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ABSTRACT 

SAME STONE, DIFFERENT OUTCOMES: 

MARINE COMMUNITIES ON ENGINEERED VS. NATURAL ROCK SHORES 

May 2020 

Lucy Anne Dando Lockwood, B.A., Tufts University 
M.S., University of Massachusetts Boston 

Directed by Professor Jarrett E. K. Byrnes 

The effort to protect coastal property and infrastructure from storm damage, erosion, 

and sea level rise has resulted in increased construction of coastal protection structures (CPS) 

worldwide. Researchers around the globe have found that the marine communities living on 

CPS differ from those living on natural rock outcroppings in the same area. We conducted a 

classic disturbance experiment to investigate possible differences in marine organism 

response and community assembly between natural and human-constructed rocky intertidal 

habitat along the Massachusetts coast. The one-year study used naturally occurring rock 

shores and human-made granite seawalls with both wave-exposed and wave-protected areas. 

Significant differences in both the amount of substrate utilization and the composition of the 
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colonizing marine community on the natural and human-engineered habitats were evident 

one year after the clearing disturbance. The natural rock experimental plots had a higher 

mean proportion of macroalgal and marine invertebrate cover overall, and regrowth was 

dominated by red and brown algal species. Human-engineered seawalls evidenced 

significantly lower mean cover proportion and dominance of green algal species. Wave 

exposure also had a significant effect, though less than substrate type. These experimental 

results raise the possibility that ongoing expansion of CPS along the Gulf of Maine and New 

England coast could alter coastal marine ecosystems and, over time, could have far-reaching 

impacts on the region’s marine biodiversity and ecosystem functioning. 
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CHAPTER 1 

INTRODUCTION 

Shorelines around the world are increasingly altered by humans to create more 

developable land or to protect existing human-made infrastructure and activities. Increased 

coastal development coupled with sea level rise and the threat of more intense or frequent 

storms due to global climate change is driving construction of new and ever larger coastal 

protection structures (CPS) such as sea walls, breakwaters, and shoreline revetments. Around 

the globe, marine ecologists have questioned whether these hard structures function 

ecologically the same as naturally-occurring rock outcropping along the shore or whether the 

assemblages of marine macroalgaes and invertebrates living on and around them differed 

from those found on natural shores. If they differ, that could have broad implications for 

marine ecosystem health and functioning. 

Coastal lands have attracted human settlement since prehistory, offering access to 

food and resources, transportation and trade routes (e.g., Bailey, 2004; Bauer, 1998; Carter, 

2006; Erlandson & Fitzpatrick, 2006; Gophna & Liphschitz, 1996; Ivanova, 2012; Westley & 

Dix, 2006). Today, population density around the world remains concentrated along the coast 

(Martinez et al., 2007; Neumann, 2015). Data from the 2010 US census revealed 39% of the 

continental U.S. population living in coastal counties even though that represents less than 

10% of U.S. land area (Crossett et al., 2013) and by 2013 that population had risen to an 

estimated 133.2 million representing over 42% of the continental U.S. population (Fleming et 
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al., 2018). With human settlement has come development: buildings and houses, ports and 

resorts, roads and refineries.  

Along with increasing coastal habitation and development, climate change is now 

adding to the pressure on shorelines worldwide through the combination of rising sea levels 

and the threat of increased coastal storm frequency and intensity (Doggett, 2015; Stocker et 

al., 2013). In a 2014 article, The Guardian reported 4.2 million people in the U.S. living at 

four feet or less above sea level (McKie, 2014). The response has been increasing efforts to 

tame the effects of waves and water through the use of coastal protection structures. With 

projections for significantly higher sea levels in the future (Melillo et al., 2014; Rasmussen et 

al., 2018; Stocker et al., 2013), the push to create artificially engineered shore protection is 

likely to accelerate. 

Collectively referred to as “hardened” or “armored” shorelines, coastal protection 

structures come in many forms (see Appendix A Table S1), but all aim to protect shores and 

shoreline property against coastal erosion and damage from waves and storm surges. In the 

state of Massachusetts, USA, more than 230 miles of privately-owned shoreline protection 

structures exist along with 140 miles of hardened publicly-owned shoreline (Fontenault et al., 

2013). More than a quarter of the state’s approximately 1,500 miles of shoreline is hardened 

(Figure 1), with Boston Harbor the most densely at close to 60 percent. Northward, in the 

neighboring state of New Hampshire, approximately 70 percent of the state’s eighteen miles 

of Atlantic coastline is armored through the use of rocks, concrete blocks, and concrete 

seawalls (Blondin, 2017; Rice, 2015).  
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Coastal protection structures have a disruptive effect on the marine habitats 

surrounding them. Jetties and groins are designed to impede shoreline sediment transport; 

breakwaters and seawalls are intended to dissipate wave energy. Changes to the physical 

conditions and the forces operating within a particular area impact the organisms inhabiting 

or trying to settle in that environment. Key abiotic factors are affected by CPS: sediment and 

organic material transport, shoreline slope, substrate, wave action, currents, and water and 

substrate temperature (e.g., Becchi et al., 2014; Rolet et al., 2015; Walker et al., 2008). 

Changes to each of these inhibit or enhance the ability of marine species to live on or around 

Figure 1: Map of engineered shoreline in 

Massachusetts in 2013. 
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the engineered shoreline, favoring some species while creating inhospitable conditions for 

others. 

How marine organisms respond to these anthropogenic coastal structures, and the 

biological underpinnings of why individual species and community assemblages respond as 

they do, is an area of active research worldwide. Studies have documented changes in the 

number, type, and diversity of species living on or around human-made coastal structures 

compared to those on natural coastal areas (Aguilera et al., 2014; Bulleri, 2005; Cha et al., 

2013; Gacia et al., 2007; Peterson et al., 1999; Ravinesh & Bijukumar, 2013). Across studies, 

researchers found that, while marine life is adaptive to artificially hardened shoreline, CPSs 

supported decidedly different community assemblages than those found on nearby natural 

rocky substrate (Bulleri and Chapman, 2010; Martins, et al., 2009; Rolet, et al., 2015). The 

results of adding artificial hard substrate are neither equally beneficial nor equally 

detrimental to all littoral and nearshore organisms in a region. Some studies suggest that 

anthropogenic structures favor certain species over others or perhaps the converse is true and 

some organisms are disadvantaged under the conditions of CPSs. A common finding has 

been lower species richness compared to natural rocky shores or outcroppings (Morley et al., 

2012). Species abundance on manmade structures also differed from that of natural hard 

substrate, but whether the difference in abundance was negative or positive depended on the 

species (Aguilera et al., 2014). The differences in species richness and species abundance 

translated into a general finding of lower species diversity on the artificial structures (Firth et 

al., 2014). 

Prior to this study it was unclear whether the results seen in other parts of the world 

— namely that of dissimilarity between marine communities living on human-created 
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intertidal hard substrate and those living on naturally occurring rock shores — held true in 

New England and the Gulf of Maine region. No published studies existed for either New 

England or the Gulf of Maine, and while it was likely that the same dissimilarity did hold, the 

validity of that assumption remained unproven. We sought to answer the question of 

similarity in the context of the northern Massachusetts coast within the southern Gulf of 

Maine in the Northwest Atlantic. Using a classic disturbance experiment on both naturally 

occurring rock shores and on human-made granite seawalls, we asked the question of 

whether the response to disturbance was the same on both types of shore in terms of level of 

recolonization and types of organisms recolonizing. 

To investigate possible differences in community resilience and community assembly 

between natural and human-constructed rocky intertidal habitat within the context of the 

southern Gulf of Maine, we drew on an established method used by ecologists to compare 

intertidal communities: the disturbance experiment (sensu Dayton, 1971; Lubchenko & 

Menge, 1978; Sousa, 1979; Underwood et al., 1983). In the intertidal regions of rocky shore 

habitat, open space for attachment to the substrate is limited, as any bare rock is soon 

colonized, first by establishment of a biofilm and then by successional assemblages of foliose 

and encrusting macroalgae and sessile invertebrates. New patches of open space are created 

intermittently by storm-tossed debris and rocks, erosion, and, in a cold climate such as 

Massachusetts, by winter ice scour. Deliberate experimental creation of cleared, open patches 

of rock allows for comparison of recolonization of those patches across sites and treatments. 

The rate of recovery from disturbance has been experimentally connected to ecosystem 

productivity and biodiversity, which in turn are factors in ecosystem resiliency (Aquilino & 
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Stachowicz, 2012; Cardinale et al., 2011; Levin & Lubchenco, 2008; Palumbi et al., 2008; 

Stachowicz et al., 1999). 

The study focused on two questions comparing the natural and human-made intertidal 

shoreline: 1) is there a difference in the amount of substrate area successfully resettled one-

year after a clearing disturbance, and 2) are the newly-established assemblages of organisms 

the same on both natural and human-constructed rock substrate? The experiment ran for a 

period of one year using multiple paired sites of granite seawalls and adjacent rocky shore. 

The focal questions can be stated as two experimental hypotheses that the experiment 

was designed to test: 

H0:  After one year, the mean proportion of covered space is the same on natural 

rocky intertidal wall clearings as on engineered seawall clearings. 

HA:  After one year, the mean proportion of covered space differs on natural rocky 

intertidal wall clearings from that on engineered seawall clearings. 

And: 

H0:  After one year, macroalgal and marine invertebrate groups found on natural 

rocky intertidal wall clearings are the same as those on engineered seawall 

clearings. 

HA:  After one year, macroalgal and marine invertebrate groups found on natural 

rocky intertidal wall clearings differ from those on engineered seawall clearings. 

Rejecting the null hypothesis on this first question would mean there was evidence of 

a significant response of cover proportion to the type of intertidal vertical granite habitat, 

natural compared to engineered. Likewise, rejecting the second null hypothesis would be 
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evidence of a significant response of one or more macroalgal or invertebrate groups to 

engineered vs. natural vertical granite intertidal habitat. 

A secondary line of inquiry was that of the impact of wave exposure on the one-year 

response to clearing. Was there was a significant difference in substrate type response due to 

wave exposure, i.e., did an experimentally-cleared square’s wave exposure (directly exposed 

to waves or protected from waves) affect the one-year response to clearing? If there was an 

effect, was this effect greater or less than that of substrate type? 

At the experiment’s conclusion, the data supported rejection of both null hypotheses. 

The data from the intertidal assemblages on the natural and on the human-engineered habitats 

showed differences in both the amount of substrate utilization after the clearing disturbance 

and in the community profile of the colonizing marine organisms. The natural rock 

experimental plots exhibited a higher mean level of coverage by macroalgae and 

invertebrates, as measured by percent cover after one year, and had regrowth dominated by 

red and brown algal species as compared to the dominance of green algal species within plots 

on the human-engineered seawalls. Furthermore, the effect of wave exposure on the 

experimental plots was not significant, but the effect of substrate type was significant across 

both wave-exposed and wave-protected clearings. 

These experimental results raise the possibility that ongoing expansion of CPS along 

the Gulf of Maine and New England coast could have far-reaching impacts on the region’s 

marine biodiversity and ecosystem functioning, affecting economically and socially vital 

fisheries, tourism, and quality of life along the coast. 
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CHAPTER 2 

METHODS 

Study Sites 

To experimentally test whether intertidal marine assemblages living on human-

engineered seawalls respond differently to disturbance than those on natural rock shores, the 

study used both seawalls and vertical rock shores composed of the same material. Substrate 

material is known to affect marine community composition (Burt et al., 2009; Cha, et al., 

2013; Glasby, 2000; Guidetti et al., 2004; Spagnolo et al., 2014; Tyrrell & Byers, 2007; cf. 

