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 34 

Abstract 35 

Maximum shell length of Atlantic surfclams (Spisula solidissima) on the Middle Atlantic Bight 36 

(MAB) continental shelf, obtained from federal fishery survey data from 1982-present, has 37 

decreased by 15-20 mm.  Two potential causes of this decreasing trend, fishery removal of large 38 

animals and stress due to warming bottom temperatures, were investigated using an individual-39 

based model for post-settlement surfclams and a fifty-year hindcast of bottom water temperatures 40 

on the MAB.  Simulations showed that fishing and/or warming bottom water temperature can 41 

cause decreases in maximum surfclam shell length (body size) equivalent to those observed in 42 

the fished stock.  Independently, either localized fishing rates of 20% or sustained bottom 43 

temperatures that are 2°C warmer than average conditions generate the observed decrease in 44 

maximum shell length. However, these independent conditions represent extremes and are not 45 

sustained in the MAB. The combined effects of fishing and warmer temperatures can generate 46 

simulated length decreases that are similar to observed decreases.  Interannual variability in 47 

bottom water temperatures can also generate fluctuations in simulated shell length of up to 20 48 

mm over a period of 10 to 15 years.  If the change in maximum size is not genotypic, simulations 49 

also suggest that shell size composition of surfclam populations can recover if conditions 50 

change; however, that recovery could take a decade to become evident. 51 

 52 
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Introduction  64 

 65 

Human-induced changes in life history traits of fished populations (Law, 2007; Hutchings and 66 

Fraser, 2008; Enberg et al., 2012) have been associated with genetic changes, and thus evolution 67 

of exploited populations (reviews: Allendorf et al., 2008; Hard et al., 2008; Hutchings and 68 

Fraser, 2008; Dunlop et al., 2009).  Examples of fisheries-induced evolution include changes in 69 

maturation timing (Barot et al., 2004; Olsen et al., 2004; Gårdmark and Dieckmann, 2006, 70 

Kendall and Quinn, 2012), fecundity (Yoneda and Wright, 2004; Walsh et al., 2006), and growth 71 

(Ricker, 1981; Conover and Munch, 2002; Swain et al., 2007; Nusslé et al., 2009; Enberg et al., 72 

2012). In some cases, observed shifts in life history traits are not associated with genetic shifts.  73 

Instead, changes in a fished population can be a result of fishery truncation of size distributions 74 

(Kraeuter et al. 2007; Fenberg and Roy, 2008), or phenotypic plasticity driven by environmental 75 

variability such as change in temperature (Thresher et al., 2007; Sheridan and Bickford, 2011; 76 

Irie et al., 2013; Teplitsky and Millien, 2014).   77 

 78 

In many fisheries, the largest animals in the stock are targeted (size-selective harvest), or a lower 79 

size limit is applied to prevent harvest of the smallest animals (Baskett et al., 2005; Coggins et 80 

al., 2007; Fenberg and Roy, 2008).  In other fisheries, both lower and upper limits are used so 81 

that medium sizes are selected and the largest animals are spared (Crowder et al., 2008), a 82 

strategy intended to minimize the impacts of selective fishing (Conover and Munch, 2002). In 83 

fisheries that target the largest animals, the continued removal of large animals from a stock 84 

truncates the population size distribution and effectively reduces the average and maximum body 85 

size in that population (Heino and Godø, 2002; Hsieh et al., 2010; Rouyer et al., 2011). Over 86 
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time, size-selective harvest can impact the fecundity (Carver et al., 2005; Chiba et al., 2013) or 87 

genetics of the stock (Fenberg and Roy, 2008) and have wider ecological consequences for 88 

species other than those targeted by the fishery (Jørgensen et al., 2007; Allendorf et al., 2008).   89 

 90 

Environmental changes, such as shifts in temperature or food availability, can constrain the 91 

physiology of some species and lead to shifts in the distribution of body sizes within a population 92 

(Witbaard et al., 2005; Sheridan and Bickford, 2011).  Many species exhibit temperature 93 

regulated growth rates such that, in warmer temperatures, they reach a smaller adult body size, 94 

whilst in cooler conditions they may grow larger (sensu Bergmann’s Rule, Teplitsky and Millien, 95 

2014). In addition, changing temperature distributions, such as those from climate change, can 96 

cause size-selective mortality in some species (Peck et al., 2009; Pörtner, 2010). Regardless of 97 

the cause, shifts in life history traits, such as a decrease in maturation size or maximum body size 98 

can translate to an overall reduction in stock productivity, or a change in the ecological role of 99 

the population (Shin et al., 2005).   100 

 101 

Atlantic surfclams (Spisula solidissima) are a large-bodied, long-lived (maximum age >30 years, 102 

