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ABSTRACT

SERVER ASSIGNMENT WITH TIME-VARYING WORKLOADS IN MOBILE

EDGE COMPUTING

December 2019

QUYNH VO,
B.S., Hanoi University of Science and Technology

Ph.D., University of Massachusetts Boston

Directed by Associate Professor Duc A. Tran

Mobile Edge Computing (MEC) has emerged as a viable technology for mobile

operators to push computing resources closer to the users so that requests can

be served locally without long-haul crossing of the network core, thus improving

network efficiency and user experience. In MEC, commodity servers are deployed

in the edge to form a distributed network of mini datacenters. A consequential

task is to partition the user cells into groups, each to be served by an edge server,

to maximize the offloading to the edge. The conventional setting for this problem

in the literature is: (1) assume that the interaction workload between two cells

has a known interaction rate, (2) compute a partition optimized for these rates,

for example, by solving a weighted-graph partitioning problem, and (3) for a time-

varying workload, incrementally re-compute the partition when the interaction

rates change. This setting is suitable only for infrequently changing workloads.

The operational and computation costs of the partition update can be expensive

and it is difficult to estimate interaction rates if they are not stable for a long pe-

riod. Hence, this dissertation is motivated by the following questions: is there an
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efficient way to compute just one partition, no update needed, that is robust for a

highly time-varying workload? Especially, what if we do not know the interaction

rates at any time? By “robust”, we mean that the cost to process the workload at

any given time remains small despite unpredictable workload increases. Another

consideration is geographical awareness. The edge servers should be geographically

close to their respective user cells for maximizing the benefits of MEC. This dis-

sertation presents novel solutions to address these issues. The theoretical findings

are substantiated by evaluation studies using real-world data.
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CHAPTER 1

INTRODUCTION

Mobile Edge Computing (MEC) [ETS14] has emerged as a viable technology for

mobile operators to push computing resources closer to the users so that requests

can be served locally without long-haul crossing of the network core, thus improving

network efficiency and user experience. In a nutshell, a typical MEC architecture

consists of four layers of entities: the mobile users, the base-stations, the edge

servers, and the cloud datacenter. The edge servers are introduced in the edge of

the network connecting the base-stations to the network core, each server being an

aggregation hub, or a mini datacenter, to offload processing tasks from the remote

datacenter. Because the region, also known as “cloudlet” [SBC09], served by an

edge server is much smaller, a commodity virtualization-enabled computer can be

used to run computation and network functions that would otherwise be provided

by the datacenter.

MEC can benefit many computation-hungry or latency-critical applications in-

volving video optimization [XLT17], content delivery [SHZ17], big data analyt-

ics [NRS17], roadside assistance [PGF18], and augmented reality [AS17], to name

a few. Originally initiated for cellular networks to realize the 5G vision, MEC has

been generalized for broader wireless and mobile networks [MYZ17]. It is becom-

ing more of a phenomenon with the Internet of Things; more than 5 billion IoT

devices would be connected to MEC by 2020 according to a January 2017 forecast
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by BI Intelligence [New17].

1.1 Motivation and Goals

A challenge with MEC is how to assign a given set of edge servers to the user cells

to maximize the edge computing benefit. To address this challenge is application-

specific. We focus on applications involving pairwise interactions between de-

vices, such as voice-over-ip calls made from one user to another, peer-to-peer video

streaming, and multi-player online gaming.

The server assignment problem in general is not new outside MEC. Indeed,

it belongs to the body of work on distributed allocation of resources (virtual

machines) widely studied in the area of cloud computing [HKL14, AL12, Man15,

DHY17]. The MEC assignment problem is similar, but it has unique objectives

and constraints. Firstly, the servers in MEC need be near the user side, not the

datacenter side, and so the communication cost to be minimized is due to the use

of the backhaul network (towards the datacenter), not the front-haul (towards the

cells). Secondly, the geographic spread of the cells served by a MEC server should

be a design factor, which is not a typical priority for a distributed cloud solution.

Specifically, there are several important considerations:

• If the two interacting devices are served by different edge servers, the cloud

must get involved, hence a backhaul cost. This cost is avoided if the same

server serves both devices. Intuitively, those devices that frequently interact

should be assigned to the same server.

• However, it makes no practical sense if they are located in far remote geo-

graphic locations because a server should be geographically close to where it

2



serves to avoid high installation cost and long latency [BC17, MSG15]. Al-

though geographic proximity tends to imply high transactional activity, this

relationship is not straightforward.

• In practice, the interaction rates are heterogeneous, and, even for the same

pair of devices, the rate can change over time. As such, with a limited number

of edge servers that have bounded capacity, we cannot equally please all the

users.

The MEC server assignment problem has been addressed in some forms, only

recently [CPS17, BC17]. Obviously, with zero knowledge about the interaction

workload, we cannot do better than a random assignment: assigning each cell

to an arbitrary edge server. Therefore, the conventional problem setting in the

literature is: (1) assume that the interaction workload between two cells has a

known interaction rate, (2) compute a partition optimized for these rates, for

example, by solving a weighted-graph partitioning problem, and (3) for a time-

varying workload, incrementally re-compute the partition when the interaction

rates change.

The above setting is suitable only for infrequently changing workloads. The

operational and computation costs of the partition update can be expensive and

it is difficult to estimate interaction rates if they are not stable for a long period.

Hence, we ask: is there an efficient way to compute just one partition, no update

needed, that is robust for a highly time-varying workload? Especially, what if we

do not know the interaction rates at any time? By “robust”, we mean that the

cost to process the workload at any given time remains small despite unpredictable

workload increases.

The goal of this dissertation is to address these questions. Ideally, in looking

3



for a server assignment solution, we should take into account the geographical

constraint that should be enforced in the assignment.

1.2 Contributions

We reckon that in practice the changes in the workload demand over the time

should follow a pattern rather than be completely random. We may not know

the exact interaction rates, nor the form of their pattern, but we can measure the

sample mean and variance. Our hypothesis is that this modest information can be

useful for finding a good robust partition. We make the following contributions:

• We propose an optimization formulation to quantify the optimality of a par-

tition for a highly time-varying workload given a number of edge servers. We

show that even if the interaction rates are known a priori for all the time, to

compute an optimal partition is NP-hard.

• We propose an effective probabilistic partitioning algorithm that does not

require known interaction rates over the time, but only their sample mean

and variance. A nice property is that this algorithm does not depend on any

user-defined parameter.

• The proposed algorithm is based on our idea of approximating the time-

varying interaction rate between each pair of cells by a stochastic variable.

We know of no prior work on edge server assignment where the time-varying

workloads are represented by probability distributions.

• We extend the probabilistic partitioning approach so that it can be applied

to the server assignment problem with geographical constraints. We also

4



propose an alternative algorithm for the case these constraints are formulated

in a certain way.

The work of this dissertation extends upon two refereed publications of mine.

The findings of the probabilistic partitioning approach have been published in the

Proceedings of the 2019 IEEE International Conference on Computer Communi-

cation and Networks [VT19]. Some findings on the geographically aware server as-

signment have been published in the International Journal on Parallel, Distributed,

and Emergent Systems [TV18].

1.3 Organization

This dissertation is organized as follows. Chapter 2 provides a review of the perti-

nent literature, the general research problem and theoretical results showing their

computational hardness. The probabilistic partitioning algorithm is presented and

evaluated in Chapter 3. The server assignment problem with geographical con-

straints is addressed in Chapter 4. A combination of both problems will be pre-

sented in Chapter 5. The dissertation is concluded in Chapter 6 with pointers to

future research.
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CHAPTER 2

PRELIMINARIES

In this chapter, we describe the problem setting, its goal and objectives formally

and discuss the related work.

2.1 Problem Setting

Consider a geographic region that is partitioned into a set of cells, C = {1, 2, ..., N}

cells, each cell serving a geographic area of service. Each cell i ∈ C is operated by

a base-station; we also refer to this base-station as base-station i. The meanings of

“base-station” and “cell” are generic, not necessarily understood in conventional

meaning as in cellular networks; for example, as a Wi-Fi access router and its

coverage area in Wi-Fi networks.

For simplicity, time is divided into slots, t = 1, 2, 3, ..., T . The system workload

at time t is the set of interaction volumes for all pairs of cells at t. We express the

time-varying workload as a third-order tensor,

WT =


W (1)

W (2)

...

W (T )
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where W (t) is a symmetric N ×N matrix of non-negative real values

W (t) =


w

(t)
11 w

(t)
12 . . . w

(t)
1N

w
(t)
21 w

(t)
22 . . . w

(t)
2N

...
...

. . .
...

w
(t)
N1 w

(t)
N2 . . . w

(t)
NN


with w

(t)
ij representing the interaction rate (or demand) at time t between users in

cell i ∈ C with users in cell j ∈ C. Note that w
(t)
ii is the interaction rate at time t

between users in the same cell i.

Suppose that we can afford to deploy a given number of edge servers, S =

{1, 2, ...,M}, each having a compute capacity κ. Each server is exclusively allocated

to a group of cells to help process their interactions. A cell may be assigned to a

server or no server at all. The cells not assigned to any server are referred to as

“unassigned”. The server assignment is denoted by an integer variable fi ∈ S∪{0},

such that fi is set to 0 for an unassigned cell i, or else it denotes the server to whom

cell i is assigned. We need to compute f . In what follows, without explicitly

specified otherwise, we use indices i, j to represent a cell/base-station, and s to

represent a server.

2.2 Cost Formulation

We want to minimize the backhaul cost. The backhaul cost is incurred when the

data center has to process:

1. The interactions involving the unassigned cells.

2. The interactions between cells assigned to different servers,
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3. The interactions assigned to the same server that lead to a violation of its

capacity.

In contrast, the edge cost is incurred due to the processing of the interactions

involving assigned cells of the same server, provided the workload does not exceed

this server’s capacity. At any time t, the sum of the backhaul cost and edge cost

is equal to the total workload at time t,
∑

i<j w
(t)
ij .

The backhaul cost at time t to process all the interactions involving the unas-

signed cells is

cost
(t)
unassigned =

∑
i:fi=0

( ∑
j:j≥i∧fj=0

w
(t)
ij +

∑
j:fj>0

w
(t)
ij

)
. (2.1)

The backhaul cost at time t to process all the interactions involving cells assigned

to different servers is

cost(t)crossserver =
∑

i,j:0<fi<fj

w
(t)
ij . (2.2)

The backhaul cost at time t to process all the interactions involving cells of the

same server, that exceed its capacity, is

cost
(t)
overload =

∑
s

max

(
0, (w(t)

s − κ)︸ ︷︷ ︸
overload amount of server s

)
. (2.3)

Here,

w(t)
s =

∑
i,j:j≥i∧fi=fj=s

w
(t)
ij

is the workload demand on server s at time t (i.e., the amount of workload this

server is supposed to process). Ideally, this demand should not exceed κ, the

server capacity. In the otherwise case, the datacenter has to process the amount

of workload that goes beyond κ.
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The total backhaul cost at time t is the sum of the three costs,

cost(t) = cost
(t)
unassigned + cost(t)crossserver + cost

(t)
overload

=
∑
i:fi=0

( ∑
j:j≥i∧fj=0

w
(t)
ij +

∑
j:fj>0

w
(t)
ij

)
+

∑
i,j:0<fi<fj

w
(t)
ij +

∑
s

max

(
0, (w(t)

s − κ)

)
.

