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ABSTRACT 

EVALUATING DIFFERENTIAL GENE EXPRESSION USING RNA-SEQUENCING: A 

CASE STUDY IN DIET-INDUCED MOUSE MODEL ASSOCIATED WITH NON-

ALCOHOLIC FATTY LIVER DISEASE (NAFLD) AND CXCL12-vs-TGFβ INDUCED 

FIBROBLAST TO MYOFIBROBLAST PHENOCONVERSION  

 

May 2019 

Arpa Samadder, B.S, M.S., University of Massachusetts Boston 

 

Directed by Professor Todd Riley 

 

Unlike the genome, cell transcriptome is dynamic and specific for a given cell developmental 

stage. Transcriptomics study is crucial to understand the functional elements of the genome to 

divulge molecular constituents of cells. The recent development of high-throughput sequencing 

technologies has provided an unprecedented method to sequence RNA and it has been 

emerging as the preferred technology for both characterization and quantification of the cell 

transcripts. Using “Tailor_Pipeline” we have analyzed diet-induced mouse and stromal 

fibroblast RNA-Seq samples and deciphers the differentially expressed genes that were 

significantly up- and downregulated and associated with several metabolic immune responses 

that presumably associated with liver disease. Analyzing the diet-induced mice model allowed 

us to encapsulate the transcriptional differences between diet-induced mice that can aid in the 

understanding of NAFLD and consequent liver pathogenesis. Identification of genes 
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downregulated in metabolic processes and upregulated in immune responses indicate that mice 

model exhibiting liver disease. Moreover, the finding of a premalignant signature suggests that 

NAFLD may begin to progress towards hepatocellular carcinoma much earlier than earlier 

consideration. 

Tissue fibrosis arises due to overgrowth, scarring of various tissues and is attributed to 

deposition of the extracellular matrix including collagen, influenced by the actions of several 

pro-fibrotic proteins that can induce myofibroblast phenoconversion. Though recent 

transcriptomics analysis reveals cellular identity, but its ability to provide biologically 

meaningful insights in fibrosis is largely unexplored. To unravel the mechanisms at the genetic 

level, we have considered TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes in human 

stromal fibroblasts. Transcriptome profiling technology revealed CXCL12/CXCR4 axis is 

responsible for the activation of COPII vesicle formation, ubiquitination, and Golgi/ER 

localization/targeting. Especially, identification of CUL3 and KLHL12 are responsible for the 

transportation of procollagen from ER to the Golgi. Interestingly, over-expression of CUL3 

and KLHL12 are highly correlated with procollagen secretion by CXCL12-treated cells, but 

not in TGFβ-, treated cells. Moreover, this analysis showed how activation of the 

CXCL12/CXCR4 axis promotes procollagen I secretion that responsible for the deposition of 

ECM which is a characteristic of fibrosis. 
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CHAPTER 1 

               INTRODUCTION 

1.1 Context and motivation 

The chemistry Nobel Prize was awarded to Fred Sanger and Walter Gilbert, in 1980, for their 

crucial contribution towards the determination of base sequences in nucleic acids (Sanger et 

al., 1977 & Gilbert et al., 1973), since then many were involved in the developments of DNA 

sequencing technologies (Fiers et al., 1976). Development of these techniques conveyed a 

modernized approach to biological questions and, high throughput sequencing technologies 

such as RNA-Sequencing (RNA-Seq) has revolutionized the post genomic era, become an 

integral part of the biological research to access the cell transcriptome (Mardis, 2008).  

Bioinformatics is an interdisciplinary field that integrates computer science and 

biology to research, develop, and apply computational tools to manage and process large 

scale of biological data (Hogeweg and Hesper, 1978). Particularly, these computational tools 

are suitable to analyse data generated from high-throughput sequencing platforms. 

Consequently, the success of next-generation sequencing (NGS) technologies is strongly 

related with the creation of competent computational tools to deal with the dramatic increase 

of data (Shendure and Ji, 2008). 

Until the mid-1990s, gene expression studies were limited to measure transcription of 

few genes. But microarray technology changed this and allowed the study of hundreds or 

thousands of transcripts at a time. At that time, this technology revolutionized many areas of 

biology, from basic research to the understanding and treatment of human disease (Schena et 

al., 1995). In an analogous way, the recent availability of next-generation sequencing (NGS) 

analysis has opened new horizons to address the gene expression analysis, where initially 

NGS applications were mainly focusing on the sequencing of genomic DNA, this technology 

is now finding its way to be used in transcriptomics studies (Westermann et al., 2012). 
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An important biological aspect in recent year is to understand the complex and 

sophisticated mechanisms where deposition of the extracellular matrix (ECM) leads to 

develop progressive aging- and inflammation-associated fibrosis. Now tissue stiffness and 

urethral disfunction are due to the accumulation of ECM that leads to reduce tissue flexibility 

that lead to urinary flow block and development of lower urinary tract symptoms (LUTS). In 

this study, we have tried to encapsulate whether senescence-accelerated mouse prone 

(SAMP6) mice would also develop LUTS. Also, we have tried to see whether diet-induced 

obesity and type 2 Diabetes Mellitus (T2DM) have any influential role to propagate this 

disease. A global transcriptomics analysis can provide new insights into the disease process, 

leading to the identification of known and unknown transcripts, and overall gene expression 

regulation of different pathways and how they differ between the different samples under 

different diets (Gharaee-Kermani et al., 2013). 

 Dynamic remodeling of the extracellular matrix (ECM) deposition and gain an 

understanding of their role in fibrosis is a challenging factor recently. Fibrosis characterizes a 

contributing factor to the etiology of LUTS (Gharaee-Kermani et al., 2013). Several studies 

have shown that the aging prostate tissue is rich with inflammatory cells microenvironment 

and proteins. It is still unclear whether these inflammatory proteins, particularly CXC-type 

chemokines, can mediate fibroblast to myofibroblast phenoconversion and the ECM 

deposition which necessary for the development of prostatic tissue fibrosis (Rodríguez-

Nieves et al., 2016). In human stromal fibroblast, we are trying to determine the effect of 

TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes and find out the difference between 

them. In addition to this we aimed to find out any significantly differentially expressed 

transcripts including coding and non-coding mRNAs that may promote myofibroblast 

phenoconversion. 
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1.2 Problem formulation 

This thesis has two underlying goals that are complementary to each other: the first is related 

to computational methodologies and the second to biologic knowledge. 

• Computational goal 

Firstly, I aim to integrate available bioinformatics tools in a congruent pipeline that can 

process RNA-Seq data and extract reliable biological conclusions from it. 

• Biological goal 

The second main goal is to use the developed tools to comprehend in which way NAFLD 

(Non-Alcoholic Fatty Liver Disease) is transcriptionally regulated. Furthermore, it has 

been well informed that tissue fibrosis is mediated by the actions of multiple pro-fibrotic 

proteins that can induce fibroblast to myofibroblast phenoconversion. This occurs through 

various signaling pathways such as Smads or MEK/Erk proteins. Apart from that the 

TGFβ/TGFβR and CXCL12/CXCR4 axes persuade myofibroblast phenoconversion 

independently through Smads and MEK/Erk proteins, respectively. To investigate these 

mechanisms at the genetic level, we aim is to elucidate the TGFβ/TGFβR and 

CXCL12/CXCR4 transcriptomes in human fibroblasts. 

1.3 Thesis Outline 

Apart from this introduction, this thesis is structured in six chapters.  

In chapter 2 I introduce the concept of gene expression, its main regulation points and 

the several used approaches to have insight into this information. Particularly, in section 2.4, I 

give special relevance to RNA-Seq data and the current methods that are used to access the 

gene expression profile and extract novel biological knowledge from this type of data. 

Chapter 3 presents a review on the diet-induce obesity mouse model to characterize 

the transcriptional landscape of NAFLD and compare it to the transcriptional signature of 

healthy control mice. More importantly, identification of the transcriptional signatures helps 

to detect of these diseases through the identification of novel markers. Moreover, in this 
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chapter, it is described the RNA-Seq mouse dataset that will be used in this thesis as a case 

study to test the developed ethodologies. 

Then, in chapter 4 I describe a pipeline developed to analyze an RNA-Seq dataset. As 

a case study, I used the implemented pipeline to process an RNA-Seq dataset extracted from 

SAMP6 strain mouse fed with high fat diet (HFD) and low-fat diet (LFD). From its output I 

conclude whether there are any significant transcript differences between the two phenotypes, 

up-regulating inflammation-related processes and down-regulating metabolism related 

processes in HFD-fed mice compared to LFD-fed mice. This analysis is described in section 

4.2. Then in section 4.3 I have discussed the detailed analysis of human fibroblast cell line 

where we have elucidated the TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes in human 

fibroblasts. From the output I conclude the biological significance about the fibroblast to 

myofibroblast phenoconversion. 

Afterwards, in chapter 5, I have described the detail analysis of two case studies done 

by using our recently developed pipeline known as Tailor_Pipeline.  

Then, in chapter 6 I have discussed the overall journey of this analysis and how this 

pipeline helps to analyze the raw RNA-Seq data to extract the biological significance.  

Finally, in chapter 7 I have concluded the important aspects of the analysis. 
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CHAPTER 2 

GENE EXPRESSION 

2.1 Introductory note  

 Eukaryotic organisms have its genetic information encoded in molecules of 

deoxyribonucleic acid (DNA) which are packed and organized into the cell nucleus in 

structures called chromosomes. The monomers of DNA are called nucleotides and they are 

organized in a double-stranded helix. Nucleotides are comprised by a phosphate group, a 5-

carbon sugar, and a nitrogenous base. The genetic information in a DNA molecule is 

represented by the sequence of nucleotides containing one of four types of nucleobases: 

adenine (A), guanine (G), cytosine (C) and thymine (T).  

Following the Watson - Crick Model (Watson and Crick, 1953), the two strands that 

constitute the DNA molecule are held together by hydrogen bonds that can only be 

established between specific pairs of nucleobases: A with T and G with C. Because of this 

restriction, both strains are complementary to one another and, therefore, contain the same 

genetic information.  

2.2 The concept of gene expression 

    In 1958, the central dogma of molecular biology was firstly proposed by Francis Crick 

(Crick, 1958; Crick 1060). Particularly, central dogma states that information in nucleic acids 

can be transferred (Fig-1). Gene expression is the process by which a segment of DNA is 

copied into a ribonucleic acid (RNA) molecule which, in turn, will be used in the synthesis of 

functional gene products. Some RNA molecules can be the end product in themselves and 

some can be used as a template for the creation of other molecules such as proteins, in a 

process called translation. According to this distinction, RNAs can be classified as either 

messenger RNAs (mRNAs) or non-coding RNAs (ncRNAs). The genetic information is 
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transferred into an RNA molecule is designated by transcription and completed in the cell 

nucleus by an enzyme called RNA polymerase (RNA pol). 

The RNA polymerase catalyzes and forms the phosphodiester bonds that link the nucleotides 

together and form the sugar-phosphate backbone. In eukaryotes, there are multiple types of 

RNA polymerases (RNA pol) that synthesize various types of RNA. Firstly, RNA pol I 

transcribe ribosomal RNAs (rRNAs) which associated with ribosomal proteins, on which 

mRNA is translated into protein. Secondly, RNA pol II transcribes mainly protein-coding 

genes (mRNAs). Finally, RNA pol III catalyzes the transcription of transfer RNAs (tRNAs), 

which function as adaptors selecting amino acids and holding them in place on a ribosome for 

their incorporation into protein. As we have seen, DNA to protein synthesis occurs in a two-

step process. In the first step DNA to mRNA synthesis is called transcription. In the second 

step, called translation where the information in the mRNA is translated into protein. 

The transcription is a process of formation of the transcript (RNA). It takes place by the usual 

process of complementary base pairing, catalyzed and scrutinized by the enzyme RNA 

polymerase. It occurs unidirectionally in which RNA chain (transcript) is synthesized from 5′ 

to 3′ direction. Initiation, elongation, and termination are the three steps of the gene 

transcription process. Initiation process begins when the RNA pol molecule binds to the 

upstream region of the DNA at a specialized sequence called promoter. To occur this binding, 

RNA polymerase requires the involvement of many accessory proteins such as transcription 

factors (TFs). The transcription initiation complex can be formed by the combination of the 

transcription factors and RNA polymerase and this complex is responsible to initiate 

transcription. The RNA polymerase started to synthesize mRNA by corresponding 

complementary bases to the original DNA strand. These must assemble on promoter along 

with the polymerase before the polymerase can begin transcription. Once transcription is 

initiated, most of the TFs are released from the DNA. Elongation involves the movement of 

the transcription bubble by disruption of DNA structure. The enzyme moves along the DNA 
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and extends the growing RNA chain. As the enzyme moves, it unwinds the DNA helix to 

expose a new segment of the template in single-stranded condition and added nucleotides to 

the 3´ end of the growing RNA chain. Finally, transcription termination occurs after RNA pol 

reaches a termination site. At this point, RNA pol is released from the DNA and RNA is 

cleaved and released from the transcriptional complex. 

    Simultaneously to the transcription process, the translation takes place in the cytoplasm. 

The mRNA molecules undergo little or no modification after synthesis by RNA polymerase 

in prokaryotes. In contrast, processing of eukaryotic pre-mRNA involves 5’ capping, 3′ 

cleavage/Polyadenylation, splicing, and RNA editing before being transported to the 

cytoplasm where they are translated by the ribosome. Polyadenylation is an important RNA 

processing step where a long chain of adenine nucleotides is added to a messenger RNA 

(mRNA) molecule to increase the stability of the molecule, aiding its exportation from the 

nucleus to the cell cytosol. In this process, a series of repeated A nucleotides – poly-(A) tail – 

are added to the 3′ end of the pre-mRNA molecule. First, the 3' end of the transcript is 

cleaved and generate a 3' hydroxyl and poly-A polymerase (PAPs) adds a chain of adenine 

nucleotides up to 250 residues to the RNA. The poly-A tail provides stability of the RNA 

molecule and prevents its degradation.  

Furthermore, in the cell nucleus, the newly synthesized RNA molecules require extensive 

processing to become a functional RNA. In most eukaryotic genes, noncoding DNA is also 

found. 

 Such genes have split structures in which segments of coding sequence (called exons) 

are separated by noncoding sequences (intervening sequences, or introns). In the mRNA, the 

introns are then removed by splicing and yield a long RNA molecule which possess only 

exonic part. In a process designated by splicing, introns are removed from the mRNA 

molecule and then neighboring exons are stitched together. This process is exclusive of 

eukaryotic organisms.  
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 The mature RNA is then selectively transported from the nucleus to the cytoplasm 

where mRNAs are involved in the translation process, where the information in an mRNA 

molecule is converted into a protein. In this process, an mRNA molecule is used as a template 

by a ribosome, which will match each sequence of three nucleotides (codon) on the template 

mRNA chain with a sequence of three complementary nucleotides (anti-codon) on a tRNA 

molecule. Bearing in mind that each tRNA has connected to an amino acid that its anti-codon 

sequence calls for, this molecule will recognize and bind to a codon at one site and to an 

amino acid at another site of its surface. Thus, tRNAs function as translators between 

nucleotide sequences in RNAs and amino acid sequences in proteins. The ribosome, as the 

mRNA moves through it, covalently links each amino acid to the end of the growing 

polypeptide chain by peptide bonds. When the translation reaches a Stop codon, denoting the 

end of the protein, the completed protein chain and the mRNA molecule are released, and the 

ribosome is dissociated into two separated subunits.  

 Therefore, gene expression can be seen, as a mediator that interprets the genetic 

information of an organism (genotype) that gives rise to an outward physical manifestation 

(phenotype), via gene transcription and mRNA processing.  

2.3 Gene expression regulation: 

 Given that genes encode for proteins and proteins dictate the function of the cell and 

their structural proprieties. Each step of the gene expression is associated with the flow of 

information from DNA to RNA to protein that provides the cell with a probable control point 

for self-regulating that associated with its function. This allows cells to respond to maintain 

their cell-type specific expression patterns. 

