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Abstract 

Modeling of contaminant transport in a subsurface environment by a numerical model deviates 

from the real world environment because of the highly heterogeneous nature of the subsurface 

environment. In this study, the data assimilation techniques are integrated with the numerical 

model and are applied to the subsurface environment to predict the contaminant transport. The 

Forward Time Center Space (FTCS) model is used as a numerical approach to solve the classical 

advection-dispersion-reaction transport equation and the Kalman Filter, Ensemble Kalman Filter 

(EnKF) and 3D Variational (3DVAR) analysis are used for data assimilation purpose. A hybrid 

scheme, termed as EnKF-3DVAR is developed using EnKF and 3DVAR analysis. The EnKF is 

a Monte Carlo based sequential data assimilation technique that divides the state vector into N 

number of ensembles rather than computing one state vector.  The 3DVAR analysis uses the 

EnKF mean state vector as the background state and uses a cost function to find out an optimal 

estimate of that EnKF mean state vector. The simulation is run using an ensemble size of 100 

members. A Root Mean Square Error (RMSE) profile is used to evaluate the prediction accuracy 

of the models. This study shows that state predictions are better for both the EnKF and EnKF-

3DVAR when compared to those of the numerical and KF solutions. The introduction of 

3DVAR analysis with EnKF is found to be effective in the reduction of the prediction errors. The 

EnKF-3DVAR model shows an error reduction of 22.3% from the EnKF solution. The mean 

RSME for the four models numerical, KF, EnKF and EnKF-3DVAR are 159.1 mg/L, 72.9 mg/L, 

17.5 mg/L and 13.6 mg/L respectively.  

 

Key words: Contaminant Transport; Kalman Filter; Ensemble Kalman Filter; Forward Time 

Center Space Method; 3D Variational Analysis; Root Mean Square Error.  



 
 

 

2 

CHAPTER 1 

Introduction 

Water is essential to all the living beings. Of all the water on earth about 97.5% is saline 

water and only 2.5% of the total water is fresh water. Other than glaciers and ice, groundwater is 

the largest available source of fresh water; about 30.1% of fresh water comes from the 

groundwater sources (Shiklomanov, 1993). With the increase of industrialization and other man 

made activities the groundwater is being polluted and as a result the quality of groundwater is 

deteriorating day by day. Increased demands for water have stimulated the development of 

groundwater resources. According to the national groundwater association (NGWA) and united 

states geological survey report (2005) groundwater contributed 26.4% of the nations water 

supply and 43.8% of the total population regularly depend on groundwater for drinking water 

and 79.6 billion gallons of groundwater was withdrawn daily. This fresh water supply is 

increasingly threatened by the increasing contamination of the groundwater. According to the 

recent study on the wells of the United states by Ruth et al. (2005), it is found that approximately 

50% of the wells are contaminated by the pathogens. Approximately 74 pesticides were cited in 

the groundwater of 38 states, of which most are carcinogenic; thus, it is very important to prevent 

and control the contamination of groundwater from these pollutants. For the better control and 

management of the groundwater contamination, the type and sources of pollutants and their 

behavior through the subsurface porous media needs to be evaluated efficiently. If we can 

efficiently evaluate the pollutant behavior through the porous media, we can better manage the 

groundwater system and prevent the pollution of groundwater.  

Fate and transport of contaminants in groundwater can be referred to the physical, 

chemical, and biological processes that impact the movement of contaminants from one point to 
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another and how they change with time. Modeling of contaminant transport in a subsurface 

environment gives us the idea of how the contaminants transport through the medium and change 

with time and space. The pollutant flow occurs in two processes i.e. advection where pollutant is 

transported with the flow of the groundwater and diffusion or hydrodynamic dispersion where 

the pollutants are diffused within the flow. The groundwater flow and the transport of pollutant 

can be considered as a practical problem. As the soil formations vary rapidly, it is very difficult 

to get the exact information about the subsurface reservoir system and how the pollutant would 

behave in the subsurface system. Also, there is lot of uncertainties involved in solving pollutant 

transport problems. Therefore, the results in a pollutant transport model may become erroneous 

due to the randomness of the system and also if the assumptions are made inaccurately. 

Moreover, the pollutant prediction in the groundwater and the transport of pollutant in the 

subsurface system depends on the widely varying information of the heterogenic aquifer system, 

reaction and decay mechanism of the system and advection and dispersion mechanism of the 

system. Thus, it has become a challenge for the engineers to accurately predict the pollutant 

transport into the subsurface environment.  

Various analytical and numerical approaches are used to evaluate the contaminant 

transport problem in the subsurface media. These analytical and numerical models however give 

large errors and cannot predict the transport problem correctly due to their limitations to predict 

the randomness and heterogeneity of the subsurface medium. Thus it is impossible to attain a 

perfect analytical or numerical groundwater flow and transport model, as even a little error will 

grow incorrigibly with time. If these predictions from numerical models are used with data 

assimilation techniques the efficiency of the contaminant transport models can be improved.  
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Data assimilation can be defined as the technique of analyzing of a state by incorporating 

the observation data into the models (Bouttier and Courtier, 2001). Data assimilation techniques 

proceed by analysis cycles. In each cycle of the analysis, the state estimates from numerical 

models are updated by incorporating the observations from current state. Filtering techniques and 

its extensions when combined with numerical approaches can give us cost-effective results. Both 

the Kalman Filter and its extension Ensemble Kalman Filter are used effectively in subsurface 

transport problems. Kalman Filter essentially consists a set of mathematical equations that uses a 

predictor-corrector type estimator that minimizes the estimated error covariance (Welch and 

