Kemunculan Kerang Pharella Acutidens Dikaitkan Dengan Salinitas Perairan Hutan Mangrove Di Perairan Dumai, Provinsi Riau

Muhammad Fauzan Isma

Prodi Budidaya Perairan fakultas Pertanian Universitas Samudra Langsa Aceh email: fauzanismamanurung@unsam.ac.id

Abstrak

Estuari merupakan zona transisi atau ekoton antara habitat air tawar dan laut dengan sifat fisik dan biologinya yang unik (Odum, 1998). Salah satu keunikan tersebut adalah tingginya bahan organik yang terkandung didalamnya sehingga estuaria menjadi perairan yang sangat produktif sebagai wadah penimbunan bahan organik berupa substrat yang terbawa oleh arus sungai dan laut. Tingginya kandungan bahan organik tersebut menjadikan perairan estuaria sebagai habitat bagi berbagai macam organisme. Dewasa ini hutan mangrove ditetapkan sebagai jalur hijau di daerah pantai dan tepi sungai yang berfungsi mempertahankan tanah pantai dan kelangsungan hidup biota laut seperti ikan, udang, kepiting lakon, siput dan biota lainnya. Salah satu sumberdaya hayati yang terdapat di hutan mangrove adalah Kerang Pharella acutidens. Kerang ini di Dumai dikenal dengan nama Sipetang dan merupakan salah satu sumber protein bagi penduduk setempat. Kerang ini diberi nama Sipetang oleh penduduk setempat karena sering muncul ke permukaan sedimen pada petang hari, mempunyai daging yang relatif tebal dan enak. Salinitas merupakan salah satu faktor yang mempengaruhi keberadaan kerang Sipetang P. acutidens, tinggi rendahnya salinitas dapat menjadi indikator keberadaan kerang Sipetang P. acutidens di suatu perairan yang dipengaruhi pasang surut. Maka perlu dilakukan suatu penelitian tentang kemunculan kerang Pharella acutidens yang dikaitkan dengan salinitas akibat pasut pada pagi hari dan sore hari diperairan Dumai Provinsi Riau. Hasil penelitian menunjukkan ada kecendrungan semakin tinggi salinitas perairan maka semakin rendah kemunculan kerang di permukaan dasar perairan dengan rata-rata salinitas 18,92 adalah salinitas yang nyaman untuk muncul akan tetapi bila ditinjau dari determinasi salinitas terhadap kemunculan kerang Pharella acutidens hanya sebesar 4%, maka ada kontribusi sebesar 96% yang berasal dari faktor ekologi lain.

Kata Kunci: Kemunculan Kerang Pharella acutidens, Salinitas, Habitat Perairan Mangrove

Pendahuluan

Muara merupakan zona transisi atau ekoton antara habitat air tawar dan laut dengan sifat fisik dan biologinya yang unik (Odum, 1998).

Salah satu keunikan tersebut adalah tingginya bahan organik yang terkandung didalamnya sehingga estuaria menjadi perairan yang sangat produktif. Perairan pesisir Dumai yang terletak di sebelah timur Pulau Sumatera merupakan pantai yang memiliki substrat berlumpur, ditumbuhi oleh hutan mangrove sebagai tempat hidup berbagai organisme laut. Dewasa ini hutan mangrove ditetapkan sebagai jalur hijau di daerah pantai dan tepi sungai yang berfungsi mempertahankan tanah pantai dan kelangsungan hidup

seperti ikan, biota laut udang, lakon, siput dan biota kepiting lainnya. Mangrove juga berfungsi makanan sebagai sumber atau kesuburan pantai, tempat berlindung, berkembang biak atau tempat pembesaran biota laut lain. Di kawasan hutan mangrove, biota dari Klas bivalva atau kerang-kerangan potensial sangat dikembangkan karena selain ekologis memiliki nilai juga memiliki nilai ekonomis.

Salah satu sumberdaya hayati yang kita miliki yaitu Kerang Pharella acutidens. Kerang ini di Dumai dikenal dengan nama Sipetang dan merupakan salah satu sumber protein bagi penduduk setempat, seperti yang disampaikan oleh Tanjung (2000) bahwa kerang diberi nama Sipetang oleh penduduk setempat karena sering muncul ke permukaan sedimen pada petang hari, mempunyai daging yang relatif tebal dan enak; oleh sebab itu digemari oleh penduduk setempat. Menurut Tanjung (2000) kerang Sipetang pada awalnya termasuk spesies Pharus sp, tetapi setelah diteliti lebih rinci oleh Tanjung, maka kerang Sipetang termasuk spesies Pharella acutidens (Tanjung 2005). Penelitian tentang spesies ini sudah sering dilakukan antara lain oleh Khairul (2003) yang meneliti tentang kandungan logam berat. Tanjung (2005) juga melakukan penelitian mengenai keadaan biologi, ekologi dan manipulasi habitat kerang Sipetang P. acutidens yang dilakukan di Laboratorium Ilmu Hayati Pusat Penelitian Universitas (PPAU-Ilmu Hayati) ITB Bandung, dimana kerang Sipetang P. acutidens tidak berada di seluruh wilayah hutan mangrove tetapi hanya terdapat di tempat-tempat tertentu

saja di hutan mangrove. Salinitas merupakan salah satu faktor yang mempengaruhi keberadaan kerang Sipetang Р. acutidens, tinggi rendahnya salinitas dapat menjadi indikator keberadaan kerang Sipetang *P. acutidens* di suatu perairan yang dipengaruhi pasang surut. Namun alasan sering muncul ke permukaan sedimen pada pagi hari dan sore hari belum pernah diteliti.

Tujuan dari penelitian adalah untuk mengetahui hubungan kemunculan kerang P. acutidens di permukaan sedimen dasar perairan dengan salinitas perairan di hutan mangrove Stasiun Kelautan Universitas Riau Dumai pada saat kemunculan tersebut. Manfaat penelitian ini diharapkan danat berguna sebagai bahan informasi dalam pemanfaatan dan budidaya kerang P. acutidens.