In this way a cell can regulate the amount and type of proteins that it is manufacturing by 

several key factors:  

1. Required controlling when and how often a given set gene is transcribed;  

 2. To control processing of an RNA transcript; 
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 3. To select which mRNAs are exported from the nucleus to the cytosol; 

 4. Degradation of certain mRNA molecules; 

 5. Selecting for which mRNAs are translated by ribosomes; 

 6. Selectively activating or inactivating proteins after they have been synthesized; 

 7. Controlling of mRNA degradation. 

2.3.1 Transcriptional regulation 

 Transcriptional regulation plays a paramount role in controlling gene expression. 

During this process no, unnecessary intermediates are synthesized. This regulation can be 

executed at the promoter level by the association of TFs to the gene promoter region. As 

referred in section 2.2, the establishment of this connection will help to bind the RNA pol to 

initiate translation process. In the promoter region, nearly all genes are controlled by 

regulatory DNAs that may increase or decrease the activity of transcription of a certain gene. 

Now enhancers are sequence-specific TFs generally bind to these regulatory DNA regions 

and can control the switching on or off a gene, respectively. Often, the sequence specific 

factors and the general TFs accumulated in the promoter region and interacted via additional 

proteins named as co-factors. Rate of regulation of gene transcription is controlled by 

aiding/preventing the assembly of the general TFs and RNA pol at the promoter region 

(Kreimer and Pe’er, 2013). To bind the TFs and the RNA pol to the regulatory regions of the 

gene, the DNA chain needs to be accessible. 

Hence, the activity of transcriptional regulation can be also influenced by the level of DNA 

packaging. DNA is usually densely packed with histones, forming a closely packed structure 

called chromatin. Chromatin construction allows access of condensed genomic DNA to the 

regulatory transcription machinery proteins, and thereby controls the efficiency to initiate the 

transcription initiation. (Oberdoerffer et al., 2008). After transcription initiation, the activity 

rate of the RNA pol II enzyme is decreased and paused on a promoter proximal position. 
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From this stage, depending on the type of transcription elongation factor that interacts with 

the RNA pol II, transcription may halt or enter elongation phase (Dvir et al., 1997). 

2.3.2 Post-transcriptional regulation 

During RNA synthesis, post-transcriptional regulation controls the gene expression. 

 It contributes considerably to regulate gene expression across human tissues. The process of 

polyadenylation, introduced in section 2.2, influences the transcripts lifetime, protecting them 

from degradation and aiding their exportation to the cell cytosol.  

In a similar way, modulating the capping, splicing, addition of a Poly (A) tail where a 

modified guanine nucleotide cap is added to the 5′ end of pre-mRNA molecules is crucial for 

the novel transcript to exit the cell nucleus. Therefore, both these processes are essential for 

the stability of the mRNA molecule into an ideal time-window. The process of splicing, also 

referred in section 2.2, enables the production of mature messenger from a newly 

made precursor messenger RNA (pre-mRNA) transcript. During RNA splicing the introns are 

precisely excised and the exons are ligated together. The majority of nuclear pre-mRNA is 

spliced constitutively; that is, only one mature mRNA species is generated from a single pre-

mRNA in all tissues. In some cases, however, alternative 5′ and/ or 3′ splice sites are used 

during splicing, resulting in the production of more than one mRNA species from a single 

pre-mRNA. The production of different RNA products from a single product by changes in 

the usage of splicing junctions is known as alternative splicing. During this alternative 

splicing, the alternative 5′ and/or 3′ splice sites can result in structurally distinct mRNAs by 

either excluding potential exon sequences or incorporating otherwise noncoding introns 

sequences. 

2.3.3 Translational regulation 

Translation takes place in the cytoplasm. Some parts of the cytoplasm are so tightly 

packed with the soluble protein and cytoskeleton that ribosomes can be expected to have 

difficulties diffusing into them. This is usually performed by biding a repressor to the 5′ 
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untranslated region of the mRNA, which helps to guide the ribosome to the mRNA start 

codon. The ribosome is, thereby, kept from finding the translation start site. When conditions 

change, the cell can inactivate the repressor and increase translation of the mRNA. 

Regulation of the rate of protein synthesis is involved by the influencing the rate-limiting 

steps of the translational steps. Now, this process can be accomplished by the involvement of 

ribosomes or initiation factors. Generally, cytoplasmic mRNAs are actively translated by 

ribosomes to form messenger ribonuleoprotein particles, mRNP. Translational initiation 

process involved by utilizing two subunits: eIF2 and eIF4E. eIF4A, eIF4G and eIF4F are 

other subunits, involved in the initiation of translation process. In most cells, the availability 

of the eIF-4E which is a cap-binding protein is the rate-limiting factor involves initiating 

translation. Therefore, regulation of eIF-4E levels is important to control the rate of 

translation. 

2.3.4 Protein degradation 

Once protein synthesis is complete the level of expression of that protein can be 

reduced by protein degradation. Cells possess specialized pathways to degrade proteins, using 

enzymes designated by proteases. In these pathways, proteins which lifetime must be short, 

or which are damaged or misfolded are marked by the attachment of a small protein called 

ubiquitin. Ubiquitylated proteins are then recognized and destroyed. 
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CHAPTER 3 

GENE EXPRESSION ANALYSIS BY RNA-SEQUENCING DATA 

3.1 Approaches for genome-wide expression analysis: 

It is worth mentioning that high-throughput sequencing becoming a prime choice to 

measure the gene expression to get an insight about the transcriptional behavior of biological 

systems.  Therefore, identification of differential gene is an important paradigm that is used 

in many areas of biology and medicine. It can be employed to identify significantly 

differentially expressed genes between two or more biological conditions of interest (Schena 

et al., 1995). To classify heterogeneous diseases such as cancer, differentially gene 

expression analysis plays a pivotal role (Bhattacharjee et al., 2001). This analysis is also 

important to understand the relation between genes profile and survival or tumor 

aggressiveness (Veer et al., 2002). To discover new drugs (Pagliarulo et al., 2002), diagnose 

diseases (Heller et al., 1997), differentially gene expression is important (Thiery et al., 2006). 

 Gene expression analysis can be divided into two parts namely genome-wide and 

target-based approach, depending on what it is anticipated to study. In the absence of any key 

genes of interest, the data is acquired at the biological system level. Therefore genome-wide 

approaches such as microarrays (Augenlicht and Kobrin, 1982) or RNA-Seq (Mortazavi A et 

al., 2008) technologies have emerged as a powerful technology for the detection of 

differential gene expression, that enables to quantify the frequency of RNA species in a 

certain biological system. Transcriptome profiling which is defined by the complete set of 

transcripts in a cell and their amount at a definite acquisition point is the main approach to 

measure the differential gene expression. As stated in section 2.2, knowledge of the 

transcriptome is very useful to provide a link between change of expression of a gene and 

their phenotype presented by the cell (Wang et al., 2009). On the contrary, polymerase chain 

reaction (qPCR) should be employed when the genes of interest are already known (Murphy 
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L D et al., 1990). The main purpose of this reaction is to perform the gene expression 

analysis. Here I have mainly focused on genome-wide GEA, particularly those using RNA-

Seq technology and explain the pros and cons associated with this analysis. Furthermore, I 

will also include the brief RNA-Seq protocol and revisit the current methodologies which are 

associated to assess from the raw nucleotides sequence and their active cellular processes 

upon collection of the transcriptome. 

 To perform transcriptomics analysis an ample number of technologies have been 

developed over the years. Out of all these methods, High-throughput sequencing technology 

has endowed with an unprecedented aspect about the transcriptional landscape of an 

organism and becoming the paradigm to measure RNA expression levels. With the dawn of 

sequencing technology, it’s now feasible to profile gene expression levels in every field in 

life sciences and becoming prevailing technique for clinical use. Generally, one of the main 

goals of this experiment is to identify the differential gene expression, gene isoform, post 

transcriptional modifications and so on to understand phenotypic variation (Rapaport et al., 

2015).   

Understanding the large-scale studies of gene expression levels, a microarray was a 

tool to detect the gene expression in the 1990s. Concurrently, the process of measuring the 

gene expression, microarray can provide a picturesque of transcriptional activity in a wide 

range of biological problems, including identification of differentially expressed genes 

between diseased and healthy tissue (Zhao et al., 2014). Currently, DNA microarrays are a 

relatively inexpensive and can afford many laboratories for transcript profiling. In 

microarray, a short single stranded DNA molecule, called probes, are attached to fixed 

locations on a solid substrate. Then RNA molecules (transcriptome) are extracted from the 

sample and copied into complementary DNA (cDNA) with the help of reverse transcriptase. 

Fluorescent dye was used to label in the cDNA. Finally, cDNA is passed over the solid 

support and complementary sequence will tend to hybridize. Then expression is quantified by 
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using a fluorescence scanner that measures the amount of fluorescence coming from each 

probe on the slide (Hoheisel, 2006). 

In biological samples, gene expression microarray profiling endowed with precise 

determination of expression levels of genes in a single hybridization experiment. 

Identification of nearly 57000 citations by using a simple search for the term “microarray” in 

PubMed database shows its consequence for assaying gene expression. However, the power 

of this technology has several drawbacks. For instance, due to cross-hybridization, the 

expression measurements have high background levels. Therefore, the probe sequences must 

be pre-specified so that priori the sequences can be identified. Additionally, due to both 

background and saturation signals, the accuracy of measurement of expression is limited 

(Okoniewski and Miller, 2006). In order to overcome this limitation probes should be used 

that can differ in their hybridization properties. Otherwise it is unreliable to compare the 

same array between different genes (Gautier et al., 2004). Therefore, it’s crucial to maintain 

the experimental design to perform successful microarray experiment. In order to perform 

successful experiment, sometimes a major question whether the microarray experiment 

should be performed using the single-color or two-color to compare the relative gene 

expression. Until date lot of articles have been published reading this issue saying that single-

color arrays are more flexible in analysis compare to the two-color. Anyway, in contrast to 

the microarray technology, some sequence-based methods are also important to determine the 

cDNA sequence. Previously, Sanger sequencing was performed to determine the cDNA 

sequence (Sanger et al., 2004). However, Sanger sequencing is expensive and have relatively 

low throughput and generally is not quantitative (Wang et al., 2009). To overcome these 

limitations, tag-based methods were developed namely serial analysis of gene expression 

(SAGE) (Velculescu et al., 1995), cap analysis of gene expression (CAGE) (Shiraki et al., 

2003) and massively parallel signature sequencing (MPSS) (Brenner et al., 2000). However, 

SAGE based technology doesn’t measure the actual expression level of a gene. During SAGE 
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analysis, short tag (ten bases) has been produced, makes the analysis hard to assign a tag to a 

specific transcript with accuracy because these short tags can be mapped to more than one 

place in the reference genome, allowing an ambiguous identification of transcripts. 

Sometimes, same tag possesses with the two different genes and the alternatively spliced 

gene could have different tags at 3′ ends.  

Finally, with an emergence of high-throughput sequencing technologies have 

overcome the limitations of both microarrays and tag-based methodologies (Church, 2006). 

Specially, RNA-Seq is a transcriptome profiling technology and NGS platform for 

differential gene expression (Mardis, 2008). Particularly, RNA-Seq technology is more 

reliable to arrays and employed for both mapping and quantifying transcriptome across all 

cell types, perturbation and states (Roberts et al., 2011). RNA-Seq technology is more 

persuasive and quantifies the expression of novel transcript over a wider dynamic range 

which is not possible to quantify in array-based technology (Marioni et al., 2008). Due to 

hybridization-free approach, this technique has been widely used in an integral part of 

microbiological research (Mardis, 2008). Additionally, RNA-Seq technology can be used to 

detect of gene fusion events (Maher et al., 2009), detection of single nucleotide 

polymorphisms (Mardis, 2008), investigation of post transcriptional RNA mutations (Garcion 

et al., 2004), study of alternative splicing events (Pan et al., 2008), discovery of novel 

transcripts (Guttman et al., 2010; Degner et al., 2009). Of course, in near future, the probable 

technical goal is to sequence and count entire mRNA molecules known as single-molecule 

sequencing which enable to quantify even single cells.  

3.2 RNA-Sequencing experiment workflow 

 In all living organisms, RNA molecules are crucial components and several high-

throughput sequencing techniques are existing to interrogate of RNA sequences on a large 

scale. Currently, 454 GS-FLX from Roche 454 Life Science, Genome Analyzer II from 

Illumina, Inc. and AB SOLiD from Applied Biosystems are believed to be the foremost 
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method in expression analysis. However, different technologies require different 

experimental procedures for sequencing study. In principle, any high-throughput sequencing 

technology can be used for the RNA-Seq study and Illumina’s machines have already been 

applied for the purpose (Bennett, 2004). In RNA-Seq study, after conversion to a library of 

cDNA fragments with adapters attached to one or both ends and sequenced in a high-

throughput way to get the short reads (Wang et al., 2009). The resulting reads are either 

mapped to a reference genome or de novo without genomic sequence to get the genome-scale 

landscape of transcriptional or post-transcriptional gene expression.  

 Now, RNA-Seq faces several technological challenges like other high-throughput 

sequencing technology such as data storage capacity, process large amounts of data. 

Therefore, these challenges should be overcome to reduce errors by removing low-quality 

reads, improvement in base-calling. Despite the challenges, RNA-Seq has facilitated us to 

make an unprecedented large-scale overview of the transcriptome. Keeping in mind, RNA-

Seq revealed many novel transcribed regions, splicing isoform for many genes. In this thesis, 

I have mainly focused on the pipeline which is appropriate for NGS data generated from the 

Illumina platform. Additionally, I have also described the details analysis which I have 

performed through the pipeline. Particularly, the approach of sequencing in the Illumina 

machine comprises the following fundamental steps: 

1) Informative RNA enrichment 

An archetypal RNA-Seq experiment begins by purifying a subset of RNAs from the 

total RNA to analysis of transcriptome expression. Particularly, for protein coding RNAs, this 

enrichment analysis is carried out by selecting poly(A)+ molecules using oligo-dT associated 

with magnetic or cellulose beads. It is worth mentioning that prokaryotic mRNAs, poly(A)-

transcripts in eukaryotic cells are frequently subject to exploration (Hrdlickova et al., 2017). 

Additionally, in cells the most abundant RNA is rRNA, >90% present in cells consists on 

rRNA (Wilhelm and Landry, 2009) and need to be depleted due to small interest in most 
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studies (Tariq et al., 2011). Though, varieties of selection processes have been developed 

recently for rRNA depletion, oligo-dT based purification of poly (A)+ RNA is the prime 

method that ensures to get a strong signal for the RNA population of interest. 

2) RNA fragmentation 

Still now, RNA fragmentation is the most commonly used technique in RNA-Seq 

library preparation. Before reverse transcription (RT) process, RNA samples are subjected to 

fragmentation process to get a certain size range. This fragmentation process happened after 

selection of poly (A)+ or rRNA depletion. Due to the limitations of the size, fragmentation 

process is mandatory in the most sequencing platforms. After purification, the larger RNAs 

are fragmented by using RNA hydrolysis or nebulisation. On the other hand, full length 

double-stranded cDNA can be fragmented by DNaseI treatment or sonication. Now cDNA 

fragmentation is more likely towards the 3′ end of the transcript.  

3) Synthesis of double stranded cDNA 

In RNA-Seq, sequencing of poly (A) RNAs is the most common application unless a 

very small amount of RNA is accessible. In eukaryotes, most protein-coding RNAs contain 

poly (A) tail. The RNA fragments are converted into cDNAs using reverse transcriptase 

enzyme which requires the hybridization of primers into the RNA chain. These primers can 

be oligo-dT or sequence of random primers. For most protein-coding RNAs (mRNAs) and 

many long noncoding RNAs (lncRNAs), it is not advisable to use the oligo-dT primers due 

it’s biasness on the 3′ of the transcript. As a result, the sequencing reads will be enriched for 

the 3′ ends of the transcript (Wilhelm and Landry, 2009). Therefore, random primers are 

preferred to use which have the potential hybridization capacity to random sites of the RNA 

molecule. Finally, after synthesizing the first strand of cDNA, the RNA template is 

eliminated and generated a second cDNA by using DNA pol I and finally a double stranded 

cDNA molecule is generated. Therefore, poly (A) purification is a preferred method to select 

poly(A) + RNA.  
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4) Adapters ligation 

In a benchmark of RNA-Seq library etiquette, a desired size of cDNAs has been generated 

through reverse transcription (RT) of fragmented RNAs with random hexamer primers. 

