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Abstract 

With every passing day, the demand for devices that have higher operating speeds 

increases. Currently, silicon's transistor size is limited and it has become difficult to obtain 

similar performance as compared to previous transistors. The silicon transistor design has 

changed from a planar geometry to an FINFET design, which allows dimensions to be scaled 

further while achieving similar performance. Even with this change in geometry, silicon will 

reach its scalable limit. With such a high demand for faster operational devices, the limitation of 

silicon will only be able to support the next generation transistors, and then a new type of 

transistor will be needed. Here is where the GBFET will have the potential to be next in line for 

chip makers to use in their design. The attractive feature of this transistor is its high performance, 

which exceeds that of current silicon transistors.  

Through steady evolution, the simulation of physics based research has become more 

acceptable. This is due to the ability that simulations offer to produce a sense of confidence that 

an idea has the capability to work. For this thesis, COMSOL is used to simulate a graphene 

based Field-Effect Transistor (GBFET) to demonstrate the ability that this design can work and 

what performance can be expected. Within COMSOL there exists a semiconductor module that 

allows the user to characterize the electron concentration, hole concentration, electric potential, 

and other important factors needed to determine performance. This makes COMSOL a good fit 

for the simulation of the graphene based transistor. 
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CHAPTER 1 

Introduction 

Today, consumers are always looking for devices that offer fast and convenient 

features to assist with their everyday lives. Figure 1 displays an updated version of Moore’s 

law where the demands for smaller transistors are predicted [1]. Most items that provide a 

convenience to consumers are high speed electronic devices. Therefore, to satisfy growing 

consumer demand for faster and more convenient technology, creative alternatives must be 

explored. The current technology is less and less able to meet the growing demand, and so 

there is a great need for a new technology to emerge. 

Using graphene, a new design of a transistor is being simulated in COMSOL to 

overcome the limitations of using silicon. Silicon has been used in transistor design since it 

was first discovered as a semiconductor in 1940. Challenges that are being faced with using 

silicon are apparent when scaling the transistor size to a smaller dimension without losing its 

performance integrity; another limitation is the carrier mobility of silicon. Graphene, 

however, has some very attractive features that electrical and mechanical engineers can take 

advantage of, such as high carrier mobility at a smaller dimension (therefore, scaling is not 

an issue) [2]. Graphene is also one of the strongest materials to be discovered. Its 0.142 nm 

long carbon bonds make it stronger than structural steel and lighter than a single piece of 

paper [3].  
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Figure 1 Moore’s law 2012 [1] 

1.1 Silicon 

Silicon is the 14th element on the periodic table of elements, which means that it has four 

valence electrons. Pure silicon actually is an insulator which means it is not a very effective 

conductor. Since silicon has four valence electrons, silicon can easily be bound to other atoms to 

increase the number of electrons or holes, which makes it a very excellent semiconductor [4]. 

Silicon is rarely found in nature in its purest form and is mostly found as a silicon dioxide, which 

is a valid insulator. The ability to dope silicon with more electrons or holes gives an 

engineer/scientist a lot of flexibility when designing devices for distinct applications [5]. Since 

the discovery of silicon as a semiconductor in 1940, it has been used as in many different 

applications while maintaining the lead in semiconductor devices even at this more advanced era. 

Silicon is widely used in many areas such as analog circuits, RF applications, and digital logic 

circuits, etc. This is due to the high on/off ratio that dope silicon transistor offers that provides 

such flexibility. Though silicon is a great material, it is now becoming limited due to the finite 

thickness that chip makers are able to achieve while maintaining performance integrity. 

Additionally, the material and processing of the silicon is considerably cheap as compared to 
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other materials. Thus, the hunt has started for the next new material to take the stage as the 

following leader in the semiconductor arena.  

1.2 Graphene 

Graphene is semi metal and is also a crystal that’s composed of single layer carbon atoms 

(or atom thick) that are bonded together in a hexagonal lattice. Graphene is thin and to some 

scientists, it's considered 2 dimensional [2]. The lattice structure of graphene has a honeycomb 

shape which makes an excellent conductor of heat and electricity (see Figure 2 and Figure 3) 

[2]. The honeycomb lattice structure of graphene allows for additional manipulation of the 

electron for virtually lossless and very fast transistor operation. This is due to the 2D nature of 

graphene, which causes the electrons to behave as if they have no mass. This is why the electrons 

inside graphene are governed by the first-order Fermi Dirac equation [2]. Furthermore, electrons 

in graphene can travel large distances without being scattered due to collisions with impurities 

inside the material. This feature of graphene offers the potential of high-frequency functionality, 

which is essential to high speed operation.  

Graphene offers the promise to fulfill the needs of the ever growing need for faster 

operational devices as an alternative to silicon. One of the most attractive features is the ability it 

has to maintain electrostatic integrity and high carrier velocity at scaled dimensions at near room 

temperature. With the high carrier mobility that graphene offers it promises higher cutoff 

frequencies, which are dependent on the carrier mobility [6]. With this unique property graphene 

offer's the potential for devices that are operational in the Terahertz region which is still an 

untouched band. In terms of fast operation, graphene can achieve a high mobility of 120,000 

cm
2
/V*s at near room temperature. Furthermore, another attractive feature is the high saturation 

velocity that graphene offers. This feature ultimately determines the limitation on high speed 
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operation through a material. It is also an excellent conductor of electricity because of the lack of 

an energy band gap.  