Jones et al., 1978, 1983) species that are found along the continental shelf in the northwestern 103 

Atlantic Ocean from the Chesapeake Bay mouth to Georges Bank (Figure 1) where they form 104 

dense aggregations (Jacobsen and Weinberg, 2006; NEFSC, 2013).  Surfclams support a major 105 

commercial fishery in the western North Atlantic Ocean that harvests using a hydraulic dredge 106 

(i.e., wet dredge) to extract surfclams from the sandy bottom (Serchuck and Murawski, 1997; 107 

Wallace and Hoff, 2005; NEFSC, 2013) with high pressure hydraulic jets that fluidize the 108 

sediment and reduce breakage of clams (Medcof and Caddy, 1974; Ropes, 1980).  Like many 109 
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dredges, surfclam dredges are size-selective and surfclams less than 80 mm shell length 110 

generally pass easily through the dredge and are not caught, whilst those larger than 80 mm are 111 

retained at increasing efficiency up to a maximum efficiency at 125 mm shell length and larger 112 

(NEFSC, 2010). Selective fishing for the largest clams in this fishery has the potential to truncate 113 

the size distribution in the fished population. 114 

 115 

Surfclams have a small optimal temperature range (16–22 °C) (Loosanoff and Davis, 1963; 116 

Savage, 1976; Snelgrove et al., 1998; Munroe et al., 2013), with temperatures in excess of 23°C 117 

causing impaired physiological functioning or mortality (Woodin et al., 2013), especially in 118 

larger (older) surfclams (Saila and Pratt, 1973; Goldberg and Walker, 1990; Marzec et al., 2010). 119 

Analysis of annual surfclam shell growth increments shows a negative relationship between 120 

average annual water temperature and growth, such that warm years yield smaller growth 121 

increments (Jones, 1981).  Likewise, body size comparisons among inshore (warmer) and 122 

offshore (cooler) populations show that clams from cooler locations grow faster and attain a 123 

larger overall size (Jones et al, 1978; Cerrato and Keith, 1992).   Recent declines in abundance of 124 

surfclams in the most southern portion of their range on the Middle Atlantic Bight (MAB) 125 

continental shelf has been attributed to warming bottom waters (Kim et al., 2004; Weinberg, 126 

2005) and increased frequency of conditions that result in episodic warming events of bottom 127 

waters (Narváez et al., 2015), ultimately causing starvation and thermal-induced mortality 128 

(Munroe et al., 2013; Narváez et al., 2015). Thus, increasing bottom water temperature also has 129 

the potential to shift the size distribution in surfclams. 130 

 131 



 7 

Federal stock assessment surveys of Atlantic surfclams on the MAB continental shelf (Figure 1) 132 

show a trend of decreasing maximum shell length over time (Figure 2).  This trend could be 133 

driven by fishery truncation (size selection), increasing bottom water temperature (Bergmann’s 134 

Rule) or some combination of the two. In this study an individual-based population dynamics 135 

model (IBM) that simulates the growth of post-settlement surfclams (Munroe et al., 2013; 136 

Narváez et al., 2015) is used to evaluate the influence of various levels of fishing pressure and 137 

environmental temperature changes, independently, on the size structure of surfclam populations 138 

in the MAB.  The simulation results are assessed using observed surfclam sizes obtained from 139 

federal survey data.   140 

 141 

Materials and Methods 142 

 143 

Survey Trend Analysis 144 

Surfclams were collected from the federal United States (U.S.) surfclam stock during stock 145 

assessment surveys beginning in 1982 and continuing approximately every 3 years through 2012.  146 

The fishery operates in the U.S. Exclusive Economic Zone in approximately 20 to 60 m depth, 147 

from off the mouth of the Chesapeake Bay, to Georges Bank (Figure 1). This study focused on 148 

an area identified in the assessment as stratum 21 off New Jersey (Figure 1) because this location 149 

has been the most intensely sampled and provides sufficient replicate observations for reliable 150 

calculation of length-at-age over time.  On average, 125 surfclams were collected from stratum 151 

21 in each survey year using 21 hydraulic dredge tows (sample sizes in each year vary, details 152 

are provided in Table 1). A representative subset of surfclams collected in each tow, including as 153 

wide a range of sizes as possible, were retained for estimation of length-at-age.  Shells from 154 
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these surfclams were measured (length, mm), then later used to evaluate age by counting annular 155 

rings in the shell following standard shell sectioning and aging methods (Jacobsen et al., 2006).   156 