Before amplification and sequencing process, a required extent of cDNAs has been also 

generated based on the fragmentation of full-length cDNAs that are ligated to DNA adapters.  

During adapter ligation process, 3′ of the cDNA overhangs are switched into blunt ends by a 

specialized enzyme. Next a series of 3′ ligations occurred by using a truncated RNA ligase II 

whereas 5′ adapter ligation happened by using RNA ligase I (Hrdlickova et al., 2017). In 

order for ligation, the cDNA fragments to the adapter, an A base is added to the 3′ depleted 

end which contain a single T base over-hanged at their 3′ end. Finally, distinctive adapters are 

ligated to each strand of 3′ ends of the double-ended cDNA.  

5) Size selection and PCR amplification 

During fragmentation step, DNA molecules are divided into two different sizes. By 

gel extraction, a desired range of DNA length is purified to ensure that all molecules are of 

similar length. Furthermore, this procedure eliminates unligated adapters as well as those 

ligated to one another. Finally, two primers are annealed to the adaptors tail followed by 

amplification by PCR of the purified cDNA. 

6) Cluster generation 

Inside the flow cell, single-stranded DNA templates are bridged-amplified to form 

clonal clusters prior sequencing. During the PCR amplification, the double stranded 

molecules need to be denatured into single strands molecules. Subsequently, by using the 

high density of immobilized forward and reverse primers, the DNA templates are hybridized 

to a slide. Now, DNA polymerase is used to copy the templates from the hybridized primers. 

After the denaturation, the original templates disappear the copies immobilized on the flow 

cell surface. After fixation process, the immobilized copies are hybridized to adjoining 

primers. Then DNA polymerase copied the templates and finally formed double stranded 
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DNA bridges which in turn are denatured and formed two single-stranded DNA templates. 

Finally, using the base cleavage the reverse DNA strand is removed and the immobilized 3′-

ends of the forward strand are prohibited to prevent interference in the sequencing process. 

This procedure is repeated to create a dense clonal cluster that contains at least 1000 

molecules per cluster. 

7) Sequencing-by-synthesis 

High throughput sequencing has been started with the sequencing hybridization 

primers which added each single-stranded molecule in the clusters. Then DNA-templates are 

simultaneously reversing complemented by using fluorescent-labeled nucleotides. After 

addition of nucleotide, clusters are excited by a laser which causes fluorescence at the last 

integrated base. The cycle is repeated to remove the fluorescent dye and blocking group. The 

cycle is generated a sequence of images, containing new incorporated nucleotide where the 

fluorescence labeled signal of each cluster is captured. As a result, the color of the lighted 

spot represents a different base type. Then a sequence of nucleotide for each cluster can be 

obtained by combining the attaining the sequence of images. Finally, this information is 

saved in a text file named as FASTQ file format. FASTQ file contains a unique ID to identify 

the read, the sequence of nucleotides and the quality scores. Due to the ubiquitous nature in 

illumina, FASTQ format has become de facto for NGS analysis. Now to understand the read 

quality at each base is defined by the Phred score that can range from 0 to 60 on a logarithmic 

scale. The Phred quality score is defined as Q=-10log(e).  

NGS can read sequence from both ends of a single DNA and generate “pair-end 

reads”. FASTQ files are always pre-processed to check the quality controls and remove any 

adapters in the sample preparation process. Sometimes contamination can be detected by the 

distribution of k-mers which help to detect the contamination. These all help to detect the 

potential pitfalls before the downstream analysis.   
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3.3 Quality control of sequencing reads 

 Next-generation sequencing (NGS) technologies have drastically broaden the area of 

genomic research. High-throughput sequencing technology can generate enormous amounts 

of data in a single sequencing run. To extract biological conclusions by analyzing acquired 

sequence, it is important to assess the library quality as well as the sequencing performance. 

Therefore, for any alignment process, the low quality of reads should be removed (Levin et 

al., 2010). Due to a range of artifacts generated during library preparation, NGS can be 

adversely affected the downstream analyses. 

Until recently, to highlight the quality score of the NGS data, several software tools 

have been developed. Contamination with adapter sequences and biases in base composition 

are the primary reason to generate the low-quality base (Trivedi et al., 2014). To assess the 

quality of the raw reads generated by the sequencing platform is the foremost step of the 

quality control (QC) process and FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) is a popular tool for this analysis. 

In NGS platform, FastQC is useful for considering the overall quality score of a sequencing 

run and commonly used as an initial QC checkpoint. Given a set of raw sequencing reads, the 

main aim of quality control (QC) is to align the reads to a reference genome and consider the 

quality of the alignments. The quality of alignments can be obtained by several metrics such 

as depth of coverage, contamination of rRNA, continuity of coverage, and GC bias 

(Andrews, 2010). The main purpose of performing quality control is to process raw sequence 

data coming from high throughput sequencing prior to aligning against a reference genome. 

Now to evaluate the quality of the high throughput sequencing reads, some valuable 

information needed to be extracted from the variation of the Phred quality score (Q score) of 

a sequencing platform (Yang et al., 2013). The content of bases has very little difference 

between different bases during sequencing. Now the number of bases added when the 
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sequencer is unable to produce any base call with enough confidence of reads length (Ewing 

et al., 1998). 

Based on this type of analysis, the low sequencing quality bases should be eliminated 

to ensure the quality of the high throughput data. From the high throughput sequencing, the 

cellular activity is characterized and going to be extracted the biological conclusions. 

3.4 Mapping reads 

After removal of abnormal reads from the raw cDNA sequence reads, it is mandatory 

for the short sequenced to be mapped to a reference genome or transcriptome. The main goal 

of this step is to find the genomic location of each transcript sequence on a given reference 

genome. According to Fonseca et al. this problem can be achieved by computationally 

(Fonseca et al., 2001). This helps to match the reads with the reference genome and this can 

be challenging because sequencing generated millions of short reads that needed to be 

mapped to reference genomes that usually very large. So, it is important that mapping 

algorithms needed to be extraordinarily competent and used processors and memory in a 

most advantageous way. Moreover, 50% repetitive sequences present in complex organisms 

such as human or mouse genome, so it is another challenging aspect in next-generation 

sequencing that needed to be handled. Therefore, mapping tools are required to handle this 

multiple mapping locations (Fonseca et al., 2001).  

 
Figure 3.1. Mapping of a paired-end read with different reference files: genome and transcriptome. Adapted 

from Trapnell and Salzberg, Figure 2 (2009).  

Sometimes, aligning reads against the reference genome is slower because it considers 

all non-coding positions. Currently, several alignment programs are available to handle 

spliced alignments, including TopHat2 (Kim et al., 2013), SOAPSplice (Huang et al., 2011), 

Exon A Exon B Exon A Exon B Exon C

Spliced alignment

(a) Alignment of a paired-end read to the 
genome. The read needs to be mapped across 
introns (spliced alignment)

(b) Alignment of a paired-end read to the 
transcriptome
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Blat (Kent, 2002) or Exonerate (Slater and Birney, 2005). On the other hand, Bowtie 2 

(Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009), MAQ (Li et al., 2008) or 

SOAP2 (Li et al., 2009) are specialized for aligning short reads to a reference genome. 

In computational biology, Bowtie 2 is used as short-read mappers that can able to 

index a file and speeded up the mapping process. This mapping process allows an efficient 

and relatively small memory (Langmead and Salzberg, 2012). Particularly, Bowtie 2 indices 

are based on the Burrows-Wheeler Transform (BWT) that helps to keep the memory low 

(Kent, 2002). In human genome, this transformation keeps the memory to fit in 3.5 gigabytes. 

The alignment process is extracted raw NGS read which are likely to be matched in the 

genome with the Burrows-Wheeler Transform (BWT) based methodology (Burrows and 

Wheeler, 1994). Finally, each aligned character slender the list of possible mapping or 

genomic positions. Sometimes seed placement will be prioritized if Bowtie 2 cannot find a 

location where the read align perfectly (Langmead and Salzberg, 2012). Using the Single 

Instruction Multiple Data (SIMD)-accelerated dynamic programming algorithm, we can 

check whether sufficient numbers of alignments are examined (Slater and Birney, 2005; 

Trapnell and Salzberg, 2009; Langmead et al., 2009). 

The output file from the mapping is a SAM format file. SAM file contains all the 

information of overlapped and non-overlapped reads. Particularly, overlapped reads contains 

the information about the genome location where the read was mapped and it’s respective 

score (Li et al., 2009). 

3.5 Expression quantification and normalization 

During mapping of the RNA-Seq reads, it’s needed to convert the data into a 

quantitative measure of gene expression. Several approaches are available now-a-days, but in 

this problem, the easiest approach is adding up the number of reads which lie within the 

location of each element (Van Verk et al., 2013; Wilhelm and Landry, 2009). It is easy to 

extract this information if reads were overlapped to the transcriptome otherwise gene 
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expression measurement can be performed by using Cufflinks package if reads were aligned 

to the genome (Trapnell et al., 2012). In RNA-Seq, estimation of gene/transcript expression is 

predominantly relying on the no. of reads that aligned to each transcript sequence. There are 

several algorithms available recently for transcript/gene mapping. One such algorithm known 

as Sailfish that mainly depends on the on k-mer read counting without the need for mapping 

(Conesa et al., 2016). However, gene expression measurement can be quantified by using 

HTSeq package that enable aligned reads to the genome (Anders et al., 2015). This 

quantification process uses GTF file that contains genome coordinates of exons and genes. 

Now to compare the expression levels among samples, transcript length, and total number of 

reads affect read count.  

 

To remove this biasness, RPKM (reads per kilobase of exon model per million reads) 

normalizes a transcript’s read by both its length and the total number of reads mapped in the 

Read A Read B

TopHat

Mapped 
Reads

Mapped 
Reads

Cufflinks

Annotated
Transcripts

Annotated
Transcripts

Cuffmerge

Final 
Transcripts 
Assembly

Cuffdiff

Differential 
gene 

expression

CummeRbund

Expression plots

Mapped 
Read

Mapped 
Read

Fig 3.2. An overview of the tuxedo protocol. The assembly and characterization of expressed genes

from the experimental data, statistical analysis of differential gene expression. QC study is performed in
the raw RNA-Seq reads using FastQC; the filtered reads are then mapped to a reference file using

Bowtie 2; from this data is measured the gene expression level and performed a differential expression

test by Cuffdiff; the genes are then concatenated into GO terms using GOStats. In the end, this will give
insight into the biological processes that are differentially active between the conditions in comparison.

Adapted from Trapnell et al., Figure 2 (2012).
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sample to remove the feature-length and library-size effects. FPKM (fragments per kilobase 

of exon model per million mapped reads) normalized paired-end data (Mortazavi et al., 

2008). During the RNA-Seq experiment, two conditions will be examined where reads are 

first mapped to the genome with TopHat. These mapped reads are fed to Cufflinks, which 

produces one file of assembled transfrags for each replicate. Finally, Cuffdiff analysis 

performed to get the differential gene expression analysis. These files are visualized with 

CummeRbund to facilitate exploration of genes identified by Cuffdiff as differentially 

expressed, spliced, or transcriptionally regulated genes as it can be seen in figure 3.5.  

To estimate transcript-level expression several sophisticated algorithms have been 

developed recently. Cufflinks approximate transcript level expression from a genome 

mapping by using a TopHat. Cufflinks use GTF information to identify differentially 

expressed transcripts. RSEM (RNA-Seq by Expectation Maximization) (Li and Dewey, 

2011), eXpress (Forster et al., 2013) algorithms have been used to normalize within the 

sample to correct the sequencing biasness which quantify the expression from transcriptome 

(Finotello et al., 2014). 

3.6 Differential expression  

After quantification and normalization, statistical testing usually performed between 

conditions. Due to count-based nature of RNA-Seq data, Poisson distribution provides a good 

fit for counts arising from technical replicates, has been performed (Marioni et al., 2008). 

According to Leek et al. (Langmead et al., 2010) and Smyth et al. (Robinson and Smyth, 

2007) these distributions do not account for biological variability across samples. Because 

Poisson’s distribution accounts for the variance which is associated with the biological 

replicates and will be prone to high false discovery rate (FDR). FDR arises from the 

underestimation of sampling error (Robinson and Smyth, 2008). To overcome this limitation, 

recently many methods were developed that measure the statistical significance in a dataset 

with a low number of biological replicates. Cuffdiff finds differentially expressed genes and 
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transcripts that are transcriptionally and post-transcriptionally regulated and groups 

transcripts into biologically meaningful groups (Trapnell et al., 2012). In Cuffdiff, it is 

assuming that the number of reads produced by each transcript is proportional to its 

abundance (Trapnell et al., 2012). In RNA-Seq, presence of large number of technical 

variabilities arises during library preparation and in the same experiment, variation of 

biological replicates sometimes fluctuates changes in expression. Even though it’s 

exceptional level of accuracy, RNA-Seq has sources of bias during the gene expression 

analysis. However, Cuffdiff can automatically eliminate a large fraction of the bias in RNA-

Seq read distribution across each transcript and improves its abundance estimates. RNA-Seq 

has less technical variance compared to micro-arrays (Zhao et al., 2014). During sequencing, 

Cuffdiff provided multiple technical or biological replicate in sequencing libraries per 

condition and will help how read counts vary for each gene across the replicates. These 

variances calculate the significance of observed changes in expression (Trapnell et al., 2012). 

In cuffdiff, user can fed two or more SAM/BAM files, generated from TopHat alignment, as 

well as a GTF file that contains transcript annotations as input. As an output file, Cuffdiff 

reports numerous files that contain the results of DEG analysis. User can download and can 

be viewed with any spreadsheet application (such as Microsoft Excel). These files contain 

fold change in log2 scale, P values, q value and gene/transcript name and location in the 

genome (Trapnell et al., 2012). During differential gene expression analysis, Cuffdiff identify 

genes that are differentially spliced or regulated via promoter switching. In a gene, Cuffdiff 

groups together isoforms that have the same TSS which are all derived from the same pre-

mRNA. Cuffdiff also calculates the total expression level of a TSS group by summing up the 

expression levels of the isoforms. Due to the presence multiple TSSs in a gene, Cuffdiff is 

also looking for changes in expression between TSS in different conditions.  
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3.7 Pathway analysis 

Being a knowledge-driven quality, biologists are facing everyday how to interpret large-scale 

data especially with the emergence of high-throughput technology. The limitation usually lies 

to understand the meaning of array of genes to divulge the underlying molecular mechanism 

of the phenotype. Finally, list of differentially expressed genes can be grouped into common 

pathways; enable to identify differentially expressed pathways. The purpose of this pathway 

enrichment analysis is to find ultimate possibilities of the hidden connections of molecular 

information (transcriptome) with the phenotype of an organism in study (Emmert-Streib and 

Glazko, 2011). For individual genes, the variation in gene expression depends upon a certain 

disease that could be only moderate or even negligible. The pathway enrichment analysis of 

set of genes variation can evidence differences between different phenotypes (Mootha et al., 

2003) and evaluates the function of differentially expressed genes and executes different 

cellular pathways and this pathway knowledge available in public repositories such as the 

Gene Ontology (GO) (Ashburner et al., 2000) and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa et al., 2012). The pathway information concatenates into these 

databases with the gene expression patterns, resulting in the transformation of the array of 

individual gene identification into these pathways. According to Khatri et al. pathway 

analysis is performed based on overrepresentation analysis (ORA) and usually provided as an 

input a preselected differential expressed gene list (Khatri et al., 2012; Huang et al., 2009). 

This preselected list of genes will be taken from the output of cuffdiff analysis which has 

with higher rates of under- or over-expression with a certain FDR. A test is executed to 

ensure if the lists of gene have any biological function in general also involved in the same 

cellular process (Trapnell et al., 2009). The most commonly used tests are Fisher’s exact test 

(Evangelou et al., 2012), hypergeometric (Zeeberg et al., 2003), chi-square (Falcon, and 

Gentleman, 2007), or binomial distribution. An extensive list of tools that are designed to 

perform this type of analysis is introduced by Lempick et al. (Zhong et al., 2004). 
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CHAPTER 4 

METHODS 

4.1. Tailor pipeline: 

Over the past few years, ample amounts of methods had been developed to deal with different 

aspects of RNA-Seq data analysis. However, it was required to combine several bespoke 

methods to address the needs and specificities of each problem and sometimes this 

combination is not a simple challenge. Therefore, special awareness must be taken to prevent 

erroneous biological conclusions.  

