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ABSTRACT 36 

Sudden drops in pulse wave amplitude (PWA) measured by finger photoplethysmography (PPG) 37 
are known to reflect peripheral vasoconstriction resulting from sympathetic activation. Previous 38 
work demonstrated that sympathetic activations during sleep typically accompany the occurrence of 39 
pathological respiratory and motor events, and their alteration may be associated with the arising of 40 

metabolic and cardiovascular diseases. Importantly, PWA-dropsoften occurin the absence of 41 
visually identifiable cortical micro-arousalsand may thus represent a more accurate marker of sleep 42 
disruption/fragmentation. In this light,an objective and reproduciblequantification and 43 
characterization of sleep-related PWA-drops may offer avaluable, non-invasive approach for the 44 
diagnostic and prognostic evaluation of patients with sleep disorders. However, the manual 45 

identificationof PWA-drops represents a time-consuming practice potentially associated with high 46 

intra/inter-scorer variability. Sincevalidated algorithms are not readily available for research and 47 

clinical purposes, here we present a novel automated approach to detect and characterize significant 48 
drops in the PWA-signal. The algorithm was tested against expert human scorers who visually 49 
inspected correspondingPPG-recordings.Results demonstrated that the algorithm reliably detects 50 
PWA-drops and is able to characterize them in terms of parameterswith a potential physiological 51 
and clinical relevance, includingtiming, amplitude, duration and slope. Themethod is completely 52 

user-independent,processesall-nightPSG-data, automatically dealing with potential artefacts, sensor 53 
loss/displacements, and stage-dependent variability in PWA-time-series. Such characteristicsmake 54 

thismethod a valuablecandidate for the comparative investigation of largeclinical datasets, to gain a 55 
betterinsightinto the reciprocal links betweensympathetic activity, sleep-related alterations, and 56 

metabolic and cardiovascular diseases. 57 

 58 

 59 

 60 

Keywords: autonomic nervous system, sympathetic activation, photoplethysmography, Pulse Wave 61 
Amplitude, sleep, sleep disorders. 62 
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1.INTRODUCTION 64 

The autonomic nervous system (ANS) plays an integral role in the fine-tuning of a great number of 65 
physiological processesthrough the complementary and synergic activity of its main divisions, 66 
namely the sympathetic and parasympathetic nervous systems.Across a night of sleep, ANS 67 
activityundergoessignificant fluctuationsin relation tosleep-stage transitions(Somers et al. 1993; 68 

Trinder et al. 2001, 2012; Whitehurst et al. 2016) as well as phasic physiological and pathological 69 
sleep-related events, including cortical arousal as well as respiratory (e.g., apnea/hypopnea) and 70 
motor (e.g., limb-movement) events(Bosi et al. 2018; de Zambotti et al. 2018). Of note, abrupt and 71 
transient autonomic activations, which lead to increased sympathetic activity and result in 72 
peripheral vasoconstriction(Bartels et al. 2016; Catcheside et al. 2002; Grote et al. 2003a; Johnson 73 

and Lubin 1967), have been shown tooccur also in the absence of visually identifiable cortical EEG 74 

arousals, and have thus been suggested to represent aneven more accurate marker of sleep 75 
fragmentation and disruption(Dresler et al. 2012; Haba-Rubio et al. 2005; Janackova and Sforza 76 

2008; Lévy and Pépin 2003; Martin et al. 1997).Moreover, pathological conditions characterized by 77 
recurrent autonomic arousals, such as obstructive sleep apnea syndrome (OSAS) and periodic leg-78 
movement syndrome (PLMS), are typically associated with an increased risk of cerebrovascular, 79 
cardiovascular and metabolic disorders (e.g., hypertension, myocardial infarction, stroke) (Shimizu 80 
et al. 1992)(Vargas-Pérez, Bagai, and Walters 2017). Indeed, evidence indicates that nocturnal 81 

arousal-related autonomic and hemodynamic alterations may be associated with sustained daytime 82 

sympathetic modifications(Biaggioni and Calhoun 2016; Carlson et al. 1993; Fletcher 2003; Hedner 83 
et al. 1988; Somers et al. 1993, 1995) that are in turn implicated in the etiology of the above-84 
mentioned disorders(Brook and Julius 2000; Esler 2000; Fletcher 2003; Mark 1996; Sinski et al. 85 

2006; Thorp and Schlaich 2015; Tsioufis et al. 2011; Vinik, Maser, and Ziegler 2011). 86 

In light of these premises, the identification of a reliable,non-invasiveapproach for the 87 

characterization ofsleep-related autonomic activations wouldoffera new valuabletool for the 88 
diagnostic and prognostic evaluation of patients with sleep disorders. Among many different 89 
approaches for the assessment of sympathetic activity, finger photoplethysmography (PPG)emerged 90 

as a very promising candidate, since it is typically recorded during both standard polysomnographic 91 
(PSG) and polygraphic (PG) studies, and offers a portable, low-cost and non-obtrusivetechnology to 92 
continuously monitor relativevariations in peripheral blood flow in the microvascular bed of 93 
tissue(Allen 2007). The PPG-signal comprises a pulsatile physiological waveform (‘pulse wave’) 94 

attributed to cardiac synchronous changes, superimposed on a more slowly varying baseline with 95 
various lower frequency components attributed to respiration, sympathetic nervous system activity 96 

and thermoregulation(Nitzan et al. 1996, 1998, 2001). In particular, drops in pulse wave amplitude 97 
(PWA)(Korpas, Hálek, and Dolezal 2009), asmeasured at each cardiac cycle by PPG, are known to 98 
directly reflect changes in peripheral blood flow due to vasoconstriction (British Editorial Society 99 
of Bone and Joint Surgery. 1954), and may thus offer a relatively simple index of 100 
autonomicactivation (Grote et al. 2003b).In line with this, several studies already demonstrated a 101 

strong association of PWA-drops withobstructive respiratory events, like apneas and 102 
hypopneas,(Bosi et al. 2018; Grote et al. 2003a; Haba-Rubio et al. 2005; Karmakar et al. 2014),as 103 
well as with spontaneous and induced EEG arousals(Adler et al. 2013; Catcheside et al. 2002; 104 
Delessert et al. 2010). 105 

