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Abstract 

Sickle cell anemia is an abnormality that causes a deformation in the shape of the red 

blood cell that hinders the circulation of the red blood cell through the blood vessel. The 

deformation is caused by the association of monomers to each other to form polymers 

(polymerization). The oxygenation of the sickle cell may lead to the melting of polymers (de-

polymerization). Many studies have been conducted to understand the dynamics of de-

polymerization. This study focuses on the impact of various parameters over the output values in 

the system of de-polymerization. Both mathematical and statistical approaches for the sensitivity 

analysis of the parameters are developed and conducted on the carbon monoxide (CO) mediated 

sickle cell hemoglobin (HbS) de-polymerization. 

The sensitivity analysis measures how sensitive the model output is with respect to the 

changes of the model input parameters and which input parameters are key factors that affect the 

model output. There are many approaches in the parameter sensitivity analysis. This study 

focuses on two: the traditional sensitivity analysis (TSA) that utilizes the traditional sensitivity 

functions (TSFs) and the multi-parameter sensitivity analysis (MPSA). The TSA is a local 

sensitivity analysis that computes the first-order partial derivatives of the system output with 

respect to the input parameters, i.e. the TSFs. The TSFs are obtained numerically by the Runge-

Kutta method on the sensitivity equations. The MPSA is a global sensitivity analysis that 

enumerates the overall effect of the model input parameters on the output by perturbing the 

model input parameters within large ranges. The MPSA is implemented by employing a Monte 

Carlo method over a broad range of parameters values and comparing the cumulative distribution 

functions of the acceptance and unacceptance groups of the parameters.  
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All four concentrations as model outputs and four binding/melting rates as input 

parameters are considered in this study. The sensitivity results from TSA and MPSA are 

essentially consistent. For the model output de-oxygenated monomers, the most sensitive 

parameter is the CO-binding rate of monomers, while the most insensitive parameter is the CO-

binding rate of polymers being that it does not affect the de-oxygenated monomers at all. For the 

model output CO-bound monomers, the most sensitive parameter is the melting rate of the de-

oxygenated polymers, while both CO-binding rate of polymers and melting rate of polymers are 

insensitive. For the model output de-oxygenated polymers, the most sensitive parameter is the 

melting rate of de-oxygenated polymers, while the other three parameters are insensitive. For the 

model output CO-bound polymers, the most sensitive parameter is the CO-binding rate on 

polymers, while the most insensitive parameter is the melting rate of CO-bound polymers.
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CHAPTER 1                                                                                                                                      

Introduction 

1.1 Biology Background 

The sickle cell trait originates as a natural mutation of the hemoglobin gene.  The 

mutation is in the position 6 of the beta chain (β6) of the hemoglobin where glutamic acid is 

replaced by valine. The mutation results in the aggregation, in the form of a polymer, of the 

sickle cell hemoglobin (HbS) when it is in the de-oxygenated state (Ingram, 1956).   The 

polymerization process takes place in two stages, which are separated by a time delay 

(Aroutiounian, 2001): 1) homogeneous polymerization where monomers join to form a polymer; 

2) heterogeneous polymerization where monomers join an existing polymer. The polymers 

formed in the first step can melt yielding monomers if they return to the lungs quickly enough to 

be re-oxygenated. The polymers that do not return to the lungs in a timely manner will likely go 

through the second stage. The mechanisms for the homo- and heterogeneous polymerization are 

referred to as single and double nucleation (Ferrone, 1985).  

The formation of HbS polymers causes the deformation of the red blood cell where they 

adopt a sickle shape, and that gave the name of the disease as sickle cell. Due to their double 

concave shape and flexibility, the normal red blood cells flow freely through the blood vessels. 

The sickle red blood cells, on the other hand, do not. They can be trapped within the blood 

vessels and obstruct the normal circulation of the blood. This obstruction in the blood vessel can 

result in vascular occlusion causing sudden pain in all parts of the body including fingers, arms, 

legs, ribs, abdomen, and organs such as the spleen, brain and eyes. Painful crisis vary in duration, 

intensity, location and time. It may be mild, moderate or severe and swelling may be noticed in 
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the pain area (Vedro, 2002). If the shortage of blood occurs for a long period of time, tissues and 

organs in the body may suffer severe consequences. Figure 1a shows a normal red blood cell 

containing normal hemoglobin flowing through a blood vessel. Figure 1b shows the constrictive 

motion of sickle red blood cells through a blood vessel.    

 

Figure 1. Hemoglobin passing through red blood vessels (Smith, 2013). 

Ferrone (1985) focused on the growth of the sickle hemoglobin (HbS) polymers or fibers. 

He explained that the growth of the HbS fibers follows the double nucleation mechanism; which, 



5 
 

he described as homogeneous and heterogeneous nucleation. The formation of a polymer is 

initiated by homogeneous nucleation in the solution phase. Local temperature and concentration 

of the homogenous nucleus can then stimulate the formation of additional polymers on the 

surface of an existing polymer. This second pathway is called heterogeneous nucleation. The 

surface of the heterogeneous nucleation is constantly increasing with time (Ferrone, 1985). From 

the understanding of these two processes, Ferrone developed a mathematical model for the 

melting of the polymers (de-polymerization) on the assumption that the polymer melting is the 

reversal of polymerization. The model can be described by two rate equations, one for the 

formation of polymers and the second for the incorporation of monomers into polymers.  

The kinetics of the sickle cell hemoglobin polymer melting has been studied further by 

using the stopped flow method where the melting was monitored using a light scattering 

(Aroutiounian, 2001). The results showed that polymers melt more quickly in cells containing 

oxygen carbon monoxide. Therefore, two sets of experiments were conducted to study polymer 

melting. The first experiment involved saturating the sickle hemoglobin with oxygen (O2) and 

the second experiment consisted of saturating the sickle hemoglobin with carbon monoxide (CO) 

to conclude which chemical compound would enhance polymer melting more efficiently 

(Aroutiounian, 2001). The author concluded that polymers melt more efficiently in presence of 

CO. Additionally, the authors noted that the CO can bind to HbS in the polymeric or in the 

monomeric form (Aroutiounian, 2001). Furthermore, this study improved Ferrone’s model, 

which is a single equation. The model was rewritten as a system of two equations by including 

the fact that polymer only melts from the ends and CO can only bind to the solution phase HbS. 

After further investigation of the effects of CO binding to the solution phase of the 

polymer, a nonlinear model was developed that extended the original two-species model into a 
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four-species model (Chen, et al. 2010). Then, mathematical analyses were conducted to study the 

effect of CO on the kinetics of polymer melting. Results from the analyses revealed that when 

sickle hemoglobin solution was saturated with CO, the polymer melting occurred rapidly. 

Furthermore, it was noted that the CO is bound to the solution phase monomers and polymers 

(Aroutiounian, 2001; Chen, et al., 2010). Additionally, it was observed that not all the polymers 

melt in the CO- binding equilibrium stage, indicating that the melting of the CO-bound polymer 

takes place as an equilibrium process. The four-species model proposed in (Chen, et al. 2010) 

describes the dynamic interaction in each phase of the melting and CO binding processes. 

1.2 Methodology Approach 

The behavior of a cell is not only determined by the characteristics of the individual 

biological component but also by the interaction of such components acting together as a system. 

Thus, literature review suggests that to complete the mathematical modeling of the CO-mediated 

HbS polymer melting, the assessment of the impact of parameters is fundamental.  The 

development of a predictive dynamic model requires information concerning the initial 

conditions and the parameters that describe the system (Zi, 2011). Unfortunately, these 

parameters are often difficult to determine with biological experiments. Moreover, some 

parameters may have large variations depending on the instrument or state of measurement. 

Therefore, our confidence in the model prediction is limited to the uncertainty of the model 

parameters. Parameter sensitivity analysis is the standard procedure to conclude how the 

variability in the model output can be attributed to the variations in the model inputs (Salteli, 

2008).  

Sensitivity analyses methods have been widely applied to study biological systems (Zi, 

2011). They can also be a useful guide in model simplification by quantifying the dependence of 
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the model outputs on its input. Through sensitivity analysis, we can gain valuable insights about 

how robust the model output is with respect to the changes of the model inputs and which inputs 

are key factors that affect the model output. The value of the insensitive parameters may be fixed 

and some processes may be simplified or eliminated. This sensitivity analysis provides guidance 

toward parameters that must be taken into consideration during the experimental design (Raue, 

2011). Figure 2 is a modified Phair’s scheme that illustrates the importance of the parameter 

sensitivity analysis in the development of a mathematical model (Phair, 2001).  

 

 

 

 

 

 

 

Figure 2. Modified Phair’s scheme for mathematical modeling (Phair, 2001) 

There have been studies concerning parameter estimation, which have led to 

approximation of parameters value in the nonlinear dynamic system (Aroutiounian, 2001; Chen, 

2010). However there still remains the possibility to improve the measurement of the parameter 

values. This paper attempts to assess the importance of parameters in the extended model of 

melting (de-polymerization) of HbS polymers in the presence of CO.  

There are many approaches to study the sensitiveness of a model output with respect to 

the input parameter. These approaches include local and global sensitivity analyses. Local 

sensitivity analysis is a common method that studies the sensitivity of the output by computing 

Mathematical 
modeling 

Experimental 
design 

Parametric 
Sensitivity 
Analysis 
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the first-order partial derivatives of the system output with respect to the input parameters. The 

global sensitivity analysis is used to enumerate the overall effect of the model input parameters 

on the output by perturbing the model input parameter within large ranges (Zi, 2011). This study 

particularly focuses on a traditional sensitivity analysis (TSA) and a multi-parameter sensitivity 

analysis (MPSA) on the extended version of the model with four species (Chen et. al 2010).  

The TSA is a local sensitivity analysis that computes the first-order partial derivatives of 

the system output with respect to the input parameters, i.e. the TSFs. First, the sensitivity 

functions are derived by differentiating the original equations in the model with respect to each 

parameter. This leads to a system of total twenty (20) ordinary differential equations (ODEs) in 

the original variables and the TSFs, i.e. the system of sensitivity equations. The ODE system is 

then solved numerically by the Runge-Kutta method. The TSA is simple and straightforward. It 

is useful in finding the sensitivity of a model output given a specific parameter value at a time.   

The MPSA is a global sensitivity analysis that enumerates the overall effect of the model 

input parameters on the model output. A large sampling of the parameters within large ranges is 

drawn following the uniform distribution. The model output values are then computed and 

compared with the model output from the system with the nominal parameters. With a criterion, 

the parameters are categorized as accepted or unaccepted based on the behavior of the 

corresponding output values versus the criterion. Finally, the sensitivity of the parameters is 

quantified by employing the Kolmogorov-Smirnov test and computing the distance on the 

cumulative distribution functions of acceptance and unacceptance parameters. MPSA is very 

useful in providing the overall impact of the input parameters on the model output. 

All four concentrations as model outputs and four binding/melting rates as input 

parameters are considered in this study. The sensitivity results from TSA and MPSA are 



9 
 

essentially consistent. For the model output de-oxygenated monomers, the most sensitive 

parameter is the CO-binding rate of monomers, while the most insensitive parameter is the CO-

binding rate of polymers being that it does not affect the de-oxygenated monomers at all. For the 

model output CO-bound monomers, the most sensitive parameter is the melting rate of the de-

oxygenated polymers, while both CO-binding rate of polymers and melting rate of polymers are 

insensitive. For the model output de-oxygenated polymers, the most sensitive parameter is the 

melting rate of de-oxygenated polymers, while the other three parameters are insensitive. For the 

model output CO-bound polymers, the most sensitive parameter is the CO-binding rate on 

polymers, while the most insensitive parameter is the melting rate of CO-bound polymers. 

The remainder of this thesis consists of the following sections. Chapter 2 presents the 

derivation of the mathematical model equations, from a description of the double nucleation 

process to the extended CO-mediated sickle cell polymer melting (de-polymerization). Then, 

Chapter 3 explains the detailed methodology of the parameter sensitivity analysis including the 

TSA and MPSA. Chapter 4 reports and discusses the obtained results from our analysis. Chapter 

5 summarizes the conclusion of the thesis and provides the recommendation for future work. 

Lastly, Appendix A and B includes the detailed sensitivity equations and the Matlab codes for 

TSA and MPSA. 

  



10 
 

CHAPTER 2                                                                                                                                

Model Equations 

2.1 Double Nucleation Mechanism 

Our current version of the model is an extension of the basic model proposed in Ferrone 

(1985) and Aroutiounian (2001). The model developed for the HbS polymer melting is based on 

the observation that the HbS fiber melting is the reversal of growth. According to Ferrone 1985), 

the growth of the fiber occurs through a double nucleation process. Figure 3 depicts the process: 

 

Figure 3. The double nucleation model.  