Bulleri, 2005), so seawalls made of blocks of local granite were specifically selected rather 

than seawalls made of concrete.  Comparing seawalls built of local granite to naturally 

occurring granite shores eliminated the influence on the experiment of the numerous 

differences inherent in dissimilar substrate materials, such as granite and concrete (e.g., 

surface chemistry, roughness, pH, hardness). 

Three sites in close proximity on the tip of Cape Ann along the northern 

Massachusetts, USA, coast were selected for the experiment (see Figure 2), as each featured 

a seawall constructed of local cut granite blocks with adjacent natural rock intertidal 

shoreline that featured vertical granite surfaces with orientations similar to that of the 

seawall. Keeping all the sites in the same area of the coast lessened the likelihood that any 

differences in the disturbance response of a seawall and that of a rock shore merely reflected 
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large differences in larval supply rather than inherent differences between the seawalls and 

the natural rock shores.  

 

Figure 2: The three study sites on Cape Ann, Massachusetts, USA. 

(Map credit: Google Maps, 2019) 

The three granite seawalls selected had been built many decades ago, in one case 

dating back over 100 years. Winter nor’easters and blizzards had at times seriously damaged 

all of them, most recently in the “No Name Storm of ’91”, and the nor’easters of 2010 and 

2013. Only seawall sections that had not been impacted by repairs in recent years were used 

as experimental sites, thus allowing comparison between the natural rock and the granite 

seawalls of mature, rather than newly formed or mid-successional, marine communities. The 

age of the seawalls meant that the cut granite surfaces had weathered in the marine 

environment for years rendering them more similar to the natural rock surfaces than would be 

the case with newly installed cut granite blocks (see Figure 3). 
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Each of the seawall and natural rock shores sites extended vertically to at least the 

Mean Low Water (MLW) level. The experiment was conducted at sites where there was 

ample space for experimental plots in the lower intertidal region. Many seawalls in 

Massachusetts are constructed in the high intertidal or supratidal region of the shore where 

the main objective is to protect upland areas from storm wave-driven erosion. The upper half 

of the intertidal zone is a much harsher environment for organisms due to the longer period 

of emersion. The lower intertidal region, with its long immersion period, provides a more 

protective environment with greater access to water-borne nutrients and more water-

Figure 3: The protected side of the three granite seawalls used as study sites. 

(Clockwise from top left: Lane Cove, Pigeon Cove, and Eastern Point.) 
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transported propagules available for settlement, thus supporting a faster process of 

disturbance response and more complex climax community state.  

The three sites were similar in having sufficient tidal-exchange currents along them to 

keep them well-flushed, even on the wave-sheltered portions of the seawalls and natural rock 

walls. The waters around Cape Ann have low levels of pollution thanks to strong offshore 

currents that supply clean water from the north and to the relative absence of heavy industry 

or large urban run-off that might be terrestrial sources of pollutants. Each site did experience 

a moderate level of motorized boat traffic. At Lane Cove and Pigeon Cove, motorized boat 

traffic was limited to small outboards and small to medium size lobster boats due to the 

shallow waters and small area of the coves, while at Eastern Point most of the boat traffic 

was in the main channel approximately 80 meters from the study transects. Wave energy at 

each location could be high during storm events – which is why the seawalls had been 

constructed in the first place – but was more moderate under typical conditions as observed 

over twelve to fourteen visits at each site during 2016 and 2017. 

The existing communities of intertidal organisms at each of the study locations 

comprised common macroalgal and invertebrate species (see Appendix A Table S2). 

Photographic surveys and informal survey projects undertaken in 2016 prior to the 

experiment established that all the sites were dominated by macroalgal cover rather than 

space-occupying sessile invertebrate species, such as Semibalanous balanoides or Mytilus 

edulis. The brown algal species, such as Ascophyllum nodosum and Fucus spp., appeared to 

be most abundant, followed closely by red algal species, such as Chondrus crispus and 

Polysiphonia lanosa, the latter of which is hemiparasitic, found primarily on Ascophyllum 
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nodosum and less frequently on Fucus spp. Green macroalgae were also present at each site, 

however only on the wave-protected side of the seawall at Pigeon Cove did they appear to 

achieve equal abundance (in the form of Ulva spp.) with the brown and red macroalgal 

species also present. Among sessile invertebrate species acorn barnacles (e.g., Semibalanus 

balanoides) were ubiquitous, found at every site on both natural and engineered substrates. 

Non-indigenous species of ascidian, particularly Botrylloides violaceus, were found at each 

site but not in abundance. Mobile invertebrates observed were primarily Littorina spp. snails 

and Carcinus maenus crabs. Overall, the communities appeared to contain the same general 

mix of common intertidal macroalgal and invertebrate species with no significant differences 

readily apparent except for the higher proportion of Ulva spp. on the protected side of the 

Pigeon Cove seawall, as noted earlier. 

Experimental Design 

Each study site was divided into two treatment areas: the natural rock shore and the 

human-made granite block seawall. Each treatment area was further sub-divided into two 

categories: vertical sides that were wave-exposed and vertical sides that faced away from the 

open ocean and thus were wave-protected (facing the opposite direction, approximately 180 

degrees). Wave exposure, while not as dominant an influence as emersion time, is 

nonetheless an important abiotic factor affecting the distribution of intertidal organisms, 

particularly on hard substrate shores. Furthermore, one of the shoreline changes that coastal 

protection structures can introduce is creation of wave-sheltered shoreline along the “back” 

or landward side of seawalls, jetties, and breakwaters. It was possible, therefore, that 

differences in marine colonization between natural and human-made hard shorelines might 
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be simply a result of the CPS structures having more wave-protected space. For that reason, 

we deliberately included in the experiment equal numbers of scraped plots that were wave-

exposed and wave-sheltered for both substrate types.  

The three sites had seawall faces (exposed and protected) that each featured a 

different directional orientation along with natural rock faces with the same or very close to 

the same orientations (see Appendix A Table S3). The mix of directional orientations 

allowed comparing the community response of the paired natural and human-constructed 

sites under a mix of sun exposure, prevailing wind, and prevailing wave direction conditions. 

Both the seawalls and the rock shorelines extended vertically below MLW and above 

MHW (Mean High Water). A 30-meter transect was laid out horizontally along each vertical 

surface (seawall exposed, seawall protected, rock shore exposed, rock shore protected) at 

approximately 0.6m above MLW. Thus, each constructed seawall had two transects 

(exposed, protected) and each natural rock shoreline had two transects (exposed, protected) 

such that there were four transects total for each of the three sites. 

A random number generator was used to select five whole numbers and, based on 

these random numbers, five locations on each 30m transect were marked. At each marked 

location a square area measuring 15 cm x 15 cm (225 cm2) was cleared of all organisms. 

Clearings were made directly below the corresponding meter point on the transect line unless 

there was a crack (or in the case of the granite blocks, a crevice between blocks) in which 

case the clearing was shifted to the left and/or down as necessary, such that clearings were at 

least 5 cm from any crack or block edge and no cracks or crevices were included in the 

sampling area. If the initial square for clearing included any large surface anomaly such that 
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it would be unable to be sufficiently cleared or had an area that significantly deviated from 

the vertical plane (e.g., an area of harder rock projecting outward from the vertical plane), the 

clearing area was shifted first to the left and then downward to the area closest to the original 

meter point that was sufficiently level with the vertical plane and capable of being scraped 

cleanly. Each of the squares was scraped using heavy-duty paint scrapers along with crevice 

tools and stiff wire brushes to remove all foliose macroalgae (including holdfasts), all 

invertebrates, and as much crustose algae as possible (the thin, flat, crustose algal specie 

Hildenbrandia rubrum proved difficult to remove completely as noted below). The degree of 

clearing was held constant across samples and sites regardless of the effort needed. 

The design of the disturbance experiment at the three sites featured a factorial design 

with one bounded continuous dependent variable (the percentage of space-occupying 

macroalgal-invertebrate cover of each cleared square) and two categorical independent 

variables (treatments) of substrate type (engineered rock CPS or natural rock wall) and 

exposure (direct exposure to dominant waves or protected from dominant waves). The 

experimental design thus provided balanced data such that there were equal numbers of 

observations for each level of a factor (Table 1). 
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Table 1. Factorial design of the disturbance experiment 
Frequency Table by Factors 

Treatment Direct-wave 
Exposed 

Direct-wave 
Protected Total 

Engineered Wall 15 15 30 
Natural Granite 15 15 30 
Total 30 30 60 

 

 
Frequency Table by Site 

  Lane Cove Pigeon Cove Eastern Point Total 

Engineered      

 Exposed 5 5 5 15 

 Protected 5 5 5 15 

Natural      

 Exposed 5 5 5 15 

 Protected 5 5 5 15 

Total  20 20 20 60 

 

 
All of the experimental clearings (20 per site, 60 clearings total) were completed over 

a period of six weeks in late August – early October 2016. The sites were then revisited 

approximately one year later over a period of six weeks in September-October 2017.  Each of 

the sixty cleared squares was assessed to determine how much of the cleared 225 cm2 was 

now covered either by attached macroalgae and invertebrates. Each scraped square was 

visually inspected and photographed from a distance of approximately 0.5m as measured by 

a hand-held length of rope. Determination of cover proportion was initially done by visual 

inspection at the site and then verified by photographic assessment using the open-source 



16 

photo quadrat analysis software photoQuad v1.4 (Trygonis and Sini, 2012) to create a 10 x10 

grid overlay on each digital photo. The cover proportion for each cleared square was 

recorded as a value between 0 and 100. The crustose red algae Hildenbrandia rubrum was 

not included in the percent coverage calculation owing to the fact that it grows in so thin a 

layer (0.2-0.5 mm thick, Guiry and Guiry, 2019) and adheres so strongly to rock surfaces that 

it could not be established that all such algae had been removed from the cleared squares in 

2016 in the absence of more destructive clearing methods such as a blow torch or bleach 

wash.  

In addition to the overall cover proportion calculation, each individual square was 

further analyzed to determine the species occupying the covered space down to the lowest 

taxonomic level possible with photographic analysis. The experimental squares had been 

photographed using a Nikon D3100 digital camera with a resolution of 14 megapixels. The 

resolution allowed for zooming in on a digital photo or on portion of a photo to aid in species 

identification. Each photographed square was processed with the open-source biological 

imaging software ImageJ 1.52h (Schindelin, J., et al., 2012; Schneider, C. A., et al., 2012) 

and with PhotoMechanic 5.0 (CameraBits, Inc., 2018) software. Each pixel region of the 

photograph with a visible species was individually outlined and classified by species or 

taxonomic group. All individual organisms (e.g., Semibalanus balinoides), colonies of 

organisms (e.g., Botrylloides violaceus), individual fronds of macroalgae (e.g., Ascophyllum 

nodosum), and clumps of macroalgae (e.g., Corallina officianalis) or invertebrates (e.g., 

Eucratea loricata) were outlined and tagged by either species name or taxonomic group for 
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each photograph. Areas of a photograph without macroalgae or invertebrate cover remained 

untagged. 

The analysis only assessed the top layer of organisms visible in the photograph. At 

the one-year point, photographed colonization and regrowth on the experimental squares 

were limited, with no evidence of widespread layering of marine organisms as might be 

found on more mature intertidal assemblages. Thus, the single-layer species analysis was not 

considered to have materially affected the analysis. 