With these considerations in mind, we proposed a sequence of tools (pipeline) which 

is suitable to perform a comparative study between RNA-Seq samples. The pipeline referred 

as “Tailor Pipeline” which can able to able to take from raw RNA-Seq reads, to extract the 

main biological processes differing between the analyzed conditions as it can be seen in 

figure 4.1.  

 

The pipeline has a broad interest because sometimes biologists interested to perform a 

comparative analysis, on the bench, under different environments, cells are treated with 

different pathogenic agents. Frequently, the best-chosen approach is the sequencing of the 

Figure 4.1. Schematic representation of the Tailor_Pipeline used in the RNA-Seq data. The raw

.Bcl file has been submitted in the GHPCC cluster and performed differential gene expression analysis
by using TopHat, Cufflinks, and Cuffdiff. Gene set enrichment analysis performed to identify the

differentially regulated BPs, CCs and MFs and visualize the most differentially expressed pathways.
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cell transcriptome by using high-throughput sequencing, next-generation sequencing 

techniques (Shendure and Ji, 2008). However, the next-generation technologies generated, 

routinely, a dozen of gigabytes of data. Now, to extract relevant biological information from 

it, the computational power is essential. For that reason, this pipeline will provide all the 

necessary information which is required to solve any biological problem. The details result of 

this pipeline described in the subsequent chapters of this thesis. 

A diagram illustrating the conceived pipeline is showed in Figure 4.1. This pipeline 

was implemented in a Tailor_file and incorporates both publicly available tools and scripts 

developed by Riley lab group members to perform the biological evaluation of the RNA-Seq 

data.  

Data analysis begins with the input of the raw read files and the reference files. Once 

this data is gathered, reads are processed with FastQC (Trapnell 2004). FastQC consists of 

Java software which provides tools to perform a QC study in raw high throughput sequencing 

data. The analysis performed by this tool ensures that the data is qualitatively good and there 

are no problems or biases in it and reported per base sequence quality, per sequence quality 

scores, per base sequence content, per base GC content, per base N content, sequence length 

distribution, sequence duplication levels, overrepresented sequences and Kmer content. 

Sometimes, sequencer and the starting library materials may create some problem which can 

be easily detected by a QC analysis. Some abnormalities may be resolved by trimming base 

pairs from the raw read. The pipeline contains a script that can trim a given number of base 

pairs during this analysis. The pipeline is pre-set not to trim any bases from the raw 

nucleotide sequence. However, this option can be modified in the Tailor_file, depending on 

the QC results.  

Afterwards, trimming, reads will be aligned with a reference sequence using Bowtie 

2, a well-established mapper (Langmead and Salzberg, 2012). In RNA-Sequencing 

technology Bowtie2 is a fast and memory-efficient mapping tool that is particularly suitable 
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for the alignment of small reads, to the respected genome reference. In our analysis we have 

used the human and mouse genome respectively. Previously to the mapping process, the 

reference file must be indexed to be used by Bowtie2. To perform this task, bowtie2-build is 

used. This tool constructs a Bowtie index from the set of DNA sequences in the reference 

file, which usually is in the FASTA format (Langmead 2010). Once the index is built, Bowtie 

no longer uses the original FASTA sequence. At this point, a set of options associated with 

the type of search performed by the Bowtie 2 algorithm need to be defined. The output of the 

mapping process is a Sequence Alignment/Map (SAM) file which stores the information 

about the read alignments against the reference sequence. Particularly, for paired-end reads 

two records are printed (i.e. two lines of output) describing the mapping proprieties for each 

comparison (Li 2009).  

Typically, after mapping RNA-Seq reads to a reference genome, the number of reads 

that map a certain gene or transcript is measured. The read counts have been found to be 

roughly linearly related to the abundance of the target transcript (Mortazavi 2008). To get the 

gene expression information, the pipeline uses TopHat, a script integrated in the TopHat 

package that counts how many reads map to a certain feature (Kim 2013). Due to the nature 

of this study, where high-level pathway enrichment analysis was the goal, it was not relevant 

to consider multiple isoforms of the same gene. To perform the count of the mapping reads, a 

reference genome file is required that contains information about the features.  

Next differential expression analysis was performed between the RNA-Seq samples to 

detect differentially expressed genes among the conditions in study and differential gene 

expression analysis has been done by using Cuffdiff (Trapnell 2012), that takes the output 

files from TopHat or another read aligner. This output files are two or more fragment 

alignment SAM/BAM files, as well as a merged.gtf from the output of Cuffmerge as input 

(Trapnell 2012). Cuffdiff tests the observed log fold change in transcripts expression against 

the null hypothesis of no change and produces several output files for changes in expression 
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at the transcript level, primary transcripts, and genes. To use multiple conditions, users must 

specify multiple replicates by feeding in the associated BAM files for each condition. For 

each gene, the output table contains information about the mean gene expression level, the 

fold change from the first to the second condition, the logarithm (to basis 2) of the fold 

change, the p-value for statistical significance of this change and the p-value adjusted with 

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) that controls the percentage 

of false positives among all the rejected hypotheses (FDR).  

To select the significant differentially expressed genes, the algorithm is pre-set to 

perform a trimming based on the raw output table by selecting only p-value less than 0.1. To 

understand this trimming, it was necessary to have a clear knowledge about which statistical 

measure the p-value translates provided the null hypothesis is true. This null hypothesis refers 

to a general or default position and it was rejected if the p-value is less than a significance 

level. In differential gene expression analysis, the null hypothesis corresponds to a scenario in 

which the genes were not significantly differentially expressed. This means that lower p-

values was unlikely that the observed difference was occurring randomly and, thereby, the 

0.1 p-value cut-off assures that only the statistically important entries will be considered for 

further analysis.  

Lastly, the genes found to be differentially expressed are associated with GO terms 

using a Bioconductor package called GOStats (Gentleman and Falcon, 2013). GOStats used a 

hypergeometric test to relate a given gene list with the standardized controlled vocabulary in 

the GO database. Particularly, it consists in three structured controlled vocabularies: 

biological processes (BP), sets of molecular events which are essential to the functioning of 

integrated living units; cellular components (CC), parts of cells or its extracellular 

environment; and molecular functions (MF), elemental activities of a gene product at 

molecular level (Ashburner 2000). In the final step, it is possible to have a biological insight 

about the samples being compared. Based on the output table user can able to conclude the 
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most significantly differentially expressed active processes when the cell is subjected to 

different biological conditions. To perform an analysis using the Hypergeometric-based test 

implemented in the GOStats package, the pre-set universe is contained a genome wide 

annotation database for Homo sapiens, mouse and others those are mapped with Entrez Gene 

identifiers. The pipeline is adjusted to analyze any species RNA-Seq data. Secondly, it is 

necessary to define a list of genes for the analysis and this list corresponds to the collection of 

genes in the final table of the differential expression analysis step. For the entries generated 

through the hypergeometric test, it is defined a p-value cut-off of 0.1. Additionally, the test 

direction is set as over, so the result of this step will be a table with the over represented GO 

terms associated with the differentially expressed genes found in the previous pipeline step 

for each one of the ontologies. In other words, GOStats will identify most important ontology 

terms that differ between the conditions being compared in the cuffdiff analysis.  
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CHAPTER 5 

RESULTS 

Part-1: Diet induced SAMP6 mice results 

5.1. Dataset Description 

In this study SAMP6 strain mouse were used and colonies taken from eight females 

and four males. For 25 mice each SAMP6 and AKR/J were fed with high fat diet (HFD). 

Generally, the age of those mice is 6–8 weeks of age. High-fat diet contains fat, protein, and 

carbohydrates and low-fat diet (LFD) contains fat, protein, and carbohydrates. In HFD, 60% 

calories are coming from fat whereas in LFD, 10.2% calories are coming from fat. This 

feeding process continues for 6 months where mice were fed daily with fresh high, low-fat. 

Subsequently Mice were sacrificed, and RNA has been extracted by using TRIZOL reagent. 

Then, two treated, HFD and LFD, SAMP6 mice were used in biological triplicates for library 

preparation. All RNA samples are DNAse treated and used to create single indexed (6 base 

pairs) RNA-Seq libraries by using TruSeq RNA preparation kit according to the 

manufacturer’s protocol [96]. All sequencing has been done by using the Illumina HiSeqTM 

2500 instrument. HiSeqTM 2500 was used to sequence RNA-Seq libraries that have been 

loaded with software version 3. Then performed 51-cycle paired-end run of the single 

indexed RNA-Seq libraries and demultiplexing has been done by using the raw bcl base call 

files upon completion. Based on that RNA-Seq dataset has been created from SAMP6 

background strain mice that were fed regular low-fat and high diet (Table-5.1).  

 

Table 5.1. Data set of diet induced mice study. The experimental data is composed 3 biological replicates for 

each of the 2 different conditions. 3 high fat and 3 low-fat diet mice were used for this experiment.  

High fat mice Low fat mice

NK001_1_CGATGT NK004_4_GCCAAT

NK002_2_TGACCA NK005_5_CAGATC

NK003_3_ACAGTG NK006_6_CCTGTA
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The Tailor pipeline was used to process the experimental data characterized above. In the 

subsequent section I have described the results from each processing step, interpret them and 

ultimately, conclude about which are the up- and down- regulated pathways in diet induced 

SAMP6 mice that associated with fibrosis. 

5.2. Differential Gene Expression 

Overall, the quality of the HF-SAMP6-over-LF-SAMP6 RNA-Seq data was high. 

Nevertheless, the quality modules would generate warnings. Those inadvertences appeared 

on per base sequence content, on the per base GC content and on the Sequence Duplication 

levels sections. Particularly, the first warning topic plots out the proportion of the four DNA 

bases for each base position in a sequence file. These properties were not verified for any of 

the analyzed read files. In fact, all of them had a high variability on the first 15 bases, which 

pointed out to the presence of an overrepresented sequence in the library. This may be related 

with a problem in the library generation or can be a consequence of an abnormal sequencing 

process. However, the most plausible explanation was the use of random hexamer priming to 

introduce biases at the start of sequencing reads, as described by Hansen et al., 2010 (Hansen 

2010). Based on this study, 15 bases were trimmed from the beginning of each original 

sequence. Given that the reads are long (90 base pairs); the loss of information inherent with 

this trimming is not significant. Therefore, each one of the reads is composed, after this step, 

by 75 base pairs. 

 The filtered HF-SAMP6-over-LF-SAMP6 reads were then mapped against a 

reference mouse genome (mm10) file. The reference file was downloaded from Ensemble 

website and contains the reference mouse DNA sequence in FASTA format. The reference 

file was indexed by bowtie-build and used by Bowtie 2 to perform the mapping of the HF-

SAMP6-over-LF-SAMP6 RNA-Seq reads to the reference mouse genome. Following 

alignment of the RNA-Seq reads, the data need to be translated into a quantitative measure of 

gene expression. This task can be achieved by TopHat, which counts the number of reads that 
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map a given gene. To perform this, it is necessary a reference file that contains all the 

annotated protein coding and non-coding genes in the mouse genome release 10. This 

information is contained on a GTF file that was downloaded from Ensemble’s website 

(ftp://ftp.ensembl.org/pub/release-71/gtf/homo sapiens/Homo sapiens.GRCh37.71.gtf.gz).  

 After running TopHat, the output file fed into Cuffquant to compute gene and 

transcript expression profiles and saves these profiles such that it can be analyzed in a timely 

manner by Cuffdiff which the last step is to determine differential gene expression (DGE). 

Cuffquant take the .bam mapping files made from each of the 6 biological replicates along 

with the merged.gtf file and generate .cxb (compressed binary file). Cuffquant reduces the 

computational load of quantifying gene and transcript expression of the HF-SAMP6-over-LF-

SAMP6 sample especially if there are more than a handful of libraries.  

 Given the samples and the respective conditions that constitute the diet induced 

SAMP6 mice dataset, it was decided to compare SAMP6 HFD-fed to LFD-fed mice samples. 

Cuffdiff is a program that uses the cufflinks transcript quantification engine used to test the 

observed log fold change in its expression against the null hypothesis of no change and find 

differentially regulated genes and transcripts at the transcriptional and post-transcriptional 

level that share a common transcription start site.  

The Cuffdiff module takes two or more fragment alignment BAM files from TopHat 

(such as accepted_hits.bam), as well as a reference GTF file containing transcript annotations 

as input. To do so, each one of the outputs from the previous step was concatenated with the 

table containing the information about the gene expression level in the control sample. From 

these concatenated tables, Cuffdiff estimates the dispersion of each gene and analyses 

whether there is differential expression between the defined conditions (e.g. comparison 

between SAMP6 HFD-fed compare to LFD-fed mice). The final throughput of this step is a 

table in which the entries correspond to the genes that are significantly differentially 

expressed among the two conditions being compared.   
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 Our analysis included a total of 23,285 differentially expressed genes including 

protein coding transcripts and non-coding transcripts, lncRNAs, and microRNA from the 

SAMP6 HFD-fed compare to LFD-fed mice. Of these 387 genes were significantly 

differentially expressed between High fat and Low-fat diet mice according to the cut-off 

criteria (P<0.05 and |log2FC| >1.5). Now Cuffdiff result output is very large and is not 

possible to visualize the data. So, we have used CummeRbund to simplify the analysis and 

visualize the output of a differential expression analysis by using cuffdiff. CummeRbund 

handles the transformation of Cuffdiff data into the R statistical computing environment, 

making RNA-Seq expression analysis with Cuffdiff more compatible with many other 

advanced statistical analyses and plotting packages. CummeRbund takes the output files from 

cuffdiff and creates an SQLite database which describes the relationships between genes, 

transcripts, transcription start sites, and CDS regions.  

This data can be represented in an MDS-plot, illustrates the pattern of similarities or 

distances among a set of objects (Figure-5.1). More specifically, each dot in the MDS-plot 

corresponds to a gene. In the x-axis in the plot represents the first euclidean dimension, and 

the y-axis the second euclidean dimension.  
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Euclidean distances can be placed in a several ways. These distances can be placed in 

multidimensions but the standard way of representing MDS is to just plot the Euclidean 

distances with x-axis being Dimension 1 and y-axis being Dimension 2. The dimensions are 

ordered based on how well samples are separated. Figure-3.2 is represented the MDS-plots 

for all the high fat and the low-fat diet induced to the SAMP6 mice. The closer the labels are 

together, the more similar the samples are. So, it is good to see that the high fat diet samples 

are clearly separated from the low-fat diet treated samples. In addition to this, genes classified 

as significantly differentially expressed with an FDR less than 0.1 in high fat and the low-fat 

diet induced to the SAMP6 mice are also clearly separated. By visually comparing the MDS-

plots of diet induced SAMP6 mice samples lead us to check another dimension reduction 

technique such as Principal Component Analysis. It minimizes the dimensions and preserves 

the covariance of data whereas MDS minimizes dimensions, preserves distance between data 

Figure 5.1. A multidimensional scaling (MDS) plot of the merged gene expression

data. MDS-plots for all the high fat and the low fat diet induced to the SAMP6 mice.
The figure shows a perfect separation between high fat SAMP6 and low fat SAMP6

mice. All color coded by biological replicates, with different symbols corresponding to

different replicates.



37 
 

points. Figure-5.2 is represented the PCA-plot that shows a perfect separation between high-

fat and low-fat diet biological replicates. In this method, the samples data points are projected 

onto the 2D plane in such a way so that data points are spread out in the two directions. This 

explain most well separation in the datapoints in the two-dimensional space. In the MDS plot, 

the x-axis is the direction that shows the maximum variation in the data point and is 

written PC1. The y-axis is orthogonal to the first direction which separates the data point 

second most in this direction and is written PC2. The percentage of total variance is 

demonstrated in the axis label which shows maximum variation.  

