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Abstract 

Cells are constantly subjected to mechanical stress during various physical activities. 

Understanding the role of the resultant mechanical stresses on cellular mechanotransduction is 

critical for considerate various cellular activities in the body such as control of cell growth, 

migration, differentiation, apoptosis and wound repair. The long-term goal is to understand 

whether it is possible to control cell functions through mechanical forces. Specifically, in this 

work, we report on the cellular and mechanistic response of NIH/3T3 fibroblastic cells (cultured 

on silicone membrane), when subjected to cyclic biaxial stretch generated in a custom-built 

stretching system, as described in Karumbaiah et al (Karumbaiah et al., 2012). The silicone 

membrane was first plasma-treated to increase its hydrophilicity, followed by coating a layer of 

Collagen type-I to increase cell adhesion to the membrane. Cell viability and morphological 

changes at the cell surface were studied in response to cyclic biaxial forces to determine the 

effect of time and amplitude on cell responses. In particular, the cell responses have been studied 

at 5% up to 10% strain with keeping frequency constant as low as 0.05 cycles/sec along with 

variable stretching time (6 and 24 hours) to model a situation closer to in vivo. Our results 

indicate that stretching cells under applied conditions have no considerable negative effect on 

cells viability while significantly increase the proliferation of cells. Also, there is a migration 

happened for cells from inner parts of the membrane to the corners which might be a result of the 

combination of shear stress (resulted from liquid movements during stretch) and the localized 

bending stress at the range of bending forces (when the membrane bends over glass indenters). 

Additionally, there is no evidence of alignment of the actin filament of cells under biaxial force 

whereas the spreading factor which is an indication of actin filament’s response to the cell’s 

mechanical environment was increased for stretched samples compared to the control. 

sbigsby
Text Box
1
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1 CHAPTER 1 

Introduction 

1.1 Objective and Motivation  

 Cells, especially the fat and muscle cells are constantly subjected to mechanical stress 

during various physical activities or during exercise. Understanding the role of physical activity 

and the resultant mechanical stresses specifically on DNA methylation within muscle cells or on 

the regulatory and signaling Ca2+ molecule and generally on cellular mechanotransduction are 

critical for various cellular activities in the body such as control of cell growth, migration, 

differentiation, apoptosis and wound repair. There are well-known examples of cell lines being 

under mechanical stress in vivo such as lung cells during respiratory procedure, cells on blood 

vessel walls during circulatory procedure and re-modelling of living bone in response to changes 

in their mechanical environment. A number of recent studies have been investigated the exposure 

of various types of cell lines to different types of mechanical forces. However, to isolate the 

effect of different parameters, the current research has made assumptions such as applying 

regular waveform cyclic mechanical forces, which are not the case in vivo. The long-term goal is 

to understand whether it is possible to control cell behavior and its functions such as 

proliferation, differentiation and migration through applying mechanical forces (static and 

dynamic forces, cycle-by-cycle variability in amplitude of forces, etc.). However, the design of a 

well-isolated environment in vitro with the minimum weaknesses and the maximum control over 

the effective variables is a vital part of current studies. 

 3T3/NIH fibroblast cells are responsible for synthesizing the ECM of tissue and 

consequently are exposed to mechanical stimuli regularly in vivo. As a result, modelling an in 

vitro stretching system to better understanding the behavior of fibroblastic cell lines in response 
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to different types of mechanical forces can be helpful in wound healing and tissue engineering 

researches.  

 

Figure 1. Morphology of adhered 3T3 fibroblast cell lines (low and high density) 

 

1.2 Approach  

 3T3/NIH fibroblast cells were exposed to cyclic sinusoidal wave-form mechanical forces 

to further understand the effect of mechanical stimuli on cells behavior (viability, proliferation, 

migration, actin filament’s alignment, etc.) in vitro. A custom built biaxial cell stretching setup 

(as previously explained by Karumbaiah et al.) was employed for this study in which the cells 

were cultured on a flexible silicon membrane and then the membrane was stretched over fixed 

glass indenters dynamically. Considering the fact that 3T3 fibroblast cells have to adhere to the 

culture dish surface to be able to survive, grow and split, the major challenge was to maintain the 

cells adhesion and confluency on flexible bottomed PDMS dishes even at the time of stretching. 

To overcome this challenge, the membrane was coated with collagen-I for at least 12 hours to 
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increase the adhesion of fibroblasts to silicon membrane. However, the hydrophilicity of silicon 

membrane has to increase for collagen fibers to stick to the surface. This was done using a 

plasma etch machine to plasma threatening the silicon membrane for 30 seconds which is 

followed by immediate coating of the dish with collagen-I. The cells were then cultured on to the 

PDMS dishes 24 to 36 hours before the experiment starts. Cells were then exposed to 5%, 7.5% 

and 10% strain for 6 and 24 hours exposure time while keeping the frequency of stretch as low as 

0.05 cycles/ sec to understand the effects of strain percentage and exposure time on cells 

behavior. Two types of imaging (live and fixed) were done using an inverted confocal 

microscope to study the changes in viability, proliferation, cells migration, spreading factor, actin 

filaments alignment and nucleus size of stretched cells in comparison with the control. 

