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INTRODUCTION

Nursery habitats and ontogenetic shifts

Coastal habitats are highly productive and provide
foraging, spawning, and nursery grounds for com-
mercially and ecologically important species (Heck
et al. 2003, Stål et al. 2008, Seitz et al. 2014, Abrantes
et al. 2015, Kritzer et al. 2016). Availability of suitable
nursery habitat often determines recruitment success
and population abundance, indicating that the nurs-

ery role is a valuable function of coastal habitats
(Wahle & Steneck 1991, Gibson 1994, Juanes 2007,
Sundblad et al. 2014). By definition, nursery habitats
promote greater densities, faster growth rates, and/or
higher survival than other habitats, and thus provide
a greater contribution of juveniles to the adult por-
tion of populations (Beck et al. 2001).

Many species exhibit an ontogenetic shift between
different habitats as they develop. Two primary
mechanisms have been proposed to explain the pur-
pose and timing of these ontogenetic habitat shifts.
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ABSTRACT: Nursery habitats play a major role in the population dynamics of marine and estuar-
ine species, with the blue crab Callinectes sapidus serving as a model invertebrate. The current
paradigm of blue crab habitat use postulates that juvenile survival decreases with size in sub-
merged aquatic vegetation (SAV) due to a reduction in suitably scaled refuge, triggering an onto-
genetic shift from SAV to unvegetated habitats. However, alternative mechanisms for this habitat
shift have not been examined. We evaluated the paradigm of blue crab habitat use by conducting
field tethering experiments in York River (Virginia, USA) nursery habitats using a broad range of
juvenile size and SAV cover. Cameras were deployed to identify key predators of juvenile blue
crabs and to assess the relative importance of predation and cannibalism as sources of juvenile
mortality. Probability of survival increased significantly and additively with crab size and SAV
cover. The absence of an interaction between crab size and SAV cover is inconsistent with the cur-
rent paradigm. Rather, the ontogenetic habitat shift by juvenile blue crabs is likely driven by a
density-dependent trade-off between predation risk and foraging efficiency. In images of preda-
tion events, adult blue crabs, northern puffers Sphoeroides maculatus, striped burrfish Chilomyc-
terus schoepfi, and oyster toadfish Opsanus tau were identified as predators of juveniles in sea-
grass beds and sand flats. The high frequency of successful predation events by adult blue crabs
suggests that cannibalism is an important source of juvenile mortality and may be as, or more
influential, to blue crab population dynamics than finfish predation.
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The first is based on the concept of fractal surfaces
and predicts that the availability of and access to
crevices or other types of refuge within a complex,
fractal habitat decrease as body size increases
(Caddy 1986, Eggleston & Lipcius 1992). Nursery
habitats are typically structured habitats (e.g. sea-
grass beds, salt marshes, mangroves) that provide
many interstices in which small juveniles seek shel-
ter from predators (Heck & Thoman 1984, Wilson et
al. 1987, Minello et al. 2003). Due to the limited avail-
ability of bigger sheltered spaces in a fractal habitat,
larger animals may spend more time exposed to
predators while searching for suitable refuge; they
may even outgrow the protection afforded by the
habitat completely (Eggleston & Lipcius 1992, Arse-
nault & Himmelman 1998, Lipcius et al. 1998). Thus,
larger individuals reduce their risk of predation by
migrating to other habitats.

The second mechanism proposed for ontogenetic
habitat shifts involves trade-offs between growth and
survival. Postlarvae and small juveniles often exhibit
cryptic behavior to avoid predators (i.e. hiding in
nursery habitats), which can reduce their foraging
efficiency by restricting the time spent foraging out-
side of the refuge or by foraging within suboptimal
nursery habitats (Brown 1999). These smaller indi-
viduals may accept reduced food intake and slower
growth rates for safety in less productive nursery
habitats, such as those with low prey availability. As
animals grow, energetic demands increase and vul-
nerability to predators decreases (Werner & Gilliam
1984, Wahle 1992). Predator gape limitations (Hart &
Hamrin 1988), increased aggression (Wahle 1992,
Hines & Ruiz 1995, Stoner 2009), and increased phys-
ical defenses, such as a thicker carapace, shell, or
spines (Stoner 2009, Pirtle et al. 2012), can reduce
predation risk of large juveniles, allowing them to
exploit energetically profitable habitats regardless of
refuge availability. For example, food supply and the
level of perceived risk in nursery habitats determine
the size at which American lobsters Homarus ameri-
canus begin to forage in less sheltered habitats
(Wahle 1992).

Although many studies have examined the role of
nursery habitats and the benefits they offer juveniles
(Heck & Thoman 1984, Beck et al. 2001, Heck et al.
2003, McDevitt-Irwin et al. 2016), relatively few have
examined the mechanisms underlying nursery habi-
tat selection and subsequent migration to alternative
habitats. In this study, we attempt to address these
knowledge gaps of nursery habitat use, using the
blue crab Callinectes sapidus as a model invertebrate
species.

Blue crab nursery habitat use

Seagrass beds are the primary nursery habitat for
many species in Chesapeake Bay, including the blue
crab (Heck & Thoman 1984). After undergoing larval
development in the coastal waters near the mouth of
the Bay, blue crab megalopae (postlarvae) reinvade
the estuary and settle into seagrass beds, where they
experience rapid growth and quickly transform into
the first benthic juvenile instar (Orth & van Mont-
frans 1987, Metcalf & Lipcius 1992, Lipcius et al.
2007). The predator refuge provided by the structure
of the submerged aquatic vegetation (SAV) enhances
juvenile survival (Wilson et al. 1990, Perkins-Visser
et al. 1996, Pile et al. 1996, Hovel & Lipcius 2001,
Orth & van Montfrans 2002). Blue crabs remain in
vegetated primary nursery habitats until they reach
20−30 mm carapace width (CW), at which point they
start to move into unvegetated secondary nursery
habitats such as sand or mud flats (Orth & van Mont-
frans 1987, Pile et al. 1996, Lipcius et al. 2005, 2007).