Morfologi dan Adaptasi Kerang P. acutidens

Menurut Hedegaard (1991)bahwa penentuan spesies berdasarkan sejumlah karakter morfologi yang sama atau mirip adalah cara klasik namun nyaman taksonomi. Banyak bagi para karakter taksonomi dari suatu organisme vang dapat digunakan untuk membedakan suatu takson dengan takson yang lain tetapi umumnya ahli taksonomi menggunakan karakter morfologi untuk identifikasi karena karakter ini mudah diamati (Mayr dan Ashlock dalam Tanjung, 2005).

Bermacam cara organisme intertidal beradaptasi di daerah diantaranya menggali lubang (contohnya: Tivela stultorum, kerang dan membenamkan pismo) dengan cepat ke substrat (contohnya: Donax dan Untuk Sliqua).

menghindari tekanan ombak dan gelombang, cangkang mengatup Gastropoda (contohnya: dan Bivalva). menghindari Untuk kekeringan, mempunyai cangkang yang licin atau berduri tereduksi untuk cepat membenamkan (contohnya: Dollar pasir. Echinodermata pantai) dan mengakumulasi senyawa besi dalam daerah khusus di saluran pencernaannya agar tetap bertahan bila gelombang datang (contohnya: Densraster exentricus). Namun pada daerah intertidal dengan sedimen berlumpur dan berkondisi anaerobik, tipe adaptasi vang lebih umum adalah membenamkan diri. membentuk saluran permanen dari dalam hingga permukaan lumpur dan mempunyai alat angkut oksigen dalam darah (hemoglobin) dalam kosentrasi yang lebih baik dari pigmen dalam jumlah yang sama dengan organisme lain (Nybakken, 1988).

Salah satu organisme yang hidup di perairan pantai adalah Bivalva. Bivalva merupakan nama umum dari kelas Pelecypoda yang termasuk ke dalam filum moluska (Broom, 1985). Berdasarkan rujukan (Carpenter dan Niem, 1998) maka kerang Sipetang (P.acutidens) termasuk ke dalam family Solinidae. adalah Kerang ini organisme makrofauna, bentuk tubuhnya yang memanjang, mempunyai cangkang yang rapuh dan hidup di dalam lubang pada genangan air baik pada waktu pasang maupun waktu surut di hutan mangrove (Tanjung, 2000).

Menurut Nybakken (*dalam* Sitorus, 2008) Pada bivalva pergerakannya dibantu oleh kaki di antara valves yang melebar atau mengait pada dasar material dengan mekanisme tarik ulur dan kontraksi

otot, aktivitas ini diaktifasi dari keluar masuknya darah kedalam sinus otot-otot kaki.

Menurut Hicman (dalam Sitorus, 2008) Selain oleh cangkang, tubuh dari organ dalam pada bivalva diselubungi oleh mantel. Mantel berbentuk jaringan tipis dalam cangkang. Selain itu pada mantel terdapat lubang tempat masuknya air vang disebut Inhalent Siphon dan Incurrent Siphon yang terletak kearah posterior dan bentuknya panjang. Insang tersusun berupa lembaran lamella yang berbentuk seperti sisir.

Menurut Suwignyo (dalam Sitorus, 2008), bivalva umumnya terdapat di dasar perairan yang berlumpur atau berpasir, beberapa hidup di dasar berlumpur yang lebih keras seperti lempung, kayu, atau batu.

Kebiasaan Makan Kerang *P. acutidens*

Bahan organik sebagai sumber makanan bagi suatu perairan dapat berupa bahan organik terlarut dan terendam dalam sedimen. Pada sedimen berpasir bahan organik cendrung lebih sedikit dibandingkan dengan sedimen berlumpur. Pada perairan berlumpur cendrung untuk mengakumulasi bahan organik yang terbawa aliran air. Hal ini disebabkan oleh tekstur dan ukuran partikel halus yang memudahkan bahan organik teresap (Nybakken, 1988).

Makanan pada organisme berguna untuk menyediakan energi untuk membangun tubuh, pergerakan dan metabolisme yang tersedia dalam bentuk protein, karbohidrat, lemak dan vitamin. Protein berguna untuk pertumbuhan, perbaikan dan pergantian bagian tubuh yang rusak, kabohidrat berfungsi sebagai bahan bakar untuk metabolisme Callow (dalam Tanjung, 2005). Kabohidrat protein dan lemak adalah tiga sumber utama energy seluler yang dibutuhkan utama untuk metabolisme sel pada organisme.

Ekologi Kerang P. Acutidens

Pasang surut, suhu, gerakan ombak, salinitas dan substrat adalah merupakan faktor pembatas bagi biota intertidal, namun oksigen, nutrien dan pH bukanlah faktor yang penting di Stasiun ini (Nybakken, 1988). Berbeda dengan Smaal *et* al. (1998) yang menyatakan bahwa biota laut yang pemakan suspensi, substrat yang menyediakan makanan dan pelindung (*shelter*) adalah termasuk faktor pembatas.

Suhu air merupakan faktor penting bagi lingkungan yang perairan. Menurut Wisnu (2004), bahwa perubahan suhu air di perairan akan mengganggu kehidupan hewan air dan organisme lainnya karena kadar oksigen yang terlarut dalam air akan turun bersamaan dengan kenaikan suhu. Padahal setiap kehidupan memerlukan oksigen untuk bernafas. Oksigen terlarut dalam air berasal dari udara vang secara lambat terdifusi ke dalam air. Makin tinggi kenaikan suhu air makin sedikit oksigen yang terlarut didalamnya.

Nybakken (1992) menyatakan bahwa suhu air laut bervariasi baik secara mendatar maupun secara tegak. Perairan Indonesia merupakan perairan yang semi tertutup oleh karena itu variasi suhu musiman dan tahunan dipengaruhi oleh daratan mengelilinginya mempunyai variasi suhu harian yang lebih besar dibandingkan dengan perairan tropis yang terbuka (Sutedja, 1993). Selain itu, suhu air pada lapisan permukaan ditentukan oleh pemanasan sinar

matahari yang intensitasnya senantiasa berubah-ubah terhadap waktu.

Di Laut Baltik dan Laut Utara, salinitas adalah faktor terbesar yang mempengaruhi jumlah species laut, bahkan ukuran biota laut akan semakin tinggi dengan semakin tingginya salinitas (Hylleberg dan Vestergaard, 1984).

Carpenter dan Niem (1998) menyatakan bahwa habitat kerang *Pharella acutidens* adalah pada perairan hutan bakau dengan sedimen dasar lumpur dan pasir sampai kedalaman 10 meter.

