3 CMC of DTAB in Pd- and Ag-bath 

respectively at different magnifications. 3
7
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Figure 14. SEM images of Pd-Ag membrane showing dendritic Ag deposition with 0.3 CMC of 

DTAB in Ag-bath. 

Uniform agglomeration of particle is the key to fabricate dense defect free Pd-Ag 

membrane. Non-uniform agglomeration leads to larger particle size and results in thicker Pd-Ag 

composite membrane. In SIEP technique, the particle size can be reduced using surfactant 

(DTAB) in the plating bath solution. M A Islam [55] reported that the average reduction of Pd 

grain size was 2 µm in presence of DTAB at 4 CMC while an average particle size was 8 µm 

when DTAB was absent. 

(b) Pd-Ag at 5 K  

 

 

(a) Pd-Ag at 1 K  

 

 

(c) Pd-Ag at 20 K 
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The particle size distribution of reference and present Pd-Ag membranes are depicted in 

Figures 15 & 16 respectively. Particle size distribution of present Pd-Ag membrane was 

calculated from the SEM image shown in Figure 14 (a).Present Pd-Ag membrane shows 

relatively higher percentage of particle sizes between 0.8 µm to 1.2 µm, whereas, reference Pd-

Ag membrane shows particle sizes between 1.4 µm to 2.5 µm. 
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Figure 15. Particle size distribution of Pd-Ag membrane fabricated by SIEP using 4 CMC of 

DTAB in both Pd- and Ag-bath [16]. 
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Figure 16. Particle size distribution of Pd-Ag membrane fabricated by SIEP using 4 CMC and 

0.3 CMC of DTAB in Pd- and Ag-bath respectively. 

The existence of two peaks in Figure 15 and 16 indicate the two different mean size 

particles for two different deposited metals Pd and Ag which is consistent with the SEM images 

presented in Figure 14. Pd-Ag membrane fabricated by SIEP using 4 CMC and 0.3 CMC of 

DTAB in Pd- and Ag-bath respectively shows larger mean particle size than the reference Pd-Ag 

membrane (4 CMC of DTAB in both Pd- and Ag-bath) mean particle size. This indicates higher 

CMC of DTAB is more effective to control the particle size and subsequent agglomeration. 
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However, it was also observed during the experiment that higher CMC of DTAB hinder the Ag 

deposition and leading to poor surface coverage. So, it is necessary to use different CMC of 

DTAB in Ag-bath to find out the optimum amount. 

A typical XRD pattern for Pd-Ag membrane fabricated by SIEP process is shown in 

Figure 17. The XRD spectrum show the three major reflection peaks of (111), (200) and (220) 

planes of pure f.c.c Pd appeared at 2θ = 40.119º, 47.664º and 68.128º, and those of f.c.c Ag 

phase at 2θ = 38.115º, 44.299º and 64.443º respectively. This implies deposition of 

polycrystalline structure throughout the surface. Importantly, no reflection was observed for any 

of the substrate support metal (Fe, Cr, Ni, Mn, &Mo) in the XRD. 
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Figure 17. XRD pattern of Pd-Ag film before annealing. 
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4.2.2 Study of annealing effects on Pd-Ag membranes. Pd and Ag were sequentially 

deposited by SIEP on the oxide modified support. The composite membranes were annealed at 

500 ºC under hydrogen environment for 18 h. The formation of a bulk Pd-Ag alloy was 

confirmed by XRD analysis. Figure 18 shows the XRD patterns of the type II Pd-Ag membrane 

before and after annealing. After annealing at 500 ºC, the Ag reflections disappear and new 

peaks of Pd-Ag membranes appeared at 2θ = 39.92º, 46.44º and 67.76º. All of these peaks are 

located right between the reflection peaks of Pd (111) and Ag (111), Pd (200) and Ag (200), Pd 

(220) and Ag (220) respectively that indicates the homogeneous alloy formation of Pd and Ag. 

Using Brag’s law the lattice parameter of Pd-Ag alloy was calculated (Table 6) to be 3.907 Å 

which was in between the lattice parameters of pure f.c.c Pd (3.889 Å) and pure f.c.c Ag (4.086 

Å). 