The current conceptual model of blue crab habitat
use posits that juveniles exhibit an ontogenetic ha -
bitat shift from seagrass beds to unvegetated habitats
at 20−30 mm CW because they have outgrown the
size-specific refuge in SAV (Lipcius et al. 2007). The
proposed mechanism follows the fractal habitat hypo -
thesis for ontogenetic habitat shifts (Caddy 1986).
While smaller juveniles can seek shelter among the
grass blades and burrow into the sediment within the
rhizome mat, larger individuals cannot effectively
hide in the vegetation or sediment, and the structure
may hinder their ability to evade predators (Lipcius et
al. 2007, Johnston & Lipcius 2012). This hypothesis
therefore predicts that small crabs <25 mm CW expe-
rience greater survival within SAV beds than larger
crabs >25 mm CW, resulting in the migration of large
juveniles to alternative nursery habitats. In these
 secondary nurseries, larger juveniles experience
 increased survival and growth because their bigger
size allows them to exploit the abundant prey in these
habitats with low risk of predation by gape-limited
predators (Lipcius et al. 2005, 2007, Seitz et al. 2005).

The current blue crab habitat use paradigm was
reinforced by a study in which survival of juvenile
blue crabs was driven by an interaction between crab
size and habitat type, such that survival was posi-
tively related to crab size in unvegetated habitats,
but negatively correlated with crab size in SAV
(Johnston & Lipcius 2012). However, the study was
conducted using a narrow range of seagrass shoot
density and thus did not test the hypothesis over the
full range of relevant conditions.
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Study objectives and rationale

The primary objectives of our study were to: (1) re-
evaluate the current blue crab habitat use paradigm
using a broad size range of juveniles and SAV cover;
and (2) identify key predators of juvenile blue crabs
in York River (Virginia, USA) nursery habitats using
innovative methods and technology (underwater
camera systems).

To evaluate the blue crab habitat use paradigm, we
generated 6 hypotheses (Hi) of juvenile blue crab sur-
vival with different combinations of crab size, SAV
cover, time of day, and trial duration as independent
variables. In H1 (size), we expected larger juveniles
to experience higher survival than smaller juveniles
as a result of decreased susceptibility to gape-limited
predators and increased aggression (Hines & Ruiz
1995, Pile et al. 1996, Orth & van Montfrans 2002). In
H2 (SAV cover), juvenile survival was expected to
increase with SAV cover due to increased availability
of structural refuge (Heck & Thoman 1981, Wilson et
al. 1987, Hovel & Lipcius 2001, Orth & van Montfrans
2002). In H3 (size, SAV cover), we considered the
additive effects of crab size and SAV cover, and pre-
dicted that larger juveniles in densely vegetated
areas experience the highest survival. The current
paradigm of blue crab habitat use was encompassed
by H4 (size × SAV cover), which posits an interaction

between size and habitat, such that small crabs expe-
rience greater survival in SAV, whereas large juve-
niles survive better in unvegetated habitats (Lipcius
et al. 2005, 2007, Johnston & Lipcius 2012). H5 (size,
SAV cover, trial duration) predicted that survival de -
creases with trial duration due to prolonged exposure
to predators. Finally, H6 (size, SAV cover, duration,
time of day) predicted that juveniles are more likely
to survive at night due to lower foraging efficiency of
visual predators. Experimental field studies were
conducted to test the aforementioned hypo theses of
juvenile blue crab survival and to identify predators
of blue crabs in York River nursery  habitats.

MATERIALS AND METHODS

Study sites

Field experiments were conducted in July and
August 2016 in vegetated and unvegetated habitats
in the York River, a subestuary of Chesapeake Bay
(Fig. 1). July experiments were conducted at Good-
win Islands (37° 13’ N, 76° 23’ W) and Sandy Point
(37° 15’ N, 76° 25’ W); August experiments were con-
ducted at Goodwin Islands only. Goodwin Islands
and Sandy Point are shallow, tidal regions near the
mouth of the York River with average depths <2 m

and an average tidal range of 0.7 m.
Throughout the study period, salinity
ranged from 18−24, dissolved oxygen
ranged from 3−13 mg l−1, and water
temperature ranged from 23−33°C
(Virginia Estuarine & Coastal Observ-
ing System, Goodwin Islands Contin-
uous Monitoring Station). The near-
shore habitat in both locations is
characterized by an extensive sea-
grass bed, adjacent to an unvegetated
sand flat. The seagrass beds are dom-
inated by eelgrass Zostera marina and
widgeon grass Ruppia maritima, with
oc ca sional abundances of the exotic
red alga Gracilaria vermiculophylla
(Wood 2017). Each location contained
a vegetated and unvegetated site.
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Fig. 1. Study areas in the lower York River,
Virginia, USA. Tethering experiments were
conducted at a vegetated and unvegetated
site at Sandy Point (July 2016) and Good-

win Islands (July−August 2016)
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Juvenile survival

Tethering is a common method used to measure
relative survival rates of small benthic species, often
crustaceans, across treatments (Heck & Thoman
1984, Pile et al. 1996, Hovel & Lipcius 2001, Moody
2003, Lipcius et al. 2005, Johnston & Lipcius 2012). In
this study, tethering experiments were conducted to
quantify relative survival rates of juvenile blue crabs
in seagrass and sand habitats. Although tethered
crabs are capable of normal movements (i.e. walking,
swimming, burrowing), their ability to escape preda-
tors is limited to the length of the tether (Zimmer-
Faust et al. 1994). Thus, tethering leads to inflated
natural mortality rates and should only be used to
determine relative rates of predation, not absolute
rates.