1.3 Thesis Organization 

 The thesis consists of four major chapters: literature review, methodology, results, and 

discussion and future works. The literature review chapter discusses major motivations for the 

mechanotransduction studies during last decades and also reviews and discusses the currently 

available cell stretching systems in their specific categories. In chapter 3, methodology, the 

custom built setup and the methods of maintaining confluency of cells are discussed along with 

the assays that were used to do image analysis. This is followed by the results chapter which 

includes the analysis of images were taken and finally, the last chapter that discusses the 

conclusion of represented results and future recommendations.   
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2 CHAPTER 2 

Literature Review 

2.1 Importance of Mechanobiology 

 Mechanotransduction of cells is the study of any kind of cell’s response to their 

mechanical environment within the human body. Different types of cells in our body are sensing 

various forms of mechanical stimulation such as hydrodynamic shear flow (Chang et al., 2008; 

Chia-Ching Wu, 2007; Dalous et al., 2008), substratum strain (Clark, Burkholder, & Frangos, 

2001) and cyclic forces due to either regular procedures like respiratory and circulatory within 

body or external and internal factors that cause tissue injuries (Imsirovic J, 2013). Bone cells 

response is critical to tissue engineering (Adachi, Sato, & Tomita, 2003), lung cells become 

stretched during breathing process all the time (Tsuda et al., 1999) and also cells that stick on 

blood vessel walls become stretched while blood is pumping through them (Berger et al., 1981), 

especially when the blood pressure is changing continuously. Some researchers have studied 

cultured fibroblast cells in gels (R. A. Brown, Prajapati, McGrouther, Yannas, & Eastwood, 

1998; Nekouzadeh, Pryse, Elson, & Genin, 2008) to estimate their mechanical environments by 

comparing tensile properties of gels with or without cells (Matsumoto & Nagayama, 2012). 

However, the microscopic heterogeneous structure of arterial vessel walls, as an example, 

doesn’t match with the homogeneous structure of gels. The best way to investigate these types of 

cell’s responses is to stretch substrata on which cells are adhered (Iwadate & Yumura, 2009). 

Studying the response of these cells to their mechanical environment is critical to bioengineers 

and scientists due to various applications in tissue engineering and curing disease. For example, 

lots of studies revealed that living bone modifies and remodels its structure to be able to prevail 

against environmental changes in mechanical forces (Adachi, Murai, Hoshiai, & Tomita, 2001; 
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Kurata et al., 2001). However, it also was proved that there is a threshold value for some cells to 

sense their mechanical stimuli (Adachi et al., 2003). Mechanical stimuli cause vital changes in 

morphology, proliferation and differentiation of cells (Hu, Humphrey, & Yeh, 2009; Lee, Maul, 

Vorp, Rubin, & Marra, 2007; Maul, Chew, Nieponice, & Vorp, 2011) which is critical in tissue 

engineering. It was also showed that cell migration happens under mechanical stress while the 

principle of the action is not still understood completely and needs more investigations. For 

instance, cells migrate randomly in no mechanical stress environment whereas in shear flow 

stress condition, they migrate in the direction of the flow (Li, 2002). 

2.2 Cellular Response to Different Types of Mechanical Stimuli 

 Most of researchers were focused on regular, simple, cyclic mechanical forces in isolated 

environments while the cells in body experience irregular stimulation with different amplitudes 

and frequencies, cycle-by-cycle which in turn results in complicated stretching patterns under 

these conditions (Arold, Bartolak-Suki, & Suki, 2009; Imsirovic J, 2013). For example, 

Imsirovic and Suki have used a custom built stretching device to investigate mRNA changes in 

fibroblasts and the results was indicating that when variable strains were being applied, more 

changes in mRNA production occur comparing to that of consistent cyclic stretching.  

  Another complex mechanical environment is the existence of a hole in the tissue which 

can be modeled through the introduction of a hole to a circular membrane. It was proved that the 

existence of a small center hole in a membrane could result in a stress gradient in response to 

applied stretching force. Also, this stress gradient would rise by increasing the size of the center 

hole (David, 2004). There are some studies (Raeber, 2007) showed that migration happens in 

both static and dynamic stretching states while cells’ migration as a respond to 20 percent static 

state was more than that of 5 percent dynamic stretch (Jenna Leigh Balestrini, 2006). 
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2.3 Existing Stretching Systems and Current Techniques 

 Stretching devices are divided into two main groups: two-dimensional and three-

dimensional systems. Both of them have their own advantages and limitations that need to be 

considered for specific purposes.  Most of the three-dimensional stretching devices are not able 

to handle a wide variety of amplitudes or frequencies while they are capable of studying 3-D 

constructs like tissues (Imsirovic J, 2013).  

Although two-dimensional stretching systems, lack in providing data on stress and strain 

applied to 3-D biological constructs such as tissues, most of them can be used for studying cell’s 

responses under wide range of amplitudes and frequencies of mechanical forces with a constant 

sinusoidal pattern (Imsirovic J, 2013). There are different novel designs for applying 2-D 

stretching forces on cells with their own advantages and disadvantages. Therefore, it is critical to 

understand the design, test procedure and its limitations before choosing one over another for 

specific case study. Due to the critical environment (37oC, 5% CO2) that cells need to grow in, 

most of these instruments are designed to fit inside incubators during the test procedure. Two-D 

devices are categorized based on directional uniformity and homogeneity of strain field 

stretching systems into two groups of Uniaxial and Biaxial testers (Sotoudeh, Jalali, Usami, 

Shyy, & Chien, 1998). 

2.3.1 Uniaxial stretching devices. In uniaxial method, cells are usually cultured on 

rectangular membranes which is stretched only in one direction (mostly in longitudinal, XY 

Plane) (Moretti, Prina-Mello, Reid, Barron, & Prendergast, 2004). Tensile force is applied to one 

end while the other end is fixed securely using clamps (Clark et al., 2001; Moretti et al., 2004). 

