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Abstract 

 

Thin film YBa2Cu3O7-δ (YBCO) samples with added non-superconducting nanodot defects of 

CeO2 and BaSnO2 are the focus of recent high-temperature superconductor studies. These nanodots allow 

magnetic flux (  ) to penetrate at these sites of the superconducting lattice, thus creating a magnetic flux 

vortex state. Examining the structure shows that these quantized magnetic flux vortices arrange 

themselves in a self-assembled lattice. The nanodots, with non-superconducting properties, serve to 

present structural properties to restrict motion of these vorticies under a pinning-force and to enhance the 

critical current density. A formulation of a new model for the system by a variation in the electron pair 

velocity via the virtual work from the nanodot defects in accordance to the well-known Superconductivity 

theories is tested. A solution to the expression for the magnetic flux, zero net force and pair velocity will 

generate a setting for the optimal deposition parameters of number density, growth geometry and mass 

density of these nanodot structures. With a calculation of pair velocities from a similar work, a 

comparison is made between experimental and theoretical velocity calculations using growth geometry 

and chemical potential. This will yield insight into how the current density for a doped high-temperature 

superconductor will be modified and tuned based on the dynamics and density of the nanodots 

themselves.  
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CHAPTER 1  

Introduction 

 

Superconductivity has been at the forefront of solid state physics and materials science research. 

The electronic applications possible from this phenomenon are near endless, along with other applications 

to aid in the research of other physical disciplines (gravitation, quantum mechanics, accelerator physics, 

etc.). Thus, the motivation of this study is to contribute to the overall understanding of this phenomenon. 

 

1.1 The Superconducting State 

Superconductivity is the homogenous ordering of the conduction electrons in their respective 

planes within the lattice of a metal, alloy or similarly structured material. Electrical resistivity of the 

material drops to nearly zero when the material is cooled to an effectively low temperature (< 77K) 

triggering a phase transition in the material. At this critical temperature, the material undergoes a 

transition from a Normal phase with finite electrical resistivity in the material to a superconducting state 

with zero electrical resistivity. Within this highly ordered state establishment of loosely paired conducting 

electrons or Cooper Pairs arise. These associated pairs of electrons are only ordered at or below the 

critical temperature (  ) of the material, an increase of the temperature (above this transition 

temperature) will cause theses pairs to become disordered increasing their respective entropy of the 

system due to heat and depair. A significantly strong applied magnetic field will destroy 

superconductivity if the value is above the critical field limit of   ( ) as a function of temperature. At the 

phase transition temperature or critical temperature the critical field limit is zero
 (1)

,   ( )   .  

Meissner and Ochsenfeld
 (1)

 (1953) found that if a superconductor is cooled in a magnetic field to 

a temperature below the transition temperature    the superconducting material will expel all magnetic 
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lines of flux
 (1)

. Thus, superconductivity is characterized by the Meissner effect, a complete ejection of 

magnetic flux lines during its transition to the superconducting state figure (1); decreasing the interior 

magnetic field but also increasing the exterior magnetic field of the superconductor.  

 

 

       Constricting samples to elongated thin planes of material with the long axes (c) parallel to the 

applied magnetic field,    . Now the demagnetizing field contribution to the interior magnetic field   is 

expressed in equation (1.1) or in terms of the magnetization over the applied field of the sample as 

expressed in equation (1.2): 

                                      (eqn. 1.1) 

                                                                                                               (eqn.1.2) 

The result     cannot be derived from the characterization of a superconductor as a medium of zero 

resistivity( ). From Ohm’s Law,      , it’s seen that if the resistivity   goes to zero while   is held 

finite, then E must be zero. On the other hand, a Maxwell equation 
  

  
 is proportional to the curl of the 

Figure 1 Meissner effect during superconductivity
 (2), (1) 
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electric field    
  

  
         so that zero resistivity implies 

  

  
     but not    . This shows that the 

Meissner effect is a vital attribute of superconductivity 
(1)

. But one cannot simply characterize the 

magnetic field induction in the superconducting state of Type-II superconductors in this way due to the 

duality of Normal and Superconducting states.   

 

1.2 London Theory 

Formulation of an expanded description of the Meissner effect is needed. In 1953, Fritz and Hans 

London, promoted a phenomenological theory which allowed them to justify the exotic electromagnetic 

properties of many superconducting materials. In particular, they were able to account for the existence of 

persistent currents and the exclusion of magnetic flux from the interior of a superconductor. The London 

equations suggest that two be modifications to Maxwell’s equations in order to describe the 

electromagnetic properties of superconductors. Equations (1.3 and 1.4) express this in terms of the time 

derivative of the electric current density
 (2; 3)

.  

                                              
     

  
 
  

  
   

  

    
 
 
  

  
                                             (eqn.1.3) 

                                              
  

    
 
                                                              (eqn.1.4) 

Here   and   are the internal electric and magnetic fields respectively,   is the current density of the 

superconducting electrons, and              are the number density of charge carriers, the mass of 

superconducting electron pairs and the charge associated with electrons. The Meissner effect implies a 

magnetic susceptibility      . The London equations manipulate Ohm’s Law of electrical conductivity 

in the normal state to describe conductivity in the superconducting state. Equation 1.3 expresses the 

Lorentz Force uniformly for all electrons in the superconducting state, a recasting of Newton’s second 

Law of Motion. Equation 1.4 on the other hand needs more rationale to be an effective expression for the 
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superconducting state. In the superconducting state the current density is directly proportional to the 

vector potential A of the local magnetic field. Using Faraday’s Law of Electromagnetic Induction as the 

curl of the electric field          
 

 
(
  

  
), the following result is obtained

 (2)
: 

                                         
 

  
(      

    
 

   
 )                                               (eqn.1.5) 

Equation (1.5) allows for both constant and exponentially decaying solutions. The London 

brothers recognized this from Meissner effect that constant nonzero solutions were not physical and 

further postulated that not only was the time derivative of equation (1.5) equal to zero, but also that the 

expression in the parenthesis must be exactly zero
 (2)

. The results from these two postulates for additional 

variations to Maxwell’s Equations for the handling of electromagnetic phenomena in the superconducting 

state are the London Equations. The London Equations are now able to be expressed in terms of the 

magnetic vector potential and the local magnetic field. 