 157 

The individual shell length and age measurements were used to calculate the growth curve and 158 

estimate the population’s asymptotic shell length over time.  In each survey year, the group of 159 

surfclams collected includes a mix of sizes and ages (cohorts) and therefore integrates growth 160 

conditions over time for that population.  The shell length change over time (shell lengtht) was 161 

obtained by fitting von Bertalanffy growth curves (von Bertalanffy, 1938):  162 

                                                    (1) 163 

to the length-at-age data.  Values for the asymptotic shell length (L∞) and growth rate constant 164 

(k) and their associated uncertainty were obtained using likelihood methods following Kimura 165 

(1980) (calculations performed using R libraries fishmethods, FSA, NCStats, and nlstools; R 166 

Development Team, 2007).  The change over time in L∞ was analyzed by fitting a regression 167 

weighted by the inverse standard error to the maximum shell lengths over time.  The analysis of 168 

the shell length trend provided the evaluation criteria for the simulations conducted with the 169 

individual-based post-settlement growth model.  170 

 171 

Modeling Surfclam Populations 172 

An individual-based model (IBM) has been developed and implemented for the Atlantic 173 

surfclam (Munroe et al., 2013; Narváez et al., 2015).  In this study, the IBM was used to simulate 174 

the growth of post-settlement (>20mm shell length) surfclams in response to varying bottom 175 

water temperatures. The model includes parameterizations for feeding, respiration, somatic and 176 

shell growth, and spawning. A summary of the equations and parameterizations used in the 177 
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surfclam model are given in Narváez et al. (2015) and Munroe et al. (2013). Details of the model 178 

components that are relevant to this study and which differ from those described previously are 179 

given below.   180 

 181 

A range of general relationships covering the physiological capabilities of most bivalves were 182 

used to parameterize growth and reproduction, including respiration (Powell and Stanton, 1985) 183 

with a Q10 temperature response of 2 (Rueda and Small, 2004), and filtration rate (Powell et al., 184 

1992), with a modal temperature relationship well-described for bivalves (Hofmann et al., 2006; 185 

Flye-St.Marie et al., 2007; Fulford et al., 2010) that has a temperature optimum at 18°C and 186 

cessation near 0°C and 24°C, consistent with observed physiological responses (Marzec et al., 187 

2010). Collectively, this allows for temperature to affect the physiological functions of surfclams 188 

such that food assimilation increases linearly with shell length (body size) and temperature up to 189 

a thermal limit of 25°C (Powell et al., 1992), but respiration increases exponentially with 190 

biomass (Møhlenberg and Kiørboe, 1981) resulting in a thermal limit, or transient event margin 191 

(sensu Woodin et al., 2013) at which respiration will exceed assimilation and the surfclam will 192 

begin to lose somatic tissue (a full description of model equations for individual clam growth are 193 

provided in Munroe et al., 2013).   194 

 195 

The total population mortality     is a sum of natural mortality, fishing mortality and deficit 196 

stress mortality (Table 2).  At each model time step (dt = 0.2 day) the number of surfclams 197 

(clams m
-2

) is reduced by a factor of 1-e
-Mdt

.  Natural mortality (Mn) is set to a constant rate of 198 

4x10
-4

 d
-1

 based on observations reported in Weinberg (1999) and NEFSC (2013). In the 199 

calculation of fishing mortality (Mf),,    (120 mm) is the shell length at which the hydraulic 200 
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dredge is 100% efficient (catches all clams this size and larger),    (25 mm), is the length at 201 

which the hydraulic dredge is 0% efficient (does not catch any of this size class and smaller). 202 

The size-selective fishing mortality parameters (   and   ) are derived from the selectivity 203 

function previously fit to data obtained for a commercial hydraulic dredge by NEFSC (2013). 204 

 205 

Deficit stress mortality (Getz, 2011) (            occurs when environmental conditions cause 206 

surfclams to lose somatic tissue (e.g. high temperature or low food concentration), which in 207 

terms of bivalves results in a decrease in condition index. A deficit stress      in an individual 208 

surfclam is accumulated (Getz, 2011) any time somatic tissue declines. Specifically, if the 209 

somatic tissue declines in a given time step by an amount dS (g), then    is increased by        , 210 

which has units of gd (gram-day). Surfclams recover slowly from deficit stress, so νi is reduced 211 

each time step by a factor,        , where R is 0.004 d
-1

.  The functional form of deficit stress 212 

mortality (Table 2) allows the mortality to remain low until stress reaches a value near 1.45 gd  213 

and then switches rapidly to high mortality when the stress exceeds 1.8 gd.  Larger and older 214 

surfclams have a smaller scope-for-growth than smaller and younger surfclams (Munroe et al. 215 