(2.4)

Consequently, the total backhaul cost over period [1, T ] is

cost =
T∑
t=1

cost(t). (2.5)

2.3 Optimization Objective

Ideally, we want a partition f such that when applied to a (future) time-varying

workload WT the total backhaul cost is minimal. If we know nothing about WT ,

we can do no better than the random assignment, which assigns each cell to an

arbitrary server. On the other hand, if we assume to know everything about WT ,

i.e., the interaction rates w
(t)
ij for all cell pairs (i, j) at every time t are known, this

assumption may be too strong to be practical for time-varying WT .

In this dissertation, for each cell pair (i, j), instead of assuming that w
(t)
ij is

known for all t, we assume to know only their mean µij and variance σ2
ij. This is a

realistic assumption because we can easily measure these quantities from samples

(past interaction rates). In practice, the interaction demand between two cells may

change frequently over the time, but the change should follow a pattern, and so

the sample mean and sample variance are reliable.

Let

µ =

(
µij

)
N×N

, σ2 =

(
σ2
ij

)
N×N

.
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We say that a time-varying workload WT is consistent with (µ,σ2) if µij and σ2
ij

are (reasonable) sample mean and variance of w
(t)
ij over time t ∈ [1, T ].

Our optimization problem is as follows.

Problem 2.3.1. Given (µ,σ2), compute a partition f such that when applied to a

future time-varying workload WT the total backhaul cost over the time period [1, T ]

is minimal; i.e.,

min

{
cost =

T∑
t=1

cost(t)
}
, (2.6)

provided that WT is consistent with (µ,σ2).

2.4 Computational Hardness

Unfortunately, knowing only the mean and variance information of the future

workload WT , it is impossible to solve this optimization problem (because the

precise interaction rates need be known). Even if all the rates at all times are

known in advance, the optimization of Problem 2.3.1 is NP-hard. In deed, consider

a simple configuration: T = 1 and w
(1)
ij = 0 for all i 6= j and w

(1)
ii > 0 for all i.

Then,

cost
(1)
unassigned =

∑
i:fi=0

w
(1)
ii

cost(1)crossserver = 0

cost
(1)
overload =

∑
s

max

(
0,

( ∑
i:fi=s

w
(1)
ii − κ

))
.
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and so,

cost = cost(1)

=
∑
i:fi=0

w
(1)
ii +

∑
s

max

(
0,

( ∑
i:fi=s

w
(1)
ii − κ

))
.

Suppose that we set |S| = 2 and κ = 1
2

∑
iw

(1)
ii . Then, cost is minimized by

assigning the cells to the two servers s = 1 and s = 2 such that
∑

i:fi=1w
(1)
ii and∑

i:fi=2w
(1)
ii differ the least. Thus, this is is equivalent to the following NP-hard

partition problem: partition a given set of positive integers, {x1, x2, ..., xn}, into

two subsets such that the respective subset sums differ the least (here, simply set

xi = w
(1)
ii ). For more details of this equivalence, see [TV18]. The optimization of

Eq. (5.1), due to its generality, is therefore NP-hard.

2.5 Geographical Awareness

Ideally, a server would be placed at the center of its cluster. Consequently, for

shorter latency and easier management, we should keep the geographic region of

this cluster from spreading too far. We can formulate this property as an objective

to optimize or as a constraint to enforce.

As a constraint, we can require that the cells form a geographically contigu-

ous region [BC17, MSG15]; we refer to this requirement as being geo-contiguity.

Alternatively, we can set an upper bound on the geographical diameter of each

cluster resulted in from the server assignment; we refer to this requirement as

geo-compactness.

As an objective, we can quantify the geo-spread of a cluster as the sum of its

distance to each assigned base-station, weighted by transaction demand. We want

to minimize the total geo-spread for all the servers.

11



In Chapter 3, we propose a probabilistic partitioning framework to find an ap-

proximate solution for Problem 2.3.1 without consideration of geographical aware-

ness. In Chapter 4, we extend this framework to find a solution that satisfies the

geo-contiguity constraint, and also propose a different solution that is aimed to

optimize geo-compactness (together with backhaul cost).

2.6 Related Work

The MEC server assignment problem can arise in various scenarios. The assign-

ment problem in [WZT17] applies to a MEC network supporting multiple applica-

tions of known request load and latency expectation and the challenge is to deter-

mine which edge servers to run the required virtual machines (VMs), constrained

by server capacity and inter-server communication delay. In [BG17,WZL17], where

only one application is being considered and consists of multiple inter-related com-

ponents organizable into a graph, the challenge is how to place this component

graph on top of the physical graph of edge servers to minimize the cost to run the

application. In the case that edge servers must be bound to certain geographic

locations, a challenge is to decide which among these locations we should place the

servers and inter-connect them for optimal routing and installation costs [CPS17].

The above works do not take into account the geographic spread of the region

served by a server. The cells served by the same server can be highly scattered

geographically, causing long latency and high management cost. This motivates

the work in [BC17] proposing a spatial partitioning of the geographic area such

that the cells of the same server are always contiguous. For this partitioning,

a graph-based clustering algorithm is proposed that repeatedly merges adjacent

cells to form clusters as long as the merger results in better offloading and no

12



cluster exceeds the server capacity. In a similar research [MSG15], where the cells

served by each server are also contiguous, the objectives are to minimize the server

deployment cost, the front-haul link cost for each server to reach its assigned base-

stations, and the cell-to-cell latency via the edge; the proposed algorithm is to

repeatedly select the next remaining server of the least deployment cost and assign

it to all the nearby base-stations of the least front-haul link cost so long as the

server capacity is met.

For time-varying workloads, the conventional or implicit approach in all the

existing techniques is to either to recompute the partition or make incremental

adjustments. They all require that interaction rates be known prior to the update.

In contract, our goal is to compute one single partition that stays unchanged but

is robust for a long sequence of changing workloads and, importantly, without

knowing the interaction rates. To the best of our knowledge, this is an original

problem.

13



CHAPTER 3

PROBABILISTIC PARTITIONING

In this chapter, we focus on solving Problem 2.3.1 without consideration of ge-

ographical constraints. The variables {fi} represent a partition of the cells into

(M+1) groups, M of which are assigned to the M servers and the last is the group

of unassigned cells. A group of cells is called a “supercell”. We use letters x, y, ...

to denote supercells.

As discussed in the previous chapter, this problem is NP-hard even if we know

all the interaction rates between the cells in advance. Therefore, we seek an ap-

proximate solution. We propose an iterative partitioning algorithm based on the

idea of modularity optimization in complex networks [New06]: repeatedly merge

the vertices of the network, represented as a weighted graph, to obtain a smaller

graph of super-vertices, called “modules”, that is better in terms of “modularity”.

The modularity is some quality function such that, conventionally, networks with

high modularity have dense connections between the nodes within modules but

sparse connections between nodes in different modules.

In our context, the vertices of the original graph are the original cells, which

are merged into super-vertices (supercells) in the subsequent graphs. The key

ingredient in our algorithm is the definition of the quality function. For ease of

explanation, we focus first on the special case where the workload is time-invariant

(zero variance), and then the general case where the workload is time-varying

14



(positive variance).

3.1 Time-Invariant Workload

Suppose that the workload does not change over the time, i.e., w
(t)
ij = µij for all

t ∈ [1, T ] and σij = 0 for all i, j ∈ C. Let uxy denote the workload demand between

the users in a supercell x and the users in a different supercell y and ux denote the

workload demand between users in the same supercell x. We can write

uxy =
∑
i∈x

∑
j∈y

µij, ux =
1

2

∑
i∈x

∑
j∈x

µij.

Here, “i ∈ x” means that cell i is a member of supercell x.

The optimization problem becomes a graph partitioning problem with fixed

edge weights. To apply modularity optimization, we start with a graph where each

vertex is an original cell and after each merging step we obtain an immediate graph

of supercells; here, the weight of the edge connecting supercell x and supercell y

is uxy. The vertex merging goes on as long as we can increase ux for some vertex

x. Constrained by the capacity bound κ, a merger to form a supercell x is allowed

only if the new ux ≤ κ. The detailed steps of this algorithm are as follows.

Algorithm 3.1.1 (Time-Invariant Workload).

1. Initially, we start with a graph of N supercells (vertices), each supercell being

an original cell: X = {{1}, {2}, ..., {N}}.

2. While (true)

• Maintain a list of edges (x, y) ∈ X × X sorted in descending order of

uxy.
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• Find the first edge (x, y) in this list such that ux∪y ≤ κ, i.e., the workload

demand of the supercell merging x and y would be under the server

capacity. If this edge is not found, go to Step 3.

• Merge vertex x and vertex y to form a new vertex corresponding to

supercell x ∪ y.

• Update X and its edge weights.

3. At this time, we obtain a graph of m vertices (supercells), corresponding to

a partition into m supercells.

4. If m ≥M , we choose the M supercells x of largest ux and assign them respec-

tively to the M servers. The cells in the remaining supercells are unassigned.

5. Else, the partition has fewer supercells than servers. Each supercell is as-

signed to a server. In this case, there is no unassigned cell and one or more

servers may be idle (suggesting that m servers would be sufficient).

In understanding of this algorithm, intuitively, we can think of uxy as the inter-

module density and ux as the intra-module density, and if we merge x and y we

would improve modularity because of the reduction in inter-module density and

increase in intra-module density. Translating this to our cost model, by enforcing

the condition ux ≤ κ, we keep costoverload = 0 (Eq. (2.3)) and after each vertex

merging we obtain reductions in costunassigned (Eq. (2.1)) and costcrossserver (Eq.

(2.2)). By preferring the edge (x, y) with largest uxy in Step 2, we want to maximize

the modularity improvement.
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3.2 Time-Varying Workload

In the general case, we consider a time-varying workload and the only information

we assume given is the sample mean and variance of the interaction rate for each cell

pair. Our approach is to approximate the workload by a Gaussian distribution.