Although this type of stretching depicts a closer condition to what is happening to cells in vivo, 

the strain field is usually nonhomogeneous due to existence of compression force in 
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perpendicular plane (XZ) to  stretching direction which in turn results in a combination of 

stretching and compressing (not a pure stretch) (Moretti et al., 2004; Sotoudeh et al., 1998). 

Uniaxial stretching systems could be divided in to two main groups: stretch membrane with cells 

cultured on it and stretch cells directly using micropipettes and micromanipulators. The former 

group was used mostly to examine and measure cells mechanical properties such as stiffness 

while researches who were studying cells responses to mechanical forces have used first 

approach. The mostly used uniaxial stretching designs are:  

2.3.1.1 Stretching cells cultured on smooth flexible membrane using apparatuses. A 

commercial available design for uniaxial stretching of an elastic membrane was used by C. 

Neidlinger-wilke et al. (Neidlingerwilke, Wilke, & Claes, 1994) and consisted of a rectangular 

elastic silicone membrane which was clamped using two brackets at each ends. One of the 

brackets (fixed bracket) was fixed while the other one (moving bracket) was connected to a 

motor through a steel rod. The steel rod was converting the rotary movement of the motor to a 

forward-backward movement of the moving bracket which in turn resulted in a cyclic stretching 

of the membrane. This design had two main advantages including its capability to stretch six 

samples at the same time which gave users the opportunity of having control samples and also 

offering precise control over the frequency and amplitude of stretching (Neidlingerwilke et al., 

1994). However, the stretching design introduced later by Clark et al. (Clark et al., 2001) was 

capable of handling 8 samples while only 4 of them could be stretched and the other 4 had been 

used as control samples for further comparisons. 
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Figure 2. A schematic of the uniaxial stretching design used by C. Neidlinger-wilke et al. 

(Neidlingerwilke et al., 1994) 

 

 2.3.1.2 Stretching cells cultured on micro-grooved flexible membrane using 

apparatuses. Previous researchers demonstrated that cells tend to align perpendicularly to 

uniaxial stretching direction in order to reduce the force being sensed by them (Park et al., 2004). 

This type of responses would be a challenge in cell stretching studies. To address the issue, a 

novel method was introduced in which cells were cultured in a micro-grooved flexible bottomed 

dish. This approach allowed researchers to study cells behavior when the applied force is in both 

parallel and perpendicular direction of the micro grooves (Wang, Yang, & Li, 2005; Wang, 

Yang, Li, & Shen, 2004). In 2005, Loesberg et al. had cultured cells on micro-grooved flexible 

membrane and stretched them using the same tensile tester design that was used by C. 

Neidlinger-wilke et al. in 1994 (Loesberg, Walboomers, van Loon, & Jansen, 2005).  



10 
 

 

Figure 3. A schematic of the uniaxial stretching design used by Wang et al. (Wang et al., 2004) 

 

2.3.1.3 Stretching cells cultured on smooth flexible membrane using vacuum suction. 

In 2010 D. Wang had introduced a tensile tester which was using vacuum suction to stretch cells 

cultured on PDMS membrane. The principle was to assemble membrane smoothly within the 

hole of a glass petri dish and using a thick layer of PDMS at the bottom of membrane to hold it. 

Vacuum tubes were placed in vacuum chamber at the bottom of thick PDMS while a thin layer 

of glass was covering the whole structure from the bottom to give the chance of live imaging. 

Elastic membrane would be stretched and spread on top of thin glass layer in response to applied 

vacuum suction from vacuum chamber. This instrument, for the first time, allowed researchers to 

study live cell response to mechanical stimuli on inverted high-resolution microscope (at the 

bottom of thin glass base) during the procedure of stretching. It also had the advantage of being 

used in either uniaxial or biaxial modes depending on chamber shape (Dong Wang, 2010). 
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Figure 4. A schematic of the uniaxial stretching design used by Dong Wang (Dong Wang, 2010) 

 

2.3.1.4 Stretching single cell using micropipettes and studying tensile properties. 

Nagayama and Matsumoto designed and used a laboratory-made tensile tester in 2008 

(Nagayama & Matsumoto, 2008) and 2010 (Nagayama & Matsumoto, 2010), respectively, 

which was capable of stretching single cells to study mechanical properties of them. The tester 

consisted of two micropipettes with diameters of 5-8µm that were designed to hold a single cell. 

One of them was controllable through an electro-micromanipulator by moving horizontally while 

the other one was stationary and used for measuring the amount of tensile force a single cell can 

sense. However, there was a big challenge in the process of cell detachment from the initial petri-

dish and sticking it to the micropipettes. Using micropipettes to examine and determine the 

mechanical properties (viscoelasticity, fracture point, strength, etc) of cells is one of the most 

reliable approaches for data gathering. 



12 
 

 

Figure 5. A schematic of the uniaxial stretching design used by Matsumoto & Nagayama 

(Matsumoto & Nagayama, 2012) 

 

2.3.2 Biaxial stretching devices. Biaxial stretch, on the other hand, results in a 

homogeneous strain field in which circular membranes are used for culturing cells instead of 

rectangular ones (used in uniaxial ones). The whole procedure relies on applying a force at the 

center of the elastic membrane using different methods such as dynamic injection, vacuum 

suction, or fluid underneath the membrane to stretch it biaxially. However, the uniformity of 

strain field depends on the instrumentation and the type of applied load to stretch the cells. The 

main drawbacks of this method are the shear stress during stretching due to liquid movements on 

top of membrane and the difficulties involve in monitoring cells during the procedure due to the 

vertical movements at the center of membrane (Sotoudeh et al., 1998). M. S. Thompson et al. has 

studied this issue by using a FX-4000 cell stretcher and using computer simulation to address 

fluid-substrate interaction for the first time. He showed that shear stress is inhomogeneous which 

increases on the radius of circular membrane, linearly. It’s been proved that shear stress 
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magnitude is linearly dependent on frequency which in turn resulted in a quadratic dependency 

of shear stress rate to frequency (Thompson et al., 2011). The mostly used biaxial stretching 

designs are:  