 

                                                              
  

    
                                                       (eqn.1.6) 

                                                    
  

    
                                                   (eqn.1.7) 

Independent of geometry and in the London gauge            the curl of the current density and the 

Lapacian operator of the magnetic field gives the description of the Meissner effect in terms of the 

magnetic field penetration depth λ in the superconducting state.  

Under static conditions,  

                                      (   )                                                (eqn.1.8) 

                                                    
 

  
                                                        (eqn.1.9) 
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Further analysis of this leads to the solution of
 (1) 

                                         ( )      ( )     ⁄                                             (eqn.1.10) 

Describing the magnetic field penetration as it exponentially decays further into the superconducting 

material. The solution to equation (1.8) accounts for the Meissner effect in the superconducting state, this 

equation does not allow a solution in uniform space implying why there is no uniform magnetic field in a 

superconductor. ( )              . is not a valid solution unless ( )          . The result follows 

because         is always zero but 
 

    is not zero unless       . For the Cooper Pairs of mass (  ) , 

charge (  ) and number density (n*) the London Penetration Depth, λL, is  

                                                     √
     

 

     
                                                        (eqn.1.11) 

In thin film samples, the Meissner effect is not complete due to the thickness of thesample. It 

follows that the critical field    of thin films in parallel magnetic fields will be very high. Thus, in thin 

film superconductors the London Equations are local equations at a single point in the thin film with J(r) 

and A(r), the current density and magnetic vector potential respectively
 (1)

.  A very important parameter to 

include is the Coherence Length, which is a measure of the range over the average A(r) to obtain J(r) for 

time (t). The coherence length measures this range as a distance in which the superconducting electron 

concentration cannot change drastically in a spatially-varying magnetic field. It is also a measure of the 

minimum spatial extent of a transition layer between the normal and superconductor layers. Any spatial 

variation in the state of an electronic system requires extra kinetic energy. A modulation of the 

eigenfunction of the kinetic energy will increase the integral of 
   

   . It is reasonable to restrict the spatial 

variation of  ( ) in such a way that the extra energy is less than the stabilization energy of the 

superconducting state. Comparing the plane wave( ( )) with the modulated wave-function( ( )) (1)
: 

                                             ( )                                                                     (eqn.1.12) 
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                                 ( )   
 

√ 
(  (   )      )                                          (eqn.1.13) 

The probability density associated with the plane wave is uniform in space, 

                                   ( ) ( )                                                    (eqn.1.14) 

Whereas   ( ) ( ) is modulated with the wave vector q; 

                  ( ) ( )  
 

 
(  (   )      )(  (   )       )                       (eqn.1.15)       

                                     
 

 
(            )       (  )                       (eqn.1.16)  

The kinetic energy of the wave  ( ) is: 

  

                                                                  
    

  
                                                    (eqn.1.17)           

The kinetic energy of the modulated density distribution is higher for, 

                                              ∫    ( 
  

  

  

   
)                                       (eqn.1.18) 

  
 

 
(

  

  
)  (   )      

  

  
    

  

  
                              (eqn.1.19) 

Where the    term is neglected because     (1)
, the increase of energy required to modulate is (

    

  
). 

If this increase exceeds the energy gap (Eg), superconductivity will be destroyed. The critical value (q0) of 

the modulation wave vector is given by 

     
  

  
                                                              (eqn.1.20) 

We define an intrinsic Coherence Length (  ) related to the critical modulation by 
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                                                                (eqn.1.21) 

 

       
    

    
 

   

   
                                                     (eqn1.22) 

, Where    is the electron velocity at the Fermi surface. On BCS Theory, a similar result is obtained
 (1)

:  

          
    

   
                                                    (eqn.1.23) 

The Coherence length (  ) and the London Penetration Depth (  ) depend on the mean-free path of the 

electrons (L)  measured in the Normal state. When there are nanodots in the superconductor, the mean-

free path of the electrons is reduced. The coherence length can be approximated as such:  

                                                                         √                                                                     (eqn.1.24)   

And   

                                                    √
  

 
                                                      (eqn.1.25) 

                                                          
 

  
 

  

 
                                                     (eqn.1.26) 

 

1.3  BCS Theory of Superconductivity 

BCS Theory is the basis of a quantum mechanical formulation of superconductivity first theorized by 

Bardeen, Cooper, and Schrieffer in 1957. There exists a ―BCS wave function‖ composed of particle pairs 

(        ) which, when treated by the BCS theory, gives the formal electronic superconductivity 

observed in materials and exhibits the energy gaps expressed in equation (1.20). This energy gap can be 
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applied to (d-wave) particle pairing in type-II superconductors, YBCO in this case. There is a set of 

criterion that the BCS theory assumes
 (4), (1), (5)

: 

1. An attractive interaction between electrons can lead to a ground state separated from the excited 

states by an energy gap (  ). The critical field, the thermal properties and most of the 

electromagnetic properties are consequences of this energy gap. 