2013).  The deficit stress formulation allows older surfclams to accrue stress more rapidly and 216 

therefore older clams are subject to higher mortality during stressful periods.  217 

 218 

Simulations 219 

The surfclam model was implemented at two locations on the MAB continental shelf (Figure 1).  220 

The northern location (NJ) is offshore of New Jersey and is centrally located within stratum 21.  221 

The southern location is located off the Delaware-Maryland-Virginia (DMV) coast in the same 222 

depth as the NJ location, and is approximately the southern extent of the commercial fishery for 223 
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this species over the period covered by the stock assessment surveys.  The simulations were 224 

forced with a 50-year time series (1958-2007) of bottom water temperatures obtained from an 225 

implementation of the Regional Ocean Model System (ROMS) for the Northwest Atlantic (Kang 226 

and Curchitser, 2013). 227 

 228 

Each simulation at the two sites was initialized with a stable multi-cohort surfclam population 229 

that was generated using an annual bottom water climatology.  The annual climatology (Figure 230 

3a) was constructed from the 50-year time series by averaging the simulated bottom water 231 

temperatures for each day of the year. Simulations were then run for an additional 50 years using 232 

different bottom temperature and fishing rates (Table 3 and Figure 3 B, C). The food supply time 233 

series used for the simulations (Munroe et al., 2013) was invariant from one year to the next, 234 

thereby removing variability in food supply as a factor influencing surfclam growth.   235 

 236 

The 95
th

 percentile of shell length of the population was calculated each year for all simulations.  237 

This metric is known exactly from the shell lengths of each individual in the simulated 238 

population and was used to compare the simulated and observed asymptotic shell lengths.   The 239 

empirically derived linear relationship between the 95
th

 percentile of shell length and the 240 

asymptotic shell length (L∞) has a slope close to 1 (R
2
=0.39, unpublished data) and therefore can 241 

be used as comparable representations of the largest body sizes in a given population. 242 

 243 

The influence of temperature on shell length in surfclam populations at the two locations on the 244 

MAB continental shelf was simulated using different temperature scenarios, which were applied 245 

for the second 50 years.  At the southern location (DMV), bottom temperature ranged seasonally 246 
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from ~7°C in March to ~16°C in October (Figure 3A); the pattern of temperature variation at the 247 

northern location (NJ) was similar but about ~1.7°C lower overall (Fig. 3a).  These site-specific 248 

climatologies, which were constructed from the 50-year bottom water temperature simulation, 249 

were used to develop a reference case (normal years) for each location.  The effect of an annual 250 

temperature cycle that is colder by 1.5°C on average relative to the 50-year climatology was also 251 

simulated for each site (Fig. 3b).  The colder temperature time series was an individual year 252 

selected from the 50-year simulation.  As a comparison, a warm year (2.3°C on average) was 253 

also selected from the 50-year hindcast (Figure 3C) for each site.  The percent change in 254 

maximum surfclam shell length in simulations obtained for the cold and warm years was 255 

calculated relative to the normal year simulations.   256 

 257 

Simulations were also used to assess the influence of fishing on maximum shell length in 258 

surfclam populations. All three temperature scenarios for each location were simulated under 259 

conditions of zero, 5%, or 20% fishing pressure (Table 3).  Additionally, simulations were 260 

conducted that used levels of fishing pressure that vary in intensity over time (Table 3); these 261 

used the bottom water climatology calculated for both locations that was repeated for the second 262 

50 years, thereby removing temperature effects and focusing on the effects of varying fishing 263 

only.  The combined effect of annually varying bottom water temperature and fishing pressure 264 

was also simulated for each site.  These simulations used a 5% fishing effort and the 50-year 265 

hindcast of bottom water temperatures.   266 

 267 
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Survey Shell Length Trend 270 

Observed surfclam maximum shell length decreased from approximately 180mm in the early 271 

1980s, to less than 160 mm three decades later (Figure 2) in the region of stratum 21 off New 272 

Jersey; a 10% decrease in shell length over time. Results of a weighted (by inverse standard 273 

error) regression fit to the maximum shell lengths over time showed a significantly (p=0.004, 274 