2.3.2.1 Stretching cells cultured on circular smooth flexible membrane using 

apparatuses. The instrument that was introduced by Sotoudeh et al. in 1997 consisted of 3 plates 

carrying their components: the stationary plate, fixed plate, and the bottom plate. Sotoudeh has 

showed that the design had the advantages of uniformity as well as homogeneous equibiaxial 

strain field over previously reported designs. The mobile plate (Top plate) had four circular holes 

around the center which let the membranes to be fixed on top of these holes, being clamped to 

the surface of the plate using a silicon O-ring. Also, the plate was connected to the dc gear motor 

through a cam fixed at the center of it. The fixed plate (Middle plate) had also four holes around 

the center carrying indenter rings which were screwed in the holes and fixed tightly using 

aluminum nuts. This plate was connected to the top plate through stainless steel posts using self-

aligning bearings to keep the plates level during the procedure and also connected to the bottom 

plate by connecting bars at the corners of the plate. The bottom plate was carrying the DC gear 

motor, Aluminum blocks and their precision ball-bearings, flexible coupling, and cam. Ball 

bearings transferred the movement to the cam via flexible coupling and also their shaft. 

Following this procedure, the cam also transferred the rotary movement of the DC gear motor to 

up and down movement of the mobile plate which in turn resulted in a sinusoidal motion of the 

top plate while the indenter rings were stretching the membranes (Sotoudeh et al., 1998). 

Karumbaiah (Karumbaiah et al., 2012) had also used CSD (Cell Stretch Device) in 2012 with 

almost the same principles as that of Sotoudeh et al. with some small modifications in the design. 
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Figure 6. A schematic of the biaxial stretching design used in 2012 (Karumbaiah et al., 2012) 

2.3.2.2 Stretching cells cultured on circular smooth membrane with a small center hole 

using apparatuses. Stretching cells cultured on flexible membrane with a small hole at the center 

is also of interest due to depicting a complex mechanical environment which is more similar to 

what is happening in vivo (G.David, 2004). In this case, cell migration is expected due to 

stretching gradient. S. Yazdani (Yazdani-Beioky, 2010) had used a stretching device with almost 

the same principle as that of Sotoudeh et al. (Sotoudeh et al., 1998) to stretch stained cells 

cultured on silicone membrane with a hole at the center for studying cell migration with respect 

to period of exposure to mechanical stimuli. Cells were imaged during procedure by employing a 

microscope at the bottom of the whole instrumentation. 

 

Figure 7. A schematic of the biaxial stretching design used by Yazdani (Yazdani-Beioky, 2010) 
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2.3.2.3 Stretching cells cultured on cruciform smooth flexible membrane using 

apparatuses. J. D. Humphrey et al. and Hu et al. had used a custom built tensile tester in 2008 

and 2009 respectively, with cruciform membrane (instead of popular circular ones) which was 

the same as Norton et al. (1995) in design and principles (Hu et al., 2009; J. D. Humphrey, 

2008). The instrument fit inside incubator and was made of stainless steel and polycarbonate. 

The specimen was in cruciform shape and could be made by attaching four suture brackets at 

four boundaries of square membrane using porous polyethylene. Considering the fact that these 

brackets were distributing force into the specimen and to have a biaxial stretch over membrane, 

size of the brackets had to be the same. These suture brackets were connected to load cells which 

themselves were attached to load plates via push rods surrounded by compression springs. 

Desired stretching was applied to specimen employing a set of four cams, gearboxes system and 

the amplitude of stretching was controlled using a DC motor. The rotary movements of cams 

were converted to a back and forth movement of push rod at the midpoint of each cam which in 

turn resulted in biaxial stretch of specimen. Also the specimen was set on a glass slide which 

permitted for intra-vital imaging by using a microscope stage of NLOM system (Hu et al., 2009; 

J. D. Humphrey, 2008; Waldman SD, 2005).   

 

Figure 8. A schematic of the biaxial stretching design used by Jin-Jia Hu et al. (Hu et al., 2009) 
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2.3.2.4 Stretching cell cultured on circular smooth membrane using vacuum suction. 

While using template displacement had been used as a promising way to stretch cells cultured on 

circular flexible membranes, the tendency of using vacuum suction as a novel way for stretching 

cells increased in the last decade.  There are two basic vacuum stretching approaches. The 

circular membrane can be fixed on a hole using clamps and when vacuum suction applies at the 

bottom of membrane, it’s been stretched downward. Repeating the procedure, results in a cyclic 

stretching of cells (T. D. Brown, 2000). In the other method, flexible circular membrane is set on 

a frictionless surface and vacuum suction applies at parts close to edges of the membrane which 

results in a homogeneous biaxial stretching at center of circular membrane (T. D. Brown, 2000). 

The most popular stretching devices based on vacuum suction are Flex products. FX-4000 

Tension System is a computer-regulated bioreactor designed and was used to apply mechanical 

forces to flexible bottomed cell culture dishes by using vacuum pressure. Generally, cultured 

cells on 6-well flexible bottom plates (Bio-flex plates) could be exposed to either uniaxial or 

biaxial uniform strain through computer-controlled vacuum forces (Theresa R. Cassino, 2012). 