Specifically, we model the interaction rate w
(t)
ij of each cell pair (i, j), which is

unknown, as a Gaussian random variable with mean µij and variation σ2
ij,

w
(t)
ij ∼ N

(
µij, σ

2
ij

)
.

The Gaussian distribution has the property that the sum of Gaussian variables

is also Gaussian. Consequently, the workload demand between supercell x and

supercell y at a time t is the following Gaussian variable

u(t)xy ∼ N
(∑

i∈x

∑
j∈y

µij,
∑
i∈x

∑
j∈y

σ2
ij

)
.

Similarly, the workload demand of a supercell x is the following Gaussian variable

u(t)x :=
1

2
u(t)xx ∼ N

(
1

2

∑
i∈x

∑
j∈x

µij,
1

2

∑
i∈x

∑
j∈x

σ2
ij

)
.

Denote

µxy =
∑
i∈x

∑
j∈y

µij, σ
2
xy =

∑
i∈x

∑
j∈y

σ2
ij

µx =
1

2

∑
i∈x

∑
j∈x

µij, σ
2
x =

1

2

∑
i∈x

∑
j∈x

σ2
ij.

We propose an assignment algorithm similar to Algorithm 5.2.1 for the time-

invariant workload case, except for the merging criterion in the iterative merging

step (Step 2 in Algorithm 5.2.1). Specifically, two supercells x and y are chosen

to merge if the would-be resultant supercell x ∪ y has a high probability, at least

a given threshold θ, of having a workload demand below the server capacity κ.
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For a Gaussian variable X ∼ N (µ, σ2), its cumulative distribution function at

κ is

cdf(κ|µ, σ) = Prob[X ≤ κ] =
1

2

[
1 + erf

(
κ− µ
σ
√

2

)]
where erf is the Gaussian error function

erf(x) =
2

π

∫ x

0

e−t
2

dt.

Therefore, we merge supercells x and y into a new supercell x ∪ y if

cdf(κ|µx∪y, σx∪y) ≥ θ.

Note that the workload demand of the new supercell x ∪ y follows a Gaussian

distribution with mean µx∪y and variance σ2
x∪y, which can easily be computed :

µx∪y = µx + µy + µxy

σ2
x∪y = σ2

x + σ2
y + σ2

xy.

Following this merging criterion, the final partition result depends on the choice

of threshold θ. In the extreme case θ = 0, the server capacity is ignored and the

algorithm produces one big supercell merging all the original cells. In the other

extreme case θ = 1, no cells are merged and so the algorithm results in a partition

that is the set of the original cells. In general, a larger/smaller θ tends to result in

a partition with more/fewer supercells. Therefore, it is critical to choose a good

value for θ that should result in the best partition for the given number of servers,

M .

Because we do not know this “optimal” θ value in advance, our proposed al-

gorithm starts with the largest θ = 1 and gradually decrements it as long as the

resultant partition has more supercells than servers. The merging continues with

this new θ. The algorithm stops when the number of supercells reaches M or

smaller. The proposed algorithm works in detail as follows.

18



Algorithm 3.2.1 (Time-Varying Workload).

1. Initially, we start with a graph of N supercells (vertices), each supercell being

an original cell: X = {{1}, {2}, ..., {N}}.

2. Initialize θ = 1.

3. While (true)

• Maintain a list of edges (x, y) ∈ X × X sorted in descending order of

µxy.

• Find the first edge (x, y) in this list such that

cdf(κ|µx∪y, σx∪y) ≥ θ

• If this edge is not found, go to Step 3. Else, merge vertex x and vertex

y to form a new vertex corresponding to supercell x ∪ y.

• Update X and its edge weights.

4. At this time, we obtain a graph of m vertices (supercells), corresponding to

a partition into m supercells.

5. If m > M

• Set θ = θ−ε (step size ε, sufficiently small, e.g., 0.05 in our evaluation).

• Go back to Step 2 to repeat the merging procedure.

6. Else, the partition now has the same or fewer supercells than servers. Each

supercell is assigned to a server. In this case, there is no unassigned cell

and one or more servers may be idle (suggesting that m servers would be

sufficient).
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3.3 Evaluation

We conducted an evaluation1 on three real-world datasets we had constructed from

the collection of geo-referenced Call Detail Records over the city of Milan during

November 2013 and December 2013 (https://dandelion.eu/).

3.3.1 Setup

The datasets correspond to three different days (Fri Nov 1, Sat Nov 2, and Tue

Nov 5), each representing a time-varying workload for evaluation. Specifically, we

partitioned the area, 23.5km × 23.5km, into a grid of N = 20× 20 = 400 cells and

counted calls between every two cells for each 10-minute period during an entire

day. The time duration of the entire workload is therefore T = 24 hours / 10

minutes = 144 time slots. In each dataset, we compute the mean and variance

representing the interaction rate of a cell pair (i, j) as follows:

µij =
1

T

T∑
t=1

w
(t)
ij , σ

2
ij =

1

T − 1

T∑
t=1

(w
(t)
ij − µij)2.

Note that these µij and σ2
ij values are the only information we assume known in

our research problem.

We investigated different configurations by varying the number of MEC servers

in the range M ∈ {5, 10, 15, 20, 25} and the server capacity in the range κ ∈ {1%,

5%,10%, 15%, 20%}. A choice of κ = 10% means that a server cannot process

more than 10% of the average total workload (i.e., the total workload at an average

time instant, which is the ratio of total workload over [0, T ] to the duration T ).

We evaluated the proposed algorithm (Algorithm 5.2.2) to two benchmark al-

gorithms: 1) RAND: the random assignment algorithm; and 2) BC (by Bouet and

1http://github.com/quynhtavo/probabilistic-partitioning
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Conan [BC17]): this is the closest work to ours. It is an algorithm for a time-

invariant workload very similar to Algorithm 5.2.1, but their cell merging criterion

considers only geographically adjacent cells. To use it as benchmark for our eval-

uation, we take as input the workload where the interaction rates are the mean

µij’s and apply BC to obtain the assignment. For ease of presentation, we refer to

our algorithm as VT (initials of the authors’ names).

The main metric for comparison is the backhaul cost, normalized as the ratio

of cost in Eq. (2.5) to the total workload over the time. For example, a ratio of

0.8 indicates that the backhaul cost of the MEC solution is only 80% that of the

solution without MEC; hence a 20% cost saving by MEC.

3.3.2 Results

Most of the discussions below are on the results for the Friday and Tuesday datasets

because they offer two very different workload scenarios. The result for the Satur-

day dataset is similar to that of the Friday and we will provide some of the former’s

results at the end of this section.

As a preview of our in-depth analysis, Figure 5.1 (for the Friday dataset) and

Figure 5.2 (for the Tuesday dataset) provide a 3D illustration of the comparison

of RAND, BC, and VT for all configurations of the evaluation. Although these

datasets represent very different workloads, they share the following pattern: in

the unrealistic case with too limited capacity and too few servers, there is no clear

winner, but in most realistic cases where the capacity is not too low, VT is the

best and RAND the worst, especially when the number of servers or the capacity

increases.

The superiority of VT is more noticeable for the Tuesday dataset which repre-
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sents a weekday with busy workloads during the working hours. In contrast, the

Friday dataset represents a near-weekend day with busy workloads only during the

rush hours. It is therefore implied that the effectiveness of VT is best showcased

with busy workloads, which is a desirable property.

Figure 3.3 provides a sample visualization of how the cell-to-server assignment

of each algorithm is laid out on the geographic map. In this sample, using the Fri-

day dataset with five servers deployed and 20% capacity, VT results in a partition

of five supercells and no unassigned cells. The partition of BC, however, consists of

six supercells, leaving one supercell unassigned (the gray cells on the map). In this

configuration, the backhaul cost of VT is only 86% of BC. Furthermore, although

VT does not enforce the geographical contiguity in the cell merging criterion as in

BC, the cells belonging to the same server as a result of VT do satisfy this property

almost perfectly. In all configurations, this property does exhibit for most of the

cells. There are several cases with remote cells in the same server but that might

be due to a lot of interactions between them. Consequently, a nice property of

VT is that its merging procedure though geographically blind still naturally offers

geographical contiguity.

We discuss the comparison in more detail below.

3.3.2.1 Effect of the Server Capacity

Figure 3.4 demonstrates for the Friday dataset the effect on the backhaul cost as

the server capacity increases using the same number of servers. With only five

servers (Figure 3.4(a)), there is no clear difference among the three algorithms

until the server capacity is sufficiently large. For example, when κ ≥ 10%, we start

seeing VT and BC better than RAND. With 15 servers (Figure 3.4(b)), VT and
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BC become substantially better than RANDOM when the server capacity exceeds

5%. With 25 servers (Figure 3.4(c)), we only need a server capacity of 1% or more

to see this. In all configurations, the best cost RAND can achieve is 70% of the

non-MEC cost; this figure is 57% for BC and 50% for VT.

Between VT and BC, Figure 3.4(d) illustrates the improvement of the former

compared to the latter, here plotting the ratio of the backhaul cost of VT to that

of BC. In all configurations except for the extreme case of too low capacity and

too few servers, VT is the superior and the improvement is noticeable when the

server capacity is sufficiently large. For example, for all cases of the number of

servers, the cost of VT is less than 95% of BC when the capacity reaches 15% and

less than 90% when the capacity is 25%. The trend in Figure 3.6(f) suggests that

the improvement should continue to extend if the capacity can increase further.

We observe similar patterns for the Tuesday dataset, as seen in Figures 3.5(a),

3.5(c), and 3.5(e). It thus becomes obvious that VT performs the best, followed by

BC, and RAND the worst. There is also an interesting observation. Whereas it is

expected that the backhaul cost should improve as the server capacity increases,

the improvement rate is not the same for the three algorithms. It is slowest with

RAND and fastest with VT. For example, with the Friday dataset using 15 servers

(Figure 3.4(b)), increasing capacity beyond 5% does not make RAND any better;

this number is 15% for BC while VT continues to benefit from the increase beyond

20%. In other words, VT is not only better than BC (up to 14% in this evaluation)

but would substantially be better (higher than 14%) if we could afford higher server

capacity; of course, until the capacity becomes so high that it makes no significant

difference between the two algorithms.
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3.3.2.2 Effect of the Number of Servers

Figure 5.6 (for the Friday dataset) and Figures 3.5(b), 3.5(d), 3.5(f) (for the Tues-

day dataset) demonstrate the effect on the backhaul cost as we add more servers,

provided the server capacity is unchanged. Since the comparison patterns are

similar for both datasets, we discuss the Friday dataset in what follows.