Bivalva bernapas dengan menggunakan insang. **Insang** membagi rongga mantel menjadi dua bagian yaitu ventral inhalent yang ukurannya lebih besar dari pada dorsal exhalent. Kebanyakan bivalva adalah *liliary feeder* yang memakan plankton dan jasad renik lainnya (Barnes, 1980). Selaniutnya Broom menambahkan (1985)beberapa bivalva mempunyai sifon yang tidak dengan sempurna. berkembang Aliran air masuk (Inhalent) dan aliran air keluar (exhalent) terjadi melalui organ yang berada di bagian tepi posterior dari cangkangnya.

Menurut Broom dalam Tanjung (2005) bahwa sebagian bivalva banyak di temukan di daerah intertidal vang dekat dengan mangrove. Kebanyakan hidupnya membenamkan diri ke dalam lumpur sengan menggunakan sifon yang menyemburkan air pada lumpur yang disebabkan oleh membuka menutup aktif cangkang dengan cepat. Sementara Nybakken (1988) menambahkan untuk beradaptasi terhadap substrat atau endapan yang selalu bergerak karena hempasan ombak maka bivalva cenderung

menggali substrat pada kedalaman tertentu.

Aliran air menentukan distribusi organisme di laut karena aliran air menyebabkan potensi partikel makanan terdistribusi tidak homogen pada substrat yang berbeda morfologinya (Abelson dan Loya dalam Tanjung, 2005). Ada tiga bentuk pengaruh aliran air dalam penempelan larva pada substratnya, memberikan isyarat bagi larva agar larva lebih aktif, dan sebagai isyarat tempat tersebut sedang bahwa mengakumulasi sedimen. Aliran air mempengaruhi ukuran partikel sedimen selanjutnya dan akan mempengaruhi penempelan dan metamorphosis larva organisme (Snelgrove dan Butman dalam Tanjung, 2005).

Sidjabat (dalam Suciati, 1998) menyatakan bahwa salinitas mempengaruhi kehidupan organisme di perairan pantai karena terjadinya pengenceran yang disebabkan oleh aliran air sungai menyebabkan salinitas menurun, sedangkan pada laut lepas dimana penguapan tinggi tinggi maka salinitas dapat meningkat.

Menurut Kennis (dalam Nybakken, 1988) toleransi organisme terhadap derajat keasaman (pH) bervariasi bergantung pada suhu, terlarut dan kandungan oksigen garam-garam ionik di perairan. Derajat keasaman perairan mempengatuhi daya tahan organisme, dimana pH yang rendah menyebabkan penyerapan oksigen oleh organisme akan terganggu.

Menurut Levinton (dalam Sitorus, 2008) salinitas menunjukan jumlah ion-ion terlarut, perubahan salinitas berpengaruh pada perubahan difusi dan osmotik. Bivalva mengatur jumlah osmotik tubuh secara intra sellula. Di habitat alaminya, keberadaan kerang (P. acutidens) bergantung pada salinitas, substrat dan tahapan siklus hidup dan kelompok ukurannya. Larva dan individu baru (ukuran kurang dari 20.0 mm) memilih habitat dengan salinitas perairan 16.0 - 19.9 ppt dan pH sekitar 7,0; oksigen terlarut lebih besar dari 4 ml/l dan tipe sedimen pasir berlumpur. Kelompok kerang berukuran kecil dan sedang (20,0 -60,0 mm) lebih menyukai tempat vang bersalinitas 11.0 – 13.9 ppt; pH sekitar 7,0 dan oksigen terlarut sekitar 4,0 ml/l. Jika sudah dewasa (cangkang berukuran lebih dari 60.0 mm) dapat hidup pada habitat bersalinitas 4.0 - 18.0 ppt, pH 6.0 -7,5; oksigen terlarut rata-rata kurang dari 4,0 ml/l dan tipe sedimen lumpur berpasir dan pasir berlumpur (Tanjung, 2005).

Menurut Tanjung et al.(2010) kerang (P. acutidens) hanya hidup di lubang licin yang kedalamannya tergantung ukuran organisme, bersubstrat lumpur, senantiasa digenangi air, dan di bawah naungan pohon bakau. Hewan yang hidup dalam lubang sedimen dapat dikatakan infauna bentos. Kehidupan bergantung pada infauna bentos situasi dan kondisi sedimen sedimen (Buchanan, 1984). Pada terdanat bahan organik anorganik; bahan anorganik perdasar dari pelapukan-pelapukan batuan dan bahan organik berasal dari bahan organik terlarut dan terendap pada sedimen, keduanya bahan makanan bagi bentos. Sesuai dengn Sasekumar (1974) bahwa di lingkungan hutan kolonisasi faunanya bakau, bergantung pada kemunculan detritusnya.

Menurut Davenport (1986), Anadara granosa sangat sensitif terhadap salinitas dibawah 19,0 ppt. Sebaliknya Brock (1980)menyatakan bahwa cerastoderma edule (L). Banyak ditemukan pada salinitas 10,0 - 11,0 ppt, sementara kerang itu absen pada salinitas 11,0 – 18,0 ppt. Begitu pula kerang (P. acutidens), keberadaannya di hutan keberadaannya dihutan bakau sangat ditentukan oleh salinitas karena di wilayah ini teriadi fluktuasi salinitas yang ekstrim. Tanjung et al. (2000) menegaskan bahwa kerang ini absen dari lokasi yang salinitasnya lebih 20,0 ppt.

Metodologi Penelitian

Penelitian kerang *P. acutidens* diamati secara langsung di perairan hutan mangrove Perairan Dumai

Bahan Dan Alat Penelitian

Adapun bahan yang digunakan pada penelitian ini adalah: Kerang *P*. acutidens dan perairan di hutan Untuk mangrove. pengukuran salinitas perairan dengan menggunakan Hand refraktometer, untuk mengukur suhu digunakan thermometer, pengukuran dilakukan dengan menggunakan pH indicator, teropong untuk melihat kemunculan kerang dan kamera untuk dokumentasi.

Metode yang digunakan dalam penelitian adalah metode survei, dimana data yang dikumpulkan sebagian besar adalah data primer yang diperoleh langsung dari lapangan, ditabulasi dan dianlisis secara pengujian statistika.

