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Abstract 

The task of trying to determine the movement pattern of objects based on available 

databases is a daunting one. Tracking the movement of these dynamic objects is important in 

different areas to understand the higher order patterns of movement that carry special meaning 

for a target application. However this is still a largely unsolved problem and recent work has 

focused on the relationships of moving point objects with stationary objects or landmarks on a 

map.  

Global Position System (GPS) is a widely used satellite-based navigation system. Popular 

use of these devices has produced large collections of data, some of which have been archived. 

These archived data sets and sometimes real time GPS data are now readily available over the 

internet and their analysis through computational methods can generate meaningful insights. 

These insights when applied appropriately can be used in everyday life. The purpose of this 

research is to make the case that automated analysis can provide insight that can otherwise be 

difficult to achieve due to the large volume and noisy characteristics of GPS data. We present 

experiments that have been performed on one of these archived databases which contain GPS 

traces of 536 yellow cabs in the San Francisco Bay area. Using data analysis, we determine the 

most visited tourist destinations within the San Francisco Bay area during the time period of the 

captured data. 

We also propose a probabilistic framework, which determines the probability of a new 

routing pattern using previous patterns.  We use simulated routing patterns built on the same data 

format as that of the San Francisco cab data to predict the possible routes to be taken by a vehicle. 

All the probability calculations performed are done using Bayes’ theorem of conditional 

probability formula. 
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CHAPTER 1 

Introduction  

1.1 Introduction 

From sailors using the stars at night to sojourners using compasses, humans have always 

searched for better navigation methods. In modern days, devices which rely on global 

positioning systems (GPS) have become part of our lives. We use GPS devices either as stand-

alone devices or integrated into cell phones, vehicles or other electronic devices. GPS consists of 

three segments: the space segment which is a pattern made of solar-powered satellites orbiting 

the earth in orbits at an altitude of about 20,000 kilometers and beams radio signals down to our 

planet. This connects to the user segment (devices). There is the third and last segment which is 

the control segment that maintains the satellites in orbit around the Earth (Gray, 2013). 

  In this research we are taking a closer look at archived GPS data of cabs. This GPS data 

is a collection of536 Yellow cabs in the San Francisco Bay area. Our proposed work creates 

application specific classification of patterns of moving objects to static landmarks using the San 

Francisco cab datasets. We created algorithms which computed principal sub-trajectory patterns 

from our training data. Using the working information extracted from our GPS dataset, we 

considered the most visited landmark within the San Francisco Bay area. We also predicted the 

route most likely to be followed by a vehicle judging from a probability of the usage of that route 

in the past. 

 The rest of this thesis work is organized as follows. Section 1.2 discusses the motivation 

and problem statement our research. Chapter 2 gives a background to related work and summary 

of literature reviews. Chapter 3 describes the methodology used in the research. This includes 

designing the studies, describing the dataset used for the experiment and the actual experiments 
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performed. Chapter 4 talks about the experiments performed and outcome of those experiments. 

Chapter 5 ends the paper with discussions and future related work. 

1.2 Motivation and Problem Statement 

Big data is continuously generated from web data, e-commerce applications, 

retail purchase histories and bank transactions. Each and every one of us is constantly producing 

and releasing data about ourselves through our everyday activities. But the amount of data being 

generated keeps on increasing and a full 90 percent of all the data in the world occurred over the 

last two years (Brandtzæg, 2013).  

In reality, a large part of these data sit ideally over the internet in cooperate vaults and 

learning institutions without its full potential being exploited due to its sheer enormous size. 

Apart from their primary use, what can we do with all these enormous data sitting pointlessly? In 

our effort to gather worthwhile information from these data, we found one of such archived data 

made up of a collection of GPS data of 536 yellow cabs in the San Francisco Bay area gathered 

for 30 days.  

This dataset and other mobility datasets are readily available at Crawdad, a community 

resource used for archiving wireless data at Dartmouth College. We analyze this GPS dataset and 

used the information gathered to help identify movement patterns in geospatial data. Analysis 

made from this research might not necessarily be a determinant for identifying movement 

patterns in geospatial data, but the results will help in taking a closer look at such datasets and 

deriving some meaningful conclusions from them.  
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CHAPTER 2 

Literature Review 

2.1 Machine Learning Algorithm  

Machine learning algorithm is also known in some circles as predictive analytics or data 

mining is a fast developing field which seeks to help do task by generalizing from examples. 

Machine learning algorithm thrives on the availability of enormous dataset to give exact or near 

perfect predictions. The dataset used in machine learning algorithm is relative to the problem at 

hand. The data are in form of pictures, text, symbols or patterns. Machine learning algorithms 

can be said to work by recalling information, events, or experiences, although this assumption is 

not necessarily always the case. 

Suppose there is an application that you think machine learning might be good for. The 

first problem facing you is the variety of learning algorithms available and the one to use. There 

are literally thousands available, and hundred more published each year. The key to not getting 

lost in this huge space is to realize that it consists of combinations of just three components. The 

components are: (a) Representation - Choosing a representation for a learner is tantamount to 

choosing the set of classifiers that it can possibly learn. This set is called the hypothesis space of 

the learner. If a classifier is not in the hypothesis space, it cannot be learned, (b) Evaluation. An 

evaluation function (also called objective function or scoring function) is needed to distinguish 

good classifiers from bad ones.  

The evaluation function used internally by the algorithm may differ from the external one 

that is required of the classifier to optimize, (c) Optimization - Finally, we need a method to 

search among the classifiers in the language for the highest-scoring one (Domingos, 2012). 
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2.2 Hidden Markov Model 

 Hidden Markov models (HMMs) are the building blocks of computational sequence 

analysis. They are a formal foundation for making probabilistic models of linear sequence 

problem and offer a conceptual toolkit for building complex models just by drawing an intuitive 

picture. Hidden Markov models are especially known for their application in temporal pattern 

recognition such as speech, handwriting, gesture recognition (Roger, 2008), part-of-speech 

tagging, musical score following (Birmingham, 2005), partial discharges (Satish & Gururaj, 

1993) and bioinformatics.  

Analyses of hidden Markov models seek to recover the sequences of states from the 

observed data. With HMM being a probabilistic model, it uses Bayesian probability theory to 

manipulate numbers and limits, interpreting the significance of the outcome. Upon describing a 

system as hidden Markov Model, one can begin to work on pattern recognition problems: 

Finding the probability of an observed sequence given a HMM (evaluation); and finding the 

sequence of hidden states that most probably generated an observed sequence (decoding). 

Another problem that can be worked on is generating a HMM given a sequence of observations 

(Roger, 2008). 

2.3 Taxonomy of Patterns  

There have been many contributions to the developing of data mining algorithms and 

visual analytic techniques for movement analysis. Conceptual frameworks of movement 

behavior for different moving objects have been developed with comprehensive classification for 

those movement patterns.  

There are many advantages to classifying some of the most common movement patterns.  

Movement classification may be grouped into generic and behavioral patterns. These classified 

http://en.wikipedia.org/wiki/Time
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movement patterns were then represented graphically in co-location plane and the x-y plane. The 

generic patterns identified in the classification allow a domain-independent visualization of 

movement. This makes it easy for researchers from various disciplines, because these generic 

patterns are applicable to all moving datasets at all spatio-temporal resolutions (Dodge, Weibel, 

& Lautenschütz, 2008). 

 

Figure 1. This figure displays the classification of some common movement patterns 

With these movements haven been classified, it might not necessary be true when used in 

classifying huge data sets or certain kinds of movements. One of such an example is the use of 
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eye movement data as a proxy for other kinds of MPO data. This data will not generate 

conclusive results when used within certain research since eye movement is different from an 

entire human body motion. 