Bishop, 1995). It takes a prior estimation and observation measurements into consideration to 

compute the best prediction for a state variable. By calculating the covariances of state and 

observations these equations are solved. The Ensemble Kalman Filter is an extension of the 

discrete Kalman Filter technique and is first introduced by Evensen (1994). It is developed to 

handle more dynamic and uncertain behavior of the problems. It is also a sequential based data 

assimilation technique that uses Monte Carlo sampling method. In weather forecasting models 

there are significant uses of variational analysis as a data assimilation tool. Among the 

variational data assimilation techniques, 3D Variational (3DVAR) analysis is used numerously in 

weather prediction models and is found to be effective improving the results when combined 

with other models. 3DVAR uses a cost minimization function to find out an approximate optimal 

analysis. The conceptual simplicity of the 3DVAR analysis makes it popular. It uses the 

background state and background error covariance to calculate the analysis. It is important to 

design the background error covariance matrix properly. In practice, it has to be symmetric 

positive definite and realistic when expressed in terms of observation parameters as it guides the 

analysis (Bouttier and Courtier, 2001). 
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The objective of this study is to develop a three dimensional subsurface contaminant 

transport model using 3D Variational analysis and Ensemble Kalman Filter (EnKF-3DVAR) for 

continuous pollutant input and to compare the results with a simulated true solution. The study 

also aims to compare the EnKF-3DVAR solution with Numerical, Kalman Filter and Ensemble 

Kalman Filter solutions and to determine the prediction accuracy of the model.  
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CHAPTER 2 

Literature Review 

Geer (1982) used Kalman Filter to simulate one-dimensional phreatic groundwater flow 

where he showed a relationship between interpolation confidence of groundwater levels to the 

observation wells distance. In his study with KF for a nuclear waste management program, 

Pimentel et al. (1982) identified the aquifer parameters from noisy measurement data by taking 

on-line measurements from a single observation well. Geer et al. (1991) used KF with a 

deterministic numerical model to improve the uncertainties in numerical groundwater modeling. 

They performed the assimilation of spatial and temporal measure of hydraulic head by 

combining the KF with a deterministic groundwater model. Zou and Parr (1995) estimated the 

optimal concentration of a two dimensional pollutant plume in subsurface environment by using 

the KF with the state-space estimation technique. Chang and Latif (2009) modeled the one 

dimensional transport of benzene leachate from industrial landfill to the subsurface by using KF 

and particle filtering. It was found that KF gave 80% less error in comparison to conventional 

numerical approach. Walker et al. (2001) evaluated a one-dimensional soil moisture and 

temperature profile by comparing the KF and direct insertion scheme.  

Evensen and Leeuwen (1996) assimilated EnKF with the Geosat altimeter data into a 

two-layer quasigeostrophic ocean model to  study a western boundary current flowing along the 

east coast of South Africa. Houtekamer et al. (1998) used EnKF technique to assimilate data for 

an idealized environment. It was found that results were more accurate when data were 

assimilated with EnKF and the error decreased with the increase of the size of the ensemble 

members. They concluded by saying that 100 number of ensemble members were sufficient to 

describe the correlation between the parameters accurately. Lisæter et al. (2003) developed a 
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model by coupling EnKF with ice-ocean model where they used observed variable from passive 

microwave sensor data. Annan and Hargreaves (2004) demonstrated in a oceanographic model 

that the iterative EnKF efficiently performed the estimation of multivariate parameter in the 

presence of noisy environment. Wen and Chen (2005) estimated the reservoir model parameters 

and their associated uncertainties by using EnKF. The model continuously updated the each 

ensemble member to match the real-time data. Their results showed that a large number of 

measurements were needed to obtain a stable performance of the model. Moradkhani et al. 

(2005) used EnKF to develop a dual state-parameter estimation approach. The EnKF technique 

was used to sequentially estimate the parameters and state variables of a rainfall-runoff model. 

Vrugt et al. (2005) implemented a joint parameter and state estimation method for improved 

inverse modeling in subsurface flow and transport. The new method was named as Simultaneous 

Optimization and Data Assimilation (SODA). They verified this new approach with a one-

dimensional subsurface conceptualization and EnKF was used as a recursive data assimilation 

technique to update model states. Huang et al. (2008b) demonstrated the effectiveness of 

assimilating in situ and remotely sensed observation data with EnKF in a one-dimensional land 

surface model. Huang et al. (2008a) used EnKF and Common Land Model to develop a one-

dimensional land data assimilation scheme and the new scheme was found to  improve the 

estimation of soil temperature profile. Huang et al. (2009) calibrated a heterogeneous 

conductivity field by using EnKF approach and improved solute transport prediction in 

subsurface with an unknown contaminant source. They performed their numerical experiment in 

a two dimensional heterogeneous flow and transport field. Their study results indicated that the 

EnKF method significantly improved the estimation of hydraulic conductivity distribution and 

solute transport prediction by assimilating hydraulic head measurements with a known initial 
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solute condition.  

Hamill and Snyder (2000) demonstrated a hybrid approach of EnKF with 3D Variational 

(3DVAR) analysis using the quasigeostrophic model for perfect-model assumptions. They 

replaced the background-error covariance matrix with weighted sum of the 3DVAR background-

error covariance. They found that the system gave good results for large ensemble size when the 

background error covariances were calculated from ensemble members. Thornhill et al. (2012) 

modeled the hydrodynamic and sediment transport of Morecambe Bay, UK using the integration 

of a Morpho-dynamic model with the 3DVAR data assimilation technique to assess the 

prediction efficiency of the newly coupled model in comparison with the model stand alone 

performance. They found that the calculated mean square error (MSE) and brier score showed a 

significant improvement for the data assimilation technique with 3DVAR analysis over the 

model stand-alone performance. The assimilation with 3DVAR analysis reduced the error 

substantially and improved the brier score to 0.262 from model stand-alone performance. Gao et 

al. (2006) derived a mathematical design of 3DVAR land data assimilation scheme (LDAS) with 

ECMWF model for numerical weather and climate models in China. Assimilating a single point 

observational datum into the background setup they tested the capacity of this LDAS scheme. 