F=12.4, DF =13) negative trend in maximum shell length (Figure 2). This 20 mm decrease in 275 

shell length scales to a biomass decline of approximately 70 g or a 39% lower biomass of the 276 

largest size class in the population over time (biomass (g) = aL
b
, a= 8.3x10

-5
g mm

-1
, L=length, 277 

mm, b=2.85; from Marzec et al.,2010). 278 

 279 

Temperature and Fishing Simulations 280 

Temperature affects the physiological functions of simulated surfclams such that larger clams 281 

tend to be more heavily impacted by warm temperatures than small clams (Figure 4A), and 282 

average temperature of about 8°C generates the largest clams, with maximum size decreasing as 283 

temperature increases or decreases (Figure 4B, 5). At location DMV (Figure 5A), the 95
th

 284 

percentile of shell length decreases from 177 mm (climatology base case) to 150 mm (15% 285 

decrease) in the warm simulation, and increases to 183 mm (3% increase) in the cool simulation 286 

(Figure 5A). Likewise at location NJ (Figure 5D), the 95
th

 percentile of shell length decreases 287 

from 182 mm (climatology base case) to 176 mm (a 3% decrease) in the warm temperature 288 

simulation, but increases to 184 mm (1% increase) in the cool temperature simulation (Figure 289 

5D).  The influence of temperature and fishing are additive in the model such that warm 290 

conditions and highest fishing (20%) generate the greatest decrease in the 95
th

 percentile of shell 291 

Results 268 

269 
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length; a 22% and 16% decrease relative to the no fishing climatology base case at DMV and NJ, 292 

respectively (Figure 5C, F).  293 

 294 

Fishing decreases the simulated maximum shell length, with higher fishing generating a larger 295 

decrease in length (Figure 4B, 6). At DMV (Figure 6A), a 5% increase in fishing decreases the 296 

95
th

 percentile of shell length from 177 mm to 172 mm (a 3% length decrease at 5% fishing).  A 297 

20% increase in fishing decreases the 95
th

 percentile of shell length to 157 mm (an 11% decrease 298 

at 20% fishing). At the NJ location (Figure 6B), the slightly cooler conditions allow surfclams to 299 

have a larger non-fishing shell length compared to DMV surfclams. At NJ, a 5% increase in 300 

fishing decreases the 95
th

 percentile shell length by 3%, from 182 mm (zero fishing) to 177 mm 301 

(5% fishing), whilst 20% fishing decreases the 95
th

 percentile of shell length by 8% (Figure 6B). 302 

At both locations and for both fishing pressures, the reverse occurs when fishing pressure is 303 

removed. 304 

 305 

At both locations, it takes 10 years (10 years represents 10 new cohorts, one per year) from the 306 

time fishing starts until the change in the 95
th

 percentile of length is evident, and stability of the 307 

95
th

 percentile of length is reached in 15 years at 5% fishing, but takes longer (25 years) at the 308 

higher fishing rate (Figure 6).  Likewise, when fishing is removed (e.g. simulations High-None 309 

and Low-None in Figure 6), the response in the 95
th

 percentile of shell length is not evident for 310 

10 years, and stability of the 95
th

 percentile of length is not reached until 15 years later at 5% 311 

fishing and 25 years later at 20% fishing (Figure 6).  312 

 313 
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Allowing temperature to vary from one year to the next creates temporal variation in the 95
th

 314 

percentile of length (Figure 7).   At DMV, the 95
th

 percentile of shell length fluctuated by 20 mm 315 

over a period of approximately 10 years; whereas, at NJ, fluctuations of the 95
th

 percentile of 316 

shell length were much smaller, approximately 5 mm.  317 

 318 

Discussion 319 

 320 

Surfclam survey length-at-age data show that the maximum body size in the U.S. surfclam stock 321 

off New Jersey has declined by approximately 10% over 30 years of observations (NEFSC, 322 

2013). This difference in length is important; it scales to a biomass decline of approximately 70 g 323 

or 39% lower biomass over time.  Smaller surfclams could lead to decreased fishery yields and 324 

lower secondary production within the shelf ecosystem (Munroe et al., 2013).  The simulations 325 

that include temperature and size-selective fishing effects on population size structure 326 

demonstrate that changing bottom water temperature and/or fishing can cause changes in 327 

maximum shell length of this magnitude. Independently, either sustained elevated temperatures 328 

of 1 to 2°C on average, or continuous localized fishing at high rates (20%), generate the observed 329 

decrease in maximum shell length (Figure 4B); however, these conditions may occur rarely.  330 