2. The electron-lattice-electron interaction (or electron-phonon interaction) leads to an energy gap of 

the observed magnitude. The indirect interaction proceeds when one electron interacts with the 

lattice and deforms it: a second electron sees the deformed lattice and adjusts itself to take 

advantage of the deformation to lower its current energy state. Thus, the second electron interacts 

with the first electron by way of the lattice deformation. 

3. The penetration depth and the coherence length emerge as natural consequences of the BCS 

theory. The London equations are obtained for magnetic fields that spatially vary slowly. Thus, 

the central phenomenon in the superconducting state, the Meissner effect, is obtained by natural 

means. 

4.  The criterion for the transition temperature of a superconducting material involves the electron 

orbital density ( (  )) of one spin at the Fermi level and the electron-lattice interaction U, which 

can be estimated from the electrical resistivity because the resistivity at room temperature is a 

measure of the electron-phonon interaction. For   (  )    the BCS theory predicts 

                                         
 

 

  (  )                      (eqn.1.27) 

Where   is the Debye temperature and U is an attractive interaction. The result for Tc is satisfied 

at least qualitatively by experimental data. There is an interesting apparent paradox: the higher 

the resistivity at room temperature the higher U, and the higher    is. 

5. Magnetic flux through a superconducting ring or hole-doped normal state defect for thin film 

samples is quantized and the effective unit of charge is 2e rather than e. The BCS ground state 
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involves pairs of electrons, thus the quantization in terms of the pair charge 2e is a consequence 

of the theory.
 (1)

 

The BCS theory is then formulated from the use of an interaction potential in the form of
 (6)

: 

                                                                                          (eqn.1.28) 

Where       
( )

   
( )

 is the interaction potential and the variation of the interaction, respectively. 

                                     ∑      
      ∑    ̂                           (eqn.1.29) 

Where  ̂   is the number of fermions in that state and    
     are the creation-annihilation operators for 

the fermionic interaction. This Hamiltonian for the kinetic energy is more simply minimizing     ̂, 

where N  is the total number and   is the chemical potential. Conventionally, the energy scale has been 

shifted so that     and    is the Fermi energy at     from the chemical potential. Now the 

interaction energy can be written as
 (5), (6), (7)

: 

                   
( )

  ∑  
   
(   )

 ∑ ( 
   

 

 
   

  
    

 

 
   

    
 

 
   )                   (eqn.1.30) 

Where  
   
(   )

   
     
(   )

 ensures the singlet symmetry and the triplet term of the interaction potential 
(5)

 is  

  
( )

  ∑  
   
(   )

( 
   

 

 
   

    
    

  
    

 

 
   

 
 )  (   

 

 
   

      
   

 

 
   

)           (eqn.1.31) 

An effective Hamiltonian for this interaction can arise from a unitary transformation formulated 

by Theoretical Physicist and Mathematician Nikolay Bogolyubov. The Bogolyubov Transformation 

(Bogo Transformation) consists of a unitary transformation of the canonical anticommutation relation to 

another unitary relation via isomorphisms of the commutation relation algebra. The use of this addition to 

the BCS Theory will produce a set of solutions that describe the effective Hamiltonian and quasiparticle 

creation through fermionic particle pairing of electrons
 (5)

.  
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  ∑ (  
              

     
 )            (eqn.1.32) 

 

Where 

    ∑ 
   
( )

           

  

 

This transformation will only give an effective Hamiltonian and pair Hamiltonian for the 

superconducting phase only below the lower critical field limit (   ). Type-I & type-II superconductors 

can be considered to share a likeness in their conductive and thermodynamic properties within this field 

limit and thus can be treated as if they are homogenous in nature. In type-II superconductors there exists a 

―Vortex state” that of which lies between the lower critical field (   ) and the upper critical field (   ) 

where this effective Hamiltonian solution does not exist, suggesting an unknown set of solutions to the 

BCS Theory involving the Vortex State of type-II superconductors (YBCO in this case). From here there 

isn’t enough evidence to suggest that the BCS Theory of superconductivity on the microscopic scale is a 

sufficient theory to formulate a description for type-II superconductors, especially thin film samples. 

 

 

 

 

1.4  Ginzburg-Landau Free-Energy 

The Ginzburg-Landau free energy theory is the macroscopic elastic description appropriate for 

any superconductor
 (8)

. The use of the Ginzburg-Landau free energy approach to describe macroscopic 

phenomena in superconductivity is focused towards a  more general theory of the superconducting state 

without the inclusion of most of the microscopic phenomenological happenings in that state. Unlike the 

BCS theory that takes on the dynamics of the quasiparticle pairing (creation and annihilation of Cooper 

Pairs from interacting superconducting electrons), Ginzburg and Landau’s formulation is a field 
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methodology. Using the superconducting field parameters like that of  ( ), the Ordering parameter 

which is allowed to have complex values, and the magnetic vector potential  ( ) of which can only have 

real values due to its physical nature of the vector field. Note that although this is a ―field approach‖ the 

magnetic vector potential in this case is a 3-component parameter with the usual gauge freedoms
 (8)

. 