Due to the zero band gap of graphene it is usually called a semi-metal which makes it 

very sensitive to small change due to external applications such as an electric field, doping, and 

deformation (this characteristic is very attractive in application such as sensors). A challenge 

about using graphene is due to the lack of band gap (see Figure 4) of the material which can be a 

great benefit depending on its application. As a result of this, the on/off ratio of the transistor is 

not as effective as other comparable silicon transistors this is due to the zero band gap which 

causes a small amount leakage current across the terminals. This research is investigating the co-

integration of silicon and graphene, the on/off ratio can be improved with or without creating a 

band gap for graphene and manipulated to be used in a large number of applications [6]. This is 

accomplished through the use of a unique doping profile in the silicon substrate to shift the 

characteristics of the graphene as a controller. Technically the GBFET does not have an off state, 

but there is a state when the conductivity is minimal.  

Even with a limited on/off ratio, a GBFET would be of great use in applications such as 

analog circuits and RF applications, but for now would be difficult to implement in logic 

applications. The intention of this work is to integrate graphene into current silicon transistor 

manufacturing processes. This integration will gain superior performance while taking advantage 

of current silicon manufacturing process and reducing the cost to produce such a different 

transistor. The cost saving is in the ability to reuse the same equipment and processes currently 

being used to make silicon transistors versus creating a new a new manufacturing process. In 

equation 1, VF is 2.5×10
6
 m/s the Fermi velocity inside the graphene material and W is the 

thickness of a single layer graphene is 0.335 nm for all the models here on out [7]. 
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Figure 2 Graphene lattice structure [8] 
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Figure 3 Graphene on flexible substrate [8] 

 

Figure 4 Band gap of graphene [3] 
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CHAPTER 2 

Why COMSOL? 

COMSOL is very powerful multi-physics software that allows users to simulate almost 

anything that can be imagined. This software comes with numerous complete packages known as 

modules with many preset physics parameters that can be used in many different areas. 

COMSOL comes with a list of powerful complex solvers that give way to in depth computations. 

Also, included are a few different advanced meshing options for higher resolution when 

performing complex simulations [9]. 

2.1 COMSOL 

As technology progresses, it is becoming very time-consuming and costly when 

determining new research ideas for potential use. With the evolution of technology, computer-

based simulations are becoming more accepted in our scientific society. Simulations can 

conserve time, and also significantly save on the cost of research and development. However, the 

main benefit is the confidence that simulations can provide to investors before investing into an 

idea. Another benefit to computer-based simulations are that fewer assumptions are made as 

compared to performing hand calculation [10]. Due to the ability that COMSOL grants by 

interconnecting with the other physics module, a better approximation can be computed instead 

of making an assumption. COMSOL does include a mathematics, and differential equation 

package which a user can input all the equations and parameters manually [9].  

In this case, the Semiconductor module is being used due to the extensive research that 

has been completed by COMSOL on the theory, meshes, and complex solvers. The 

Semiconductor module combines the drift diffusion equations module, enhanced capabilities for 
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modeling electrostatics, and an electrical circuit’s interface to solve for the different parameters 

of the transistor and thus the term “Multi-Physics”. For the ease of geometry creation, a model 

can be generated in auto CAD (Computer-Aided Design) and be imported into the COMSOL 

Software [11]. However, if at all possible, a simple structure is preferred to minimize 

computational issues. When using the semiconductor module, the user will notice that there are 

numerous parameters that are computed such as electron concentration, hole concentration, 

electric potential, current concentration, terminal current, and space charge density, etc. 

COMSOL can calculate an extensive list of important parameters in zero, one, two and three 

dimensions, which make it a good fit for this analysis [12]. 

2.2 COMSOL Analysis 

Initially, this project was simulated using MATLAB as proof of concept for the National 

Science Foundation (NSF) contract which generated favorable results. Next, COMSOL was used 

because of the advanced complex solvers that were already available for better performance 

times and better accuracy. To ensure COMSOL results were comparable, identical dimensions 

were used in the COMSOL model to obtain similar results as in the MATLAB simulation. In 

COMSOL, silicon is a predefined material which can be imported with all the semiconductor 

properties needed for an advanced simulation. This is not the case for the graphene material. A 

new material was created in the material library and was added to the model. When it is added to 

the module, COMSOL highlights all the required fields that are needed for the simulation. 

The basic parameters that are needed to run a simple simulation in the COMSOL 

semiconductor module are relative permittivity, band gap, electron affinity, electron/hole 

mobility, and electron/hole density of states [12]. For this model, Fermi Dirac's carrier statistic 

was used for the entire transistor model, which includes the silicon material. COMSOL includes 
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predefined equations in the semiconductor module which are explained in the user manual and 

are applicable to almost all semiconductor simulations. However, in this case, the electron 

concentration equation had to be too modified to reflect to reflect the massless behavior of 

electrons in graphene. See equations below displays the mathematics and COMSOL the 

electron/hole concentration for silicon [12]. 
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For the silicon material, equations 2 and 3 were used to compute the electrons and hole's 

concentration in the silicon material which was used for the substrate and the gate. The 

semiconductor module has three dependent variables that are solved through an iterative process 

these are electric potential, electron, and hole concentration. Refer to equation 4 to observe how 

the electric potential was computed. There are numerous other parameters that are computed in 

the background that can be used in calculations and analysis of the device’s performance. As part 

of the module, COMSOL includes a doping feature that allows uniform or customized doping 

profiles [12]. 