Penentuan Stasiun dan Titik Sampling

Berdasarkan survei pendahuluan, maka daerah pengamatan ditentukan secara purposive sampling. Dimana perairan hutan mangrove di bagi atas 3 (tiga) stasiun pengamatan, yaitu Stasiun 1 adalah zona yang arah ke laut, Stasiun 2 adalah zona antara arah ke laut dan ke arah daratan serta Stasiun 3 adalah zona yang arah ke daratan. Pada setiap stasiun ditentukan 5 (lima) titik pengamatan vang diyakini keberadaan kerang ada di titik pengamatan sana. Tiap dilakukan sampling dengan petakan transek berukuran 1 (satu) kali 1 (satu) meter persegi.

Pengamatan Kemunculan Kerang P. acutidens

Kemunculan kerang di permukaan sedimen di dasar perairan diamati dan dihitung secara pada waktu surut melalui pengintaian dengan teropong. Kerang ini sangat sensitif oleh sebab itu jika individu kerang yang muncul tidak tampak sedang diamati ketika maka kemunculan individu kerang ditentukan dari pengamatan terhadap lubang yang berpenampang pipih dan licin berlendir.

Gambar 1. Lokasi Penelitian

Gambar 2. Lubang Pipih dan Licin Berlendir

Kualitas Perairan

Kualitas perairan diukur secara langsung di tempat penelitian dengan mengguna alat-alat sebagai berikut: *Handrefraktometer* digunakan untuk pengukuran salinitas, Thermometer untuk mengukur suhu, sementara data primer perairan lainnya, seperti pH dengan menggunakan *pH indicator*.

Analisis Data Penelitian

Untuk menghitung rata-rata Kemunculan di setiap stasiun dengan cara pengamatan langsung atau pengintaian dengan teropong, atau pengamatan terhadap lubang pipih dan berlendir.

Setelah rata-rata jumlah kemunculan didapat, data diolah dan disajikan dalam bentuk tabel dan grafik.

Kemunculan Jumlah individu kerang P acutidens
Luas seluruh plot m2/6jam

Selanjutnya data dianalisis secara statistika inferensial. Untuk mengetahui perbedaan kemunculan kerang di ketiga Stasiun yang telah ditetapkan maka pertama kali dilakukan pemeriksaan homogenitas varian ketiga kelompok data dengan Uji F.

Setelah diketahui homogenitas (data homogen) dilanjutkan dengan ANOVA menggunakan Stasiun sebagai taraf faktor untuk mengetahui perbedaan kemunculan kerang.

Jika ternyata kemunculan berbeda nyata maka dilakukan uji lanjut (Tanjung 2009). Untuk mengetahui perbedaan kemunculan kerang pada pagi dan sore hari digunakan pengujian perbedaan dan rata-rata kemunculan di waktu pagi dan sore.

Selanjutnya untuk mengetahui hubungan salinitas dan kemunculan maka dapat menggunakan uji Regresi (Tanjung 2009).

$$Y = a + bX$$

Dimana a = konstanta, yang menunjukan titik perpotongan garis yang dibentuk oleh persamaan regresi dengan sumbu Y. b = koefisien kemiringan.

X = Rata - rata salinitas di titik pengamatan.

Y = Rata - rata kemunculan kerang

Asumsi

Titik pengamatan mewakili kemunculan kerang di permukaan sedimen dasar perairan Stasiun Kelautan Universitas Riau Dumai. Parameter kualitas perairan yang tidak diukur dianggap tidak memberikan pengaruh yang berbeda nyata terhadap hasil penelitian.

Hasil Dan Pembahasan

Hasil Penelitian

Secara geografis Kecamatan Dumai Barat terletak pada posisi 101° 20' 06"- 101° 24' 10" BT dan 1° 35' 25" - 1° 37' 30" LU 1). Luas Kecamatan (Lampiran 120 km^2 Dumai Barat adalah (Kecamatan Dumai Barat, 2004). Topografi daerah berupa dataran rendah dengan ketinggian antara 0 -2 m dari permukaan laut. Daerah ini merupakan daerah pesisir timur dari pulau Sumatera yang berhadapan dengan Selat langsung Rupat. sedangkan batas administrasi wilayah adalah : sebelah utara berbatasan dengan Selat Rupat. sebelah selatan berbatasan dengan Kecamatan Bukit Kapur, sebelah barat berbatasan dengan Sungai Mesjid, dan sebelah timur berbatasan dengan jalan Patimura, Sukajadi Kecamatan Dumai Timur. Perairan Pesisir Kecamatan Dumai Barat yang terletak di sebelah Timur Pulau Sumatera merupakan pantai yang memiliki substrat berlumpur dan banyak ditumbuhi hutan mangrove tempat hidup berbagai organisme laut. Pantai Dumai Barat menghadap ke Selat Rupat dan merupakan tempat bermuaranya beberapa sungai diantaranya Sungai Mesiid dan Sungai Dumai. Penduduk di daerah penelitian ini sebagian besar bermata pencarian sebagai petani dan nelayan. Daerah perairan pesisir Dumai Barat juga dijadikan jalur lalu lintas laut dan pelabuhan laut, ini ditandai dengan adanya pelabuhan rakyat.

Karaktristik Perairan

Karaktristik perairan yang diukur dalam penelitian ini adalah Salinitas, Suhu, pH, yang bertujuan untuk mengetahui keadaan perairan sewaktu penelitian dilakukan. Adapun hasil pengukuran kualitas air adalah sebagai berikut:

Tabel 1. Rata-Rata Parameter Karaktristik
Perairan pada Pagi Hari

Terumum puda Tugi Tian			
Stasiun	Salinitas	Suhu	pН
	(°/ _{oo})	(°C)	
1	17,68	28	7
2	18,92	28	7
3	20,52	28	7,2

Tabel 2. Rata-Rata Parameter Karaktristik Perairan pada Sore Hari

Stasiun	Salinitas	Suhu	pН
	$(^{\mathrm{o}}/_{\mathrm{oo}})$	(°C)	
1	17,14	28	7
2	18,12	28	7
3	20,82	28	7,4

Berdasarkan tabel 1 dan 2 dapat diketahui bahwa kisaran salinitas di perairan hutan mangrove Stasiun Kelautan Universitas Riau Dumai adalah 17,14 – 20,82 ppt. Rata-rata suhu perairan 28 °C dan kisaran pH adalah 7 – 7,4.