                      

Figure 9. A schematic of the mostly used biaxial stretching systems (T. D. Brown, 2000) 
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Table 1 

Typical advantages and disadvantages of two general types of stretching systems 

 
Stretching 
systems 

 

Advantages 

 

Drawbacks 

 

 

     Uniaxial 

 

1- Capability of cell stiffness study 
using micropipettes method. 
 
2- Easy to monitor cells during the 
stretching process. 
 
3- Capable to study the relation of cells 
alignment/force direction  

 

1- Existence of compression stress.  
 
2- Inhomogeneity of strain field. 

 

 

 

      Biaxial 

 

1- Uniformity of strain over the 
membrane. 
 
2- Homogeneous strain field. 

 

1- Existence of shear stress due to 
liquid movements during stretch. 
 
2- Difficulties in monitoring cells 
during the stretching process. 
 
3- Existence of bending stress when 
the membrane bends over glass 
indenters.  
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3 CHAPTER 3 

Methodology 

To investigate cellular responses to various types of mechanical environments, cells were 

seeded on collagen coated silicon membrane. The membrane was then exposed to two types of 

equi-biaxial forces: cyclic sinusoidal force and cycle-by-cycle variable sinusoidal force. 

Fluorescent microscope was employed for observation of viability, proliferation and actin 

filament of cells after short-time (6 hours) and long-time (24 and 48 hours) stretching of 

membrane. 

3.1 Cell Culture 

3T3/NIH fibroblasts cell line were used mainly because they are primarily responsible for 

synthesizing the ECM of tissue, and consequently are being exposed to different types of 

mechanical forces in vivo. Considering the fact that fibroblast cells have to stick to the surface of 

culture dish to grow, the maintenance of confluent cell culturing on flexible silicon membrane 

became a vital part of the experiment. Pre-established cell culturing methods through sterile 

techniques were employed as previously used. Briefly, NIH/3T3 fibroblast cells were cultured in 

cell culture media consisting of Dulbecco’s Modified Eagle’s Medium, 10% fetal bovine serum 

and 1% antibiotic. Cells were passaged onto PDMS dishes, specifically designed for this 

experiment, after being grown to 80-90% confluence in 25cm2 flasks in humidified environment 

(37oC) of incubators with 5% CO2. Seeding density for cells on the PDMS dishes was kept at 

around 2000 cells/cm2. 

3.1.1 Preparation of PDMS dishes. The designed circular dishes consist of silicon 

membrane (SMI silicone sheeting, .010” NRV G/G 40D 12” X 12”) as the flexible bottom with a 

thick enough PDMS wall around it for carrying medium purposes. The PDMS mixture was made 
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through mixing PDMS base and curing agent in the ratio of 10:1 which was followed by pouring 

it properly around the silicon membrane and curing it in the oven at 75oC for 30 minutes. The 

dishes were then autoclaved. To prepare the flexible-bottomed dishes for culturing 3T3 cells, the 

silicon membrane had to be hydrophilic. A plasma-etch machine was employed to increase the 

hydrophilicity of silicon membrane through proper plasma treatment process (200 RF power and 

30 seconds duration), followed by immediate coating of a layer of Collagen type-I (Cultrex® Rat 

Collagen I) film to increase cell adhesion to the silicone membrane. The collagen coated 

membranes were incubated in the same condition as that of live cells for about 12 hours (or over-

night) and then the collagen film was removed and the samples were washed 3 times with D-PBS 

1X just before passaging cells to the designed dishes. 

 3.1.2 Passaging protocol. 3T3/NIH fibroblast cells were removed from 25cm2 flasks 

using 3ml of trypsin (gibco by life technologies, 1374942) and neutralizing in 6ml D-PBS 1X 

after 2 minutes of incubation. D-PBS 1X which is usually used for washing purposes during cell 

passaging procedure was prepared using D-PBS 10X (SIGMA, RNBB9331). This is, then 

followed by 5 minutes centrifuging at 1100 rpm and re-suspension of cells in 1ml growth 

medium. To control the density of passaging, the cells were counted using a hemocytometer as 

shown in Figure 10. The seeding density was kept at about 2000 cells/cm2 which is about 88,500 

cells across the entire membrane surface (44.18cm2). Cells were then allowed to proliferate for at 

least 24 hours and no more than 36 hours to form cell-matrix connections and cell-cell networks 

before exposure to the mechanical force. 
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Figure 10. Cell counting procedure using hemocytometer 

3.2 Biaxial Stretching System 

 The custom built cell stretching device is similar in the design and principles to 

previously reported systems with a few modifications. The whole instrument is capable of 

operating and fitting inside an incubator (37oC and 5% CO2) to provide the proper conditions for 

cell growth. The whole system was sterilized with alcohol and also exposed to UV light in a 

laminar flow hood for at least 3 hours before each experiment. All screws and nuts were used, 

are biocompatible stainless steel and were all sterilized along with glass indenters through 

autoclaving process.  
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Figure 11. Rendered schematic of the stretching device designed in Catia software  

 

 

Figure 12. Velmex stepper motor tower and the controlling system  
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 3.2.1 The design of stretching device. The stretching system is composed of two 

Aluminum plates carrying their own components and the stepper motor tower (Velmex) as 

shown in Figure 12. The stationary (bottom) plate supports two Aluminum rods and the stepper 

motor tower by providing a base for them while maintaining the position of four hollow glass 

cylinders at the bottom of holes of the top plate. The mobile (top) plate has 4 holes around the 

center on which PDMS dishes were fixed. The motion of the plate was controlled through the 

stepper motor and the tower’s apparatus up and down movements while two straight aluminum 

rods support the motion. These up and down movements of mobile plate result in stretching of 

silicon membranes (one was control sample, no stretch, and the other three were stretched) over 

glass cylinders and consequently stretching of the cells cultured on it. 