                                      (    )          
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Using the parameters in the equations listed above, COMSOL uses an extensive iterative 

process which solves for dependent variables until the previous values are roughly the same as 

the new values. When the new value is approximately the same as the old values, the model has 

converged. Equation 5 displays the formula to determine the equilibrium of the carrier  

concentrations. Additionally, COMSOL can perform a parameter sweep, which allows the user 

to characterize the device without having to run many simulations with different parameter’s 

value [12]. This feature was used to perform a sweep at the gate and at the drain to determine 

saturation points and carrier concentration behavior. Though there are many convenient built-in 

functions in COMSOL, the knowledge that was used was reviewed to ensure each feature 

produced results that were comparable to the simulations which were computed in MATLAB.  

COMSOL recommends using their inherent thin insulator gate in place of an actual gate 

and oxide which visibly appears in the simulation only as a contact [12]. This feature allows the 

user to configure the gate voltage, metal work function, oxide thickness, and oxide relative 

permittivity. This feature is very helpful because it significantly reduces the number of mesh 

points, which saves on computational time. However, this feature was not used in the transistor 

simulation because of the unique design of the GBFET with respect to how the contacts were 

being utilized. Additionally, the thin insulator gate was not used because the potential could not 

be observed through the gate and the oxide making it difficult to compare to the MATLAB 

results. Physical structures were created for both the gate and the oxide, which were incorporated 

into the semiconductor modules. Initially, an attempt was made by using silicon dioxide as a 

semiconductor with a band gap of 9 V to cope with semiconductor module, this did not work due 

to convergence issues with the model. The issue was corrected using a feature called charge 

conservation, which allows a user to compute the electric potential through a material [12]. 
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Silicon should not display any conducting abilities and should only propagate electric potential 

through the material making this feature a good fit. The equation that was used to calculate the 

potential through the silicon dioxide is given below [12]. 

                                                                                                                                (6) 

COMSOL recommends using ohmic contacts which act as an ideal contact for simulating 

transistors. The following are equations that were used to compute the electric potential, 

hole/electron concentration, and the Fermi energy while applying an ohmic contact. This contact 

is easy to use by selecting the boundary of a domain as the contact. The equation’s COMSOL 

uses are listed below [12]: 
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An ohmic contact is generally used for heavily doped materials. The contacts in this 

simulation are composed of copper and are not selected as part of the semiconductor which 

assumes that it is an ideal contact. The gate of the structure is comprised of silicon, which is 

heavily doped with n type, which is known as a poly silicon gate. 

COMSOL has created a doping tool to facilitate the doping process. In this tool, the user 

can identify the material that is to be doped along with the doping intensity, direction, and depth. 

This feature can be used to create unique doping profiles while still retaining the ability to apply 

a Gaussian doping distribution [12]. 
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2.3 COMSOL Setup 

In COMSOL, first a structure must be created that best represents what the user is trying 

to simulate. How the structure is designed helps with creating a mesh for more accurate results. 

In this case, a simplified form of a transistor was built to simulate the GBFET versus the typical 

design of a MOSFET transistor (See Figure 5) [11]. 

 

Figure 5 Simple structure 

 

2.4 COMSOL Mesh 

COMSOL offers a few meshing options such as triangular, quad, and mapped 

meshes. When it comes to a 2-dimensional analysis, COMSOL recommends a triangular 

mesh to be used for faster convergence and more accurate results. The mesh is a very 

sensitive parameter in COMSOL that can change drastically if not used correctly [12]. 

In the transistor design using a coarse mesh is not desired because the mesh points 

can be too large where the triangles itself can be seen in the surface plots (see Figure 6). This 

causes a bad approximation of the mesh points that are next to each other. But one benefit of 
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using a coarse mesh is the short computation time of 2 minutes (6,997 mesh points 

approximately), this is beneficial when a fast result is needed. When a more accurate result is 

needed a more uniform dense mesh is recommended, this uniform dense mesh increases the 

computational time to 30 minutes (see Figure 7). The increased computational time is due to 

the increase in mesh points which for a uniform dense mesh is approximately 10,266 points. 

The big drawback of using a denser mesh is the lack of resources when it comes to 

computing extremely fine meshes. For some extreme uniform mesh cases where the mesh 

size is too small simulation times can take up 24 hours (approximately 60,000 mesh points).  

The greatest challenge in simulating the characteristics of the transistor is determining 

an appropriate mesh size. For the most accurate results, each mesh triangle would have to be 

the same size as an electron. This presents a problem because according to the classical 

theory, the radius of an electron is 2.8179*10
-15

m. The computational time for a mesh point 

that small is incalculable to determine how long COMSOL would take to produce a result. A 

method to reduce the computational time is by varying the size of mesh in different parts of 

the transistor where having a dense mesh may not be as imperative as in other areas (see 

Figure 8). Using this the computation time is reduced to 16 hours which is approximately 

22,911 mesh points. For example, having a dense mesh in the graphene layer and a fine mesh 

in the other components provides an equivalent accuracy or greater accuracy while 

decreasing the computation time. The substrate is an area where a dense mesh is not as 

imperative as compared to other areas and a less dense mesh can be used to save on 

computational time. The process of calculating a sufficient mesh size is an iterative process 

which is simulated until there is no significant change in the results.  
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An additional feature that assists with the result accuracy is the tolerance factor of the 

simulation; this determines how close the previous results are in comparison to the new 

results. The results can be improved by reducing the tolerance factor to very small factors, 

but this can also increase your computational time. For a pictorial representation of the mesh 

points against computational time and memory usage, see Figure 9 and Figure 10. The 

smaller the number of mesh points the less resources are needed and the computational time 

is decreased.  