Homogeneous nucleation (top) and heterogeneous nucleation (bottom) nuclei are assumed to be 

pieces of the infinite polymer (Ferrone, 1985). 

As it happens in the solution, the homogeneous nucleation is the simple process where 

the monomers start attaching to each other to form a polymer. In the second part, with an 

existing polymer, the monomers add onto it to form a more complex polymer. As Figure 3 

depicts, the length of the arrows going back and forth changes in the different stages of the 

figure, which indicates the change in the relative rates of fibers melting or growth.  In the early 

stages of the homogeneous nucleation phase the rate of melting (𝐾!"#$%"&') is higher than the 
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rate of growth (𝐾!"#$%#&). The equilibrium stage (𝐾!"), where the rates of the growth and 

melting are the same (𝐾!"#$%#& = 𝐾!"#$%"&'), happens when the polymer reaches a certain size. 

Beyond this size, the rate of the polymer growth becomes higher than the rate of melting. The 

driving force for this switch in kinetics is the increase in the stability of the polymer as it exceeds 

the above-mentioned size.  This increase in stability is due to the increasing amount of energy 

released as more and more monomers join the polymers which makes the polymer formation to 

have more negative ∆G (meaning it becomes thermodynamically more favorable). The rate of 

the forward process -polymer formation- then becomes more favorable than the reverse -polymer 

melting.  The same cascade of events takes place in the heterogeneous nucleation phase.  Again 

when the size of the polymer exceeds a certain limit the formation –or growth- of the polymer 

becomes more favorable than the melting of the polymer. The final size of the polymer is limited 

by its solubility. This means once the size of the polymer –the fiber- in the heterogeneous 

nucleation exceeds a certain limit it becomes insoluble, or a better explanation is that the 

polymer stops growing when there are no more monomers to bind to it. When the size of the 

polymer reaches this limit it would deplete the solution from any monomers –now the 

concentration of the monomer to begin with is limited by its solubility at the conditions at hand 

(temperature, phosphate buffer concentration and the fact that the buffer is saturated with carbon 

monoxide).  

The double nucleation model can be described by two rate equations, one for the 

homogeneous and the other for the heterogeneous. Since in either homogeneous or 

heterogeneous nucleation there is an addiction of monomer to the nucleus, then both can be 

represented as (this applies to the CO bound and deoxygenated polymer): 
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Figure 4. Polymer formation process. 

The diagram above represents the equation 𝑃! +𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠 ⇌ 𝑃! , where 𝑃!  and 𝑃! are two 

forms of the polymer where the  j form has one monomer more than the 𝑖 form, or 𝑃! is the 

homogeneous polymer and 𝑃! is the heterogeneous polymer.    

The formation of the polymer is thus expressed by: 

 
𝑑𝐶!,!(𝑡)
𝑑𝑡 = 𝑘!𝐶! 𝑡 𝐶!,!(𝑡)− 𝑘!𝐶!,! 𝑡  (2.1) 

and the rate of disappearance of the monomers from the solution phase into polymer is given by: 

 −
𝑑𝐶! 𝑡
𝑑𝑡 = 𝑘!𝐶!(𝑡)𝐶!,!(𝑡)− 𝑘!𝐶!,!(𝑡) (2.2) 

where 𝐶!,!(𝑡) 𝑎𝑛𝑑  𝐶!,!(𝑡)  are the time-dependent concentration of polymers i and j, respectively, 

and 𝐶!(𝑡) is the monomer concentration, 𝑘! is the concentration–independent rate constant for 

addition of monomers to nuclei or polymer i and  𝑘! is the concentration- independent rate of the 

dissociation of a monomer from polymer j.  

2.2 The Simple Model with two (2) Equations 

Briefl (1995) observed that the growth is an elongation and the melting is a shortening of 

the HbS fiber from the ends. Thus melting of the HbS polymers can only occur at the end of the 

polymers. On a short time scale, the concentration of polymers  P! and P! remains constant at a 

certain time. Therefore, Aroutiounian (2001) sets the concentration of polymers 𝑃! and 𝑃! to be 

the same as  𝐶! 𝑡 ; he replaced 𝑘! with !!
!!

 where 𝐶! is the solubility concentration of the 

𝑃! Monomers 𝑃! 
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solution buffer and 𝑘!  with 𝑘! indicating the rate constant of the melting of the de-oxygenated 

HbS polymer. So equation (2.2) is rewritten as the following in term of the melting rate: 

 
𝑑𝐶! 𝑡
𝑑𝑡 =   −𝑘!   

𝐶! 𝑡
𝐶!

−   1 𝐶!(𝑡)   (2.3) 

Also, the total HbS molar concentration (𝐶!"!) is the sum of the molar concentration of the 

hemoglobin molecules in the polymer phase, 𝐶!, and that in the monomer phase, 𝐶!. 

𝐶!"! 𝑡 = 𝐶! 𝑡 + 𝐶! 𝑡 . After differentiating and susbtituting into (2.3) with the fact that  

!!!"! !
!"

= 0,  we have: 

 
𝑑𝐶! 𝑡
𝑑𝑡 =   𝑘!   

𝐶! 𝑡
𝐶!

−   1 𝐶! 𝑡    (2.4) 

2.3 The Extended Model with four (4) Equations 

With  the CO-mediation incorporated (Chen, 2010), the polymerized and monomerized 

populations are then divided into two sub-populations: 𝐶!!" 𝑡  and 𝐶!!" 𝑡  which are CO-bound 

polymer and monomer HbS, respectively; and 𝐶!! 𝑡  and 𝐶!! 𝑡  which are de-oxy polymer and 

monomer HbS.  Since CO binds to the monomer and polymer tightly, the model then assumes 

that CO-binding results in a decrease from de-oxy HbS 𝐶!! 𝑡  in the solution phase, which then 

becomes a gain for the CO-bound solution phase 𝐶!!" 𝑡 , with a CO-mediated binding rate 

constant  𝑘!. Likewise with the polymer phase molecules, the assumed CO-binding outcome is a 

loss from the 𝐶!! 𝑡  and a gain to 𝐶!!" 𝑡  by the CO-mediated binding rate constant 𝑘!. The 

decrease of the polymer phase molecule leads to a gain in the CO bound monomer with a 

dissociation rate constant 𝑘!". Our model is now the following: 

 𝑑𝐶!! 𝑡
𝑑𝑡 =   −𝑘!   

𝐶!! 𝑡
𝐶!

−   1 𝐶!! 𝑡 −   𝑘![co]𝐶!! 𝑡  (2.5) 
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 𝑑𝐶!!" 𝑡
𝑑𝑡 =   𝑘!"    1−

𝐶!!" 𝑡
𝐶!!"

𝐶!!" 𝑡 +   𝑘![co]𝐶!! 𝑡  
(2.6) 

 𝑑𝐶!! 𝑡
𝑑𝑡 =   𝑘!   

𝐶!! 𝑡
𝐶!

−   1 𝐶!! 𝑡 −   𝑘![co]𝐶!! 𝑡  
(2.7) 

 𝑑𝐶!!" 𝑡
𝑑𝑡 =   −𝑘!"    1−

𝐶!!" 𝑡
𝐶!!"

𝐶!!" 𝑡 +   𝑘![co]𝐶!! 𝑡  
(2.8) 

Note:  The CO-binding to the monomers reduces the concentration of  𝐶!! 𝑡    which results in a 

loss of 𝐶!! (𝑡) and a gain of 𝐶!!"(𝑡), thus we subtract  𝑘![𝑐𝑜]𝐶!! 𝑡  in (2.5) and add it to (2.6). 

Similarly the CO-binding to the polymers results in a loss of 𝐶!! 𝑡  and a gain of 𝐶!!" 𝑡 , thus 

the term  𝑘![𝑐𝑜]𝐶!! 𝑡  is subtracted from (2.7) and added to (2.8). These models allow CO-

binding to polymers and melting occur at the endpoints as well as at the surfaces of polymer 

fibers (Chen et al., 2010).  

The diagram below describes the reaction path in the model equations. With the CO-

binding, the de-oxygenated polymers/monomers HbS are decomposed into oxygenated 

polymers/monomers HbS. With the melting/de-polymerization, the CO-bound/de-oxygenated 

polymers become CO-bound/de-oxygenated monomers. The de-oxygenated polymers are 

partially transformed into oxygenated polymers with the CO-binding to polymers. The CO-

bound polymers are further melted into CO-bound monomers through the melting or de-

polymerization. The rest of the de-oxygenated polymers are also melted into de-oxygenated 

monomers, which can be further transformed to CO-bound monomers with the CO-binding to 

the de-oxygenated monomers.  
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CO, Ligation 

 

𝑘![𝑐𝑜] 

 

 

 

           𝑘!                                                                                           𝑘!"          Melting 

 

 

 

𝑘![𝑐𝑜] 

Figure 5.  The reaction paths of the CO-mediated de-polymerization of sickle cell HbS 

To mathematically analyze the system, we simplify the notations by replacing (𝐶!! 𝑡 , 

𝐶!!" 𝑡 , 𝐶!! 𝑡 , 𝐶!!" 𝑡 , 𝑘!, 𝑘![𝑐𝑜], 𝑘!" , 𝑘![𝑐𝑜], 𝐶!, 𝐶!!") by (𝑥 𝑡 ,𝑦 𝑡 , 𝑧 𝑡 ,𝑢 𝑡 ,   𝑘!, 𝑘!, 𝑘!, 

𝑘!, 𝐶!,𝐶!) respectively (Daniel-Jones et al., 1999). We then have the following equations: 

 
𝑑𝑥(𝑡)
𝑑𝑡 =   −𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑥(𝑡) (2.9) 

 𝑑𝑦(𝑡)
𝑑𝑡 =   𝑘!    1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑥 𝑡  
(2.10) 

 𝑑𝑧(𝑡)
𝑑𝑡 =   𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑧 𝑡  
(2.11) 

 𝑑𝑢(𝑡)
𝑑𝑡 =   −𝑘! 1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑧(𝑡) 
(2.12) 

 
Carb-oxy 

polymers 

De-oxy 

polymer s 

De-oxy 

monomers 
Carb-oxy 

monomers 
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CHAPTER 3                                                                                                                       

Methodology 

3.1 Traditional Sensitivity Analysis (TSA) 

The traditional sensitivity analysis is frequently used in simulation studies, where one 

wants to assess the degree of sensitivity of a model output with respect to various parameters on 

which it depends. The sensitivity functions are used to identify the parameters to which the 

model output is most/least sensitive. We consider the output model, to quantify the variation in 

the output variable with respect to changes in the parameter. Therefore, we are led to consider 

the first order sensitivity functions, also called traditional sensitivity functions (TSFs), which are 

defined naturally in terms of the partial derivatives (David, 2007).  

Many times, the model is described by a system of ordinary differential equations 

(ODEs). The system can be written in the vector form 

 !"(!)
!"

= 𝐹(𝑋,𝑃)   (3.1) 

where 𝑋 ∈ ℝ! denotes the variable vector and 𝑃 ∈ ℝ! denotes the vector of parameters and the 

initial condition is 𝑋 𝑡! = 𝑋!. By sensitivity we mean how 𝑋 changes with respect to 𝑃, that is 

!"(!)
!"

. Note that as 𝑋 is a function of time, the sensitivity is also a function of time. By 

differentiating both sides of Equation (3.1) with respect to 𝑃, we have a system of differential 

equations for the sensitivities: 

 
𝜕
𝜕𝑃

𝑑𝑋(𝑡)
𝑑𝑡 =

𝜕𝐹
𝜕𝑋

𝜕𝑋
𝜕𝑃 +

𝜕𝐹
𝜕𝑃  . 

(3.2) 
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Now if we reverse the order of differentiation and couple the equation with Equation 

(3.1) then we get a 𝑛 + 𝑛𝑟 dimensional system of ordinary differential equations for both the 

model variables and the sensitivities 

Here, we assume that !"(!)
!"

= 0, because  the initial conditions for the model would not be 

considered to be dependent on the parameters. 

We apply the above Equations (3.1) and (3.2) onto our sickle cell model equations (2.5)-

(2.8). The new system is obtained with 4 original model equations and 16 equations for the 

TSFs.  The detailed equations for the TSFs are presented in Equations (3.5) – (3.24). The Matlab 

codes for TSA are included in Appendix B. 

𝑑𝑥(𝑡)
𝑑𝑡 =   −𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑥(𝑡)   (3.5)  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑘!

= 1−   
𝑥 𝑡
𝐶!

𝑧 𝑡 + 𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡

−   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  

(3.6)  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑘!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑥 𝑡
𝜕𝑘!