Venturing deeper into this description, thermodynamic properties of the state must arise in the form of the 

free-energy generated by the magnetic fields in the superconducting state giving the Ginzburg-Landau 

equation for the free-energy density of the system
 (5), (3), (9)

: 

                        ( )       ( )    (| ( )|)      ( ( ))                  (eqn.1.33) 

Where    ( ) is the free-energy density of the system in terms of the Landau term for the order 

parameter | |, the gradient term      ( ) which includes the magnetic vector potential and the gradient 

of the order parameter. The magnetic field energy term is the usual potential energy associated with 

magnetostatics
 (8)

. According to these parameters formulated by Ginzburg and Landau, along with the 

coherence length and penetration depth (also with Ginzburg-Landau parameters), characterization of the 

type-II superconductor can be achieved. Penetration depth and coherence length in terms of Ginzburg-

Landau theory can very much be applied to describe the layered dynamics of thin film superconductors 

like that of YBCO. The importance of Ginzburg-Landau theory is to provide a foundation for a uniform 

macroscopic approach to type-II superconductivity, with this one can begin to convey a theory that 

describes the superconducting phase in type-II materials, excluding the Vortex state of added nanodots to 

the materials via nanodot deposition. 
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1.5  High Temperature Superconductivity 

High temperature superconductivity is characterized from the coherence length, penetration 

depth, meissner effect and the Vortex state between the lower and upper critical field limits. Also referred 

to as type-II superconductors, their complete properties are still yet unknown to Experimentalist and even 

Theoretical Physicists within the field of Solid State Physics. Because of their ―exotic‖ superconducting 

nature, it is very difficult to pinpoint their exact magnetic field limits within the vortex state. Intrinsic 

properties of type-II materials is that the ratio of the penetration depth to coherence length (   ) along 

with their applied magnetic field response. Figure (2) illustrates this field response, the magnetization as a 

function of an applied magnetic field. 

 

Figure 2: Magnetization (M) as a function of applied magnetic field (B) for type-II superconductors (1) 

 

The importance of type-II materials is the critical current density (  ) and their critical temperature (  ), 

for YBCO       . With such high critical temperatures type-II materials show much promise in their 

current and future applications having the ability to superconduct at high temperatures to work with, 

broadening our scope of contemporary technologies. 
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CHAPTER 2  

Heteroepitaxial Growth of Microstructure 

 

2.1  Pulsed Laser Deposition 

The Pulsed Laser Deposition is a well-known growth technique for the creation of thin film 

samples
 (8), (9), (10)

. Using an Excrimer Krypton Fluoride (KrF) laser with a 248nm wavelength thin film 

samples of             (YBCO) were deposited onto        substrates. The laser deposition process 

involves the firing of the KrF laser at a YBCO target pellet creating a plasma plume of the material (laser 

ablation) with certain angular distribution and dispersion velocity as shown in figure (3), with the laser 

deposition assembly shown in figure (4).   

 

Figure 1: Pulsed Laser Deposition of YBCO thin film 

Krypton Fluoride-

YBCO laser plume 

Vacuum 

Chamber 
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Figure 2: Pulsed Laser Deposition substrate and target assembly during deposition of YBCO on to the LaAlO3 substrate 

 

This plasma plume will deposit onto the substrate previously heated to an experimental standard 

of           , the ablation process requires a constant oxygen pressure about 300 mTorr to induce an 

increase in the Copper-Oxide (CuO) sites in the structure of the sample effecting the stoichiometry of the 

thin film. Table 2.1 shows the deposition parameters for each thin film sample created using the PLD 

Krypton 

Fluoride-YBCO 

laser plume 

LaAlO3 Substrate 

YBCO Target 
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technique. A common factor in each of the samples created is the Oxygen pressure, a very important 

parameter during the ablation of the target to the thin film substrate. 

 

Table 1 Pulsed Laser Depostion Parameters 

 

 

 

 Krypton Fluoride (KrF) Laser:  

 248 nm wavelength  

 20-35 ns pulse duration  

 Laser wavelength is proportional to film penetration depth at surface (120 nm in the AxB plane 

and 800 nm in the C plane)  

 Laser fluence at the surface ranges from 1-3 j/cm2  

Plasma Plume:  

 Plasma plume density is pertinent to the stoichiometry of the sample –-for all species—expand 

with identical angular distributions  

 Optimum growth rate should float around 1 angstrom per pulse  

Deposition 

Date 

Vacuum 

Pressure 

Substrate 

Temperat

ure 

O2 

Pressure 

Beam 

Energy 

# of Pulses Pulse 

Rate 

O2 Flood 

Pressure 

11/25/13 9.3 𝛍Torr 786 
0
C 300 mTorr 550 

mJ 

YBCO: 

20,000 

CeO2:20 

10hz  

12/2/13 9.3 𝛍Torr 775 
0
C 300 mTorr 550 

mJ 

YBCO: 

20,000 

BaSnO3:20 

10hz  

2/20/14 1.7 𝛍Torr 775 
0
C 203 mTorr 500 

mJ 

YBCO: 

10,000 

CeO2: 30 

5hz 5.08 

Torr 

2/24/14 5.3 𝛍Torr 775 
0
C 200 mTorr 500 

mJ 

10,000 5hz 335 Torr 

3/5/14 1.4 𝛍Torr 778
0
C 205 mTorr 400 

mJ 

15,000 10hz 300 Torr 
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Stoichiometry:  

 Laser irradiation before deposition (pre-ablation) is necessary (for materials like that of ceramics) 

to establish a ―steady state‖ resulting in the enrichment of the target surface of the less-volatile 

component  

 Concentration of the target components are formulized from the angle and rotational velocity of 

the laser 

Film Thickness:  

 Film thickness is directly affected by the heating temperature and the lateral positioning of the 

substrate on the heater  

 Positioning from 0 – 4 cm on substrate heater with temperature gradient of 800-600 ⁰C resulting 

in an approximate ~450-280 nm sample thickness  

 Laser beam energy effects the sample thickness  

 The number of pulses and pulse duration affect the sample thickness 

 

 

2.2  YBCO Thin Films 

The crystalline compound YBa2Cu3O7-δ, Yttrium Barium Copper Oxide is synthesized by heating 

a combination of the metal carbonates between the temperatures of 1000 to 1300 K:  

         (   )        (
 

 
  )                      

Modern synthesis of YBCO utilizes corresponding oxides and nitrates to synthesize the compound. In the 

normal state of YBCO it acts as a ceramic with high resistivity, but when YBCO is cooled down to its 

respective critical temperature (92K) and under goes a phase transition at that temperature; YBCO 

becomes superconducting. The superconducting properties of YBCO are at the mercy of its oxygen 

content, the value of δ. Only compounds with oxygen content between 0 ≤ x ≤ 0.65 become 

superconducting below the critical temperature (TC), but when          YBCO superconducts at its 

highest temperature of 95K, or in the highest magnetic fields of 120T for B perpendicular and 250T for B 

parallel to the CuO2 planes within the lattice of YBCO. Figure (5) illustrates the YBCO lattice structure 

for a, b, and c directional axes.  
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.  