Pembahasan

Parameter Kualitas Perairan

Dari hasil pengamatan dilapangan memperlihatkan bahwa suhu di stasiun 1.2 dan 3 relatif sama vaitu 28 °C. berdasarkan data di atas terlihat bahwa suhu perairan ini masih termasuk dalam kisaran suhu air laut permukaan nusantara berkisar antara $28 - 30^{\circ}$ C (Nonjti, 1993). Kemudian Birowo (1991)menambahkan suhu optimal untuk kehidupan organisme perairan berkisar antara 25 – 31°C. kisaran suhu perairan daerah Dumai Barat cukup baik.

Nilai Derajat keasaman (pH) perairan pada setiap stasiun pengamatan berkisar antar 7 – 8. Nilai pH perairan yang terendah di temukan pada stasiun 1 dan 2 sedangkan yang tertinggi pada stasiun 3. pH perairan yang di dapat didaerah pengamatan tergolong

juga dipengaruhi pasang surut dan musim. Kenarah darat salinitas muara cendrung lebih rendah, tetapi selama musim kemarau pada saat aliran air sungai berkurang, air laut dapat masuk ke arah darat lebih jauh sehingga salinitas muara meningkat.

Kemunculan Kerang *P. acutidens* pada Pagi Hari

Berdasarkan hasil penelitian diketahui bahwa jumlah rata-rata kemunculan kerang *P. acutidens* pada pagi hari yaitu, 4,13 /6 jam / m2.. Analisis statistika pada

belum tercemar dan belum terganggu Sesuai dari sekitarnya. dengan pendapat Haryati dan sillalahi (1984) yang menyatakan bahwa pH yang terbaik untuk mendukung kehidupan kerang-kerangan berkisar 6-7 Kemudian sesuai dengan Kepmen Tanjung, (dalam menyatakan bahwa untuk kehidupan organisme air nilai pH perairan yang di sarankan berkisar 6-9.

Kisaran salinitas selama penelitian pada setiap zona penelitian berkisar antara 17,14 – 20,82 ppt salinitas terendah terdapat pada stasiun 1 dan yang tertinggi terdapat pada Stasiun 3. Perbedaan salinitas ini di sebabkan karena pada Stasiun 3 perairannya dipengaruhi oleh air laut langsung sedangkan pada stasiun 1 dan 2 di pengaruhi oleh air dari sungai terutama pada saat pasang, namun tingginya salinitas pada saat penelitian sangat di pengaruhi oleh kondisi iklim dimana pada saat di lakukan penelitian ini dalam iklim kemarau.

Sebaran salinitas dipengaruhi berbagai faktor seperti pola sirkulasi air, penguapan, curah hujan, aliran sungai. Romimoharto, K dan Juwana (2007) Perubahan salinitas

lampiran 2 menyatakan bahwa ratarata kemunculan pada pagi hari berbeda nyata antara stasiun 2 dengan stasiun 1 dan stasiun 3. Sementara stasiun 1 dan stasiun 3 tidak berbeda nyata. Dengan demikian kemunculan kerang yang tertinggi pada stasiun 2 yaitu, 6,8 Ind/6 jam/ m2.

Rendahnya kemunculan kerang (*P. acutidens*) terjadi pada stasiun yang arah ke laut (stasiun 3) dan arah ke darat (stasiun 1) disebabkan salinitas stasiun 3 lebih tinggi dari stasiun stasiun 2, sementara salinitas

di stasiun 1 lebih rendah dari salinitas di stasiun 2: ini menunjukkan rata-rata salinitas 18.92 adalah salinitas yang nyaman untuk Kenyataan ini muncul. dibandingkan dengan hasil penelitian Tanjung (2005) yang menyatakan bahwa salinitas menentukan keberadaan dan distribusi kerang P. dimana kerang acutidens. berukuran kecil (kurang 20,0 mm) menyukai habitat dengan salinitas perairan 16,0 – 19,9 ppt. Namun bila dilihat dari koefien regresi (r = 0.223) dapat dikatakan hubungan tersebut tidak kuat; itu artinya ada factor lain, misalnya substrat, oksigen terlarut, dan lainnya yang menyebabkan kemunculan kerang ini lebih tinggi di stasiun 2 tersebut. Begitu pula bila dilihat dari koefisien determinasi (r2= 0.049) tampak bahwa salinitas bukan penentu kemunculan kerang di permukaan dasar sedimen perairan. kata lain hanya 4% Dengan kemunculan ditentukan oleh salinitas. sementara 96% lagi ditentukan oleh faktor lain.

Bila ditinjau dari keadaan lingkungan, dimana kerapatan tumbuhan mangrove yang rendah di stasiun tiga ini diduga pengaruhnya dengan kemunculan kerang ini, karena minimnya sumbangan bahan organik yang berasal dari pohon mangrove yang berbentuk partikel-partikel organik dalam sedimen yang tersebar di perairan sebagai bahan makanan bagi orgainsme kerang P. acutidens. Hal ini sesuai dengan pendapat Smaal et al. (dalam Tanjung 2005) yang menyatakan bahwa factor pembatas fisik seperti substrat dan pelindung (shelter), dan suplai makanan merupakan factor yang penting untuk keberadaan bivalvia Jones (dalam

Brower, 1990) dan Tanjung (1995) menyatakan beberapa jenis bivalva menyukai substrat yang berbeda, hal ini berkaitan dengan factor yang mempengaruhinya yaitu kebiasaan makan, ketersediaan nutrien dan jenis substrat. Pada umumnya bivalva menyukai substrat yang lunak dan halus seperti lumpur.

Sementara kemunculan acutidens pada setian stasiun cendrung lebih tinggi di stasiun antara yang arah ke darat dan arah ke Tingginya kemunculan diduga karena daerah ini memiliki hutan mangrove yang relatif masih baik dan perakaran mangrove yang cukup rapat, disamping salinitas yang nyaman untuk kerang ini (18,92ppt). muncul Lebatnya vegetasi mangrove di stasiun ini menyebabkan daerah ini terlindung cahaya matahari langsung, dan suhu menjadi relatif lebih rendah dan stabil; sehingga memberikan kenyamanan untuk kerang muncul.