More realistically, when occurring in concert, a 5% increase in fishing along with an average 331 

temperature increase above 8°C can lead to a decline in maximum shell length in excess of that 332 

observed (Figure 4B). Narváez et al. (2015) noted no strong or sustained warming trend in 333 

hindcast bottom water temperature anomalies, and fisheries management has maintained annual 334 

fishing rates of 1 to 5% of the fully selected stock (NEFSC, 2013) during the time this change in 335 

maximum size was observed.   Given that neither of the independent conditions (sustained high 336 
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temperature, nor continuous high fishing) has occurred, it is likely that temperature and fishing 337 

have acted synergistically to affect population shell lengths (Hidalgo et al., 2011; Rouyer et al., 338 

2011).   339 

 340 

Distinguishing the contribution of environment versus fishing in producing the observed 341 

maximum body size is difficult. Dredge fisheries have been shown to cause a decrease in 342 

maximum shell sizes in other clam populations. Both Moura et al. (2013) and Dalgiç et al. 343 

(2010) documented differences in growth and body size between fished and non-fished clam 344 

populations; however, the differences documented in Moura et al. (2013) were confounded with 345 

a latitudinal gradient in growth conditions such that the unfished population came from warmer 346 

locations that were more conducive to faster growth and larger asymptotic size in the species 347 

(Dosinia exoleta) they were studying.  This demonstrates the difficulty in distinguishing the 348 

relative influence of environment versus fishing in the absence of manipulation or controlled 349 

experiments.  In this study, simulations that vary temperature and fishing independently allowed 350 

the relative role of the two effects to be evaluated and suggested that the two factors can each 351 

independently affect maximum shell length, but acting together generate the greatest decrease in 352 

maximum shell length.  353 

 354 

Population dynamics near the geographic limits of a species range are known to be sensitive to 355 

environmental fluctuations (Caddy and Gulland 1983; Parsons 1991), suggesting that the biggest 356 

changes in surfclam maximum size should be evident in the most southerly portion of the stock.  357 

This was the case for the simulated populations, where the largest changes in simulated shell 358 

length were indeed obtained for the southern location, under warm temperature and high fishing 359 
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conditions. Simulations with a sustained fishing rate of 20% produced the observed change in 360 

population shell length (about 10%) at the southern location (DMV), but this fishing rate was 361 

insufficient to produce the observed changes at the northern (NJ) location.     362 

 363 

Bergmann’s rule predicts that in general, animal size decreases with increasing temperature 364 

(Teplitsky and Millien, 2014).  This trend has been documented in other clam species (Beukema 365 

et al., 2009) and fisheries in general (Pörtner and Peck, 2010). Temperature affects the 366 

physiological functions of surfclams such that food assimilation increases linearly with shell 367 

length (body size) and temperature up to a thermal limit of 25°C (Powell et al., 1992), but 368 

respiration increases exponentially with biomass (Møhlenberg and Kiørboe, 1981) resulting in a 369 

thermal limit at which respiration will exceed assimilation and the surfclam will begin to lose 370 

somatic tissue (starve) (Munroe et al., 2013). Ingestion and respiration functions for the 371 

simulated surfclams both depend on body size; therefore, the thermal limit or transient event 372 

margin (Woodin et al., 2013) changes with surfclam size such that larger clams tend to be more 373 

heavily impacted by warm temperatures than small clams because of the large clam’s elevated 374 

metabolic demands relative to lower assimilation and ingestion rates (Figure 4A).  Thus, a 375 

reduced scope for growth assures that larger surfclams will be more sensitive to increased 376 

temperatures. It is possible that temperature could constrain surfclam growth in other indirect 377 

ways, for example through changes in the timing of phytoplankton blooms and hence food 378 

availability, shifts in spawning time, or changes in predation or competition relationships with 379 

other species.  Those other indirect effects are not explored in this model.   380 

 381 
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Density-dependent growth has been suggested for surfclams (Weinberg 1998).  An unusually 382 

high recruitment event, followed by a local fishery closure, resulted in sustained high surfclam 383 

densities, reduced growth rates and smaller sizes in MAB populations  (Weinberg 1998).  384 

However, more recently the occurrence of smaller surfclams has been attributed to warming in 385 

the southern Mid-Atlantic (Kim et al., 2004; Weinberg, 2005) and increased frequency of 386 

anomalous oceanographic events (Narváez et al., 2015), rather than density dependency.  387 

Moreover, the time series of maximum size used in this study (Figure 2) is unlikely to be 388 

influenced by density dependence because fishing effort in Stratum 21 over the period of interest 389 

would have thinned the population and alleviated density-dependent competition.    390 