 

Figure 6 Coarse mesh 

 



17 

  

 

 

 

Figure 7 Dense mesh 

 

Figure 8 Varied mesh sizes 
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Figure 9 Mesh points vs computational time 

 

Figure 10 Mesh points vs memory usage 
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CHAPTER 3 

GBFET Analysis without Substrate 

Initially, an analysis was performed on the GBFET without the substrate. This analysis is 

necessary to determine how the carrier densities are affected inside the graphene layers alone and 

also to serve as a comparison to the MATLAB results. 

3.1 Electric Potential 

COMSOL computes the electric potential using the electrostatics module which links to 

the semiconductor module. COMSOL assumes the FERMI level is set to zero this is due to the 

substrate and graphene having an electric potential of 0 V. When comparing the potential plots 

from both MATLAB and COMSOL, there is a difference in the assumption of what the FERMI 

level is set to. In the MATLAB, the FERMI level is set to approximately infinity. In COMSOL, 

the Fermi and the electron affinity are used to determine the potential in the material which is 

displayed as a negative number. The electric potential can be easily confused with the energy in 

the material due to the Fermi level. The electron affinity is directly related to the work function 

of the material which dictates how much electric potential is needed to attract electrons inside the 

material to the surface. The gate used in these models is a poly silicon gate which is a composed 

of silicon, which is heavily doped with electrons. By doping the gate the FERMI level has shifted 

more towards the conduction band making the gate more conductive. This also affects the 

electric potential plot by causing a shift in the potential of 0.5 V.  Below is a sample plot of the 

electric potential: 
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Figure 11 Sample electric potential 

In the structure, the top layer is the gate with a potential of 2 V applied to the gate. Next, 

there is an oxide layer and last is the graphene layer. In this layer, there are two contacts in the 

furthest corners of the layer with equal potential of 0 V applied. In this model, the electron 

affinity of the graphene is 4.55 V and as stated the Fermi level is set to 0V.  

3.2 Initial Baseline Analysis 

First in the experimentation, a 2D model which consists of the gate, silicon oxide, and a 

small Graphene layer is being used (see Figure 13). In this simplified model, an accurate 

characterization of the graphene layer can be observed, which also can be used to compare with 

the MATLAB results (Figure 12). According to the MATLAB results the estimate electron 

concentration is 6.39E20 1/cm3 which is comparable to the COMSOL results. This is important 

to ensure the COMSOL results are reasonable in terms of accuracy. 
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Figure 12 MATLAB results 

 

 

 

Figure 13 Structure of the gate, ilicon oxide, and graphene 

Figure 13 displays the structure that was used in COMSOL to observe the behavior of the 

carrier concentration. Using this simplified model, the electron and hole concentration can be 

observed to determine if COMSOL is performing the accurate simulations. In this analysis, the 

potential that’s applied to the source and drain are kept constant at 0 V for consistency and a 

sweep is performed at the gate. The mesh that was used is a triangular mesh which is 

significantly smaller in the graphene layer. See Figure 14 to observe the distribution of the mesh 

points in this model. The graphene layer requires a larger amount of mesh points to have a better 

approximation of the carrier concentration due to the smaller dimensions of the layer. 

Poly Silicon Gate 

Silicon 
Dioxide 

Graphene Layer Drain Terminal Source Terminal 
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Furthermore, it is imperative because the terminals are located on the graphene layer this 

produces more accurate results. 

 

Figure 14 Distribution of mesh 

 

Figure 15 Electric potential Vgs=0 V with no substrate 

In Figure 15, this plot displays the electric potential across the structure with equal 

potential of 0 V applied at the terminals and gate. Observe the potential is greater at the gate due 

to the doping profile and the electron affinity of the gate in comparison to that of the graphene 

layer. This is caused by the different electron affinity which for silicon is 4.05 V and for 

graphene is 4.55 V. Next, a 1 V potential is applied to the gate which changes the potential 

distribution plot. See Figure 16, to observe how the potential propagates through the gate, oxide, 

and the graphene layer.  
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Figure 16 Electric potential Vgs=1 V with no substrate 

 

Figure 17 Hole concentration at Vgs=0 with no substrate 

Figure 17 displays the hole concentration of the structure with the same potential 

conditions as before. As anticipated the hole concentration in the graphene layer is higher due to 

the 0 V potential that is applied.  
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Figure 18 Electron concentration at Vgs=0 with no substrate 

Figure 18 displays the electron concentration behavior in the structure with the same 

conditions as stated above. Furthermore, as expected, the electron concentration is not as dense 

in the middle of the graphene layer due to the potential of the gate. By applying a greater 

potential at the gate the electron concentration will change, and it will become denser in the 

center of the graphene layer. Electrons according to the basic theory are attracted to a higher 

potential, and holes are attracted to lower potential. This is displayed in the next analysis that is 

performed with a 1 V potential applied to the gate. See Figure 19 and Figure 20, these figures 

depict a smaller hole concentration and a greater electron concentration inside the graphene 

layer. There should be no electron or hole concentration inside of the oxide layer because it is an 

insulator which means it has no carrier mobility nor the density of states [13].  