 

Figure 2. Normalized sample trajectory of eye movement 

 

Figure 3. Sample trajectory of human movement (pedestrian) 
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2.3.1 Visualization of patterns. Getting a visual perspective of the various movement 

patterns help in understanding them. This section of our research shows visual of common 

taxonomy of patterns. 

Table 1 

Examples some commonly visualized patterns 

Visualized taxonomy of patterns Description 

 

Breakup- This is a divergence pattern where 

the objects move at the same time from a 

scene. An example will be ducks fleeing from 

a pond (Dodge et al., 2008).  

 

Concentration - This represents spots of high 

spatial density. Congestion and fixation 

patterns represent forms of concentration. An 

example will be spots of concentrations 

formed as a result of traffic jams (stationary 

clusters) (Dodge et al., 2008). 

  

 

Dispersion - Random dispersion is a pattern 

which occurs if no special forces are acting on 

the spatial distribution of people in a 

population.  Uniform dispersion can result 

from behavior or Allelopathy. Clumped 

distributions can result from an aggregative 

behavior or from restricted availability of 

suitable habitat or microhabitat (McDonald, 

2013). 
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Table 1 

Cont. 

 

Encounter – This is a convergence pattern and 

opposite of breakup. Here the objects arrive at 

the same time. An example will be a 

passengers arriving at an airport gate after 

landing (Dodge et al., 2008). 

 

Fighting – Fighting is a combination of pursuit 

and evasion, attack and defense. Very high-

speed movements are combined with large 

amounts of tightly intertwined turning, looping 

and frequent contact (where trajectories meet) 

in small distance between objects (Dodge et 

al., 2008). 

 

Fixed Meet – A fixed meet pattern consists of 

a set of MPOs that form a stationary cluster 

that stay together for the same amount of 

duration. An example can be students 

attending a lecture for a certain period of time 

(Dodge et al., 2008). 

 

Flock - The flock pattern describes a group of 

animals moving in the same direction while 

staying close together, for instance, a flock of 

sheep (Dodge et al., 2008). 

 

Fluctuation – This refers to irregular changes 

in the movement parameters of moving 

objects, for example, a flock of geese may 

change their flying formation between V-

shape, irregular V-shape, or sometimes lines 

(Dodge et al., 2008). 
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Table 1 

Cont. 

 

Loner – This movement describes objects 

moving in the same direction closely together 

at the same interval but with few individuals 

moving at a different interval. An example will 

be a herd of cattle grazing together at the same 

spot and one cow grazing at a different spot. 

 

Mixed cluster – This movement pattern is 

characterized by different objects moving at 

the same time. An example is the migration 

of Sandhill and Whooping Cranes that  use the 

Central Platte River Valley in Nebraska as a 

staging habitat during their migration north to 

breeding (Birds, 2007). 

 

 

Repetition – This refers to the occurrence of 

the same patterns or pattern sequence at 

different time intervals. For instance, in a 

football match the wingers may repeatedly 

sprint along the sidelines (Dodge et al., 2008). 

 

Symmetrical – This refers to sequences of 

patterns, where the same patterns are arranged 

in reverse order, such as wild geese heading 

north in the spring, and south in the fall 

(Dodge et al., 2008). 
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Table 1 

Cont. 

 

Temporal relation - These include any 

temporal relation among various events on the 

time axis. An instance will be a flock of wild 

geese usually stopping to rest after a long 

continuous flight (Dodge et al., 2008). 

 

Trend - Trend refers to consistent changes in 

the movement parameters of moving objects. 

For example, for an airplane circling in a 

holding pattern the rate of change of the 

movement direction will remain constant 

(Dodge et al., 2008). 

 

Varying meeting - A fixed meet pattern 

consists of a set of MPOs that form a 

stationary cluster that change in the meeting 

region. An example for a varying meet is the 

rental car drop-off at an airport (Dodge et al., 

2008). 

 

 

2.3.2 Summary taxonomy of patterns. Being able to decide the moving patterns of 

people and classify them has been an area of interest to both the academic and industrial world. 

Regarding classifying movement patterns, Somayeh, Robert, and Anna-Katharina (2008) 

acknowledged in their research paper that there is little agreement on the relevant types of 

movement patterns and if any, only few isolated definitions of these exist. Their paper intended 
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to contribute to the development of a toolbox of data mining algorithms and visual analytic 

techniques for movement analysis by developing first a conceptual framework for movement 

behavior of different moving objects and secondly a comprehensive classification and review of 

movement patterns. They show the utilization of their classification by answering the question 

about the extent of movement patterns of the eye tracking data is a proxy of other types of 

movement data. They set up a moderated discussion platform to help the further evolution of 

their proposed classification towards a consolidated taxonomy in a consensus process. Their 

research was able to use the generic patterns identified in their classification to allow a domain-

independent visualization of movement (Dodge et al., 2008). 

In reporting leadership patterns among trajectories, spatio-temporal movement patterns in 

large tracking data sets were investigated. Their paper presented several algorithms for 

computing patterns which were analyzed both theoretically and experimentally. Using a 

modified NetLogo Flocking Model, they were able to generate trajectories as a test bed for their 

pattern detection algorithms. Their paper presented a formal notion of a pattern called 

‘leadership’, describing the event or process of one individual in front leading the movement of a 

group. Their approach was inspired by movement patterns documented in animal behavior and 

behavioral ecology literature. One drawback they realized was the overall challenge which lies in 

relating movement patterns with the surrounding environment to understand where, when and 

ultimately why the agents move the way they do (Andersson et al., 2007). 

Benkert, Gudmundsson, Hubner and Wolle (2006) used the size and movement patterns 

of animals to determine if they were a flock or not by developing three approximation algorithms 

base on the size of region the animals were in. All the trajectories which were used in their 

experiments were created artificially. From their experiments, they concluded that the idea of 
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projecting trajectories into points in higher dimensional space is very practicable for finding 

flocks in spatio-temporal data. For the techniques they used in their experiment, they had to relax 

their definition of term flocks. As a conclusion they saw that the idea of projecting trajectories 

into points in higher dimensional space was very viable for finding flocks in spatio-temporal data 

(Benkert, Gudmundsson, Hübner, & Wolle, 2008). 

 Also Mazzoni (2005) used his research paper to write a software library, called 

LibFeature, which attempts to make the process of constructing feature vectors from raw data 

easier by allowing one to specify the commands to produce a feature vector in a high-level 

language. LibFeature was written in very portable C and designed to compile and run on almost 

any modern computing platform, including Windows, Mac OS X, Linux, and any modern UNIX 

system (Mazzoni, 2005).  

A proposed concept of spatio-temporal patterns as a systematic and scalable concept to 

query developments of objects and their relationships was undertaken by Martin Erwig. Based on 

his earlier work on spatio-temporal predicates, he outlined the design of spatio-temporal patterns 

as a query mechanism to characterize complex object behaviors in space and time. His research 

focused on deriving constraints that will allow spatio-temporal patterns to become well designed 

composable abstractions that are smoothly integrated into spatio-temporal query languages. He 

observed that most users of spatio-temporal data (such as, scientists) do not have a formal 

computer education and do not know how to use query languages for complex data like spatio-

temporal data. Offering ordinary users access to spatio-temporal data is therefore becoming a 

more important issue that is addressed by developing a visual query language and a 

corresponding user interface (Erwig, 2004). 
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 Lee, Paek and Ryu (2004) presented an innovative data mining technique for extracting 

temporal patterns of moving objects with spatio-temporal attributes which some industry refers 

to as location-based service (LBS). They used spatial operation to generalize a location of 

moving point, applying time constraints between locations of moving objects to make valid 

moving sequences. Location-based service aims to accurately identify individuals’ locations and, 

by applying this information to various marketing and services, provide more personalized and 

satisfying mobile service to its users. The algorithm used to determine their moving pattern 

mining consisted of four stages. First, the database is arranged into object identifier and valid 

time. Second, using spatial operation, moving objects’ location information is transformed into 

an area to discover significant information. Third, time constraints are imposed to extract 

effective moving sequence. Finally, the frequent moving patterns are extracted from the 

generated moving sequences. They acknowledged from their research that a more efficient 

pattern mining techniques are needed to be developed (Lee, 2004).  