 391 

Rapid rates of change in the average physiology of a population could derive from phenotypic 392 

plasticity rather than genetic selection.  Distinguishing between phenotypic changes in a 393 

population over time (response to environment) versus genotypic changes (responses of a 394 

population to selective pressure) based on physiology alone can be difficult (Law 2000).  Both a 395 

phenotypic and genotypic change in a population can manifest as the same response (e.g. change 396 

in size over time), yet could be the result of differing mechanisms.  The simulation design used 397 

in this study focuses only on phenotypic changes and suggests that the observed changes could 398 

occur without a genetic change.   399 

 400 

Increases in water temperature have been associated with fish stock redistributions in other 401 

species within the MAB region (Nye et al., 2009; Overholtz et al., 2011; Pinsky et al., 2013).  402 

Surface and bottom water temperatures are forecast to increase by more than 2°C (up to 8°C in 403 

some emission scenarios) over the next 50 to 100 years in this region (Frumhoff et al., 2007).  404 
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Potential ongoing and projected temperature changes over the bulk of the fished stock have the 405 

potential to cause changes in the physiology and stock distribution of surfclams (Figure 4B).  An 406 

approximate 10% change in the maximum shell length, which corresponds to a 39% decline in 407 

maximum biomass, has been observed in the surfclam stock from the MAB continental shelf 408 

from approximately 1980 until today.  Model simulations suggest that this change could be the 409 

result of warmer summer bottom water and size-selective fishing. Importantly, when 410 

interannually varying bottom temperatures are used to simulate surfclam population size 411 

dynamics over time, the interannual variability in bottom water alone generates fluctuations in 412 

the maximum size that are on the order of 10% over 10 to 15 years.  This fluctuation is consistent 413 

with the observed change in the stock.  Therefore, it is possible that the observations are simply a 414 

result of natural fluctuations driven by temporally varying temperatures.  These results also 415 

suggest that populations can recover if this change is not the product of a corresponding 416 

genotypic change; however, that response could take a decade to become evident, and much 417 

longer before full size recovery is achieved.  Observations over a longer period will be necessary 418 

to determine if the trend observed is due to natural fluctuations in the environment, or is 419 

sustained over time as a function of directional trends in temperature or sustained fishing.  420 
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Table Captions 752 

 753 

Table 1: Summary of samples taken during stock surveys (NFSC, 2013) that were used to 754 

determine age at length curves. 755 

 756 

Table 2: Variables, equations and parameterizations used in individual-based model population 757 

mortality calculations. Additional details for model equations and parameterizations are 758 

given in (Munroe et al., 2013; Narváez et al., 2015). 759 

 760 

Table 3: Temperature and fishing conditions used in each simulation for both DMV and NJ 761 

locations.  The climatology (Figure 3) was an average of the simulated bottom water 762 

temperatures for each day of the year using a 50-year time series of bottom water 763 

temperature (1958-2007); the cool and warm conditions were repeated cooler and warmer 764 

(respectively) than average years from the 50 year hindcast.  Fishing percentages shown are 765 

calculated as a percentage of the stock removed annually. 766 

 767 

  768 
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 769 

Figure Captions 770 

 771 

Figure 1:  772 

Locations of stratum 21 (outlined region) and the New Jersey (NJ) and Delmarva (DMV) 773 

simulation sites (x) on the Middle Atlantic Bight continental shelf.  Dashed grey lines show 774 

depth contours every 50 m. 775 

 776 

Figure 2: 777 

Surfclam asymptotic length (Lmax) over time derived from growth curves fit to fishery survey 778 

observations made within stratum 21 using a von Bertalanffy growth relationship.  Error bars 779 

show the standard error. A weighted (by inverse standard error) regression fit to the maximum 780 

shell lengths over time showed a significantly negative slope (slope = -0.7, adjusted R
2
 = 0.45, F 781 

statistic=12.4, degrees of freedom = 13, p-value=0.004).  782 

 783 

Figure 3: 784 

Annual bottom water temperature times series used with the surfclam individual-based model for 785 

simulations at the New Jersey (NJ, grey) and Delmarva (DMV, black) sites for the A) base case, 786 

constructed from 50-year simulation, B) cold year, and C) warm year.    787 

 788 

Figure 4: 789 

Panel A: influence of temperature and shell length on simulated annual average net productivity 790 