While most PWA-drops can be easily identified in the PPG-signal, their actual detection still largely 106 
relies upon human scorers, who have to mark each event manually. Manual PWA-drops scoringis a 107 

laborious and time-consuming process that inevitably limits the potential applicability of the PWA-108 
drop analysis to large databases of patients. Moreover, procedures based on manual scoring are 109 

known to suffer from reproducibility issues related to intra- and inter-scorer variability. This latter 110 
aspect is even more relevant in light of the fact that there is currently no consensus regarding the 111 
minimum amplitude threshold for the definition of clinically relevant PWA-drops, and that such 112 
parameterscommonlydiffer across studies and laboratories. Finally, even if some PSG-software 113 
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recently started to offer automated PWA-drop detection methods, these are often not validated and 114 
only allow the computation of simple, basic parameters, such as the overall number of drops per 115 
hour(Pulse-wave-drop index, PDI). 116 

To overcome the above-mentioned issues, here we describea novel,automated approach for the 117 
detection and characterizationof PWA-drops from whole-night PPG data.The proposed approach 118 

allows the extraction of variousparameters of potential interest, including relative timing (used to 119 
compute PDI or the association with other scored events of interest), amplitude, descending slope, 120 
ascending slope and duration. Several data-quality checks are included in the procedure in order to 121 
automatically deal with potential artefacts caused by movement and/or sensor loss/displacement 122 
throughout the night.The performance of this PWA-drop detection approach was evaluated by 123 

comparing the detections of the algorithm with those performed manually by two expert scorers 124 

board-certified in sleep medicine.In order to further showcase the possible advantages of the 125 

automated procedure for PWA-drop detection, we also applied the algorithm to investigate relative 126 
differencesacross sleep stages in terms of PWA-drop number and morphological properties. 127 

 128 

2. MATERIALS AND METHODS 129 

 130 

2.1 The PWA-drop detection algorithm 131 

The PWA-drop detection algorithm includes three main‘steps’ that are described in detail in the 132 

following paragraphs and are graphically summarized in Figure 1. First, the PWA-time-series is 133 

extracted from the raw PPG-signal and potential artifactual segments are identified and excluded 134 
from subsequent evaluations.Then,candidate PWA-drops corresponding to local peaks in the 135 
variance of the PWA time-seriesare identified.Finally, significant drops are selected among all 136 

candidates, based on a-priori defined criteria, and their main characteristics (e.g., timing, amplitude, 137 
slopes, duration,etc.) are stored for further evaluation. 138 

 139 

2.1.1 PWA-signal extraction and preliminary artifact detection 140 

The PPG-signal obtained from conventional pulse-oximeters, measuring pulsatile blood volume in 141 

the fingertip, is used as primary input for the algorithm. The Pulse Wave Amplitude (      ) 142 

time-seriesis thendefined,at each cardiac cycle ( ), as the difference between the maximum (peak) 143 
and minimum (nadir) values of the correspondent blood volume pulse-wave. Prior toPWA-signal 144 

extraction, the PPG-signal is smoothed (Savitzky-Golay filter with order   and 200 msspan) and 145 
constant and linear trends are removed. 146 

Prior to the actual PWA-drop detection, segments of the PWA-signal containing potentialartefacts 147 
are automatically identified and excluded from further evaluations. Specifically, an automatic 148 

procedure is used to exclude time-points for which: i) the PPG-waveform does not clearly show a 149 
consecutive maximum and minimum couple, but only two or more consecutive local maxima or 150 
minima (in other words, the blood volume pulse-wave of a particular cardiac cycle is not clearly 151 
identified); ii) the temporal distance from the previous PWA-time-point is not consistent with the 152 
physiologically plausible range of values for the heart-rate (a fixed threshold correspondingto 250 153 

heart-beats per minuteisused); iii) the PWA-valueat a specific time-point shows differenceswith 154 
respect to both the previous and the following PWA-time-pointsthat differ significantlyfrom the 155 

total distribution of difference values computed between all consecutive PWA-points (Modified 156 
Thompson Tau Test (Thompson 1985)).Moreover, in order to take into account the possibility of 157 
sensor loss or temporary displacement (e.g., due to subject movements throughout the night), the 158 
time-course of the root-mean-square (RMS)envelope of the PPG-signal is evaluatedusing a 100 159 



5 
 

samples moving-window, and PWA-drop detections are prevented within tracts in which the RMS-160 
value falls below a predefined arbitrary threshold that should be adjusted depending on the 161 

particular instrument used (here it was empirically set to     ). 162 

 163 

2.1.2 Definition of the baseline mask and identification of candidate PWA-drops 164 

Theobtained PWA-signal is smoothed using a moving average filter with a 5 heart-beats span. 165 
Then, the time-varyingPWA local variance and first derivative arecomputed using a 5 heart-beats 166 
widthwindow moving with steps of one heart-beat. The time-courses of these PWA-features 167 
areusedbothfor the definition of a ‘baseline mask’(i.e., stable segments of PWA-signal used as 168 

reference for the detection of relative variations) and the identification of candidate time-points 169 

including potentialPWA-drops. 170 

The baseline mask corresponds to the ensemble of all the ‘stable’ PWA-signal tracts lasting at least 171 

2 consecutive heart beats, and is obtained by excluding all time-points corresponding to local PWA-172 
variance-outliers, as computed with respect to the whole-night local variance distribution (Modified 173 
Thompson Tau Test (Thompson 1985)).Of note, the baseline mask includes no drops or 174 
discontinuities and is also progressively updated during the PWA-drop detection procedure by 175 
removing periods containing confirmed PWA-drops. 176 