When the capacity is extremely low (1%, Figure 3.6(a)), the cost does improve,

which is understandable because a server has too little capacity to make any edge

computing benefit and so having more servers will help. However, when the ca-

pacity approaches a realistic value, it is observed that having more servers beyond

a sufficient quantity does not help at all. We need only 10 servers for 10% capac-

ity (Figure 3.6(c)) or 5 servers for 20% capacity (Figure 3.6(e)). This is because

with more servers the intra-server cost is decreased but the cross-server cost can

increase. For RAND, this tradeoff leads to even a worse overall backhaul cost. For

VT and BC, the cost stays roughly the same.

Figure 3.6(f) plots the ratio of the cost of VT to that of BC. Similarly observed,

increasing the number of servers beyond a certain threshold (10 servers) does not

improve this ratio, meaning if we want to make VT increasingly better than BC

we should not achieve that by adding more servers.

This study together with the study on the effect of the number of servers implies

that it is the server capacity, not the number of servers, that has more influence on

the efficiency of the server assignment. To lower the backhaul cost, it is better to

increase the server capacity for each server than to add more servers of the same

capacity.
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3.3.2.3 Analysis of Cost in Real Time

In this study, we investigate the backhaul cost incurred when processing the work-

load at each time instant t ∈ [0, T = 144]. As we mentioned earlier, the Tuesday

and Friday datasets represent two very different workloads. The former is for a

weekday with busy workloads during the working hours (Figure 3.7(a)), while the

latter is for a day with busy workloads only during the rush hours (Figure 3.7(a)).

Also, there are some activities during the hours before and after midnight entering

the Friday, while there are no such activities for the Tuesday.

For the Friday dataset, Figure 3.7(a) shows the absolute backhaul cost over the

time and Figure 3.7(b) shows the backhaul cost normalized as a percentage of the

total workload at the given time. Similarly, we have Figure 3.7(e) and Figure 3.7(f)

for the Tuesday dataset. We also include the plots for another dataset (Saturday

Nov 2) so that we have a diversity of different workloads (Figure 3.7(c) and Figure

3.7(d)).

It is understandable to see the normalized backhaul cost fluctuate wildly during

light workload hours. This is understandable because when the workload is too

light and the normalized cost is computed as a ratio to the workload, the value

range of this ratio is wide. The more important observation here, however, is

that the improvement of VT over BC is more significant during busy hours. For

example, this applies to the Friday dataset around noon and 6PM (Figure 3.7(b)).

The pattern is much more visible for the Tuesday dataset (Figure 3.7(f)), showing

approximately a 45% cost saving by VT versus a 35% saving by BC.

This study further substantiates the cost efficiency of our proposed algorithm

and supports our hypothesis that the mean and variance information can be very

useful to finding a robust partition for highly time-varying workloads.
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3.4 Summary

We have proposed an effective probabilistic algorithm to produce a partition of

the cells to assign to the servers that is robust to the workload change dynamics.

The idea is to approximate the interaction rate for each cell pair as a random

Gaussian variable. Our evaluation has substantiated the effectiveness of the pro-

posed algorithm for some real-world datasets. In the future, we will evaluate with

real-world workloads following different probabilistic distributions and explore the

use of non-Gaussian models for representing the interaction rates.
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(a) (b)

(c) (d)

Figure 3.1: Friday Dataset: Comparison of the algorithms in all evaluation config-

urations, seen in different views. The z-axis is the backhaul cost.
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(a) (b)

(c) (d)

Figure 3.2: Tuesday Dataset: Comparison of the algorithms in all evaluation con-

figurations, seen in different views. The z-axis is the backhaul cost.
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(a) Milano Area (b) RAND

(c) BC (d) VT

Figure 3.3: The layout of the cell-to-server assignment resulted from each algo-

rithm. These maps are for five servers and 20% capacity using the Friday dataset.
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(a) (b)

(c) (d)

Figure 3.4: Friday Dataset: Effect of the server capacity.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Tuesday Dataset: (a), (c), (e) Effect of the server capacity; (b), (d),

(f): Effect of the number of servers.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Friday Dataset: Effect of the number of servers.
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(a) Friday: absolute cost (b) Friday: normalized cost

(c) Saturday: absolute cost (d) Saturday: normalized cost

(e) Tuesday: absolute cost (f) Tuesday: normalized cost

Figure 3.7: Real-time cost for the case of 10 servers at 10% capacity, shown for

three different days. The left plots show the absolute value of the backhaul cost

incurred by each algorithm together with the total workload at each time instant.

The right plots show the backhaul cost normalized as a fraction of the total.
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CHAPTER 4

GEO-AWARE PARTITIONING

A desirable property for the MEC server assignment is to place the edge servers

geographically close to the users they respectively serve. As discussed in Chap-

ter 2, the geographical awareness can be represented as a degree of geographical

contiguity or compactness. In this chapter, we focus on achieving geographical

compactness by formulating it as an objective to optimize.

4.1 Geo-Awareness Formulation

We introduce a geo-aware version for Problem 2.3.1. This version assumes given

a set L = {1, 2, ..., L} of L ≥ M candidate locations for the edge servers. A

server needs to be given a location in this set. For example, L can be a subset

of base-station locations; in this case, an edge server must be co-located with

some base-station (as in [MSG15]). In general, we admit any arbitrary candidate

location.

Our goal consists of two tasks: (1) server location assignment (SLA): assign

the best location for each server and (2) cell-server assignment (CSA): assign the

best server for each cell. We introduce the following notations:

• An integer variable gs ∈ L denotes the location of server s. Note that no

servers are located at the same location.
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• If a cell i is assigned to a server and this server is at location l, we have a

front-haul link, whose usage cost should increase with their distance; denote

this cost by dil (assumed given, e.g., equal to distance).

We quantify the geo-spread of a server as the sum of its distances to the assigned

cells, weighted by workload demand. At time t, the geo-spread of a server s is

spread(t)(s) =
∑

i∈C:fi=s

digsw
(t)
i . (4.1)

where

w
(t)
i =

∑
j∈C

w
(t)
ij

is the total workload (sum of all interaction rates) at time t involving cell i. The

total geo-spread for all the servers at time t is

spread(t) =
∑
s∈S

spread(t)(s) (4.2)

=
∑

i∈C:fi=s

digsw
(t)
i (4.3)

=
∑

i∈C:fi=s

digs
∑
j∈C

w
(t)
ij . (4.4)

To make the server assignment geo-compact, we want to minimize the total geo-

spread over time period [1, T ]

spread =
T∑
t=1

spread(t). (4.5)

Our geo-aware server assignment with time varying workload is the following

extension of Problem 2.3.1.

Problem 4.1.1. Given (µ,σ2), compute partitions f and z such that when applied

to a future time-varying workload WT the total backhaul cost and the total geo-
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spread over the time period [1, T ] are both minimal; i.e.,

min

{
cost, spread

}
, (4.6)

provided that WT is consistent with (µ,σ2).

Recall

µ =

(
µij

)
N×N

, σ2 =

(
σ2
ij

)
N×N

where µij and σ2
ij are the mean and variance of the time-varying interaction rate

between cell i and cell j. We say that a time-varying workload WT is consistent

with (µ,σ2) if µij and σ2
ij are (reasonable) sample mean and variance of w

(t)
ij over

time t ∈ [1, T ].

Problem 4.1.1 is a multi-objective optimization problem. Without the geo-

spread objective, the problem is already computationally hard as previously dis-

cussed in Chapter 2.

4.2 Time-Invariant Workload

We propose a solution for a simplified version of Problem 4.1.1 where it is assumed

that the workload does not change over the time, i.e., w
(t)
ij = µij for all t ∈ [1, T ] and

σij = 0 for all i, j ∈ C. Hence, we can omit the superscript (t) in all the formulas.

Furthermore, without loss of generality, assume that
∑N

i=1

∑N
j=1 µij=1 and that

κ < 1 (the capacity of a server should not be larger than the total workload).

In the proposed solution, we look for one that does not leave any cell unassigned:

fi > 0 for every i ∈ C. Hence, the “unassigned” cost in Eq. (2.1) is costunassigned =
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0. The formulation for the backhaul cost becomes (simplified from Eq. (2.4)):

costcrossserver =
∑

i,j:0<fi<fj

wij (4.7)

costoverload =
∑
s

max

(
0,

∑
i,j:j≥i∧fi=fj=s

wij − κ
)

(4.8)

cost = costcrossserver + costoverload (4.9)

We propose a heuristic approach consisting of three phases: focus on geo-spread

optimization first, then refine the solution based on the cost, which as a side effect

may worsen the spread, and, finally, improve the solution again, this time for a

better spread. As local search is widely used for hard combinatorial optimization

problems, we present below the local search methods to optimize each individual

objective and how to apply them in the three-phase approach.

4.2.1 Cost Optimization

Because cost does not involve geography, we need compute only the best cell-

server assignment based on the workload demand; any location choice for the

servers would work. In a nutshell, our algorithm starts with a random assignment

(random cell-server assignment and random server-location assignment), and re-

peatedly apply a local operation such that the new assignment improves cost. A

local operation, denoted by move cells(l0, l1), runs an algorithm to migrate cells

between a pair of servers at locations l0 and l1; the servers are referred to as the

l0-server and l1-server, respectively. As long as we can find a local operation that

improves cost,

costnew < cost, (4.10)
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we make the new assignment permanent and repeat the same process until no such

local operation is found.

Let A0(A
′
0) and A1(A

′
1) denote the cellsets of the l0-server and l1-server before

(after) the location, respectively. According to Eq. (4.9), cost will decrease if the

quantity

∆cost(A0, A1) =
∑
i∈A0

∑
j∈A1

wij + max

(
0,
∑

i≤j∈A0

wij − κ
)

+ max

(
0,
∑

i≤j∈A1

wij − κ
)

(4.11)

decreases as a result of replacing (A0, A1) with (A′0, A
′
1). Consequently, we should

design the cell-moving algorithm such that its objective is to minimize ∆cost.

This challenge can be translated into a graph bipartitioning problem:

• Let H be a weighted graph (self-loop possible) where each cell in C is a vertex

and an edge connects cell i and cell j if they have transactions; the weight of

edge (i, j) is wij. A feasible solution is a partition of H into two components.

The first additive term of Eq. (4.11) is the cut weight of this partition and

the second and third additive terms represent a capacity-constrained quality

for the partition.

We derive an algorithm to compute the best partition based on the Fiduccia-

Mattheyses (FM) heuristic [FM82]. FM is effective for solving the classic graph

min-cut bipartitioning problem whose objective is to minimize the cut weight while

balancing the vertex weight. FM is fast (linear time in terms of the number of

vertices) and simple (each local operation involves moving only one vertex across

the cut). Because our objective is different (minimizing ∆cost), we need to modify

FM.
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The cell-moving algorithm works as follows (see Algorithm 4.2.1). Resembling

FM, the algorithm runs in passes:

• In each pass, compute a sequence of cell migrations each moving a vertex

from A0 to A1 or from A1 to A0 such that ∆cost(A0, A1) after this series is

maximally improved.