Tethering may also introduce treatment-specific
bias in survival (Peterson & Black 1994). For exam-
ple, tethered crabs may experience lower survival in
seagrass as a result of entanglement, but would not
experience the same reduction in survival in sand,
such that relative survival rates could not be com-
pared between these habitats. Previous studies have
examined treatment-specific biases of tethering ju -
venile crabs in various habitats and found no signifi-
cant interaction between tethering and habitat (Pile
et al. 1996, Hovel & Lipcius 2001, Lipcius et al. 2005);
therefore, we assumed there was no treatment-
 specific bias in our experiments, which used similar
tethering methods as those in previous studies.

Within 2 or 3 wk of each tethering experiment,
juvenile blue crabs were collected from the York
River by towing a crab scrape in seagrass beds adja-
cent to the study sites at Goodwin Islands and Sandy
Point. Juveniles were held in an outdoor, flow-
through seawater tank until tethering. To tether
crabs, each juvenile was measured to the nearest
0.1 mm CW, and 20 cm of 11.3 kg monofilament fish-
ing line was adhered to the carapace using cyano-
acrylate super glue and Gorilla tape. A noose was
tied around the carapace spines of juveniles >25 mm
CW for additional security. A swivel was tied to the
other end of the fishing line. The weight of the fish-
ing line and the placement of the tether on the cara-
pace prevented crabs from cutting their own tethers.

Individual tethered crabs were placed in small,
plastic Tupperware containers to reduce the risk of
cannibalism and entanglement prior to the experi-
ment. The contained crabs were returned to the out-
door seawater tank overnight to ensure tether reten-
tion. Nearly all juveniles (95%) retained their tethers
in the 24 h before deployment. Similar results were

found in tether retention studies using the same
methods (Lipcius et al. 2005, Johnston & Lipcius
2012); thus, we assumed there was no effect of tether
retention on survival estimates.

In the field, juvenile crabs 10−55 mm CW were ran-
domly selected for tethering in either sand (Fig. 2A)
or seagrass (Fig. 2B), and were deployed at the tether
locations by fastening the swivel of the tether to a
metal stake pushed into the sediment (Fig. 3). The
stake was tied to a marker PVC pole with monofila-
ment line to assist in tether retrieval at the end of
each trial. The stake and marker PVC were 1 m apart
to reduce the influence of structure in attracting
predators. The tether locations were positioned along
2 transects parallel to shore, with each at least 3 m
away from the nearest tether to maintain independ-
ence among tethers. Tether positions were constant
throughout the experimental study.

At vegetated sites, percent cover of SAV was esti-
mated using a 40 cm2 quadrat placed on the seafloor
with the tethering stake in the center. This ensured
the percent cover estimation encompassed only the
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Fig. 2. Size distribution of juvenile blue crabs tethered in (A)
sand and (B) seagrass habitats in the 2016 field experiment. 

CW: carapace width
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range of the tether and reflected the available vege-
tation that the juvenile could use as refuge. Estimat-
ing percent cover for each tether before each trial
allowed for a nearly random sample of SAV cover
and accounted for changes in SAV abundance
throughout the season (Fig. 4). Tethering trials were
conducted during the day and at night to examine
diel differences in predation. Only 8% of tethered

juvenile crabs survived the 24 h pilot trials in the
summer of 2015, and thus trial durations were limited
to 3−13 h in the 2016 experiments. The duration of a
given trial was determined by logistical constraints
(e.g. tides, weather). At the end of each trial, all
 tethers were checked for crab survival, and pieces of
carapace, a chewed line, or a cut line provided
 evidence of predation. Individual crabs were only
tethered for the duration of a single trial; surviving
crabs were released upon trial completion.

Predator identification

Predators of juvenile blue crabs were identified by
using GoPro cameras to capture images of preda-
tor−prey interactions during the 2015 pilot study and
the 2016 tethering experiments. Cameras were
mounted to the marker PVC poles and oriented such
that the field of view encompassed the entire extent
of the tether (Fig. 3). GoPro Battery BacPacs were
used to extend battery life, and the cameras were
programmed to take a photo every 2 s to limit battery
use. Infrared camera lenses and infrared lights were
used during night trials to capture images of crepus-
cular and nocturnal predators. A successful preda-
tion event was identified when a series of images
showed a predator with the tethered juvenile in its
mouth or claws; often, the crab was absent from the
remaining photos of the trial and only a small piece of
carapace or Gorilla tape was left attached to the
tether. For predators identified in the tethering
experiments, predation frequencies were calculated
and compared to determine the relative impact of
each species on juvenile blue crab mortality in York
River nursery habitats.