25 

  

 

 

 

Figure 19 Hole concentration at Vgs=1 V with no substrate 

 

Figure 20 Electron concentration at Vgs=1 V with no substrate 
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3.3 Energy Bands 

Important parameters that COMSOL calculates is the energies throughout the structure as 

a part of the module. The following equations depict how the energy of the valence, and 

conduction band were computed in COMSOL. Additionally, the total energy of the electrons and 

holes were computed with respect to the band edge [12]. 

                                                                                                                       (10) 

                                                                                                                 (11) 

                                                                                                               (12) 

                                                                                                               (13) 

In practical simulation, the energy in the structure is subject to change within a space. 

Therefore, it becomes imperative to define the energies with respect to reference energy [14]. 

COMSOL simplifies this boundary condition by making the reference energy the same as the 

Fermi level energy. Furthermore, it is important to note that in COMSOL, the temperature is 

used to determine the equilibrium Fermi's level energy. The energy diagram is easily computed 

for this structure because it lacks a depletion region and no energy band bending is anticipated. 

The Energy Band data is plotted by using a cut line through the middle of the structure. Thus, the 

plot displays the energy versus the length of the cut line from left to right (see Figure 21). 

COMSOL approximates the energy bands and the Fermi levels of the materials in the structure. 

When an equal potential is applied to the gate, source, and drain, the Fermi levels of the electron, 

and holes should be approximately equal. This simulation does not include the effects of band 

gap narrowing due to external stimulations such as temperature. As expected the energy band 

gap of silicon is 1.1 eV and for graphene is 0 eV. In Figure 22, this observation is displayed and 
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Figure 23 displays another energy band diagram is plotted with a 1 V potential being applied to 

the gate. When a potential is applied the Fermi level for the electron and holes will vary 

depending on the size of the density of states of each carrier this is what COMSOL called an 

intrinsic Fermi level.  

 

Figure 21 Using a the cut line tool 

 

Figure 22 Energy plot at Vgs=0 V 
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Figure 23 Energy plot at Vgs=1 V 

3.4 Graphene Layer’s Carrier Concentration 

The graphene layer inside has many appealing features to the Electrical Engineer, but the 

important aspect is. How can it be controlled? The greatest challenge with graphene is trying to 

determine the best use of the graphene in any possible design. This is why a baseline of the 

transistor without the substrate layer was required. Some modifications were made in 

COMSOL’s electron concentration equation to use the incorporate the unique massless behavior 

which is a better approximation for the graphene layer. Using the Cut Line feature a slice was 

taken through the middle of the graphene layer (see Figure 24). Using the Cut Line, the electron 

and hole concentration plots were generated to ensure the graphene layer values were reasonable 

in comparison to the MATLAB results. See Figure 25, and Figure 27 to observe when a 0 V 

potential is applied to the gate. The hole concentration is great because the holes are being 

attracted to the lower potential, and the electrons are repelled. The inverse effect is expected in 

the electron concentration plots when a higher potential is applied to the gate. See Figure 26, and 

Figure 28 which displays how the electrons are repelled at the lowest potential at the gate and 

attracted at the higher potential.  
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Using these characteristics the on/off ratio can be approximated. See Figure 29, this 

figure displays the summed value of the hole and electron concentration inside the graphene 

layer. This plot also displays the off region inside the layer to be approximated -0.4 V. This does 

not mean that there is no conductivity at -0.4 V, this means the minimal conductivity occurs at 

that potential. This plot is useful in estimating the drain current based on the magnitude of the 

combined concentration plot. It is apparent that the graphene can be used in transistor devices, 

but for the moment it can only be used in specific areas where the on/off ratio isn’t an important 

factor. 

 

Figure 24 Cut line through the graphene layer 
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Figure 25 Electron concentration in graphene at 0 V applied at the gate 

 

Figure 26 Electron concentration in graphene at 1 V applied at the Gate 
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Figure 27 Hole concentration in graphene at 0 V applied at the gate 

 

Figure 28 Hole concentration in graphene at 1 V applied at the gate 

 



32 

  

 

 

 

Figure 29 Hole and electron concentration in the graphene layer 
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CHAPTER 4 

Computation of GBFET 

In this section, a full analysis was performed on the GBFET to observe and record the 

characteristics of the transistor design. A full transistor design is used, including a doped 

substrate. 

4.1 GBFET with an Undoped Silicon Substrate 

The substrate is introduced as a controller of the graphene to vary the electron and hole 

concentrations. Figure 30 displays an updated structure of the transistor, which includes the 

silicon substrate. In this simulation, the goal is to use the silicon to maximize the use of the 

graphene layer in different applications in the electrical Engineering arena. The substrate in this 

model is a made of not doped silicon (dielectric) which is also acting as an insulator, only the 

square in the middle is the substrate. The rectangles in the corners of the substrate are being used 

as the source and drain terminals which are at a 0 V potential. The body of the transistor, which 

is the bottom center of the structure has no potential applied to the terminal (grounded). 