Table 6 

XRD Reflection Peaks of Pd-Ag film (type II) Fabricated by SIEP Process 

 
Bravais lattice 

Pd-Ag-film 

Pd Ag Pd-Ag 

(Pre annealed) (Pre annealed) (Post annealed) 

2-theta 

111 40.119 38.11 39.925 

200 46.61 44.31 46.444 

220 68.128 64.429 67.767 

311 82.01 77.392 81.75 

d-spacing 

111 2.24565 2.35917 2.25628 

200 1.94692 2.0431 1.954 

220 1.37516 1.44469 1.38169 

311 1.17394 1.22204 1.17831 

Lattice 

parameter, a  
3.8895 4.0864 3.907 

Lattice 

structure  
FCC FCC FCC 
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Figure 18. XRD spectra of Pd-Ag film before and after annealing. 

Surface elemental analysis was carried out by energy dispersive spectroscopy (EDS) after 

heat treatment of the membrane. In Figure 19, EDS spectrum show the intense peaks for Pd-Ag 

membrane. Quantitative EDS elemental analysis of Pd-Ag film shows 20 % (wt) Ag on the top 

surface of the Pd-Ag barrier film and it may vary along the cross section. As Pd & Ag are placed 

next to each other in the periodic table, both metals give sharp peaks nearly at the same  
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Figure 19. Top surface EDS spectrum of Pd-Ag membrane. 

place. No impurities were observed from the EDS spectrum. Figure 20 shows the surface 

morphology of Pd-Ag membrane fabricated by SIEP using 4 CMC and 0.3 CMC of DTAB in 

Pd- and Ag- bath respectively after heat treatment at 500 ºC. The Tammann temperature of Ag 

and Pd are 344 ºC and 640 ºC respectively [61], [62]. As expected, Ag particles diffused into the 

Pd layers forming homogeneous alloys of larger clusters. From the SEM images, it is clearly 

observed that the smaller grains agglomerated into larger grains with recognizable boundaries. 

The agglomerated grain becomes smoother than the un-annealed layer, having morphology of 

cauliflower.  
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Figure 20. SEM images of Pd-Ag membrane showing the effect of heat treatment at 500 ºC. 

(a) Before annealing  

(b) After annealing 

(b) After annealing 
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Figure 21. SEM images of Pd-Ag membrane after annealing at different location. 

From SEM images (Figure 21), pinholes are observed on the top layer of Pd-Ag 

membrane after annealing. The actual reasons for the pinhole formation are not yet clear. 

However, Rahman [16] described the possible reasons for the pinhole formation. The oxide layer 

may form during the drying steps of each sequential deposition. During annealing, oxide layer is 

(a) Location 1 

(b) Location 2 

1 
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reduced by hydrogen and forms pinholes in the Pd-film. The connectivity of top layer pinholes to 

the substrate also studied and found no substrate element along the pore depth. The pinholes 

channels were found only few micrometers from the top layer.  

4.3 Hydrogen Permeation Studies of Pd-Ag Membranes  

Hydrogen permeation tests were studied using pure hydrogen at temperature of 250-550 

ºC and pressure differences across the membrane of 20-100 psi. Simultaneously, nitrogen leak 

tests were also carried out with same hydrogen permeation test condition. The permeate side 

pressure was always kept at ambient condition during hydrogen permeation test and the fluxes of 

pure hydrogen and pure nitrogen were measured as a function of pressure difference across the 

membrane. During permeation tests, membranes were always heated up to 250 ºC under nitrogen 

gas environment in the beginning and purged thoroughly with nitrogen before cooling down to 

ambient temperature. In this study, hydrogen permeability tests and nitrogen leak test were 

carried out at pressure interval of 20 psi in the range of 20-100 psi at four constant temperatures 

250 ºC, 350 ºC, 450 ºC, and 550 ºC. In the following section Pd-Ag membrane with oxide layer 

was compared with Pd-Ag membrane without oxide layer. All the data for Pd-Ag membrane 

without oxide layer were taken from the previous work [16]. The thicknesses of Pd-Ag film on 

MPSS support for Pd-Ag membranes with and without oxide layer were found to be 12.06 μm 

and 12.54 μm respectively. Thickness was measured based on the gravimetric method. Leak test 

was carried out by helium gas before and after the annealing of membrane. Helium flow through 

the Pd-Ag membrane before and after the heat treatment was almost zero and 0.2 ml/min, 

respectively. The fluxes were measured by water column displacement method. Hydrogen 

permeances for the Pd-Ag membranes with and without oxide layer were found to be 25.83 

m
3
/m

2
-h and 18.55 m

3
/m

2
-h at 275 kPa and 450 ºC respectively. The selectivity of hydrogen with 
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respect to nitrogen for Pd-Ag membrane with and without oxide layer was found to be 500 and 

212, respectively. This suggests that Pd-Ag membrane with an oxide layer perform better than 

Pd-Ag in terms of permeability and selectivity at the specified condition.  