Statistical analyses

To address our hypotheses about juvenile blue crab
survival, we developed 7 statistical models (g1−g7)
following an information-theoretic approach (Burn-
ham & Anderson 2002, Anderson 2007), including
the null model for comparison (Table 1). Juvenile sur-
vival was modeled as a binary response (1 = alive,
0 = dead), with crab size (mm CW), SAV cover (%),
and trial duration (h) as continuous covariates, and
time (day, night) as a fixed factor. Each model was
 analyzed using logistic regression to determine the
probability of survival under those experimental
 conditions, and bias-corrected Akaike’s information
criterion (AICC) values were calculated to determine

Fig. 3. Schematic diagram of the tether set-up used in the
experiments with juvenile blue crabs. The PVC marker was
1 m away from the tethering stake, and the crab was
attached to a 20 cm tether. The GoPro camera was oriented
such that the field of view encompassed the entire range of
the tether. Note that the juvenile crab is not drawn to scale
and the submerged aquatic vegetation distribution is not 

necessarily representative of what was seen in the field

Fig. 4. Size distribution of tethered juvenile blue crabs at
various levels of submerged aquatic vegetation (SAV) cover 

during the 2016 field experiment 
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the best model. Weighted model probabilities (wi)
based on Δi values were used to determine the prob-
ability that a particular model was the best-fitting
model. The Stukel goodness of fit test (Stukel 1988)
and coefficient of discrimination, a pseudo-r2 statistic
for binomial data (Tjur 2009), were used to assess
model fit, rather than the Hosmer-Lemeshow test
(Lemeshow & Hosmer 1982), due to their better
 statistical properties (Allison 2014). Model fit was
 further assessed by conducting likelihood ratio tests
and checking for overdispersion. Statistical analyses
were conducted using R (R Core Team 2014) and
RStudio (RStudio Team 2016) statistical software.
The parameter estimates of the best-fitting model
were used to calculate binomial survival probabilities
as:

(1)

where θ is the probability of survival, β0 is the para -
meter for the baseline condition (constant), βi is the
parameter representing increases or decreases in
survival due to the effect of independent variable Xi.
Crab size (X1), SAV cover (X2), and trial duration (X3)
are continuous and thus were represented by single
variables. Time is categorical and thus night was
 represented as a dummy variable (X4), and day was
designated the constant (β0); X4 = 0 for day and 1 for
night. The interaction term for crab size and SAV
cover was β3X1X2.

Multiple models were generated to determine the
consistency of our data with the current blue crab
paradigm using a categorical habitat factor. Again,

juvenile survival was modeled as a binary response
with crab size, trial duration, and time as indepen -
dent variables, but SAV cover was replaced with
habitat (vegetated, unvegetated). Unvegetated habi-
tat was considered the baseline condition (X2 = 0),
and vegetated habitat was represented as a dummy
variable (X2 = 1). The models were analyzed using
logistic regression to determine the effect of habitat
on juvenile survival and the presence of an inter -
action between size and habitat.

RESULTS

Juvenile survival

A total of 145 independent trials was used to model
juvenile blue crab survival in York River nursery
habitats (Table 2). Juvenile survival was best
explained by the additive model with crab size, SAV
cover, and trial duration as predictors (g5); model g5

had the lowest AICC value and a weighted probabil-
ity of 0.51 (Table 1). All other models except g6 had
weighted probabilities <0.01 and thus were elimi-
nated from further consideration (Table 1). Although
the probability of model g6 was similar to g5, addition
of time as a factor did not make a significant contri-
bution in explaining the residual deviance and did
not lower the AICC value (Table 1); thus, we selected
g5 as the most parsimonious model. The Stukel test
indicated that model g5 fit the data well (Table 3),
and the likelihood ratio tests demonstrated that
model g5 was a better fit than the other models. The
small ratio of the residual deviance to the residual
degrees of freedom suggested that model g5 was not
overdispersed.

Parameter estimates of model g5 were significant
(Table 3), with juvenile blue crab survival increasing
with crab size (Fig. 5A) and decreasing with trial
duration (Fig. 5B). Survival increased marginally

e

1 e

0 1 1 2 2

0 1 1 2 2

X X X

X X X

i i

i i
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+

β +β +β +…+β

β +β +β +…+β
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Model Variables k AICC Δi wi

g1 Size (S) 3 185.09 23.86 <0.01
g2 SAV cover (SC) 3 184.99 23.76 <0.01
g3 S + SC 4 186.71 25.47 <0.01
g4 S + SC + (S × SC) 5 187.75 26.51 <0.01
g5 S + SC + Duration (D) 5 161.24 0 0.51
g6 S + SC + D + Time (T) 6 161.32 0.08 0.49
g7 Null 2 183.27 22.03 <0.01

Table 1. Akaike’s information criterion (AIC) calculations for
the logistic regression models corresponding to the different
hypotheses for juvenile blue crab survival represented by gi.
k: number of parameters, including variance (σ2), in model
gi; AICC: bias-corrected AIC value; Δi: difference in the AICC

value between model gi and the best model; wi: probability
that model gi is the best model in the set; Size: crab size in
mm carapace width; SAV cover: percent cover of submerged
aquatic vegetation at the tether location; Duration: time
interval of the trial in hours; Time: categorical factor with 

day and night levels

Month Habitat Time N

July Sand Day 32
Night 31

Seagrass Day 31
Night 25

August Seagrass Day 14
Night 12

Table 2. Design of the 2016 tethering experiments. N: num-
ber of juvenile blue crabs tethered in each treatment 

combination



Bromilow & Lipcius: Blue crab habitat use and predator impacts

with SAV cover (Table 3, Fig. 5C). Parameter esti-
mates of model g5 were used to generate survival
probabilities with the equation:

(2)

where X1 = crab size, X2 = SAV cover, and X3 = trial
duration. A value of 12 was used for trial duration (X3)

to standardize the survival probabili-
ties. Eq. (2) was used to create a 3D
graph of the probability of survival as
a function of crab size and SAV cover
at a fixed trial duration of 12 h, a com-
mon interval for tethering experi-
ments. In general, larger crabs in
habitats with high SAV coverage had
the highest probability of survival
(Fig. 6). At low SAV cover, predicted
probability of survival increased with
size from 7% at 12 mm to 45% at

54 mm CW (Fig. 6). At high SAV cover, juvenile sur-
vival probability in creased with size from 17 to 68%
(Fig. 6).