Candidate time-points corresponding to potential PWA-drops are insteaddefinedas local peaks in 177 
the time-course of the PWA-local-variance that simultaneously display correspondent negative 178 
values for the first-derivative estimates. As detailed below, these candidate PWA-drops are 179 

subsequently confirmed only if they fulfil specifica-priori conditions. For each candidate time-point 180 

(  ) an observation interval is defined, ranging from the closest previous (     ) to the closest 181 

following (     ) maxima of the smoothed PWA-signal(    ).Absolute percentsignal 182 

decreases  are then computed for each time-point within theobservation intervalwith respect to a 183 

baselinevalue( ), defined as the mean of the closest previous 5 PWA-points belonging to the 184 

baseline mask (         ),          ), …,          ).).Of note, in the case of consecutive 185 

PWA-drops,stable baseline points may be availableonly far from the considered candidatedrop, and 186 
this could result in an inaccurate estimate of the PWA-drop amplitude. For this reason, if the 187 

distance between the candidate pointand the baseline points(  is greater than 10 heart beats, all the 188 
points belonging to this separating interval are considered, in addition to baseline points, in order to 189 

compute  . 190 

Baseline definition: 191 

           
          

   

 
  192 

           
                      

   
 
   

   
 (1) 193 

Where             represent the closest time-points belonging to the baseline mask and smaller 194 

than     , and                  (number of time-points included between the baseline points 195 
and the current drop). Thus, the percent signal decrease is then computed as: 196 

 197 

       
        

 
                              (2) 198 

 199 
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2.1.3 Selection and characterization of the ‘significant’ PWA-drops 200 

A ‘candidate’ PWA-drop is ultimately confirmedas a significant drop if the following empirical 201 
criteria are simultaneously fulfilled for the corresponding observation interval: i) at least two time 202 

points separated by less than 2 heart-beats show a percent decrease   greater than a 203 

specificthreshold , selected by the user       ; ii) at least fourtime points separated by less than 204 

2 heart-beats show a percent signaldecrease   greater than     .Indirectimplication of these 205 
criteria is that,in order to be eventually detected, a PWA-drop must be at least 4-heart-beats long. 206 

 207 
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 209 

Figure 1.PWA-drop detection algorithm.Panels (a),(b) and (c) report representative examples of the 210 
main stepsof the PWA-drop detection algorithm. (a) First, the        time-series (lower row)is 211 
extracted from the raw PPG-data (upper row). The red * indicates a representative exampleof an 212 
artefactual signal-change that is automatically identified and removed from the final PWA-time-series. 213 
(b) Local variance and first derivative (respectively drawn in red and green in the second row) are then 214 
evaluated for the PWA-signal in order to define a baseline mask (green line in the upper row) and 215 
detect candidate time-points for possible PWA-drops (indicated with magenta color).Finally, in panel 216 
(c), two examples of candidate drops are reported, with, below, the correspondent values of percent 217 
signal decrease (blue diamonds) in respect to the current baseline (mean value within the green shaded 218 
area). Only the candidate in the right panel fulfills the given conditions and it is eventually detected. 219 

 220 

Once a PWA-drop is finally detected its temporal extension is more precisely re-defined within the 221 

observation interval byusing as a reference the time-point corresponding to the greatest percent 222 

decrease(    , local minima in the smoothed PWA-signal). In particular, the drop starting point is 223 

defined within the            range as the first time point      after which   continuouslyremains 224 

greater than 10% (                           ). The ending point of each drop       is 225 

instead selected in the range           , in correspondence of the first time-point for whichat least 226 

one of the following conditions becomes true: i)    falls below    ; ii) the PWA-first-derivative 227 

approaches zero; iii) the duration of the ascending tract of the PWA-drop becomes greater than 30 228 

heart-beats. The reason for posing multiple conditions for defining the dropending-point is related 229 
to the fact that the PWA-signaloften does not return to previous baseline values, but rather ‘resets’ 230 

to a different stable value after the drop. Moreover, mainly in correspondence of sleep-stage 231 

transitions, the PWA-signal may undergo slow variations that could reflect a stage-dependent 232 

adaptation of the basal sympathetic activation level, rather than a sudden variation. 233 

For eachconfirmed PWA-drop a set of properties are estimated as shown in Figure 2. These 234 

properties include: the total duration  (time-interval comprised between istr and iend), the amplitude 235 

  (defined as the maximum absolute signal percent decrease within the drop),and the descending 236 

and ascending slopes (defined respectively as the decrement and increment in   values divided by 237 

the time expressed in seconds). The area under the curve (AUC) of the PWA-drop (computed 238 
approximating the integral of the absolute instantaneous percent decrease over the time expressed in 239 

seconds via the trapezoidal method), which depends on both the duration and the amplitude, is also 240 
computed for each event. 241 

 242 
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 243 

Figure 2 .Description of the parameters extracted for each PWA-drop detected by the algorithm.The 244 
amplitude  , the duration   and the area under the curve    are graphically represented on the left, 245 
while the descending     and ascending      slopes are mathematically defined on the right. Finally, the 246 
table on the right summarizes the unit of measurement for each parameter. 247 

 248 

2.2 Validation of the algorithm in a clinical dataset 249 

2.2.1 PSG recordings and manual scoring 250 

The detection algorithm was applied to the PPG-data extracted from the PSG overnight recordings 251 
of 16 patients (age 50.9 ± 6.33 yrs, 13F) randomly sampled from the HypnoLausSleep Cohort 252 

database, collected between 2009 and 2013 in Lausanne, Switzerland (Heinzer et al. 2015). The 253 
following selection constrains were imposed: absence of excessive daytime sleepiness (as measured 254 

using the Epworth Sleepiness Scale); BMI < 25 kg/m2; absence of hypertension, diabetes, 255 
metabolic syndrome and current or past cardiovascular diseases in the last 4 years; absence of self 256 

reported traffic accident in the last 4 years; absence of depression in the last 4 years. All the 16 257 
analyzed subjects were not under psychotropic medicament affecting the central nervous system, 258 
and none of them had a prior diagnosis of a central nervous system disease. As described in 259 
previous work, all recordings took place in the patients’ home environment in accordance with the 260 
2007 AASM recommended setup specifications, using a portable PSG recorder (Titanium, Embla 261 