Data Analysis 

The statistical analysis was performed using the R programming language v.3.4.2  (R 

Core Team, 2017) in RStudio v.1.1.423 (RStudio, Inc., 2018) using the betareg package 

(Cribari-Neto and Zeileis, 2010) and lmtest package (Zeileis and Hothorn, 2002) along with 

additional code packages written to extend R capabilities. The full list of packages and the R 

code used for the statistical analysis can be found in Appendix C. The initial data entry was 

done using Microsoft Excel for Windows version 14.0.07 (Microsoft Corporation, 2010) and 

the data file then read into R for the statistical analysis.  

Beyond summary data statistics and initial data visualization, three separate statistical 

analyses of the data were performed: two analyses used the overall percent cover of the 

experimental square by macroalgae and sessile invertebrates after one year; one analyzed the 

presence and space occupancy of specific macroalgal and invertebrate groups on the 

experimental squares after one year. 
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Analysis (1)  ANOVA of the cover proportion data with two-way independent factorial 

design 

The cover proportion data was negatively skewed (see Figure 4a), so a logit 

transformation was used to spread the data at the end points. Percent cover was transformed 

using a logit transform, ln[p/(1-p) where p is the proportion of the formerly cleared square 

now covered by macroalgae or invertebrates. The logit transform cannot compute values of 0 

or 1, the ends of the decile range, so the R logit function adds or subtracts 0.025 to any 

proportions with a value of 0 or 1. To examine the effect of each of the two fixed factors 

(substrate type and wave exposure) on overall one-year cover proportion, we fit multiple 

linear regression models using additional regressor terms. The models were then compared 

using coefficient of variation and AIC (Akaike information criterion). The linear regression 

model with the best fit included an interaction term as an initial test for any interaction 

effects between substrate type and wave exposure, with site added as a blocking factor. 

The results of the linear model were analyzed using a two-way independent Type I 

ANOVA to look for treatment effects with substrate type and wave exposure as fixed factors 

and an alpha of 0.05.  The experiment had balanced data (equal numbers of observations for 

each level of a factor) with a continuous dependent variable: cover percent (percent of square 

area with macroalgal or invertebrate cover after one year) and two categorical independent 

variables: substrate ("engineered", i.e., human-made granite seawall or "natural", i.e., natural 

rock wall) and exposure ("exposed", i.e., direct wave exposure or "protected", i.e., protected 

from direct ocean waves).  There were fifteen replicates of each treatment combination. 
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Assumptions of normality were assessed by visual inspection of multiple plots of the 

model residuals: standardized residuals vs. fitted values, histogram of residuals, quantile-

quantile plot, and Cook’s distance values (see Appendix B Figure S1). Plots of standardized 

residuals vs. fitted values showed no fitted pattern with the zero-line close to horizontal. The 

histogram of the model residuals, although slightly left-skewed, conforms to a rough bell 

curve and the Q-Q plot revealed the residuals to be not too far off from the model line and 

without extreme outliers. Cook’s distance test was also used to assess whether any potential 

outliers were having undue influence on the model and none were found to do so. The three 

values highlighted on the Cook’s distance plot (data records 25, 45, and 52) were lower 

percent cover values but not extreme outliers as the maximum Cook’s distance for the 

outliers is 0.10, well below the 1.0 value considered extreme. The most extreme value 

identified was further examined using a Bonferroni adjusted outlier test which confirmed that 

no studentized residuals had a Bonferroni p-value that was significant, thus no outliers were 

of concern.  

The Shapiro-Wilk test, which has a null hypothesis of a normal distribution, was used 

to check assumptions of data normality. The test returned a p-value of 0.24, thus the null 

hypothesis of a normal distribution was not rejected. The assumption of homoscedasticity 

was tested using the Non-Constant Variance score, which returned a p value of 0.703, thus 

the null hypothesis that the data was homoscedastic was not rejected. On the other hand, 

Levene’s test of the data (using Brown and Forsyth variant which is less sensitive to 

departures from normality), revealed that exposure type and the interaction term did have 

unequal variances between the groups (see Appendix A Table S5). Furthermore, the results 
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of the Studentized Breusch-Pagan test for homoscedasticity (Koenker, 1981) also indicated 

variances that were not purely homoscadastic. Nonetheless, ANOVA is fairly robust with 

data that is non-normal and has some degree of heteroscedasticity (Whitlock & Schluter, 

2015), particularly with balanced data with sufficiently large sample sizes and a less than 

tenfold difference among variances, conditions met by our dataset.  
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Analysis (2)  Beta regression of the cover proportion data using the R betareg() package 

Using a frequentist ANOVA approach for data in which the dependent variable is 

bounded with values in the standard unit interval of 0 to 1 has some shortcomings even after 

logit transformation. As noted by Cribari-Neto and Zeileis in their 2010 paper, such data are 

typically heteroskedastic with more variation around the mean and less at either end of the 

unit interval, along with asymmetric distribution. The cover proportion data for the 

experiment, a bounded continuous variable, had both of those qualities, so we decided to 

further explore the data by conducting a second analysis, this time using an inference 

approach with a beta regression as developed by Ferrari and Cribari-Neto (2004). The 

betareg() package written by Cribari-Neto & Zeileis implements model fitting via a standard 

maximum likelihood approach with an additional precision parameter. The cover proportion 

data was not logit transformed for this second round of analysis (the betareg() package itself 

logit transforms the data as part of the computation), however values of 0 and 1 were 

adjusted to be within the required 0-1 range by the addition (or subtraction) of 0.025 to the 

data. Multiple models were fit, including using different link functions and additional 

regressor terms for the precision parameter, and models were then compared using a 

likelihood-ratio test and AIC. The results of the beta regression model with the best fit were 

tested using ANOVA (Type II mandated by the betareg() package) to assess if there were 

significant effects on percent cover from either of the treatments or the interaction thereof.  
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Analysis 3) Marine macroalgal and invertebrate group presence and cover proportion 

We wanted to assess whether the macroalgal and marine invertebrate assemblages 

found on the natural rock sites after one year were significantly different in composition than 

those on the engineered seawall clearings. To do this we analyzed the one-year photographs 

of the experimental squares and mapped the cover proportion of seven algal and sessile 

invertebrate groups. We also generated count data for the two mobile invertebrate groups 

observed: herbivorous gastropods and carnivorous gastropods. The photographic analysis did 

not permit full species-level identification of all organisms in part because some species 

require microscopic examination to resolve to the species level. The species groups blended 

both functional traits and various levels of phylogenetic identification: brown structural 

macroalgae, red structural macroalgae, green ephemeral macroalgae, Cirripedia (barnacles), 

ascidians, bryozoans, hydroids, and two groups of gastropods: herbivores and carnivores. We 

generated comparative data for the species groups from 2016 start of the experiment through 

analysis of photo plots adjacent to the scraped plots at the time the plots were cleared. 

The primary interest was in comparing the presence of locally occurring structural 

macroalgal species (e.g., fucoids, Laminara spp., Ascophyllum nodosum, Chondrus crispus, 

and Mastocarpus stellatus), which are perennial and provide habitat for other species, with 

that of the ephemeral green macroalgaes, such as Ulva spp., which are often speedy 

colonizers of cleared substrate but which do not provide lasting year-round habitat. Another 

group of particular interest was the acorn barnacles (Cirripedia phylogenic group), i.e., local 

species Semibalanus balanoides, as barnacles can be be both a pioneer species on bare 

intertidal substrate and a creator of habitat. Barnacles often provide a foundation for the 
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settlement and growth of other intertidal organisms, such as Ascophyllum nodosum (Kordas 

& Dudgeon, 2009). The bryozoan category contained a single species, the habitat-forming 

(erect, branching) bryozoan Eucratea loricata which is common to the region. The hydroid 

category also contained a single common species, Dynamena pumila. The ascidian group was 

of interest as many of the most common ascidians in coastal Massachusetts are non-

indigenous species that can have negative impacts on intertidal and subtidal communities. 

Researchers on both sides of the Atlantic have found that human-made substrates may 

support the establishment and spread of such non-native species (Airoldi et al., 2015, Tyrrell 

& Byers, 2007). Mobile invertebrates were represented by two gastropod groups, herbivorous 

(e.g., Littorina littorea and Crepidula fornicata) and carnivorous (Nucella lapillus and 

Mitrella lunata). Polychaetes (specifically, Spirorbus sp.) were present in a single 

experimental square and thus were not included as a grouping. As noted earlier, crustose 

algal species, such as Hildenbrandia rubra, were also excluded. 

The statistical language R was used to generate summary statistics and data 

visualizations for both the area covered by species groups and the number of squares in 

which each of the species groups were found. A multivariate regression model was created 

using the logit-transformed percent cover of each of the seven macroalgal and sessile 

invertebrate groups as response (dependent) variables with fixed factors of substrate type and 

exposure type along with an interaction term of substrate|exposure and site as a blocking 

term. The model results were assessed using univariate ANOVA tests to determine whether 

significant differences existed in the percent cover of each of the different species groups on 

the two substrate types, natural rock and seawall, and on the two wave exposure regimes, 
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protected and exposed. Each sessile species group included sixty observations with balanced 

data, less than tenfold difference among variances, and no extreme outliers, thus conforming 

to ANOVA assumptions. The mobile invertebrate groups of herbivorous and carnivorous 

gastropods were analyzed separately as count data (number of individuals per cleared 

square). We fit a multiple generalized linear models (GLM) using different distributions 

(Poisson, quasi-Poisson, zero-inflated Poisson, negative binomial, zero-inflated negative 

binomial, and hurdle) which were then compared using log-likelihood, AIC and other tests. 

Results from the model with the best fit – negative binomial - were then used with ANOVA 

(Type I) to assess the gastropod count data for significant differences across substrate type 

and wave exposure as fixed factors using an alpha of 0.05. 
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CHAPTER 3 

RESULTS 

One year after the 60 intertidal experimental squares had been cleared of all visible 

macroalgae and invertebrates, marine life had returned to all of them, in some cases almost 

obliterating any sign of the year-earlier disturbance. The variation in the resettlement 

distribution over the 60 experimental squares can be seen in the histograms in Figure 4 

below. 

  

Figure 4: Histograms of % Cover on Experimental Squares. 

a) showing all 60 sqares and b) square coverage by substrate type 
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The proportion of re-growth and colonization of marine macroalgae and sessile 

invertebrates ranged widely, from one plot that had only 7% cover after a year’s time to five 

plots that were completely covered. The one-year cover proportion on the two different 

substrate types — engineered granite seawall and natural granite rock shoreline — (Figure 

4b) is clearly left-skewed for the natural sites indicating a higher proportion of cover. 

Preliminary statistical analysis of the data bears out this appareant higher rate of re-

colonization on the natural rock compared to that on the engineered seawalls. The mean 

percent cover for the 60 sites was 63.95% ± 3.71 with SD of 28.7. Engineered seawall 

scraped sites had mean cover of 47.17% ± 5.13 and SD of 28.11. By comparison, the subset 

of the observations with the smallest range in percent cover was that of scraped areas on 

natural granite shores which had the highest mean percent cover of 80.73% ± 3.19 after one 

year, the highest median cover (86% compared to 69% for all), the lowest SD of 17.5, and 

the least amount of sample variance (305.1 compared to 824.8 for all observations). One year 

later, the scraped squares on the natural granite shores had an average of 72% more cover by 

macroalgae and marine invertebrate species than did the squares on the granite seawalls. 

Summary descriptive statistics for the whole data set are provided in Table 2, with the 

complete set of descriptive statistics in Appendix A Table S4. 
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Table 2. Summary statistics for disturbance experiment: 
percent cover after one year 

(See Appendix A Table S4 for additional descriptive statistics) 
 

All 
Plots 

Engineered Natural Exposed Protected 

Number of 
Observations 

60 30 30 30 30 

Min (% cover) 7.00 7.00 34.00 7.00 16.00 

Max (% cover) 100.00 94.00 100.00 100.00 87.00 

Median (% 
cover) 

68.50 48.00 86.00 88.50 59.00 

Mean (% 
cover) 

63.95 47.17 80.73 72.43 55.47 

Std Error of the 
Mean 

3.71 5.13 3.19 5.69 4.31 

Sample Std 
Dev. 