Sidjabat (dalam Suciati, 1998) menyatakan bahwa salinitas mempengaruhi kehidupan organisme di perairan pantai karena terjadinya pengenceran yang di sebabkan oleh aliran air sungai menyebabkan salinitas menurun, sedangkan pada laut lepas dimana penguapan tinggi maka salinitas dapat meningkat.

Kemunculan Kerang P. acutidens pada Sore Hari

Berdasarkan hasil penelitian pada tabel 4, diketahui bahwa ratarata kemunculan kerang *P. acutidens* pada sore hari yaitu, 4,20 Ind/6 jam/m2. Rata-rata kemunculan terendah pada stasiun 3 yaitu, 2,6 Ind/6 jam/m2 dan kemunculan kerang yang tertinggi pada stasiun 2 yaitu, 6,6 Ind/6jam/m2. Sama halnya dengan kemunculan kerang pada pagi hari,

rendahnya kemunculan kerang di stasiun yang arah ke laut (stasiun 3) lebih rendah dari stasiun arah ke darat (stasiun 1) dan stasiun antara arah ke laut dan arah ke darat (stasiun 2), disebabkan factor salinitas dan kondisi lingkungan (kerapatan pohon mangrove).

Bila dilihat dari koefien regresi (r 0.360) dapat dikatakan hubungan tersebut tidak kuat; itu artinya ada factor lain, misalnya substrat, terlarut, oksigen menyebabkan lainnya, yang kemunculan kerang ini lebih tinggi di stasiun 2 tersebut. Begitu pula bila dilihat dari koefisien determinasi (r2=0,129) tampak bahwa salinitas bukan penentu kemunculan kerang di permukaan dasar sedimen perairan. Kemunculan ditentukan salinitas hanya 13% saja, sementara 87% ditentukan oleh factor lain.

Perbandingan Kemunculan Kerang *P. acutidens* Pada Pagi Hari dan Sore Hari

Kecendrungan kemunculan, bila dibandingkan pada stasiun yang sama, yakni stasiun 1 pada pagi hari dan stasiun 1 pada sore hari, satsiun 2 pagi hari dibandingkan dengan stasiun 2 sore hari dan stasiun 3 pada pagi hari dengan stasiun 3 di sore hari, menunjukkan pola yang sama, atau tidak berbeda nyata (lampiran 4). Begitu pula kecendrungan salinitas, masing-masing pada stasiun yang sama juga relatif sama. sama

dengan yang ditunjukkan oleh hasil uji statistika yang menyatakan pola sebaran salinitas pagi dan sore adalah tidak berbeda nyata (Lampiran 5). Kecendrungan kemunculan kecendrungan salinitas suatu bukti salinitas bahwa erat kaitannya kemunculan kerang dengan acutidens. Hal ini tampak nyata bila dilihat garis regresi linear sederhana dari analisis statistika pada gambar 3 dan Gambar 4 serta Lampiran 6 dan lampiran 7.

Namun bila dilihat dari ratarata kemunculan di pagi hari (4, 13 ind / 6jam/ m2, tabel 3) dan rata-rata kemunculan pada sore hari (4,20 ind /6 jam/ m2, stasiun 4) maka dapat dikatakan bahwa nama local yang diberikan oleh penduduk, yakni sipetang, karena lebih sering muncul di petang hari atau sore hari adalah cocok.

Berdasarkan tabel 1 dan 2 dapat diketahui bahwa kisaran salinitas di perairan hutan mangrove Stasiun Kelautan Universitas Riau Dumai adalah 17,14 – 20,82 ppt. Rata-rata suhu perairan 28 °C dan kisaran pH adalah 7 – 7,4.

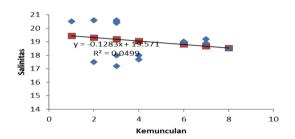
Kemunculan Kerang Pharella acutidens

Hasil pengamatan terhadap rata-rata kemunculan kerang *P. acutidens* pada masing-masing stasiun di pagi hari dapat dilihat pada Tabel 3 di bawah ini.

Tabel 3. Jumlah Rata-rata Frekwensi Kemunculan kerang *Pharellaacutidens* tiap stasiun Sore Hari.

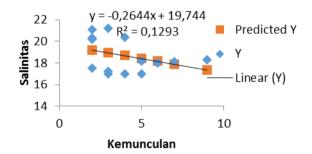
Stasiun	Rata-rata Kemunculan Kerang (1nd/m²)
1	3,4
2	6,6
3	2,6
Rata-rata	4,20

Pada Tabel 4 dapat dilihat bahwa rata-rata kemunculan kerang (P.acutidens) pada masing-masing stasiun di sore hari terdapat perbedaan.. Rata – rata kemunculan kerang yang paling tinggi terdapat


15,273, Sig. 0,001 sehinggan Sig ≤ 0,01 artinya berbeda sangat nyata pada tingkat kepercayaan 99%. Dari hasil uji lanjut, terlihat bahwa perbedaan terjadi pada masingmasing stasiun. Yaitu, stasiun 3 berbeda nyata terhadap stasiun 1, stasiun 3 berbeda sangat nyata terhadap stasiun 2

pada stasiun 2 dan yang terendah terdapat pada stasiun 3. Kemunculan kerang (P.acutidens) antara stasiun 1, 2 dan 3 berbeda sangat nyata, hal ini berdasarkan hasil uji F yang di lakukan dan diperoleh F.hitung

Korelasi Salinitas Dengan Kemunculan


Bila dihubungkan kemunculan kerang dengan waktu, yakni pagi dan sore hari, maka dapat dilihat hubungan sebagai berikut (Gambar 2 dan Gambar 3)

a. Pada Pagi Hari

Gambar 2. Garis regresi linear hubungan salinitas dan kemunculan pagi hari

b. Pada Sore Hari

Gambar 3. Garis regresi linear hubungan salinitas dan

Bila dilihat pada Gambar 3 dan 4 tampaknya ada kecendrungan semakin tinggi salinitas perairan maka semakin rendah kemunculan kerang di permukaan dasar perairan.

Pembahasan

Parameter Kualitas Perairan

Dari hasil pengamatan dilapangan memperlihatkan bahwa suhu di stasiun 1,2 dan 3 relatif sama yaitu 28 °C. berdasarkan data di atas

terlihat bahwa suhu perairan ini masih termasuk dalam kisaran suhu air laut permukaan nusantara berkisar antara 28 – 30°C (Nonjti, 1993). Kemudian Birowo (1991) menambahkan suhu optimal untuk kehidupan organisme perairan berkisar antara 25 – 31°C. kisaran suhu perairan daerah Dumai Barat cukup baik.