The 3DVAR LDAS showed improvement in the background estimates with the observations of 

air temperature and the assimilation outputs showed better agreement with the air temperature 

variation trend than the background. It was also found that the assimilation scheme described the 

air temperature more accurately. The root mean square error of assimilation scheme was found to 

be 1.52, lower than that of background 2.65. Wang (2011) used a hybrid ensemble transform 

Kalman filter 3DVAR data assimilation scheme to track two major hurricanes forecasts, Ike and 

Gustav over the Gulf of Mexico in a weather research and forecasting (WRF) model. The flow 
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dependent covariances were generated by the ensemble transform Kalman filter to be used with 

the hybrid assimilation scheme whereas 3DVAR used the static background covariance. The root 

mean square error of the tracking of the hurricanes by the hybrid data assimilation scheme was 

smaller than that by the 3DVAR system gaining 1-2 days of lead time for hybrid method.  The 

improvement was achieved by using the flow dependent error covariance generated by the 

ensemble transform Kalman filter. The flow dependent background error covariance provided 

the estimate of the uncertainty of the position of the hurricane. Wang et al. (2008a, 2008b) 

developed a hybrid Ensemble Transform Kalman Filter (ETKF)-3DVAR data assimilation 

scheme for Weather Research and Forecasting Model. Unlike WRF-3DVAR that used a static 

covariance, the hybrid system incorporated ensemble covariance with the static covariance to 

calculate the flow dependent forecast error statistics. In part-1 of his study he tested the hybrid 

scheme with system simulated observing system experiments under the perfect model 

assumptions. With using 50 ensemble members the hybrid system produced more accurate 

analyses over the 3DVAR analyses, which was about 15%-20%. Improvement was found to be 

larger over the region where data ware sparsely distributed than the densely data distributed 

regions. In part-2 for a real life experiments, a domain of North America was considered with a 

grid spacing of 200km. The hybrid system produced a better results and less error than that of the 

3DVAR system in a 12h forecasts. The hybrid system produced 9%-11% improvement for the 

wind forecasting and 3% improvement for temperature forecasting over 3DVAR system. In their 

study Barker et al. (2004) performed a case study to illustrate the 3DVAR response to a single 

surface pressure observation where a significant improvement was found for the wind 

forecasting though the improvement for temperature and humidity was marginal. Hsiao et al. 

(2012) evaluated the impact of outer loop and partial cycling with the WRF3DVAR by analyzing 
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78 forecasts of three typhoons during 2008 for Taiwan’s Central Weather Bureau. The 

WRF3DVAR reduced typhoon track forecast errors by more than 30%. The use of the outer loop 

allowed more observations and produced more accurate analyses. On the other hand, use of the 

partial cycling showed a slight improvement in typhoon track. Xiao et al. (2005) evaluated the 

effect of Doppler velocities on heavy rainfall by assimilating radial velocities in 3DVAR 

analysis scheme with the fifth generation Pennsylvania State University-NCAR Mesoscale 

Model (MM5). The assimilation of vertical velocity component of the Doppler radial velocity 

observation was adopted through the introduction of vertical velocity increments and forecasts of 

cloud water and rainwater were used in the 3DVAR background. The developed system was 

found to be producing less error compared to the experimental results without radar data 

assimilation. The wind and vertical velocity analysis were found to be reasonable with Doppler 

velocity data assimilation. The results for rainfall forecasts were also better and well defined 

when the radar velocity data were assimilated with 3DVAR. In their study Xiong et al. (2013) 

developed a hybrid scheme called Breeding Growing Mode (BGM)-3DVAR data assimilation 

system for heavy rain forecasting. They used BGM-ensemble technique as background filed and 

flow dependent background error covariance for the hybrid scheme to produce a better rain 

forecast. They showed that successful inclusion of the background field was very important as 

almost 85% of the information would come from it and the transfer of the observational 

information form one time step to the next was very crucial as it would influence the analysis.  

The intention of this paper is to apply 3DVAR analysis with EnKF to develop a hybrid 

three dimensional contaminant transport model and evaluate the performance of this model for a 

continuous pollutant source in subsurface environment. 
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CHAPTER 3 

Methodology 

3.1 Three Dimensional Contaminant Transport Equation 

The classical advection-dispersion-reaction equation with flow dominantly in the x-

direction is used to represent the solute transport in a three-dimensional heterogeneous saturated 

porous media. The advection-dispersion-reaction equation (Schwartz and Zhang, 2004) is given 

below. 

R ∂c
∂t

= Dx
∂2c
∂x 2

+Dy

∂2c
∂y 2

+Dz
∂2c
∂z 2

−v (x ) ∂c
∂x

−κRc         (1)  

where,  

R = Retardation factor, dimensionless;  

c = solute concentration, mg/l;  

= time, day; 

Dx, Dy and Dz = hydrodynamic dispersions in the x, y, and z directions, respectively, m2/day 

V(x) =linear pore water velocity in X direction, m/day; and  

k=decay constant of pollutants, /day. 