 (% cover) 

28.72 28.11 17.47 31.16 23.63 

95% Conf. 
Interval lower 

(% cover) 

56.53 36.90 74.36 61.06 46.84 

95% Conf. 
Interval upper 

(% cover) 

71.37 57.43 87.11 83.81 64.10 

  no CI overlap and 95% CI does 
not include the sample mean of 

the other 

CI has overlap but neither 
includes the sample mean of 

the other 
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The box plot in Figure 5 illustrates the difference in the cover proportion between the 

experimental clearings on natural granite outcroppings and the plots located on the cut 

granite seawalls. Note that in this boxplot based on substrate type, the 95% confidence 

interval upper and lower bounds have no overlap between the treatment categories, natural 

and engineered. 

 

This visualization lends support to rejecting the null hypothesis of equal means (and 

thus no significant difference) in the percent cover after one year between the two treatments. 

Interestingly, after one year the scraped squares that were facing the open ocean 

(exposed) and thus subject to higher wave energies also had a higher mean cover proportion 

than did those that were located on the more wave-protected areas (mean 72.4%  ± 5.69 

Figure 5: Box plot of % cover by substrate type. 
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exposed, 55.5%  ± 4.31 protected). The difference between the means of the two levels of 

this factor in the experiment was smaller, however, with a greater range in the response 

among the exposed sites and a higher sample standard deviation (31.2 exposed, 23.6 

protected), as shown in Table 2 and Appendix B Figure S2. The cross-tabulation summary 

statistics in Table 3 below shows that the higher mean level of re-colonization on the natural 

rock sites, as measured by the percent cover after one year, extended across both wave-

exposed and wave-protected sites. 

Table 3. Cross-factor statistics for percent cover after one year 

Factor   Exposure Type       

  Level Exposed Protected     

  n= 15 for all 
levels Mean SE 

Mean 
Std. 
Dev. Mean SE 

Mean 
Std. 
Dev Mean SE 

Mean 
Std. 
Dev. 

Substrate Engineered 55.47 8.73 33.81 38.87 4.8 18.6 47.17 5.13 28.11 

Type Natural 89.4 4.09 15.83 72.07 3.83 14.85 80.73 3.19 17.47 

    72.43 5.69 31.16 55.47 4.31 23.63       

 

Although three separate sites around Cape Ann in Massachusetts were used for the 

study, site itself was not planned as an experimental factor in the study. The cover proportion 

means did not differ significantly among the three sites (Appendix A Table S4) but site was 

included as a blocking factor in the final statistical models. 

Additional boxplots of the percent cover data by exposure type, site, and for the full 

data set may be found in Appendix B, Figure S2. 
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Analysis Results (1) ANOVA of cover proportion data with two-way independent factorial 

design 

Statistical comparison of several fitted models of the cover proportion data supported 

using substrate and exposure as main effects, site as a blocking factor, and an interaction 

term. The interaction term provided an initial test for any interaction effects between 

substrate type and wave exposure (Equation 1). 

Y = βο + β1X1 + β2X2 + β3X3 +β4X1X2 + ε  
where Y = decile coverage percent, X1 = substrate type, X2 = wave exposure and X3 = site. 

Equation 1 

The results of the linear model (Appendix A Table S5) indicated no significant 

interaction effect was present between substrate type and wave exposure. The absence of a 

significant interaction effect was confirmed by the visual interaction plot in Figure 6. 
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Figure 6. Visual interaction plot of substrate type and exposure type 

Simpler models are generally preferable; however, omitting the interaction term from 

the model would mean losing some data because, while the interaction effect was not 

significant, some effect existed. Likewise, while site as a factor was not significant, it was 

included as a blocking factor in the model. 

A two-way ANOVA was used as an omnibus test to assess the main effects of 

substrate and exposure on the mean proportion of macroalgal and sessile invertebrate cover 

on the scraped squares after one year. The ANOVA results (Table 4) confirmed that substrate 

type (F(5, 54) = 36.961,  p < .001) and exposure type (F(5,54) = 13.904,  p < .001) both had 

significant effects on the cover proportion of the squares after one year, while site (F(5, 54) =  

0.324,  p =  .724) and the interaction term of substrate:exposure did not have a significant 
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effect (F(5,54) = 1.672,  p = .202). The study also had sufficient power (using the convention 

of a 0.80 threshold with β = 0.20) to detect significant effects for substrate type and wave 

exposure. 

Welch’s T-Test was computed for each of the two factors (see Appendix A Table S7), 

further confirming that the factors substrate type and wave exposure had a significant effect. 

The effect sizes, (eta squared and Cohen’s f  — there is ongoing debate as to which is better 

suited to a two-way balanced ANOVA, see Breaugh 2003, Maher et al., 2013) calculated in 

Table 4 confirm that substrate type had a large effect size with wave exposure having a 

medium-size effect on the cover proportion at one year. 

Table 4. Analysis of variance table fixed-effects ANOVA 
using logit-transformed cover proportion as the response variable 

Term df Sum 
sqrs 

Mean 
sqrs 

F 
statistic 

p. value Eta sqr 
η2 

Cohen’s f Power 

Substrate Type 1 51.295 51.295 36.961 1.27e-07 0.345 0.827 1.0 
Exposure Type 1 19.297 19.297 13.904 0.000463 0.130 0.507 0.962 
Site 2   0.900   0.450   0.324 0.7244552 0.006 0.110 0.102 
Interaction 1   2.320   2.320   1.672 0.2015076 0.016 0.176 0.253 
Residuals 54 74.943   1.388 
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Analysis Results (2) Beta regression of the cover proportion data using the R betareg() 

package 

As noted earlier, an ANOVA in which the dependent variable is bounded with values 

in the standard unit interval (0 to 1) has some statistical shortcomings (Cribari-Neto & 

Zeileis, 2010) even after logit transformation, namely, the cover proportion data was typical 

in being heteroskedastic with more variation around the mean and less at either end of the 

unit interval, along with asymmetric distribution. To address this potential issue, a second 

analysis of the cover proportion data was completed using a beta regression model (Ferrari & 

Cribari-Neto, 2004), which uses maximum likelihood to fit the variate mean plus a second 

precision parameter. 

The beta regression model providing the best fit (as determined using a likelihood-

ratio test and AIC to compare models) was: 

Formula = Y ~ X1 + X2 +X3 + X1X2 | Z1 + Z2 

where Y = decile coverage percent, 
X1 = substrate type, X2 = wave exposure and X3 = site 

as the set of regressors for the main Maximum Likelihood equation using the default logit 
link 

and Z1 = substrate and  Z2 = exposure 
are an additional set of regressors for the precision equation (phi) with the default log link. 

Equation 2 

 

The full betareg model output is found in Appendix A Table S8. 

The results of the model were then tested using ANOVA , confirming the results of 

the earlier frequentist approach, namely, that the treatment factor substrate type had a 
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significant effect on the cover proportion of the experimental squares, that exposure type was 

also significant in terms of effect, and that site and the interaction term were not significant 

in having an effect on the percent cover on the squares after one year, as may be seen in 

Table 5. 

Table 5. ANOVA analysis of deviance table (Type II tests) 
for beta regression model using cover proportion as the response variable 

Term df Chi sq p value 
Substrate Type 1 47.383 5.838e-12 
Exposure Type 1 10.640 0.0011 
Site 2 0.753 0.6864 
Interaction 1 1.151 0.2833 
Residuals 54 

  

 

  



35 

Analysis Results (3) Marine macroalgal and invertebrate group presence and cover 

proportion 

The third statistical analysis focused on whether the underlying substrate (natural or 

engineered) or different wave exposures regimes (exposed and protected) had a significant 

effect on the presence or cover percentage of different macroalgal and marine invertebrate 

groups living on the experimental squares after one year. As noted earlier, organisms had 

been identified to the lowest taxonomic level possible under the constraints of the 

photography. The cover proportion results were then binned into nine groups based on 

functional roles combined with taxonomic grouping (see Table 6 below).  

Table 6. Macroalgae and marine invertebrate groups 

Species Group Example 

Brown macroalgae Ascophyllum nodosum 

Red macroalgae Chondrus crispus 

Green macroalgae Ulva spp.  

Hydroid Dynamena pumila 

Bryozoan Eucratea loricate 

Ascidian Botrylloides violaceus 

Maxillopoda Seminbalanus balanoides 

Gastropod – herbivorous Littorina littorea 

Gastropod – carnivorous Nucella lapillus 

 

The species of greatest interest were those organisms that help provide habitat for 

other marine organisms (e.g., perennial macroalgal species such as Ascophyllum nodosum) 

and pioneer species whose presence can help promote the establishment of additional 
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successional species (e.g., Semibalanus balanoides). A secondary interest was the presence 

of mobile invertebrates (gastropods), both herbivores and carnivores, as they can have 

significant top-down pressure on macroalgae and other invertebrates, respectively. Ascidians 

were also a focal group, as many of the most abundant intertidal ascidian species in 

Massachusetts are both non-indigenous and potentially damaging as invasive fouling species. 

One way to assess the distribution of species groups on the experimental squares was 

to count each group’s presence on the experimental squares after one year. The percent cover 

data was analyzed by species group using a simple presence/absence approach — was an 

organism belonging to the group had been observed at least once somewhere on the 

experimental square —  to produce a count of how many of the 60 squares each group had 

successfully colonized in a year. This was not a count of individual organisms but a count of 

the squares on which at least one instance each of a species groups could be seen. Using this 

approach macroalgal groups were the most frequently found site occupiers after one year, 

with brown and red macroalgae present on about an equal number of experimental squares, 

followed closely by the green macroalgal group. Among the marine invertebrate groups, 

barnacles were the most commonly found followed by ascidians and bryozoans. Herbivorus 

gastropods were more commonly found than carnivorous gastropods, and hydroids were the 

least commonly found group. The details of the count of squares on which the different 

species groups were observed is provided in Table 7 below and in the treemap shown in 

Figure 7. Additonal breakdowns of the count data by wave exposure and by site are provided 

in Appendix A Table S9 and Table S10 and are visualized by treemaps in Appendix B Figure 

S3 and Figure S4. 
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Table 7. Presence in experimental squares by macroalgae and invertebrate groups 
after one year, by substrate type 

Species Group Substrate Type 

  Engineered Natural 

  # of Sqrs. on 
which present 

% of Sqrs. on 
which present 

# of Sqrs. on 
which present 

% of Sqrs. on 
which present 

  (n=30) (30 = 100%) (n=30) (30 = 100%) 
Brown macroalgae 25 83% 30 100% 

Red macroalgae 25 83% 28 93% 
Green macroalgae 28 93% 21 70% 

Hydroid 1 3% 7 23% 
Bryozoan 9 30% 14 47% 

Acidian 11 37% 13 43% 
Maxillipoda 22 73% 20 67% 

Gastropod - herb. 0 0% 17 57% 
Gastropod - carn. 0 0% 11 37% 

 

The most common algal species found growing on the cleared areas one year later 

were pioneer/early successional ephemeral green macroalgal species, such as Ulva lactuca, 

and re-establishment of turf or structural species already dominent on surrounding rock 

surfaces, e.g.,  Chondrus crispus, Mastocarpus stellatus, Fucus distichus, and Ascophyllum 

nodosum. Two invertebrate species also were common colonizers of the cleared space: the 

common rock barnacle Semibalanus balanoides and the bushy hydroid Eucratea loricata. All 

of these species had been observed in 2016 prior to the start of the experiment as being 

present and part of the common intertidal species community of the Cape Ann region. The 

one notable result from this presence/absence count analysis was the complete absence of 

gastropods, either herbaceous or carnivorous, from any of the engineered seawall 

experimental squares. 
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Figure 7. Treemap of 2017 macroalgae and marine invertebrate groups by the number 
of squares in which present, subdivided by substrate type. 