The model that best explained juvenile survival
using habitat as a factor (vegetated, unvegetated)
was the additive model with size, time, duration, and
habitat as predictors. Similar to model g5, juvenile
blue crab survival increased significantly with size
and decreased with trial duration (Table 4). Vege-

e

1 e

0.6047 0.0556 0.0095 0.3163

0.6047 0.0556 0.0095 0.3163

1 2 3

1 2 3

X X X

X X X
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+

( )
( )

+ + −
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Parameter Variable Estimate SE z p

β0 Intercept 0.6047 0.7511 0.805 0.4207
β1 Size 0.0556 0.0257 2.165 0.0304
β2 SAV cover 0.0095 0.0049 1.908 0.0564
β3 Trial duration −0.3163 0.0661 −4.785 <0.0001

Table 3. Parameter estimates from logistic regression model g5 (see Table 1)
for juvenile blue crab survival. Stukel test indicated  satisfactory goodness of fit
(χ2 = 0.455, df = 2, p = 0.80), with the coefficient of discrimination = 0.20. SAV: 

submerged aquatic vegetation

Fig. 5. Effect of (A) body size, (B) trial duration,
and (C) submerged aquatic vegetation (SAV)
cover on juvenile blue crab survival based on the
best model (g5; see Table 1). In (A), circles repre-
sent individual observations of juvenile survival
(1 = alive, 0 = dead); in (B) and (C), the numbers
represent the sample sizes of crabs that were alive
(1) and dead (0) for each trial duration and each
level of SAV cover, respectively. The solid line is
the predicted survival probability; the dashed 

lines represent the 95% confidence interval 
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tated habitat had a marginally significant, positive
effect on crab survival relative to unvegetated habi-
tat (Table 4). There was no interaction between size
and habitat (Fig. 7).

Predator identification

Juvenile blue crabs that were missing when the teth-
ers were checked were assumed to be eaten, given
the high tether retention. For the trials in which crabs
were assumed to be eaten, 36 were set up with
GoPros, and 21 of those cameras (58%) captured
images of the predators. GoPro photos of the tether-
ing experiments identified 4 predator species of juve-
nile blue crabs in York River nursery habitats. Adult
blue crabs were the primary predator, responsible for
79% of the predatory interactions that were captured
in the images (Table 5, Fig. 8A). Northern puffers
Sphoeroides maculatus and striped burrfish Chilo -
mycterus schoepfi were also seen feeding on teth-

ered juvenile crabs (Table 5, Fig. 8B,C). Additionally,
an oyster toadfish Opsanus tau was found on 1 of the
tethers at the end of a trial, having swallowed the
juvenile crab whole (Fig. 8D). All predators identified
in the GoPro images were seen at both the vegetated
and unvegetated sites. Although tethered crabs at
the unvegetated sites could not seek refuge in struc-
tured habitat, juveniles at both sites found refuge
from predators by burrowing in the sediment.

DISCUSSION

Juvenile survival

Our field experiments examined
the relationship between juvenile
blue crab survival, crab size, and
SAV cover in York River nursery
habitats. Our primary goal was to
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Fig. 6. Juvenile blue crab probability of survival as a func-
tion of crab size and submerged aquatic vegetation (SAV)
cover at a standard trial duration of 12 h, derived from 

Eq. (2)

Fig. 7. Juvenile blue crab survival probability as a function
of crab size by habitat. The probabilities are derived from
Eq. (1), using the parameter estimates from the best logistic
regression model with the categorical habitat factor, holding 

time constant (day)

Parameter Variable Estimate SE z p

β0 Intercept 0.4753 0.7645 0.622 0.5342
β1 Size 0.0568 0.0266 2.136 0.0327
β2 Habitat 0.8784 0.4703 1.868 0.0618
β3 Trial duration −0.3592 0.0760 −4.729 <0.0001
β4 Time 0.6106 0.4143 1.474 0.1405

Table 4. Parameter estimates from the best logistic regression model for juve-
nile blue crab survival using a categorical habitat factor

Species Predation 
frequency

Blue crab adults Callinectes sapidus 27 (0.79)
Northern puffer Sphoeroides maculatus 4 (0.12)
Striped burrfish Chilomycterus schoepfi 2 (0.06)
Oyster toadfish Opsanus tau 1 (0.03)

Table 5. Identified predators of juvenile blue crabs and their
predation frequencies from the tethering experiments. Rela-
tive predation frequencies are given in parentheses as the 

proportion of all events
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determine if ontogenetic habitat shifts by juveniles
between different habitats are driven by the fractal
mechanism whereby the availability of and access
to suitably scaled refuge de creases as body size
increases, as observed in Caribbean spiny lobster
Panulirus argus (Lipcius et al. 1998), or whether
there is a trade-off between predation risk and for-
aging efficiency (sensu Werner & Gilliam 1984).
The novel result of our study was the apparent lack
of an interaction effect between crab size and habi-
tat on juvenile survival, as hypothesized in the cur-
rent paradigm of blue crab nursery habitat use,
which emphasizes suitably scaled refuges. Instead,
juvenile survival increased additively with both
blue crab size and SAV cover. Thus, the ontogenetic
habitat shift by juvenile blue crabs is likely driven
by a trade-off between predation risk and foraging
efficiency, rather than a reduction of suitably sca -
led refuges as juveniles grow.