Using this structure, a variable sweep was performed at the gate. Figure 31 displays an 

Electric Potential plot with 0 V applied at the gate. A 0 V potential on the gate attracts the holes 

from to the lower potential from the substrate which causes a higher hole concentration inside of 

the graphene layer. Furthermore, the opposite effect happens to the electron concentration where 

the electrons are repelled from the lower potential. See Figure 32 and Figure 33, it is apparent 

that the electron concentration is significantly lower than the hole density due to these effects.  
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Figure 30 Transistor structure with not doped substrate 

 

Figure 31 Electric potential at 0 V at the gate 
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Figure 32 Hole concentration at 0 V at the gate 

 

Figure 33 Electron concentration at 0 V at the gate 

See Figure 34, Figure 35, and Figure 36 which displays plots on the electric potential, 

hole and electron concentration at 1 V potential at the gate. Electrons are attracted to the center 

of the graphene layer due to the higher potential applied to the gate. 
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Figure 34 Electric potential at 1 V at the gate 

 

Figure 35 Hole concentration at 1 V at the gate 
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Figure 36 Electron concentration at 1 V at the gate 

4.1.1 Energy Diagram of transistor with substrate. Using the cut line feature of 

COMSOL (See Figure 38) the energies are plotted first when the gate potential is 0 V and second 

when the gate potential is 1 V (See Figure 39). The difference in this energy plot is the substrate 

area which is acting as an insulator, so no band bending is expected to occur as compared to the 

poly silicon gate. Due to the charge conservation feature that’s being used for the silicon dioxide 

insulator, the electron concentration, hole concentration, and energy are not computed because 

it’s not being used in the semiconductor module. Therefore, there  no energy data that is 

computed through the insulator. The FERMI level inside the poly silicon gate is shifted, which 

means more electrons are in the conduction band and less in the valence band. This is achieved 

by doping the gate with more electrons. This causes the gate to act more as a conductor. 

After the gate, there is an oxide layer which has a band gap of 9 V, but due to 

COMSOL’s charge conservation feature, it is left blank. Since the gate potential is the same as 

the source and drain potential, it is expected that the FERMI level is the same in both the gate 

and substrate layers. In this simulation, the substrate layer is not doped and therefore, the 
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additional electrons in the gate are transferred to the substrate to balance out the FERMI levels of 

the two layers. The same effect is not anticipated for the graphene layer due to the zero band gap 

characteristic of graphene. 

 

Figure 37 Cut line of the structure 

 

Figure 38 Energy plot of transistor structure at 0 V at the gate 
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Figure 39 Energy plot of transistor structure at 1 V at the gate 

4.1.2 Electron and Hole Concentration inside the Graphene layer. It is imperative to 

understand the behavior of the electron and holes inside the graphene layer. This analysis is an 

extension from the previous structure’s simulation. The results are expected to be approximately 

the same because the substrate is acting like an insulator and thus depletion will not be created. 

See Figure 40 and Figure 42 to observe the electron and hole concentration inside the graphene 

layer with a 0 V potential at the gate. Furthermore, See Figure 41 and Figure 43 to observe the 

electron and hole concentration inside the graphene with a gate potential of 1 V. Lastly, Figure 

44 displays the sum of both the electron and hole concentration.  
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Figure 40 Hole oncentration at 0 V potential at the gate 

 

Figure 41 Hole concentration at 1 V potential at the gate 
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Figure 42 Electron concentration at 0 V potential at the gate 

 

Figure 43 Electron concentration at 1 V potential at the gate 
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Figure 44 Electron and hole concentration 

4.2 GBFET with a doped Silicon Substrate 

The first two simulations were performed using a smaller structure to have more accurate 

comparisons between the MATLAB and COMSOL results. For this simulation, the structure is 

larger and represents the actual proposed size that is to be used which in turns makes the channel 

length longer and easier to obtain results. After observing the on/off ratio of the current transistor 

structure, it is apparent that the ratio can be improved through shifting the properties of the 

graphene layer. It is possible to shift these properties through doping. COMSOL has a 

convenient built-in doping model that was used in simulating the doping profiles of the models. 

In this simulation, the drain, source, and gate potential are set to 0 V potential. The doping 

profile used for this model is displayed in Figure 45, which effectively displays both the n 

doping as a positive number and the p doping as a negative number.  

The “V” shaped doping profile is the proposed solution along with equal doping 

concentrations. The intent of having a higher p doping concentration in the middle is to balance 
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the higher electron concentration in the middle of the graphene layer. By using this doping 

profile, two pn junctions are created inside of the substrate area which is in contact with the 

graphene layer [15]. The doping profile below is a gradual V/U shape which created by using a 

modified Gaussian distribution function of the doping feature. This doping profile is used to 

create a high resistance which is considered the off-state inside the channel of the transistor this 

is due to the low carrier concentration in the graphene and substrate areas. When a high gate 

potential is applied to the gate, the pn junction becomes more of an nn junction where the 

conductivity is higher, which creates a low resistance (also known as the saturation region) 

which is the on state. This is also the case for the corners because it has a higher hole 

concentration at the corners to counteract the concentration with a high n type. 

 

Figure 45 Gradual pn junction with NA-ND=2E18 1/cm
3
 doping profile 
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4.2.1 Electric Potential and Carrier Concentration of the doped GBFET. The 

structure was changed to more accurately represent the model that is being proposed and to 

assure the simulations are easier to converge. At a glance, it is clear which areas are doped with n 

or p type in the electric potential plots. The center of the substrate is doped with p type, which 

makes it less conductive and has a lower potential than the areas that are doped with n type. By 

using this doping model a pn junction is created between the two doping concentration which in 

turn creates a depletion region [6]. This depletion region cannot be eliminated, but it can be 

varied in width depending on the drain and gate potential that’s applied.  