• Stop when no improvement can be made.

To determine which vertex to move, let us define for each vertex a quantity called

“gain”, which is the cost reduction if the vertex were moved from its component to

the other component. Consider a vertex i and, without loss of generality, suppose

that i ∈ A0. If vertex i were moved to A1, its gain in the cut weight is

gaincut(i) =
∑
j∈A1

wij −
∑

j∈A0,j 6=i

wij.

The edge weight sum of A0 and that of A1 would be changed to

W ′(A0) = W (A0)−
∑
j∈A0

wij

W ′(A1) = W (A1) + wii +
∑
j∈A1

wij

and so the gain in the capacity-constrained quality is

gaincap(i) = max(0,W (A0)− κ) + max(0,W (A1)− κ)

−max(0,W ′(A0)− κ)−max(0,W ′(A1)− κ).

The gain of vertex i is

gain(i) = gaincut(i) + gaincap(i).

Intuitively, a positive (negative) gain would result in a smaller (larger) ∆cost if the

vertex switched its component.
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At the beginning of each pass, we construct a priority queue of vertices based

on their gain. This queue includes only those vertices whose migration would result

in

max(W ′(A0),W
′(A1)) ≤ max(κ,W (A0),W (A1)). (4.12)

In other words, we consider moving a vertex only if the moving improves the load

balancing between the two servers or keeps them under the server capacity.

During the current pass, we repeatedly select the vertex of highest gain from

the priority queue, move it, and update the queue. After this vertex is moved, it

is “locked” so that it cannot be moved again in the current pass. Then, we repeat

this process until the queue is empty. We keep track of the gain accumulation after

each kth step:

GAINk =
k∑
t=1

gain(it),

where it is the vertex chosen in step 1 ≤ t ≤ k. The best move decision would be

to move vertices i1, i2, ..., ik∗ such that k∗ = arg maxk≤N GAINk.

If GAINk∗ > 0, these moves would result in better ∆cost because the new ∆cost

is ∆cost−GAINk∗ < ∆cost; we make these moves permanent and go on to the next

pass which repeats the same procedure. Else, the algorithm makes no change (i.e.,

keep the same partition as that before the pass starts) and stops.

When a local operation move cells(l0, l1) finishes, we will use the final assign-

ment resulted from this operation. The algorithm continues repeatedly with finding

the next move cells() local operation that can further improve cost and stops when

no such local operation is found.
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4.2.2 Geo-Spread Optimization

Minimizing spread can be reduced to solving a k-median problem [KH79]. In k-

median, given a set of n clients and a set of m facilities, the goal is to choose

k facilities to open and assign an open facility to each client such that the total

assignment cost is minimum, assuming that the assignment cost to service client i

by facility l is γil (by default, a metric). We can consider each server a facility to

open (k = M , m = L) and each cell a client (n = N). The cost to assign client i to

facility l (if open) is γil = widil (alternatively, we can think of dil as the assignment

cost per unit of service and wi as the service demand).

Let binary variable zil represent that zil = 1 iff cell i is assigned to a server

and this server is at location l. Then the total service cost for the corresponding

k-median problem is

∑
l∈L: open

∑
i∈C

zilγil =
∑
l∈L

∑
i∈C

zildilwi = spread.

Therefore, any k-median solution zil (zil = 1 iff facility l is open and client i is

served by this facility) is a solution that minimizes spread for our problem.

K-median is NP-hard [KH79] and the best approximation factor known to date

is 2.675 + ε, achieved by Byrka et al. [BPR17]. Using the local search approach,

one can obtain an approximation factor of (3 + 2/p), for example by Arya et

al.’s polynomial-time algorithm [AGK01]. This algorithm starts with a feasible

assignment and repeatedly perform a p-facility swap until no further cost reduction.

Similarly, our algorithm starts with a random assignment and then repeatedly

applies a series of local operations. Let assign cells(L) denote an algorithm that

assigns the cells in C to the servers located at a given subset of locations, L ⊂ L,
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such that a cell is always assigned to the nearest server; i.e.,

assign cells(L) : i 7→ arg min
l∈L

dil.

A local operation, denoted by swap locations(l0, l1), involves a pair of a server

location l0 in the current server location set L and a non-server location l1 6∈ L,

and does the following:

• Remove location l0 from the server set

• Add location l1 as a new server location set

• Run assign cells(L′) to obtain a new cell-server assignment where L′ = L −

{l0}+ {l1} is the new server set.

A local operation is chosen to take place permanently if spread of the resultant

assignment is improved by at least a constant factor λ ∈ (0, 1); i.e.,

spreadnew < (1− λ) · spread. (4.13)

Subsequently, the algorithm goes on repeatedly with finding another local opera-

tion satisfying this inequality until none is found.

4.2.3 Cost and Geo-Spread Optimization

The above algorithms are designed for only one objective, cost or spread. We

propose the following three-phase algorithm; a summary is given in Algorithm

4.2.2.

In Phase 1 (lines 1-4 of Algorithm 4.2.2), we run the spread-only algorithm

presented above to obtain an assignment with the (approximately) best spread.
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In Phase 2 (lines 5-7 of Algorithm 4.2.2), we start with this assignment and

adjust the cell-server assignment to improve cost. During the process, the server-

location assignment is intact. For the adjustment, we apply the same local search

algorithm (same local operation) as in the cost-only algorithm except for one small

modification. Specifically, a local operation, move cells(l0, l1), is made permanent

not only if the resultant cost is less (Eq. (4.10), but also the resulted spread

remains below a threshold,

spreadnew ≤ (1 + ε) · spread0, (4.14)

Because a local operation, while lessening the cost may worsen the spread, the

threshold is introduced to keep the spread within a reasonable factor of spread0

that is the spread at the start of Phase 2. Here, ε ∈ (0,∞); we can set ε = ∞ if

the goal is to bring down the cost aggressively.

In Phase 3 (lines 8-10 of Algorithm 4.2.2), we start with the assignment of Phase

2 and recompute the server locations for better spread (which has been worsen as

tradeoff during Phase 2 compared to that in Phase 1). During the process, the

cell-server assignment is intact. Denote the server set by S and the cellset of each

server s ∈ S by cellset(s). The unknown to compute is the binary variable ysl, set

to 1 iff server s is placed at location l. We have

spread =
∑
l∈L

∑
i∈C

zildilwi =
∑
s∈S

∑
l∈L

ysl
∑

i∈cellset(s)

dilwi︸ ︷︷ ︸
Asl

. (4.15)

Because a server must be assigned to an exclusive location, to minimize∑
s∈S

∑
l∈L

yslAsl

is equivalent to finding a min-cost maximal matching in a complete bipartite graph

(S,L) where an edge connects a vertex s ∈ S to a vertex l ∈ L with cost Asl
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(which is known from the intact cell-server assignment). Therefore, we apply

the Hungarian Algorithm [KY55] to compute this matching (ysl), which runs in

polynomial time (cubic in the number of vertices).

4.2.4 Evaluation

We conducted an evaluation with both synthetic and real-world datasets. The

goal of this evaluation is to assess the effectiveness of the proposed three-phase

algorithm compared to intuitive solutions.

4.2.4.1 Setup

The synthetic dataset (Synthetic500) represents a workload that has no relation-

ship with geography. The real-world dataset (Milano625) represents a workload in

which demand is higher between cells of increasing proximity.

• Synthetic500: The service area is a 2D square area A = [0, 1]2 where N = 500

random locations are chosen for the base-stations and their corresponding

cells are the Voronoi cells of A. The workload demand wij between cell i and

cell j is generated uniformly at random: wij ∼ uniform(0, 1).

• Milano625: We constructed this dataset from the collection of geo-referenced

Call Detail Records over the city of Milan during Nov 1st, 2013 - Jan 1st,

2014 (https://dandelion.eu/). Specifically, we partition the area into a grid

of 25× 25 = 625 cells of size 0.94km× 0.94km, and count the calls between

these cells made during the Monday of Nov 4th, 2013.

In both studies, the transaction demand values are normalized such that they

sum to 1. The number of MEC servers is set to M = 10 whose location is chosen
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Figure 4.1: Heat map of workload wij for Milano625 , where i is the x-axis, j the

y-axis, and (0, 0) at top-left.

from L = 50 random locations. These quantities are reasonable given the number

of cells. The server capacity is set to κ ∈ {0.03, 0.04, ..., 0.08}, meaning {3%, 4%...,

8%} of the total workload. Figure 4.2.4.1 shows the heat map of the workload

demand for the Milano625 dataset.

For convenience, we refer to our three-phase algorithm as KMED/FM/HUNG,

as it applies k-median, Fiduccia-Mattheyses (FM), and Hungarian algorithms in

the three phases, respectively. Serving as benchmark for comparison are:

• RAND: the random assignment algorithm.

• KMED: the spread-only algorithm using k-median.

• FM/HUNG: the cost-only algorithm using FM with another step using Hun-

garian to improve spread.

Note that the only difference between KMED/FM/HUNG and FM/HUNG is that
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(a) (b)

Figure 4.2: Synthetic500: synthetic workload, no relationship with geography

the former starts with a KMED assignment while the latter starts with a random

assignment. The metrics for comparison are cost (cost) and spread (spread). RAND

offers a good upper-bound for both cost and spread, while KMED represents a good

lower bound (supposedly best) for spread and FM/HUNG a good lower-bound

(supposedly best) for cost.

The λ parameter in Eq. (4.13) is set to 0.0001 for k-median and ε in Eq. (4.14)

is set to ∞ (no spread constraint in the second phase). The simulation runs on

10 random sets of candidate server locations and, for each set, 5 random choices

for the initial assignment. The results are averaged over these 50 runs and plotted

with 100% confidence interval.

4.2.4.2 Workload Without Geography Correlation

Figure 4.2 shows the results for the synthetic case in which geography is no factor

in workload demand. In terms of cost (Figure 4.2(a)), KMED is almost identical

to RAND, both incurring a high backhaul cost of almost 0.9 (i.e., 90% of the total
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workload), even when the server capacity increases. This is not surprising because

KMED is cost-blind and so when workload has no relationship with geography,

minimizing spread results in a cost as bad as that of a random assignment. Perhaps

for the same reason, the other two methods, KMED/FM/HUNG and FM/HUNG,

also incur almost the same cost. In other words, whether we start with a RAND

assignment or a KMED assignment, an application of FM+HUNG would result in

similar costs. It is important to note that the FM step is effective, especially as

the server capacity increases. With a server capacity of 0.08, applying FM reduces

the backhaul cost to 0.73, a 20% improvement from the initial assignment.