Seagrass beds are considered the primary nursery
habitat for many estuarine and marine species
because of the high abundances of juveniles found in
these habitats (Heck & Thoman 1984, Beck et al.
2001, Heck et al. 2003). In Chesapeake Bay, abun-
dance of juvenile blue crabs <20 mm CW is higher in
seagrass beds than in unvegetated habitats, with
densities as much as an order of magnitude higher in
SAV (Orth & van Montfrans 1987, Pile et al. 1996,

Pardieck et al. 1999, Lipcius et
al. 2007). There are 2 primary
functions that explain the high
abundance of juveniles in
 seagrass beds. The first is
predator refuge — the struc-
tural complexity of the vegeta-
tion inhibits predator detection
and capture of prey, increasing
ju venile survival (Wilson et al.
1990, Perkins-Visser et al. 1996,
Pile et al. 1996, Hovel & Lipcius
2001, Orth & van Montfrans
2002). The second function is
food supply (Orth et al. 1984,
Seitz 2011, Glaspie & Seitz
2017) — the abundance and
diversity of small prey items
enhances energy intake and
foraging efficiency, in creasing
juvenile growth (Per kins-Visser
et al. 1996, Beck et al. 2001).

The current paradigm of
blue crab habitat use posits
that survival decreases in sea-

grass once juveniles reach a certain size because
they have outgrown the small refuges offered by
SAV (Lipcius et al. 2007, Johnston & Lipcius 2012).
This conceptual model of habitat use requires an
interaction effect between crab size and habitat on
juvenile survival as demonstrated by Johnston & Lip-
cius (2012). Our results were consistent with previous
studies demonstrating that juvenile blue crabs expe-
rience in crea sed survival in vegetated habitats com-
pared to un vegetated habitats (Hines 2007, Lipcius et
al. 2007). However, contrary to the current paradigm,
there was no interaction between crab size and habi-
tat, indicating that larger juveniles do not suffer in -
creased mortality in vegetated habitats. Field obser-
vations of high abundances of juveniles >30 mm CW
in seagrass beds support our results (Hines 2007).
Furthermore, soft crabs (recently molted) of all sizes
often seek refuge in seagrass beds during molting to
reduce their risk of predation because they are vul-
nerable without the protection of a hard carapace
(Ryer et al. 1997).

To further investigate the predator refuge role of
vegetation, we examined the influence of SAV cover
on juvenile blue crab survival. In general, survival
increases with habitat complexity (i.e. shoot density,
biomass) and areal cover because more SAV results
in more barriers between predators and prey (Hovel
& Lipcius 2001, Orth & van Montfrans 2002, Hovel &
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Fig. 8. GoPro photos of predators of juvenile blue crabs in the tethering experiments:
(A) adult blue crab; (B) northern puffer; (C) striped burrfish; (D) oyster toadfish. Images
show tethered juvenile crabs (A−C) or the tether line (D) in the mouths of predators
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Fonseca 2005). Most habitat−survival studies have
used shoot density to quantify the structural com-
plexity of a seagrass bed, often creating artificial sea-
grass mats of various densities to conduct the experi-
ments (Hovel & Lipcius 2001, Orth & van Montfrans
2002, Hovel & Fonseca 2005). Measuring natural
shoot densities requires partial removal of the grass
bed; using artificial seagrass permits researchers to
examine the effect of shoot density on survival with-
out disturbing the environment, with the caveat that
the artificial conditions may not be representative of
the natural system. For this study, we were particu-
larly interested in juvenile blue crab survival in York
River nursery habitats, and thus opted to quantify
available refuge habitat by estimating percent SAV
cover at each tether location in the field. Estimating
percent cover allowed us to conduct our tethering
experiments at the same sites throughout the study
period in naturally occurring patches of seagrass.
Although vegetation cover is not a typical measure of
structural complexity, its quantification can be a good
representation of seagrass patchiness at small spatial
scales and can provide information about the amount
of habitat available as refuge within the proximity of
a tethered juvenile blue crab.

Our study determined that dense SAV cover has a
positive effect on blue crab survival, with a greater
proportion of juveniles tethered in 100% SAV cover
surviving than those in a completely unvegetated
habitat. There was no interaction between percent
cover and size, indicating that SAV cover is benefi-
cial for juvenile blue crabs regardless of size. How-
ever, limited observations for very small (<15 mm
CW) and very large (>40 mm CW) crabs, particularly
at low SAV cover (<50%), could have biased our
model results. For example, the absence of experi-
mental plots with 5−45% cover may be concealing a
non-linear habitat−survival function.

The second function that contributes to high abun-
dances of juveniles in seagrass beds is food supply
(Orth et al. 1984, Seitz 2011) through augmented
juvenile growth (Perkins-Visser et al. 1996, Beck et
al. 2001, Seitz et al. 2005). In their early life stages
(<30 mm CW), juvenile blue crabs feed primarily on
bivalves, plant matter, detritus, polychaetes, amphi -
pods, and shrimp (Laughlin 1982, Lipcius et al. 2007,
Seitz et al. 2011). Not only does seagrass provide
nutrition in itself, but increasingly complex vegeta-
tion can also increase food availability, as the grass
blades provide surface area on which epiphytes can
grow (Orth et al. 1984). Additionally, seagrass beds
support a diverse community of organisms, including
epifauna (e.g. shrimp, gastropods), infauna (e.g. am -

phipods, bivalves), and mobile species (e.g. fishes,
crabs) (Heck & Thoman 1984, Orth et al. 1984), all of
which juvenile blue crabs consume. The large quan-
tities of suitable prey support faster growth rates of
small juveniles in seagrass than in unvegetated habi-
tats (Perkins-Visser et al. 1996). Thus, blue crabs can
optimize their foraging efficiency and growth in their
early juvenile stages by settling in sheltered seagrass
beds where small prey items are readily accessible.