 

Figure 3: YBCO Lattice Structure.  

Blue: Yttrium  

Green: Barium  

Gold: Copper 

Red: Oxygen 

One can see that within the structure of the YBCO lattice there are planes, these Copper-Oxide 

planes carry the conducting electrons within the lattice. When YBCO is in the superconducting phase, 

these planes become the source of the superconducting electron pairs. Modification to YBCO thin films 

have become a standard method in the study of its superconducting properties through the deposition of 
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nanodots to the lattice of YBCO
 (8), (9)

. Deposition of these nanodots introduce normal state islands onto 

the thin film sample, and when in the presence of an applied magnetic field, these normal zones allow 

magnetic field lines to penetrate through the thin film thus creating magnetic flux and inducing an 

electrical current. The supercurrents circulating around these normal zones create magnetic flux vortices 

and optimizing superconductivity via an increase in the critical current density of the sample. In figures, 

(6) and (7) are the lattice structures of the nanodots, CeO2 and BaSnO3: 

 

Figure 4: CeO2 Lattice Structure  

White: Cerium  

Red: Oxygen 
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Figure 5: BaSnO3 Lattice Structure  

Green: Tin  

Gray:  

Barium Red: Oxygen 

 

Using a control or default sample, measuring the magnetic moment and temperature of the 

sample gives the superconducting critical temperature of (68.84 K) at a relatively zero magnetic moment 

(6.927 x 10
-12

 Am
2
). This measurement, in figure (8), is made to show a typical result of YBCO in the 

superconducting state as it transitions to the normal state. 
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Figure 6: Magnetic Moment vs Temperature for the sample RG2-YBCO(pure)[2/21/14] with an applied magnetic field 

strength of 10 Oe 
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CHAPTER 3  

Critical Current Density of YBCO Thin Films 

 

3.1  Overview of Magnetic Flux and Critical Current Distributions 

It is well known that any magnetic flux through a ring of supercurrent will become quantized and 

thus creating a magnetic flux vortex from the circulating supercurrents. As stated above, the normal zones 

of Barium Tin Oxide (BaSnO3) and Cerium Oxide (CeO2) deposited onto the thin film samples through 

laser ablation serve as field penetration sites inviting this magnetic flux through the sample. The creation 

of these magnetic flux vortices puts the YBCO sample in the vortex state, existing between the lower and 

upper critical field limits where                . The Vortex state of YBCO follows the Abrikosov 

Vortex lattice theory for the anisotropic surfaces of type-II superconductors
 (6)

. The vortex structure is 

described by the Bessel function formulation of the magnetic field far from the core of the vortex and at 

   , respectively. At the coherence length( ) (8)
,  

                               ( )  
  

    
   ( ) (

 

  
)  √

 

 
 ( 

 

 
)
                                       (eqn.3.1) 
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Figure 7: Shape of the Magnetic Field strength vs Penetration Depth curve (positive) (9) 

 

 

Figure 8: Shape of the Magnetic Field strength vs Penetration Depth curve (negative) (9) 
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Figures (9) and (10) show that the strength of the magnetic field in comparison to the London 

penetration depth diverges from the core of the magnetic flux vortex. At the vortex core as    , the 

magnetic field logarithmically diverges for the boundary condition of (   ) (13), (1)
: 

                                        ( )  
  

    
    ( )                                          (eqn.3.2) 

Here (  
  

 
) is the Ginzburg-Landau parameter classifying each type of superconductor based off of 

their respective penetration depths and superconducting coherence lengths
 (1)

. These Vortices arrange 

themselves in a hexagonal Flux-Line Lattice, this lattice or FLL is an interpretation of a periodic solution 

to the Ginzburg-Landau equations by Abrikosov, describing periodicity of the magnetic flux properties of 

type-II superconductors along an established line of flux within the sample
 (6)

. This line of pinned flux 

creates one quantum of magnetic flux    
    

   
                   (  

     

     
) created 

from the circulating flow of electron Cooper Pairs. The study of these ―singularities‖ in the vortex lattice 

is at the forefront of research conducted pertaining to high-temperature superconductors.  

 

The analysis of the supercurrent density is a very essential subject when exploring 

superconductivity, especially in thin film samples. But before the critical current density measurements 

can be made, a hysteresis curve of the magnetization in the (a, b) plane versus the auxiliary magnetic field 

H must be measured. This ensures that the thin film sample exhibits near perfect diamagnetism and will 

then have the persistent currents that arise in superconductors. Figure (11) shows this magnetization 

versus field measurement at 10K and then at 50K in figure (12). 
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Figure 9: Magnetization (Mab) in the (a, b) plane as a function of the magnetic field (H) 
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Figure 10: Magnetization (Mab) in the (a, b) plane as a function of the magnetic field (H) 

 

The abnormality in the hysteresis curve for the control sample at 50K in figure (12) is due to the 

proximity of the transition temperature (68.84K). This shows that the magnetization decreases and the so 

called departing of electron pairs begin to occur as the sample’s temperature rises closer to the limit that 

is the transition temperature. This also suggests that the sample material did not have surface uniformity 

in terms of the deposition on to the substrate. Using the magnetization at 10K, the critical current density 

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

-15000 -10000 -5000 0 5000 10000 15000

M
a

b
 (

A
/m

) 

H (Oe) 

Hysteresis at 50K 



27 

 

    

 

can be calculated utilizing Bean’s Critical State Model
 (14)

. Figure (13) shows the critical current density 

versus the magnetic field H of the control YBCO thin film sample at 10K. These measurements of the, 

critical current density at 10K and magnetization at both 10K & 50K, provide a general basis on what to 

expect when creating YBCO thin samples. These measurements serve as reference for the theoretical 

framework of the electron pair velocity and their variation. 