Flaga, Reykjavik, Iceland). Specifically, an Embla Titanium 8000J Nonin adult oximeter was used 262 
to simultaneously collect SpO2 and PPG data. SpO2 data was acquired with a sampling rate of 263 
16Hz and a low-pass filter of 1.99Hz, while the PPG signal was collected with a sampling rate of 32 264 
Hz and a low-pass filter of 15.9 Hz. Two trained sleep technicians manually scored the PSG 265 
recordings using the Somnologica software(version 5.1.1, Embla Flaga, Reykjavik, Iceland), 266 

according to the 2007 AASM recommendations(Silber et al. 2007)(Table 1). Moreover, two 267 

physicians board-certified in sleep medicine (hereinafter referred to as ‘scorer 1’ and ‘scorer 2’), 268 

blind to algorithm detections, visually inspected thePPG data of each subject and manually marked 269 
individual PWA-drops (Somnologica software, 3-min windows) presenting a minimum percent 270 
signal decrease of 30%. The scorers relied on an electronic ruler provided in the software GUI next 271 
to the PPG-signal in order to assess the percent amplitude decrease of each PWA-drop. Information 272 

provided by non-PPG signals, including EEG, EMG and EOG were not taken into account during 273 
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the visual detection of PWA-drops. Obtained visual detections, were used to evaluate the accuracy 274 
of the automated PWA-drop detection algorithm, as detailed below. 275 

 276 

PARAMETER AVG SD 

Age 50.9 6.3 
Gender 13F/3M - 
BMI 22.7 1.8 
RDI 8.2 7.9 
AHI 5.6 6.7 
ODI 6.3 7.2 
SAT 95.5 1.6 
T90% 1.1 3.7 
PLM 3.3 7.7 

Table 1. Demographic and clinical characteristics (average and standard deviation) of included 277 
subjects. BMI = body mass index (kg/m2); RDI = respiratory disturbance index (events/h); AHI = 278 
apnea-hypopnea index (events/h); oxygen desaturation index (events/h); SAT = mean pulse oxygen 279 
saturation; T90% = percentage of total sleep time under a 90% oxygen saturation threshold; PLM = 280 
Periodic limb movement index during sleep (events/h). These parameters were calculated based on the 281 
AASM 2013 criteria. Based on AHI,10 subjects had no sleep disordered breathing (SBD), 5 subjects 282 
had mild SBD and 1 subject had moderate SBD.:  283 

 284 

PARAMETER AVG SD 

Total Sleeptime (min) 382.45 65.35 
N1 time (min) 44.50 25.40 
N2 Time (min) 152.44 36.30 
N3 Time (min) 93.72 23.98 
REM time (min) 91.81 29.55 
N1 proportion (%) 11.66 6.37 
N2 proportion (%) 39.81 5.34 
N3 proportion (%) 24.92 6.82 
REMproportion (%) 23.61 5.83 
WASO (min) 31.56 18.92 
ArousalIndex (n/h) 15.00 7.20 

 285 

Table 2.Sleep structure of the 16 subjects included in the analysis. The table includes both the total 286 
duration (min) and the relative proportion (%) of each sleep stage (N1,N2,N3,REM), as well as the 287 
number of arousals per hour and total time spent awake after the sleep onset (WASO; min). Group 288 
average (AVG) and standard deviation (SD) values for each property are reported in the first and the 289 
second column, respectively. 290 

 291 

2.2.2 Application of the PWA-drop detection algorithm 292 

For each subject, the PWA-drop detectionalgorithm was repeatedly applied using different 293 

thresholds for the absolute PWA-signal decrease, with values ( )that varied between 10 and 80%, 294 
with10% steps. All other algorithm parameters were set to fixed values, as described above.For 295 

each detected PWA-drop,the following properties were computed and stored for further evaluation 296 

(Figure 2):maximum absolute amplitude   ( ),descending slope    (   ),ascending slope     297 
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(   ),duration in seconds (s) and area under the curve    (   ).The PWA-drop index (PDI), 298 
corresponding to the number of detected drops per hour, was also calculated. 299 

 300 

2.2.3 Comparison of automated and manual scoring 301 

EachPWA-drop detected by the algorithmwas defined as either atrue positive (TP)or a false positive 302 
(FP)depending on whether (TP) or not (FP) it overlapped for at least10% of its length with the 303 
human scorer’s detections. Cases in which a PWA-drop was detected by the human scorer but did 304 
not overlapfor at least 10% of its duration with algorithm detections were marked as false negatives 305 
(FN).In this context, true negative (TN) cases (generally used for computation of ‘specificity’) 306 

could havebeen expressed as the total length of the recording thatwas free from both human and 307 

algorithm detections divided by the mean duration of the PWA-drops detected by the 308 

scorers.However,this kind of definition can lead to inflated specificity values, in particular when 309 
target events are very rare withrespect to the total duration of the recording, as could be expected 310 
for PWA-drops(Yetton et al. 2016).For this reason, we optedfor quantifying the performance of the 311 
algorithmin terms ofsensitivity (or recall) and precision, separately for each human scorer, at the 312 

varying of the amplitude threshold  (10-80%).Global values of sensitivity and precision across all 313 
the analyzed subjects were obtained by ‘concatenating’ all subjects’ recordings.In order to describe 314 

witha singlemeasurethe overall accuracy of the algorithm with respect to the two scorers, the F-315 
score was also computed on the whole recordings. Adopted definitions for sensitivity, precision and 316 