Note that the Gastro_H (herbivorous gastropods) and Gastro_C (carnivorous gastropods) 
groups were only found on natural substrate, thus there is no subdivision for those two 

groups. 
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The second part of the species group analysis focused on the amount of physical 

space occupied by each of the macroalgal and sessile invertebrate groups after one year. 

Mobile invertebrates were not included in the spatial assessments, as they do not “cover” 

(take up) fixed living space on a marine surface the way that macroalgae or sessile 

invertebrates do. As had been observed at the sites prior to the beginning of the experiment in 

2016, macroalgal groups covered the greatest amount of physical space on the experimental 

squares (54%) with sessile marine invertebrate groups covering 11% of the space. The 

remaining surface space (35% of the total 13,500 cm2 study area, i.e., 60 squares of 225 cm2) 

was either open space or covered by crustose algae or, in a single case, occupied by a species 

not included in one the seven groups. Determination of the actual amount of open space after 

one year thus cannot be accurately computed because crustose algal species, such as 

Hildenbrandia rubra, were not included in assessing cover proportion and one marine 

species (the Spirorbus sp. found on a single square) was not included in the groupings. The 

differences among the groups in mean percent cover after one year is visualized as boxplots 

in Figure 8. 
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Figure 8. Macroalgae and marine sessile invertebrate groups percent cover of cleared 
squares after one year by substrate type 
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Looking only at the 65% proportion of the experimental squares that was covered at 

the end of one year, red macroalgae emerges as the dominant space-occupying group (38% 

of covered area), followed by the brown macroalgae (29% of covered area) and then the 

green macroalgae (17% of covered area). Barnacles occupied the greatest amount of space 

among the sessile marine invertebrates (12% of covered area), followed by the bryozoans 

(3% of covered area), the ascidians (1 % of covered area), and lastly the hydroid group which 

occupied the least amount of area (<1% of covered area). 

The treemap in Figure 9 illustrates the covered portion of the experimental area (the  

65% covered area in 2017 at the conclusion of the experiment) divided up by the seven 

macroalgal and sessile invertebrate groups, with each species group further subdivided by 

percent cover found on each of the two substrate types, engineered seawall and natural shore. 

What is notable from the treemap visualization is that, among the three macroalgal groups, 

red and brown macroalgae species dominated re-colonization of squares on the natural rock 

shore sites while green species dominated the regrowth on squares located on the seawall 

sites. The barnacle re-colonization was notable for being almost exactly equal in distribution 

between the natural substrate and the engineered substrate. The treemap in Figure 10 uses the 

same percent cover data but visualizes the species groups subdivided by exposure type, 

wave-exposed and wave-protected. The differences among the groups in mean percent cover 

after one year is visualized as boxplots in Appendix B Figure S6. 

Additional summary breakdowns of the covered area after one year in terms of the 

percent of the space occupied by the seven macroalgal and sessile invertebrate groups are 

shown in Appendix A Tables S11-S13. 
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Figure 9. Treemap of 2017 macroalgae and marine invertebrate groups sized by the 
percentage of total experimental square area covered, subdivided by substrate type. 

Note that the Gastro_H (herbivorous gastropods) and Gastro_C (carnivorous gastropods) 
groups are not included in the percent cover calculations as mobile species do not occupy 

space in the same sense as macroalgae and sessile invertebrates. 
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Figure 10. Treemap of 2017 macroalgae and marine invertebrate groups sized by 

coverage area, subdivided by exposure type.  

Note that the Gastro_H (herbivorous gastropods) and Gastro_C (carnivorous gastropods) 
groups are not included in the percent cover calculations as mobile species do not occupy 

space in the same sense as macroalgae and sessile invertebrates. 
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To determine whether the observed differences among the amount of area re-

colonized by the different species groups were significant in terms of either of the study’s 

two experimental factors, substrate type and exposure type, regression analysis was used and 

univariate ANOVA tests run on the model results. The results of the regression analysis 

confirmed that substrate had a significant effect on each of the three of the macroalgal groups 

but not on any of the sessile invertebrates. Exposure was significant for the bryozoan group 

but for none of the other sessile invertebrate or macroalgal groups. Although site as a 

blocking factor was not significant overall, it was significant for the three macroalgal groups 

as is visualized in the treemap in Appendix B Figure S5. Lane Cove is dominated by the 

brown algal species while Pigeon Cove is dominated by green algal species. The full set of 

ANOVA results for the 2017 species data and the accompanying tests for effect sizes and 

power are gathered in Table 8 below. The same ANOVA analysis was also run on the 

assembled 2016 data, the results of which are in Table S14 in Appendix A. 
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Table 8. Macroalgal and sessile invertebrate percent cover analysis 2017 
MANOVA Table (univariate ANOVAs) 

BROWN Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 0.00348 0.00348 33.382 3.87E-07 0.246 0.786 1.000 
exposure 1 0.00030 0.00030 2.832 0.09817 0.021 0.229 0.391 
site 2 0.00441 0.00221 21.164 1.63E-07 0.311 0.885 1.000 
substrate:exposure 1 0.00035 0.00035 3.361 0.07226 0.025 0.249 0.450 
Residuals 54 0.00563 0.00010           
RED Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 0.00288 0.00288 17.217 0.0001 0.178 0.565 0.986 
exposure 1 0.00029 0.00029 1.708 0.1968 0.018 0.178 0.257 
site 2 0.00398 0.00199 11.891 5.26E-05 0.245 0.664 0.995 
substrate:exposure 1 0.00004 0.00004 0.269 0.6064 0.003 0.071 0.081 
Residuals 54 0.00903 0.00017           
GREEN Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 0.00110 0.00110 11.545 0.0013 0.116 0.462 0.925 
exposure 1 0.00003 0.00003 0.315 0.5769 0.003 0.076 0.087 
site 2 0.00307 0.00154 16.083 3.32E-06 0.324 0.772 1.000 
substrate:exposure 1 0.00011 0.00011 1.104 0.2980 0.011 0.143 0.183 
Residuals 54 0.00516 0.00010           
HYDROID Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 1.10E-05 1.10E-05 3.128 0.0826 0.054 0.241 0.424 
exposure 1 2.08E-06 2.08E-06 0.593 0.4446 0.010 0.105 0.120 
site 2 3.38E-07 1.69E-07 0.048 0.9529 0.002 0.042 0.057 
substrate:exposure 1 4.17E-07 4.17E-07 0.119 0.7312 0.002 0.047 0.064 
Residuals 54 1.89E-04 3.50E-06           
BRYOZOAN Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 1.73E-06 1.73E-06 0.057 0.8124 0.001 0.032 0.057 
exposure 1 0.00016 0.00016 5.203 0.0265 0.079 0.31 0.626 
site 2 0.00015 0.00007 2.447 0.0961 0.074 0.301 0.494 
substrate:exposure 1 0.00006 0.00006 2.086 0.1545 0.031 0.197 0.303 
Residuals 54 0.00164 0.00003           
ASCIDIAN Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 1.73E-06 1.73E-06 0.130 0.7201 0.002 0.049 0.065 
exposure 1 1.81E-05 1.81E-05 1.355 0.2495 0.023 0.158 0.214 
site 2 3.71E-05 1.85E-05 1.392 0.2574 0.048 0.227 0.300 
substrate:exposure 1 1.10E-07 1.11E-07 0.008 0.9277 0.000 0.012 0.051 
Residuals 54 7.20E-04 1.33E-05           
BARNACLE Df Sum Sq Mean Sq F statistic p-value Eta sqr η2 Cohen’s f Power 
substrate 1 3.00E-07 2.50E-07 0.002 0.9651 0.000 0.006 0.050 
exposure 1 0.00011 0.00011 0.844 0.3622 0.015 0.125 0.151 
site 2 0.00026 0.00013 1.010 0.3710 0.036 0.193 0.227 
substrate:exposure 1 1.20E-06 1.23E-06 0.010 0.9226 0.000 0.013 0.051 
Residuals 54 0.00699 0.00013           
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The two gastropod groups were analyzed separately from the other species groups as 

individual count data (separate from the earlier count of number of squares in which 

gastropods were present), since mobile species do not occupy area on a substrate as do algal 

species or sessile invertebrates. The results of the negative binomial model confirmed that 

substrate as a factor was significant for both the herbivorous and carnivorous gastropods – 

not a surprise, since zero gastropods were found on the engineered seawalls. The model 

results were not significant for exposure type for either gastropod group but were significant 

for site for the carnivorous gastropod group. The results for both gastropod groups are shown 

in Table 9 below. 

Table 9. Analysis of Deviance Tables for Gastropod Groups 

HERBIVOROUS Df Deviance 
Residual 
Deviance Pr(>Chi) 

    77.045   
substrate 1 42.783 34.261 6.12E-11 
exposure 1 0.305 33.957 0.5809 
site 2 4.340 29.617 0.1142 
substrate_type:exposure_type 1 0.000 29.617 0.9997 

CARNIVOROUS Df Deviance 
Residual 
Deviance Pr(>Chi) 

    56.816   
substrate 1 22.110 34.706 2.575E-06 
exposure 1 1.002 33.7044 0.3169 
site 2 6.302 27.402 0.0428 
substrate_type:exposure_type 1 0.000 27.402 0.9998 
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CHAPTER 4 

DISCUSSION 

The results of this research suggest that marine intertidal communities on natural rock 

walls recover more robustly from disturbance events, filling cleared areas with space-

occupying organisms at a faster rate and favoring brown and red structural macroalgal 

species over green ephemeral ones. The overall differences in the disturbance recovery 

process likely stem from multiple drivers, including abiotic influences, such as substrate 

texture and adjacent surface regularity, and biotic factors, primarily the absence of 

gastropods on the human-engineered seawalls. 

One year after the scraping disturbance, green macroalgal species, such as Ulva 

lactuca and Ulva intestinalis, known early colonizers, domintated the seawall experimental 

squares both in the number of squares in which they were present and in greater overall cover 

proportion. The green algal dominance on the seawall squares likely was driven primarily by 

the complete absence of herbivorous gastropods on the seawall experimental plots, 

specifically the locally common and abundant Littorina spp. Earlier studies based in 

Massachusetts and Maine established the preference of Littrorina spp. snails to smaller and 

more tender ephemeral species such as Ulva and Porphyra over tougher perennial species 

such as Chondrus crispus (Lubchenco,1978;  Lubchenco, 1983, Lubchenco & Menge, 1978). 

Multiple studies have also shown that Littorina spp. plays an important role in intertidal 
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community development and stability by reducing the presence and growth of ephemeral 

green species to the benefit of perennial macroalgaes such as Chondrus cripus (Aquilino & 

Stachowicz, 2012; Lubchenco & Menge,1978). The 27-month study by Aquilino and 

Stachowicz showed that cleared experimental patches with herbivores present had cover by 

ephemeral species (primarily Ulva spp. and diatoms) that were an order of magnitude lower 

than on patches where herbivores were excluded and had recovery by perennial species that 

were 1.5 times faster. The finding of increased perennial macroalgal density was not 

dependent on the surrounding species richness although experimental patches within 

polycultures did have faster perennial algal recovery. Thus the dominance of green 

macroalgal species on the engineered seawalls may reflect in part a slower progression in 

intertidal community recovery, with the natural shoreline squares progressing more quickly 

to later successional community structures while the seawall scraped sites remained 

dominated by assemblages of pioneer and early succession species due to the absence of 

herbivorous snails. 