The boundary conditions with a continuous pollutant source can be given as 

 

Here is the pollutant input point and is the continuous input pollutant 

concentration, mg/l.  

t

c (xo , yo , zo ,t ) =Co ;

∂c
∂x

=
∂c
∂y

=
∂c
∂z

= 0,for x = y = z =∞

( , , )o o ox y z oC
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3.2 Analytical Solution 

For the three dimensional subsurface contaminant transport model for continuous 

pollutant source, the analytical solution for the equation (1) is obtained from the Domenico and 

Schwartz (1997) equation. The solution is 

C(x, y, z, t) = C0

8
e
xvx
2Dx

1− 1+4kDx /vx
2( )

1/2"

#$
%

&'erfc
x − vxt / Rf 1+ 4kDx / vx

2( )
1/2

2 Dxt / R

(

)

*
*

+

,

-
-

×
1
2
erf y+Y / 2

2(Dyx / vx )
1/2

"

#
$
$

%

&
'
'
− erf y−Y / 2

2(Dyx / vx )
1/2

"

#
$
$

%

&
'
'

/
0
1

21

3
4
1

51

×
1
2
erf z+ Z

2(Dzx / vx )
1/2

"

#
$

%

&
'− erf

z− Z
2(Dzx / vx )

1/2

"

#
$

%

&
'

/
0
1

21

3
4
1

51
                                   (2)

 

where, 

Co = input pollutant concentration (mg/l) 

Vx = ground-water velocity in the x direction 

Y= width of waste source in the saturated zone (L) 

Z= depth of waste source in the saturated zone (L) 

erf= error function 

erfc= complementary error function 

3.3 Simulated True Solution  

The analytical solution for transport model is used in this study to generate the true 

solution. The true solution is made by adding 5% random Gaussian error with the analytical 

solution. This simulated true solution is then used as a reference dataset to compare the model 

predictions. 
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3.4 Numerical Model  

The Forward Time Central Space (FTCS) finite difference approach is used to solve the 

three dimensional advection-dispersion-reaction transport equation (Equation-1). This approach 

is used by Zou and Parr (1995) to predict contaminant transport in a two dimensional field. In 

this study the vertical terms for three-dimensional field in z-axis have been added.  

Let C(i,j,k,t) = C(xi, yj, zk, t), we can get 

∂c
∂t

≈
C (i , j ,k ,t +1)−C (i , j ,k ,t )

dt
                                             (3)

∂c
∂x

≈
C (i +1, j ,k ,t )−C (i −1, j ,k ,t )

2dx
                                        (4)

∂2c
∂x 2

≈
C (i +1, j ,k ,t )− 2C (i , j ,k ,t )+C (i −1, j ,k ,t )

dx 2
              (5)

 

Similarly, 

∂2c
∂y 2

≈
C (i , j +1,k ,t )− 2C (i , j ,k ,t )+C (i , j −1,k ,t )

dy 2
              (6)

∂2c
∂z 2

≈
C (i , j ,k ,+1t )− 2C (i , j ,k ,t )+C (i , j ,k −1,t )

dz 2
               (7)

 

and 

kC =
C (i , j ,k ,t +1)+C (i , j ,k ,t )

2
                                             (8)

 

Substituting these equation into equation (2) we can get

C (i , j ,k ,t ) = b1C (i −1, j ,k ,t )+b2C (i , j ,k ,t )+b3C (i +1, j ,k ,t )+b4C (i , j −1,k ,t )+b5C (i , j +1,k ,t )
                      +b6C (i , j ,k −1,t )+b7C (i , j ,k +1,t )                           (9)
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where, 

b1 =
Dxdt
Rdx 2 +

Vxdt
2Rdx

!

"
#

$

%
& 1+ kdt

2
!

"
#

$

%
&                                      (10)

b2 = 1− 2Dxdt
Rdx 2 −

2Dydt
Rdy 2 −

2Dzdt
Rdz 2 −

kdt
2

!

"
##

$

%
&& 1+ kdt

2
!

"
#

$

%
&     (11)

b3 =
Dxdt
Rdx 2 −

Vxdt
2Rdx

!

"
#

$

%
& 1+ kdt

2
!

"
#

$

%
&                                      (12)

b4 = b5 =
Dydt
Rdy 2

!

"
##

$

%
&& 1+ kdt

2
!

"
#

$

%
&                                            (13)

b6 = b7 =
Dzdt
Rdz 2

!

"
#

$

%
& 1+ kdt

2
!

"
#

$

%
&                                             (14)

b2 = 1− 2Dxdt
Rdx 2 −

2Dydt
Rdy 2 −

2Dzdt
Rdz 2 −

kdt
2

!

"
##

$

%
&& 1+ kdt

2
!

"
#

$

%
&      (15)

b3 =
Dxdt
Rdx 2 −

Vxdt
2Rdx

!

"
#

$

%
& 1+ kdt

2
!

"
#

$

%
&                                      (16)

b4 = b5 =
Dydt
Rdy 2

!

"
##

$

%
&& 1+ kdt

2
!

"
#

$

%
&                                            (17)

b6 = b7 =
Dzdt
Rdz 2

!

"
#

$

%
& 1+ kdt

2
!