+ 𝑥(𝑡)  
(3.7)  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑘!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  
(3.8)  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑘!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  
(3.9)  

 
𝑑𝑋(𝑡)
𝑑𝑡 = 𝐹(𝑋,𝑃) (3.3) 

 
𝑑
𝑑𝑡
𝜕𝑋
𝜕𝑃 =

𝜕𝐹
𝜕𝑋

𝜕𝑋
𝜕𝑃 +

𝜕𝐹
𝜕𝑃  . 

(3.4) 
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𝑑𝑦(𝑡)
𝑑𝑡 =   𝑘!    1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑥 𝑡   
(3.10)  

𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑘!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  
(3.11)  

𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑘!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑥 𝑡
𝜕𝑘!

+ 𝑥 𝑡   
(3.12)  

𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑘!

= 1−   
𝑦 𝑡
𝐶!

𝑢 𝑡 + 𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡

+   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  

(3.13)  

𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑘!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑘!

  
(3.14)  

𝑑𝑧(𝑡)
𝑑𝑡 =   𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑧 𝑡   
(3.15)  

𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑘!

=   
𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 + 𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑘!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡

−   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  

(3.16)  

𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑘!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  
(3.17)  

𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑘!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  
(3.18)  

𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑘!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑘!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

+ 𝑧(𝑡)  
(3.19)  

𝑑𝑢(𝑡)
𝑑𝑡 =   −𝑘! 1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑧(𝑡)  
(3.20)  

𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑘!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  
(3.21)  



19 
 

𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑘!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  
(3.22)  

𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑘!

=   
𝑦 𝑡
𝐶!

− 1 𝑢 𝑡 + 𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡

+   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

  

(3.23)  

𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑘!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑘!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑘!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑘!

+ 𝑧(𝑡) 
(3.24) 

 

3.2 Multi-Parameter Sensitivity Analysis (MPSA) 

The MPSA method was suggested by Hornberger (1981) and Chang (1992) and further 

developed by Choi et al. (1998) in the field of hydrology. MPSA is a tool that can be used to 

define the relative importance of the factors related to the model (Cho, 2003). The idea of MPSA 

is to insert uncertainty of the parameters into the model by randomly selecting parameter values 

from probability distributions rather than using fixed values. This is achieved by using a Monte-

Carlo method, in which the model is run repeatedly using sets of parameters drawn randomly 

from the distributions. The selected sets of parameters must however, influence the dynamics. 

Since the natural distributions of parameter values for actual biological systems are unknown, we 

use uniform probability distribution (Alves, 2000). The ranges of the parameter distributions are 

usually determined from the available literature. The dynamics must be deferentially influenced 

by the variation of each parameter (Cho, 2003). Next, a criterion is introduced into the algorithm 

to classify the output of each model simulation as either acceptable or unacceptable. The final 

step of MPSA is a statistical evaluation of the occurrences of the acceptable and unacceptable 

cases, summarized for each parameter. The larger the difference between the cumulative 
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distributions of the two cases, the more significant the given parameter is (Zi, 2005). The 

detailed procedure of the MPSA is described as follows: 

• Step1: Select the parameters to be tested. 

• Step 2: Set the range of each parameter large enough to cover all possible variations. For 

the sickle cell model, we set the range between one half of the nominal value and two 

times the nominal value since roughly speaking the rates may be doubled or halved when 

the temperature changes within ten degrees. 

• Step 3: Generate a series of independent random numbers with uniform distribution 

within the range. 

• Step 4: Simulate the model for each parameter and calculate the corresponding objective 

function (See below for definition of objective function). 

• Step 5: Determine whether the chosen parameter values are acceptable or unacceptable 

by comparing the objective function value to a given criterion. If the objective function is 

greater than the criterion, the set of parameter values is classified as unacceptable; 

otherwise, it is acceptable. Here, the criterion is chosen as the average of the objective 

functions for the entire range of parameters. 

• Step 6: Evaluate the parameter sensitivity by comparing the two cumulative distribution 

functions (CDFs) of the parameter values associated with the acceptable and the 

unacceptable results. The Kolmogorov-Smirnov (K-S) test is employed and the K-S 

distance between the two CDFs is calculated. The larger the distance is, the more 

sensitive the parameter is. If the K-S distance is small, which means the two CDFs are 

similar to each other, then the parameter is classified as insensitive. 
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The objective value is defined as the sum of squared differences between the output 

values from the sampling parameters and the output values from the nominal parameters: 

 𝑓!"# 𝑘 = 𝑓!"#$!%& 𝑖 − 𝑓!"#$%&'( 𝑖, 𝑘
!

!

!!!

 (3.25) 

where 𝑓!"#(𝑘) is the objective function that describes how much the system output with the 

sampling parameters changes from the data with the nominal parameters; 𝑓!"#$!%& 𝑖  denotes an 

output value from the nominal parameters at the ith time; 𝑓!"#$%&'( 𝑖, 𝑘  denotes the output value 

from the sampling parameter 𝑘  at the ith time; and q is the number of time point. The Matlab 

codes for MPSA are included in Appendix B.  
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CHAPTER 4                                                                                                                                  

Results 

We utilize the TSA and the MPSA to examine the sensitivities of the variables that are 

presented in our model with respect to the changes in the parameters values. The output variables 

are (𝐶!! 𝑡 , 𝐶!!" 𝑡 , 𝐶!! 𝑡 , 𝐶!!" 𝑡 ), which are represented in our results by the variables 

(𝑥 𝑡 ,𝑦 𝑡 , 𝑧 𝑡 ,𝑢 𝑡 ) respectively. The input parameters are (𝑘!, 𝑘![𝑐𝑜], 𝑘!" , 𝑘![𝑐𝑜]), which 

are represented in our results by the parameters (  𝑘!, 𝑘!, 𝑘!, 𝑘!) respectively.  

The nominal values and the ranges of the parameters are presented in Table 1.The initial 

conditions of the system are presented in Table 2. For the simulations in this study, we use the 

Runge-Kutta method for the time-marching integration of the ODEs, with time step dt=0.01 and 

the time interval [0 400].  

Figure 6 describes the behavior on the variables of the model over time. The graph shows 

that the de-oxy polymers and de-oxy monomers population dies off after a period of time. The 

population of CO-bound polymers and CO-bound monomers increases and stabilizes after a 

period of time. 

Table 1 

Summary of the nominal value and range of variation for binding/melting rates 

Parameters Nominal values Range of variation 

k!(𝑘!) 0.028 0.014 – 0.056 

k! 𝑘!  0.07 0.035 – 0.14 

k!" 𝑘!  0.1 0.05 – 0.2 

k! 𝑘!  0.01 0.005 – 0.02 
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Table 2 

The initial conditions for the numerical simulations 

Variables Values 

C!! (0), 𝑥(0) 0.0036 

C!!"(0), 𝑦(0) 0 

C!!"(0), 𝑧(0) 0 

C!!(0), 𝑢(0) 0.175 

 

    

Figure 6. Solution behavior of the model 

4.1 Results from TSA 

4.1.1 TSFs with parameters at nominal values. Figures 7—10 illustrate the behavior of 

the variables with respect to the parameters over time t. To better estimate the sensitivity, we 
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rank the relative sensitivities with respect to the parameter. For this analysis, we use the 𝐿!  norm 

to compare these TSFs. Note this norm is defined as (David, 2007) 

 𝑓 !
! = 𝑓! 𝑡 𝑑𝑡

!

!
 (4.1) 

Since we are approximating the solution to our sensitivity !"
!"

, we also approximate this norm. 

The 𝐿!  norms of the TSFs are shown in Table 3. 

 

Figure 7. Sensitivity of the variables with respect to  𝑘! 



25 
 

 

Figure 8. Sensitivity of the variables with respect to  𝑘! 

 

Figure 9. Sensitivity of the variables with respect to  𝑘! 
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Figure 10. Sensitivity of the variables with respect to  𝑘! 

Table 3 

Summary of the 𝐿!norms of the TSFs 

Variables/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

𝑥 41.5601 25.9384 0 44.3415 

𝑦 77.1920 20.7210 10.3865 100.7236 

𝑧 113.7541 1.9437 0 128.8967 

𝑢 47.7038 20.0600 10.3865 203.1208 

 

Based on the 𝐿!norm results, we notice the dominance of the sensitivities of the variables 

with respect to 𝑘! among all the others parameters. The sensitivity of !"
!!!

 has reached a 

magnitude of 203.1208 as Table 3 has shown. This indicates that there is a major effect on the 
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variable u. This sort of magnitude for a sensitivity function has not been seen in any other 

sensitivity functions.  

The sensitivity of !"
!!!

 has the highest magnitude, 128.8967, among the parameters that 

can possibly affect 𝑧. 𝑘! dominates the effect caused by the parameters. The variable 𝑧 is 

secondly most affected by 𝑘!. !"
!!!

 has a magnitude of 113.7541. It should be noted that the 

magnitude of the sensitivity !"
!!!

 remains 0 over the entire time length. This indicates that there is 

no effect of parameter 𝑘! over the variable 𝑧. The sensitivity !"
!!!

 has a magnitude of 1.9437, 

which shows that there is an insignificant effect of 𝑘! on the variable 𝑧. 

The sensitivity !"
!!!

 has a magnitude of 100.7236. Thus, the variable 𝑘! has the dominant 

effect in the variable 𝑦. The variable 𝑦 is also affected by 𝑘!. We notice a magnitude of 77.1920 

for !"
!!!

. The parameters 𝑘! and 𝑘! appear to have little effect on the variable 𝑦. 

As of for the output variable 𝑥, 𝑘! shows dominance with a magnitude of 44.3415 for the 

sensitivity !"
!!!

. But this magnitude is not far from !"
!!!

 whose magnitude is 41.5601. Here, we also 

notice the magnitude of the sensitivity !"
!!!

 remains 0 over the entire time length indicating that 

𝑘! has no effect over the variable 𝑥.   

It should be noted that all the sensitivities converge asymptotically to 0 over a period of 

time. 

4.1.2 TSFs when Varying all Parameter Values. To further analyze the behavior of the 

sensitivity, we vary the value of the parameters in a defined range.  The range of the each 

parameter is listed in Table 1. Figures 11 – 15 display the resultant graphs of the sensitivity 

functions when all k’s are varied. Figure 11 displays the behavior of the variables x, y, z and u. 
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The behavior of the graphs is more or less following a similar pattern due to the increase or the 

decrease of the k’s values. 

In Figures 12 – 15, there are some inconsistencies in the patterns in some subplots. Thus, 

there is not a clear understanding of the ranking of the sensitivities. We cannot determine the 

exact ranking of the parameter sensitivities. Therefore, we semi-normalize the TSFs. The 

normalization is a process that is used to eliminate redundancy, reduce the potential for 

anomalies during data processing and maintain the consistency and integrity of the data. 

 

Figure 11. Behavior of the variables as all k’s vary 
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Figure 12. Sensitivity functions of the variables with respect to   𝑘! as all k’s vary 

 

Figure 13. Sensitivity functions of the variables with respect to   𝑘! as all k’s vary 
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Figure 14. Sensitivity functions of the variables with respect to  𝑘! as all k’s vary 

 

Figure 15. Sensitivity functions of the variables with respect to   𝑘! as all k’s vary 
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The 𝐿! norm of the TSF with the sampling parameters referenced to the TSF with the 

nominal parameters is given as 

𝜕𝑋
𝜕𝑃 !!!!"#$%& −

𝜕𝑋
𝜕𝑃 !!!!

!

!

=
𝜕𝑋(𝑡!)
𝜕𝑃 !!!!"#$%& −

𝜕𝑋 𝑡!
𝜕𝑃 !!!!

!

  . 
(4.2) 

where X = 𝑥,   𝑦, 𝑧,   𝑢
!
,     𝑃 = {𝑘!, 𝑘!, 𝑘!, 𝑘!}′. 

The semi-normalizer consists of multiplying the norm by the distance between the parameters. It 

is defined in Equation (4.3). 

 𝑃!"#$%& − 𝑃!
𝜕𝑋
𝜕𝑃 !!!!"#$%& −

𝜕𝑋
𝜕𝑃 !!!!

!
 (4.3) 

Figure 16 displays the behavior of the variables x, y, z and u, where the behavior of the 

variables at different sampling points is referenced to the behavior of the variables at the nominal 

value.  Here, we also note the inconsistency in the graph except for the variable z. The ranking of 

the semi-normalization norm for each TSF is shown in Table 4. In Table 4, the values are 

determined by computing the difference between the lowest and highest magnitudes of each 

TSF. Thus, the larger the difference between the magnitudes of the TSFs of a variable is, the 

more sensitive the parameter is. 