Blue crab survival also increases with body size, a
phenomenon that has been demonstrated for many
marine species (Hart & Hamrin 1988, Morley &
Buckel 2014, Long et al. 2015, Krueger et al. 2016,
Tucker et al. 2016). Decreased predation mortality
with size can be attributed to 2 mechanisms: physical
capture limitations and handling difficulty. A rela-
tionship between jaw morphology and prey selectiv-
ity suggests that gape limitations of predators often
restrict consumption of larger prey items (Hart &
Hamrin 1988). Handling difficulty can also reduce
the likelihood of a successful predation event regard-
less of a predator’s gape, as handling becomes in -
creasingly difficult with larger prey. For example,
juvenile bluefish (131−140 mm total length) capture
efficiency is similar between small and large bay
anchovy, but large anchovies are more likely to be
lost during prey manipulation and thus more likely to
survive the encounter (Morley & Buckel 2014).

As juvenile blue crabs grow, they are less suscepti-
ble to gape-limited predators and less palatable as
their carapace hardens and their spines become
more prominent. Larger crabs are also more likely to
be aggressive and exhibit agonistic behaviors if
threatened by a potential predator (Hines & Ruiz
1995). Thus, the probability of survival is higher for
larger crabs than for smaller ones, even without other
physical forms of refuge such as structured habitats.
Other studies have corroborated our results, suggest-
ing that juvenile blue crabs experience a relative size
refuge from predation once they reach 20−30 mm
CW (Pile et al. 1996).

With increasing body size, energetic demands also
increase (Werner & Gilliam 1984, Wahle 1992). For
blue crabs, increasing energy requirements are rec-
onciled by an ontogenetic diet shift; large juveniles
and adults primarily feed on more substantial prey
items such as clams and fishes (Laughlin 1982, Lip-
cius et al. 2007). Blue crab ontogenetic habitat shifts
may partially result from ontogenetic diet shifts, as
well as density-dependent migration (Pile et al.
1996), considering that both shifts occur at a similar
developmental stage (20−30 mm CW). Distribution
and growth of juvenile blue crabs >25 mm CW is
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driven primarily by clam density and accessibility, as
some clams have highest density in unvegetated
sand and mud flats (Seitz et al. 2003, 2005), and juve-
nile crab densities are also an order of magnitude
lower (Lipcius et al. 2005, 2007). Once juveniles
reach 25 mm CW, the abundance of small prey items
in seagrass beds may not be energetically efficient,
resulting in migration to more profitable unvegetated
habitats, where clams are abundant and accessible
and conspecific competitors are less dense (Mansour
& Lipcius 1991, Seitz et al. 2003, 2005).

Our field experiments confirmed that dense cover
of seagrass beds increases juvenile blue crab sur-
vival, and that larger juveniles experience a partial
size refuge from predation, both in dense seagrass
and in unvegetated sand habitats bordering seagrass
beds. We propose that juvenile blue crabs remain
protected in SAV and forage on the abundant prey
within the grass bed until they become so large that
density-dependent processes such as intraspecific
aggression and competition for food drive them to
disperse from SAV beds. In this manner, juvenile
blue crabs 25−30 mm CW move into unvegetated
sand or mud flats to avoid density-dependent growth
and agonism (Mansour & Lipcius 1991) by exploiting
higher densities and greater accessibility of more
profitable prey, such as the Baltic clam Limecola
balthica, in areas where conspecific density is lower.
Therefore, it is likely that the abundance and diver-
sity of both predators and prey influence the survival
and habitat use of juvenile blue crabs, as occurs for
the Caribbean spiny lobster (Mintz et al. 1994).

Predator identification

The second goal of our field experiments was to
identify key predators of juvenile blue crabs within
York River nursery habitats using advanced camera
technology. In images of predation events, adult blue
crabs, northern puffers, striped burrfish, and oyster
toadfish were identified as predators of juveniles in
seagrass beds and sand flats. The high frequency of
successful predation events by adult blue crabs sug-
gests that cannibalism is an important source of juve-
nile mortality and may be as or more influential to
blue crab population dynamics than predation by fish
predators.

Over the last 2 decades, advances in camera tech-
nology have made quality, high-definition cameras
easily accessible to a larger group of scientific inves-
tigators (e.g. students, non-governmental organiza-
tions; Bicknell et al. 2016). Although camera technol-

ogy is capable of providing novel insight into animal
behavior in natural habitats, advanced cameras still
have limitations, such as battery longevity and visi-
bility (Bicknell et al. 2016). In some cases, these limi-
tations could compromise the integrity of the study
by introducing bias.

In our tethering experiments, we used GoPros to
capture photographic evidence of predation events
to identify predators of juvenile blue crabs in sea-
grass beds and sand flats. In 2016, predators were
identified in 58% of the recorded trials. Dense vege-
tation and the limited range of the infrared lights
used during the night trials were likely responsible
for missed predation events. Additionally, GoPro bat-
tery life was limited to 6 h, and because some trials
were >6 h, predation events could have easily oc -
curred after the camera stopped taking pictures. All
recorded trials in which predators were not identified
were either conducted at night, in dense vegetation,
or had a trial duration of 24 h.