"
#

$

%
&                                            (18)

 

After time-space discretization in the three dimensional space, the linear system of equations can 

be written in the following vector-matrix form 

Ct+1 = AtCt (19)  

where,  

Ct+1 = solute concentration at time step t+1 at all nodes 

Ct  = solute concentration at time step t at all nodes,  

At = linear operator or state transition matrix that contains the parameter for model. 
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For each time period dt, the concentration vector to the next step (Ct+1) is calculated by 

multiplying the state transition matrix by the previous concentration vector (Ct). The boundary 

conditions are adopted in such a way that the effects of adjacent nodes are neglected in case of 

determining the concentration of the sides of the aquifer such as top and lower boundaries as 

there did not exist all directional flow. So the state transition matrix is modified for top and 

bottom layer as the effect of coefficient b7 is omitted while multiplication. So to adjust the state 

transition matrix to calculate for the effect of b7 for theses cases while multiplying the value of 

b2 is modified to (b2+b7). The equation can be re-expressed with a new denotation by 

xt+1 = At × xt (20)   

xt+1 =  the state vector at time step t+1 at all nodes 

xt  =  the state vector at time step t at all nodes,  

The stability and convergence criteria for this numerical model are as follows 

       and                             (21) 

dx, dy, dz are the space discretization along the X, Y and Z directions 

dt is the time discretization 

Dx, Dy and Dz  are dispersion coefficients along the X, Y and Z directions 

Vx is the velocity of groundwater movement along the X direction 

For highly uncertain characteristics of the real world transport problems the state estimate 

for data assimilation process can be represented as numerical dynamics with added noise to it 

(Pham, 2001). 

xt+1 = At xt + pt (22)  

xt+1 = state vector at time t+1  

dx <
2Dx
Vx

dt < 0.5R
Dx
dx 2

+
Dy

dy 2
+
Dz
dz 2

!

"
##

$

%
&&
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xt = state vector at time t 

At = linear operator containing all the parameter values or state transition matrix which transform 

the state vectors from one time step to the next  

pt = random noise called process noise.  

Similarly for observation data we can write, 

z t+1 = H tz t +ot (23)  

zt+1 = observation vector at time t+1  

zt = observation vector at time t 

Ht = observation data pattern matrix  

ot = random noise called measurement noise 

3.5 Kalman Filter 

Kalman filter essentially contains a set of mathematical equations that uses the 

observation data to produce the probable best analysis of a state estimate. The algorithm of 

Kalman filtering works in a two-step process. In first step called the prediction step, the filter 

estimates the current state and error covariance estimates. Then in second stage called correction, 

it incorporates the observation data with the current state to update the result. These estimates are 

updated using a weighted average called Kalman gain giving more weight to the estimates with 

higher certainty. Being a recursive process it uses only the present measurements and previous 

state estimates and does not need all the previous information to predict the state. The equation 

for the Kalman filtering after adjustment can be written as 

xt (+) = [xt (−)+ K t (z t −Hx t (−)] (24)  
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where, 

xt(+) = the updated state after the adjustment 

xt(-) = the predicted state before the adjustment 

Kt = the Kalman gain  

The Kalman gain matrix is be found from the following equation 

Kt = Pt (−)H
T [HPt (−)H

T + Rt ]
−1 (25)  

where, 

Pt(+) = the optimal state covariance matrix 

()T and ()- denote the transpose and inverse of matrix 

Pt is calculated from the following recursive equation, 

Pt (+) = Pt (−)− Kt HPt (−) = (I − Kt H )Pt (−) (26)

Pt (−) = APt (+)A
T Qt

 

I = identity matrix 

Figure-1 (Chang and Latif, 2009) shows the two stage operations of the Kalman Filter. 

 

Figure 1: The two stage Kalman Filter Process  
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3.6 Ensemble Kalman Filter  

The Ensemble Kalman Filter (EnKF) is an extension of the discrete Kalman filtering 

technique, developed to handle more dynamic and uncertain behavior of the problems that are 

non-linear in characteristics. It is a sequential based data assimilation technique proposed by 

Evensen (1994) that uses Monte Carlo sampling method so that the traditional and 

computationally expensive approximate error covariance matrixes could be avoided. Other than 

calculating only one state vector, this approach divides the one state vector into N number of 

samples or ensembles, analyzes each ensemble members and then takes the mean of the 

ensembles as the final state vector for which the approach is termed as Ensemble technique. 

According to Lisæter et al. (2003) using the information of a certain time, in this 

approach an ensemble of model states is run in parallel when the analysis is carried in the 

discrete time. As in discrete Kalman filtering observations are assimilated sequentially with 

model state forward in time whereas in EnKF every time a new data set is created for forward 

time integration and as the analysis is done recursively there is no need for storing all the 

previous time step data sets. In EnKF, posterior estimate of the previous step is used to calculate 

the prior state estimation for the next time step and then the observation of the current step is 

introduced to update the prior estimate. In the EnKF technique it runs on multiple state vectors, 

which are generated from a first guess state vector. These multiple vectors that are generated 

artificially called ensemble members. The mean of these artificially generated ensemble 

members are taken to be the first guess. The generation of these ensemble members is created 

using the Monte Carlo sampling method. The first guess is then perturbed with known statistical 

variables to generate the ensemble members. In this approach for each time sequence EnKF 

gives two estimates. One is called prior estimate or model prediction and the posterior estimate 
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or model analysis. After model prediction is calculated the observation data is incorporated to 

update the prior estimate and then the posterior state is calculated. The posterior state is the final 

analysis of the EnKF. Figure-2 shows the operation of sequential Ensemble Kalman Filter. 

 

Figure 2: Ensemble Kalman Filter Operation 

The steps and processes of Ensemble Kalman Filter are described as follows as described 

in Evensen (2003, 2004). An ensemble state matrix after Monte Carlo sampling with N number 

of ensembles can states as  

xi ∈ℜn ,(i =1,......N )  

X t |t−1 = [x1,x2 ,...,xN ]∈ℜn×N (27)  

where, n is the size of model state vector.  

The ensemble mean state can be calculated as 

X t |t−1 = X t |t−1B       (28)  

where, 

X t |t−1 is the ensemble mean matrix and  
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B ∈ℜN ×N is the matrix where each element is equal to 1/N.  