 

However, it is important to keep always in mind that this analysis was performed with any 

number of biological replicates. In fact, as stated before, it is important to note that the 

biological conclusions extracted from the described methodologies must be interpreted with 

care. In fact, differences in library construction and variability intrinsic to the biological 

samples can greatly influence the number of false positives. It is imperative to have 

Figure 5.2. Principal component analysis. The PCA analysis was

based on the gene expression patterns in high fat (HF) and low fat

(LF) SAMP6 mice with induction of different diet. Analysis showed

a perfect separation between two different diets. In the figure,

LF_SAMP6_1 overlapped with LF_SAMP6_2.
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biological replicates in the RNA-Seq dataset since these are essential in the measurement of 

the sample’s intrinsic variability. Therefore, the absence of replicates is reducing the power 

of DE inference among RNA-Seq samples. After performing this analysis, we have decided 

to perform an additional layer of analysis that enables to see the functions of those 

differentially expressed genes. 

5.3. Gene Ontology enrichment – GOStats 

Using the pre-set options defined in the tailor pipeline, GOStats identified the 

statistically significant ontology terms that differ between SAMP6 HFD-fed compare to 

LFD-fed mice. In the following subsections a summary of the obtained results is described 

and compared with what it was expected, having into account that urinary voiding 

dysfunction was more severe in SAMP6 and was associated with pronounced prostatic and 

urethral tissue fibrosis. The X-axis represent the –log10 (p-value) and the Y-axis represent the 

biological, cellular or the molecular processes.  

 5.3. A Biological Processes: 

SAMP6 HFD-fed compare to LFD-fed mice analysis provided significant ontologies that 

described operations or sets of molecular events pertinent to the functioning of fibrosis that 

are associated with diet induced high fat mice. In all, 13 biological processes were highly 

over-represented in our gene list, with p-values < 0.05 and fold-enrichment values of >2-fold 

(Table - 5.2).  

Table – 5.2 Summary of the BP ontology terms and respective p-value associated with the set 

of differentially expressed genes from SAMP6 HFD-fed compare to the LFD-fed analysis. 

GOBPID Odds Ratio Term -log10(P-value) 

GO:0009605 Inf response to external stimulus 3 

GO:0009611 45.863 response to wounding 3 

GO:0001907 1836.556 killing by symbiont of host cells 3 

GO:0032571 1836.556 response to vitamin K 3 

GO:0044004 1836.556 disruption by symbiont of host cell 3 

GO:0051919 1836.556 positive regulation of fibrinolysis 3 
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GO:0007598 1377.333 blood coagulation, extrinsic pathway 3 

GO:0065008 Inf regulation of biological quality 2.69897 

GO:0016485 51.987 protein processing  2.69897 

GO:0080134 32.604 regulation of response to stress 2.69897 

GO:0051604 48.202 protein maturation 2.69897 

GO:0017187 500.636 peptidyl-glutamic acid carboxylation 2.522879 

GO:0018214 500.636 protein carboxylation 2.522879 

GO:0051818 500.636 
disruption of cells of other organism 

involved in symbiotic interaction 
2.522879 

GO:0051883 500.636 
killing of cells in other organism involved 

in symbiotic interaction 
2.522879 

GO:0006508 28.997 Proteolysis 2.522879 

GO:0006828 458.889 manganese ion transport 2.522879 

GO:0010640 458.889 
regulation of platelet-derived growth factor 

receptor signaling pathway 
2.522879 

GO:0051917 458.889 regulation of fibrinolysis 2.522879 

GO:0006957 393.286 
complement activation, alternative 

pathway 
2.39794 

GO:0007597 305.815 blood coagulation, intrinsic pathway 2.30103 

GO:0031639 275.2 plasminogen activation 2.30103 

GO:0030194 239.261 positive regulation of blood coagulation 2.221849 

GO:0050927 239.261 positive regulation of positive chemotaxis 2.221849 

GO:1900048 239.261 positive regulation of hemostasis 2.221849 

GO:0050926 229.278 regulation of positive chemotaxis 2.221849 

GO:0050820 220.093 positive regulation of coagulation 2.221849 

GO:0007596 28.787 blood coagulation 2.221849 

GO:0042730 211.615 Fibrinolysis 2.154902 

GO:0007599 28.521 Hemostasis 2.154902 

GO:0050817 28.521 Coagulation 2.154902 

GO:0030449 196.476 regulation of complement activation 2.154902 

GO:0018200 189.69 peptidyl-glutamic acid modification 2.154902 

GO:0019835 189.69 Cytolysis 2.154902 

GO:0031640 189.69 killing of cells of other organism 2.154902 

GO:0044364 189.69 disruption of cells of other organism 2.154902 

GO:2000257 183.356 regulation of protein activation cascade 2.154902 

The differential biological processes analysis shows that “GO:0007598”, “GO:0017187” and 

“GO:0051818” are top most over-represented. The associated processes are blood 

coagulation, extrinsic pathway, peptidyl-glutamic acid carboxylation and disruption of cells 

of other organism involved in symbiotic interaction.  

SAMP6 HFD-fed compare to LFD-fed mice has led us to provide deregulation of 

wound healing response, coagulation is responsible for the tissue fibrosis. Over the last 

http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0016485
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decade, coagulation signaling coordinate inflammation and tissue repair through the 

generation of fibrin and activation of proteinase-activated receptors (PARs) (Kryczka and 

Boncela, 2017). Coagulation cascade promote hemostasis and limit blood loss in response to 

tissue injury which will help to promote tissue fibrosis. Therefore, targeting the PARs will be 

a potential approach to limit fibrosis.  

 From this evaluation it is possible to conclude that the main differences between 

SAMP6 HFD-fed compare to LFD-fed mice is high fat diet induced SAMP6 mice associated 

with blood coagulation, extrinsic pathway which is a key factor for the tissue fibrinolysis 

which is concomitant to tissue fibrosis in high fat diet mice.  

 5.3. B Cellular Components:  

Cellular components ontology associated with parts of a cell or its extracellular environment. 

Comparing SAMP6 HFD-fed to LFD-fed analysis, “GO:0005579” and “GO:0005615” were 

over-represented cellular components (Table - 5.3).  

Table - 5.3 Summary of the CC ontology terms and respective p-value associated with the set 

of differentially expressed genes from SAMP6 HFD-fed compare to the LFD-fed analysis. 

GOCCID Odds Ratio Cellular Components -log10(P-value) 

GO:0005615 37.326 extracellular space 2.69897 

GO:0005579 986.167 membrane attack complex 2.69897 

GO:0046930 369.604 pore complex 2.39794 

GO:0005886 Inf plasma membrane 2.221849 

The associated terms were membrane attack complex and extracellular space. The –log10 (P-

Value) is highly enriched for the term “membrane attack complex”. Remembering that BP 

“blood coagulation” is highly overrepresented for the SAMP6 HFD-fed compare to the LFD-

fed analysis. But in the case of cellular components, membrane attack complex is highly over 

represented. Evidence suggested that formation of membrane attack complex direct 

associated with accumulation of fibrosis and complement activation may be responsible for 

the profibrotic response that occurs in the tubulointerstitial compartment (Abe 2004). 
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Stimulation of proximal tubular epithelial cells with membrane attack complex increased the 

mRNA concentrations of collagen type IV and its intracellular chaperone such as Heat Shock 

Protein 47 (HSP47).  

 5.3.C Molecular Functions: 

The significant MF were described the elemental activities of a gene product at the molecular 

level. Only one GO term is associated with the molecular function in this analysis. The GO 

term “GO: 0004252” is associated with serine-type endopeptidase activity (Table - 5.4).  

Table - 5.4 Summary of the MF ontology terms and respective p-value associated with the set 

of differentially expressed genes from SAMP6 HFD-fed compare to the LFD-fed mice 

analysis. 

GOMFID Odds Ratio Molecular Functions -log10(P-value) 

GO:0070679 1038.000 inositol 1,4,5 trisphosphate binding 2.69897 

GO:0004175 76.749 endopeptidase activity 2.69897 

GO:0015279 830.300 store-operated calcium channel activity 2.69897 

GO:0070011 55.297 
peptidase activity, acting on L-amino 

acid peptides 
2.39794 

GO:0008233 53.387 peptidase activity 2.39794 

In has been reported, protease may target many substrates which activate cell migration and 

fibrosis which support statistically (Kryczka and Boncela, 2017). Furthermore, serine-type 

endopeptidase activity is also described to be related with the mesenchymal transition and 

fibrosis. On the other hand, this activity term evidences the regulation of cell junction 

decomposition and ECM degradation. This may help to liberate sequestered growth factors 

such as TGFβ or VEGF that increases leukocytes infiltration and prolong inflammation. 

Finally, these proteases target many substrates and thus inflicting changes in distinct 

biological processes which correlated with cell migration and fibrosis (Kryczka and Boncela, 

2017).  
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5.4. Pathway Analysis: 

Finally, the list of differentially expressed genes can be grouped into common pathways. This 

analysis identifies differentially active pathways and, ultimately, possibilities the connection 

of molecular information (transcriptome) with the SAMP6 HFD-fed compare to the LFD-fed 

mice analysis. Gene Ontology analysis reveals high fat diet SAMP6 mice involved in blood 

coagulation process which plays pivotal roles in orchestrating inflammatory response. In 

addition to this high fat diet SAMP6 mice engaged in membrane attack complex which is 

directly associated with accumulation of fibrosis. This insinuates us to check the significant 

pathway which may associate with fibrosis. 

 Tailor pipeline identified 39 significantly differentially expressed pathways. Pathway 

enrichment analysis evaluates the significantly differentially expressed genes that concatenate 

into cellular pathways. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a public 

repository that contains pathway information (Kanehisa 2012). This is performed by relating 

the pathway information into these databases with the gene expression patterns, resulting in 

the transformation of the list of individual genes into a set of pathways. Previously report 

suggested up-regulation of a pre-fibrotic pathway namely the “ECM-Receptor Interaction” 

has been associated with fibrosis (Ekstedt 2006).  
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The ECM plays a central role to maintain the normal function of different tissues. It has been 

widely comprehended, over-expression of extracellular matrix (ECM) proteins have been 

associated with fibrosis (Almanza, D., 2018). In our analysis it can be shown collagen is up-

regulated which presumably participates in the development of tissue fibrosis (Figure-5.3). 

Though diet induced SAMP6 mice did not show any fibrotic livers, may be this pathway 

insinuate the early stage of tumorigenesis. Apart from the extra cellular matrix pathway we 

have observed an unusual pathway known as the “peroxisome proliferator-activated receptor 

pathway” is highly over-expressed in our analysis (Figure-5.4).  

 Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription 

factors of nuclear hormone receptor super family composed of three members namely PPAR-

α, PPAR-δ, and PPAR-γ and play an essential role in metabolism by heterodimerization with 

Figure 5.3. KEGG pathway of mm10 illustration of ECM receptor pathway. ECM

receptor interaction showed differential expression of specific genes in this pathway.
Genes significantly up-regulated consequent to high fat diet treatment in red, up-regulated

consequent to low fat diet treatment in green, not differentially expressed in gray

(arbitrary scale indicates extent of differential expression).
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the retinoid X receptor (RXR) that bind to the specific regions on the DNA of the target 

genes. From the signaling pathway it can be visualized that PPAR-γ is targeted many genes 

such as ME1, ACBP, FABP1, LPL, ACO, CYP4A1, Thiolase B. Their main function is to 

promote lipogenesis, cholesterol metabolism, fatty acid transport, fatty acid oxidation. Due to 

down regulation of PPAR-γ in SAMP6 HFD-fed compare to the LFD-fed mice analysis, all 

the downstream target genes become down expressed and will not be able to transport fatty 

acid. Finally, oxidation of fatty acid and the metabolism of cholesterol become inhibited. 

Now chronic imbalances in lipid metabolism are often associated with obesity, Type-2 

diabetes (T2D) and chronic liver disease. The common cause of chronic liver disease is the 

nonalcoholic fatty liver disease (NAFLD) disease which is responsible to accumulate the 

white adipose tissue in the liver (Ekstedt 2006). In this analysis we can visualize that 

oxidation of fatty acids are down regulated, suggested us to speculate that blood levels of 

triglycerides and free fatty acids are chronically elevated and excess fatty acids are derived 

from the extracellular source such as diet. Finally, it is reported that in liver, chronically 

elevated fat deposits result in NAFLD, which can lead to steatohepatitis (NASH) and, 

eventually, to non-reversible hepatic cirrhosis (Ekstedt 2006).  
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 It has been reported that NAFLD can develop a worst prognosis like cirrhosis and 

hepatocellular carcinoma (Yu 2016). In hepatocellular carcinoma, several different 

biomarkers have documented recently, and our aim is to find any of these known biomarkers 

are presented in our diet induced mice samples. After performing differential gene expression 

analysis by cuffdiff, we have identified genes/transcripts that are significantly differentially 

expressed in hepatocellular carcinoma. It is worth mentioning that several growth factors 

such as EGF1, EGF2 are upregulated in our diet induced SAMP6 mice model system and we 

are suspecting these may provide a pre-malignant signature. Because, EGFR plays an 

important role in cell growth and concurrently lead to the development of transformation by 

increasing the transcriptional activity. However, this premalignant signature has been 

implicated in cancer considering this may play an important role for uncontrolled cell growth 

and proliferation which is a characteristic feature of cancer (Grandhi 2016). 

Figure 5.4. KEGG pathway of mm10 illustration of peroxisome proliferator-activated receptor

(PPAR) pathway. PPAR pathway showed differential expression of specific genes in this pathway.
Genes significantly up-regulated consequent to high fat diet treatment in red, up-regulated consequent to

low fat diet treatment in green, not differentially expressed in gray (arbitrary scale indicates extent of

differential expression).
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Part-II. Stromal Fibroblast Cell line results 

5.5. Dataset Description 

In this analysis N1 cells were used and these cells were derived from a stromal 

fibroblast cell line. These cells were expressed fibroblastic markers such as vimentin and 

calponin. These cells were demonstrated proliferation and secretion profiles which was 

somewhat similar with aging primary prostate fibroblasts (Rodríguez-Nieves 2016). 

Fibroblast cells were treated with human CXCL12 and human TGFβ and Trizol is used to 

extract RNA. Isolated RNA from N1 cells treated with CXCl12 or TGFβ were used to 

prepare libraries. All RNA samples are DNAse treated and used to create single indexed (6 

base pairs) RNA-Seq libraries by using TruSeq RNA preparation kit according to the 

manufacturer’s protocol. All sequencing has been done by using the Illumina HiSeqTM 2500 

instrument. HiSeqTM 2500 was used to sequence RNA-Seq libraries that have been loaded 

with software version 3. Then performed 51-cycle paired-end run of the single indexed RNA-

Seq libraries and demultiplexing has been done by using the raw bcl base call files upon 

completion. The experimental data is composed 3 biological replicates for each of the 2 

different conditions mentioned such as CXCL12-vs-Control, TGFβ- vs- Control, and 

CXCL12-vs-TGFβ.   

5.6. Differential Gene Expression 

The pipeline described above was used to process the experimental data characterized above. 

In the subsequent section results from each processing step, interpretation and ultimately, 

conclusion has been made to decipher which are the up- and down- regulated pathways in 

CXCL12-vs-TGFβ induced fibroblast to myofibroblast phenoconversion. The .Bcl basecall 

files generated by Illumina HiSeq2500 were converted to FASTQ format using 

Tailor_Pipeline. This conversion was done with the help of bcl2fastq tool. To generate a 

single FASTQ file for each biological replicate, we have used the default parameter that split 

the files after 4 million reads to the reference human genome. This alignment file will be used 
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in the further downstream analysis of the stromal fibroblast data. In this analysis we have 

mainly focused on the Cuffdiff that enables to perform the differential gene expression 

analysis for the quantification of the transcripts for the samples. In computational biology it’s 

important to know the function the genes/transcripts which is differentially expressed in the 

sample and gene ontology analysis is the prime important for this field and we have used 

GOStats R package to analyze the result considering that we have kept p-value of ≤0.05. In 

cell line data analysis, we have considered the pathview package that associated with the 

enrichment analysis. This enrichment analysis used to elucidate and visualized the top up-

regulated cellular pathways, or down-regulated in CXCL12, or TGFβ treated cells by 

considering the cutoff q value ≤0.05. Transcriptomics analysis using human N1 cells which 

were derived from a stromal fibroblast demonstrated secretion and proliferation profile which 

was consistent with aging primary prostate fibroblasts (Patalano 2018). Moreover, RNA-Seq 

analysis of stromal fibroblast data revealed total of 10,633 transcripts were induced by 

CXCL12 or TGFβ compared to controls.  
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These studies utilized human N1 cells which were derived from a stromal nodule of benign 

prostatic hyperplasia, exhibit a fibroblastic morphology, and demonstrate secretion and 

proliferation profiles consistent with aging primary prostate fibroblasts. Analysis of RNA-

Seq data revealed that a total of 10,633 transcripts were induced by CXCL12 and TGFβ 

compared to vehicle controls. Of these, 9378 (82.5%) transcripts were significantly 

differentially expressed by CXCL12 and TGFβ, 734 (6.5%) were differently expressed 

consequent to TGFβ treatment only, 1255 (11%) by CXCL12 treatment only as it can be seen 

in figure 5.5.  