 

Figure 13.  Schematic side view of vertical movement of membrane at contact and stretched 

points  

 

 3.2.2 Stretching patterns and controlling system. The stepper motor tower was 

responsible for controlling the movement of the mobile plate and consequently the amplitude of 

stretch. Cyclic biaxial force with a constant amplitude cycle-by-cycle was programmed via 

Cosmos software for studying cells responses to their mechanical environment (the patterns of 
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the two types of forces are shown in Figure 14). The applied stretch was as low as 5%, 7.5% and 

10% with a frequency of 0.05cycles/second (to minimize the effect of shear stress that results 

from liquid movement on top of the membrane). Cells were exposed to mechanical stimuli for 

both short period of time (6 hours) and long period of time (24 hours) (One of the codes is 

attached as an example in Appendix A). The motion of the stepper motor was measured and it 

was found that every 50,000 steps equal to 1 inch in vertical movement of the top plate.  

 

             (a) 

 

 

 

 

 

 

              (b) 

 

 

 

 

 

 

 

 

Figure 14.  The movement patterns of (a) the mobile plate (down and up) and (b) the membrane 

(stretch and rest)  
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 2.1.1.1 Measurements of strain field. A previously published method was used for the 

calculations of the degree of applied strain and displacement. Briefly, the interactions between 

glass intenders and membrane were predicted using Lagrangian strain method as: 

E = 
 

 
[(  

   

 
)
 
  ]                Where        h = √      

 

. 

Figure 15.  Schematic diagram of stretched membrane and geometrical analysis of strain 

 

3.3 Microscopic Imaging 

 Cells were observed using an inverted confocal microscope. Two types of imaging were 

done in this experiment: live cell and fixed cell. A Live/Dead cell assay kit (molecular probes by 

life technologies, R37601) was used to image cells at 10X and 40X magnifications for analysis 

of viability and spreading factor. The staining process with live cells in green and dead cells in 

red color was done following the protocol of the kit. Since the membrane was too big for the 
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confocal stage, a part of the membrane that fit on the microscope’s thin slides was cut along the 

diameter of the circular sample. Also, a Molecular Probes® Image-IT® Fix-Perm kit from Life 

TechnologiesTM was used to fix cells following the protocol of the kit and image them in 20X 

magnification to study the directionality changes in actin filament (green) and to analyze the size 

of the cells’ nucleus (blue). 

 To be able to have a better analysis of cells behavior under applied mechanical forces, a 

rectangular part of the circular membrane was cut on the diameter and all the analysis were done 

for 4 independent spots as shown in Figure 16. 

   

 

 

 

 

 

 

 

 

                                                                                       

 

 

 

Figure 16.  Schematic diagram of the circular membrane in blue, the rectangular part in green 

and also depicting four important spots on the rectangular part from both top view and side view 

1 2 3 4 

1 2 3 

4 
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Table 2 

Strain percentages and the exposure times of applied mechanical force 
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Regular cyclic sinusoidal 

forces 

 
 

 

6 hours 

 

5% strain;  

0.5571 in 

(amplitude) 

 

7.5% strain; 

0.6994 in 

(amplitude) 

 

10% strain; 

0.8268 in 

(amplitude) 

 

 

24 hours 

 

5% strain;  

0.5571 in 

(amplitude) 

 

7.5% strain; 

0.6994 in 

(amplitude) 

 

10% strain; 

0.8268 in 

(amplitude) 
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4 CHAPTER 4 

Results 

Cells were successfully stretched and survived from exposure to 5%, 7.5% and 10% for 

periods of 6 and 24 hours. Two types of imaging (live cell and fixed cell) were done after each 

experiment to determine the effect of mechanical stimuli on viability, actin filament alignment, 

spreading factor and migration of cells. Also, data showed with the mean ± SD from at least 50 

cells for each sample, all data represented by averaging three independent samples. 

4.1 Live Cell Imaging 

 Live/dead cell assay kit was used to do live imaging of the cells immediately after stretch 

(the protocol is attached to the kit). 10X and 40X magnifications were used for live/dead cell 

imaging to do viability and spreading factor analysis, respectively. Live cells are green while 

dead cells are red in all images. 

4.1.1 Viability. Viability was measured as the ratio of live cells to the total number of 

cells for three stretched and control samples. Our results indicate no significant difference in the 

viability of stretched samples compared to the control and all the differences were in the range of 

3% for all strain percentages and exposure times. As a result, there was no evidence of the 

negative effect of biaxial stretch under applied conditions (applied strain% in range of 5% to 

10% and frequency of 0.05 cycles/sec) for 3T3 /NIH fibroblasts. 
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                       (a)                                                (b)                                              (c) 
 

 

 

 

 

 

Figure 17. (a) green chamber, (b) red chamber and (c) the merge images were used for viability 

analysis (10X magnification).  

 

           (a) 
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          (b) 

 

Figure 18. Viability % of control sample (Cont) and the other 3 stretched samples (Samp 1, 2 

and 3) were shown for (a) 6 hours, and (b) 24 hours of exposure to 5%, 7.5% and 10% strain. 