F-score are reported below. 317 

             
  

     
  ,             

  

     
  ,              

                     

                     
 318 

 319 

Analyses were performed both considering the whole period of sleep independently of the sleep-320 
stage (‘ALL SLEEP’) as well as separately for ‘NREM’ (N1+N2+N3) and ‘REM’ periods. 321 

 322 

2.2.4 Evaluation of stage-dependent differences in PWA-drop properties 323 

In order to provide an example of how the present algorithm could be applied to investigate changes 324 
in the properties and distribution of PWA-drops in physiological or pathological conditions, a 325 

specific analysis was conducted by evaluating stage-dependent differences in the characteristics of 326 

PWA-drops. As described below (see section 3.1), this analysis was conducted using a minimum 327 

absolute amplitude threshold of 40%. For each of the 16 subject included in the validation 328 
procedure, the following parameters were calculated within each individual sleep stage (N1, N2, 329 
N3, REM): PDI, amplitude, duration, slope-1, slope-2, AUC. Then, potential effects of the sleep 330 

stage on the examined propertieswereinvestigated using a repeated measures (rm)ANOVA (the 331 
sleep stage was considered as within-subjects factor; N=16). 332 

 333 

3. RESULTS  334 

3.1 Performance of the algorithm with respect to human scorers 335 

The performance of the PWA-drop detection algorithm, expressed in terms of both sensitivity and 336 
precision,are reported separately for each of the two human scorers,in panel (a) and panel (b) of 337 
Figure 3, respectively. Panel (c) of Figure 3directly compares the meannumber of detections per 338 
hour (PWA-drop index; PDI), for the two scorers and for the automated algorithm. All results are 339 

reported as a function of the amplitude threshold (               ) used for the detection 340 
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algorithm. Of note, the human scorers applied instead a rough amplitude threshold of about 30% to 341 
mark PWA-drops. 342 

 343 

 344 

Figure 3.Performance of the algorithm with respect to human scorers. Panel (a) and panel (b) show the 345 
sensitivity and precision of the detection algorithm with respect to scorer1 and scorer2, respectively. 346 
Values are expressed as a function of the amplitude threshold used by the algorithm (10-80% range, 10% 347 
steps). In panel (c) are instead reported the mean number of detections per hour for the two human 348 
scorers (scr1 and scr2) and for the algorithm.The red shaded area indicates the maximum confidence 349 
interval of the mean PDI obtained across the two human scorers and is reported to facilitate the 350 
comparison with values obtained for the automated algorithm at different threshold levels. Results are 351 
reported for the whole sleep period and separately for NREM and REM stages. 352 

 353 

On the whole, our results indicate that the amplitude threshold of 40% was associated with the 354 
bestoverall performance (best compromise between sensitivity and precision values) and resulted in 355 
a number of detectionscomparable to thoseof the two scorers. Mean values across scorers were 356 

80.9% and 72.9%, for sensitivity and precision respectively (as reported in detail inTable 2). Similar 357 
values were found also when NREM and REM sleep were analyzed separately:mean sensitivity 358 

values were in fact 80.4% and 81.8% for NREM and REM respectively, while corresponding mean 359 
precision values were 74.0% for NREM and 70.5% for REM. In light of these observations, the 360 
40% amplitude threshold was used forfurtherevaluations aimed at comparing PWA-drops detected 361 
by the algorithm with those identifiedupon visual scoring. 362 

 363 
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 364 

 ALL SLEEP REM NREM 

Total lenght (min) 382.5 ± 65.3 290.7 ± 47.1 91.8 ± 29.6 

N of PWA-drops (Scorer1) 3449 (215.6 ± 160.9) 2292 (143.2 ± 110.7) 1157 (72.3 ± 57.1) 

N of PWA-drops (Scorer2) 3053 (190.8 ± 117.9) 2115 (132.2 ± 89.3) 938 (58.6 ± 40.5) 

N of PWA-drops (Algorithm) 3696 (231 ± 143.3) 2455 (153.4 ± 111.8) 1241 (77.6 ± 44.6) 

Inter-Scorer Agreement (F-score) 70.2 % 71.6 % 67.4 % 

Accuracy Vs. Scorer1 (F-score) 78.9 % 78.3 % 80.1 % 

Accuracy Vs. Scorer2 (F-score) 73.8 % 75.3 % 70.6 % 

Mean Sensitivity  

80.9 % 
 

Scorer1: TP = 2875, FN = 691 
Scorer2: TP = 2510, FN = 589 

80.4 % 
 

Scorer1: TP = 1896, FN = 474 
Scorer2: TP = 1739, FN = 414 

81.8 % 
 

Scorer1: TP = 979, FN =217 
Scorer2: TP = 771, FN = 172 

Mean Specificity  

96.3 % 
 

Scorer1:  TN = 18825, FP = 821 
Scorer2: TN = 35967, FP = 1186 

96.9 % 
 

Scorer1: TN = 14741, FP = 559 
Scorer2: TN = 28011, FP = 716 

94.2 % 
 

Scorer1: TN = 4077, FP = 262 
Scorer2: TN = 7948, FP = 470 

Mean Precision  

72.9 % 
 

Scorer1: TP =2875, FP = 821 
Scorer2: TP = 2510, FP = 1186 

74.0 % 
 

Scorer1: TP =1896, FP = 559 
Scorer2: TP = 1739, FP = 716 

70.5 % 
 

Scorer1: TP = 979, FP = 262 
Scorer2: TP = 771, FP = 470 

 365 

Table 3. Inter-scorer agreement and detailed performance evaluation of the PWA-drop detection 366 
algorithm for T = 40 %.The algorithm-scorer agreement and the inter-scorer agreement levels are 367 
reported in terms of F-score. In addition to mean sensitivity and precision, the table also shows mean 368 
values of specificity (see section 2.2.3 of main text). For each parameter, the total number of true 369 
positive (TP) and false positive (FP) PWA-drops computed with respect to each scorer are reported.  370 
Results are divided in “ALL-SLEEP”, “NREM” and “REM”, according to whether they were 371 
computed on the whole sleep period, or specifically within a single sleep stage. The overall length of 372 
each considered condition is reported in the first row, while rows from 2 to 5 report the respective 373 
number of detections performed by the two scorers and the algorithm. 374 