(d
-1

) (assimilation -respiration/body mass) for an individual surfclam for a range of sizes (y axis) 791 
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and temperatures (x axis). The zero net productivity contour is shown (dotted white line); values 792 

below are positive and above are negative.  Panel B: influence of temperature and fishing on the 793 

asymptotic length (95
th

 percentile) of simulated surfclam populations. 794 

 795 

Figure 5:   796 

Asymptotic length (95
th

 percentile) of simulated surfclam populations obtained from the different 797 

temperature simulations for the Delmarva (DMV, top panels) and New Jersey (NJ, bottom 798 

panels) for no fishing (A,D), 5% fishing (B,E) and 20% fishing (C,F).   799 

 800 

Figure 6: 801 

Asymptotic length (95
th

 percentile) of simulated surfclam populations obtained from the fishing 802 

effort simulations.  803 

 804 

Figure 7:  805 

Asymptotic length (95
th

 percentile) of simulated surfclam populations obtained using bottom 806 

water temperatures from the 50-year hindcast simulation for the sites off New Jersey (NJ, black 807 

line) and Delmarva (DMV, grey line).     808 

  809 
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 810 

 811 

Tables 812 

 813 

Table 1: Summary of the stock assessment surveys (NFSC, 2013) that provided the surfclam 814 

samples and the number that were aged to obtain the age-at-length growth curves. 815 

 816 

Survey 

Year 

Dredge Tows 

(Number) 

Clam Samples 

(Number) 

1978 29 100 

1980 15 44 

1981 20 103 

1982 18 161 

1983 18 140 

1986 19 159 

1989 20 111 

1992 20 58 

1994 20 190 

1997 20 119 

1999 33 188 

2002 27 207 

2005 20 152 

2008 28 196 

2011 15 38 

 817 

 818 

  819 



 39 

Table 2: Variables, equations and parameterizations used in individual-based model population 820 

mortality calculations. Additional details for model equations and parameterizations are 821 

given in (Munroe et al., 2013; Narváez et al., 2015). 822 

 823 

Variable Governing Equations Parameter Definitions (Units) 

   

Total Mortality 

(M) 
              = natural mortality,  

  = fishing mortality, 

   = deficit stress mortality 

   

Fishing Mortality 

(Mf) 
                

     

  
  

    = maximum fishing mortality rate  

    (120 mm) = clam size at which the 

hydraulic dredge is 100% efficient  

   (25 mm) = clam size at which the 

hydraulic dredge is 0% efficient  

   = clam length at the current time step 
   
Deficit Stress 

Mortality 

(    

                
      

   
  

    (0.0055 d)= maximum deficit stress 

mortality rate  

    (1.5 gd ) = stress at which the 

mortality rate is half of      

    (0.2 gd ) = controls the range stress 

over which mortality changes from 

zero    . 
 824 

 825 

  826 



 40 

 827 

Table 3: Temperature and fishing conditions used for the individual simulations implemented at 828 

the DMV and NJ locations.  The temperature climatology (Figure 3) was constructed from 829 

the daily average of the bottom water temperatures for each year of the 50-year bottom 830 

water temperature (1958-2007) simulation; the cool and warm temperature simulations 831 

represent conditions that are approximately 1.5°C cooler and 2.3°C warmer relative to the 832 

average climatology, respectively.  Fishing percentages were calculated as a percentage of 833 

the stock removed annually. 834 

 835 

 Temperature Conditions Fishing Conditions 

Fishing Simulations  

Fish_0-5 Climatology 0% 1958-1982; 5% 1982-2008 

Fish_0-20 Climatology 0% 1958-1982; 20% 1982-2008 

Fish_0-5-20 Climatology 0% 1958-1962; 5% 1962-1987; 20% 1987-2008 

Fish_0-5 Climatology 5% 1958-1982; 0% 1982-2008 

Fish_20-0 Climatology 20% 1958-1982; 0% 1982-2008 

Fish_20-5-0 Climatology 20% 1958-1962; 5% 1962-1987; 0% 1987-2008 

Temperature Simulations  

Clim_0 Climatology 0% 

Clim_5 Climatology 5% 

Clim_20 Climatology 20% 

Cool_0 Cool 0% 

Cool_5 Cool 5% 

Cool_20 Cool 20% 

Warm_0 Warm 0% 

Warm_5 Warm 5% 

Warm_20 Warm 20% 

Annually Varying Temperature Simulations  

Hind 50-year Hindcast 5% 

 836 

 837 
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Figures 841 

 842 

 843 

 844 
Figure 1 845 
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Figure 2 847 
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Figure 3 852 
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Figure 4 858 
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Figure 5 862 
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Figure 6 869 
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Figure 7 876 
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