 Recent transcriptomics analysis reveals an astounding number of non-coding RNAs 

(ncRNAs) present in human genome. These ncRNAs have lack the capacity to code for a 

protein. Therefore, to date, these ncRNAs are as a “dark matter” and “junks” of human 

genome. Yet, over the past decade, several studies have shown these ncRNAs have numeral 

biological functions. However, it is still in debate, whether, ncRNAs transcription reflects 

accurate biology or offshoot of a leaky transcriptional system. Now, it is a broad question 

how we can able to interpret the biological meaning of transcription that distinguishes a gene 

that is simply transcribed.  

 Depending on the type of ncRNAs, transcription can occur by incorporating three 

RNA polymerases namely RNA Pol I, RNA Pol II and RNA Pol III. ncRNAs can be 

classified into two categories such as small ncRNAs and long ncRNAs depending upon the 

size. Recently, long noncoding RNAs (lncRNAs) are emerging aspect of modern biology, 

especially their role in human diseases have come into our attention. Many lncRNAs with 

tumor-suppressor or oncogenic functions in cancer have been discovered. However, genome-

wide transcriptomics study mediated by high-throughput sequencing technique has 

revolutionized the genomics study and the pipeline identified lncRNAs that are significantly 

differentially expressed in stromal fibroblast cell line and have their role in tissue fibrosis.  
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 We used RNA-Seq dataset that was acquired from N1 cells treated with CXCL12 or 

TGFβ. The experimental data is composed 3 biological replicates for each of the 2 different 

conditions. The datasets were sequenced by using paired-end sequencing on an illumina 

Hiseq-2500.  

5.7. Prediction of fibrosis associated lncRNAs: 

 In this study, transcripts were reconstructed by using the genome guided methods. 

Current transcriptomics study falls into two categories based on the availability of genome: 

genome-guided and genome independent de-novo assembly (Garber et al., 2011). Also, we 

have determined the coding potential of lincRNAs was proposed in this study. First, TopHat 

was used to map the RNA-Seq reads in each sample to the human GRCh38 reference genome 

and 85.9% of the total RNA-Seq reads in each sample have been successfully mapped to the 

reference genome. Then, Cufflinks was subsequently used to assemble these aligned reads 

into transcripts based on the known gene annotation (Trapnell 2004), and the assembled 

transcripts were annotated and grouped into different categories using the Cuffcompare 

program from the Cufflinks package.  

 The fundamental aim of differential expression analysis is to identify genes that 

change in abundance between different experimental conditions. In this study, we used 

Cuffdiff (a module in Cufflinks package), to detect significantly differentially expressed 

lncRNAs between the CXCL12-vs-TGFβ induced stromal fibroblast tissues (Trapnell 2012), 

where the false discovery rate (FDR) was set to be 0.05.  

 High-throughput sequencing followed by bioinformatics analysis is a main stream of 

detecting the lncRNA. They have recently gained an attention due to their widespread 

involvement in disease. Based on the differentially expressed lncRNAs, we have performed 

cluster analysis to see the variation of expression between CXCL12 and TGFβ compared to 

control as it can be seen in figure 5.6.  
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From the analysis the expression levels of the significantly differentially expressed lncRNAs 

have altered. Based on that, we have identified lncRNAs namely MALAT1, NEAT1, TUG1, 

PTENP1, Kcnq1ot1, DNM3OS, Scarb2, SRSF9, SNHG16, FADS1, WRAP53, HEIH, HEIH, 

HOTAIRM1, SNHG11, DMPK, PVT1, MAP3K14, SNHG3, SRA1, GAS5, TERC that were 

upregulated in our analysis. Of these differentially expressed lncRNAs, we have observed 7 

lncRNAs namely MALAT1, NEAT1, TUG1, PTENP1, Kcnq1ot1, DNM3OS and Scarb2 are 

upregulated in both CXCL12 and TGFβ induced N1 cell line. MALAT1 involved promoting 

tumor growth and metastasis and regulate alternative splicing and cell cycle regulation that 

may associated with Prostate cancer (Cheetham 2013). MALAT1 increased HCC cell 

migration; tumor metastasis and recurrence through Wnt/TCF/β-catenin and Hippo/yes-

associated protein (YAP) signaling pathways (Nordin et al 2014; Wang et al. 2014). NEAT1 
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has proven to be a transcriptional regulator for numerous genes; few of them are involved in 

liver and prostate cancer progression and promoted cell proliferation and invasion 

(Chakravarty 2014). TUG1 has also been suggested to be significantly associated with 

hepatocellular carcinoma and promoted cell growth and apoptosis (Mehra and Chauhan 

2017). Finally, PTENP1 is a highly homologous processed pseudogene of the tumor 

suppressor gene PTEN that itself exerts a tumor suppressive function by acting as a decoy for 

PTEN targeting miRNAs (Poliseno 2010). Chen et al, reported the main function of PTENP1 

is to repress tumorigenic properties of HCC. The role of lncRNA potassium voltage‑gated 

channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) is 

remain elusive in the context of myofibroblast phenoconversion. It is transcribed from intron 

10 of the maternally expressed Kncq1 (KvLQT1) gene from a CpG island that is the 

imprinting control region (IC2) (Smilinich 1999). It has been reported that lncKCNQ1OT1 

has been associated with diverse array of functions. Of these, one of the most important 

function is the involvement of cell proliferation. Because KCNQ1OT1 promotes cell 

proliferation through the upregulation of SMAD4 which is upregulated in both CXCL12 and 

TGFβ treated cell line. Previously, it was reported that TGFβ promotes the myofibroblast 

phenoconversion through SMAD dependent pathway. Furthermore, the results indicated that 

an increase level of KCNQ1OT1 may correspondingly regulate SMAD4 expression levels. 

So, we may suspect the lncRNA KCNQ1OT1 may promote fibroblast to myofibroblast 

phenoconversion through SMAD dependent pathway. DNM3OS, a gene that is transcribed 

into a non-coding RNA (ncRNA), contains three micro RNAs (miRNAs), miR-199a, miR-

199a*, and miR-214, whose functions remain unknown. It has been reported the long non-

coding RNA DNM3OS as a critical downstream effector of TGF-β-induced myofibroblast 

activation via SMAD dependent pathway. However, in the context of stromal fibroblast cell 

line, it remains unknown their function and the mechanism through which they promote 

myofibroblast phenoconversion. Hence, it may provide a novel paradigm for the treatment of 
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fibrosis. Finally, the function of lncRNA Scarb2 in cell proliferation is still elusive and need 

to be further investigated. The differentially expressed lncRNAs have been documented in 

the table 5.5.   

Table 5.5: 

Gene Name 
Location 

CXCL12 treated-vs control 
TGFβ treated-vs control 

Fold change Q-Value Fold change Q-Value 

MALAT1 11q13.1 1.995986551 0.000074448 2.229654234 0.000081672 

NEAT1 11q13.1 1.568616847 0.000074448 1.686939226 0.000081672 

TUG1 22q12.2 2.635305103 0.000074448 2.894210791 0.000081672 

PTENP1 9p13.3 1.390510848 0.0040057 1.922231374 0.000081672 

Kcnq1ot1 11p15.5 2.31493229 0.0000820 2.2448359 0.0000885787 

DNM3OS 1q24.3 1.92294833 0.0000820508 2.458008662 0.0000885787 

Scarb2 4q21.1 1.6579724 0.0000820 1.888684862 0.0000885787 

SRSF9 12q24.31 0.571988878 0.0000820508 0.596421843 0.0000885787 

SNHG16 17q25.1 0.780392598 0.0000820508 0.635598665 0.0000885787 

FADS1 11q12.2 0.828545597 0.0452502 0.637077592 0.00017404 

WRAP53 17p13.1 0.59680023 0.0000820508 0.464709164 0.0000885787 

HEIH 5q35.3 0.540972064 0.0000820508 0.629099011 0.0000885787 

HOTAIRM1 7p15.2 0.606565774 0.0000820508 0.67005666 0.000258076 

SNHG11 20q11.23 0.70463791 0.000315805 0.738212463 0.00183138 

DMPK 19q13.32 0.623637679 0.0000820508 0.78306013 0.0000885787 

PVT1 8q24.21 0.669973065 0.0000820508 0.532798897 0.0000885787 

MAP3K14 17q21.31 0.671974783214 0.00120927 1.076055134 0.0032499 

SNHG3 1p35.3 0.653230926 0.00120927 0.531131868 0.0327341 

SRA1 5q31.3 0.604459674 0.0000820508 0.610607832 0.0000885787 
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GAS5 1q25.1 0.73045991 0.0000820508 0.691657636 0.0000885787 

TERC 3q26.2 0.412029631 0.0000820508 0.563245583 0.0000885787 

In CXCL12 treated cell, COL1A1 and smooth muscle α-actin (αSMA) is upregulated but not 

TGFβ treatment. It’s an open area of research whether silencing of MALAT1 reduces the 

mRNA levels of smooth muscle α-actin (α-SMA) and collagen type I, α1. However, to the 

best of our knowledge, there have been no published studies to demonstrate the specificity of 

these genes in fibroblast tissue. Thus, the results of this study can open a new theoretic 

insight into the identification of fibrosis specific genes.  

5.8. Prediction of fibrosis associated miRNAs: 

Identification of lncRNA by using the Tailor pipeline, our next question is whether any other 

short noncoding RNA that may differentially expressed to promote myofibroblast 

phenoconversion. Specially, microRNAs (miRNAs), play a crucial role in tumorigenesis and 

attenuates TGF-β signaling to stimulate angiogenesis and tumor growth (Bartel 2009; Suzuki 

and Miyazono 2011). They also play a significant role in tumor suppression in cancers 

(Hwang and Mendell 2006). Thus, we may hypothesize that miRNAs might be the important 

regulators to proliferate cancer cell and to promote myofibroblast phenoconversion. 

By RNA-Seq, we found 9 miRNAs namely miR100HG, miR143HG, miR17HG, 

miR210HG, miR22HG, miR4435-2HG, miR663A, miR663AHG and miR-let7BHG that had 

significantly differentially expressed based on q-value < 0.05 and considering they may have 

a role in promoting myofibroblast phenoconversion. Our bioinformatics analysis revealed 

differentially expressed miRNAs, we have performed cluster analysis to see the variation of 

expression between CXCL12 and TGFβ compared to control as it can be seen in figure 5.6. 

From the hierarchical analysis it can be revealed miRNAs expression have been altered. Of 

note, the two most upregulated miRNAs are miR100HG and miR22HG (Fig. 5.7) that may 

interest in this analysis and assuming their possible role is to promote myofibroblast 
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phenoconversion. Though it’s suspected but not validated yet their positive role in 

myofibroblast phenoconversion. The detailed list of miRNAs has been documented in the 

table 5.6. MIR100HG is a polycistronic miRNA host gene, which encodes miR-100, let-7a-2, 

and miR-125b-1 within its third intron, involved in cell proliferation and differentiation 

(Emmrich et al., 2014). Previous reports showed that miRNAs played an essential role in 

fibrosis, while the mechanism was not clear and needed  

 

more elucidation. The detailed information of upregulated miRNAs is documented in table 

5.6. Furthermore, over-expression of miR-100HG and miR-22HG in this stromal fibroblast 

cell line upon inducing the TGFβ highlighting a miRNA-mediated regulatory network 

potentially important for cellular proliferation.  
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Table 5.6: 

Gene Name 

Control 

(FPKM 

value) 

CXCL12 

treated –vs 

control 

(FPKM 

value) 

TGFβ 

treated -vs 

control 

(FPKM 

value) 

Fold Change Q-Value 

MIR100HG 5.97311 14.3705 17.3948 2.66289118 0.00007806 

MIR143HG 1.74695 0.776572 1.13852 0.549678074 0.01771129 

MIR17HG 3.634215 2.72922 2.48242 0.716698003 0.00099742 

MIR210HG 5.14924 2.57128 4.27341 0.667055105 0.00813042 

MIR22HG 9.454085 11.4505 14.5692 1.378657307 0.00306516 

MIR4435-2HG 130.665 96.4805 86.2446 0.698804625 0.00007806 

MIR663A 35614.05 11488.3 16110.3 0.388444969 0.00007806 

MIR663AHG 88.0577 33.4411 55.4406 0.506454721 0.00007806 

MIRLET7BHG 3.408655 2.1428 2.26701 0.647233958 0.00007806 

However, Recent data suggested miR22HG upregulated and located in 17p13.3, a 

chromosomal region that is frequently deleted, hypermethylated in hepatocellular carcinoma 

[Zhang et al., 2018].  Previously, it was reported that miR22HG expressed significantly lower 

in HCC and an associated with the prognosis of patients with HCC. In the contrary, in our 

work we have noticed a significant increase in the expression of miR22HG and presumably it 

may promote myofibroblast phenoconversion. 

5.8. Revisit of aminoacyl tRNA synthetase 

Genes of ARS being housekeeping, for long their connection to diseases remained 

unsuspected. Their expressions vary dynamically from cell line to cell line and under stress 

conditions. Besides their major canonical role in translation, they are involved in pathways of 

cell signaling, cell survival, metabolisms of amino acids, stress response programs, 

regulations of enzyme synthesis and apoptosis. Many consider them to be hotspots of the 

regulation system (Ibba, M. & Söll, D. 2001).  
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In human there are 37 ARS genes, distinguished into two distinct sets based on their 

locations, either in cytoplasm (designated with single letter amino acid code followed by RS) 

or in mitochondria (has a ‘2’ suffix). There are 17 cytoplasmic ARS (including the 

bifunctional glutamyl-prolyl-tRNA synthetase, EPRS, in charge for aminoacylation of 

tRNAGlu and tRNAPro), 18 mitochondrial, and 2 dual-localized, GARS and KARS, present 

in cytoplasm as well as in mitochondria (Yao, P. & Fox, P. L. 2013). 

Mammalian ARS interacts with multifunctional proteins (AIMPs) by catalyzing the ligation 

of amino acids to their cognate tRNAs. Along with catalytic activity domains, ARS has other 

motifs to interact with diverse regulatory factors. These structural convolutions are linked to 

functional flexibility, notably to oncogenic pathways of apoptosis, angiogenesis, cell growth, 

cell proliferation, signal transduction and many more (Park, S. G. et al.,2008). The deviations 

of ARS/ARS2 gene expressions presumably meet the differential protein needs of cancer 

cells, driving the malignancy. 

To observe the common transcription profile of the ARS/ARS2 genes, we performed a large-

scale RNA-seq analysis on all the considered datasets. RNA-Seq analysis of stromal 

fibroblast cell line, using 37 ARS/ARS2 gene expression signatures clearly pointed to the 

differential expression of ARS/ARS2 genes. Following different quality control and 

normalization procedures, differentially expressed genes (DEGs) were identified initially 

using a fold change cutoff of >2. The differential expressions of ARS/ARS2 in leukemia 

were visualized from the clusterogram, Fig. 5.8.  

Observation of large-scale alteration of ARS/ARS2 gene-expressions indicated that enhanced 

statistical analysis needed to be applied to identify more robust and reliable signatures. We 

integrated different statistical approaches to achieve superior result. P values of genes were 

calculated across samples to identify gene expression signatures that differentiated cancer 

tissues from normal tissues. Further, we computed FDR (False Discover Rate), to sharpen the 

significance of our result. Our RNA-Seq analysis, based on q-value (FDR test), showed that 
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IARS, IARS2, EPRS, LARS, NARS, TARS, WARS2, in stromal fibroblast cell line, were 

upregulated. To verify these anomalous expressions, we have seen that two AARS/AARS2 

namely NARS and WARS2 are upregulated in both the CXCL12 and TGFβ induced 

fibroblast cell line. 