Table 4 

Ranking results of the sensitivity functions as all k’s vary 

Variables/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

x 0.6195 0.9640 0 0.0772 

y 1.0130 0.8312 0.4162 0.7778 

z 1.5828 0.0025 0 0.7172 

u 1.0570 0.9943 0.4162 1.9409 
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Figure 16. Behavior of the variable as all k’s vary  

4.2 Results from MPSA 

We use the random values following the uniform distribution for the sampling of 

parameters 𝑘!, 𝑘!, 𝑘!, 𝑘!. The sample size is 10,000 points. In another word, we take random 

values within the ranges of 𝑘!, 𝑘!, 𝑘!, 𝑘! 10,000 times and simulate the differential equations 

(DEs) system 10,000 times. Six (6) different criterions including, the 25th, 37.5th, 50th, 62.5th, 75th 

and the average of the objective function values are chosen in the computation of the probability 

mass functions (PMFs) and the cumulative distribution functions (CDFs). Nonetheless, the rank 

of the sensitivity of each parameter remains the same in each chosen criterion. The results from 

larger size samplings are essentially identical to the results reported here.  

4.2.1 MPSA results for output variable 𝑥. The PMFs of acceptance and non-acceptance 

for the output variable 𝑥 are presented in the Figures 17 – 20. The cumulative distribution 
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functions of acceptance and non-acceptance for the output variable 𝑥 are displayed in Figures 21-

24. The distributions are tested, and the Kolmogorov-Smirnov distance is computed to rank the 

sensitivity of each parameter, with the results shown in the Table 5. The p-value attributed to 

each ranking is showed in Table 6. From these results including the figures and the tables, with 

the output variable 𝑥 the ranking for all four parameters sensitivities is 𝑘!, 𝑘!, 𝑘!, 𝑘!.    

 

Figure 17. Probability Mass functions of 𝑘! considering output 𝑥 
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Figure 18. Probability Mass functions of 𝑘! considering output 𝑥 

 

Figure 19. Probability Mass functions of 𝑘! considering output 𝑥 
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Figure 20. Probability Mass functions of 𝑘! considering output 𝑥 

 

Figure 21. Cumulative distribution functions of 𝑘! considering output 𝑥 
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Figure 22. Cumulative distribution functions of 𝑘! considering output 𝑥 

 

Figure 23. Cumulative distribution functions of 𝑘! considering output 𝑥 



37 
 

 

Figure 24. Cumulative distribution functions of 𝑘! considering output 𝑥 

Table 5 

Rank at 5% significance level of the MPSA results for 𝑥 

                   Rank at 5% significance level of the MPSA results for 𝑥,𝐶!! (𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.3056 0.4615 0.0160 0.0468 

37.5th percentile of objectives 0.2157 0.4419 0.0173 0.0633 

50th percentile of objectives 0.1210 0.4176 0.0188 0.0762 

62.5th percentile of objectives 0.0871 0.3555 0.0238 0.0842 

75th percentile of objectives 0.1312 0.3580 0.0151 0.0837 

Mean of the objectives 0.0942 0.3389 0.0235 0.0870 
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Table 6 

P-values at 5% significance level of the MPSA results for 𝑥 

                   P-values at 5% significance level of the MPSA results for 𝑥,𝐶!! (𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.0 0.0 0.7199 0.0005 

37.5th percentile of objectives 0.0 0.0 0.4827 0.0 

50th percentile of objectives 0.0 0.0 0.3370 0.0 

62.5th percentile of objectives 0.0 0.0 0.1374 0.0 

75th percentile of objectives 0.0 0.0 0.7854 0.0 

Mean of the objectives 0.0 0.0 0.1564 0.0 

 

4.2.2 MPSA results for output variable 𝑦. The PMFs of acceptance and non-acceptance 

for the output variable 𝑦 are presented in the Figures 25 – 28. The cumulative distribution 

functions of acceptance and non-acceptance for the output variable 𝑦 are displayed in Figures 

29—32. The distributions are tested, and the Kolmogorov-Smirnov distance is computed to rank 

the sensitivity of each parameter, with the results shown in the Table 7. The p-value attributed to 

each ranking is showed in Table 8. From these results including the figures and the tables, with 

the output variable 𝑦 the ranking for all four parameters sensitivities is 𝑘!, 𝑘!, 𝑘!, 𝑘!.    
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Figure 25. Probability Mass functions of 𝑘! considering output 𝑦 

 

Figure 26. Probability Mass functions of 𝑘! considering output 𝑦 
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Figure 27. Probability Mass functions of 𝑘! considering output 𝑦 

 

Figure 28. Probability Mass functions of 𝑘! considering output 𝑦 
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Figure 29. Cumulative distribution functions of 𝑘! considering output 𝑦 

 

Figure 30. Cumulative distribution functions of 𝑘! considering output 𝑦 



42 
 

 

Figure 31. Cumulative distribution functions of 𝑘! considering output 𝑦 

 

Figure 32. Cumulative distribution functions of 𝑘! considering output 𝑦 
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Table 7 

Rank at 5% significance level of the MPSA results for 𝑦 

                   Rank at 5% significance level of the MPSA results for 𝑦,𝐶!!"(𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.3060 0.2864 0.1005 0.1111 

37.5th percentile of objectives 0.3723 0.2804 0.0831 0.0604 

50th percentile of objectives 0.4514 0.2844 0.0770 0.0608 

62.5th percentile of objectives 0.5103 0.3160 0.0721 0.0660 

75th percentile of objectives 0.5757 0.3877 0.0767 0.0744 

Mean of the objectives 0.5097 0.3150 0.0730 0.0653 

 

Table 8 

P-values at 5% significance level of the MPSA results for 𝑦 

                   P-values at 5% significance level of the MPSA results for 𝑦,𝐶!!"(𝑡) 

(1*𝑒!!") 

 

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.0 0.0 0.0 0.0 

37.5th percentile of objectives 0.0 0.0 0.0 0.6971 

50th percentile of objectives 0.0 0.0 0.0 0.1716 

62.5th percentile of objectives 0.0 0.0 0.0005 0.0249 

75th percentile of objectives 0.0 0.0 0.0047 0.0172 

Mean of the objectives 0.0 0.0 0.0002 0.0354 

 

4.2.3 MPSA Results for Output Variable 𝑧. The PMFs of acceptance and non-

acceptance for the output variable 𝑧 are presented in the Figures 33 – 36. The cumulative 

distribution functions of acceptance and non-acceptance for the output variable 𝑧 are displayed in 
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the Figures 37—40. The distributions are tested, and the Kolmogorov-Smirnov distance is 

computed to rank the sensitivity of each parameter, with the results shown in the Table 9. The p-

value attributed to each ranking is showed in Table 10. From these results including the figures 

and the tables, with the output variable 𝑧 the ranking for all four parameters sensitivities is 

𝑘!, 𝑘!, 𝑘!, 𝑘!.    

 

Figure 33. Probability Mass functions of 𝑘! considering output 𝑧 
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Figure 34. Probability Mass functions of 𝑘! considering output 𝑧 

 

Figure 35. Probability Mass functions of 𝑘! considering output 𝑧 
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Figure 36. Probability Mass functions of 𝑘! considering output 𝑧 

 

Figure 37. Cumulative distribution functions of 𝑘! considering output 𝑧 
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Figure 38. Cumulative distribution functions of 𝑘! considering output 𝑧 

 

Figure 39. Cumulative distribution functions of 𝑘! considering output 𝑧 
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Figure 40. Cumulative distribution functions of 𝑘! considering output 𝑧 

Table 9 

Rank at 5% significance level of the MPSA results for 𝑧 

                   Rank at 5% significance level of the MPSA results for 𝑧,𝐶!!(𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.5903 0.0220 0.0107 0.0392 

37.5th percentile of objectives 0.6152 0.0210 0.0192 0.0438 

50th percentile of objectives 0.6368 0.0238 0.0166 0.0708 

62.5th percentile of objectives 0.6466 0.0228 0.0238 0.1186 

75th percentile of objectives 0.6316 0.0473 0.0339 0.1831 

Mean of the objectives 0.6505 0.0211 0.0205 0.0958 
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Table 10 

P-values at 5% significance level of the MPSA results for 𝑧 

                   P-values at 5% significance level of the MPSA results for 𝑧,𝐶!!(𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.0 0.3210 0.9828 0.0061 

37.5th percentile of objectives 0.0 0.2493 0.3503 0.0002 

50th percentile of objectives 0.0 0.1161 0.4930 0.0 

62.5th percentile of objectives 0.0 0.1736 0.1391 0.0 

75th percentile of objectives 0.0 0.0004 0.0265 0.0 

Mean of the objectives 0.0 0.2243 0.2547 0.0 

 

4.2.4 MPSA Results for Output Variable 𝑢. The PMFs of acceptance and non-

acceptance for the output variable 𝑢 are presented in the Figures 41 – 44. The cumulative 

distribution functions of acceptance and non-acceptance for the output variable 𝑢 are displayed 

in the Figures 45 – 48. The distributions are tested, and the Kolmogorov-Smirnov distance is 

computed to rank the sensitivity of each parameter, with the results shown in the Table 11. The 

p-value attributed to each ranking is showed in Table 12. From these results including the figures 

and the tables, with the output variable 𝑢 the ranking for all four parameters sensitivities is 

𝑘!, 𝑘!, 𝑘!, 𝑘!.    
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Figure 41. Probability Mass functions of 𝑘! considering output 𝑢 

 

Figure 42. Probability Mass functions of 𝑘! considering output 𝑢 
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Figure 43. Probability Mass functions of 𝑘! considering output 𝑢 

 

Figure 44. Probability Mass functions of 𝑘! considering output 𝑢 
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Figure 45. Cumulative distribution functions of 𝑘! considering output 𝑢 

 

Figure 46. Cumulative distribution functions of 𝑘! considering output 𝑢 
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Figure 47. Cumulative distribution functions of 𝑘! considering output 𝑢 

 

Figure 48. Cumulative distribution functions of 𝑘! considering output 𝑢 
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Table 11 

Rank at 5% significance level of the MPSA results for 𝑢 

                   Rank at 5% significance level of the MPSA results for 𝑢,𝐶!!"(𝑡)   

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.1629 0.1807 0.1105 0.2933 

37.5th percentile of objectives 0.1671 0.2227 0.1006 0.3268 

50th percentile of objectives 0.1740 0.2542 0.1030 0.3550 

62.5th percentile of objectives 0.2046 0.2862 0.1164 0.3695 

75th percentile of objectives 0.2556 0.3303 0.1235 0.3796 

Mean of the objectives 0.1996 0.2837 0.1135 0.3681 

 

Table 12 

P-values at 5% significance level of the MPSA results for 𝑢 

                   P-values at 5% significance level of the MPSA results for 𝑢,𝐶!!"(𝑡) 

(1*𝑒!!") 

 

Criterions/Parameters 𝑘! 𝑘! 𝑘! 𝑘! 

25th percentile of objectives 0.0 0.0 0.1952 0.0 

37.5th percentile of objectives 0.0 0.0 0.0378 0.0 

50th percentile of objectives 0.0 0.0 0.0001 0.0 

62.5th percentile of objectives 0.0 0.0 0.0 0.0 

75th percentile of objectives 0.0 0.0 0.0 0.0 

Mean of the objectives 0.0 0.0 0.0 0.0 

4.3 Comparison of the Results from TSA and MPSA 
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Table 13 

Ranking results of TSA and MPSA  

Type of Sensitivity analysis Ranking order 

TSA on variable x 𝑘! − 𝑘! − 𝑘! − 𝑘! 

MPSA on variable x 𝑘! − 𝑘! − 𝑘! − 𝑘! 

TSA on variable 𝑦 𝑘! − 𝑘! − 𝑘! − 𝑘! 

MPSA on variable 𝑦 𝑘! − 𝑘! − 𝑘! − 𝑘! 

TSA on variable 𝑧 𝑘! − 𝑘! − 𝑘! − 𝑘! 

MPSA on variable 𝑧 𝑘! − 𝑘! − 𝑘! − 𝑘! 

TSA on variable 𝑢 𝑘! − 𝑘! − 𝑘! − 𝑘! 

MPSA on variable 𝑢 𝑘! − 𝑘! − 𝑘! − 𝑘! 