The ensemble residual matrix can be defined as, 

Φ = X t |t−1 − X t |t−1 (29)  

The prior ensemble covariance matrix Pe ,t |t−1 ∈ℜn×n can be defined as  

Pe ,t |t−1 =
ΦΦT

N −1
= Pe (30)  

Now let the observation vector to be z ∈ℜm with m number of observation grid points. 

Now we also can generate ensemble observation matrices with the addition of noises. For N 

number of ensemble member, the perturbed observations are, 

z j = z +ξ j , j =1,...,N (31)
 

We can write, 

Ze = [z1, z2 ,..., zN ]∈ℜm×N    (32)  

Now the mean of the observation is  

Z t |t−1 = Z t |t−1B (33)  

The observation residual can be calculated as 

ξ = Z t |t−1 − Z t |t−1      (34)  

 The residual of observation  

γ = [ξ1,ξ2 ,...,ξN ]∈ℜm×N (35)  

Now the ensemble observation error covariance matrix can be represented as 

Re =
γγ T

N −1
       (36)  
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The ensemble Kalman gain can be calculated by 

Ke = PeH
T Se

−1 (37)  

where, 

H = observation operator; 

Se = the ensemble innovation covariance matrix, can be expressed by 

Se = HPeH
T + Re (38)  

The residual matrix is defined as 

!Z t |t−1 = Ze −HX t |t−1 (39)  

Now we can get the final posterior estimate of the state matrix as follows 

X t |t = X t |t−1 + Ke "Z t |t−1
= X t |t−1 + PeH

T Se
−1 "Z t |t−1

= X t |t−1 + PeH
T (HPeH

T + Re )
−1 "Z t |t−1

= X t |t−1 +ΦΦ
T H T (HEE T H T +γγ T )−1 "Z t |t−1 (40)  

X t |t is the posterior estimate of the prior state X t |t−1 .  

The final equation for calculating the posterior matrix involves inversion of covariance 

matrices, which has the potentiality of producing the singularity issues. To overcome with this 

singularity problems, Evensen (2003) prescribed a technique called pseudo-inverse. According to 

his study, the eigenvalue decomposition has been performed to find the inverse or pseudo inverse 

even if the matrix is singular. 

(H ΦΦT H T +γγ T )−1 = DΛ−1DT ,∈ℜm×m (41)  

The rank of DΛ−1DT is less than or equal to N and, therefore,
 
Λ  will have N or less non-zero 

eigenvalues.  
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For uncorrelated measurement error, the following is valid (Evensen, 2003) 

(H ΦΦT H T +γγ T ) = (H Φ+γ )(H Φ+γ )T (42)  

The singular value decomposition (SVD) of the matrix, 

(H Φ+γ ) =U ΓV T  

(H Φ+γ )(H Φ+γ )T =U ΓV TTV ΓTU T =U ΓI ΓTU T =U ΓΓTU T (43)  

We assume the number of observation grid points is less than the ensemble members, m<N. 

For m<N, 

(H ΦΦT H T +γγ T ) =U ΓΓTU =U ΛU T (44)  

And the posterior ensemble state matrix  

X t |t = X t |t−1 +ΦΦ
T H TU Λ−1U T $Z t |t−1

 = X t |t−1 + E (H Φ)T U Λ−1U T $Z t |t−1          (45)
 

The above equation can be divided into a more computationally efficient scheme by the 

following sequential steps 

X 1 = Λ
−1U T       ∈ℜN ×m  (46)

X 2 = X 1 &Z t |t−1       ∈ℜN ×m  (47)

X 3 =UX 2     ∈ℜm×N (48)

X 4 = E (H Φ)T   ∈ℜn×m (49)

X t |t = X t |t−1 + X 4X 3   ∈ℜn×N (50)

 

And the ensembles mean posterior state can be found as 

X t |t = X t |t B (51)  

Any column of X t |t  gives the posterior estimate  

 

m N×

x! t |t .
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The posterior ensemble covariance matrix can be calculated as 

Pe ,t |t =
1
N
(X t |t − X t |t )(X t |t − X t |t )T (52)  

This posterior state ensemble matrix at time step t, X t |t  is then used to predict the prior state at 

time step t+1 by multiplying with the state transition operator At , 

X t+1|t = At X t |t      (53)  

3.7 3D Variational Analysis 

The concept of 3D Variational analysis is to find an approximate optimal analysis by 

minimizing a cost function. The principal lies in the fact that it completely avoids the calculation 

of computationally expensive Kalman Gain by looking for an approximate solution by the 

minimization function (Bouttier and Courtier, 2001). As described in Hamill and Snyder (2000) 

the cost function for 3D Variational analysis can be written as, 

J (x ) = 1
2
[(xa − xb )

T Be
−1(xa − xb )+ (zt −Hxa )

T Re
−1(zt −Hxa )] (54)

 

where, 

xa = analysis at time step t 

xb = background state at time step t 

Be = background error covariance matrix 

H = observation data pattern matrix  

Re = observation error covariance matrix 

zt = observation at time step t 

Figure-3 below shows the minimization process of 3D VAR analysis (Bouttier and Courtier, 

2001). 
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Figure 3: Schematic representation of 3D Variational cost-function minimization 
 

The quadratic cost function is paraboloid in shape and has the optimum solution at xa. 