The transport of hydrogen through dense Pd or Pd alloy film involves many steps. The 

hydrogen permeation through the dense Pd based membrane follows the solution diffusion 

mechanism. The hydrogen flux through dense Pd-Ag membrane was calculated using equation 

(5). 

(  - )n nH
H f p

Q
N P P

t
          (5) 

where QH is the hydrogen permeability (a product of solubility and diffusivity), t is the 

membrane thickness, and  and f pP P  are the partial pressures of hydrogen on the high and low 

pressure sides, respectively.  

The calculated permeability data for Pd-Ag membrane without and with oxide layer are 

presented in Figures 22 and 23 respectively as a function of pressure difference (Pf - Pp). The 

lines show an excellent fit with a power index, n = 0.82 and 85. The power index is higher than 

the Sievert’s law index (n = 0.5). Both figures show that hydrogen flux increases with the 

pressure drop across the membrane at a constant temperature and hydrogen flux increases with 

the temperature at a constant pressure drop. Both of the membrane had almost the same thickness 

and as well Ag % (wt). If hydrogen diffusion becomes the rate determining step for hydrogen 

permeation, then hydrogen concentration becomes proportional to the square root of hydrogen 

pressure in accordance with Sievert’s law. However, for thick dense metallic membranes n 

values higher than 05 have been reported [63]. It is expected that the pressure exponent will be 

higher than 0.5 for the thin metallic membrane and pressure exponent will be close to 1. When 

surface reaction becomes the rate limiting step, it is believed that hydrogen diffusivity may 
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become dependent on the concentration of dissolved hydrogen which may contribute to n values 

greater than 0.5 [64],[65]. 
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Figure 22. H2 flux in Pd-Ag membrane without oxide layer at different temperatures [16]. 
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Figure 23. H2 flux in Pd-Ag membrane with oxide layer at different temperatures. 
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Figure 24. H2 to N2 selectivity in Pd-Ag membrane without oxide layer at different temperatures 

[16]. 

Leakage of hydrogen through defects in the metal film or membrane seals and resistance 

of the MPSS membrane support or oxide layer may also slightly increase the index value. 

However, despite all possible reasons, the deviation of index value from the Sievert’s law cannot 

be concluded clearly [66]. Figures 24 and 25 have shown the hydrogen selectivity plot of Pd-Ag 

membrane without and with oxide layer, respectively.  
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Figure 25. H2 to N2 selectivity in Pd-Ag membrane with oxide layer at different temperatures. 

The hydrogen selectivity was calculated by the ratio of hydrogen flux versus the nitrogen 

flux under identical conditions of temperature and pressure. In this work, the maximum 

temperature and minimum pressure drop were 550 ºC and 20 psi, respectively. The selectivity at 

550 ºC and 20 psi was found to be 500 for Pd-Ag with oxide layer. The Pd-Ag  membrane with 

an oxide layer shows significant improvement in terms of selectivity. It is notable that the 

selectivity of Pd-Ag at 550 ºC drops significantly with pressure difference. The oxide layer was 

formed at 500 ºC. It may be reduced at 550 ºC under hydrogen environment and create holes in 

the membrane. As a result, selectivity drops sharply at higher temperature. 
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To illustrate the intrinsic membrane behavior of the SIEP Pd membranes, the calculated 

permeability coefficients QH at four temperatures are shown in Figures 26 and 27 as an 

Arrhenius plot (QH vs. 1/T). It gives an excellent fit to the Arrhenius equation which can be 

written as  

 exp /H HoQ Q E RT          (6) 

where QHo is the reference permeance, E is the activation energy, T is the absolute temperature 

and R is the universal gas constant.  

The calculated activation energy of Pd-Ag with oxide layer were found 10.34 KJ/mol. 

The measured activation energy are within the normal range of the reported values (7-20 KJ/mol 

[9]). Table 7 shows that activation energy of Pd and Pd alloy (Pd-Ag and Pd-Cu) membranes 

fabricated by SIEP. Based on the data in Table 7, the calculated activation energy for Pd-Ag 

membrane without oxide layer was lower than that for the pure Pd (9.8 KJ/mol). The higher 

activation energy of Pd-Ag membrane than pure Pd could be the effect of the addition of Ag into 

the Pd [67]. 