 

In comparison of the TSA and MPSA methods, Table 13 displays the ordering of the 

ranks. Here, we notice that both results are consistent except for the output variable 𝑦 whose 3nd 

and 4rd sensitivity ranks are reversed in the TSA and MPSA methods, and the variable 𝑢 whose 

2nd and 3rd sensitivity ranks are also reversed in the TSA and MPSA methods. Nevertheless, the 

variable 𝑥 is most sensitive to changes in the parameter 𝑘!, the variable 𝑦 and 𝑧 are most 

sensitive to changes in the parameter 𝑘!, and the variable 𝑢 is most sensitive to changes in the 

parameter 𝑘!. 𝑘! does not affect any output variable significantly.  
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CHAPTER 5                                                                                                                     

Discussion and Future Topics 

From the previous studies (Ferrone et al., 1985; Chen et al., 2010), the melting of HbS 

polymers into monomers is beneficial, if not mandatory in order to eliminate the sickling of the 

red blood cell. Furthermore, carbon monoxide (CO) has been shown to improve the process of 

HbS polymers melting. A recent study (Sangart Inc., 2012) has developed a drug called MP4CO 

that delivers CO at a therapeutic level to the sickle cells to facilitate the melting process. In the 

extended model (Chen et al., 2010), we see that many parameters play important roles in the 

breaking down of the de-oxy HbS polymers which leads to the formation of the CO-bound HbS 

monomers. Thus, it is crucial to determine the most important parameters that affect de-oxy HbS 

polymers and the CO-bound HbS monomers. Therefore we analyze the sensitivity of all 

parameters to identify the most important parameters in the de-polymerization process. 

Our first set of numerical experiments addresses the sensitivity of the variables with 

respect to the parameters using the TSA method. The sensitivity graphs are plotted as a function 

of time in Figures 2 – 5.  The L! norms of the sensitivity functions are displayed in Table 3, 

which shows the strong effect of the CO-binding rate to de-oxygenated polymers (k![𝑐𝑜]) on all 

the variables, i.e. the most sensitive parameter. The melting rate of CO-bound polymers (k!") 

shows a weak effect on the variables, thus it appears to be the least sensitive or insensitive. 

Therefore, the concentration of de-oxygenated HbS polymers and the concentration of CO-bound 

HbS monomers are affected the most by the rate k![𝑐𝑜] and the least by k!".  

In the next analysis, using the previous TSFs , we study the sensitivities while all 

parameters are varied. As all the parameters are varied simultaneously, we notice quite a change 

in the sensitivity rankings. Here, we notice the importance of melting rate of de-oxygenated 
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polymers (k!) on the concentration of de-oxygenated HbS polymers and CO-bound HbS 

monomers. It should be noted that the k! is the most important parameter in the breaking down 

of the de-oxygenated HbS polymers and the formation of the CO-bound HbS monomers. 

Followed by k!, k![𝑐𝑜] is the second sensitive parameter to the concentration of de-oxygenated 

HbS polymers and k![𝑐𝑜] is the second sensitive parameter to the concentration of CO-bound 

HbS monomers. As for the concentration of de-oxy HbS monomers, k![𝑐𝑜] followed by k! are 

the two most sensitive parameters. For the concentration of CO-bound HbS polymers k![𝑐𝑜] is 

the parameter that causes the most disturbance. It should be noted that k!" has demonstrated the 

weakest effect in the sensitivity of all output variables.  

Lastly we perform the MPSA on the CO-mediated sickle cell de-polymerization with the 

same set of initial conditions and parameter ranges. The sensitivity rankings of all output values 

with respect to all input parameters are obtained by the MPSA analysis directly. These results are 

essentially identical to the results from TSA with semi-normalization of the TSFs.  

In comparing the methods of sensitivity analysis employed in this study, both TSA and 

MPSA have pros and cons. The TSA method is simple to derive mathematically and simple to 

implement in the program codes to obtain the TSFs numerically. But it is limited for its large 

computational cost. In a case where there are many parameters (r) and output variables (n), there 

will be a lot of equations (n+n*r) for the TSFs. The TSA also focuses on the local effect of the 

parameter on the output variables. As for the MPSA method, multiple parameters can be 

considered. This method studies the overall effect of the parameters on the outputs variables. The 

disadvantage of this method is the large size of sampling for the parameters because of the 

Monte-Carlo simulation.  
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 In chemical reactions, temperature plays an important role. The fluctuation of 

temperature influences the rate of the reactions. The constant rates presents in the model are 

influenced by the temperature variation (Louderback et al., 1999). Thus, it is important that the 

results from the sensitivity analysis be taken into consideration for further medical experiments. 

It is hoped that the results here may provide some insights on designing experiments that may 

lead to the determination of a suitable temperature range that provides a rapid de-polymerization 

of the sickle cell.  

For the future topics, first of all, both the TSA and MPSA analyses can be conducted for 

the initial conditions 𝐶!! 0 ,𝐶!!" 0 ,𝐶!! 0 ,  and 𝐶!!" 0  , for each output variable  

𝐶!! (𝑡),𝐶!!"(𝑡),𝐶!!(𝑡),  and 𝐶!!"(𝑡). The sensitivity equations for the TSFs have been derived and 

given in Appendix A. This is the first topic for the continuation of the current study.  

The TSF used in this study are in fact simply the derivatives of the components of the 

output variable with respect to the parameters. As long as one is only interested in the sensitivity 

of the output solely with respect to individual parameters, it is sufficient to use the TSFs. 

However, if we want to compare the sensitivity of outputs with respect to different parameters, 

then the TSFs can be misleading. Instead of the TSFs, one should use the relative sensitivity 

functions. More details can be found in (Salteli, 2008; Zi, 2011). Finding the relative sensitivity 

functions for the parameters in the CO-mediated sickle cell de-polymerization is the second topic 

of the future study.   

Thirdly, the MPSA can be further improved. For example, the K-S measuring is a rough 

approximation for the distance between two CDFs. A more delicate technique may be developed 

to measure the difference between the acceptance and non-acceptance distributions. Another 

example, if there exists appreciable correlation between parameters, the current version MPSA 
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may not be efficient. Taking the correlation of parameters into consideration, we may project the 

distributions onto new axes to obtain a more accurate result.    
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Appendix A 

Sensitivity equations for the initial conditions: 

𝑑𝑥(𝑡)
𝑑𝑡 =   −𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑥(𝑡)   A21  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑥!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑥!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑥!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑥!

  
A22  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑦!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑦!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑦!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑦!

  
A23  

𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑧!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑧!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑧!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑧!
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𝑑
𝑑𝑡

𝜕𝑥
𝜕𝑢!

=   𝑘! 1−   
𝑥 𝑡
𝐶!

𝜕𝑧(𝑡)
𝜕𝑢!

− 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑢!

𝑧 𝑡 −   𝑘!
𝜕𝑥(𝑡)
𝜕𝑢!
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𝑑𝑦(𝑡)
𝑑𝑡 =   𝑘!    1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑥 𝑡  
A26 

𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑥!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑥!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑥!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑥!
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𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑦!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑦!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑦!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑦!
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𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑧!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑧!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑧!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑧!
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𝑑
𝑑𝑡

𝜕𝑦
𝜕𝑢!

=   𝑘! 1−   
𝑦 𝑡
𝐶!

𝜕𝑢(𝑡)
𝜕𝑢!

− 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑢!

𝑢 𝑡 +   𝑘!
𝜕𝑥(𝑡)
𝜕𝑢!
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𝑑𝑧(𝑡)
𝑑𝑡 =   𝑘!   

𝑥 𝑡
𝐶!

−   1 𝑧 𝑡 −   𝑘!𝑧 𝑡  
A31 

𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑥!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑥!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑥!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑥!

 
A32 
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𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑦!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑦!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑦!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑦!
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𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑧!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑧!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑧!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑧!
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𝑑
𝑑𝑡

𝜕𝑧
𝜕𝑢!

=   𝑘!
𝑥 𝑡
𝐶!

− 1
𝜕𝑧(𝑡)
𝜕𝑢!

+ 𝑘!   
1
𝐶!
𝜕𝑥 𝑡
𝜕𝑢!

𝑧 𝑡 −   𝑘!
𝜕𝑧(𝑡)
𝜕𝑢!

 
A35 

𝑑𝑢(𝑡)
𝑑𝑡 =   −𝑘! 1−   

𝑦 𝑡
𝐶!

𝑢 𝑡 +   𝑘!𝑧(𝑡) 
A36 

𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑥!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑥!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑥!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑥!
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𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑦!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑦!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑦!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑦!
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𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑧!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑧!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑧!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑧!
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𝑑
𝑑𝑡

𝜕𝑢
𝜕𝑢!

=   𝑘!
𝑦 𝑡
𝐶!

− 1
𝜕𝑢(𝑡)
𝜕𝑢!

+ 𝑘!   
1
𝐶!
𝜕𝑦 𝑡
𝜕𝑢!

𝑢 𝑡 +   𝑘!
𝜕𝑧(𝑡)
𝜕𝑢!

 
A40 
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Appendix B  

Matlab codes for TSF 

Main code for the TSA 
% This Matlab code analyzes sensitivity of the system to four parameters 
% k1, k2, k3 and k4 
% Initialization of the parameter of the model 
global k1 k2 k3 k4 C_1 C_2 
k1 = .028; 
k2 = .07; 
k3 = .1; 
k4 = .01; 
C_1 = .4; 
C_2 = .1; 
k0 = [k1,k2,k3,k4]; 
eps = min([k1,k2,k3,k4])/10.0; 
t0 = 0; 
tf = 400; 
dt = 0.01; 
X0 = [0.0036,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0,... 
    0.1750,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0,0.0]; 
% Calling My runge-kutta 4 method to compute the original (nominal) 
% behaviour 
[t,Y0] = MYRK4COSens(X0,t0,tf,dt); 
product = Y0(:,6); 
figure(1) 
hold on; grid on; 
plot(t,Y0(:,1),'b') 
plot(t,Y0(:,6),'r') 
plot(t,Y0(:,11),'g') 
plot(t,Y0(:,16),'k') 
legend('De-oxy Monomers [x]','CO-bound Monomers [y]',... 
    'De-oxy polymers [z]','CO-bound Polymers [u]' ); 
title('Molar Cencentration') % put a title on the plot 
xlabel('Time [min]')%  label the x-axis 
ylabel('Population [Mm]') %  label the y-axis 
h1 = figure(1); 
saveas(h1,'Fig1_solnCurves4model','jpg') 
figure(2) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y0(:,2)) 
title('dx/dk1 solution curve'); 
subplot(2,2,2) 