The minimization function operates by doing several line-search to find the best possible value 

of x where cost function is minimum. In practice the background state is assumed to be the initial 

point or first guess. Although the analysis will not depend on the first guess if the minimization 

process progresses effectively. The difficulty with the 3D Variational analysis is that its 

efficiency depends on properly defining the background error covariance matrix Be as it directs 

the solution for each time step and it needs to be positive definite to be invertible. In our study 

prior covariance matrix from Ensemble Kalman Filter solution is used as background error 

covariance matrix. The observation covariance matrix Re is considered as a block diagonal 

matrix.  
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The gradient of the cost function w.r.t the x is,  

dJ (x ) = (Be
−1 +H T Re

−1H )(xa − xb )−H
T Re

−1(zt −Hxt ) (55)
 

Now for minimum J(x), we can set dJ(x=xa)=0 we can write the equation as   

(Be
−1 +H T Re

−1H )(xa − xb ) = H
T Re

−1(zt −Hxt ) (56)
 

After rearranging the terms we can get the final equation as
 

xa = xb + (Be
−1 +H T Re

−1H )−1H T Re
−1(zt −Hxt ) (57)

 

If we write the equation in terms of time steps as 
 

x
t+1t

= x
t t
+ (Be

−1 +H T Re
−1H )−1H T Re

−1(zt −Hxt ) (58)

 

In EnKF-3DVAR hybrid scheme, the ensemble mean forecast from EnKF model is 

updated by the 3DVAR optimization process to get the final analysis. For this study with smaller 

domain space we perform the direct inversion to get the final analysis rather than an iterative 

approach.  

3.8 The Efficiency of The Models 

The prediction accuracy of the models is evaluated by determining the Root Mean Square 

Error (RMSE). The RMSE can be calculated form the following formula. 

RMSE =
1
N -1

[Ct (x , y , z ,t ) -Cm(x , y , z ,t )
i , j ,k
∑ ]2 (59)

 

where, 

N= Number of nodes 

Ct= True/Reference Solution 

Cm= Model Solution 
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In this study, we consider a three dimensional space with five layers. The numbers of grid 

points in X, Y and Z-directions are 10, 10 and 5 respectively and a total of 10x10x5=500 nodes. 

The space discretization in X, Y directions are 2.5 meters and in Z direction is 2.0 meter. That is, 

the total domain area is 25 meter by 25 meter with a depth of 10 meter. The flow of system is 

considered to be only in the X-direction and flows in other directions are neglected. Dispersions 

in all three directions are also considered. The model simulation is run for total 30 time steps 

with each time step of 1 day. The initial pollutant (Co) is introduced in the first layer with the 

input point (x, y, z)=(1, 5, 1). The table-1 below shows the parameters used (Cheng, 2002) for 

the three dimensional contaminant transport model.  

Table 1: Parameters for three dimensional groundwater contaminant transport model  

No. of grid points along X-direction 10 
No. of grid points along Y-direction 10 
No. of grid points along Z-direction 5 
Total number of Nodes 500 
Grid interval along X-direction, dx 2.5m 
Grid interval along Y-direction, dy 2.5m 
Grid interval along Z-direction, dz 2.0m 
Total Domain Space 25mx25mx10m 
Velocity in X-direction, Vx 0.5 m/day 
Dispersion in X-direction, Dx 1.0 m2/day 
Dispersion in X-direction, Dy 0.5 m2/day 
Dispersion in X-direction, Dz 0.7 m2/day 
Retardation Factor, R 1.5 
Total Assimilation Time Step, tn 30 
Each Time Step Interval, dt 1 day 
Total Assimilation Time 30 days 
Process Noise 10% 
Observation Noise 2.5% 
Total Ensemble Members 100 
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CHAPTER 4 

Results and Discussion 

In this simulation the simulated results from the analytical solution is termed as analytical 

solution, which is used to generate our simulated reference or “True Solution”. The numerical 

solution is termed as “Numerical Solution”, Kalman Filter as “KF Solution”, Ensemble Kalman 

Filter Solution as “EnKF Solution” and Ensemble Kalman Filter with 3D Variational analysis 

solution as “EnKF-3DVAR Solution”. The results from our study are presented in graphical 

form. For this study we plot two-dimensional contour plots.  

Figure. 4 to Figure-11 below show the concentration contour profile of the pollutants at 

beginning time steps (time step 5 and time step 10).  

 

Figure 4: Contour profile for True Solution vs Numerical Solution at time step 5. 
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Figure 5: Contour profile for True Solution vs KF Solution at time step 5. 

 

Figure 6: Contour profile for True Solution vs EnKF Solution at time step 5. 
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Figure 7: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 5 

 

Figure 8: Contour profile for True Solution vs Numerical Solution at time step 10 
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Figure 9: Contour profile for True Solution vs KF Solution at time step 10 

 

Figure 10: Contour profile for True Solution vs EnKF Solution at time step 10 
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Figure 11: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 10 

It is found that at time step 5 the numerical solution moves faster than the simulated true 

solution and it also gives concentration contour values higher than the true solution. Though time 

step 5 is the beginning stage of the data assimilation, the KF, EnKF and EnKF-3DVAR solution 

start to evaluate the real situation by incorporating the observation data into the system that 

eventually lower the concentration values for these models. At the beginning time step the KF 

model shows some system noise around the domain space whereas the EnKF and EnKF-3DVAR 

solution give better contour shapes.  To understand the change of the pollutant concentration 

with time, the concentration contour profile for the intermediate time steps (time step 15, 20, and 

25) for all the models have been presented in figures 12 to 23.  
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Figure 12: Contour profile for True Solution vs Numerical Solution at time step 15 

 

Figure 13: Contour profile for True Solution vs KF Solution at time step 15 
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Figure 14: Contour profile for True Solution vs EnKF Solution at time step 15 

 

Figure 15: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 15 
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Figure 16: Contour profile for True Solution vs Numerical Solution at time step 20 

 

Figure 17: Contour profile for True Solution vs KF Solution at time step 20 
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Figure 18: Contour profile for True Solution vs EnKF Solution at time step 20 

 

Figure 19: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 20 
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Figure 20: Contour profile for True Solution vs Numerical Solution at time step 25 