 

 

Figure 11: Critical Current Density of YBCO control sample at 10K 
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Further explaining the theory of the supercurrent density, here it is expressed in terms of the 

commutation of wave states: 

                                                                                         (eqn.3.3) 

This accounts for the supercurrent density in the superconducting wave state with the charge of the paired 

electrons and the current density operation upon the wave states. Showing an exponential form of the 

order parameter  ( ) with amplitude | ( )|, the supercurrent density takes on the expression in terms of 

the velocity of these paired electrons and the probability of the order parameter: 

                                               | |  (
   

  
)                                                         (eqn.3.4) 

Where (
   

  
) is the velocity of the paired electrons in energy state   with electron pair mass (  ) and 

charge (  )
 (9)

.  With the inclusion of the magnetic field effects on the current density the velocity of each 

pair is now formulated in terms of the magnetic vector potential and the potential energy of the state. 

Velocity of the paired electrons is in terms of the canonical momentum:  

                                                       
 

  
(    

  

 
 )                                           (eqn.3.5)  

Keeping both the electron pair mass and the reduced Planck constant in this expression for the velocity of 

the pairs suggests that the quantum mechanical operations for this coherent state is of a macroscopic 

nature. The expectation values, probabilities, and average densities are physical values and not just 

probabilistic.  

Keeping focus on the fact that the pair mass term is still in this quantum mechanical expression 

for the velocity of paired electrons gives rise to the ―inertial‖ dynamics of the pair themselves. This states 

that the critical current density of the pairs, and fundamentally the pair velocity, is reactive to some 
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external inertial force acting on the center of mass of the pair and the critical current density now becomes
 

(9)
: 

   
  | | 

  

(    
  

 
 ) 

                                                        
    

  
(    

  

 
 )                                            (eqn.3.6) 

The identification of the velocity of the paired electrons is important to this work due to the 

theoretical approach to understanding the supercurrent density and its properties relating it to the amount 

of force the paired electrons experience interacting with the Fluxon quasiparticle. A modification to this 

distribution of the supercurrent density from the doping of the superconducting samples due to the 

presence of nanodots suggests that the nanodots, normal zones of the lattice, exhibit a virtual work upon 

the paired electrons thus changing the supercurrent density. This increase to the current density by way of 

characterization of the normal state nanodots deposited onto the thin film sample, through laser 

deposition, will create a more stable system of paired electrons circulating these areas enclosing a single 

fluxon. The chemical potential and number density of the electron pair, fluxon and nanodots play a vital 

role in the source of the virtual work from the nanodots giving a relationship between the supercurrent 

density, the potential energy density created by the nanodot and the dynamics governing the 

thermodynamic properties of the lattice. 

 

3.2  Temperature Dependence of Critical Current Density and Magnetic Flux 

To modify the description of the temperature dependence of critical current density and the 

magnetic flux threading the superconductor in the presence of nanodots, a reformulation of the 

fundamental free-energy expression is needed. 
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                                 ∑   
( )

   
( )

  ∑                                          (eqn.3.7) 

Here the standard entropy and temperature terms hold for this thermodynamic state, ∑(  
( )

   
( )

) is the 

amount of virtual work from the nanodot interacting with the system of electron pairs. Recalling that the 

free-energy expression from the Ginzburg-Landau theory says: 

 

                      ( )       ( )    (| ( )|)      ( ( ))                          (eqn.3.8) 

Utilizing the postulate of D’Alembert for virtual work on a system of particles and exploiting the 

notion that quantized magnetic flux lines can be treated as if they are quasiparticles called Fluxon, one 

can formulate a description of the free-energy interaction of these Fluxon with the supercurrent density 

surrounding them in terms of the chemical potential and nanodot number density. For the system acted 

upon by an external force or an interacting potential (  ),  

                                                       
   

  
                                                             (eqn.3.9) 

The thermal average of this force is  

                                           ∑      (
 

 
)

    ( )

                                           (eqn.3.10) 

Suggesting the internal energy  

                               (eqn.3.11) 

From here an expression for the free-energy of the system can be derived using known theories pertaining 

to the Vortex state of superconductivity and free-energy thermodynamics
 (8)

. The standard free-energy 

expression is stated: 

           ∑                   (eqn.3.12) 
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If we include all interacting potentials involved in the system externally and internally then an expression 

for the free-energy is:  

    ∑    (  )        ∑                                      (eqn.3.13) 

Solving this proposed free-energy description for the entire system of particles, including external 

interactions, for the chemical potential and number density could present a theoretical range for the 

number density of laser ablated nanodot nanodots. This solution could create a ―tuning parameter‖ for 

high-temperature superconductivity generating a more efficient way of choosing an optimal impurity 

density. Another solution could arise from shifting the focus to the entropy of the system as it is related to 

the number of interacting particles within the system itself, further looking into why a pseudo-resistance 

occurs after a certain field limit has been reached from the activation energy induced by the fields. 
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CHAPTER 4  