66 
 

hold on; grid on; 
plot(t,Y0(:,7)) 
title('dy/dk1 solution curve'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y0(:,12)) 
title('dz/dk1 solution curve'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y0(:,17)) 
title('du/dk1 solution curve'); 
suptitle('Behavior of dx/dk1,dy/dk1,dz/dk1,du/dk1 variables'); 
h2 = figure(2); 
saveas(h2,'Fig2_solnCurves4variationsOfK1','jpg') 
figure(3) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y0(:,3)) 
title('dx/dk2 solution curve'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y0(:,8)) 
title('dy/dk2 solution curve'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y0(:,13)) 
title('dz/dk2 solution curve'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y0(:,18)) 
title('du/dk2 solution curve'); 
suptitle('Behavior of dx/dk2,dy/dk2,dz/dk2,du/dk2 variables'); 
h3 = figure(3); 
saveas(h3,'Fig3_solnCurves4variationsOfK2','jpg') 
figure(4) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y0(:,4)) 
title('dx/dk3 solution curve'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y0(:,9)) 
title('dy/dk3 solution curve'); 
subplot(2,2,3) 
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hold on; grid on; 
plot(t,Y0(:,14)) 
title('dz/dk3 solution curve'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y0(:,19)) 
title('du/dk3 solution curve'); 
suptitle('Behavior of dx/dk3,dy/dk3,dz/dk3,du/dk3 variables'); 
h4 = figure(4); 
saveas(h4,'Fig4_solnCurves4variationsOfK3','jpg') 
figure(5) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y0(:,5)) 
title('dx/dk4 solution curve'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y0(:,10)) 
title('dy/dk4 solution curve'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y0(:,15)) 
title('dz/dk4 solution curve'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y0(:,20)) 
title('du/dk4 solution curve'); 
suptitle('Behavior of dx/dk4,dy/dk4,dz/dk4,du/dk4 variables'); 
h5 = figure(5); 
saveas(h5,'Fig5_solnCurves4variationsOfK4','jpg') 
saveas(h1,'Fig1_solnCurves4model','png') 
saveas(h2,'Fig2_solnCurves4variationsOfK1','png') 
saveas(h3,'Fig3_solnCurves4variationsOfK2','png') 
saveas(h4,'Fig4_solnCurves4variationsOfK3','png') 
saveas(h5,'Fig5_solnCurves4variationsOfK4','png') 
% Define the number of points for the simulation 
dim = 100; 
% Defines the initial starting point: 1/2 of the nominal value 
k1_init = 0.5*k1; 
k2_init = 0.5*k2; 
k3_init = 0.5*k3; 
k4_init = 0.5*k4; 
% Defines the end point: 2 times of the nominal value  
k1_fin = 2.0*k1;  
k2_fin = 2.0*k2;  
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k3_fin = 2.0*k3;  
k4_fin = 2.0*k4;  
% Creates a uniform random number distribution between the set of 2 points 
k1v = random('unif',k1_init,k1_fin,1,dim); 
k2v = random('unif',k2_init,k2_fin,1,dim); 
k3v = random('unif',k3_init,k3_fin,1,dim); 
k4v = random('unif',k4_init,k4_fin,1,dim); 
k1 = k1v(1); 
k2 = k2v(1); 
k3 = k3v(1); 
k4 = k4v(1); 
[t,Y] = MYRK4COSens(X0,t0,tf,dt); 
figure(6) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y(:,1)-Y0(:,1)) 
ylabel('x-x_ref') 
%title('x variation wrt to Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,6)-Y0(:,6)) 
ylabel('y-y_ref') 
%title('y variation wrt Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,11)-Y0(:,11)) 
ylabel('z-z_ref') 
%title('z variation wrt Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,16)-Y0(:,16)) 
ylabel('u-u_ref') 
k1x_min = abs(k1-k0(1))*sum(abs(Y(:,2)-Y0(:,2)).^2)*dt; 
k1y_min = abs(k1-k0(1))*sum(abs(Y(:,7)-Y0(:,7)).^2)*dt; 
k1z_min = abs(k1-k0(1))*sum(abs(Y(:,12)-Y0(:,12)).^2)*dt; 
k1u_min = abs(k1-k0(1))*sum(abs(Y(:,17)-Y0(:,17)).^2)*dt;    
k2x_min = abs(k2-k0(2))*sum(abs(Y(:,3)-Y0(:,3)).^2)*dt; 
k2y_min = abs(k2-k0(2))*sum(abs(Y(:,8)-Y0(:,8)).^2)*dt; 
k2z_min = abs(k2-k0(2))*sum(abs(Y(:,13)-Y0(:,13).^2))*dt; 
k2u_min = abs(k2-k0(2))*sum(abs(Y(:,18)-Y0(:,18)).^2)*dt;    
k3x_min = abs(k3-k0(3))*sum(abs(Y(:,4)-Y0(:,4)).^2)*dt; 
k3y_min = abs(k3-k0(3))*sum(abs(Y(:,9)-Y0(:,9)).^2)*dt; 
k3z_min = abs(k3-k0(3))*sum(abs(Y(:,14)-Y0(:,14)).^2)*dt; 
k3u_min = abs(k3-k0(3))*sum(abs(Y(:,19)-Y0(:,19)).^2)*dt;    
k4x_min = abs(k4-k0(4))*sum(abs(Y(:,5)-Y0(:,5)).^2)*dt; 
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k4y_min = abs(k4-k0(4))*sum(abs(Y(:,10)-Y0(:,10)).^2)*dt; 
k4z_min = abs(k4-k0(4))*sum(abs(Y(:,15)-Y0(:,15)).^2)*dt; 
k4u_min = abs(k4-k0(4))*sum(abs(Y(:,20)-Y0(:,20)).^2)*dt; 
k1x_max = abs(k1-k0(1))*sum(abs(Y(:,2)-Y0(:,2)).^2)*dt; 
k1y_max = abs(k1-k0(1))*sum(abs(Y(:,7)-Y0(:,7)).^2)*dt; 
k1z_max = abs(k1-k0(1))*sum(abs(Y(:,12)-Y0(:,12)).^2)*dt; 
k1u_max = abs(k1-k0(1))*sum(abs(Y(:,17)-Y0(:,17)).^2)*dt;     
k2x_max = abs(k2-k0(2))*sum(abs(Y(:,3)-Y0(:,3)).^2)*dt; 
k2y_max = abs(k2-k0(2))*sum(abs(Y(:,8)-Y0(:,8)).^2)*dt; 
k2z_max = abs(k2-k0(2))*sum(abs(Y(:,13)-Y0(:,13)).^2)*dt; 
k2u_max = abs(k2-k0(2))*sum(abs(Y(:,18)-Y0(:,18)).^2)*dt; 
k3x_max = abs(k3-k0(3))*sum(abs(Y(:,4)-Y0(:,4)).^2)*dt; 
k3y_max = abs(k3-k0(3))*sum(abs(Y(:,9)-Y0(:,9)).^2)*dt; 
k3z_max = abs(k3-k0(3))*sum(abs(Y(:,14)-Y0(:,14)).^2)*dt; 
k3u_max = abs(k3-k0(3))*sum(abs(Y(:,19)-Y0(:,19)).^2)*dt;     
k4x_max = abs(k4-k0(4))*sum(abs(Y(:,5)-Y0(:,5)).^2)*dt; 
k4y_max = abs(k4-k0(4))*sum(abs(Y(:,10)-Y0(:,10)).^2)*dt; 
k4z_max = abs(k4-k0(4))*sum(abs(Y(:,15)-Y0(:,15)).^2)*dt; 
k4u_max = abs(k4-k0(4))*sum(abs(Y(:,20)-Y0(:,20)).^2)*dt; 
x_diff_min = sum(abs(Y(:,1)-Y0(:,1)).^2)*dt; 
y_diff_min = sum(abs(Y(:,6)-Y0(:,6)).^2)*dt; 
z_diff_min = sum(abs(Y(:,11)-Y0(:,11)).^2)*dt; 
u_diff_min = sum(abs(Y(:,16)-Y0(:,16)).^2)*dt; 
x_diff_max = sum(abs(Y(:,1)-Y0(:,1)).^2)*dt; 
y_diff_max = sum(abs(Y(:,6)-Y0(:,6)).^2)*dt; 
z_diff_max = sum(abs(Y(:,11)-Y0(:,11)).^2)*dt; 
u_diff_max = sum(abs(Y(:,16)-Y0(:,16)).^2)*dt; 
% For loop1: sensitivity of x,y,z,u wrt k1,k2,k3,k4 when all four  
% parameters vary simultaneously 
for i_k = 2:1:dim 
    k1 = k1v(i_k); 
    k2 = k2v(i_k); 
    k3 = k3v(i_k); 
    k4 = k4v(i_k); 
    [t,Y] = MYRK4COSens(X0,t0,tf,dt); 
    x_diff = sum(abs(Y(:,1)-Y0(:,1)).^2)*dt; 
    y_diff = sum(abs(Y(:,6)-Y0(:,6)).^2)*dt; 
    z_diff = sum(abs(Y(:,11)-Y0(:,11).^2))*dt; 
    u_diff = sum(abs(Y(:,16)-Y0(:,16)).^2)*dt; 
    if (x_diff<x_diff_min) 
        x_diff_min = x_diff; 
    elseif (x_diff>x_diff_max) 
        x_diff_max = x_diff; 
    end 
    if (y_diff<y_diff_min) 
        y_diff_min = y_diff; 
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    elseif (y_diff>y_diff_max) 
        y_diff_max = y_diff; 
    end 
    if (z_diff<z_diff_min) 
        z_diff_min = z_diff; 
    elseif (x_diff>x_diff_max) 
        z_diff_max = z_diff; 
    end 
    if (u_diff<u_diff_min) 
        u_diff_min = u_diff; 
    elseif (u_diff>u_diff_max) 
        u_diff_max = u_diff; 
    end 
    figure(6) 
    hold on; grid on; 
    subplot(2,2,1) 
    hold on; grid on; 
    plot(t,Y(:,1)-Y0(:,1)) 
    ylabel('x-x_ref') 
    %title('x variation wrt to Ks'); 
    subplot(2,2,2) 
    hold on; grid on; 
    plot(t,Y(:,6)-Y0(:,6)) 
    ylabel('y-y_ref') 
    %title('y variation wrt Ks'); 
    subplot(2,2,3) 
    hold on; grid on; 
    plot(t,Y(:,11)-Y0(:,11)) 
    ylabel('z-z_ref') 
    %title('z variation wrt Ks'); 
    subplot(2,2,4) 
    hold on; grid on; 
    plot(t,Y(:,16)-Y0(:,16)) 
    ylabel('u-u_ref') 
    %title('u variation wrt k1'); 
    %suptitle('Behavior of x,y,z,u variables wrt Ks'); 
    k1x_tmp = abs(k1-k0(1))*sum(abs(Y(:,2)-Y0(:,2)).^2)*dt; 
    k1y_tmp = abs(k1-k0(1))*sum(abs(Y(:,7)-Y0(:,7)).^2)*dt; 
    k1z_tmp = abs(k1-k0(1))*sum(abs(Y(:,12)-Y0(:,12)).^2)*dt; 
    k1u_tmp = abs(k1-k0(1))*sum(abs(Y(:,17)-Y0(:,17)).^2)*dt; 
    k2x_tmp = abs(k2-k0(2))*sum(abs(Y(:,3)-Y0(:,3)).^2)*dt; 
    k2y_tmp = abs(k2-k0(2))*sum(abs(Y(:,8)-Y0(:,8)).^2)*dt; 
    k2z_tmp = abs(k2-k0(2))*sum(abs(Y(:,13)-Y0(:,13)).^2)*dt; 
    k2u_tmp = abs(k2-k0(2))*sum(abs(Y(:,18)-Y0(:,18)).^2)*dt; 
    k3x_tmp = abs(k3-k0(3))*sum(abs(Y(:,4)-Y0(:,4)).^2)*dt; 
    k3y_tmp = abs(k3-k0(3))*sum(abs(Y(:,9)-Y0(:,9)).^2)*dt; 
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    k3z_tmp = abs(k3-k0(3))*sum(abs(Y(:,14)-Y0(:,14)).^2)*dt; 
    k3u_tmp = abs(k3-k0(3))*sum(abs(Y(:,19)-Y0(:,19)).^2)*dt; 
    k4x_tmp = abs(k4-k0(4))*sum(abs(Y(:,5)-Y0(:,5)).^2)*dt; 
    k4y_tmp = abs(k4-k0(4))*sum(abs(Y(:,10)-Y0(:,10)).^2)*dt; 
    k4z_tmp = abs(k4-k0(4))*sum(abs(Y(:,15)-Y0(:,15)).^2)*dt; 
    k4u_tmp = abs(k4-k0(4))*sum(abs(Y(:,20)-Y0(:,20)).^2)*dt; 
    if (k1x_tmp < k1x_min) 
        k1x_min = k1x_tmp; 
    elseif (k1x_tmp > k1x_max) 
        k1x_max = k1x_tmp; 
    end 
if (k1y_tmp < k1y_min) 
        k1y_min = k1y_tmp; 
    elseif (k1y_tmp > k1y_max) 
        k1y_max = k1y_tmp; 
    end 
if (k1z_tmp < k1z_min) 
        k1z_min = k1z_tmp; 
    elseif (k1z_tmp > k1z_max) 
        k1z_max = k1z_tmp; 
    end 
if (k1u_tmp < k1u_min) 
        k1u_min = k1u_tmp; 
    elseif (k1u_tmp > k1u_max) 
        k1u_max = k1u_tmp; 
    end 
if (k2x_tmp < k2x_min) 
        k2x_min = k2x_tmp; 
    elseif (k2x_tmp > k2x_max) 
        k2x_max = k2x_tmp; 
    end 
if (k2y_tmp < k2y_min) 
        k2y_min = k2y_tmp; 
    elseif (k2y_tmp > k2y_max) 
        k2y_max = k2y_tmp; 
    end 
if (k2z_tmp < k2z_min) 
        k2z_min = k2z_tmp; 
    elseif(k2z_tmp > k2z_max) 
        k2z_max = k2z_tmp; 
    end 
if (k2u_tmp < k2u_min) 
        k2u_min = k2u_tmp; 
    elseif (k2u_tmp > k2u_max) 
        k2u_max = k2u_tmp; 
    end 
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if (k3x_tmp < k3x_min) 
        k3x_min = k3x_tmp; 
    elseif (k3x_tmp > k3x_max) 
        k3x_max = k3x_tmp; 
    end 
if (k3y_tmp < k3y_min) 
        k3y_min = k3y_tmp; 
    elseif (k3y_tmp > k3y_max) 
        k3y_max = k3y_tmp; 
    end 
if (k3z_tmp < k3z_min) 
        k3z_min = k3z_tmp; 
    elseif(k3z_tmp > k3z_max) 
        k3z_max = k3z_tmp; 
    end 
if (k3u_tmp < k3u_min) 
        k3u_min = k3u_tmp; 
    elseif (k3u_tmp > k3u_max) 
        k3u_max = k3u_tmp; 
    end 
if (k4x_tmp < k4x_min) 
        k4x_min = k4x_tmp; 
    elseif (k4x_tmp > k4x_max) 
        k4x_max = k4x_tmp; 
    end 
    if (k4y_tmp < k4y_min) 
        k4y_min = k4y_tmp; 
    elseif (k4y_tmp > k4y_max) 
        k4y_max = k4y_tmp; 
    end 
if (k4z_tmp < k4z_min) 
        k4z_min = k4z_tmp; 
    elseif(k4z_tmp > k4z_max) 
        k4z_max = k4z_tmp; 
    end  
    if (k4u_tmp < k4u_min) 
        k4u_min = k4u_tmp; 
    elseif (k4u_tmp > k4u_max) 
        k4u_max = k4u_tmp; 
    end  
end 
% Add titles to figures in for loop1 above 
figure(6) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
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ylabel('x-x_ref') 
title('x variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
ylabel('y-y_ref') 
title('y variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
ylabel('z-z_ref') 
title('z variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
ylabel('u-u_ref') 
title('u variation wrt varying Ks'); 
suptitle('Behavior of x,y,z,u variables for varying Ks'); 
h1 = figure(6); 
saveas(h1,'Fig6_DiffWRefSolnCurve_varyKs','jpg') 
saveas(h1,'Fig6_DiffWRefSolnCurve_varyKs','png') 
RefSolnDiff_range = [x_diff_min,y_diff_min,z_diff_min,u_diff_min; 
    x_diff_max,y_diff_max,z_diff_max,u_diff_max; 
    x_diff_max-x_diff_min,y_diff_max-y_diff_min,z_diff_max-z_diff_min,... 
    u_diff_max-u_diff_min] 
fileID = fopen('SolnDiffRange.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','x_diff','y_diff',... 
    'z_diff','u_diff'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',RefSolnDiff_range'); 
fclose(fileID); 
k1_range = [k1x_min,k1y_min,k1z_min,k1u_min; 
    k1x_max,k1y_max,k1z_max,k1u_max; 
    k1x_max-k1x_min,k1y_max-k1y_min,k1z_max-k1z_min,k1u_max-k1u_min] 
fileID = fopen('K1Range.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','k1x','k1y','k1z','k1u'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',k1_range'); 
fclose(fileID); 
k2_range = [k2x_min,k2y_min,k2z_min,k2u_min; 
    k2x_max,k2y_max,k2z_max,k2u_max; 
    k2x_max-k2x_min,k2y_max-k2y_min,k2z_max-k2z_min,k2u_max-k2u_min] 
fileID = fopen('K2Range.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','k2x','k2y','k2z','k2u'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',k2_range'); 
fclose(fileID); 
k3_range = [k3x_min,k3y_min,k3z_min,k3u_min; 
    k3x_max,k3y_max,k3z_max,k3u_max; 
    k3x_max-k3x_min,k3y_max-k3y_min,k3z_max-k3z_min,k3u_max-k3u_min] 
fileID = fopen('K3Range.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','k3x','k3y','k3z','k3u'); 
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fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',k3_range'); 
fclose(fileID); 
k4_range = [k4x_min,k4y_min,k4z_min,k4u_min; 
    k4x_max,k4y_max,k4z_max,k4u_max; 
    k4x_max-k4x_min,k4y_max-k4y_min,k4z_max-k4z_min,k4u_max-k4u_min] 
fileID = fopen('K4Range.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','k4x','k4y','k4z','k4u'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',k4_range'); 
fclose(fileID); 
% For loop1: sensitivity of x,y,z,u wrt k1,k2,k3,k4 when all four  
% parametersvary simultaneously 
for i_k = 1:1:dim 
        k1 = k1v(i_k); 
        k2 = k2v(i_k); 
        k3 = k3v(i_k); 
        k4 = k4v(i_k); 
        [t,Y] = MYRK4COSensNew(X0,t0,tf,dt); 
        figure(6) 
        hold on; grid on; 
        subplot(2,2,1) 
        hold on; grid on; 
        plot(t,Y(:,1)) 
        ylabel('x') 
        %title('x variation wrt to k1'); 
        subplot(2,2,2) 
        hold on; grid on; 
        plot(t,Y(:,6)) 
        ylabel('y') 
        %title('y variation wrt k1'); 
        subplot(2,2,3) 
        hold on; grid on; 
        plot(t,Y(:,11)) 
        ylabel('z') 
        %title('z variation wrt k1'); 
        subplot(2,2,4) 
        hold on; grid on; 
        plot(t,Y(:,16)) 
        ylabel('u') 
        %title('u variation wrt k1'); 
        %suptitle('Behavior of x,y,z,u variables wrt k1');    
        figure(7) 
        hold on; grid on; 
        subplot(2,2,1) 
        hold on; grid on; 
        plot(t,Y(:,2)) 
        ylabel('dx/dk1') 
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        %title('x variation wrt to k1'); 
        subplot(2,2,2) 
        hold on; grid on; 
        plot(t,Y(:,7)) 
        ylabel('dy/dk1') 
        %title('y variation wrt k1'); 
        subplot(2,2,3) 
        hold on; grid on; 
        plot(t,Y(:,12)) 
        ylabel('dz/dk1') 
        %title('z variation wrt k1'); 
        subplot(2,2,4) 
        hold on; grid on; 
        plot(t,Y(:,17)) 
        ylabel('du/dk1') 
        %title('u variation wrt k1'); 
        %suptitle('Behavior of dx,dy,dz,du variables wrt k1'); 
        figure(8) 
        hold on; grid on; 
        subplot(2,2,1) 
        hold on; grid on; 
        plot(t,Y(:,3)) 
        ylabel('dx/dk2') 
        %title('x variation wrt k2'); 
        subplot(2,2,2) 
        hold on; grid on; 
        plot(t,Y(:,8)) 
        ylabel('dy/dk2') 
        %title('y variation wrt k2'); 
        subplot(2,2,3) 
        hold on; grid on; 
        plot(t,Y(:,13)) 
        ylabel('dz/dk2') 
        %title('z variation wrt k2'); 
        subplot(2,2,4) 
        hold on; grid on; 
        plot(t,Y(:,18)) 
        ylabel('du/dk2') 
        %title('u variation wrt k2'); 
        %suptitle('Behavior of x,y,z,u variables wrt k2') 
        figure(9) 
        hold on; grid on; 
        subplot(2,2,1) 
        hold on; grid on; 
        plot(t,Y(:,4)) 
        ylabel('dx/dk3') 
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        %title('x variation wrt k3'); 
        subplot(2,2,2) 
        hold on; grid on; 
        plot(t,Y(:,9)) 
        ylabel('dy/dk3') 
        %title('y variation wrt k3'); 
        subplot(2,2,3) 
        hold on; grid on; 
        plot(t,Y(:,14)) 
        ylabel('dz/dk3') 
        %title('z variation wrt k3'); 
        subplot(2,2,4) 
        hold on; grid on; 
        plot(t,Y(:,19)) 
        ylabel('du/dk3') 
        %title('u variation wrt k3'); 
        %suptitle('Vehavior of x,y,z,u variables wrt k3'); 
        figure(10) 
        hold on; grid on; 
        subplot(2,2,1) 
        hold on; grid on; 
        plot(t,Y(:,5)) 
        ylabel('dx/dk4') 
        %title('x variation wrt k4'); 
        subplot(2,2,2) 
        hold on; grid on; 
        plot(t,Y(:,10)) 
        ylabel('dy/dk4') 
        %title('y variation wrt k4'); 
        subplot(2,2,3) 
        hold on; grid on; 
        plot(t,Y(:,15)) 
        ylabel('dz/dk4') 
        %title('z variation wrt k4'); 
        subplot(2,2,4) 
        hold on; grid on; 
        plot(t,Y(:,20)) 
        ylabel('du/dk4') 
        %title('u variation wrt k4'); 
        %suptitle('Behavior of x,y,z,u variables wrt k4'); 
end 
% Add titles to figures in for loop1 above 
figure(6) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
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plot(t,Y(:,1)) 
ylabel('x') 
title('x variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,6)) 
ylabel('y') 
title('y variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,11)) 
ylabel('z') 
title('z variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,16)) 
ylabel('u') 
title('u variation wrt varying Ks'); 
suptitle('Behavior of x,y,z,u variables for varying Ks'); 
figure(7) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y(:,2)) 
ylabel('dx/dk1') 
title('dx/dk1 variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,7)) 
ylabel('dy/dk1') 
title('dy/dk1 variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,12)) 
ylabel('dz/dk1') 
title('dz/dk1 variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,17)) 
ylabel('du/dk1') 
title('du/dk1 variation wrt varying Ks'); 
suptitle('Behavior of dx/dk1,dy/dk1,dz/dk1,du/dk1 for varying Ks'); 
figure(8) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
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plot(t,Y(:,3)) 
ylabel('dx/dk2') 
title('dx/dk2 variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,8)) 
ylabel('dy/dk2') 
title('dy/dk2 variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,13)) 
ylabel('dz/dk2') 
title('dz/dk2 variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,18)) 
ylabel('du/dk2') 
title('du/dk2 variation wrt varying Ks'); 
suptitle('Behavior of dx/dk2,dy/dk2,dz/dk2,du/dk2 for varying Ks'); 
figure(9) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 
plot(t,Y(:,4)) 
ylabel('dx/dk3') 
title('dx/dk3 variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,9)) 
ylabel('dy/dk3') 
title('dy/dk3 variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,14)) 
ylabel('dz/dk3') 
title('duz/dk3 variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,19)) 
ylabel('du/dk3') 
title('du/dk3 variation wrt varying Ks'); 
suptitle('Behavior of dx/dk3,dy/dk3,dz/dk3,du/dk3 for varying Ks'); 
figure(10) 
hold on; grid on; 
subplot(2,2,1) 
hold on; grid on; 