In terms of spread (Figure 4.2(b)), KMED is the best (expected) and RAND the

worst (understandable because it is spread-blind). Between the other two, more

interestingly, FM/HUNG has a similar spread (only slightly larger) compared to

that of KMED/FM/HUNG. This study suggests that, for a workload input that has

no relationship with geography, (1) we can do better than a random assignment,

(2) the 3-phase algorithm can run without Phase 1 (KMED) which has almost zero

benefit, and (3) there is no clear winner between FM/HUNG and KMED; which

one should be chosen depends on whether we prefer minimizing cost or spread.

4.2.4.3 Workload With Geography Correlation

Figure 4.3 shows the results for the real-world dataset (Milano625), in which the

workload has a strong correlation with geography; specifically, higher between cells

of shorter distance [BC17]. Similar to the above study, and, expectedly, RAND is

worse than all the other algorithms in both objectives and KMED has the best

spread. There are, however, key differences.

First, KMED has a substantially lower cost than RAND’s; this implies that, due
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(a) (b)

Figure 4.3: Milano625: real-world workload, strongly correlated to geography.

to the correlation between workload and geography, by minimizing spread there

is, to some extent, a benefit in reducing the cost. Indeed, because KMED tends

to cluster cells near each other and workload demand is high between close cells,

heavy workloads tend to be served by the edge, hence less workload going backhaul

(compared to a random assignment). Second, KMED/FM/HUNG is clearly better

than FM/HUNG in both objectives; this substantiates the effectiveness of having

Phase 1 (KMED) in our algorithm, leading to not only better cost but also better

spread. Third, KMED/FM/HUNG has a spread only slightly worse than KMED;

this shows the effectiveness of Phase 3 (HUNG) in improving spread. In short, all

the three phases in the proposed algorithm (KMED/FM/HUNG) are important to

achieving both objectives.

4.2.4.4 Other Observations

Figure 4.4 gives a visual representation of the assignment map according to KMED

and KMED/FM/HUNG. Both methods are consistent with the physical map of
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Milan (Figure 5.3); that is, because most transactions involve the inner neighbor-

hoods, a server closer to the the central area covers fewer cells (which have high

activity) than those in the outskirt (which have low activity). While KMED places

the servers spatially nicely (Figure 4.4(a), Figure 4.4(b)), KMED/FM/HUNG allows

for some dis-contiguity in the cells that belong to the same server (Figure 4.4(c),

Figure 4.4(d)); the latter does so to reduce the backhaul cost. For example, when

the capacity W = 0.05, (cost, spread) is (0.43, 0.21) for KMED/FM/HUNG and

(0.49, 0.18) for KMED. This is a tradeoff between cost versus spread. Although

we cannot avoid this tradeoff, it is important to point out that KMED/FM/HUNG

offers a better workload balance, as clearly illustrated in Figure 4.4(e). The ratio

of the maximum to the minimum workload demand is at least two times less with

KMED/FM/HUNG than with KMED.

4.3 Time-Varying Workload

For the problem in which the workload changes over the time, we can apply the

following approximation heuristics: set the interaction rate w
(t)
ij at each time t to

the average (mean) interaction rate µij, replace the objectives with the objectives

that use µij instead of w
(t)
ij , and then solve the corresponding problem using the

three-phase algorithm above for time-invariant workload.

Another way is to extend the Probabilistic Partitioning algorithm (Algorithm

5.2.2) proposed in Chapter 3. Recall that, in the while loop of step 3 in this

algorithm, when looking for an edge (x, y) connecting vertex x and vertex y so

that we will merge these vertices to form a super vertex, the criterion to find this

edge is such that

cdf(κ|µx∪y, σx∪y) ≥ θ.
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We revise this step by introducing an additional condition that vertices x and y

must be geographically contiguous.

4.4 Summary

We have addressed a server assignment problem for MEC, whose decision making

needs to be made for where geographically to place the servers and how to assign

them to the user cells based on interaction workloads. The formulation of the

two objectives with respect to the backhaul cost and geographic spread has not

appeared in the MEC literature. We have proposed and evaluated a heuristic

solution leveraging k-median, Fiduccia-Mattheyses, and Hungarian methods. The

solution is not optimal (due to the NP-hardness of the problem), but an effective

approximation. This solution assumes a fixed workload, but it could be extended

for time-varying workload. For the future work, our next step is to investigate the

effectiveness of this extension. We will also compare it with the approach that

extends the probabilistic algorithm framework presented in the previous chapter

to accommodate geo-contiguity.
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Algorithm 4.2.1: move cells(l0, l1)

A0, A1: cellsets of l0-server and l1-server, respectively;

Compute W (A0),W (A1): edge weight sum (compute load) of A0 and A1,

respectively;

while true do

k∗ = 0, GAINmax = 0, GAIN = 0;

Unlock all vertices;

Compute gain for every vertex;

Save the current partition C = A0 ∪ A1;

for k = 1, 2, ..., |C| do

if ∃ an unlocked vertex ik ∈ C of highest gain satisfying InEq.

(4.12) then

GAIN + = gain(ik);

if GAIN > GAINmax then

GAINmax = GAIN ;

k∗ = k;

Move vertex ik to the other component;

Update gain for every unlocked vertex;

Update W (A0) and W (A1);

Lock vertex ik;

else break ;

if GAINmax > 0 then

Retrieve the original current partition C = A0 ∪ A1;

Move vertices i1, i2, ..., ik∗ each from its respective original

component to the other component;

Update gain for every unlocked vertex;

Update W (A0) and W (A1);

else break ;

return;
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Algorithm 4.2.2: Three-Phase Algorithm

/* Phase 1: K-median to minimize spread */

Initial assignment: Choose a set L of M random locations for the servers

and assign cells to these servers randomly;

while ∃ l0 ∈ L and ∃ l1 6∈ L such that swap locations(l0, l1) would result in

an assignment satisfying InEq. (4.13) do

Permanently apply the assignment resulted from swap locations(l0, l1);

/* Phase 2: FM to improve cost */

while ∃ l0, l1 ∈ L such that move cells(l0, l1) would result in an assignment

satisfying InEq. (4.10) and InEq. (4.14) do

Permanently apply the assignment resulted from move cells(l0, l1) ;

/* Phase 3: Hungarian to improve spread */

Let S be the set of servers (i.e., those serving cells according to the above

assignment);

Compute matrix [Asl]S×L as defined in Eq. (4.15) ;

Run Hungarian Algorithm on the cost matrix [Asl]S×L ;

return;
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(a) KMED (b) KMED

(c) KMED/FM/HUNG (d) KMED/FM/HUNG

(e) KMED/FM/HUNG (f) Milano area

Figure 4.4: Assignment map of (a,b) KMED and (c,d) KMED/FM/HUNG for a

single random run on Milano625 with capacity W = 5%, where each colored-circle

represents a server (out of 50 possible locations) and each server and its cells share

the same color. Also shown is (e) the ratio of maximum to minimum workload

and (f) the physical map of Milan.
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CHAPTER 5

GEO-CONTIGUOUS PROBABILISTIC

PARTITIONING

In chapter 3 we presented our solution of Problem 2.3.1 without consideration of

geographical constraints. In chapter 4 we achieved the geo-awareness objective by

formulating it as geographical compactness optimization problem. Now we want

to solve both problem at once with our new algorithm.

5.1 Optimization Objective and Constraint

Ideally, we want a partition f such that when applied to a (future) time-varying

workload WT the total backhaul cost is minimal. If we know nothing about WT ,

we can do no better than the random assignment, which assigns each cell to an

arbitrary server. On the other hand, if we assume to know everything about WT ,

i.e., the interaction rates w
(t)
ij for all cell pairs (i, j) at every time t are known, this

assumption may be too strong to be practical for time-varying WT .

In this paper, for each cell pair (i, j), instead of assuming that w
(t)
ij is known

for all t, we assume to know only their mean µij and variance σ2
ij. This is a

realistic assumption because we can easily measure these quantities from samples

(past interaction rates). In practice, the interaction demand between two cells may

change frequently over the time, but the change should follow a pattern, and so
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the sample mean and sample variance are reliable.

Let

µ =

(
µij

)
|C|×|C|

, σ2 =

(
σ2
ij

)
|C|×|C|

.

We say that a time-varying workload WT is consistent with (µ,σ2) if µij and σ2
ij

are (reasonable) sample mean and variance of w
(t)
ij over time t ∈ [1, T ].

A constraint for the partition is that the cells in the same cluster must form a

contiguous geographical region. We call such a partition geo(graphically)-contiguous.

To set up our optimization, therefore, we need to input

Our optimization problem is as follows.

Problem 5.1.1. Given (µ,σ2), compute a geo-contiguous partition f such that

when applied to a future time-varying workload WT the total backhaul cost over the

time period [1, T ] is minimal; i.e.,

min

{
cost =

T∑
t=1

cost(t)
}
, (5.1)

provided that WT is consistent with (µ,σ2).

5.2 Heuristic Solution

The variables {fi} represent a partition of the cells into (|S| + 1) groups, |S| of

which are assigned to the |S| servers and the last is the group of unassigned cells.

A group of cells is called a “supercell”. We use letters x, y, ... to denote supercells.

We propose an iterative partitioning algorithm based on the idea of modularity

optimization in complex networks [New06]: repeatedly merge the vertices of the

network, represented as a weighted graph, to obtain a smaller graph of super-

vertices, called “modules”, that is better in terms of “modularity”. The modularity
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is some quality function such that, conventionally, networks with high modularity

have dense connections between the nodes within modules but sparse connections

between nodes in different modules.

In our context, the vertices of the original graph are the original cells, which

are merged into super-vertices (supercells) in the subsequent graphs. At any time,

each supercell formed must correspond to a geographically contiguous region. The

key ingredient in our algorithm is the definition of the quality function. For ease of

explanation, we focus first on the special case where the workload is time-invariant

(zero variance), and then the general case where the workload is time-varying

(positive variance).

5.2.1 Time-Invariant Workload

Suppose that the workload does not change over the time, i.e., w
(t)
ij = µij for all

t ∈ [1, T ] and σij = 0 for all i, j ∈ C. Let uxy denote the workload demand between

the users in a supercell x and the users in a different supercell y and ux denote the

workload demand between users in the same supercell x. We can write

uxy =
∑
i∈x

∑
j∈y

µij, ux =
1

2

∑
i∈x

∑
j∈x

µij.

Here, “i ∈ x” means that cell i is a member of supercell x.