Based upon their research work, Zheng, Xie and Ma (2010) introduced a social 

networking service, called GeoLife which aims to understand trajectories, locations and users. 

And also the correlation between users and their base on the trajectories generated by the users. 

Using trajectories generated from GPS devices and Wi-Fi usage, they sought in their research to 

classify the transportation modes (walking, driving, etc.) of the users. They also used the GPS 

trajectories to determine interesting traveling locations and also share the life experience of the 

user; bridging the gap between people and their location (Zheng, Xie, & Ma, 2010).  

Until a standardized guideline is developed for spatio-temporal trajectories, there are 

many research problems on which work is needed. Noyon, Devogele and Claramunt (2005) 

conducted research to explore and develop a trajectory manipulation model that supports not 
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only the representation of mobile trajectories, but also an intuitive data manipulation language 

that facilitates the underlying behavior, processes and patterns exhibited by moving points 

(Noyon, Devogele, & Claramunt, 2005). 

Using their paper (Fayyad, Piatetsky-Shapiro, & Smyth, 1996), they examined the 

attention being generated by data mining and knowledge discovery in databases by researchers, 

industry, and media. Their article provides an overview of this emerging field, clarifying how 

data mining and knowledge discovery in databases are related both to each other and to related 

fields, such as machine learning, statistics, and databases. It also mentions particular real-world 

applications, specific data-mining techniques, challenges involved in real-world applications of 

knowledge discovery, and current and future research directions in the field. Computational 

theories and tools are the subject of the emerging field of knowledge discovery in databases 

(KDD). Knowledge discovery in databases application areas includes marketing, finance 

(especially investment), fraud detection, manufacturing, telecommunications, and Internet 

agents. Here data patterns are analyzed and patterns determined are used for future goals. 

Zweig and Burges (2011) conducted a research on modeling semantics in text. Their data 

challenge consisted of 1,040 sentences each of which had four imposter sentences in which a 

single fixed word in the original sentence has been replaced by an impostor word with similar 

occurrence statistics. With the aid of a programming language model trained on 19th century 

novels, they were able to compute 30 alternative words for a given low frequency word in a 

sentence. Using human judgment, they then picked the four best impostor words, based on a set 

of provided guidelines. They performed further check on their data by running the same tests on 

203 sentence completion questions from a practice SAT exam and achieve similar results 

(Princeton Review, 11 Practice Tests for the SAT&PSAT, and 2011 Edition). To train language 
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models for the SAT question task, they used 1.2 billion words of Los Angeles Times data taken 

from the years 1985 through 2002. Using unaffiliated human answer on a random subset of 100 

questions, ninety-one percent were answered correctly (Zweig & Burges, 2011). 

The research presented in this paper undertaken by Zheni, Frihida, Ghezala and 

Claramunt (2009) proposes an integration of the semantic dimension, inspired from the concept 

of time-path, within a formal representation of space-time trajectories. They introduced an 

algebraic model that explicitly represents a spatio-temporal trajectory (STT) as an Abstract Data 

Type, where a series of trajectory states is potentially observed and measured (Zheni, Frihida, 

Ghezala, & Claramunt, 2009). 

Laube, Dennis, Forer and Walker (2007) used their research to discuss standardizations 

that integrated the extended set of motion descriptors within various temporal and spatial frames 

of reference. Their proposed lifeline context operators and standardizations are illustrated using 

high resolution trajectory data obtained from homing pigeons carrying miniature global 

positioning devices. Their paper also discusses opportunities and shortcomings of analyzing 

lifeline data from a Geographic Information Science perspective, specifically in the situation 

where three spatial dimensions are involved and where movement is largely unfettered. 

Using their pigeon flight data suggested that the selection of the algorithms used to compute 

lifeline context operators needed some care because not all algorithms are suitable for all data 

models or data-capture procedures (Laube & Purves, 2006). 

2.4 Clustering Algorithms 

2.4.1 K-means. K-means algorithm is a method of analyzing data by means of clustering 

or grouping the data. K-means is also referred to as Lloyd’s algorithm. K-means algorithm does 
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the clustering of data by trying to separate samples into groups of equal variance. This algorithm 

requires the number of clusters to be specified.  

K-means algorithm uses three basic steps to analyze data presented to it. The first step 

chooses the initial centroids, with the most basic method being to choose  samples from the 

dataset . After initialization, K-means consists of looping between the two other steps. The 

first step assigns each sample to its nearest centroid. The second step creates new centroids by 

taking the mean value of all of the samples assigned to each previous centroid.  

The difference between the old and the new centroids are computed and the algorithm repeats 

these last two steps until this value is less than a threshold. In other words, it repeats until the 

centroids do not move significantly. The K-means algorithm aims to choose centroids C that 

minimize the within cluster sum of squares objective function with a dataset X with n samples. 

 

Figure 4. K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked 

with white cross 
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2.4.2 Density-based spatial clustering of applications with noise (DBSCAN). 

DBSCAN is a data clustering algorithm which views clusters as areas of high density separated 

by areas of low density. DBSCAN is commonly used for clustering in spatial database because it 

needs less knowledge of the input parameters of the data.  

DBSCAN is use to identify arbitrary shape objects and removal of noise during the 

clustering process. DBSCAN has problems with handling large databases; it cannot cluster data 

sets well with large differences in densities. Similarly, it cannot produce correct result on varied 

densities.  

 

Figure 5. This image is a graphical representation of DBSCAN 

2.4.3 Affinity propagation. This is an algorithm that identifies exemplar among data 

points and forms clusters of data points around these exemplars. It operates by simultaneously 

considering all data point as potential exemplars and exchanging messages between data points 

http://en.wikipedia.org/wiki/Data_clustering
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until a good set of exemplars and clusters emerges. Affinity Propagation creates clusters by 

sending messages between pairs of samples until they converge. Using two nodes as exemplars, 

the Affinity Propagation algorithm takes as input a collection of real-valued similarities between 

data points to indicate how close the two nodes are. 

 

Figure 6. This image is a graphical representation of the concept of Affinity Propagation 

 

 

  

 

 

   



20 

 

CHAPTER 3 

Methodology 

For the method used in our thesis work, we used real and simulated GPS data to conduct 

a variety of experiments. This chapter describes the methodologies used in calculating the 

ranking of the most popular landmarks in the city of San Francisco and prediction of the 

destinations of a vehicle using the available route information followed in the past. 

3.1 Proposed Approach to Ranking Tourist Attractions 

Figure 7 shows the logical flow map of processes used in achieving the ranking of the 

tourist attractions. This logical flow map has two sections going through two processes to 

achieve our output. The blocks of work are described in details in the subsequent sections. 

 

Figure 7. Logical work flow map of work done 
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3.1.1 Yellow cab GPS dataset. The data used was imported from CRAWDAD, a 

community resource for archiving wireless data at Dartmouth College (Piorkowski, 

Sarafijanovic-Djukic, & Grossglauser, 2009). Each file in the data set was given a unique name. 

For each cab its mobility trace was saved in a separate ASCII file [9]. An example snapshot of 

data is given below in Figure 8. 