Another method of varying the depletion region is by changing the doping concentration 

to have been higher p region doping than the n region doping. This creates a larger barrier that 

would restrict the diffusion of carriers across the substrate. The electron concentration in the n 

region will start to diffuse into the p regions, and the majority holes start diffusing into the n 

region [16]. An electric field is induced by the positive and negative charges in the n and p 

regions near the pn junction area. This effect creates a space-charge region and since the space-

charge region is depleted of any carriers, this is what causes the depletion region in the channel 

[5]. In this analysis the source, drain, body, and the gate are at a 0 V potential. As expected the 

potential plot is higher in the n region in comparison to the p region (see Figure 46), Figure 47 

displays a potential plot with a 1 V potential on the gate.  
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Figure 46 Electric potential at 0 V at the gate 

 

Figure 47 Electric potential at 1 V at the gate 

The hole concentration plots display a high concentration in the p region near the 

graphene layer when compared to the rest of the structure at 0 V at the gate (see Figure 48). This 

changes when a 1 V potential is applied to the gate which the hole concentration is decreased and 

is mostly visible in the p region (see Figure 49). The effects can be seen in the electron 
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concentration where a 0 V potential is applied at the gate. A large electron concentration can be 

observed at the gate and in the graphene layer as compared to the rest of the structure (see Figure 

50). When a 1 V potential is applied to the gate, more electrons diffuse into the graphene layer 

which increases the electron concentration (see Figure 51). The higher the potential that’s 

applied the higher the electron concentration, this increases the conductivity of the transistor. 

The lower the potential that is applied the higher the hole concentration which also increases the 

conductivity of the transistor. This is why an equal doping profile is being simulated to attempt 

to reduce the conductive effects of the holes and the electrons. 

 

Figure 48 Hole concentration at 0V at the gate 
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Figure 49 Hole concentration at 1 V at the gate 

 

Figure 50 Electron concentration at 0 V at the gate 
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Figure 51 Electron concentration at 1 V at the gate 

4.2.2 Energy Band of the doped GBFET. Using the Cut line feature in COMSOL (see 

Figure 52), the energy band data are plotted,  now band bending is visible in the substrate. This 

band bending displays a depletion region being formed in the substrate near the middle beneath 

the graphene layer. The band bending is due to the pn junction that is caused by the p and n 

region’s diffusing into its respective region [6]. Figure 53 displays the energy band when the 

source, drain, body, and the gate have a potential of 0 V applied. Next, Figure 54 displays the 

energy band with similar conditions except now the gate potential is set to 1 V. 
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Figure 52 Cut line of the structure 

 

Figure 53 Energy band at 0 V potential at the gate 
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Figure 54 Energy band at 1 V at potential at the gate 

4.3 Electron and Hole Concentration inside the Graphene Layer 

The size of the current structure being used for this simulation is different in width and 

height, this makes the Cut line feature harder to align at both ends due to the small size of the 

graphene layer (see Figure 55). In the results below the misalignment can be observed, but is not 

off by much. Additionally, COMSOL plotted multiple mesh points on one point due to the small 

mesh size which is dense in the graphene layer. As anticipated from the earlier simulation the 

electrons are being attracted to the graphene layer from the silicon due to the potential at the gate 

(see Figure 56 and Figure 57). The opposite effect is occurring with the holes inside the 

graphene layer where the hole concentration is being reduced with the different potential that is 

applied at the gate (see Figure 58 and Figure 59). Figure 62 displays the sum of the electron and 

the hole concentration which is plotted against the gate potential. Using this plot the on/off ratio 
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can be observed, note the change from a V shape to a U shape. This plot validates the 

improvement in the on/off ratio.  

Furthermore, due the heterogenous effects created by the graphene and silicon it is 

imperative to display the depletion region in the substrate. Figure 60 and Figure 61 displays the 

electron concentration at the top of the silicon layer to observe the depletion region, as expected 

there is a depletion region [17]. In the plots below multiple data points are being plotted thus the 

plot is not just one line.  

 

Figure 55 Cut line of the graphene layer 
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Figure 56 Electron concentration at 0 V potential at the gate 

 

Figure 57 Electron concentration at 1 V potential at the gate 
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Figure 58 Hole concentration at 0 V potential at the gate 

 

Figure 59 Hole concentration at 1 V potential at the gate 
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Figure 60 Electron concentration in the substrate at 0V at the gate 

 

Figure 61 Electron concentration in the substrate at 1V at the gate 
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Figure 62 Electron and hole concentration plot 

Additional sweeps were performed using different doping concentrations to find the 

optimum doping profile. The different doping concentrations that were simulated are higher 

concentrations which a creates a larger barrier. This larger barrier can be beneficial in creating a 

low and wider off region. This larger barrier ultimately improves the on/off ratio of the 

transistor. These additional simulations are focusing on the summed electron and hole 

concentrations to observe the on/off ratio. In Figure 63, Figure 64, and Figure 65 displays the 

doping profile and the electron/hole sum with ND=NA=4E18 1/cm
3
. An improvement in the 

on/off ratio can be observed with this higher doping concentration. Lastly, Figure 66, Figure 67, 

and Figure 68 displays a similar analysis with a higher doping profile of ND=NA=8E18 1/cm
3
. 