79 
 

plot(t,Y(:,5)) 
ylabel('dx/dk4') 
title('dx/dk4 variation wrt varying Ks'); 
subplot(2,2,2) 
hold on; grid on; 
plot(t,Y(:,10)) 
ylabel('dy/dk4') 
title('dy/dk4 variation wrt varying Ks'); 
subplot(2,2,3) 
hold on; grid on; 
plot(t,Y(:,15)) 
ylabel('dz/dk4') 
title('dz/dk4 variation wrt varying Ks'); 
subplot(2,2,4) 
hold on; grid on; 
plot(t,Y(:,20)) 
ylabel('du/dk4') 
title('du/dk4 variation wrt varying Ks'); 
suptitle('Behavior of dx/dk4,dy/dk4,dz/dk4,du/dk4 for varying Ks'); 
h1 = figure(6); 
h2 = figure(7); 
h3 = figure(8); 
h4 = figure(9); 
h5 = figure(10); 
saveas(h1,'Fig6_solnCurves_varyKs','jpg') 
saveas(h2,'Fig7_variations2k1_varyKs','jpg') 
saveas(h3,'Fig8_variations2k2_varyKs','jpg') 
saveas(h4,'Fig9_variations2k3_varyKs','jpg') 
saveas(h5,'Fig10_variations2k4_varyKs','jpg') 
saveas(h1,'Fig6_solnCurves_varyKs','png') 
saveas(h2,'Fig7_variations2k1_varyKs','png') 
saveas(h3,'Fig8_variations2k2_varyKs','png') 
saveas(h4,'Fig9_variations2k3_varyKs','png') 
saveas(h5,'Fig10_variations2k4_varyKs','png') 
 