As we observed varied rates of differentiation of ARS/ARS2 genes, it was assumed they took 

part in biological processes and molecular functions other than just in translation. Hence, we 

performed gene ontology (GO) analysis to determine the distribution of ARS/ARS2 genes in 

cell, the biological processes they took part in and the molecular functions they performed. 

From GO database we figured the precise scattering of ARS/ARS2 in and around a cell. 

Interestingly, they were not only restricted to cytosol and mitochondria but also dispersed in 

their surroundings. Remarkably, NARS, have the potential to promote tumor metastasis and 
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growth and WARS2 was involved in angiogenesis followed by migration and proliferation. 

Though what that implies functionally, still needs to be interpreted.  

5.9. Gene Ontology Analysis 

After performing the differential gene expression analysis, our next aim is to perform the 

gene ontology analysis to see any significantly upregulated ontology that was associated with 

the fibroblast to myofibroblast phenoconversion. Based on that in our developed tool, we 

used some condition in the gene ontology step to get the over represented GO-terms. In 

overrepresented GO terms, if the condition becomes TRUE, the hypergeometric test 

performed by using the conditional algorithm to estimate for each biological term whether 

they are statistically overrepresented at the specified p-value cutoff where it finds all child 

terms are significant. Calculation of log odds ratio (LR) revealed GO biological process 

(table 5.7) was profoundly weighted towards DNA synthesis in the TGFβ-mediated treatment 

whereas this was less evident in the CXCL12-mediated signature, where protein synthesis, 

protein metabolism, protein modification and ER to Golgi vesicle-mediated transport are 

more prominent.  

Table – 5.7 Summary of the BP ontology terms and respective p-value associated with the set 

of differentially expressed genes from CXCL12-over-control analysis. 

GOBPID Odds Ratio Term -log10(p-value) 

GO:0000183 24.82936394 chromatin silencing at rDNA 7.274905479 

GO:1990542 19.06785988 mitochondrial transmembrane transport 5.411168274 

GO:0007080 18.45824575 mitotic metaphase plate congression 5.217527376 

GO:0051204 16.14479465 
protein insertion into mitochondrial 

membrane 
4.480172006 

GO:0032508 15.8948578 DNA duplex unwinding 8.517126416 

GO:1903747 14.45812097 
regulation of establishment of protein 

localization to mitochondrion 
3.943095149 

GO:1900740 14.41086604 

positive regulation of protein insertion 

into mitochondrial membrane involved 

in apoptotic signaling pathway 

3.931814138 

GO:1901522 14.41086604 

positive regulation of transcription from 

RNA polymerase II promoter involved 

in cellular response to chemical stimulus 

3.931814138 
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GO:0051436 13.31509217 

negative regulation of ubiquitin-protein 

ligase activity involved in mitotic cell 

cycle 

6.896196279 

GO:0008625 13.29756425 
extrinsic apoptotic signaling pathway via 

death domain receptors 
3.580044252 

GO:0060444 13.25546539 
branching involved in mammary gland 

duct morphogenesis 
3.568636236 

GO:0010972 12.67793051 
negative regulation of G2/M transition 

of mitotic cell cycle 
3.388276692 

GO:0006418 12.41262554 
tRNA aminoacylation for protein 

translation 
6.341988603 

GO:0006302 11.90967462 double-strand break repair 6.022733788 

GO:0006120 11.83303051 
mitochondrial electron transport, NADH 

to ubiquinone 
5.982966661 

GO:0006595 11.52319145 polyamine metabolic process 3.029653124 

GO:0007004 11.52319145 telomere maintenance via telomerase 3.029653124 

GO:0031571 10.41741799 mitotic G1 DNA damage checkpoint 9.838631998 

GO:0019068 10.38302752 virion assembly 2.677987561 

GO:0043153 10.36889313 
entrainment of circadian clock by 

photoperiod 
2.674484337 

GO:0006415 10.02806271 translational termination 11.56703071 

GO:0033044 9.897565234 regulation of chromosome organization 2.524910197 

GO:0000097 9.791909169 sulfur amino acid biosynthetic process 2.498393078 

GO:0006895 9.791909169 Golgi to endosome transport 2.498393078 

GO:0006995 9.791909169 cellular response to nitrogen starvation 2.498393078 

GO:0032981 9.791909169 
mitochondrial respiratory chain complex 

I assembly 
2.498393078 

GO:0043984 9.791909169 histone H4-K16 acetylation 2.498393078 

GO:0072401 9.689339469 
signal transduction involved in DNA 

integrity checkpoint 
8.966576245 

GO:0006399 9.492567568 tRNA metabolic process 6.649751982 

GO:0072413 9.39830346 
signal transduction involved in mitotic 

cell cycle checkpoint 
8.617982957 

GO:1902402 9.39830346 
signal transduction involved in mitotic 

DNA damage checkpoint 
8.617982957 

GO:2001020 9.289625916 
regulation of response to DNA damage 

stimulus 
4.431798276 

GO:0006361 9.227594114 
transcription initiation from RNA 

polymerase I promoter 
4.401209493 

GO:0009226 9.215035299 nucleotide-sugar biosynthetic process 2.32339783 

GO:0046755 9.215035299 viral budding 2.32339783 

GO:0050687 9.215035299 
negative regulation of defense response 

to virus 
2.32339783 

GO:1902590 9.215035299 multi-organism organelle organization 2.32339783 

GO:1902400 9.107379013 
intracellular signal transduction involved 

in G1 DNA damage checkpoint 
8.272458743 

GO:0006900 8.959219858 membrane budding 4.238072162 

GO:0043038 8.660193246 amino acid activation 5.91721463 
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GO:1900101 8.647345302 
regulation of endoplasmic reticulum 

unfolded protein response 
2.151995729 

GO:0007096 8.638271487 regulation of exit from mitosis 2.149721447 

GO:0008535 8.638271487 respiratory chain complex IV assembly 2.149721447 

GO:0010664 8.638271487 
negative regulation of striated muscle 

cell apoptotic process 
2.149721447 

GO:0042772 8.638271487 
DNA damage response, signal 

transduction resulting in transcription 
2.149721447 

GO:0048194 8.638271487 Golgi vesicle budding 2.149721447 

GO:0051571 8.638271487 
positive regulation of histone H3-K4 

methylation 
2.149721447 

GO:0051788 8.638271487 response to misfolded protein 2.149721447 

GO:0060055 8.638271487 angiogenesis involved in wound healing 2.149721447 

GO:0006614 8.369598373 
SRP-dependent cotranslational protein 

targeting to membrane 
12.55284197 

GO:0006363 8.360110803 
termination of RNA polymerase I 

transcription 
3.886056648 

GO:0000184 8.128249567 
nuclear-transcribed mRNA catabolic 

process, nonsense-mediated decay 
13.69250396 

GO:0002042 8.071060172 
cell migration involved in sprouting 

angiogenesis 
3.714442691 

GO:0072599 7.981565268 
establishment of protein localization to 

endoplasmic reticulum 
13.35457773 

GO:0006413 7.963422108 translational initiation 11.69680394 

GO:0000723 7.918843642 telomere maintenance 5.258060922 

GO:0007569 7.807743979 cell aging 3.557520231 

GO:0034644 7.799597855 cellular response to UV 6.73754891 

GO:0048199 7.78206475 
vesicle targeting, to, from or within 

Golgi 
3.54515514 

GO:2000785 7.78206475 regulation of autophagosome assembly 3.54515514 

GO:0051437 7.750186943 

positive regulation of ubiquitin-protein 

ligase activity involved in regulation of 

mitotic cell cycle transition 

8.230622674 

GO:0006414 7.678671896 translational elongation 11.13489603 

GO:0019083 7.586166812 viral transcription 12.42945706 

GO:0070124 7.525527831 mitochondrial translational initiation 9.381951903 

GO:0070125 7.525527831 mitochondrial translational elongation 9.381951903 

GO:0050434 7.509285851 positive regulation of viral transcription 6.402304814 

GO:0006298 7.493124523 mismatch repair 3.375717904 

GO:0033014 7.493124523 tetrapyrrole biosynthetic process 3.375717904 

GO:0072583 7.493124523 clathrin-mediated endocytosis 3.375717904 

GO:1901028 7.308158062 

regulation of mitochondrial outer 

membrane permeabilization involved in 

apoptotic signaling pathway 

4.732828272 

GO:2001022 7.217753519 
positive regulation of response to DNA 

damage stimulus 
3.214670165 

GO:0000722 7.204239473 telomere maintenance via recombination 3.208309351 

GO:0046685 7.204239473 response to arsenic-containing substance 3.208309351 
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GO:0061615 7.204239473 
glycolytic process through fructose-6-

phosphate 
3.208309351 

GO:0061621 7.204239473 canonical glycolysis 3.208309351 

GO:1904292 7.204239473 regulation of ERAD pathway 3.208309351 

GO:0051188 6.943963027 cofactor biosynthetic process 3.055517328 

On the other hand, cellular component exhibited respiratory chain complexes, protein 

synthesis and degradation, and cell division were predominant in the TGFβ-mediated 

signature, whereas cellular signaling and Cul4-RING E3 ubiquitin ligase complex, clathrin 

vesicle coat, ECM component binding were prevalent in the CXCL12-mediated signature 

(table 5.8).  

Table - 5.8 Summaries of the CC ontology terms and respective p-value associated with the 

set of differentially expressed genes from CXCL12-over-control analysis. 

GOCCID Odds Ratio Term -log10(p-value) 

GO:0080008 14.94099 Cul4-RING E3 ubiquitin ligase complex 4.031517 

GO:0055029 13.77231 
nuclear DNA-directed RNA polymerase 

complex 
3.664996 

GO:0030125 13.69341 clathrin vesicle coat 3.645314 

GO:0005680 13.06978 anaphase-promoting complex 3.453179 

GO:0000502 12.81038 proteasome complex 6.473661 

GO:0030904 12.44627 retromer complex 3.26184 

GO:0005838 12.44627 proteasome regulatory particle 3.26184 

GO:0022625 11.23328 cytosolic large ribosomal subunit 8.095284 

GO:0015934 10.01159 large ribosomal subunit 4.785156 

GO:0034719 9.953378 SMN-Sm protein complex 2.506006 

GO:0005685 9.953378 U1 snRNP 2.506006 

GO:0070469 9.368798 respiratory chain 2.329249 

GO:0032040 9.341876 small-subunit processome 4.393619 

GO:0005762 9.341876 mitochondrial large ribosomal subunit 4.393619 

GO:0034045 9.330439 pre-autophagosomal structure membrane 2.319935 

GO:0030117 8.749517 membrane coat 5.88941 

GO:0030014 8.707614 CCR4-NOT complex 2.135281 

GO:0005849 8.707614 mRNA cleavage factor complex 2.135281 

GO:0042645 8.101777 mitochondrial nucleoid 5.329754 

GO:0030140 8.09333 trans-Golgi network transport vesicle 3.664145 

GO:0022627 7.684893 cytosolic small ribosomal subunit 4.970616 

GO:0005876 7.483634 spindle microtubule 6.261219 

GO:0005689 7.469399 U12-type spliceosomal complex 3.305304 

GO:0030686 6.845697 90S preribosome 2.951187 

GO:0000313 6.659933 organellar ribosome 7.767004 

GO:0000784 6.45774 nuclear chromosome, telomeric region 7.431798 
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GO:0005801 5.919117 cis-Golgi network 4.524329 

GO:1902555 5.910571 endoribonuclease complex 2.430589 

GO:0030137 5.910571 COPI-coated vesicle 2.430589 

GO:1990391 5.602764 DNA repair complex 3.234427 

GO:0036452 5.598976 ESCRT complex 2.260372 

GO:0005839 5.598976 proteasome core complex 2.260372 

GO:0000159 5.598976 protein phosphatase type 2A complex 2.260372 

GO:0016604 5.066767 nuclear body 3.602025 

GO:0030529 5.02695 ribonucleoprotein complex 16.29158 

GO:0098803 4.99055 respiratory chain complex 5.847712 

GO:0032154 4.9847 cleavage furrow 4.308035 

GO:0071339 4.978867 MLL1 complex 2.73702 

GO:0098687 4.949023 chromosomal region 9.453457 

GO:0016592 4.825659 mediator complex 3.366154 

GO:0044452 4.811433 nucleolar part 5.527244 

GO:0015935 4.78507 small ribosomal subunit 2.583606 

GO:0043601 4.770978 nuclear replisome 2.574413 

GO:0031519 4.734597 PcG protein complex 3.985908 

GO:1990234 4.649523 transferase complex 10.45469 

GO:0005763 4.563127 mitochondrial small ribosomal subunit 2.413596 

GO:0030880 4.549874 RNA polymerase complex 10.1707 

GO:0010494 4.5135 cytoplasmic stress granule 3.046508 

GO:0070603 4.507754 SWI/SNF superfamily-type complex 6.262013 

GO:0005840 4.37867 Ribosome 11.86646 

GO:0030660 4.36177 Golgi-associated vesicle membrane 4.127844 

GO:0097546 4.355314 ciliary base 2.254707 

GO:0032993 4.309986 protein-DNA complex 5.228413 

GO:0035097 4.29852 histone methyltransferase complex 5.79588 

GO:0005925 4.216674 focal adhesion 28.15677 

GO:0005657 4.209384 replication fork 5.037631 

GO:0030055 4.143092 cell-substrate junction 28.29073 

GO:0032153 4.095622 cell division site 4.277366 

GO:0005654 4.072825 Nucleoplasm 183.6421 

GO:0000118 3.974436 histone deacetylase complex 4.583359 

GO:0005730 3.841616 Nucleolus 49.5867 

GO:0000151 3.797252 ubiquitin ligase complex 15.45469 

GO:0016591 3.793665 
DNA-directed RNA polymerase II, 

holoenzyme 
6.9914 

GO:0016607 3.744944 nuclear speck 12.49349 

GO:0012507 3.736606 ER to Golgi transport vesicle membrane 3.216913 

GO:0016363 3.703721 nuclear matrix 6.69897 

GO:0005901 3.687077 Caveola 5.35164 

GO:0070013 3.674888 intracellular organelle lumen 207.567 

GO:0005643 3.617216 nuclear pore 4.754487 

GO:0031974 3.598013 membrane-enclosed lumen 222.266 
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GO:0031463 3.577708 Cul3-RING ubiquitin ligase complex 2.127909 

GO:0005819 3.49422 Spindle 6.39794 

GO:0097525 3.490056 spliceosomal snRNP complex 2.461535 

GO:0044424 3.486763 intracellular part 2.911095 

GO:0016605 3.479006 PML body 5.982967 

GO:0030496 3.409893 Midbody 7.954677 

GO:0000922 3.390406 spindle pole 7.510042 

GO:0072686 3.348538 mitotic spindle 3.418038 

GO:0005813 3.274238 Centrosome 20.87615 

GO:0098798 3.26026 mitochondrial protein complex 2.195246 

GO:0000228 3.186168 nuclear chromosome 25.06198 

GO:0005778 3.184547 peroxisomal membrane 3.456195 

GO:0005912 3.175634 adherens junction 24.30892 

GO:1902554 3.173936 serine/threonine protein kinase complex 4.08302 

GO:0005741 3.130656 mitochondrial outer membrane 8.247184 

GO:0000788 3.112128 nuclear nucleosome 2.360233 

GO:0008305 3.111162 integrin complex 2.032217 

GO:0005759 3.088013 mitochondrial matrix 16.54363 

GO:0000785 3.046311 Chromatin 4.928118 

GO:0000777 3.043233 condensed chromosome kinetochore 5.228413 

GO:0032592 3.035933 
integral component of mitochondrial 

membrane 
2.867686 

GO:0031902 2.948891 late endosome membrane 5.44855 

GO:0005694 2.932461 Chromosome 12.46344 

GO:0008180 2.904121 COP9 signalosome 2.089693 

GO:0005782 2.904121 peroxisomal matrix 2.089693 

GO:0005740 2.899519 mitochondrial envelope 30.49214 

GO:0000786 2.862159 Nucleosome 3.610763 

GO:0031201 2.8371 SNARE complex 2.789035 

GO:0005776 2.829458 Autophagosome 3.780958 

GO:0030027 2.818115 Lamellipodium 7.818156 

GO:0005905 2.804605 coated pit 3.470975 

GO:0005881 2.803116 cytoplasmic microtubule 2.97492 

GO:0031965 2.80047 nuclear membrane 10.00305 

GO:0005623 2.777139 Cell 97.72584 

GO:0019867 2.772263 outer membrane 8.223299 

GO:1903293 2.767649 phosphatase complex 2.660285 

GO:0005637 2.767649 nuclear inner membrane 2.660285 

GO:0005765 2.738271 lysosomal membrane 11.24642 

GO:0000792 2.733042 Heterochromatin 3.527382 

GO:0045121 2.70816 membrane raft 11.17783 

GO:0044438 2.660447 microbody part 3.768717 

GO:0001726 2.625921 Ruffle 3.664777 
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Molecular function analysis revealed that CXCL12 and TGFβ related genes encoded proteins 

involved in DNA/RNA synthesis and regulation; protein synthesis and degradation and 

ubiquitination (table 5.9). 