 375 

As shown in Table 2, the overall accuracy of the algorithmwith respect to the human scorers, 376 
expressed in terms of F-score, reached values of 78.9% and 73.8% for scorer 1 and scorer 2, 377 
respectively. Both these values were greater than the inter-scorer agreement, which corresponded to 378 
70.2%. In other words, the overlaps betweenthe algorithm’s detections and the detections of each 379 

one of the two scorers were greater than the overlap between the detection of the two scorers. 380 
Again, similar results were obtained when NREM and REM sleep were analyzed separately. 381 

 382 



14 
 

 383 

Figure 4.Examples of PWA-drops detected by the algorithm (using T=40%) and by the two human 384 
scorers, during NREM (left) and REM (right) sleep periods. Each panel includes three figures: the 385 
first row shows the PWA time-series (black dots) and its smoothed version(red line); the second row 386 
shows the correspondent time-varying percent signal decrease with respect to the preceding baseline 387 
period (blue dots); the third row shows the detections of the two human scorers (in red and magenta 388 
respectively) and the onesof the automated algorithm (in blue). 389 

 390 

NREM REM
(a)

(b)

(c)

(d)
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The lack of a full consistency between the algorithm and the scorers, especially in terms of 391 
precision, suggested that the detection procedure may have led to a relatively high number of false 392 
positive (FP) detections. However, a visual inspection of the PWA-signals allowed us to confirm 393 
that quite all detections performed by the algorithm corresponded to ‘true’ PWA-drops, and that 394 

most of the inconsistencies likely emerged from the tendency of the human scorers to detect larger, 395 
more evident drops, while neglecting the smaller ones. This is clearly illustrated by the 396 
representative examples reported in Figure 4, and by the comparison of the properties of TP and FP 397 
PWA-drops shown in Figure 5. Indeed, paired t-tests comparing the propertiesof true positive (TP) 398 
and false positive (FP) detectionsacross subjects revealed a significant difference in thearea under 399 

the curve (AUC), with greater values for TP relative to FP detections. Moreover, the human scorers 400 
tended to detect longer and more abrupt PWA-drops, characterized by a steeper descending slope 401 

(    ) and a shallower ascending slope (    ), as compared with those detected by the algorithm. Of 402 

note, however, substantial inter-scorer and inter-stage variability were also observed. For instance, a 403 
significant difference in PWA-drop duration between TP and FP detections was found only for 404 
scorer 2, while a very similar duration of TP and FP drops was observed for scorer 1.  405 

Finally, Table 4 displays the values of accuracy, sensitivity, specificity and precision of the 406 

algorithm obtained after manual re-classification of all PWA-drops that were identified by the 407 
algorithm but were missed by at one or both the human scorers. All indices increased considerably 408 
and reached values above 90%. Indeed, we observed that 83.4% and 86.1% of algorithm detections 409 
missed respectively by scorer1 and scorer2 resulted to represent true PWA-drops. The true false 410 

positive cases were mainly caused by artefacts in the PPG signal, mostly in correspondence with 411 
movements and arousals 412 

 413 

 ALL SLEEP REM NREM 

Accuracy Vs. 
Scorer1 (F-score) 

90.3 % 90.1 % 90.5 % 

Accuracy Vs. 
Scorer2 (F-score) 

91.3 % 91.0 % 91.9 % 

Mean Sensitivity  90.8 % 90.6 % 91.2 % 

Mean Specificity  99.6 % 99.7 % 99.3 % 

Mean Precision  95.2 % 95.1 % 95.2 % 

 414 

Table4. table reports performance statistics (the same of Table 3) for the algortithm (T = 40%) re-415 
evaluated after visual reclassification of all algorithm detections marked as wrong by one or both of 416 
the two scorers. In order to re-evaluate the statistics, we have added algorithm detections reclassified as 417 
“true” to the pool of single scorer detections. 418 

 419 

 420 

 421 

 422 
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 423 

Figure 5. Properties of the PWA-drops corresponding to true positive (TP) and false positive (FP) 424 
detections (amplitude threshold T = 40%). Shown properties include amplitude ( ), duration ( ), 425 
descending and ascending slopes (    and     ), and the area under the curve (   ). Comparisons 426 
were performed using paired t-tests across subjects, separately for the two human scorers (scr1 and 427 
scr2, respectively). For each property, mean values across subjects (TP in green and FP in magenta) 428 

p = 0.265 p = 0.090 p = 0.587 p = 0.224 p = 0.193 p = 0.209

p = 0.544 p = 1.664*10-4 p = 0.562 p = 5.364*10-4 p = 0.924 p = 7.234*10-3

p = 1.572*10-3 p = 0.0591 p = 0.027 p = 0.468 p = 7.439*10-3 p = 0.158

p = 0.021 p = 8.234*10-6 p = 0.251 p = 1.634*10-5 p = 0.353 p = 5.975*10-4

p =0.031 p = 6.992*10-3 p = 0.062 p = 0.0155 p = 0.172 p = 0.091

ALL SLEEP NREM REM
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are reported in separate bar-plots. P-values obtained for each comparison are reported in boxes below 429 
the bar-graphs. The three columns of the graph report results obtained for the whole sleep period as 430 
well as for NREM and REM episodes separately. Significant results (      ) are indicated with bold 431 
text.  432 