Table 7 

Comparison of Activation Energy of Pd and Pd-alloy Composite Membranes 

Name of Membrane 
Fabrication 

Process 

Membrane 

Thickness(μm) 

Activation 

Energy (E), 

(KJ/mol) 

Ref. 

Pd/PSS SIEP 8.5 9.8 [16] 

Pd/Ag/PSS SIEP 12.54 8.7 [16] 

Pd/Cu/PSS SIEP 13.34 8.6 [57] 

Pd/Ag/PSS (Oxide layer) SIEP 12.06 10.3 This work 
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Figure 26. Arrhenius plot of H2-permeability coefficients of Pd-Ag membrane without oxide 

layer [16].  

The activation energy of H2 permeability through Pd-Ag membrane depends on two 

factors: a) diffusion of H-atom, and b) change in enthalpy due to H-atoms solubility [23]. The 

addition of Ag up to 20-30% (wt) in Pd increased the activation energy of H-atoms diffusion and 

decreased the change in enthalpy for H-atoms solubility in Pd. The net effect is the decrease in  
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Figure 27. Arrhenius plot of H2-permeability coefficients of Pd-Ag membrane with oxide layer. 

the activation energy of H2 permeability [23]. The weight percentages of Ag in Pd-Ag membrane 

with and without oxide layer were 20% and 23%, respectively. Therefore, the activation energy 

of Pd-Ag membrane without oxide layer was lower than that of the Pd-Ag membrane with oxide 

layer.
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CHAPTER 5 

Conclusion and Future Research 

5.1 Conclusion 

Using SIEP technique, membranes were fabricated by sequential deposition of Pd-Ag 

films onto oxidized MPSS substrate for hydrogen separation. The oxide layer was formed at 500 

⁰C in stagnant air prior to metal deposition. The oxide layer did not block the pore of MPSS 

substrate, but, it significantly reduced the helium flow. In this work, 0.3 CMC of DTAB was 

used in the Ag-bath to study the effect of surfactant on microstructure from deposition. It was 

found that the agglomerated particles size with 0.3 CMC of DTAB in Ag-bath were larger than 

the agglomerated particles size with 4 CMC of DTAB. But, both the membranes showed similar 

surface morphology and grain agglomeration. Membranes were annealed at 500 ºC and 15 psi 

under hydrogen environment. The alloy formation of Pd and Ag was confirmed by XRD studies. 

Membranes were tested for H2 permeability at a temperature and pressure ranges of 250-550 ºC 

and 20-100 psi respectively. The performance of the Pd-Ag membrane with oxide layer was 

changed significantly in comparison to the membrane without oxide layer. Higher permeability 

and selectivity with respect to N2 were observed for the Pd-Ag membrane with oxide layer. Film 

thickness and metal composition were found almost similar for both membranes. Therefore, it 

can be concluded that addition of oxide layer in Pd-Ag membrane fabricated by SIEP increases 

the permeability and selectivity of H2. 

5.2 Future Recommendations 

The use of surfactant in the electroless plating bath reduces the size of agglomerated particle 

size which is essential to fabricate dense, thin, and defect free Pd-Ag membrane. But, it is 

unknown how surfactant works in the electroless plating. It is also necessary to tune the 
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surfactant concentration for electroless plating bath. Because, lower concentration of surfactant 

leads larger grain particle, and higher concentration reduces the plating rate as well as poor 

deposited surface coverage. For further development of Pd-Ag membrane, the following works 

need to be done: 

1. Study of deposited film microstructure by using different CMC of DTAB in Ag-bath. It 

will help to find out the optimum concentration of DTAB, which will facilitate the 

formation of smaller grain size with higher plating rate. Intermediate SEM, EDS, and 

AFM analysis of deposited film will be helpful for this morphological study.  

2. For the technical viability, it is required to test the long term performance of Pd-Ag 

membranes fabricated by SIEP. It was found in the previous work that pure Pd membrane 

with oxide layer performed 408 h with good H2 permeability and infinite N2 selectivity 

under thermal cycling condition of 300-450 ºC [56]. So, it is expected that with oxide 

layer the Pd-Ag membrane will show better performance for long period. 

3.  Fundamental studies of reaction bath kinetics in SIEP technique are essential to 

understand the role of surfactant. From the kinetic study, it will be easier to select the 

optimum amount of surfactant for a particular reaction. 

4. Finally, demonstration of fabricated Pd-Ag membrane by SIEP as a reactor-separator unit 

for simultaneous H2 production and separation 
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