The optimization problem becomes a graph partitioning problem with fixed

edge weights. To apply modularity optimization, we start with a graph where each

vertex is an original cell and after each merging step we obtain an immediate graph

of supercells; here, the weight of the edge connecting supercell x and supercell y

is uxy. The vertex merging goes on as long as we can increase ux for some vertex

x. Constrained by the capacity bound and geo-contiguity, a merger to form a

supercell x is allowed only if the new ux ≤ κ (capacity bound) and x forms a
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contiguous region of cells (geo-contiguity). The detailed steps of this algorithm are

as follows.

Algorithm 5.2.1 (Time-Invariant Workload).

1. Initially, we start with a graph of |C| supercells (vertices), each supercell being

an original cell: X = {{1}, {2}, ..., {|C|}}.

2. While (true)

• Maintain a list of edges (x, y) ∈ X × X sorted in descending order of

uxy.

• Find the first edge (x, y) in this list such that (i) the geographical regions

corresponding to x and y are adjacent and (ii) that ux∪y ≤ κ, i.e., the

workload demand of the supercell merging x and y would be under the

server capacity. If this edge is not found, go to Step 3.

• Merge vertex x and vertex y to form a new vertex corresponding to

supercell x ∪ y.

• Update X and its edge weights.

3. At this time, we obtain a graph of m vertices (supercells), corresponding to

a partition into m supercells.

4. If m ≥ |S|, we choose the |S| supercells x of largest ux and assign them respec-

tively to the |S| servers. The cells in the remaining supercells are unassigned.

5. Else, the partition has fewer supercells than servers. Each supercell is as-

signed to a server. In this case, there is no unassigned cell and one or more

servers may be idle (suggesting that m servers would be sufficient).
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In understanding of this algorithm, intuitively, we can think of uxy as the inter-

module density and ux as the intra-module density, and if we merge x and y we

would improve modularity because of the reduction in inter-module density and

increase in intra-module density. Translating this to our cost model, by enforcing

the condition ux ≤ κ, we keep costoverload = 0 (Eq. (2.3)) and after each vertex

merging we obtain reductions in costunassigned (Eq. (2.1)) and costcrossserver (Eq.

(2.2)). By preferring the edge (x, y) with largest uxy in Step 2, we want to maximize

the modularity improvement.

It is noted that this algorithm is essentially the same as that proposed by Bouet

and Conan in [BC17]).

5.2.2 Time-Varying Workload

In the general case, we consider a time-varying workload and the only information

we assume given is the sample mean and variance of the interaction rate for each cell

pair. Our approach is to approximate the workload by a Gaussian distribution.

Specifically, we model the interaction rate w
(t)
ij of each cell pair (i, j), which is

unknown, as a Gaussian random variable with mean µij and variation σ2
ij,

w
(t)
ij ∼ N

(
µij, σ

2
ij

)
.

The Gaussian distribution has the property that the sum of Gaussian variables

is also Gaussian. Consequently, the workload demand between supercell x and

supercell y at a time t is the following Gaussian variable

u(t)xy ∼ N
( ∑

i∈x

∑
j∈y

µij︸ ︷︷ ︸
denoted by µxy

,
∑
i∈x

∑
j∈y

σ2
ij︸ ︷︷ ︸

denoted by σ2
xy

)
.
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Similarly, the workload demand of a supercell x is the following Gaussian variable

u(t)x :=
1

2
u(t)xx ∼ N

(
1

2

∑
i∈x

∑
j∈x

µij︸ ︷︷ ︸
denoted by µx

,
1

2

∑
i∈x

∑
j∈x

σ2
ij︸ ︷︷ ︸

denoted by σ2
x

)
.

We propose an assignment algorithm similar to Algorithm 5.2.1 for the time-

invariant workload case, except for the merging criterion in the iterative merging

step (Step 2 in Algorithm 5.2.1). Specifically, two supercells x and y are chosen

to merge if the would-be resultant supercell x ∪ y has a high probability, at least

a given threshold θ, of having a workload demand below the server capacity κ.

For a Gaussian variable X ∼ N (µ, σ2), its cumulative distribution function at

κ is

cdf(κ|µ, σ) = Prob[X ≤ κ] =
1

2

[
1 + erf

(
κ− µ
σ
√

2

)]
where erf is the Gaussian error function

erf(x) =
2

π

∫ x

0

e−t
2

dt.

Therefore, we merge supercells x and y into a new supercell x ∪ y if

cdf(κ|µx∪y, σx∪y) ≥ θ.

Note that the workload demand of the new supercell x ∪ y follows a Gaussian

distribution with mean µx∪y and variance σ2
x∪y, which can easily be computed :

µx∪y = µx + µy + µxy

σ2
x∪y = σ2

x + σ2
y + σ2

xy.

Following this merging criterion, the final partition result depends on the choice

of threshold θ. In the extreme case θ = 0, the server capacity is ignored and the

algorithm produces one big supercell merging all the original cells. In the other
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extreme case θ = 1, no cells are merged and so the algorithm results in a partition

that is the set of the original cells. In general, a larger/smaller θ tends to result in

a partition with more/fewer supercells. Therefore, it is critical to choose a good

value for θ that should result in the best partition for the given number of servers,

|S|.

Because we do not know this “optimal” θ value in advance, our proposed al-

gorithm starts with the largest θ = 1 and gradually decrements it as long as the

resultant partition has more supercells than servers. The merging continues with

this new θ. The algorithm stops when the number of supercells reaches |S| or

smaller. The proposed algorithm works in detail as follows.

Algorithm 5.2.2 (Time-Varying Workload).

1. Initially, we start with a graph of |C| supercells (vertices), each supercell being

an original cell: X = {{1}, {2}, ..., {|C|}}.

2. Initialize θ = 1.

3. While (true)

• Maintain a list of edges (x, y) ∈ X × X sorted in descending order of

µxy.

• Find the first edge (x, y) in this list such that (i) the geographical regions

corresponding to x and y are adjacent and (ii) the following condition

is met

cdf(κ|µx∪y, σx∪y) ≥ θ

• If this edge is not found, go to Step 3. Else, merge vertex x and vertex

y to form a new vertex corresponding to supercell x ∪ y.
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• Update X and its edge weights.

4. At this time, we obtain a graph of m vertices (supercells), corresponding to

a partition into m supercells.

5. If m > |S|

• Set θ = θ−ε (step size ε, sufficiently small, e.g., 0.05 in our evaluation).

• Go back to Step 2 to repeat the merging procedure.

6. Else, the partition now has the same or fewer supercells than servers. Each

supercell is assigned to a server. In this case, there is no unassigned cell

and one or more servers may be idle (suggesting that m servers would be

sufficient).

5.3 Evaluation

We conducted an evaluation1 on two real-world datasets we had constructed from

the collection of geo-referenced Call Detail Records over the city of Milan during

November 2013 and December 2013 (https://dandelion.eu/).

5.3.1 Setup

The datasets correspond to two different days (Fri Nov 1 and Tue Nov 5), each

representing a time-varying workload for evaluation. They offer two very different

workload scenarios. Specifically, we partitioned the area, 23.5km × 23.5km, into

a grid of |C| = 20 × 20 = 400 cells and counted calls between every two cells

for each 10-minute period during an entire day. The time duration of the entire

1http://github.com/quynhtavo/probabilistic-partitioning
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workload is therefore T = 24 hours / 10 minutes = 144 time slots. In each dataset,

we compute the mean and variance representing the interaction rate of a cell pair

(i, j) as follows:

µij =
1

T

T∑
t=1

w
(t)
ij , σ

2
ij =

1

T − 1

T∑
t=1

(w
(t)
ij − µij)2.

Note that these µij and σ2
ij values are the only information we assume known in

our research problem.

We investigated different configurations by varying the number of MEC servers

in the range |S| ∈ {5, 10, 15, 20, 25} and the server capacity in the range κ ∈ {1%,

5%, 10%, 15%, 20%}. For example, a choice of κ = 10% means that a server cannot

process more than 10% of the average total workload (i.e., the total workload at an

average time instant, which is the ratio of total workload over [0, T ] to the duration

T ).

For ease of presentation, we refer to our proposed algorithm (Algorithm 5.2.2) as

PROB/Geo (“probabilistic” +“geo-contiguous”). We compared it to three bench-

marks:

• METIS: this is arguably the best min-cut graph partitioning tool [KK98]. To

use it for our evaluation, we take as input a graph of cells where the edge

weight between cell i and cell j is set to their interaction mean µij and the

weight of a cell is set to 1. METIS can then produce a partition of balanced-

size clusters minimizing cross-cluster interaction workload. Although METIS

does not satisfy the geo-contiguity constraint, it serves as a reasonable good-

case scenario in terms of the backhaul cost, for the sake of comparison.

• BC (by Bouet and Conan [BC17]): this is the closest work to ours, which is

the same as the algorithm for a time-invariant workload (Algorithm 5.2.1).
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(a) PROB/Geo vs. METIS (b) PROB/Geo vs. BC (c) PROB/Geo vs. PROB

Figure 5.1: Friday Dataset: Comparison of PROB/Geo to the benchmarks. The

z-axis is the backhaul cost.

To use it as benchmark for our evaluation, we take as input the workload

where the interaction rates are the mean µij’s and apply BC to obtain the

assignment.

• PROB: this is the same algorithm as PROB/Geo but without the geo-contiguity

constraint when iteratively merging the cells to form a new supercell. Our

goal to include PROB in the evaluation is to (i) confirm the need for this con-

straint to produce a geo-contiguous partition and (ii) assess how much back-

haul cost PROB/Geo has to sacrifice for geo-contiguity compared to PROB.

The main metric for comparison is the backhaul cost, normalized as the ratio

of cost in Eq. (2.5) to the total workload over the time. For example, a ratio of

0.8 indicates that the backhaul cost of the MEC solution is only 80% that of the

solution without MEC; hence a 20% cost saving by MEC.

5.3.2 Results

As a preview of our in-depth analysis, Figure 5.1 (for the Friday dataset) and

Figure 5.2 (for the Tuesday dataset) provide 3D illustrations of the comparison
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(a) PROB/Geo vs. METIS (b) PROB/Geo vs. BC (c) PROB/Geo vs. PROB

Figure 5.2: Tuesday Dataset: Comparison of PROB/Geo to the benchmarks. The

z-axis is the backhaul cost.

Figure 5.3: The area in the city of Milano for which the datasets were obtained.

of for all configurations of the evaluation. Although these datasets represent very

different workloads, they share the following pattern: PROB/Geo incurs less back-

haul cost than all the benchmarks in most cases. It is worse in the extreme cases

where server capacity is too small and the number of servers is too small. The

result is encouraging because it is shown here that applying PROB/Geo is better

than applying a generic graph partitioning tool (METIS is known to be effective

generally) for the problem in our paper.