 

Figure 21: Contour profile for True Solution vs KF Solution at time step 25 
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Figure 22: Contour profile for True Solution vs EnKF Solution at time step 25 

 

Figure 23: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 25 
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In the intermediate time steps we can see that as the time progresses, the numerical 

solution moved more away than the true solution. It also gives a uniform concentration profile in 

comparison with the irregular shape of simulated true solution. The contour shapes are closer for 

KF solution in comparison with the numerical solution but the KF solution gives much higher 

concentration values compared to the true values at the same levels. The contour profiles of 

EnKF and EnKF-3DVAR solution are much closer to the simulated true solution and also the 

concentration values are closer to the true solution. The EnKF-3DVAR has a good improvement 

over the EnKF solution giving the contour shapes much better and also the concentration range is 

closer to true solution in comparison with the other models. This is because with the progress of 

time more observation data are being incorporated in these models and as the numerical solution 

cannot incorporate the observation data it fails to evaluate the real world condition and gives a 

regular pattern of the contour lines. Figures 24 to 27 show the model predictions of the final time 

step simulation.  

 

Figure 24: Contour profile for True Solution vs Numerical Solution at time step 30 
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Figure 25: Contour profile for True Solution vs KF Solution at time step 30  

 

Figure 26: Contour profile for True Solution vs EnKF Solution at time step 30 
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Figure 27: Contour profile for True Solution vs EnKF-3DVAR Solution at time step 30 

In final time step we can see that at all five layers, EnKF-3DVAR evaluates the best 

contour profiles and have closer concentration values as the simulated true solution. The EnKF 

solution on the other hand also has good contour shapes although at layer 3 it gives some a little 

lower concentration values compared to the true solution. The KF solution is found to give 

concentration profile for lower layers (layer 3, 4 and5) that has low concentration ranges but it 

gives much higher predictions in top layers and also the contour profiles are more uniform. On 

the other hand the numerical approach gives high concentration values at all the 5 layers.  

In this study we use sparse observation points. While abundant and large sampling points 

gives higher predictability of the model, sparse observation points are found to be economical 

and practical as in real life problems for subsurface systems there are very few numbers of 

observation wells are available and the installation of observation wells are expensive (Ferreyra 

et al., 2002). Graham and McLaughlin (1991) and Huang et al. (2009) used a small number of 
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observation points located in high concentration uncertainty zones and produced a good 

estimates. Unlike them and to make it more realistic we also use only 45 of 500 nodal points as 

observation points located sparsely (figure 28) at different concentration points and still our 

model produce good results as shown in the above figures. 

 

Figure 28: 3D domain space showing the observation locations and pollutant input point 

To compare the accuracy of the results of different approaches, a RMSE profile is 

plotted. To evaluate the randomness of the groundwater and pollutant transport system the 

simulated true solution is generated in a way with addition of random noise such that it gives a 

new and different solution with each model run. Figure 29 shows the RMSE profile for all 

different models at all layer for all time steps. It is found that the error in the numerical approach 

increases with time, which is due to the fact that for a continuous pollutant source, more 

pollutants are introduced to the system at each time step and the numerical model fails to 
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incorporate the field data. But with the progress of simulation the KF, EnkF and EnKF-3DVAR 

solutions showed a significant reduction of error from the numerical model.  

 

Figure 29: RMSE profile at all layers 

The Kalman filter gives a lesser reduction in error in comparison with the EnKF and 

EnKF-3DVAR solution, which proves the robust nature of the EnKF. From figures 30-34 we can 

see that the errors are generally higher in the top layers (layer 1, layer 2 and layer 3) as top layers 

have the high concentration values compared to the lower layers (layer 4and5). At the lower 

layers all the models show better performance and have lesser errors compared to the top layers. 

The new approach EnKF-3DVAR shows a stable good performance in all layers and shows a 

decent improvement over the EnKF solution, which proves the capacity of 3DVAR analysis to 

optimize the background state prediction. 
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Figure 30: RMSE at layer 1 

 

Figure 31: RMSE at layer 2 
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Figure 32: RMSE at layer 3 

 

Figure 33: RMSE at layer 4 
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Figure 34: RMSE at layer 5 

To check the performance and stability of the models, the simulation is run for five times. 

The shape of the RMSE profile is changed for every run and gives a total five profiles for each of 

the models, which indicates that in each simulation a random transport field is generated and a 

different true solution is obtained. Figure 35 below shows the performance stability of the 

models. 
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Figure 35: Stability of the models. 
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CHAPTER 5 

 Conclusion 

 The numerical model in the subsurface contaminant transport model can cause larger 

errors from the real life as it fails to incorporate the uncertainty of the nature. By using the data 

assimilation techniques with the numerical approaches to incorporate the information of the 

environment from the observation can significantly reduce the errors and improve the prediction 

of the model. From this study we find that Kalman Filter, Ensemble Kalman Filter and 3DVAR 

analysis have the capability to incorporate the observation data to update the results and to 

reduce the error. The EnkF-3DVAR improves the accuracy about 91.5% from the numerical 

model while the KF and the EnKF solution improve the accuracy of the results about 54.2% and 

89% respectively than that of the numerical solution. The 3DVAR analysis scheme when 

integrated with EnKF, it improves the prediction accuracy of the model 22.3% from the EnKF 

solution. The application of 3DVAR analysis with the EnKF is found to be effective and it 

performs well compared to the EnKF in representation of the pollutant concentration profiles. 

The mean RMSE for the models at all layers are calculated as 159.1 mg/l for numerical model, 

72.9 mg/l for KF model, 17.5 mg/l for EnKF and 13.6 mg/l for EnKF-3DVAR model.  
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