This higher doping profile provides an even better on/off ratio, which is caused by creating a 

larger barrier to restrict the conductivity.  
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Figure 63 NA=ND=4E18 1/cm
3 

doping profile 

 

Figure 64 Electron and hole concentration sum vs gate sweep from -2-0V 
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Figure 65 Electron and hole concentration sum vs gate sweep from 0-2V 

 

Figure 66 NA=ND=8E18 doping profile 
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Figure 67 Electron and hole concentration sum vs gate sweep from -2-0V 

 

Figure 68 Electron and hole concentration sum vs gate sweep from 0-2V 
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CHAPTER 5 

Conclusion and Discussion 

The objective is co-integration of silicon and graphene to design a high performance 

transistor with a wide on/off ratio to be used in serveral applications. The goal was achieved 

where a GBFET was created and simulated using a unique doping profile. Additionally, the 

GBFET was modified to improve the on/off which gives it the potential to be used in more 

electronic applications. Initially, when the transistor design was simulated, it demonstrated a 

very narrow off region. For practical application such a narrow off region is not desired and thus 

needed to be improved. Through the unique doping profile of the transistor, the off region was 

improved to resemble more of a “U” shape. This same shape can vary in width depending on the 

doping concentration of the acceptors and donors. However, there is a limitation on how much 

the silicon substrate can be doped by. This wider off region allows for uses in the RF and Analog 

arena where the on/off ratio is not too critical. There is still room for improvement of the 

transistor design to achieve a true off state which would bring this transistor into the digital logic 

arena. Additional simulations were performed with different parameters to characterize the 

transistor and possibly make better improvements on the current design. A sweep was performed 

at the drain terminal to observe any possible abnormalities in the carrier concentration. The 

doping concentration was varied to observe the summed carrier concentration along with any 

beneficial changes. These additional results can be observed in the Appendix which can also be 

used for any future research.  

COMSOL is a great tool that can be used to model many scenarios, but one issue that was 

confronted was calculating the terminal current. This issue has been brought to the attention of 
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COMSOL and it is confirmed that they are aware of the issue. COMSOL is performing intense 

research to rectify this issue and are pushing to fix this issue soon. 

In an effort to appropriately determine the I-V performance of this transistor the terminal 

current must be computed. In the future, COMSOL should be releasing an update to improve the 

terminal current computation. This would greatly help in determining potential structural designs 

and doping profile that would generate a better on/off ratio. Additional improvements to this 

research would be performing a similar simulation in a three dimensional domain to include the 

depth. Next, additional research needs to be completed to help the GBFET achieve a similar off 

state as what silicon offers. An appropriate step would be in growing this transistor to obtain 

empirical data. This empirical data would provide sufficient data to support the transistor’s actual 

performance. After characterizing this transistor, this transistor should be included in CAD 

software such as Cadence to design the new wave of faster electronic devices. 
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Appendix 

 

 

Figure A-1 Electrical potential at Vgs=-1 V, Vds= 0 V and ND/NA= 4E18 1/cm
3 

 

Figure A-2 Electrical potential at Vgs=0 V, Vds=0 V, and ND/NA= 4E18 1/cm
3 
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Figure A-3 Electrical potential at Vgs=0 V, Vds=1 V, and ND/NA= 4E18 1/cm
3 

 

Figure A-4 Electron and hole plot at Vds=0 V and ND/NA= 4E18 1/cm
3 
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Figure A-5 Electron and hole plot at Vds=0 V and ND/NA= 4E18 1/cm
3
 

 

Figure A-6 Electrical potential at Vgs=-1 V, Vds= 1 V and ND/NA= 4 E18 1/cm
3 
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Figure A-7 Electrical potential at Vgs=0 V, Vds= 1 V and ND/NA= 4 E18 1/cm
3 

 

Figure A-8 Electrical potential at Vgs=1 V, Vds= 1 V and ND/NA= 4 E18 1/cm
3 
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Figure A-9 Electron and hole plot at Vds=1 V and ND/NA= 4 E18 1/cm
3 

 

Figure A-10 Electron and hole plot at Vds=1 V and ND/NA= 4 E18 1/cm
3
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Figure A-11 Electrical otential at Vgs=-1 V, Vds= 0 V and ND/NA= 8E18 1/cm
3 

 

Figure A-12 Electrical potential at Vgs=0 V, Vds=0 V, and ND/NA= 8E18 1/cm
3 
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Figure A-13 Electrical potential at Vgs=1 V, Vds=0 V, and ND/NA= 8E18 1/cm
3 

 

Figure A-14 Electron and hole plot at Vds=0 V and ND/NA= 8E18 1/cm
3
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Figure A-15 Electron and hole plot at Vds=0 V and ND/NA= 8E18 1/cm
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Figure A-16 Electrical potential at Vgs=-1 V, Vds= 1 V and ND/NA= 8E18 1/cm
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Figure A-17 Electrical potential at Vgs=0 V, Vds= 1 V and ND/NA= 8E18 1/cm
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Figure A-18 Electrical potential at Vgs=1 V, Vds= 1 V and ND/NA= 8E18 1/cm
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Figure A-19 Electron and hole plot at Vds=1 V and ND/NA= 8E18 1/cm
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Figure A-20 Electron and hole plot at Vds=1 V and ND/NA= 8E18 1/cm
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