The higher proportion of covered surface on wave-exposed, ocean-facing 

experimental squares is notable but not surprising, as water flow is a key factor for intertidal 

and nearshore species, impacting larval transport, gas exchange, nutrient availability, and 

waste removal. The ocean-facing and the wave-protected sites were in close proximity, but 

the increased volume of water flowing on the wave-exposed sides would bring an increased 

number of propagules in proximity to the cleared squares there. Once attached, the increased 

water flow would aid in gas exchange, along with increasing the availability of suspended 
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food particles and nutrients for both filter feeders (e.g., barnacles, hydroids) and 

macroalgaes. 

Although the experiment deliberately compared sites of vertical natural granite with 

seawalls made of the same local granite, exposed rock often has orientations along multiple 

planes, with cracks and crevices in various orientations due to folding and twisting of the 

rock layer and more recent glacial scouring. Such natural small-scale variation has long been 

noted as a factor in rocky intertidal habitat (sensu Connell, 1972). Rock CPSs, however, are 

constructed from stones of similar size, shape, and texture, often with one or more straight 

cut edges due to their quarried origins. The seawalls used in the study used rectangular 

granite blocks that, although not nearly as homogenous in texture and roughness as the 

poured concrete used in many seawalls, nonetheless had less variation and more regular 

planes than the adjacent natural rock shores. While the clearings on the natural rock were 

only on vertical surfaces, the surrounding rock outcroppings had varied orientations and 

irregularities that may serve as important refugia for marine organisms. Increased surface 

homogeneity affects both settlement patterns and settlement success by planktonic larvae and 

algal propagules (Perkol-Finkel et al., 2012). Given the interplay with surface roughness, 

homogeneity, and current flow at low Reynolds numbers, the difference in surface texture 

has the potential to significantly affect colonization of hard substrate in the marine 

environment. 

Coastal protection structures often change the distribution of habitat along the depth 

gradient, most often by introducing more steeply sloped gradients and reducing the extent of 

transition zones (Morley et al., 2012). The sides of the seawalls used in the experiment 
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generally had a straight vertical plane with no slope. The Eastern Point seawall did use a 

ziggurat-style construction on the wave-protected side, but the experimental plots on that side 

were located below the first inset level. The natural rock walls, by comparison, were adjacent 

to rock platforms and areas with more gently sloping intertidal zones. 

Beyond successful initial settlement, marine organisms have other needs if they are to 

survive on hard substrates. Organisms must have sufficient shelter from abiotic threats, such 

as being swept away by waves or currents or drying out from sun and air exposure during 

periods of emersion at low tide. Shelter is also needed against the biotic threats of predation 

and herbivory. Prior studies have linked differences between marine communities on CPS 

and those on natural rock to a lack of water-retaining and shaded refugia on the CPS 

(Aguilera et al., 2014; Firth et al., 2014). In this study however, that was not an obvious 

difference between the natural rock sites and the constructed seawalls in terms of availability 

such refugia. All three granite walls offered ample shaded, damp areas between the granite 

blocks. Observations made in 2016 before the start of the experiment documented use of the 

between block crevices by multiple species of marine invertebrates and as anchor points for 

macroalgae species. Furthermore, because the blocks were of varying size and were not 

precision-cut, there were often considerable gaps between blocks such that the seawalls were 

porous in places, permitting water to flow through the seawall daily at times of maximum 

tidal current. 

The lower rate of recolonization on the engineered seawalls might reflect less 

diversity and abundance within the seawall communities to begin with. Certainly there are a 

number of marine invertebrate species which do not travel far from their source during their 
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brief planktonic stage (Vance 1973). If the community within which the experimental 

clearings were made was rather depauperate, that would limit the source of new colonizers 

for the cleared areas. On the other hand, all of the engineered sites were in close proximity to 

natural rock shores which presumably would also be a source of macroalgal and invertebrate 

settlers. While pre-experiment observations in 2016 indicated comparable communities of 

common intertidal species across all sites, both engineered and natural, a more formal 

assessment of the undisturbed intertidal communities living on both the engineered and the 

natural rock sites would help clarify this issue. 

Given the ongoing addition of human-engineered hard substrate over ever greater 

expanses of coastline, this experiment adds to concerns over potential long-term and regional 

impacts on marine ecosystems (Becchi et al. 2014; Dugan et al., 2008; Kohn and Blahm, 

2005; Rolet et al., 2015; Vaselli et al., 2008). Based on the results from the three sets of 

seawall clearings, one concern would be that the assemblages on CPS may be less resilient 

those on natural rocky shores. While the experiment did not include an in-depth assessment 

of biodiversity, the complete lack of gastropods on any of the seawall squares suggests the 

possibility of a less biodiverse community there. Biological diversity has been shown to be a 

key element in an ecosystem’s ability to function as a complex adaptive system (Folke, 2006; 

Levin, 2005) by absorbing disturbances and being able to reorganize and regenerate 

following a disturbance. This reduction of system volatility and dampening of the effects of 

perturbations makes ecosystems more effective and dependable in being able to supply vital 

ecosystem functions, including ecosystem services valued by humans (Stachowicz, et al., 

2007). Biodiversity allows the maintenance of a highly diverse set of functional traits, which 
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in turn is key to ecosystem health and productivity (Hillebrand and Mathiessen, 2009, 

Wardle, et al. 2000). Thus, changes in the composition, abundance, and productivity of the 

intertidal and shallow water communities over time due to CPS could have large impacts on 

coastal marine biodiversity and ecosystem functioning. 

While the current study established that intertidal community response to disturbance 

differs significantly between human-engineered and natural rock walls, and between wave-

exposed and wave-protected walls, it is not clear, given the one-year timescale of the study, 

how long such differences in cover proportion and presence/proportion of specific groups 

would persist. A better understanding of the temporal scope of the differences would aid in 

assessing broader ecosystem impacts. 

In our experiment we assessed the marine biological response at only the most basic 

level, cover proportion after clearing and a general identification of organisms based on 

groupings of interest. Follow-up studies with more detailed biological assessment would help 

identify the drivers of differences between communities on human-engineered and natural 

rock shore and would provide needed detail on aspects of the intertidal assemblages not 

touched upon in this experiment. More detailed investigation of abiotic factors is also needed 

to resolve which are primary in altering the community response across the two substrate 

types and across the two wave regimes. 

This investigation has provided useful information supporting the broader challenge 

of understanding the biological processes driving the establishment and succession of marine 

intertidal communities on artificially constructed hard substrate. The impending global rise in 

sea levels will necessitate the building of many more coastal protection structures. 
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Understanding the factors which affect the development of marine communities on such 

structures will aid us in designing structures that not only produce the desired coastal 

engineering results but also support the growth of diverse, healthy, productive marine 

communities.  
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APPENDIX A  

SUPPLEMENTARY TABLES 
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Table S1. Common types of coastal protection structures in Massachusetts 
Coastal Protection 

Structure 
Description Example 

Seawall 

Concrete, concrete or stone block 
construction, may extend from below 
the low water mark to significantly 
above the high water mark, may be 
parallel to shore or extend into the 

coastal water. Used to prevent 
flooding and protect against waves. 

 

Bulkhead 

Vertical wall directly at the water’s 
edge, often made of steel but also 

concrete or treated timbers. Used to 
protect shoreline and allow for direct 

boat docking. 

 

Revetment 

Stone rip rap or cut blocks covering a 
sloping shore, typically from above 
the high water line to below the low 
water mark. Used to prevent shore 

erosion. 

 

Jetty 

Longer and often higher than a groin, 
may be made of stone or concrete 

blocks or solid concrete, 
perpendicular to shore. Used for 
creating protected harbor areas, 

stabilizing channels and river mouths, 
and protecting shores. Photo: North Jetty, Plum Island, Newburyport MA, US Army 

Corps of Engineers 

Groin 
Short, typically stone rip rap 

construction, perpendicular to shore. 
Used to change sediment transport 

along sandy shores. 

 

Breakwater 

Stone rip rap, stone or concrete block 
construction, positioned a short 

distance off-shore, parallel to the 
shore. Used for wave attenuation and 

sediment transport alteration. 
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Table S2. Locational details for all 12 experimental transects. 
Site Details 

Town Site Type Exposure Latitude Longitude Orientation 

Gloucester Eastern Point Seawall Exposed 42°34'49.8"N 70°39'55.5"W SW 

Gloucester Eastern Point Seawall Protected 42°34'50.0"N 70°39'55.4"W NE 

Gloucester Eastern Point Rock Shore Exposed 42°34'48.0"N 70°39'53.4"W WSW 

Gloucester Eastern Point Rock Shore Protected 42°34'48.3"N 70°39'53.4"W ENE 

Gloucester Lane Cove Seawall Exposed 42°40'49.0"N 70°39'35.0"W NNW 

Gloucester Lane Cove Seawall Protected 42°40'48.6"N 70°39'35.0"W SSE 

Gloucester Lane Cove Rock Shore Exposed 42°40'44.7"N 70°39'39.0"W NNW 

Gloucester Lane Cove Rock Shore Protected 42°40'44.7"N 70°39'39.0"W SSE 

Rockport Pigeon Cove Seawall Exposed 42°40'35.0"N 70°37'19.3"W SE 

Rockport Pigeon Cove Seawall Protected 42°40'35.2"N 70°37'19.4"W NW 

Rockport Pigeon Cove Rock Shore Exposed 42°40'35.1"N 70°37'18.5"W SSE 

Rockport Pigeon Cove Rock Shore Protected 42°40'34.9"N 70°37'17.9"W NW 
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Table S3. Pre-Scrape Observed Species by Site, Substrate Type and Exposure 
As observed in 2016 prior to the beginning of the experiment 

 

Eastern Point Macroalgal Species Sessile Invertebrate Species Mobile Invertebrate Species
Engineered Exposed Fucus distichus, Ascophyllum nodosum, Chondrus 

crispus, Lithothamnion spp., Hildenbrandia rubra, 
Ulva spp.

Botrylloides violaceus,  Semibalanus 
balanoides

Carcinus maenus

Protected Ascophyllum nodosum, Polysiphonia lanosa, 
Chondrus crispus, Ulva spp.,  Lithothamnion spp., 
Hildenbrandia rubra

Dynamena pumila, Eucratea loricata, 
Semibalanus balanoides, Diadumene 
lineata, Metridium senile

Carcinus maenus

Natural Exposed Ascophyllum nodosum, Polysiphonia lanosa, 
Chondrus crispus, Corallina officianalis, Ulva spp.

Semibalanus balanoides Littorina spp., Nucella lapillus, Mitrella 
lunata

Protected Fucus distichus, Ascophyllum nodosum, 
Polysiphonia lanosa, Chondrus crispus, Ulva spp.

Semibalanus balanoides Nucella lapillus, , Cancer irroratus

Lane Cove Macroalgal Species Sessile Invertebrate Species Mobile Invertebrate Species
Engineered Exposed Fucus distichus, Ascophyllum nodosum, 

Polysiphonia lanosa, Ulva spp.
Semibalanus balanoides,  Diadumene 
lineata, Metridium senile

Protected Fucus distichus, Ascophyllum nodosum, 
Polysiphonia lanosa, Lithothamnion spp., 
Hildenbrandia rubra, Ulva spp.

Dynamena pumila, Eucratea loricata, 
Botrylloides violaceus, Didemnum 
vexilum,  Semibalanus balanoides, 
Diadumene lineata, Metridium senile

Littorina spp.