 4.1.2 Proliferation. The total number of cells was counted for the control and stretched 

samples to understand the effects of stretch on the proliferation rate of fibroblasts. The 

percentage change of the total number of cells (total # of cells for stretch sample/total # of cells 

for the control) was depicted with respect to exposure time for stretched samples exposed to 5%, 

7.5% and 10% strain. The graph shown, illustrated a slight rise in the total number of cells for 

the stretched samples as the strain% and exposure time increased. However, our results indicate a 

great increment in the total # of cells for 7.5% and 10% strain with respect to time. Considering 

the fact that viability didn’t change for stretched samples, this increase in the total number of 

cells could be an indication of a faster proliferation rate of fibroblasts under biaxial stretch. We 

also have analyzed images spot by spot (as we have explained in methodology) to further 

understand the effect of stretch on fibroblast cells. 
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                              (a)                                                (b)                                                 (c) 

 

 

 

 

 

 

Figure 19. (a) green chamber, (b) red chamber and (c) the merge images were used for viability 

analysis (10X magnification). 

 

 

Figure 20. Percentage changes of total # of cells for control (Cont) and 5%, 7.5% and 10% 

stretch samples. 

 

4.1.2.1 Number of cells/spot with respect to strain %. The represented graphs show the 

percentage change of the total number of cells (total # of cells for stretch sample/total # of cells 
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for the control) per spot (as explained in methodology) with respect to different strain 

percentages and for 6 hours and 24 hours exposure time, respectively. Our results show a huge 

decrease in the number of cells at spots 2 and 3 and a significant increment at spots 1 and 4 for 

stretched samples and these differences between the control and stretched samples have 

increased for higher strain percentages. Since our results showed a rise in the proliferation rate of 

cells and no considerable changes in viability, these regional changes in the number of cells on 

the diameter of the circular membrane could be an indication of migration happened for cells 

from spots 2 and 3 to spots 1 and 4. This migration might have happened as a result of shear 

stress resulted from liquid movements during stretch and also localized excessive bending stress 

at the range of the higher stress bending region (spot 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. (a) green chamber, (b) red chamber and (c) the merge images were used for viability 

analysis (10X magnification). 

 

 

 

                 (a)                                                (b)                                                  (c) 
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                 (a) 

 

           (b) 

 

Figure 22. Percentage changes of the total # of cells per spot for stretched samples in comparison 

with the control sample (Cont) is shown for (a) 6 hours, and (b) 24 hours of exposure to 5%, 

7.5% and 10% strain. 
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 4.1.2.2 Number of cells/spot with respect to exposure time. The following graphs are 

showing the % changes in the total number of cells per spot and with respect to exposure time for 

3 different applied strains, to better understand the effect of biaxial stretch on the total number of 

cells and the relation between exposure time and migration of cells. A rise in the number of cells 

was observed at spots 1 and 4 as the exposure time increased while the results for spots 2 and 3 is 

a downward trend. This could be an indication of increase in the migration of cells from spots 2 

and 3 with respect to exposure time of biaxial stretch.  

 

            (a) 
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             (b) 

 

             (c) 

 

Figure 23. Percentage changes of the total # of cells per spot for stretched samples in comparison 

with the control sample (Cont) is shown for (a) 5%, (b) 7.5%, and (c) 10% strain for 6 hours and 

24 hours exposure time. 

 4.1.3 Spreading factor. Spreading factor is the ratio of longitudinal to transverse length 

of the cells which is an indication of cell shape and cell adhesion to the surface of the dish.  
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Figure 24. Measurement of the spreading factor of the cells (40X magnification) 

 4.1.3.1 Percentage changes in spreading factor/spot with respect to strain %. As the 

graphs are showing, spreading factor has significantly increased under all of the applied 

conditions while this increase is slightly more at spots 1 and 4 compared to the other two spots (2 

and 3). Also, as the strain percentage increased this difference between the spots has widened. 

These results showed that actin filament of exposed cells at spots 1 and 4 have responded more 

to the mechanical stimuli compared to the other spots, 2 and 3 which in turn might be a sign of 

migration of cells happened at spots 2 and 3. 

 

  (a)                                               (b) 

 

 

  

 

 

 

 

 

S.F = 
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑢𝑒 𝑙𝑖𝑛𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑 𝑙𝑖𝑛𝑒
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   (c)                                              (d)                                               (e) 

 

 

 

 

 

 

Figure 25. Images of stretched samples for the measurements of the spreading factor of the cells 

(40X magnification) 

 

           (a) 
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           (b) 

 

Figure 26. Percentage changes of spreading factor (S.F.) per spot for stretched samples in 

comparison with the control sample (Cont) is shown for (a) 6 hours, and (b) 24 hours of exposure 

to 5%, 7.5% and 10% strain. 

 

 4.1.3.2 Percentage changes in spreading factor/spot with respect to exposure time.  

Spreading factor (S.F.) has increased with respect to the exposure time while the amount of this 

increase is much more significant at spots 1 and 4 compared to the other two spots which show 

more response in the actin filament of cells at these spots.  
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               (a) 

 

               (b) 
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          (c) 

 

Figure 27. Percentage changes of the spreading factor (S.F.) per spot for stretched samples in 

comparison with the control sample (Cont) is shown for (a) 5%, (b) 7.5%, and (c) 10% strain for 

6 hours and 24 hours exposure time. 

 

4.2 Fixed Cell Imaging 

 A Molecular Probes® Image-IT® Fix-Perm kit from Life TechnologiesTM was used to do 

the fixed cell imaging immediately after stretch. 20X magnification used for nucleus size and 

actin filament alignments analysis. Actin filament is green while nucleus is blue in all images. 