 

Figure 8. A snapshot of a cab text file named new_abboip 

3.1.2 San Francisco landmarks. These are made of twenty-five (25) popular landmarks 

which were sourced from the internet (Rosenbaum, 2008). We used the physical address location 

of these landmarks to determine their geographical coordinates in latitudes and longitudes. This 

was made possible by using the google map webpage that enable a known physical address of a 

located to be translated into geographical coordinate. 

3.1.3 Data Cleansing. Taking a closer look at the cab data imported, we could not 

conclude if the values in the first line of any of the files represented the starting GPS coordinate 

captured. We were able to determine the order of the coordinates by converting the values of the 
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UNIX epoch time stamp assigned to each GPS coordinate. The resultant time stamp was 

displayed in a Coordinated Universal Time (Year: Month: Day, Hour: Minute: Second) format. 

From here we were able to reverse the order of the data in each cab file based on the time stamp 

and arrange them in ascending order based on the earliest time. 

 

Figure 9. A snapshot of cab file new_abboip with the order of data reversed 

We refined the landmark dataset further to make each location distinguishable. For each 

location we assigned a description number, color and symbol. This task was performed to help 

make each landmark recognizable on the map when plotted as shown in Table 2. Having 

cleansed the two datasets, we measured the distance between each landmark L1(ϕ1, ƛ1) and GPS 

location captured by each cab C1 (ϕ1a… ϕ1n,  ƛ1a…. ƛ1n) (Borg & Groenen, 2005). 
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Displayed in table 2 is list of the landmarks assigned with a number description, color, 

symbol to represent them when plotted on the map and their geographical location.  

Table 2 

List of the 25 landmarks with their GPS coordinates  

 

3.2 Data Description 

The dataset used in this research contains GPS coordinates of cabs in San Francisco 

California, USA. The GPS coordinates is of 536 cabs collected over 30 days in the month of  

May 2008.Each of the Yellow Cab’s captured in the dataset were equipped with GPS tracking 

device which is used by dispatchers to efficiently reach customers. The data is transmitted from 

name disc color symbol latitude longitude

Pier 39, Angel Island State Park 0 red circle 37.81195 -122.409353

Golden Gate Bridge 1 blue circle 37.80999 -122.477059

Golden Gate Park 2 yellow circle 37.7699 -122.486275

Lombard Street 3 green circle 37.80175 -122.427185

Pier 33, Also pier for Alcatraz Island 4 cyan circle 37.8087 -122.404961

California Academy of Sciences 5 pink circle 37.77153 -122.466073

The de Young Museum, San Francisco Museum of Modern Art 6 purple circle 37.77309 -122.468734

The Cable Car Museum 7 magenta circle 37.79659 -122.411563

The Exploratorium 8 red circle 37.80321 -122.39758

The San Francisco Giants at AT&T Park 9 blue circle 37.78062 -122.389426

Contemporary Jewish Museum 10 yellow circle 37.79351 -122.403889

San Francisco Symphony at Davies Symphony Hall 11 green circle 37.77792 -122.420409

San Francisco Zoo 12 cyan circle 37.7338 -122.503227

Aquarium of the Bay 13 pink circle 37.80863 -122.409288

Bay Area Discovery Museum 14 purple circle 37.8357 -122.476855

Cathedral of St Mary of the Assumption 15 magenta circle 37.78416 -122.425271

City Hall 16 red circle 37.7794 -122.419566

Fort Mason Center 17 blue circle 37.806 -122.431708

Grace Cathedral 18 yellow circle 37.7919 -122.41304

Old St Mary's Cathedral 19 green circle 37.79273 -122.405677

San Francisco Main Library 20 cyan circle 37.77918 -122.41583

St Boniface Catholic Church 21 pink circle 37.78206 -122.412791

Treasure Island 22 purple circle 37.82296 -122.370263

Beach Chalet & Park Chalet 23 magenta circle 37.76949 -122.510284

Children's Fairyland 24 red circle 37.80925 -122.259969
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each cab to a central receiving station, and then delivered in real-time to the dispatch computers 

via a central server. This server system broadcasts the cab call number,     location and whether 

the cab had a passenger or not.  

The format of each mobility trace file is as follows with each line containing latitude, 

longitude, occupancy and time. The latitude and longitude were expressed in decimal degrees. 

To show if the cab was occupied, it was represented with 1 and 0 if it was not occupied. The time 

stamp for each coordinate was expressed in a UNIX epoch format. 

3.3 Determining Distance using Haversine Formula 

 Navigators used logs to get round the difficulties they always had doing long-

multiplication and long-division. The problem was that logarithms couldn't be used with 

negative numbers, considering that applying log to a negative number is a meaningless concept. 

Ordinary trig functions ranged over positive and negative values. The Haversine formula is an 

equation important in navigation, giving great-circle distances between two points on 

a sphere from their longitudes and latitudes. 

 

Figure 10. A typical representation of the earth 

 

http://en.wikipedia.org/wiki/Sphere
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The great-circle distance is a reference between two points which is the shortest distance over the 

earth’s surface –giving an ‘as-the-crow-flies’ distance between those points. The distance d 

between two points along the latitude and longitude of the earth can be calculated by; 

         (
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Equation 1.  Haversine distance formula 

Where; 

 r is the radius of the sphere, 

 Ø1,Ø2: latitude of point 1 and latitude of point 2 

 ƛ1, ƛ2: longitude of point 1 and longitude of point 2 

3.4 Approach Using Probability Model to Predict Destination 

Coordinates captured from GPS devices may not provide accurate results and as solution 

we used gridded representation of a geographical location in our approach to predicting the 

destination of moving bodies. One of such errors in coordinates recorded by the GPS devices for 

example can be observe in the reading captured within a 3000ft
2 

area; there will be different 

readings generate within area even though movement within this area is not significant. We used 
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the Grid based subdivision of space to smooth over this GPS recording errors and also to help in 

the prediction of destination of route based on past recorded data of how vehicles move from cell 

to cell when following routes. The grid subdivision can be customized to meet the needs of the 

geographical location and traffic. An example will be in a densely populated city, a grid with 

many subdivisions will be generated; whereas a grid with fewer subdivisions will be generated 

for a country side area which is sparsely populated. 

3.4.1 Definitions of terms. Grid – N X N cells in which geographical space is divided, 

each GPS point belongs to one cell. Each cell is labeled with a number (ID) in the left to right, 

top to bottom order as shown in example below. Route – trajectory prototype of which there 

may exist many trajectory examples. A route is simply a sequence of cell IDs. Each unique route 

has its own ID (again a number). Trajectory - a trajectory is a sequence of specific GPS 

coordinates time stamped. Each GPS coordinate pair falls inside a cell, so trajectory on the grid 

becomes a sequence of cell IDs and thus is an example of a route. 

3.4.2 Data Description. The data generated was simulated using calico. A GPS location 

is created by clicking in a cell followed by another click for next the GPS location. Once done 

with a trajectory, save the data in a file by pressing the‘s’ key on the keyboard. The program will 

then request for the route ID of which this trajectory is an example.  

At this point a number or sequence of digits are entered and finalize by pressing‘d’ for 

done on the keyboard. All the trajectories are repeated in this manner and key ‘Q’ on the 

keyboard is pressed for quit. This creates a data file which is similar to the San Francisco cab 

data format – column 1 is X, column 2 is Y, column 3 is occupancy (always 1 for simulated 

data), column 4 is timestamp and column 5 is cell ID. Column 5 which represents the cell ID’s is 

the only difference from the San Francisco cab data format. 
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3.4.3 Conditional Probability. Here we are asking the following types of questions – 

given that the vehicle was observed to have driven through path (1,2) (which is our evidence E), 

what is the probability that it is following route # 1 (which is our hypothesis H)? The base term 

(numerator) is expanded over all possible routes / route hypotheses.  