Nilai Derajat keasaman (pH) pada setiap stasiun perairan pengamatan berkisar antar 7 – 8. Nilai pH perairan yang terendah di temukan pada stasiun 1 dan 2 sedangkan yang tertinggi pada stasiun 3. pH perairan yang di dapat didaerah pengamatan tergolong belum tercemar dan belum terganggu sekitarnya. Sesuai dengan pendapat Harvati dan sillalahi (1984) yang menyatakan bahwa pH yang terbaik untuk mendukung kehidupan kerang-kerangan berkisar 6-7. Kemudian sesuai dengan Kepmen 2005) 2 (dalam Tanjung, menyatakan bahwa untuk kehidupan organisme air nilai pH perairan yang di sarankan berkisar 6-9.

Kisaran salinitas selama penelitian pada setiap zona penelitian berkisar antara 17,14 – 20,82 ppt salinitas terendah terdapat pada stasiun 1 dan yang tertinggi terdapat pada Stasiun 3. Perbedaan salinitas ini di sebabkan karena pada Stasiun 3 perairannya dipengaruhi oleh air laut langsung sedangkan pada stasiun 1 dan 2 di pengaruhi oleh air dari sungai terutama pada saat pasang, namun tingginya salinitas pada saat penelitian sangat di pengaruhi oleh kondisi iklim dimana pada saat di lakukan penelitian ini dalam iklim kemarau.

Sebaran salinitas dipengaruhi berbagai faktor seperti pola sirkulasi air, penguapan, curah hujan, aliran sungai. Romimoharto, K dan Juwana (2007) Perubahan salinitas juga dipengaruhi pasang surut dan musim. Kenarah darat salinitas muara cendrung lebih rendah, tetapi selama musim kemarau pada saat aliran air sungai berkurang, air laut dapat masuk ke arah darat lebih jauh sehingga salinitas muara meningkat.

Kemunculan Kerang *P. acutidens* pada Pagi Hari

Berdasarkan hasil penelitian diketahui bahwa jumlah rata-rata kemunculan kerang P. acutidens pada pagi hari vaitu, 4.13 /6 jam / Analisis statistika pada m2.. lampiran 2 menyatakan bahwa ratarata kemunculan pada pagi hari berbeda nyata antara stasiun 2 dengan stasiun 1 dan stasiun 3. Sementara stasiun 1 dan stasiun 3 tidak berbeda nyata. Dengan demikian kemunculan kerang yang tertinggi pada stasiun 2 yaitu, 6,8 Ind/6 jam/ m2.

Rendahnya kemunculan kerang (P. acutidens) terjadi pada stasiun yang arah ke laut (stasiun 3) dan arah ke darat (stasiun 1) disebabkan salinitas stasiun 3 lebih tinggi dari stasiun stasiun 2, sementara salinitas di stasiun 1 lebih rendah salinitas di stasiun 2; ini menunjukkan rata-rata salinitas 18,92 adalah salinitas yang nyaman untuk muncul. Kenyataan ini dapat dibandingkan dengan hasil penelitian Tanjung (2005) yang menyatakan bahwa salinitas menentukan keberadaan dan distribusi kerang P. dimana kerang yang acutidens, berukuran kecil (kurang 20,0 mm) habitat dengan lebih menyukai salinitas perairan 16,0 – 19,9 ppt. Namun bila dilihat dari koefien regresi (r = 0,223) dapat dikatakan hubungan tersebut tidak kuat; itu artinya ada factor lain, misalnya substrat, oksigen terlarut, dan lainnya menyebabkan kemunculan yang kerang ini lebih tinggi di stasiun 2 tersebut. Begitu pula bila dilihat dari koefisien determinasi (r2= 0,049) tampak bahwa salinitas bukan kemunculan penentu kerang permukaan dasar sedimen perairan. Dengan kata lain hanya kemunculan ditentukan oleh salinitas. sementara 96% lagi ditentukan oleh faktor lain.

Bila ditinjau dari keadaan dimana lingkungan, kerapatan tumbuhan mangrove yang rendah di stasiun tiga ini diduga pengaruhnya dengan kemunculan kerang ini. karena minimnya sumbangan bahan organik yang berasal dari pohon mangrove yang berbentuk partikel-partikel organik dalam sedimen yang tersebar di perairan sebagai bahan makanan bagi orgainsme kerang P. acutidens. Hal ini sesuai dengan pendapat Smaal et al. (dalam Tanjung 2005) yang menyatakan bahwa factor pembatas fisik seperti substrat dan pelindung suplai (shelter), dan makanan merupakan factor yang penting untuk keberadaan bivalvia Jones (dalam Brower, 1990) dan Tanjung (1995) menyatakan beberapa jenis bivalva menyukai substrat yang berbeda, hal ini berkaitan dengan factor yang mempengaruhinya yaitu kebiasaan makan, ketersediaan nutrien dan substrat. Pada umumnya bivalva menyukai substrat yang lunak dan halus seperti lumpur.

Sementara kemunculan *P. acutidens* pada setiap stasiun cendrung lebih tinggi di stasiun antara yang arah ke darat dan arah ke laut. Tingginya kemunculan ini diduga karena daerah ini memiliki hutan mangrove yang relatif masih baik dan perakaran mangrove yang

cukup rapat, disamping salinitas yang nyaman untuk kerang muncul (18,92ppt).Lebatnya vegetasi mangrove di stasiun ini menyebabkan daerah ini terlindung dari cahava matahari secara langsung, dan suhu menjadi relatif lebih rendah dan stabil; sehingga memberikan kenyamanan kerang muncul.

Sidjabat (dalam Suciati, 1998) menyatakan bahwa salinitas mempengaruhi kehidupan organisme di perairan pantai karena terjadinya pengenceran yang di sebabkan oleh aliran air sungai menyebabkan salinitas menurun, sedangkan pada laut lepas dimana penguapan tinggi maka salinitas dapat meningkat.