Natural Exposed Fucus distichus, Ascophyllum nodosum, Chondrus 
crispus, Lithothamnion spp., Hildenbrandia rubra, 
Ulva spp.

Eucratea loricata, Botrylloides 
violaceus, Didemnum vexilus, 
Semibalanus balanoides

Littorina spp., Nucella lapillus

Protected Fucus distichus, Ascophyllum nodosum, 
Polysiphonia lanosa, Chondrus crispus

Eucratea loricata, Botrylloides 
violaceus,  Semibalanus balanoides

Pigeon Cove Macroalgal Species Sessile Invertebrate Species Mobile Invertebrate Species
Engineered Exposed Fucus distichus, Ascophyllum nodosum, 

Polysiphonia lanosa, Chondrus crispus, Ulva spp.
Dynamena pumila, Euratea loricata, 
Botrylloides violaceus, Semibalanus 
balanoides

Carcinus maenus

Protected Ascophyllum nodosum, Polysiphonia lanosa, 
Chondrus crispus, Lithothamnion spp., Ulva spp.

Eucratea loricata, Semibalanus 
balanoides

Carcinus maenus

Natural Exposed Fucus distichus, Ascophyllum nodosum, 
Polysiphonia lanosa, Chondrus crispus, 
Hildenbrandia rubra, Corallina officianalis, Ulva spp.

Eucratea loricata, Didemnum vexilum, 
Semibalanus balanoides

Littorina spp.

Protected Ascophyllum nodosum, Polysiphonia lanosa, 
Chondrus crispus, Hildenbrandia rubra, Ulva spp.

Eucratea loricata, Semibalanus 
balanoides

2016 Pre-Scrape Species Observations
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Table S4. Summary Statistics for Disturbance Experiment: 
Percent Cover After 1 Year 

 
All 

Plots 
Engineered Natural Exposed Protected Lane 

Cove 
Pigeon 
Cove 

Eastern 
Point 

Number of 
Observations 

60 30 30 30 30 20 20 20 

Min (% cover) 7.00 7.00 34.00 7.00 16.00 7.00 16.00 16.00 

Max (% cover) 100.00 94.00 100.00 100.00 87.00 100.00 97.00 100.00 

Range (% cover) 93.00 87.00 66.00 93.00 71.00 93.00 81.00 84.00 

Median (% cover) 68.50 48.00 86.00 88.50 59.00 65.50 77.00 71.00 

Mean (% cover) 63.95 47.17 80.73 72.43 55.47 59.40 67.05 65.40 

Std Error of the Mean 3.71 5.13 3.19 5.69 4.31 7.22 6.02 6.16 

Sample Std Dev   
(% cover) 

28.72 28.11 17.47 31.16 23.63 32.30 26.93 27.54 

Coefficient of Variation 0.45 0.60 0.22 0.43 0.43 0.54 0.40 0.42 
Q1 25% (% cover) 43.75 21.25 68.50 56.00 34.50 36.25 54.75 42.75 

Tukey's IQR (% cover) 44.50 46.50 27.75 40.25 40.00 46.25 33.50 45.25 

Q3 75% (% cover) 88.25 67.75 96.25 96.25 74.50 82.50 88.25 88.00 

Outlier lower bounds -23.00 -48.50 26.88 -4.38 -25.50 -33.13 4.50 -25.13 

Outlier upper bounds 155.00 137.50 137.88 156.63 134.50 151.88 138.50 155.88 

Outliers (Tukey's 
boxplot rule) 

0 0 0 0 0 0 0 0 

95% CI lower (% cover) 56.53 36.90 74.36 61.06 46.84 44.96 55.01 53.08 

95% CI upper (% cover) 71.37 57.43 87.11 83.81 64.10 73.94 79.09 77.72 

Sample Variance 824.79 790.14 305.10 970.67 558.46 1043.20 725.31 758.57 

Skewness -0.52 0.21 -0.83 -1.08 -0.34 -0.36 -0.87 -0.36 
Kurtosis -0.96 -1.31 0.17 -0.16 -1.21 -1.11 -0.58 -1.21 
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Table S5. Percent coverage analysis linear regression model 
We wanted to test whether there were any interaction effects between substrate type 

and wave exposure, modeled as Equation 3: 

Y =  βο + β1X1 + β2X2 +β3X1 X2 + ε  
where Y = coverage percent, X1 = substrate type, and X2 = wave exposure. 

Equation 3 

To complete the model we also wanted to include site as a blocking factor, as shown 
in Equation 4: 

Y =  βο + β1X1 + β2X2 + β3X3 +β4X1 X2 + ε  
where Y = coverage percent, X1 = substrate type, and X2 = wave exposure and X3 = site. 

Equation 4 

lm(formula = dec_cover_pct ~ (substrate_type * exposure_type) + site, data = 
scrape_cov) 

Residuals: Min 1Q    Median 3Q      Max  
 -2. 5059  -0.7371   0.0860   0.8127   2.1141 
 
Coefficients: Estimate Std. Error  t value  Pr(>|t|) CI- Low CI High 
(Intercept) 0.8716 0.5691 1.5317 0.1314 -0.2693 2.0125 
substrate_typeNatural 1.4559 0.4302 3.3846 0.0013 0.5935 2.3184 
exposure_typeProtected -1.5275 0.4302 -3.5510 0.0008 -2.3900 -0.6651 
sitePigeon Cove 0.2163 0.3725 0.5807 0.5639 -0.5306 0.9632 
siteEastern Point 0.2882 0.3725 0.7736 0.4426 -0.4587 1.0351 
substrate:exposure -0.7866 0.6083 -1.2930 0.2015 -2.0063 0.4331 
 
Residual standard error: 1.178 on 54 degrees of freedom 
Multiple R-squared:  0.4962, Adjusted R-squared:  0.4496  
F-statistic: 10.64 on 5 and 54 DF,  p-value: 3.808e-07 
 
R-squared Adj. R-Squared Sigma F-statistic p.value df 
0.4962 0.4496 1.1781 10.6371 3.8078E-07 6 
logLik AIC BIC deviance df.residual 
-91.8078 197.6156 212.2760 74.9430 54 

Results of linear model using: 
logit-transformed decimal cover proportion as the response variable, 

 with substrate and exposure as explanatory factors, site as a blocking factor, 
and an interaction term between substrate and exposure factors 
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Table S6. Additional Tests for Conformity to Assumptions of Linear Regression 
Shapiro-Wilk Normality Test 

A test statistic with a p-value under 0.05 means that the null hypothesis of the 

Shapiro-Wilk Test, that the data in the groups are normally distributed, is NOT accepted. The 

logit-transformed scrape data overall is normally distributed however it is left-skewed as was 

noted and can be seen in Figure 4.  

Treatment Statistic p-value 
All Data 0.9744 0.2382 
Engineered:Exposed 0.9031 0.1060 
Engineered:Protected 0.9269 0.2451 
Natural:Exposed 0.8557 0.0209 
Natural:Protected 0.9230 0.2139 

Levene Test for Homogeneity of Variance  
(HOV a.k.a homoscedasticity) 

Brown and Forsyth variation using median 
Levene's Test for HOV with Brown and Forsythe variation uses the group median 

rather than the mean and is considered more robust to data that is non-normally distributed, 

which the Shapiro-Wilk test and the visual historgram (Figure 4) both showed to be the case.  

A test statistic with a p-value under 0.05 means that the null hypothesis of the Levene Test, 

which is that there is equal variance among groups, is NOT accepted.  

The mixed results shown in the table below (Exposure and the Interaction showing 

evidence of some homoscedasticity) provide evidence that the dataset is not completely 

normal, which is not surprising for bounded percentile data. 

 Df1 Df2 F value p-value 
Substrate 1 58 0.2262 0.6360 
Exposure 1 58 6.8134 0.0115 
Site 2 57 0.8635 0.4271 
Interaction: Substrate/Exposure 3 56 5.404 0.0023 
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Table S6. Tests for data normality of decile percent cover data (cont’d) 
Studentized Breusch-Pagan Test for Homoscedasticity 

The Breusch-Pagan test fits a linear regression model to the residuals of a linear 

regression model (by default the same explanatory variables are taken as in the main 

regression model) and rejects if too much of the variance is explained by the additional 

explanatory variables. The test uses a null hypothesis that the variance of the residuals is 

constant, thus rejecting the null hypothesis due to a result with a p-value less than the 

significance level of 0.05 infers that heteroscedasticity is indeed present, as is strongly the 

case here. The heteroscedasticity of the residuals is one the reasons to use beta regression 

rather than linear regression for this type of bounded percentile data. 

Data: subexpsite_lm_interact (name of the model being tested) 
Breusch-Pagan test statistic: 20.896 degrees of freedom: 5 p-value: 0.0008475 

 

 While some of the tests indicated heteroscedasticity of variance in the residuals, the 

degree of the departures was not so extreme as to preclude use of ANOVA as an analysis 

technique, particularly as the dataset was sufficiently large (n= 60). On the otherhand, the 

inclusion of two explanatory factors, one blocking factor and an interaction does put the 

model on the bounds of being over-fitted. 
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Table S7. Welch's T-Test Results 
logit-transformed cover proportion as the response variable 

Analysis of Variance Table (logit transformed data) 
Response: dec_cover_pct 
Factors    df  Sum Sq  Mean Sq F value Pr(>F)     
substrate_type 1  51.295   51.295  36.9608 1.271e-07 
exposure_type 1  19.297   19.297  13.9044 0.000463 
site 2  0.900   0.450  0.3243 0.724455 
substrate_type:exposure_type 1   2.320    2.320   1.6719 0.201508 
Residuals 54  74.943    1.388 

 

Substrate T-Test Results: Welch Two Sample t-test (logit transformed data) 

data:  dec_cover_pct by substrate_type 
t = -5.5251  df = 57.81 p-value = 8.212e-07 

Supports alternative hypothesis: true difference in means is not equal to 0. 

95 percent confidence interval: -2.519261  -1.179221 
sample estimates: mean in group Engineered mean in group Natural 
 -0.1172576 1.7319832  

 

Exposure T-Test Results: Welch Two Sample t-test (logit transformed data) 
data:  cover_pct by exposure_type 

t = 2.9403 df = 45.65 p-value = 0.005132 

Supports alternative hypothesis: true difference in means is not equal to 0. 