Bayes’ theorem is a relationship between the conditional probabilities of two events. A 

conditional probability, often written P (A|B) is the probability that Event A will occur given that 

we know that Event B has occurred. Bayes’ theorem states: 

P(A|B) =  
P(B|A)P(A) 

 

P(B) 
 

Bayes’ theorem is often interpreted as a statement about how a body of evidence E, affects the 

probability of a hypothesis, H: 

P(H|E) = P(H)  
P(E|H) 

 

P(E) 
 

  

 

This can be expanded into –  

P(H|E) = P(H)  
P(E|H) 

 

∑iP(E|Hi)P(Hi) 
 

  

 

Where Hi represents all possible different hypotheses. 

Conditional probabilities arise naturally in the investigation of experiments run 

repeatedly where an outcome of a trial may affect the outcomes of the subsequent trials. 

Conditional probability is explained with the following example. 

 Example: In a group of 160 players completing in an under 18 World Cup tournament, 

7.9% of them are 17 years old, while 4.7% can expect to live to age 18. Given that a 

player is 17, what is the probability that the player live to age 18 before the tournament 

starts? 
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This is an example of a conditional probability. In this case, the original sample space can 

be thought of as a set of 160 soccer players. The events E and F are the subsets of the 

sample space consisting of all players who live at least 17 years, and at least 18 years, 

respectively. We consider E to be the new sample space, and note that F is a subset of E. 

Thus, the size of E is 79, and the size of F is 47. So, the probability in question equals 

47/79 = 0.595. Thus, a player who is 17 has a 0.0059 chance of reaching age 18 before 

the tournament is over. 
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CHAPTER 4 

Experiments and Results 

4.1 Ranking Tourist Attractions Using Time Series GPS Data of Cabs   

This chapter presents a method to visualize landmarks within an urban area and also to 

rank them according to popularity. We used working information extracted from the cab dataset 

within the San Francisco Bay area for the experiments performed.  

4.1.1 All GPS Coordinates (Experiment 1). In the first part of the experiments, we used 

the values of the GPS coordinates only during the period when the cab is occupied. By using a 

program, we calculated the Haversine distance of each landmark coordinate against the GPS 

coordinates in a particular file. The selected GPS coordinates were determined using a 0.1 mile 

radius distance of the GPS coordinates close to the landmark.   

The same procedure used to determine the Haversine distance was applied to the 

remaining 536 Yellow cab files to determine their Haversine distance. A frequency count for 

each file was generated to find the number of visits to a particular landmark within the 0.1 mile 

radius from the Haversine distance calculation. 

4.1.2 Pickup and Drop-off coordinate of GPS (Experiment 2). In the second set of 

experiment, we only used the starting and ending values of the GPS coordinate during the time 

period when the cab is occupied. The pickup point and its corresponding GPS coordinate were 

characterized with ‘1’ to show it was occupied by a passenger. GPS coordinates assigned with 

‘0’ symbolized that the Yellow cab was not occupied by a passenger even though it might be 

moving.  

Using the same approach in experiment 1, the Haversine distance between each of the 

landmarks and GPS coordinates of the pickup and drop-off point was calculated for each cab file 
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within 0.1 mile radial.  A frequency count for each file was generated to find the number of visits 

to a particular landmark within that 0.1 mile radius.  

4.1.3 Plotting of landmarks on a map. By means of the geographical coordinates of the 

25 landmarks, we plotted on a map each landmark. This was possible using a GPS visualization 

website that allowed files of the coordinates to be uploaded to the website (http: 

//www.gpsvisualizer.com/) as shown in Figure 11. The GPS visualization website plotted each 

landmark assigned with a default red circular shape. 

When the cursor of a mouse is placed on the landmark icon, it displays a name 

description of it. Figure 12 below shows a Google Ariel view of the landmarks in the San 

Francisco Bay area as plotted using GPS visualizer. The visualization websites after uploading 

file containing the coordinates also generated an optional source code which can be uploaded 

into Google Earth to generate an animated version of the map. 

Figure 11 shows the input form used in generating the aerial map shown in Figure 12. 

The form allows the flexibility to change the points generated on the map and also change field 

parameters of the map. The data to be used can be copied and pasted in a field provided or 

attached as an excel file or text file. For our research work, we inputted our data as excel file 

attachments. 

 

http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/
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Figure 11. GPS Visualizer input form 
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Figure 12. A visual of the landmarks in the San Francisco Bay area differentiated by colors 

Figure 12 shows a Google map aerial view of a section of San Francisco Bay area. The 

points located on the map represent the individual landmarks and are differentiated by colors for 

easy identification. 

4.1.4 Results of Experiment 1. Figure 13 and Table 3 below show the summation of the 

frequency count by all the individual cabs which visited a particular landmark within the 30 days 

period using experiment 1. 
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Figure 13. Horizontal bar graph representation of results from experiment 1 

Figure 13 displays a horizontal bar graph of the frequency of visits verses the 25 

landmark names. The graph was generated using the values provided in Table 3. These values 

were recorded generated from performing experiment 1. The values provided in Table 3 were 

arranged in descending order for easy ranking of the landmarks. With the highest table value 

being 42,852 and the lowest being 3, the ordered values in the table aided with arrangement of 

the bars in the graph. 

 Analyzing Figure 13 and Table 3 which are the results of experiment 1, the three most 

visit places were found be the Contemporary Jewish Museum, Old Saint Mary’s Cathedral and 

Grace Cathedral respectively in descending order. The bottom three of the least visited were San 

Francisco Zoo, Pier 33 and Pier 39 respectively.   
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Table 3  

Results of ranking landmarks using all GPS coordinates 

 

4.1.5 Results of Experiment 2. Figure 14 and Table 4 below show the summation of the 

frequency count by all the individual cabs using their pickup and drop-off coordinates within the 

defined proximity of the landmarks within the 30 days period using experiment 2. 
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Figure 14. Horizontal bar graph representation of results from experiment 2 

From experiment 2, the values of Table 4 and the graph displayed in Figure 23 were 

treated in the same way in terms of content format as those of the graph and table generated in 

experiment 1. The highest value of the number of visits recorded in Table 4 was 9,335 and its 

lowest value recorded was 3. 

 From Figure 14 and Table 4 the results of experiment 2, the three most visit places were 

found be the Contemporary Jewish Museum, Aquarium of the Bay and San Francisco Main 

Library respectively in descending order. The bottom three of the least visited were Golden Gate 

Bridge, Pier 33 and Pier 39 respectively. 
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Table 4  

Results of ranking landmarks using start and end coordinates 

 

  4.1.6 Summary of findings for ranking tourist attractions using time series GPS data 

of cabs. Using the frequency count of the number of visits to the landmarks, the output of the 

generated map when plotted by the GPS visualizer website is displayed in Figure 15. The size of 

each plotted coordinate corresponds to the number of visits by the various cabs to that particular 

landmark. Figure 16 shows the landmarks represent by their numerical description as listed under 

Table I. 
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Figure 15. A map showing the varying sizes of point representing the landmarks 

 

 

Figure 16. A map showing the numerical representation of the landmarks 
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From our experiments , the three most visited landmarks were all edifices of religious 

bodies. More children oriented landmarks listed in the area happened to be at the bottom list of 

our result. This can be as the result of the population in the area being Christians hence the top 

three attractions being churches. Half of the landmarks were located within close proximity after 

plotting them on the map. 

4.2 Probability Model to Predict Destination  

In this section of our research, we use simulated data built on the same data format as that 

of the San Francisco cab data to predict the possible routes to be taken by a vehicle. All the 

probability calculations performed in this section of the experiment were done using Bayes 

theorem of conditional probability formula. 