Tuning Parameters of the Superconducting State 

 

4.1  Chemical Potential of the Normal-Superconducting State Interaction 

Within the thermodynamic realm of the superconducting sample the chemical potential of all 

interacting particles and quasiparticles are important to consider. The number density of interacting 

particles and each of their chemical, or electro-chemical, potentials can alter the dynamics of the 

thermodynamic system. Since we are within a macroscopic quantum limit, the energy of the paired 

electrons is just simply their electro-chemical potential (  ). If we consider all interactions that take place 

then the total chemical potential for the entire system (lattice, paired electrons, fluxon, and the magnetic 

influence) is:  

     ∑
 

   

[
 

 
(   ( )     )  ∑  

( )
   

( )

 

]  ∑
 

   

    

  

 ∑
 

   

(    

 

) 

         (eqn.4.1) 

Here we can see that the total chemical potential of the entire system suggests that there are other 

quasiparticles at play interacting with the paired electrons comprising up the supercurrent. Simplifying 

this total chemical potential in equation (4.1) we have: 

                                                             (eqn. 4.2) 

Where    is the chemical potential of the nanodot and            is the electro-chemical potential for 

the electron pair in terms of the thermodynamic chemical potential of the pair and the usual electrostatic 

potential for charged particles. 
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 Comparing this theory to the critical current density and nanodots density collected from a body 

of work with very similar YBCO thin film samples
 (8)

: 

Electron pair velocities can be calculated using the current density, collective charge of the 

superconducting pair and the number density of the superfluid (flow of paired electrons)
 (9), (11), (12) 

   
  

    
                                                  (eqn.4.3) 

 

 

Table 2 Substrate Mod.:-TH-A (10 pulses), TH-B (30 pulses) Multilayer:-TH-A1 (10 pulses), TH-B1 (30 

pulses) 

Temperature Samples Current Density A/cm
2
 Pair Velocity cm/s 

5K THA 9.23E+07 3025689.656 

 THB 6.65E+07 2179938.918 

 THA1 1.50E+07 491715.5455 

 THB1 2.35E+07 770354.3546 

 

Temperature Samples Current Density A/cm
2
 Pair Velocity cm/s 

77K THA 3.42E+06 112111.1444 

 THB 3.78E+06 123912.3175 

 THA1 4.30E+05 14095.84564 

 THB1 6.00E+05 19668.62182 

 

Considering the dimensions of the nanodots as (     ) , where these are the respective diameter 

(with    symmetry) and height of the nanodots, we can assume that the geometry of the nanodots follow 

that of a spheroid, 
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Table 3 Substrate Mod.:-TH-A (10 pulses), TH-B (30 pulses) Multilayer:-TH-A1 (10 pulses), TH-B1 (30 

pulses) 

Samples Nanodot Diameter (  ) Nanodot Height(  ) 

THA/THA1 4.0-6.0nm 1.7nm 

THB/THB1 4.0-6.0nm 4.0nm 

 

The average volume of each Cerium Oxide nanodots can be calculated using the following equation for a 

spheroid with    (a, b) plane symmetry,  

          
 

 
 ( )   

     
 

 
 (

 ̅ 

 
)

 

 ̅                                      (eqn.4.4) 

 

Table 4 Substrate Mod.:-TH-A (10 pulses), TH-B (30 pulses) Multilayer:-TH-A1 (10 pulses), TH-B1 (30 

pulses) 

Samples Nanodot Radius (
  

 
) Volume of Nanodots 

THA/THA1 2.0nm 28.48377nm
3
 

 2.5nm 44.50589nm
3
 

 3.0nm 64.08849nm
3
 

THB/THB1 2.0nm 67.02064nm
3
 

 2.5nm 107.71975nm
3
 

 3.0nm 150.79644nm
3 
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Exploiting that Cerium Oxide with a mass density of                      We can calculate 

an approximate average mass of the nanodots based off of the density of Cerium Oxide and the average 

volume of the nanodots. 

 

 

Table 5 Calculated nanodots masses from the density of Cerium Oxide and their respective volume 

Nanodot Mass (10
-20

 g) [10 pulses] Nanodot Mass (10
-20

 g) [30 pulses] 

2.055 4.83542 

3.211 7.77179 

4.624 10.87971 

(Average Mass) 3.29667 (Average Mass) 7.82897 

 

 

 

Figure 12: Electron pair velocity correlation with average CeO2 mass at 5K 
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Figure 13: Electron pair velocity correlation with average CeO2 mass at 77K

THA 

THB 

THA1 
THB1 

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

0 2 4 6 8 10

P
ai

r 
V

e
lo

ci
ty

 (
cm

/s
) 

Avg. CeO2 Mass (10-20 g) 

THaywood08 Pair Velocity vs. CeO2 Mass 

T = 77K 

Substrate Mod.

Multilayer



37 

 

    

 

  4.2 Virtual Work by the CeO2 Nanodot 

 

Recall that there exists a total potential from the chemical potential of the Electron pair and the 

chemical potential of the modified lattice: 

     ∑
 

   

[
 

 
(   ( )     )  ∑  

( )
   

( )

 

]  ∑
 

   

(  )

  

 ∑
 

   

(    

 

) 

                                                                                                                                                           (eqn.4.5) 

This total chemical potential simplifies to:           , where
 (9), (3) 

                                                                 (eqn.4.6) 

and 

   ∑
 

  
*
 

 
(   ( )    )  ∑   

( )
   

( )
 +                  (eqn.4.7) 

Since the lattice structure of YBCO is periodic with respect to the electron pairs with temperature equal to 

zero, an approximation for the chemical potential    governing the  anodots can be made in the form of 

the virtual work:  

    
 

  
∑   

( )
   

( )
                                      (eqn.4.8) 

Equation (4.8) does not include the magnetic dipole moment and field due to the hole like 

behavior of the  anodots. Utilizing the virtual work from the perspective of the nanodots is not an 

obvious choice. From a very fundamental set of units describing magnetic flux, we can derive a 

relationship between virtual work and current density. The standard unit of measure for magnetic flux is 

normally a Weber (Wb) or a Tesla square meter (    ), but we can further simplify these units in to 

even more fundamental ones. 
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                                                (eqn.4.9) 

Now that the magnetic flux is recast in to units of length, mass, time, and current we can formulate a new 

equation describing the same physical action.  