95 percent confidence interval: 0.3575898 1.9108606 
sample estimates: mean in group Exposed mean in group 
Protected  
 1.3744754 0.2402502 
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Table S8. Beta regression model of percent cover 
betareg(formula = 
dec_cover_pct ~ substrate * exposure + site | substrate + exposure, data = scrape_cov) 

Standardized weighted residuals 2: 
 Min 1Q  Median 3Q Max  
 -2.2862  -0.8526   0.0426   0.8243   1.6277  
 
Coefficients (mean model with logit link): 
  Estimate Std. Error z value Pr(>|z|)  
(Intercept) 1.0560 0.2303 4.585 4.53e-06 
Substrate -1.3826  0.2470 -5.598 2.17e-08 
Exposure 1.1863 0.4044  2.933 0.00336 
sitePigeon Cove -0.2025 0.2530 -0.800 0.42354 
siteEastern Point -0.1753 0.2530  -0.693 0.48851 
substrate:exposure  -0.5703 0.5316 -1.073 0.28334 
 
Phi coefficients (precision model with log link): 
  Estimate Std. Error z value Pr(>|z|)  
(Intercept) 2.2705 0.3519 6.451 1.11e-10 
Substrate -0.1709 0.4935 -0.346 0.729 
Exposure -0.8664 0.5468 -1.584 0.113  
substrate:exposure -0.7026  0.7140 -0.984 0.325  

Type of estimator: ML (maximum likelihood) 
Log-likelihood: 38.45 on 10 Degrees of freedom 
Pseudo R-squared: 0.495 
Number of iterations: 21 (BFGS) + 2 (Fisher scoring) 
 

Results of beta regression model 
using decimal cover proportion as the response variable  

including site and interaction term between substrate and exposure factors 
(logit link default used) and substrate + exposure as precision parameter (log link default 

used) 
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Table S9. Presence in experimental squares by macroalgae and invertebrate groups 
after one year, by wave exposure 

Species Group Wave Exposure 

  Protected Exposed 

  # of Sqrs. on 
which present 

% of Sqrs. on 
which present 

# of Sqrs. on 
which present 

% of Sqrs. on 
which present 

  (n=30) (30 = 100%) (n=30) (30 = 100%) 
Brown macroalgae 29 97% 26 87% 

Red macroalgae 26 87% 27 90% 
Green macroalgae 24 80% 25 83% 

Hydroid 7 23% 1 3% 
Bryozoan 18 60% 5 17% 

Acidian 10 33% 14 47% 
Maxillipoda 24 80% 18 60% 

Gastropod - herb. 10 33% 7 23% 
Gastropod - carn. 7 23% 4 13% 

 

Table S10. Presence in experimental squares by macroalgae and invertebrate groups 
after one year, by site 

Species Group Site 

  Eastern Point Lane Cove Pigeon Cove 

  
# of Sqrs. 
on which 
present 

% of Sqrs. 
on which 
present 

# of Sqrs. 
on which 
present 

% of Sqrs. 
on which 
present 

# of Sqrs. 
on which 
present 

% of Sqrs. 
on which 
present 

  (n=20) (20 = 100%) (n=20) (20 = 100%) (n=20) (20 = 100%) 
Brown  17 57% 20 67% 18 60% 

Red  20 67% 16 53% 17 57% 
Green  16 53% 14 47% 19 63% 

Hydroid 4 13% 3 10% 1 3% 
Bryozoan 9 30% 5 17% 9 30% 

Acidian 6 20% 10 33% 8 27% 
Maxillipoda 18 60% 16 53% 8 27% 

Gastropod (H) 5 17% 5 17% 7 23% 
Gastropod (C) 2 7% 3 10% 6 20% 
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Table S11. Area covered by macroalgae and sessile invertebrate species groups 
after one year, by substrate type 

Species Group Substrate Type 
  Engineered Natural 

  
% of Total Factor Area 

covered by species 
grp. after 1 year 

% of Total Factor Area 
covered by species 

grp. after 1 year 
Brown macroalgae 8 30 

Red macroalgae 13 36 
Green macroalgae 17 5 

Hydroid < 1 < 1 
Bryozoan 2 1 

Acidian 1 1 
Maxillipoda 8 8 

 
Table S12. Area covered by macroalgae and sessile invertebrate species groups 

after one year, by wave exposure 

Species Group Wave Exposure 
  Protected Exposed 

  
% of Total Factor Area 

covered by species 
grp. after 1 year 

% of Total Factor Area 
covered by species 

grp. after 1 year 
Brown macroalgae 15 23 

Red macroalgae 21 28 
Green macroalgae 8 13 

Hydroid < 1 < 1 
Bryozoan 3 1 

Acidian 1 < 1 
Maxillipoda 8 8 
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Table S13. Area covered by macroalgae and sessile invertebrate species groups 
after one year, by site 

Species Group Site 
  Eastern Point Lane Cove Pigeon Cove 

  
% of Total Factor Area 

covered by species 
grp. after 1 year 

% of Total Factor Area 
covered by species 

grp. after 1 year 

% of Total Factor Area 
covered by species 

grp. after 1 year 
Brown macroalgae 9 39 8 

Red macroalgae 38 8 27 
Green macroalgae 7 2 23 

Hydroid < 1 < 1 < 1 
Bryozoan 3 1 1 

Acidian < 1 1 < 1 
Maxillipoda 7 10 7 
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Table S14. Macroalgal and sessile invertebrate percent cover analysis 2016 
MANOVA Table (univariate ANOVAs) 

BROWN Df Sum Sq Mean Sq F statistic p-value 
substrate 1 0.00122 0.00122 4.518 0.03813 
exposure 1 0.00015 0.00015 0.545 0.46360 
site 2 0.00637 0.00318 11.813 5.55E-05 
substrate:exposure 1 0.00005 0.00005 0.187 0.66747 
Residuals 54 0.01455 0.0003     
RED Df Sum Sq Mean Sq F statistic p-value 
substrate 1 1E-07 1E-07 0.0003 0.9856 
exposure 1 0.00070 0.00070 3.686 0.0602 
site 2 0.00708 0.00354 18.503 7.58E-07 
substrate:exposure 1 0.00004 0.00004 0.218 0.6422 
Residuals 54 0.01034 0.00019     
GREEN Df Sum Sq Mean Sq F statistic p-value 
substrate 1 0.00055 0.00055 9.348 0.0035 
exposure 1 0.00001 0.00001 0.178 0.6752 
site 2 0.00596 0.00298 50.937 3.71E-13 
substrate:exposure 1 0.00003 0.00003 0.583 0.4483 
Residuals 54 0.00316 0.00006     
HYDROID Df Sum Sq Mean Sq F statistic p-value 
substrate 1 0.00000 1.10E-11 0.000 0.9896 
exposure 1 0.00001 1.29E-05 1.927 0.1708 
site 2 1.19E-06 5.95E-07 0.089 0.9148 
substrate:exposure 1 1E-08 9.00E-11 0.001 0.9709 
Residuals 54 0.0004 6.67E-06     
BRYOZOAN Df Sum Sq Mean Sq F statistic p-value 
substrate 1 0.00024 2.44E-04 6.299 0.0151 
exposure 1 0.00023 2.28E-04 5.859 0.0189 
site 2 0.00015 7.73E-05 1.991 0.1465 
substrate:exposure 1 0.00016 1.64E-04 4.229 0.0446 
Residuals 54 0.00210 3.88E-05     
ASCIDIAN Df Sum Sq Mean Sq F statistic p-value 
substrate 1 1.74E-07 1.74E-07 0.032 0.8590 
exposure 1 2.27E-06 2.27E-06 0.415 0.5220 
site 2 2.75E-05 1.37E-05 2.512 0.0905 
substrate:exposure 1 1.12E-07 1.12E-07 0.020 0.8869 
Residuals 54 2.95E-04 5.45E-06     
BARNACLE Df Sum Sq Mean Sq F statistic p-value 
substrate 1 0.00001 0.00001 0.183 0.6705 
exposure 1 0.00024 0.00024 3.130 0.0825 
site 2 0.00111 0.00055 7.121 0.0018 
substrate:exposure 1 0.00001 0.00001 0.083 0.7749 
Residuals 54 0.00421 0.00008     
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APPENDIX B  

SUPPLEMENTARY FIGURES 
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Figure S1. Model Residuals Plotted 
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Figure S2. Boxplots of Percent Cover Data 
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 Figure S3. Treemap of 2017 macroalgae and marine invertebrate groups sized by the 
number of squares in which present, subdivided by exposure type.  
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Figure S4. Treemap of 2017 macroalgae and marine invertebrate groups sized by the 
number of squares in which present, subdivided by site.  
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Figure S5. Treemap of 2017 macroalgae and marine invertebrate groups sized by 
coverage area, subdivided by site. 
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Figure S6. Macroalgae and sessile marine invertebrate groups percent cover of cleared 
squares after one year by wave exposure 
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APPENDIX C 

LIST OF SOFTWARE AND R PACKAGES 

Software 
Git 2.23 open-source version control system, https://git-scm.com/ 
ImageJ 1.52h (Schindelin, J., et al., 2012; Schneider, C. A., et al., 2012) 
Microsoft Excel for Windows version 14.0,7 (Microsoft Corporation, 2010)  
Microsoft Word for Windows version 14.0,7 (Microsoft Corporation, 2010)  
PhotoMechanic 5.0 (CameraBits, Inc., 2018 
R version 3.5.3  R Core Team (2019). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/. 
RStudio v.1.1.423 (RStudio, Inc., 2018) 
  
R Packages 

betareg 
Francisco Cribari-Neto, Achim Zeileis (2010). Beta Regression in R. Journal of 
Statistical Software 34(2), 1-24. http://www.jstatsoft.org/v34/i02/ 

broom 
David Robinson (2018). broom: Convert Statistical Analysis Objects into Tidy Data 
Frames. R package version 0.4.4. https://CRAN.R-project.org/package=broom 

car 
Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third edition. Sage, 
Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. 

dplyr 
Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2018). dplyr: A 
Grammar of Data Manipulation. R package version 0.7.5. https://CRAN.R-
project.org/package=dplyr 

effsize 
Torchiano M (2019). effsize: Efficient Effect Size Computation. doi: 
10.5281/zenodo.1480624, R package version 0.7.6, https://CRAN.R-
project.org/package=effsize. 

http://www.jstatsoft.org/v34/i02/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dplyr
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ggplot2 
Hadley Wickham (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag 
New York. 

lmtest 
Achim Zeileis, Torsten Hothorn (2002). Diagnostic Checking in Regression 
Relationships. R News 2(3), 7-10. URL https://CRAN.R-project.org/doc/Rnews/ 

MASS 
Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. 
Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4. 

msme 
Joseph Hilbe and Andrew Robinson (2018) msme: Functions and Datasets for "Methods 
of Statistical Model Estimation" version 0.5.3 , Hilbe, J.M., and Robinson, A.P. 2013. 
Methods of Statistical Model Estimation. Chapman & Hall / CRC. https://CRAN.R-
project.org/package=msme 

openxlsx 
Philipp Schauberger,  Alexander Walker,  Luca Braglia (2019) openxlsx() package 
version: 4.1.4  https://CRAN.R-project.org/package=openxlsx 

pscl 
Simon Jackman (2017). pscl: Classes and Methods for R Developed in the Political 
Science Computational Laboratory. United States Studies Centre, University of Sydney. 
Sydney, New South Wales, Australia. R package version 1.5.2. URL 
https://github.com/atahk/pscl/ 
Achim Zeileis, Christian Kleiber, Simon Jackman (2008). Regression Models for Count 
Data in R. Journal of Statistical Software 27(8). URL http://www.jstatsoft.org/v27/i08/. 

readxl 
Hadley Wickham and Jennifer Bryan (2018). readxl: Read Excel Files. R package version 
1.1.0. https://CRAN.R-project.org/package=readxl 

sjstats 
Lüdecke D (2020). sjstats: Statistical Functions for Regression Models  version 0.17.8. 
doi: 10.5281/zenodo.1284472, https://CRAN.R-project.org/package=sjstats. 

tidyr 
Hadley Wickham and Lionel Henry (2018). tidyr: Easily Tidy Data with 'spread()' and 
'gather()' Functions.R package version 0.8.1. https://CRAN.R-project.org/package=tidyr 

treemap 
Martijn Tennekes, Peter Ellis (2017). Treemap() package version 2.4-2 https://CRAN.R-
project.org/package=treemap 

https://cran.r-project.org/doc/Rnews/
http://www.stats.ox.ac.uk/pub/MASS4
https://cran.r-project.org/package=msme
https://cran.r-project.org/package=msme
https://cran.r-project.org/package=openxlsx
https://github.com/atahk/pscl/
http://www.jstatsoft.org/v27/i08/
https://cran.r-project.org/package=readxl
https://doi.org/10.5281/zenodo.1284472
https://cran.r-project.org/package=sjstats
https://cran.r-project.org/package=tidyr
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