    4.2.1 Experiment 1 probability calculation and results. In experiment 1, a grid of 10 x 

10 is created to represent a map. The sequence of cell numbers used is shown in below. 

Table 5 

Observation table of route number, cell sequence and frequency experiment 1 

Commonly observed route number Cell sequence Frequency 

1 54,64,74,84,85,86,87,88,89,79,69,59,49,39 10 

2 27,37,47,57,67,66,65,64,63 14 

3 1,2,3,4,5,6,7,8,18,28,38,48 12 

4 21,22,23,24,34,44,54,55,56,57 18 

5 87,86,76,66,65,64,63,53,43,33,23 8 

6 82,83,73,74,64,65,66,67,68 6 

7 54,64,74,84,85,86,87,88,89,79,69,59,49,48 6 

8 27,37,47,57,67,66,65,75 6 

9 1,2,3,4,5,6,7,8,18,28,38,39 4 

10 21,22,23,24,34,44,54,55,56,46 4 

11 87,86,76,66,65,64,63,62 10 

12 82,83,73,74,64,65,66,56 8 
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

Route 1  

Route 2 

Route 3 

Route 4 

Route 5 

Route 6 

Route 7       

Route 8   

Route 9   

Route 10  

Route 11  

Route 12   

 

Figure 17. A representation of routes generated with colored route for experiment 1 

Figure 17 shows all the various routes that were generated during experiment 1. The 

routes are color coded for easy tracing and tracking. An example is route ID 3 which is color 

coded orange. It has a starting cell number of 1 and runs through the grid following the sequence 

2,3,4,5,6,7,8,18,28,38 with cell number 48 as its ending destination cell number. 
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Table 6 below shows the probability values recorded as a result of calculating the 

likelihood of a route ID being used while following a particular cell sequence. From the table a 

repetition of probability values can be observed. These repeated values arise as a result of the 

route ID’s having the same initial cell sequence. 

Table 6  

A grid table showing the outcome of possible events in experiment 1 

 

  Cell sequence 

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 

 

 

 

 

 

 

 

 

Route ID 

1  0.625 0  0 0 0 0  0.375 0 0 0 0 0 

2  0 0.70 0 0 0 0 0 0.30 0 0 0 0 

3  0 0  0.75 0 0 0 0 0 0.25 0 0 0 

4  0 0 0  0.447 0 0 0 0 0  0.105 0 0 

5  0 0 0 0  0.444 0 0 0 0 0  0.556 0 

6  0 0 0 0  0  0.429 0  0 0 0 0  0.571 

7  0.625 0  0 0 0 0  0.375 0 0 0 0 0 

8  0 0.70 0 0 0 0 0 0.30 0 0 0 0 

9  0 0  0.75 0 0 0 0 0 0.25 0 0 0 

10  0 0 0  0.447 0 0 0 0 0  0.105 0 0 

11  0 0 0 0  0.444 0 0 0 0 0  0.556 0 

12  0 0 0 0  0  0.429 0  0 0 0 0  0.571 
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Listed in table 7 are the cell sequence used in the calculation of the conditional 

probability for experiment 1. The twelve route IDs generated were paired up based on their cell 

sequence. The cell sequence S# is part of the cell numbers common to the route IDs. Using route 

ID 1 and 7 as an example, they have cell sequence numbers of 54,64,74,84,85,86,87,88, 

89,79,69,59,49,39 and of 54,64,74,84,85,86,87,88, 89,79,69,59,49,48 but common to those cell 

sequence are the numbers 54,64,74,84,85,86,87 which is noted as S1. 

Table 7 

Probability table showing outcome of 12 events  

  

 

 Route ID 1 and 7. For the calculation of their probability, both route ID’s used the cell 

sequence 54, 64, 74, 84, 85, 86, 87.  Route ID 1 was used a total of 10 times and route ID 

Cell Sequence (S1 – S6) Route ID S# Probability 

54,64,74,84,85,86,87 1 S1 0.625 

27,37,47,57,67,66,65 2 S2 0.70 

1,2,3,4,5,6,7 3 S3 0.75 

21,22,23,24,34,44,54 4 S4 0.447 

87,86,76,66,65,64,63 5 S5 0.444 

82,83,73,74,64,65,66 6 S6 0.429 

54,64,74,84,85,86,87 7 S1 0.375 

27,37,47,57,67,66,65 8 S2 0.30 

1,2,3,4,5,6,7 9 S3 0.25 

21,22,23,24,34,44,54 10 S4 0.105 

87,86,76,66,65,64,63 11 S5 0.556 

82,83,73,74,64,65,66 12 S6 0.571 
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7 was used 6 times. This generated a probability of 0.625 and 0.375 chances of these 

routes being used respectively. 

 Route ID 2 and 8. The cell sequence used in the calculation of the probability for these 

two routes ID’s were 27,37,47,57,67,66,65. The number of times route ID’s 2 and 8 were 

used summed to up 14 and 6 times respectively. These generated probabilities of 0.70 and 

0.30 respectively for both route ID’s. 

 Route ID 3 and 9. During the calculation of the likelihood of using route ID 3 and 9 in 

the future, the following cell sequences 1,2,3,4,5,6,7 were used. The chance of route ID 3 

and 9 being used were calculated to be 0.75 and 0.25 respectively. These outcomes were 

obtained after route 3 was observed to have been used 12 times and route 9 observed to 

have been used 4 times. 

 Route ID 4 and 10. For the calculation of their probability, route ID’s 4 and 10 used the 

cell sequence 21, 22, 23, 24, 34, 44, 54.  Route ID 4 was observed to have been used a 

total of 18 times while’s route ID 10 was used 4 times. This generated a probability of 

0.447 and 0.105 chances of those routes being used respectively. 

 Route ID 5 and 11. The cell sequence used in the calculation of the chance of using 

routes ID’s 5 and 11 were 87,86,76,66,65,64,63. The number of times route ID’s 5 and 11 

were used summed to up 8 and 10 times respectively. This generated a probability of 

0.444 and 0.556 respectively for both route ID’s. 

 Route ID 6 and 12. Calculations for the possibility of using route ID 6 and 12 were 

obtained to be 0.429 and 0.571. The number of times route ID’s 6 and 12 were used 

summed to up 6 and 8 times respectively using the cell sequence 82,83,73,74,64,65,66. 
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Figure 18. A graph showing probability verses route ID and cell sequence 

Displayed in Figure 18 above is a graph of the route IDs versus the probability. From the 

calculations it was observed that, the higher the number of time a particular route was used the 

higher the chances of it being used in the future. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

1 2 3 4 5 6 7 8 9 10 11 12

Probability 

Probability



44 

 

4.2.2 Experiment 2 probability calculation and results. In experiment 2 four more 

routes were added to those created in experiment 1. These new routes were created with a little 

more variance with respect to the cell sequence they followed. This was done to see how the 

probability outcome was affected.  Experiment 2 follows the same principles as those of 

experiment 1 but in this situation there are three route IDs sharing a common cell sequence. As 

an example, a sequence of cell number 1and 2 is common to route ID’s 3, 9 and 15. 