 433 

3.2 Analysis of PWA-drops properties and distribution across sleep stages 434 

In order to furtherhighlightpotential applications and advantages of the present automated procedure 435 

for PWA-drop detection, we evaluated the properties and distribution of PWA-drops across 436 

different sleep stages, investigating the presence of potential differences with a repeated measures 437 

(rm)ANOVA performed across subjects. As in previous analyses, PWA-drops were detected using a 438 

40% amplitude threshold. Figure 6 showsin distinct panels the mean number of PWA-drops per 439 

hour (PDI), and the mean values of their amplitude ( ), duration ( ), descending slope (    ), 440 

ascending slope (    ), and area under the curve(   ),across N1, N2, N3 and REM sleep. 441 
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 442 

Figure 6. Distribution of PWA-dropindex and maincharacteristics ( ,  ,     ,      and    ) across 443 
different sleep stages.Red diamonds indicate mean values (across subjects) for N1, N2, N3 and REM 444 
episodes.The red shaded areaindicatescorresponding mean values ±SD computed for the whole sleep 445 
period. In order to evaluate the effect of the sleep stage on PWA-drop properties anrmANOVA was 446 
performed (N=16, STAGE as within subject factor). Correspondent p and F(3,45) values are reported 447 
in the boxes below each graph. Significant results (      ) are indicated with bold text. Given the 448 
known association between PWA-drops and respiratory events, the bottom panel shows the respiratory 449 
disturbance index (RDI) computed for each sleep stage. 450 

 451 

The PDI was found to differ significantly across sleep stages (rmANOVA; p=10-7, F(3,45)=17.54), 452 

with the lowest value (         n/h) in N3 sleep and the highest in REM sleep (     5.7n/h). 453 

Significant, but less robust effects, were also observed for amplitude (p=0.02, F(3,45)=3.68), duration 454 
(p=0.01, F(3,45)=4.11) and AUC p=0.0006, F(3,45)=6.99). In these cases, the lowest values were again 455 
observed for N3, while the highest were found for N1. No significant effects of stage were found 456 
for descending (p>0.2) and ascending (p>0.05) slopes, although a statistical trend was observed for 457 
this latter parameter. In fact, the ascending slope tended to be lowest in N1 and highest in REM-458 

sleep. 459 

 460 

4. DISCUSSION 461 

A growing body of evidence indicates that drops in pulse wave amplitude (PWA)resulting from 462 
autonomic vasoconstriction, may represent a sensitive marker of autonomic activations, whose 463 
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alterations are in turn associated with severalpathologicalconditions. While PWA-drops can be 464 
easily measured non-obtrusivelythrough photo-plethysmography (PPG),their actual detection still 465 
largely relies upon human operators, who visually inspect the whole-night PPG-trace and manually 466 
mark each event. Importantly, this approach strongly limits reproducibility, due to intra- and inter-467 

scorer variability, and prevents the possibility to investigate the potential predictive role of PWA-468 
related indices in large cohorts of patients.Of note, most of the automated detection tools available 469 
in commercial software suites are not scientifically validated, nor freely available, and only allow 470 
the computation of simple, basic parameters, such as the PWA-drop index. To overcome these 471 
issues, here we developed and validated an automated approach for the detection and 472 

characterization of PWA-drops in whole night PPG-signals. We demonstrated that the algorithm 473 
reliably detects PWA-drops with an accuracy that appears to be even higher than the onesof expert 474 
human operators. Finally, we showed that the algorithm may allow to easily investigate not only the 475 

number of events per hour, but also several other parameters with a potential physiological and 476 
clinical relevance, including timing, amplitude, duration and slopes. These properties can be used to 477 
study how the PWA-drops change as a function of different sleep stages, or in relation to their 478 
association with other physiological or pathological events (e.g., cortical arousals, motor or 479 

respiratory events). This kind of investigation could gain an important role in clarifying the 480 
pathogenesis of many cardiovascular and metabolic diseases, as well as in the definition of tools for 481 

the diagnostic and prognostic evaluation of patients with sleep disorders. 482 

 483 

Performance of the PWA-drop detection procedure 484 

In order to evaluate the performance of the PWA-drop detection procedure, a comparison was 485 

performed with the gold standard represented by the manual scoring of two independent human 486 
experts. In line with previous work(Adler et al. 2013; Haba-Rubio et al. 2005), the human scorers 487 

were instructed to mark events characterized by a minimum absolute PWA-signal reduction 488 
corresponding to the 30%. Of note, however, there is currently no consensus, nor a well-defined 489 
pathophysiological knowledge, to guide the selection of thisimportant parameter, that has been in 490 

turn indicated as potentially informative about the intensity of the underlying sympathetic 491 
activation. Moreover, during visual scoring, the quantification of the actual signal percent variation 492 
may be subject to a great within- and between-scorer variability. For these reasons, we incorporated 493 
in theautomated detection procedure the possibility for the user to modulate the amplitude threshold 494 

and we performed the present validation procedure by testing different values ofthis parameter, 495 

between 10% and 80% (with 10% steps). 496 

As expected, sensitivity and precision showed opposite trendsas a function of the amplitude 497 

threshold, irrespective of the sleep stage or the human scorer. In particular, the sensitivity of the 498 
algorithm was found to reach a maximum in correspondence of the minimum amplitude threshold 499 
(T = 10%), when the algorithm detected the greatest number of drops. Vice-versa, values of 500 
precision increased with higher amplitude thresholds, while the number of algorithm detections 501 
decreased. Among the tested amplitude thresholds, the one corresponding to 40%  produced the best 502 

compromise between sensitivity (~80%) and precision (~70%) and led to an overall number of 503 
detections consistent with those provided by the two human scorers. The detections obtained by the 504 
algorithm with a 40% threshold are thus more similar to those obtained based on visual inspection 505 
and a (visually estimated) 30% amplitude threshold. This observation suggests that the operators 506 

may actually tend to miss PWA-drops for which the amplitude value is higher but relatively close to 507 
the selected threshold, probably because of a low precision in visually estimating the drop’s relative 508 
amplitude. Of note, this effect could be also expected to result in relative variations across scorers, 509 

with a negative impact on the reproducibility of results. In line with this, we found that the 510 
agreement between the two scorers (expressed in terms of F-score) only reached 70%, a value that 511 
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was lower than those expressing the agreement between the algorithm and each of the two scorers 512 
(~75%). This result impliesthe existence of a greater variability between the two human scorers, 513 
compared to the one between each human scorer and the automated algorithm and points to a 514 
greater reliability and reproducibility of the latter. 515 