From the BCS theory the paired electrons have a velocity
 (9), (5), (8)

:  

   
 

  
(    

  

 
 )                                      (eqn.4.10) 

With the inclusion of the mass, the paired electrons respond to an inertial force proportional to the 

acceleration
 (9)

:  

 
   

  
 

 

  
                                                      (eqn.4.11) 

Exploiting that the electron pairs respond to an inertial force
 (9), (8)

, we see that it is obvious in these units 

that magnetic flux is merely the amount of work per current. A net force can be expressed from the 

interaction of the electron pair and the  anodots:  

         (     )   

           

     (  
( )

   
( )

)  (  (      )) 

     (     )  (  (      ))                 (eqn.4.12) 

Here the virtual work is in an energy state ® operating within the momentum phase space of the system, 

and as usual the electrochemical potential arises for the electron pairs. Like all systems in equilibrium, 

this net force must equal to zero satisfying the conservation of energy and momentum of the interaction. 

Using this as motivation, we can express the magnetic flux as: 
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(      )

   ( (
  

 
)
 
)

                                      (eqn.4.13) 

  

Magnetic flux is in terms of the current density, an equivalent inertial force (a fictitious force) and 

the coherence length describing the size of the electron pairs related to the displacement the pairs should 

experience from the virtual work. As we can see here,    is the respective supercurrent density of the 

sample at a specific temperature,  (
  

 
)
 
 is the cross-sectional area of the nanodots keeping the radial 

symmetry of the geometry. While    is the characteristic superconducting coherence length,    the 

fictitious force induced by the magnetic flux on a charged particle, and      the quantum of magnetic flux 

(Fluxon),                  .  

 

 

 

 

  4.3 Electron Pair Velocity Variation 

This fictitious force arises from the potential energy that the nanodot creates on the surface of the 

superconducting state in momentum space.  Without the full use of an effective field theory only an 

approximation of the tuned velocity of paired electrons can be made. 

   
(     )

   ( (
  

 
)

 

)

    

Using the basic physical laws that govern this interaction, the current density is
 (18) 

          
 

   
                                       (eqn.4.14) 
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For an approximation for a simple applied magnetic field   with magnetic flux   through an enclosed 

current carrying loop of radius S, we can use the solution of
 (18) 

   ∯(    ̂)          

    (
  

 
)

 

                                                     (eqn.4.15) 

From here we can solve for the current density and then the velocity of the electron pairs from with 

equation(6.13).  

 

   
  

   
(  (     ))                                       (eqn.4.16) 

   
(     )

   (
  

 
)
 

( (
  

 
)
 

)

                                                   (eqn.4.17) 

   
(  (          )   )

  (
  

 
)
 

    

 

    
                                       (eqn.4.18) 

Equation (4.18) makes this approximation in terms of the induced fictitious force portrayed by the 

Lorentz force. The electric field contribution is negligible due to the macroscopic electrodynamics 

explained through the London theory. This approximation gives a fairly wide range of percent 

difference        (            )       . 
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Figure 14: Theoretical Electron pair velocity correlation with experimental data curve at 5K 
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Figure 15: Theoretical Electron pair velocity correlation with experimental data curve at 5K 

 

 

Figures (16) & (17) show that the theoretical values, closely equal in magnitude to the 

experimental values with some percent error, follow the same curve in terms of their data plots. The error 

in the 5K pair velocities is smaller than the 77K pair velocities due to the lack of any temperature 

dependence and due to the approximations that were made when calculating. We can see that there is a 

stronger relationship between the nanodots and the paired electrons in terms of their velocity. This 
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CHAPTER 5  

Conclusion 

 

 

Although this description of the variation of the superconducting electron pair velocity is incomplete, 

at the moment it shows promise in terms of further characterizing high-temperature superconductors. 

Characterization in terms of the respective nanodots densities and geometries seem very important to the 

critical current density. The chemical potential and virtual work from the thermodynamic energy states 

offer a step in the right direction to this characterization. Further correlating this description with known 

sources of experimental data, proven theories, and continued research on the subject matter will generate 

interesting insights to the study of theses magnetic singularities in high-temperature superconductors. 

Experimentally more data is needed from the measurements of the magnetization versus time, 

magnetization versus temperature, and direct measurements on the electron pair velocity. Looking in to 

the temperature dependence of the pair velocities, entropy, and possibly the pressure of the superfluid 

itself may deem worthy of more experimentation. The overall effective field theory governing this 

interaction is to be explored in greater detail, including the field parameters and recasting the model 

within the quantum mechanical limits. 

To test these quantum mechanical parameters the utilization of SQUID (Superconducting Quantum 

Interference Device) technologies are needed to acquire precise measurements for proper use.  

Future work will include completing this description including the Fermi energy and chemical 

potential based off of experimental data. X-ray Diffractometry, Scanning Electron Microscopy and 

nanodots characterization will be conducted. Creation of more samples with varied nanodot nanodots and 

the deposition of multiple nanodot species onto a single YBCO thin film will also be of interest. 
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