Table 8  

Observation table showing route number, cell sequence and frequency experiment 2 

Commonly observed 

route number 

Cell sequence Number of times 

observed 

1 54,64,74,84,85,86,87,88,89,79,69,59,49,39 10 

2 27,37,47,57,67,66,65,64,63 14 

3 1,2,3,4,5,6,7,8,18,28,38,48 12 

4 21,22,23,24,34,44,54,55,56,57 18 

5 87,86,76,66,65,64,63,53,43,33,23 8 

6 82,83,73,74,64,65,66,67,68 6 

7 54,64,74,84,85,86,87,88,89,79,69,59,49,48 6 

8 27,37,47,57,67,66,65,75 6 

9 1,2,3,4,5,6,7,8,18,28,38,39 4 

10 21,22,23,24,34,44,54,55,56,46 4 

11 87,86,76,66,65,64,63,62 10 

12 82,83,73,74,64,65,66,56 8 

13 54,64,74,84,94,95,96,97,98,99,89,79,69,59,60 4 

14 27,37,47,57,67,77,87,97,,96,95,94,93,83,73,63,62 3 

15 1,2,12,13,3,4,5,6,7,17,18,19 6 

16 21,22,23,24,14,15,16 7 

17 82,83,93,94,84,74 7 
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

Route 13  

Route 14 

Route 15 

Route 16 

Route 17 

 

Figure 19.  Representation of routes generated with colored route for experiment 2 
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Showing below in Table 9 are the probability values recorded from performing 

experiment 2. From the table a repetition of probability values can be observed times. This is as a 

result of part of the same cell sequences being used by three different route IDs. An example will 

route ID 1, 7, and 13 using part of the same cell sequences. 

Table 9 

A grid table showing the outcome of possible events in experiment 2 

  Cell sequence 

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Route 

ID 

1 0.454 0  0 0 0 0 0.272 0 0 0 0 0 0.136 0 0 0 0 

2  0 0.609 0 0 0 0 0 0.261 0 0 0 0 0 0.13 0 0 0 

3  0 0  0.545 0 0 0 0 0 0.182 0 0 0 0 0 0.273 0 0 

4  0 0 0  0.38 0 0 0 0 0 0.089 0 0 0 0 0 0.156 0 

5  0 0 0 0  0.44 0 0 0 0 0  0.56 0 0 0 0 0 0 

6  0 0 0 0  0 0.286 0  0 0 0 0 0.381 0 0 0 0 0.333 

7 0.454 0  0 0 0 0 0.272 0 0 0 0 0 0.136 0 0 0 0 

8  0 0.609 0 0 0 0 0 0.261 0 0 0 0 0 0.13 0 0 0 

9  0 0  0.545 0 0 0 0 0 0.182 0 0 0 0 0 0.273 0 0 

10  0 0 0  0.38 0 0 0 0 0 0.089 0 0 0 0 0 0.156 0 

11  0 0 0 0  0.44 0 0 0 0 0  0.56 0 0 0 0 0 0 

12  0 0 0 0  0 0.286 0  0 0 0 0 0.381 0 0 0 0 0.333 

13 0.454 0  0 0 0 0 0.272 0 0 0 0 0 0.136 0 0 0 0 

14  0 0.609 0 0 0 0 0 0.261 0 0 0 0 0 0.13 0 0 0 

15  0 0  0.545 0 0 0 0 0 0.182 0 0 0 0 0 0.273 0 0 

16  0 0 0  0.38 0 0 0 0 0 0.089 0 0 0 0 0 0.156 0 

17  0 0 0 0  0 0.286 0  0 0 0 0 0.381 0 0 0 0 0.333 
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Listed in table 10 are the cell sequence used in the calculation of the conditional 

probability for experiment 2. The seventeen route IDs generated were paired up based on their 

cell sequences. 

Table 10 

 Probability table showing outcome of 17 events 

Cell Sequence (S1 – S12) Route ID S# Probability 

54,64,74,84 1 S1 0.454 

27,37,47,57 2 S2 0.609 

1,2 3 S3 0.545 

21,22,23,24 4 S4 0.38 

87,86,76,66 5 S5 0.44 

82,83,73,74 6 S6 0.286 

54,64,74,84 7 S1 0.272 

27,37,47,57 8 S2 0.261 

1,2,3,4 9 S3 0.182 

21,22,23,24 10 S4 0.089 

87,86,76,66 11 S5 0.56 

82,83,73,74 12 S6 0.381 

54,64,74,84 13 S1 0.136 

27,37,47,57 14 S2 0.13 

1,2,3,4 15 S3 0.273 

21,22,23,24 16 S4 0.156 

82,83,73,74 17 S6 0.333 
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 Route ID 1, 7 and 13. These three route IDs share a common cell sequence of 54, 64, 74, 

84.  Route ID 1 was observed to have been used a total of 10 times, route ID 7 was used 6 

times and route ID 13 was used 4 times. This generated a probability of 0.454, 0.272 and 

0.136 chances of these routes being used respectively in the future. 

 Route ID 2, 8 and 14. The cell sequence used in the calculation of the probability for 

these routes ID’s were 27,37,47,57. The number of times route ID’s 2, 8 and 14 were 

used summed to up 14, 6 and 3 times respectively. This generated a probability of 0.609, 

0.261 and 0.130 respectively for both route ID’s. 

 Route ID 3, 9 and 15. During the calculation of the probability of route ID 3, 9 and 15 

being used in the future, the following cell sequence 1, 2 was used. The chance of route 

ID 3, 9 and 15 being used was calculated to be 0.545, 0.182 and 0.273 respectively. The 

outcomes were obtained after route ID 3 was observed to have been used 12 times, route 

ID 9 observed to be used 4 times and route ID 15 used 6 times. 

 Route ID 4, 10 and 16. For the calculation of their probability, route ID’s 4, 10 and 16 

used the cell sequence ‘21, 22, 23, 24’.  Route ID 4 was observed to have been used a 

total of 18 times, route ID 10 was used 4 times and that of route ID 16 was 7 times. This 

generated a probability of 0.38, 0.089 and 0.156 chances of these routes being used 

respectively in the future. 

 Route ID 5 and 11. The cell sequence used in the calculation of the probability of routes 

ID’s 5 and 11 were 87,86,76,66,65,64,63. The number of times route ID’s 5 and 11 were 

used summed to up 8 and 10 times respectively. This generated a probability of 0.444 and 

0.556 respectively for both route ID’s. 
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 Route ID 6, 12 and 17. Calculations for the possibility of using route ID 6, 12 and 17 

were obtained to be 0.286, 0.381 and 0.333. The number of times route ID’s 6, 12 and 17 

were used summed to up 6, 8 and 7 times respectively using the cell sequence 

82,83,73,74. 

From the probability calculations and graph displayed in Figure 20, it was observed that the more 

route IDs which used part of the same cell sequence, the less chance are created for each route 

ID to be used in the future. 

 

Figure 20. A graph showing probability verses route ID and cell sequence in experiment 2 
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4.2.3 Experiment 3 probability calculation and results.  Under this section of our 

research we use a real map of a section of the city of Greensboro North Carolina. We took this 

decision to help us achieve prediction results from data generated by using real routes and 

destinations as shown in Figure 21. 

 

Figure 21. Satellite image showing a section of downtown Greensboro with four routes 
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Performing the experiment, we transformed the map in Figure 21 into a gridded section 

of a 4x4 map. Next the routes with their starting and ending destinations are simulated using the 

program and the results presented on the gridded map with the route represented by the cell 

numbers. A path starting from the city park and ending at Grey’s Tavern can follow the path 

through West friendly Avenue, North Eugene Street and West McGee Street. This route with ID 

1 is represented on the gridded map with the cell sequence of 4, 3, 2, 6, 10, 14, 15, and 16 and is 

color coded red. Four route IDs are used in this experiment and the number of times the routes 

were used is recorded in table 11. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

Route 1 Route 2  Route 3 Route 4 

 

Figure 22. A grid representation of the satellite image with the four routes 
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Table 11 shows a record of the number of times a particular route was used and the sequence 

followed. The cell sequences which represent actual street names are described as follows: 

 Cell numbers 4,3,2,1 – West Friendly Avenue. This route is a one way direction running 

from east to west. Cell numbers 5,6,7,8 – West Market Street. This is also a one way 

direction running west to east. Cell number 9,10,11,12 – West Washington Street. This is 

bi-directional Street. Cell numbers 13,14,15,16 – West McGee Street. This is also a bi-

directional street. 