Importantly, while the sensitivity of the algorithm reached values above 80%, the precision 516 

remained relatively low (~70%), indicating the possibility of false positive detections by the 517 
algorithm. However, a visual inspection of PWA-drops detected by the algorithm but not by the 518 
scorers (apparent false positives), confirmed that these were actual changes in the amplitude of the 519 
PWA-signal, very similar in shape to true positive drops, even if sometimes less pronounced and 520 
with their amplitude close (but not below) the selected threshold (see examples in Figure 4). 521 

Moreover, in many cases, even when a PWA-drop detected by the algorithm was not recognized by 522 

a scorer, it was instead identified by the other scorer. A more detailedanalysis of the differences 523 

between true positive (i.e., drops marked by both the algorithm and the scorers) and false positive 524 
PWA-drops confirmed that such events tended to have similar amplitudes, but different slopesand 525 
areas under the curve (AUC).However, these differences were not consistent across the two scorers 526 
and could then be driven by subjective criteria.Globally, our results suggest that the human scorers 527 
tended to miss relatively small and shallow events, even though they actually passed the selected 528 

(30%) amplitude threshold. This happened especially when several PWA-drops occurred in 529 
sequence, thus reflecting difficulties in precisely and reproducibly estimatingupon visual 530 

inspectionthe maximum amplitude of each dropin relation to preceding baseline values. The same 531 
issue related to the withinand betweenscorer variability in amplitude estimation may also contribute 532 

to explain the apparent ‘false negative’ detections, corresponding to cases in which the algorithm 533 

failed to detect a drop marked by the human scorer(Figure 4). 534 

Overall, while the inclusion of only two human scorers is not sufficient to draw clear conclusions 535 

regarding the reproducibility of a human-based evaluation of PWA-drops, our results suggest that 536 
this process may be affected by a non-negligible inter-scorer variability. Such variability may alter 537 

the reproducibility of results in individual studies, thus limiting the possibility to compare findings 538 
obtained in different cohorts and by different research groups. This issue is made even worse by the 539 
lack of a consensus regarding the criteria –and in particular the amplitude threshold- that should be 540 

applied for the correct identification of clinically relevant PWA-drops.Our results suggest that these 541 
limitations could be overcome by using automated approaches based on standardized criteria. 542 

 543 

Potential applications in physiological and pathological states 544 

A clear advantage of the automated detection algorithm over manual scoring lies in the possibility 545 
to rapidly and easily measure several properties of each PWA-drop, even in large samples. In 546 
addition to the timing of each event, which could be used to evaluate the number of drops per hour 547 

(PDI) across the whole sleep period or within particular stages, or the association with other specific 548 
events (e.g., apnea or hypopnea events), other measured parameters include amplitude, duration, 549 
descending slope, ascending slope and area under the curve. Here we showed that these properties 550 
of the PWA-drops tend to differ significantly across sleep stages. In particular, the number, 551 
amplitude, duration and area under the curve of PWA-drops share a common trend, decreasing from 552 

N1 to the deepest stage of NREM sleep (N3). Most properties of PWA-drops occurring during 553 
REM-sleep were similar to those observed in N2, with the notable exception of the number of 554 

events per hour, which was found to be higher in REM than in any other sleep stage. This 555 
observation is consistent with the known intrinsic variability of most autonomic signalsduring REM 556 
sleep.While, at present, the possible clinical value of described morphological properties of the 557 
PWA-dropsis unknown, future studies in clinical populationswill allow to investigate theirpossible 558 

alterations and predictive rolein relation to distinct physiological and pathological processes. 559 
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 560 

5. CONCLUSION 561 

Evidence indicates that theanalysis of drops inpulse wave amplitudeduring sleep may offer a very 562 
promisingmarker ofchanges in autonomic activation, which are potentially associated withsleep 563 
fragmentation and disruption in pathological states(Delessert et al. 2010; Grote et al. 2011; 564 
Karmakar et al. 2014; Sommermeyer et al. 2014, 2016). Here we developed an automated algorithm 565 

for the detection and characterization of PWA-drops that aims at overcoming most of the limitations 566 
associated with user-dependent analyses, including long processing time and high intra- and inter-567 
scorer variability. The proposed algorithm is supposed to work in a completely user-independent 568 
fashion, starting from all-night PSG-data, and automatically dealing with the potential presence of 569 
movement artifacts and/or the possibility of sensor loss/displacement throughout the night, and self-570 

adapting to stage-dependent variability in the PWA-signal.In light of these properties, it may allow 571 
to analyze large databases in a relatively short time and provides the opportunity to efficiently 572 

evaluate the potential impact of different PWA-drop amplitude thresholds on other parameters of 573 
interest. The algorithm, written in MATLAB(The Mathworks Inc 2009), is freely available for 574 
downloadin the OSF repository 575 
(https://osf.io/c2eup/?view_only=a2890a0f06704cf1a281eee5727d8790 ).We hope that the use of 576 

automated detection approaches by future studies will lead to a better understanding ofphysiological 577 
changestriggered by autonomic activations during sleep andof the possible value of PWA-derived 578 
parameters in predicting the risk of cardiovascular and metabolic diseases associated with sleep 579 

disorders. 580 

 581 
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