Kemunculan Kerang P. acutidens pada Sore Hari

Berdasarkan hasil penelitian pada tabel 4. diketahui bahwa ratarata kemunculan kerang P. acutidens pada sore hari yaitu, 4,20 Ind/6 jam/ m2. Rata-rata kemunculan terendah pada stasiun 3 vaitu, 2.6 Ind/6 jam/m2 dan kemunculan kerang yang tertinggi pada stasiun 2 yaitu, 6,6 Ind/6jam/m2. Sama halnya dengan kemunculan kerang pada pagi hari, rendahnya kemunculan kerang di stasiun yang arah ke laut (stasiun 3) lebih rendah dari stasiun arah ke darat (stasiun 1) dan stasiun antara arah ke laut dan arah ke darat (stasiun 2). disebabkan factor dan kondisi lingkungan salinitas (kerapatan pohon mangrove).

Bila dilihat dari koefien regresi dapat dikatakan 0,360)hubungan tersebut tidak kuat; itu artinya ada factor lain, misalnya substrat, oksigen terlarut, dan lainnya, yang menyebabkan kemunculan kerang ini lebih tinggi di stasiun 2 tersebut. Begitu pula bila dilihat dari koefisien determinasi

(r2= 0,129) tampak bahwa salinitas bukan penentu kemunculan kerang di permukaan dasar sedimen perairan. Kemunculan ditentukan oleh salinitas hanya 13% saja, sementara 87% ditentukan oleh factor lain.

Perbandingan Kemunculan Kerang *P. acutidens* Pada Pagi Hari dan Sore Hari

Kecendrungan kemunculan, bila dibandingkan pada stasiun yang sama, yakni stasiun 1 pada pagi hari dan stasiun 1 pada sore hari, satsiun 2 pagi hari dibandingkan dengan stasiun 2 sore hari dan stasiun 3 pada pagi hari dengan stasiun 3 di sore hari, menunjukkan pola yang sama, atau tidak berbeda nyata. Begitu pula kecendrungan salinitas, masingmasing pada stasiun yang sama juga relatif sama. sama dengan yang ditunjukkan oleh hasil uji statistika menyatakan pola sebaran salinitas pagi dan sore adalah tidak (Lampiran berbeda nyata 5). Kecendrungan kemunculan dan kecendrungan salinitas suatu bukti bahwa salinitas erat kaitannya dengan kemunculan kerang acutidens. Hal ini tampak nyata bila dilihat garis regresi linear sederhana dari analisis statistika pada gambar 3 dan Gambar 4 serta Lampiran 6 dan lampiran 7.

Namun bila dilihat dari ratarata kemunculan di pagi hari (4, 13 ind / 6jam/ m2, tabel 3) dan rata-rata kemunculan pada sore hari (4,20 ind /6 jam/ m2, stasiun 4) maka dapat dikatakan bahwa nama local yang diberikan oleh penduduk, yakni sipetang, karena lebih sering muncul di petang hari atau sore hari adalah cocok.

Kesimpulan Dan Saran

Kesimpulan

Berdasarkan hasil penelitian, maka dapat diambil kesimpulan sebagai berikut:

- 1. Rata-rata kemunculan kerang *Pharella acutidens* di daerah intertidal Dumai Barat yang tertinggi terdapat pada stasiun 2 yaitu zona atara arah darat dan arah laut.
- 2. Hubungan kemunculan kerang *P acutidens* dengan salinitas sangat lemah dan salinitas bukan merupakan penentu kemuculan kerang ini.
- 3. Kemunculan kerang *Pharella* acutidens lebih banyak pada sore hari atau petang hari dari pada pagi hari.

Saran

- 1. Perlu dilakukan penelitian lebih lanjut pada distribusi penyebaran kerang *Pharella acutidens* terhadap faktor ekologi dari habitatnya.
- 2. Adanya peran serta stakeholder terhadap lingkungan perairan industri agar kualitas perairan tetap terjaga sehingga keberadaan kerrang *Pharella acutidens* dapat terus dipertahankan

Daftar Pustaka

Abelson ,A. And Y. Loya. 1995. Cross-Scale Pattern of Particule-Food Acquisition in Marine Benthic Environment, *Am. Nat.*, 145, 898.

Broom, M. J. 1985. The Biology and Culture of Marine bivalve Mollusca of Genus *Anadara*. International Center for Living Aquatic Resources Management. Manila. 37 p.

Capenter, K.E., V.H. Niem. 1998, *FAO* Species Indentification Guid for Fishery Purposes: The

Samudra Akuatika | Volume 1 No. 2

- Living Marine Recources of the Westrn Central Pacific, FAO of the United Nation, Rome, Volume 1, 284 – 289
- English, S., C. Wilkinson and V. Baker, 1994. Surve Manual For Tropical Marine Resources. Australia Institule Of Marine Science. Townsville. 367 pp.
- Haryati, T., J. Silalahi (1984), Kemungkinan budidaya kerang-kerangan di desa Simare Pasuruan, *Penelitian Perikanan Laut*, 30, 55-61
- Hedegaard, C. 1991, Role of Taxonomy, Phuket *Mar. Biol. Cent. Spac. Publ.*, 9, 9-17
- Kastoro, W. W. 1988. Beberapa Aspek Biologi Kerang Hijau (*Perna viridis* L) dari Perairan Binaria Ancol Teluk Jakarta. Jakarta. *Jurnal Penelitian Perikanan*, 1-12.

- Khairul, T. 2003. Kandungan Logam Berat Cd, Pb, Cu, dan Zn pada Sipetang *Pharus* spp di Sekitar Muara Sungai Dumai. Skripsi Fakultas Perikanan dan Ilmu Kelautan. Universitas Riau. Pekanbaru. (tidak diterbitkan)
- Nontji, A. 1993. Laut Nusantara. Djambatan Jakarta. 351 hal
- Nybakken. 1988. Biologi Laut. Suatu Pendekatan Ekologi. PT. Gramedia. Jakarta. 495 hal.
- Nyabakken. J.W. 1992. *Biologi Laut: Suatu Pendekatan Ekologis.*Alih Bahasa Oleh: H.M.
 Eidman Jakarta: PT. Gramedia.
 HLM. 376.
- Odum, E.P. 1998. *Dasar-Dasar Ekologi*. Edisi Keempat.
 FMIPA. IPB. Gajah Mada
 University Press. Yogyakarta.
 Hlm. 370-375.