 Running vertically is South Edgeworth Street with cell numbers 13,9,5,1 south to north 

geographically. Cell numbers 2, 6, 10, 14 represent North Eugene Street and is a bi-

directional street. Cell number 3, 7, 11, 15 represents North Greene Street and it is a one 

way running from north to south. Cell number 4, 8, 12, 16 represents North Elm Street 

and it is a bi-directional Street.  

Table 11 

Observation table of route numbers, cell sequence and frequency experiment 3 

 

Table 12 and table 13 shows the probability calculated for the chances that a particular 

route ID would be used in the future. To determine the probability, we used part of the cell 

sequence assigned to a route ID versus the number of times that cell was. Using one of the cell 

Commonly observed route number Cell sequence Number of times observed 

1 4,3,2,6,10,14,15,16 10 

2 4,3,2,6,10,11,12,16 14 

3 8,12,11,10,9,5 12 

4 8,12,11,15,14,13,9,5 18 
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sequences as an example, S1 which has a cell sequence of 4, 3, and 2 is common to route ID 1 

and route ID 2 which is made of up cell sequence 4, 3, 2, 6, 10, 14, 15, 16 and 4, 3, 2, 6, 10, 11, 

12, 16. 

Table 12  

A grid table showing the outcome of possible events in experiment 3 

 

Table 13 

 Probability table showing outcome of 4 events 

Cell Sequence (S1 – S12) Route ID S# Probability 

4,3,2 1 S1 0.409 

4,3,2 2 S2 0.591 

8,12,11 3 S1 0.593 

8,12,11 4 S2 0.407 

 

 

Displayed in Figure 23 is a graphical representation of results of experiment 3. The route 

IDs and the probability corresponding to those route IDs are displayed in the graph below.  

 Cell Sequence 

S1 S2 S1 S2 

 

 

Route ID 

1 0.409 0.591 0 0 

2 0.409 0.591 0 0 

3 0 0 0.593 0.407 

4 0 0 0.593 0.407 
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Figure 23. A graph showing probability verses route ID and cell sequence in experiment 3 

The probability values generated from the simulated and real map shows that the 

frequency at which a route directly influences the chance of predicting the likelihood of it usage 

in the future. 
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CHAPTER 5 

Discussion and Future Research 

For the experiments performed in this thesis work, we used real GPS datasets and 

simulated. Using programs and algorithms, we conducted two experiments to help determine the 

ranking of tourist attractions. We were also able to predict, using conditional probability 

calculations, the route that a vehicle might use in the future based past routes used. This part of 

our research was possible after carefully generating gridded subdivisions of geographical 

locations and identifying the starting cell a vehicle follows until it reaches its destination cell. 

For our proposed future work, we would like to create a predictive model for physical 

security by analyzing data from the tracking of GPS coordinates of suspects by taking a closer 

look at pickup points and the number of times they visited particular drop-off points. We are also 

interested in using it in the retail domain by capturing the movement/buying pattern of a 

customer to a shopping mall stall. This can be done using a mobile application with the 

customer's permission to allow access by the mall stalls. Offers can be sent right at the time of 

shopping based on the customer’s previous movement. From examining the results of the 

experiments, we were able to identify the most visited places within San Francisco. Prior to 

performing this research, we initially thought the most visited places would be centered on 

family fun or entertainment grounds; the results proved otherwise. 

 

 

 

 



 

 

 

References 

Andersson, M., Gudmundsson, J., Laube, P., & Wolle, T. (2007). Reporting leadership patterns 

among trajectories. Paper presented at the Proceedings of the 2007 ACM symposium on 

Applied computing. 

Benkert, M., Gudmundsson, J., Hübner, F., & Wolle, T. (2008). Reporting flock patterns. 

Computational Geometry, 41(3), 111-125.  

Birds, A. a. t. (2007). All about the birds. from 

http://www.birds.cornell.edu/AllAboutBirds/studying/migration/ 

Birmingham, B. P. a. W. (2005). Modeling Form for On-line Following of Musical 

Performances. Proceedings of the Twentieth National Conference on Artificial 

Intelligence, Pittsburgh, Pennsylvania,.  

Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications: 

Springer. 

Brandtzæg, P. B. (2013). Big Data, for Better or Worse: 90% of World’s Data Generated over 

Last Two Years. Science Daily.  

Dodge, S., Weibel, R., & Lautenschütz, A.-K. (2008). Towards a taxonomy of movement 

patterns. Information Visualization, 7(3-4), 240-252.  

Domingos, P. (2012). A few useful things to know about machine learning. Communications of 

the ACM, 55(10), 78-87.  

Erwig, M. (2004). Toward Spatio-Temporal Patterns Spatio-Temporal Databases (pp. 29-53): 

Springer. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge 

discovery in databases. AI magazine, 17(3), 37.  

http://www.birds.cornell.edu/AllAboutBirds/studying/migration/


 

 

 

Gray, L. (2013). How Does GPS Work? : The Rosen Publishing Group. 

Laube, P., & Purves, R. S. (2006). An approach to evaluating motion pattern detection 

techniques in spatio-temporal data. Computers, Environment and Urban Systems, 30(3), 

347-374. doi: 10.1016/j.compenvurbsys.2005.09.001 

Lee, O. H. P., Keun Ho Ryu. (2004). Temporal moving pattern mining for location-based 

service. Journal of Systems and Software, 73(3), 481-490. doi: 10.1016/j.jss.2003.09.021 

Mazzoni, D. (2005). LibFeature: A software library for quickly generating feature vectors on the 

fly from structured data. Paper presented at the Eighth Workshop on Mining Scientific. 

McDonald, D. B. (2013). Population Ecology. from 

http://www.uwyo.edu/dbmcd/popecol/feblects/lect06.html 

Noyon, V., Devogele, T., & Claramunt, C. (2005). A formal model for representing point 

trajectories in two-dimensional spaces Perspectives in Conceptual Modeling (pp. 208-

217): Springer. 

Piorkowski, M., Sarafijanovic-Djukic, N., & Grossglauser, M. (2009). CRAWDAD data set 

epfl/mobility (v. 2009-02-24). 

Roger. (2008). Uses associated with HMMs. Hidden Markov Models. from 

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/hmms/s2_pg1.html 

Rosenbaum, D. (2008). Top Attractions in San Francisco. San Francisco Travel. from 

http://www.sanfrancisco.travel/todo/Top-Attractions-in-San-Francisco.html 

Satish, L., & Gururaj, B. (1993). Use of hidden Markov models for partial discharge pattern 

classification. Electrical Insulation, IEEE Transactions on, 28(2), 172-182.  

Zheng, Y., Xie, X., & Ma, W.-Y. (2010). GeoLife: A Collaborative Social Networking Service 

among User, Location and Trajectory. IEEE Data Eng. Bull., 33(2), 32-39.  

http://www.uwyo.edu/dbmcd/popecol/feblects/lect06.html
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/hmms/s2_pg1.html
http://www.sanfrancisco.travel/todo/Top-Attractions-in-San-Francisco.html


 

 

 

Zheni, D., Frihida, A., Ghezala, H. B., & Claramunt, C. (2009). A semantic approach for the 

modeling of trajectories in space and time Advances in Conceptual Modeling-

Challenging Perspectives (pp. 347-356): Springer. 

Zweig, G., & Burges, C. J. (2011). The Microsoft Research sentence completion challenge: 

Technical Report MSR-TR-2011-129, Microsoft. 

 

 

 

  


	Probabilistic Model To Identify Movement Patterns In Geospatial Data
	Recommended Citation

	tmp.1588872607.pdf.EAWw4