Our results indicate no considerable difference in the nucleus size of the stretched samples 

compared to the control which is the proof for the fact that the actin filament has the 

responsibility to react to the mechanical environment of the cells and nucleus are minimally 

affected by mechanical stimuli. Also, there was no evidence of actin filaments alignment in 

response to mechanical stimuli for the system which makes sense with the biaxial nature of 

applied forces.  
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(a)                                              (b) 

 

 

 

 

 

 

 

       
    (c)                                               (d)                                               (e) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Images of stretched samples for the measurements of the nucleus size and actin 

filament alignments of the cells (20X magnification) 
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5 CHAPTER 5 

Discussion and Future Research 

 Mechanobiology would play a vital role in wound healing and tissue engineering in 

general if the relations between specific cells types responses and the type of applied forces and 

conditions are known. Understanding these cell responses is the first step to take control over 

factors such as viability, proliferation and differentiation of cell eventually.  

 Cells were successfully cultured and grew on collagen coated silicon membrane and were 

exposed to 5% to 10% strain for 6 and 24 hours exposure time. While the strain field is uniform 

and homogeneous all over the circular membrane, the existence of shear stress due to liquid 

movements during stretching process along with the localized bending stress at the range of 

bending parts of the membrane over glass indenter (which is definitely more than the strain 

percentage at the center) result in a complex strain field. However, the effects of shear flow were 

minimized by choosing frequency value as low as 0.05cycles/sec and also to depict a condition 

closer to in vivo. The imaging process after exposure indicate the adherent of cells to the 

membrane and no significant changes in viability which makes it possible for stretching over 24 

hours (under applied conditions). Live cell imaging was done using an inverted confocal 

microscope to further investigate cell responses. Also, a slight increase in the total number of 

cells was observed which indicates a faster proliferation rate for stretching cells in comparison 

with the control sample. This rise in the total number of cells is related to the strain percentage 

and exposure time directly which makes it possible to control fibroblast’s proliferation rate 

choosing specific values for these factors. 
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 Analysis of confocal images revealed a downward trend for the number of cells at the 

range of localized bending stress (spot 3) and an upward trend for the cells at the corner (spot 4) 

and the center (spot 1) of the membrane. This migration of cells is directly related to the applied 

strain percentages and the exposure time. While the applied strain field is uniform and 

homogeneous, the existence of shear stress resulted from liquid movements during stretching 

process and also the existence of localized bending stress which is definitely more than the 

applied strain might have resulted in the migration of cells have happened from spots 2 and 3 to 

the corner (spot 4) and center (spot 1) parts. The shear stress is directly related to stretch 

amplitude and frequency and for higher values of these controlling factors have the ability to 

take cells from spots 2 and 3 to the corner and the center via the back and forth movement of the 

liquid (We have minimize the effect of frequency by choosing frequencies as low as 0.05 

cycles/sec). The combination of this shear stress and the localized bending stress might have 

resulted in a significant migration rate happened from spot 3 to the corner (spot 4) and also a 

noticeable migration rate from spot 2 to the center (spot 1).  

 Another important aspect is spreading factor (explain how to be measured in part 4-3-1) 

to better understand the effects of biaxial forces on actin filaments which are the responsible 

parts of the cells to react to the mechanical environment changes. The analysis of the confocal 

images showed a rise in the spreading factor of the cells at all the spots with respect to strain 

percentages and exposure time which is an indication of actin filament response to mechanical 

stress. However, the cells at the center (spot 1) and at the corner (spot 4) have shown more 

significant increases compared to the other two spots (2 and 3) which in turn means the cells at 

the corner and the center have responded to mechanical stimuli more than the others. This might 
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be an indication of the migration happened for the cells from spots 2 and 3 to the center and the 

corner of the membrane, respectively. 

 Finally, to make sure that actin filaments are responsible for changes in cell’s mechanical 

environment, the changes in the size of nucleus were measured to understand the effect of 

mechanical stimuli on nucleus of the cells. There was no considerable difference in the size of 

nucleus of exposed cells in comparison with the control sample which is an indication of the 

responsibility of actin filament to sense and react to the cell’s mechanical environment. Also, 

there was no evidence of alignment of the cells and actin filaments in response to biaxial stretch 

which was expected considering the nature of a biaxial force. 

 To conclude, the custom built stretching system is able to stretch cells cultured on 

collagen coated flexible silicon membranes while cells maintained their adhesion and confluency 

after exposure to strain percentages up to 10% and for 24 hours period of time. 

 This research provides the basis for further studies in the concept of cellular response to 

mechanical stimuli (biaxial stretch in this specific work). Despite the results of this work, we can 

say probably migration of cells and morphology changes would be more pronounced for higher 

migration, staining of cells while marking the membrane with a marker could be a good idea for 

future work. Also, to be able to model the shear stress during biaxial stretch would be a valuable 

future work to better model the stress and strain that the cells are sensing. Additionally, 

capability of controlling the differentiation of cells using the current setup would be a bright 

future work especially for the concept of stem cells which are able to be differentiated to most of 

other types of cell lines.  
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 Appendix  

Cosmos software and the code sample: 

 

 

Figure 29. The terminal window of the software which commands to and control the stepper 

motor tower 
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C, (Clear all commands from currently selected program). 

F, (Enable On-line mode with echo “off”) 

ImMx, (Set steps to incremental Index motor CW (positive), m = motor # (1 for current setup), x 

= 1 to 16,777,215 (20,670 for 10% strain)). 

ImM-x, (Set steps to incremental Index motor CCW (negative), m = motor # (1 for current 

setup), x = 1 to 16,777,215 (20,670 for 10% strain)). 

SmMx, (Set speed of motor, m = motor # (1 for current setup), x = 0 to 8000 steps/ sec. 0 being 1 

step/ 2 sec. (5000 steps/ sec for 10% strain)). 

Lx, (Loop from beginning or loop-to-marker x-1 times (x=2 to 65,535), when the loop reaches its 

last count the non-loop command directly preceding will be ignored). 

R, (Run currently selected program).
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