Subroutines for the TSA 
function dxdt = COSensNew(X) 
% This Matlab code defines an extended set of 20 PDEs defining the dynamic 
% of Sickle Cell model and the variations of the dependant variables with 
% respect to four parameters k1,k2,k3 and k4.  
global k1 k2 k3 k4 C_1 C_2 
dxdt(1)= -k1*(X(1)/C_1-1)*X(11)-k2*X(1);  
dxdt(2)= (1-X(1)/C_1)*(X(11)+k1*X(12))-(k1*(1/C_1)*X(11)+k2)*X(2); 
dxdt(3)= -k1*((1/C_1)*X(3))*X(11)+k1*(1-X(1)/C_1)*X(13)-k2*X(3)-X(1); 
dxdt(4)= -k1*((1/C_1)*X(4))*X(11)+k1*(1-X(1)/C_1)*X(14)-k2*X(4); 
dxdt(5)= -k1*((1/C_1)*X(5))*X(11)+k1*(1-X(1)/C_1)*X(15)-k2*X(5); 
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dxdt(6)= k3*(1-(X(6)/C_2))*X(16)+k2*X(1); 
dxdt(7)= -k3*((1/C_2)*X(7))*X(16)+k3*X(17)*(1-X(6)/C_2)+k2*X(2); 
dxdt(8)= -k3*((1/C_2)*X(8))*X(16)+k3*X(18)*(1-X(6)/C_2)+k2*X(3)+X(1); 
dxdt(9)= (1-X(6)/C_2)*(X(16)+k3*X(19))-k3*((1/C_2)*X(9))*X(16)+k2*X(4); 
dxdt(10)= -k3*((1/C_2)*X(10))*X(16)+k3*(1-X(6)/C_2)*X(20)+k2*X(5); 
dxdt(11)= k1*(X(1)/C_1-1)*X(11)-k4*X(11); 
dxdt(12)= ((X(1)/C_1)-1)*(X(11)+k1*X(12))+k1*((1/C_1)*X(2))*X(11)-k4*X(12); 
dxdt(13)= k1*((1/C_1)*X(3))*X(11)+k1*((X(1)/C_1)-1)*X(13)-k4*X(13); 
dxdt(14)= k1*((1/C_1)*X(4))*X(11)+k1*((X(1)/C_1)-1)*X(14)-k4*X(14); 
dxdt(15)= k1*((1/C_1)*X(5))*X(11)+k1*((X(1)/C_1)-1)*X(15)-k4*X(15)-X(11); 
dxdt(16)= -k3*(1-(X(6)/C_2))*X(16)+k4*X(11); 
dxdt(17)= k3*((1/C_2)*X(7))*X(16)+k3*((X(6)/C_2)-1)*X(17)+k4*X(12); 
dxdt(18)= k3*((1/C_2)*X(8))*X(16)+k3*((X(6)/C_2)-1)*X(18)+k4*X(13); 
dxdt(19)= ((X(6)/C_2)-1)*(X(16)+k3*X(19))+k3*((1/C_2)*X(9))*X(16)+k4*X(14); 
dxdt(20)= k3*((1/C_2)*X(10))*X(16)+k3*((X(6)/C_2)-1)*X(20)+k4*X(15)+X(11); 
dxdt = [dxdt(1),dxdt(2),dxdt(3),dxdt(4),dxdt(5),dxdt(6),dxdt(7),dxdt(8),... 
    dxdt(9),dxdt(10),dxdt(11),dxdt(12),dxdt(13),dxdt(14),dxdt(15),... 
    dxdt(16),dxdt(17),dxdt(18),dxdt(19),dxdt(20)]; 
end 
 
function [t,Y] = MYRK4COSensNew(X,t0,tf,dt) 
% This Matlab code runs the 4th-order Runge-Kutta method for the extended  
% system of 20 ODEs defined in COSens.m for the Sickle Cell model 
% Calling the xx (derivative) function 
% dxdt = COSens(X); 
% Storing results 
n_max = floor((tf-t0)/dt); 
% Storing the initial condition 
Y = X; 
t = t0; 
for n = 1:1:n_max 
    K1 = COSensNew(X); 
    K2 = COSensNew(X+dt/2*K1); 
    K3 = COSensNew(X+dt/2*K2); 
    K4 = COSensNew(X+dt*K3); 
    Yt = X+(dt/6)*(K1+2*K2+2*K3+K4); 
    X = Yt; 
    Y = [Y;Yt]; 
    t = [t;n*dt]; 
end 
end 
 
Matlab codes for MPSA 
 
The main program for the MPSA 
%Initialization of the parameter of the model 
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k1=.028; 
k2=.07; 
k3=.1; 
k4=.01; 
K = [k1 k2 k3 k4]; 
C_1=.4; 
C_2=.1; 
t0=0; 
tf=250; 
dt=0.01; 
%Calling My runge-kutta 4 method to compute the original (nominal) 
%behaviour 
[t,Y] =pMYRK4COSensMPSA1([0.0036,0.0,.1750,0],K,t0,tf,dt,C_1,C_2); 
%To compute “x” column must = 1, “y” column must = 2, “z” column  
%must = 3 and “u” column must equal 4. 
column = 1;  % The considered output is x, the 1st variable 
product=squeeze(Y(:,column,:))'; 
figure(5) 
hold on; grid on; 
plot(t,squeeze(Y(:,1,:)),'b') 
plot(t,squeeze(Y(:,2,:)),'r') 
plot(t,squeeze(Y(:,3,:)),'g') 
plot(t,squeeze(Y(:,4,:)),'k') 
legend('De-oxy Monomers[x(1)]','CO-bound Monomers [x(2)]',... 
'De-oxy polymers [x(3)]','CO-bound Polymers [x(4)]'); 
title('Molar Cencentration') % put a title on the plot 
xlabel('Time [min]')%  label the x-axis 
ylabel('Population [Mm]') %  label the y-axis    
%is the number of the point we would like to use for the 
%simulation 
%% n = 1000000;  original setting 
n = 10000; 
K_init = 0.5 * K; 
K_fin = 2 * K; 
K_mat = zeros(n,length(K)); 
%Creates a uniform random number distribution between the set of 2 points 
for i = 1:length(K) 
    K_mat(:,i) = random('unif',K_init(i),K_fin(i),n,1); 
end 
%Stores the objective function of the simulation 
Allfobj=zeros(n,1); 
%Simulation 
%% BlockSize = 10000; original setting 
BlockSize = 1000; 
Blocks = n / BlockSize; 
initX = repmat([0.0036,0.0,0.1750,0.0],BlockSize,1); 
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for b = 1:Blocks 
    b 
    tic 
    blockK = K_mat((b-1)*BlockSize+1:b * BlockSize,:); 
    Allfobj((b-1)*BlockSize+1:b * BlockSize) = ... 
        pMYRK4COSensMPSA(initX,blockK,t0,tf,dt,C_1,C_2,column,product); 
    toc 
end 
%Store the sum of the total objective function 
sum_fobj = sum(Allfobj); 
% amin = min(Allfobj) 
% amax = max(Allfobj) 
% asize = size(Allfobj) 
save data_5; 
%Calculates the criterion value 
%% Compute the criterion 
criterion = prctile(Allfobj,[25,37.5,50,62.5,75]); %sum_fobj/n 
criterion = [criterion,sum_fobj/n]; 
%% Plot out the CDF for four parameters 
h = []; 
p = []; 
rank = []; 
for i=1:1:4 
    h2 = []; 
    p2 = []; 
    covk2 = []; 
    rank2 = []; 
    for j=1:6 
        criterion1 = criterion(j); 
        mar_1 = K_mat(Allfobj <= criterion1,i); 
        [f1,x1] =ecdf(mar_1); 
        [n1,y1] = hist(mar_1); 
        mar_2 = K_mat(Allfobj > criterion1,i); 
        [f2,x2] =ecdf(mar_2); 
        [n2,y2] = hist(mar_2); 
        [h1,p1,rank1]= kstest2(mar_1,mar_2,0.05); 
        h2 = [h2;h1]; 
        p2 = [p2;p1]; 
        rank2 = [rank2;rank1]; 
        figure(i);  
        hold on; grid on; 
        subplot(3,2,j) 
        hold on; grid on; 
        plot(x1,f1,'r-',x2,f2,'b-'); 
        %legend('Acceptable','Unacceptable'); 
        figure(i+4) 
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        hold on; grid on; 
        subplot(3,2,j) 
        hold on; grid on; 
        plot(y1,n1,'rx-',y2,n2,'bx-'); 
        %legend('Acceptable (Red)','Unacceptable(Blue)'); 
    end 
    h = [h,h2]; 
    p = [p,p2]; 
    rank = [rank,rank2]; 
end  
figure(1);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('25-prctile Obj ECDFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('37.5-prctile Obj ECDFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('50-prctile Obj ECDFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('62.5-prctile Obj ECDFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('75-prctile ObjECDFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('Mean Obj ECDFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) ECDFs of k1'); 
figure(2);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('25-prctile Obj ECDFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('37.5-prctile Obj ECDFs'); 
subplot(3,2,3) 
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hold on; grid on; 
xlabel('Parameter k2');  
ylabel('50-prctile Obj ECDFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('62.5-prctile Obj ECDFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('75-prctile ObjE CDFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('Mean Obj ECDFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) ECDFs of k2'); 
figure(3);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('25-prctile Obj ECDFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('37.5-prctile Obj ECDFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('50-prctile Obj ECDFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('62.5-prctile Obj ECDFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('75-prctile Obj ECDFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('Mean Obj ECDFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) ECDFs of k3'); 
figure(4);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k4');  
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ylabel('25-prctile Obj ECDFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('37.5-prctile Obj ECDFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('50-prctile Obj ECDFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('62.5-prctile Obj ECDFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('75-prctile Obj ECDFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('Mean Obj ECDFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) ECDFs of k4'); 
figure(5); 
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('25-prctile Obj PMFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('37.5-prctile Obj PMFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('50-prctile Obj PMFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('62.5-prctile Obj PMFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k1');  
ylabel('75-prctile Obj PMFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k1');  
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ylabel('Mean Obj PMFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) PMFs of k1'); 
figure(6);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('25-prctile Obj PMFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('37.5-prctile Obj PMFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('50-prctile Obj PMFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('62.5-prctile Obj PMFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('75-prctile Obj PMFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k2');  
ylabel('Mean Obj PMFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) PMFs of k2'); 
figure(7);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('25-prctile Obj PMFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('37.5-prctile Obj PMFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('50-prctile Obj PMFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('62.5-prctile Obj PMFs'); 
subplot(3,2,5) 
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hold on; grid on; 
xlabel('Parameter k3');  
ylabel('75-prctile Obj PMFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k3');  
ylabel('Mean Obj PMFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) PMFs of k3'); 
figure(8);  
subplot(3,2,1) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('25-prctile Obj PMFs'); 
subplot(3,2,2) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('37.5-prctile Obj PMFs'); 
subplot(3,2,3) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('50-prctile Obj PMFs'); 
subplot(3,2,4) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('62.5-prctile Obj PMFs'); 
subplot(3,2,5) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('75-prctile Obj PMFs'); 
subplot(3,2,6) 
hold on; grid on; 
xlabel('Parameter k4');  
ylabel('Mean Obj PMFs'); 
suptitle('Acceptable (Red) and Unacceptable (Blue) PMFs of k4'); 
h1 = figure(1); 
h2 = figure(2); 
h3 = figure(3); 
h4 = figure(4); 
h5 = figure(5); 
h6 = figure(6); 
h7 = figure(7); 
h8 = figure(8); 
saveas(h1,'AccepRejectECDF4K1','jpg'); 
saveas(h2,'AccepRejectECDF4K2','jpg'); 
saveas(h3,'AccepRejectECDF4K3','jpg'); 
saveas(h4,'AccepRejectECDF4K4','jpg'); 
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saveas(h5,'AccepRejectPMF4K1','jpg'); 
saveas(h6,'AccepRejectPMF4K2','jpg'); 
saveas(h7,'AccepRejectPMF4K3','jpg'); 
saveas(h8,'AccepRejectPMF4K4','jpg'); 
display('The sensitivity ranks at 5% significance level are:'); 
rank 
fileID = fopen('SensivityRank.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','k1','k2',... 
    'k3','k4'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',rank'); 
fclose(fileID); 
display('The K-S test outcomes at 5% significance level are:'); 
h 
fileID = fopen('KSTestResult.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','Null or Alt','Null or Alt',... 
    'Null or Alt','Null or Alt'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',h'); 
fclose(fileID); 
display('The K-S test asymptotic p-values at 5% significance level are:'); 
p 
fileID = fopen('pValue.txt','w'); 
fprintf(fileID,'%10s %12s %12s %12s\r\n','p-vlaue','p-vlaue',... 
    'p-vlaue','p-vlaue'); 
fprintf(fileID,'%12.8f %12.8f %12.8f %12.8f\r\n',p'); 
fclose(fileID); 
 
The subroutines for the MPSA 
function dxdt = pCOSensMPSA(X,K,C_1,C_2) 
    n = size(K,1); 
    dxdt = zeros(n,4); 
    T1 =  K(:,2).*X(:,1); 
    T2 =  K(:,4).*X(:,3); 
    T3 =  K(:,1).*(X(:,1)/C_1-1).*X(:,3); 
    T4 = -K(:,3).*(X(:,2)/C_2-1).*X(:,4);  
    dxdt(:,1)= -T3 - T1;  
    dxdt(:,2)=  T4 + T1; 
    dxdt(:,3)=  T3 - T2; 
    dxdt(:,4)= -T4 + T2; 
end 
 
function difference = pMYRK4COSensMPSA(X,K,t0,tf,dt,C_1,C_2,column,product) 
n_max = floor((tf-t0)/dt); 
difference = (X(:,column)-product(1)).^2;%/1000; 
t = zeros(n_max+1,1); t(1) = t0; 
for n = 1:1:n_max     
    K1 = pCOSensMPSA(X,K,C_1,C_2); 
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    K2 = pCOSensMPSA(X+dt/2*K1,K,C_1,C_2); 
    K3 = pCOSensMPSA(X+dt/2*K2,K,C_1,C_2); 
    K4 = pCOSensMPSA(X+dt*K3,K,C_1,C_2);   
    X = X + (K1+2*K2+2*K3+K4)*(dt/6); 
    difference = difference + ((X(:,column)-product(n+1)).^2);%/1000; 
    t(n+1) = n * dt; 
end 
end 
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