The set-up of the camera may have also introduced
a bias against fish or particular predator species due
to differences in predatory behavior. Blue crabs are
primarily benthic foragers, using chemosensory and
tactile cues to locate prey, slowly searching the bot-
tom and excavating buried prey with their walking
legs (Blundon & Kennedy 1982, Lipcius & Hines
1986). Thus, blue crabs may have been more likely to
be photographed than finfish predators that attack
their prey swiftly, resulting in a higher proportion of
observed predation events by blue crabs than other
predators. Finfish such as striped bass Morone
 saxatilis, Atlantic croaker Micropogonias undulatus,
and silver perch Bairdiella chrysoura were seen in
images, swimming in the vicinity of the tethered
crab, but a predation event was never witnessed. In
addition to actively foraging fish, the tethering set-up
may have been biased against ambush predators
such as summer flounder Paralichthys dentatus.
Ambush predators often rely on prey movement to
capture their prey, and the limited mobility of teth-
ered crabs reduces the likelihood that an ambush
predation event would occur during a tethering
experiment.

Despite the potential biases of our experimental
set-up, our results support previous findings that
cannibalism is a primary component of juvenile blue
crab mortality (Darnell 1958, Mansour 1992, Hines &
Ruiz 1995, Ryer et al. 1997, Hines 2007). In field and
laboratory tethering experiments, cannibalism by
large blue crabs was the source of 75−96% of juve-
nile mortality (Hines & Ruiz 1995), which corrobo-
rates the 79% of predation events captured in images
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of our tethering experiments. Additionally, diet stud-
ies from both Louisiana and Chesapeake Bay con-
firmed that cannibalism may significantly contribute
to juvenile mortality, with pieces of juvenile blue
crabs in up to 45% of adult crab stomachs (Mansour
1992) and comprising an average of 13% of the diet
by volume (Darnell 1958).

Juvenile and adult blue crabs are spatially segre-
gated in the winter, with adults, primarily females,
overwintering in the deeper channels of the Chesa-
peake Bay main stem, while juveniles and mature
males remain in the tributaries (Van Engel 1958,
Heck & Thoman 1984, Orth & van Montfrans 1987).
In the warmer months, however, adult and juvenile
distributions overlap as adults move in and out of the
tributaries to forage and mate within seagrass beds
(Heck & Orth 1980), salt marshes (Fitz & Wiegert
1991), oyster reefs (Harding & Mann 2010), and un -
vegetated bottoms (Seitz et al. 2003). The abundance
of foraging adults in Chesapeake Bay tributaries
such as the York River (Heck & Orth 1980, Lipcius &
Van Engel 1990) suggests that adult blue crabs have
the potential to impact juvenile mortality through
cannibalism in these critical nursery habitats.

Northern puffers have also been identified as pred-
ators of juvenile blue crabs in prior studies, although
Van Engel (1987) argued that puffers were only
observed feeding on juvenile blue crabs when artifi-
cially confined; they had not been observed feeding
on crabs in natural circumstances. Another previous
study conducted similar tethering experiments with
underwater video and consistently observed north-
ern puffers successfully preying upon tethered juve-
nile blue crabs (Moody 2003). However, these tether-
ing experiments may not be representative of natural
predation by puffers, as tethering limits a crab’s
 ability to evade predators (Zimmer-Faust et al. 1994).
Similarly, striped burrfish are slow-swimming preda-
tors, and thus may have only consumed juvenile blue
crabs due to tethering constraints. A single review
paper identified striped burrfish as a predator of blue
crabs (Guillory & Elliot 2001), but the study referred
to in the review only found hermit crabs and uniden-
tified crab pieces in the stomachs of several burrfish
(Linton 1905). Although our results suggest that pre-
dation by northern puffers and striped burrfish may
play a role in juvenile mortality in nursery habitats,
diet studies of field-collected fishes should be con-
ducted to confirm that they feed on juvenile blue
crabs in nature.

In addition to diet information, abundance data for
northern puffers and striped burrfish are also lack-
ing, as the species are not well-studied in Chesa-

peake Bay. However, fishery-independent data from
the Virginia Institute of Marine Science (VIMS)
Trawl Survey suggest that, despite some annual vari-
ation, northern puffers may be relatively abundant in
lower Chesapeake Bay tributaries, with a total of up
to 230 individuals caught in a season (Tuckey &
 Fabrizio 2012). Conversely, a total of only 16 striped
burr fish were caught in the VIMS Trawl Survey in
2016 (Tuckey & Fabrizio 2016), suggesting an
increase in abundance from previous years, but a
 relatively low abundance overall. Thus, it seems
unlikely that striped burrfish would play a significant
role in juvenile blue crab mortality even if they are
capable of capturing juvenile crabs in the seagrass
beds.

A single oyster toadfish was found on a tether after
an experimental trial, having swallowed the tethered
juvenile whole. Similar events occurred during
 tethering experiments in seagrass beds near Mana-
hawkin, New Jersey (Wilson et al. 1987), and unveg-
etated subtidal flats in upper (Schwartz & Dutcher
1963) and lower (Lipcius et al. 2005) Chesapeake
Bay. Oyster toadfish are common in seagrass beds
and other shallow, structured habitats across the Bay,
with as many as 747 individuals caught in the VIMS
Trawl Survey in the summer of 2012 (Tuckey & Fab-
rizio 2012). Given their abundance in nursery habi-
tats throughout the tributaries (Schwartz & Dutcher
1963, Tuckey & Fabrizio 2012, 2016), oyster toadfish
may contribute significantly to juvenile crab mortal-
ity in Chesapeake Bay.

Our tethering experiments and accompanying
GoPro imagery revealed cannibalism to be a major
source of juvenile blue crab mortality, as well as
some novel finfish predators. A comprehensive list of
predators of juvenile blue crabs is necessary to deter-
mine the relative effects of predator species on the
blue crab population, and to understand the role of
predation and cannibalism in blue crab population
dynamics.
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