Figure 5.4 provides a sample visualization of how the cell-to-server assignment

of each algorithm is laid out on the geographical map (see Figure 5.3). In this

sample, using the Friday dataset with five servers deployed and 20% capacity,
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(a) METIS (b) BC (c) PROB (d) PROB/Geo

Figure 5.4: The layout of the cell-to-server assignment resulted from each algo-

rithm. These maps are for five servers and 20% capacity using the Friday dataset.

Black color represents those cells that are unassigned.

PROB/Geo results in a partition of five supercells and no unassigned cells (Figure

5.4(d)). The partition of METIS, expectedly, does not satisfy the geo-contiguity

requirement (the blue and green cells in Figure 5.4(a)). So is the partition of

PROB, albeit slightly (Figure 5.4(c)). This means that the geo-contiguity criterion

on the merging step of our proposed algorithm, PROB/Geo, is necessary to satisfy

the geo-contiguity constraint. The partition of BC is geo-contiguous. However, it

consists of six supercells, but one supercell is unassigned (the black cells on the

map). In this configuration, the backhaul cost of PROB/Geo is only 83% of BC

(see Figure 5.5(f)).

Below, we provide more details of the evaluation. We pay more attention to

comparing PROB/Geo to BC because the latter is the only compatible method that

guarantees geo-contiguity, the constraint in our partitioning problem.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Friday Dataset: Effect of the server capacity.

5.3.2.1 Effects of the Server Capacity and the Number of Servers

Figure 5.5 demonstrates for the Friday dataset the effect on the backhaul cost as

the server capacity increases using the same number of servers. With only five

servers (Figure 5.5(a)), there is no significant difference between PROB/Geo and

BC until the server capacity is sufficiently large (at 20%). With more servers,

PROB/Geo becomes more quickly better than BC as the capacity increases. For

example, with 15 servers (Figure 5.5(c)), PROB/Geo is already better than BC

when the server capacity reaches 5%. Figure 5.5(f) gives the ratio of the backhaul

cost of PROB/Geo to that of BC. Unless the number of servers is too small (five

servers), the proposed partitioning algorithm is clearly the winner. Also, adding

more capacity helps reduce the backhaul cost.

Figure 5.6 (for the Friday dataset) demonstrates the effect on the backhaul
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Friday Dataset: Effect of the number of servers.

cost as we add more servers, provided the server capacity is unchanged. When

the capacity is extremely low (1%, Figure 5.6(a)), the cost does improve, which

is understandable because a server has too little capacity to make any edge com-

puting benefit and so having more servers will help. However, when the capacity

approaches a realistic value, it is observed that having more servers beyond a suf-

ficient quantity does not help at all. For example, we need only 10 servers for

10% capacity (Figure 5.6(c)) or 5 servers for 20% capacity (Figure 5.6(e)). This

is because with more servers the intra-server cost is decreased but the cross-server

cost can increase.

Figure 5.6(f) plots the ratio of the cost of PROB/Geo to that of BC as the

number of servers increases for different cases of capacities. Similarly observed,

increasing the number of servers beyond a certain threshold (10 servers) does not

improve this ratio, meaning if we want to make PROB/Geo increasingly better
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(a) (b) (c)

Figure 5.7: Tuesday Dataset: Effect of the server capacity.

than BC we should not achieve that by adding more servers.

We observe similar patterns for the Tuesday dataset, as seen in Figure 5.7. In

this figure, we also include the comparison between PROB/Geo and PROB (which

relaxes the geo-contiguity constraint). When there are more than 5 servers or the

capacity reaches 20%, although PROB/Geo has to satisfy this constraint, it still is

more cost effective than PROB (Figure 5.7(c).

This study together with the study on the effect of the number of servers implies

that it is the server capacity, not the number of servers, that has more influence on

the efficiency of the server assignment. To lower the backhaul cost, it is better to

increase the server capacity for each server than to add more servers of the same

capacity.

5.3.2.2 Analysis of Cost in Real Time

In this study, we investigate the backhaul cost incurred when processing the work-

load at each time instant t ∈ [0, T = 144]. As we mentioned earlier, the Friday and

Tuesday datasets represent two very different workloads. The former is for a day

with busy workloads only during the rush hours (Figure 5.8(a)), while the latter

is for a weekday with busy workloads during the working hours (Figure 5.8(c)).
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(a) Friday: absolute cost (b) Friday: normalized cost

(c) Tuesday: absolute cost (d) Tuesday: normalized cost

Figure 5.8: Real-time cost for the case of 10 servers at 10% capacity, shown for

both Friday and Tuesday. The left plots show the absolute value of the backhaul

cost incurred by each algorithm together with the total workload at each time

instant. The right plots show the backhaul cost normalized as a fraction of the

total.

Also, there are some activities during the hours before and after midnight entering

the Friday, while there are no such activities for the Tuesday.

For the Friday dataset, Figure 5.8(a) shows the absolute backhaul cost over

the time and Figure 5.8(b) shows the backhaul cost normalized as a percentage of

the total workload at the given time. Similarly, we have Figure 5.8(c) and Figure

5.8(d) for the Tuesday dataset.

As seen in Figure 5.8(b) and Figure 5.8(d), the normalized backhaul cost fluc-

tuate wildly during light workload hours. This is understandable because when
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the workload is too light and the normalized cost is computed as a ratio to the

workload, the value range of this ratio is wide. The more important observation

here, however, is that of PROB/Geo is the most robust during busy hours. For

example, this applies to the Friday dataset around noon and 6PM (Figure 5.8(b)).

The pattern is also noticeable for the Tuesday dataset (Figure 5.8(d)), showing

approximately a 50% cost saving by PROB/Geo versus a 50% saving by BC and

60% by METIS.

This study further substantiates the cost efficiency of our proposed algorithm

and supports our hypothesis that the mean and variance information can be very

useful to finding a robust partition for highly time-varying workloads.

5.4 Summary

We have addressed a novel server assignment problem for MEC for serving time-

varying workloads. Instead of requiring known interaction rates between the cells,

which is the case for existing techniques but unrealistic for many practical appli-

cations, we only assume to know their mean and variance estimates. Also, we aim

to produce a geo-contiguous assignment, meaning that all the cells assigned to a

server must form a geographical contiguous region. We have proposed an effec-

tive probabilistic algorithm to produce a geo-contiguous partition of the cells to

assign to the servers that is robust to the workload change dynamics. The idea is

to approximate the interaction rate for each cell pair as a random Gaussian vari-

able. Our evaluation has substantiated the effectiveness of the proposed algorithm

for some real-world datasets, demonstrating its superiority over earlier work and

typical benchmark.
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CHAPTER 6

CONCLUSION

As mobile devices have become ubiquitous, traffic at the edge of the network is

growing faster than ever. To improve user experience, commodity servers are

deployed in the edge to form a distributed network of mini datacenters. A con-

sequential task is to partition the user cells into groups, each to be served by an

edge server, to maximize the offloading to the edge.

Ideally, given a number of edge servers with limited capacity, a partition of the

user cells into clusters (to assign to the edge servers respectively) should achieve

there key goals:

• Cost-Efficiency: The total backhaul cost is minimal. This cost is incurred for

processing requests not fulfilled by the edge servers due to capacity limitation;

• Geo-Awareness: The cells in each cluster should be close to each other.

This makes the partition robust to user mobility and, also, results in the

assigned server being geographically close to its users for efficient operation

and shortened latency;

• Uncertainty-Robustness: The partition should remain efficient in the pres-

ence of time-varying workloads and the dynamics that a server’s effective

capacity may go up and down. Otherwise we would need to recompute the

partition frequently to cope with these uncertainties.
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The pertinent literature commonly assumes that the workload of each cell be

known, or quantified by a value representing its computing demand over time. A

common approach is to solve a graph partitioning problem, where a graph is used

to represent the workload and the goal of the partition is to satisfy a given objec-

tive, for example, minimum cut. This approach is effective for a fixed workload.

This dissertation is focused on finding a solution that satisfies all the three key

goals above. In the following, I review the key contributions made, suggest future

directions, and offer final remarks.

6.1 Summary of Contributions

What makes the research especially interesting is with the third goal: robustness.

Indeed, while cost-efficiency is understandably a must-achieve in every MEC so-

lution and geo-awareness has already been integrated in some recent partitioning

techniques, we are aware of no prior research aimed at a solution that is geo-aware

and at the same time robust to time-varying workloads.

A key contribution in this dissertation is a probabilistic partitioning approach,

whose novelty is in the representation of the time-varying workload as a random

variable of a probability distribution. Instead of requiring known interaction rates

between the cells, which is the case for existing techniques but unrealistic for many

practical applications, we only assume to know their mean and variance estimates.

We have provided an algorithm for the case that this distribution is Gaussian

and evaluated its effectiveness with real-world datasets. Another contribution is

a local search based partitioning algorithm to result in a server assignment that

is both cost effective and geographically compact. The probabilistic partitioning

algorithm, whose main focus is to copy with time-varying workload, can be ex-
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tended to accommodate geographical constraints, and the geo-aware partitioning

algorithm, whose focus is to achieve geo-compactness in the assignment, can be

useful as a starting point to derive a solution robust to time-varying workload.

6.2 Future Work

There are several directions I would like to pursue in the future. I would like to

further investigate the probabilistic partitioning framework for the following cases:

• The probability distribution for the pairwise interaction rate may not neces-

sarily be Gaussian; for example, one can be the lognormal distribution. For

Gaussian distributions, their sum is also Gaussian. However, this property

does not hold true for many other distributions and our algorithm will have

to be revised accordingly.

• The server capacity may not be a fixed quantity. In practice, the effective

capacity of a server may fluctuate from time to time due to the dynamics of its

resource usage (the server may involve in other computing tasks). Therefore,

my approach will be to also model the server capacity as a random variable

of a probability distribution.

• The workload input in the current research of this dissertation is the interac-

tion rate between two cells. I would like to solve a similar server assignment

problem where the workload is due to requests for service initiated by and

processed for individual users (devices). This case is plentiful in the real

world. To partition this time-varying workload, we can think of it as parti-

tioning of a stochastic graph where the weight of a node is a random variable.
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6.3 Final Remarks

The server assignment problem is an important problem in MEC. I believe that this

research has filled an important gap. Not only that, from theoretical perspective,

the developments in this dissertation can be generalized for other application pur-

poses, not necessarily only for MEC server assignment. For example, the proposed

probabilistic partitioning approach offers a novel way to formulate and address the

problem of partitioning a dynamic stochastic graph where the graph can be used

to represent pairwise interactions that are not necessarily only for MEC. I hope

that many of the ideas and findings in this research will be adopted in the future,

including being used as benchmark for comparison or starting points for further

extensions.
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