Table – 5.9 Summary of the MF ontology terms and respective p-value associated with the 

set of differentially expressed genes from CXCL12-over-control analysis. 

GOMFID Odds Ratio Term -log10(p-value) 

GO:0034593 10.951 
phosphatidylinositol bisphosphate 

phosphatase activity 
3 

GO:0070064 10.373 proline-rich region binding 2.69897 

GO:0008175 9.796 tRNA methyltransferase activity 2.522879 

GO:0017025 9.796 TBP-class protein binding 2.522879 

GO:0019787 8.769 ubiquitin-like protein transferase activity 2.154902 

GO:0008353 8.642 
RNA polymerase II carboxy-terminal 

domain kinase activity 
2.154902 

GO:0010485 8.642 H4 histone acetyltransferase activity 2.154902 

GO:0004709 7.207 MAP kinase kinase kinase activity 3 

GO:0004298 5.474 threonine-type endopeptidase activity 2.221849 

GO:0004708 5.474 MAP kinase kinase activity 2.221849 

GO:0019200 5.186 carbohydrate kinase activity 2.09691 

GO:0016538 4.804 
cyclin-dependent protein serine/threonine 

kinase regulator activity 
2.69897 

GO:0051721 4.804 protein phosphatase 2A binding 2.69897 

GO:0004712 4.618 
protein serine/threonine/tyrosine kinase 

activity 
2.522879 

GO:0008200 4.614 ion channel inhibitor activity 3 

GO:0031369 4.419 translation initiation factor binding 2.30103 

GO:0051539 4.038 4 iron, 4 sulfur cluster binding 3 

GO:0017048 3.93 Rho GTPase binding 3 

GO:0043022 3.806 ribosome binding 3 

GO:0016896 3.747 
exoribonuclease activity, producing 5'-

phosphomonoesters 
2.30103 

GO:0031492 3.747 nucleosomal DNA binding 2.30103 

GO:0019213 3.691 deacetylase activity 2.69897 

GO:0008536 3.458 Ran GTPase binding 2.045757 

GO:0061631 3.458 ubiquitin conjugating enzyme activity 2.045757 

GO:0003755 3.364 
peptidyl-prolyl cis-trans isomerase 

activity 
2.69897 

GO:0016627 3.234 
oxidoreductase activity, acting on the 

CH-CH group of donors 
2.221849 

GO:0050681 3.172 androgen receptor binding 2.522879 

GO:0019003 3.101 GDP binding 3 

GO:0030374 3.029 
ligand-dependent nuclear receptor 

transcription coactivator activity 
3 
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GO:0019900 2.785 kinase binding 3 

GO:0008094 2.748 DNA-dependent ATPase activity 2.39794 

GO:0048365 2.718 Rac GTPase binding 2.154902 

GO:0005080 2.628 protein kinase C binding 2.39794 

GO:0003727 2.623 single-stranded RNA binding 3 

GO:0004860 2.623 protein kinase inhibitor activity 3 

GO:0004722 2.356 
protein serine/threonine phosphatase 

activity 
2.522879 

GO:0019903 2.349 protein phosphatase binding 3 

GO:0001104 2.278 
RNA polymerase II transcription cofactor 

activity 
3 

GO:0061733 2.211 
peptide-lysine-N-acetyltransferase 

activity 
2.154902 

GO:0043566 2.2 structure-specific DNA binding 3 

GO:0017137 2.181 Rab GTPase binding 3 

GO:0003729 2.068 mRNA binding 3 

GO:0002020 2.009 protease binding 3 

5.9. Pathway enrichment analysis 

In modern molecular biology, identification of associations between an input set of gene and 

annotated gene sets (e.g., pathways) is an important problem. Tailor pipeline identified 39 

differentially expressed pathways and Ubiquitin-mediated proteolysis is the most 

significantly differentially expressed pathway (Fig. 5.9). ECM deposition is the common 

feature of fibrotic disease which interrupts the normal structure of the affected organs and 

leading to their dysfunction and failure. Degradation of protein via the ubiquitin-proteasome 

system is the significantly differentially expressed pathway that controls many critical 

cellular functions including cell-cycle progression, cell growth, and differentiation (Chen and 

Dou 2010). Anomalous alterations of expression of genes associated with proteasome 

pathway dysregulated cellular homeostasis and development of cancers, fibrosis, and 

neurodegenerative disorders, etc. Although the ubiquitin-mediated proteolysis mainly 

investigated in the field of cancers, recent transcriptomics of stromal fibroblast cell line data 

analysis revealed ubiquitin-mediated proteolysis may provide a rational basis for the 

discovery of novel therapy for fibrotic diseases and the consisted genes of this pathway are 

the part of multi-subunit RING-finger type 3 Cullin-RBX E3. Cullin proteins are molecular 
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scaffolds and essentially responsible for the assembly of Cullin-RING ubiquitin ligases 

(CRLs) that leads to ubiquitin-mediated proteolysis by facilitating the covalent attachment of 

ubiquitin group to target proteins. SEC31 is the target substrate of the Cullin-RING ubiquitin 

ligase complex. 

SEC31 monoubiquitination by CUL3-KLHL12 is necessary for the oversize COPII vesicle 

formation (Patalano 2018) and genes encoding the CUL3, KLHL12, and SEC23 proteins 

were differentially expressed by CXCL12- compared to TGFβ- treated cells. Other genes 

such as SCAP that preferentially up-regulated by the CXCL12/CXCR4 axis and associated 

with COPII vesicle-mediated ER-to-Golgi protein secretion (Patalano 2018); finally, it may 

be concluded these group of genes have a prospective role of CXCL12/CXCR4-mediated 

initiation of COPII vesicle formation and fibroblast to myofibroblast phenoconversion. 
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CHAPTER 6 

DISCUSSION 

There were many contributors that are involved in the metabolic disease and NAFLD disease 

progression. These factors may need to understand that can aid to diagnosis of these diseases. 

Previous studies suggested SAMP6 mice are associated with type 2 diabetes mellitus 

(Gharaee-Kermani 2013). In our current work, we have mainly elucidated the transcriptional 

regulation of genes that are associated in NAFLD. Now to initiate the NAFLD and the other 

associated diseases, inflammation play a pivotal role. In HFD-fed mice compared to LFD-fed 

mice analysis, several genes were overexpressed, and it’s expected to find some significantly 

differentially expressed genes that were associated with metabolic syndrome-induced 

inflammation of liver. In addition to this, we have also observed several downregulated genes 

that might expect to play liver organ dysfunction. On the other hand, cell signaling pathway 

identification is also a main target in our analysis to know how HFD fed mice associated with 

liver disease. In our analysis, HFD-fed mice, the significant “PPAR-Gamma signaling 

pathway” was the top up-regulated pathway. Accumulation of excess white adipose tissue 

(WAT) can lead to develop inflammation, metabolic syndrome, type 2 diabetes, and NAFLD 

(Jung and Choi 2014). In SAMP6 mice accumulation of excess WAT or fat has been 

observed compare to the low-fat diet mice. This can be an explained due to the direct effect 

of excess WAT that may contribute the inflammation aspect. Previously it has been reported 

that under the same dietary conditions SAMP6 strain mice are able to progress several 

disease concerns (Brenner 2000). As previously reported result from our research group, 

these SAMP6 mice espoused type II diabetes which is a risk factor to emerge NAFLD. Taken 

together these data it may be concluded that SAMP6 mice model which has been used in this 

study, is able to instigate the metabolic syndrome disease which may develop to NAFLD. 

Therefore, we have showed, for the first-time alteration of immune-response, downregulation 

of metabolic processes that allowed us to study the unique transcriptional response to 
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NAFLD, which can aid to understand further knowledge in liver disease and cancer. In this 

analysis, we have failed to observe alteration of growth factors, heat shock proteins whereas 

elevation of collagen has been observed. This insinuates to the development of early stages of 

tumorigenesis and hepatocellular carcinoma which is a unique signature of NAFLD. 

Hepatocellular carcinoma and cirrhosis are strongly associated with NAFLD if it’s not treated 

(Cholankeril 2017). Though current studies revealed several biomarkers have been identified 

that were associated with Hepatocellular Carcinoma, we intended to observe any significantly 

differentially expressed genes that may act as a significant biomarker in HFD-fed mice to 

LFD-fed mice.  

Recent studies showed that deposition of collagen, extracellular matrix (ECM) are 

associated with fibrosis that can contribute to the etiology of LUTS. It is reported 

microenvironment of aging prostate tissue contained ample amount of inflammatory proteins 

particularly CXC-type chemokines (Rodriguez-Nieves 2013) whether these proteins can 

mediate fibroblast to myofibroblast phenoconversion is still under suspicion. It is well known 

that CXCL12 and TGFβ are inflammatory cytokines and achieved diverse cellular functions 

such cellular proliferation and differentiation (Huang 2009). TGFβ is well known pathogenic 

effector of fibrosis and it acts as a driving factor to promote fibroblast to myofibroblast 

phenoconversion, and ECM deposition (Rodriguez-Nieves 2013). However, in prostate 

stroma several C-X-C type chemokines such as CXCL1, CXCL2, CXCL3, CXCL8, and 

CXCL12 are altered and secreted and associated with benign hyperplasia (Gharaee-Kermani 

2012). Previously, it was reported that, MAP Kinase signaling pathway activated by both 

CXCl12 and TGFβ. Previous report suggested TGFβ promoted fibroblast to myofibroblast 

phenoconversion in a Smad-dependent manner whereas CXCL12/CXCR4 achieved this 

phenoconversion by transactivating EGFR and promoting downstream MAPK signaling 

(Rodríguez-Nieves 2016). As a result, activation of these signaling cascades promoted the 

activation of the COL1A1 and COL1A2 genes and finally involved in the production of 
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procollagen protein. Accumulation of the extra cellular matrix deposition is a characteristic 

feature of fibroblast to myofibroblast phenoconversion and hallmark of tissue fibrosis 

(Gharaee-Kermani 2012). It is important to understand the underlying mechanism how 

CXCL12 and TGFβ concurrently promote fibrosis through transactivating of collagen. 

Treated the stromal fibroblasts cells with both CXCL12 and the TGFβ, followed by perform 

the transcriptomics analysis reveal interesting result which may be a remarkable feature for 

the myofibroblast phenoconversion. The remarkable distinguishing feature is an increased 

expression of ubiquitination/polyubiquitination with activation of the CXCL12, compared to 

TGFβ. Previously report suggested CXCL12 specifically activates the transcriptional 

response in the human prostate and epithelial cells. This activated transcriptional signal 

promotes cellular proliferation of stromal prostate epithelial cells which concurrently 

activates genes encoding proteins that promotes cellular proliferation (Begley 2008). In this 

analysis we have observed several CUL proteins that were over-expressed and in human 

these proteins may play an important role to promote CXCL12/CXCR4-mediated cellular 

proliferation and myofibroblast phenoconversion. In ubiquitin mediate proteolysis we found 

Cul4A is upregulated upon the treatment with CXCL12. In addition to Cul4A, CUL1 is 

upregulated in this analysis. So, it is still an unexplored area of research whether these CUL 

proteins may initiate to promote CXCL12/ CXCR4-mediated cellular proliferation and 

myofibroblast phenoconversion. Another molecular mechanism found in this analysis is 

several miRNAs are regulated by both CXCL12 and TGFβ which, in turn, inhibit the 

translation of mRNAs. Consistent with our analysis, we are trying to find out whether both 

similar and dissimilar subsets of miRNAs are activated by TGFβ/TGFβR axis compared to 

the CXCL12/CXCR4 axis because microRNA plays a crucial role in controlling cell 

migration and invasion (Baranwal and Alahari 2010). Alteration of miRNAs expression is 

widely altered in cancer, suggesting that deregulations of miRNAs are deeply associated in 

the development of tumor and cancer progression (Liu 2011). We found miR100HG, 
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miR22HG; miR210HG, miR663A, and miR663AHG are upregulated in CXCL12/CXCR4 

axis compared to the TGFβ/TGFβR axis. Previous report suggested deregulation of miRNAs 

including miR-15, miR-16 have been associated with cancer progression (Liu 2011). So, 

further studies are required to decipher whether they promote fibroblast to myofibroblast 

phenoconversion. Recent studies from this analysis demonstrated significant amount of long 

non-coding RNAs (lncRNAs) which are upregulated in CXCL12/CXCR4 axis compared to 

TGFβ/TGFβR axis. LncRNAs are more than 200 nucleotides in length that have deficiency 

of protein-coding capacity (Spurlock 2016). LncRNAs regulated fibrosis by deposition of 

ECM that concomitantly stimulates the accumulation of collagen and glycosaminoglycans 

(Zhang 2018). LncRNAs are a functional and stable part of a genome and plays important 

biological roles such as cellular-, structural- processes that direct towards the complexity of 

an organism. Based on the stromal fibroblast cell line analysis, we are trying to find out 

whether any lncRNAs that may regulate fibroblast to myofibroblast phenoconversion. Our 

analysis demonstrated several lncRNAs including MALAT1, NEAT1, TUG1, PTENP1, 

Kcnq1ot1, DNM3OS and Scarb2 are upregulated in both TGFβ/TGFβR axis and 

CXCL12/CXCR4 axis. So, it’s still an unexplored area of research whether lncRNAs play a 

pivotal role in fibroblast to myofibroblast phenoconversion.  

Recently, research on miRNAs have been increasingly rapidly. Several studies have 

demonstrated that certain miRNAs are specifically correlated with certain cancer and the 

different expression level of miRNAs presumably function as an indicator for cancer 

metastasis and prognosis. The function of the lncRNA hostgenes MIR22HG and MIR100HG 

within this ncRNA ensemble remained elusive. Given the large-scale regulation of miRNAs 

in stromal fibroblast, it may possible these miRNAs are directly linked to myofibroblast 

phenoconversion. Notably, upregulation of miR100HG and miR22HG, may involve cell 

proliferation, migration, and invasion which holds true for the assumption, these miRNAs 

play an important role in fibroblast to myofibroblast phenoconversion. Thus, expression 
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patterns of miR22HG and miR100HG transcripts implicate an independent, yet unknown 

function in the context of myofibroblast phenoconversion. Therefore, loss-and gain function 

need to be performed to elucidate the role of these miRNAs in myofibroblast 

phenoconversion. 

Over the past decade, role of AARS/AARS2 have been overlooked due to their prime 

function as a protein translation. However, recent high throughput sequencing provided a 

platform to revisit their role. Due to their pleiotropic role in protein translational regulation, 

cell signaling and amino acid metabolism, dysregulation of ARS genes has been associated 

with tumorigenesis. In this report, we investigated ARS gene expression in human stromal 

fibroblast to decipher their role in myofibroblast phenoconversion. RNA-Seq analyses of 9 

datasets from stromal fibroblast cell line indicates anomalous expression of ARS in human 

fibroblast cell line. Aberrant expression of AARS genes shows upregulation of several AARS 

genes such as IARS, IARS2, EPRS, LARS, NARS, TARS, WARS2. The ARS/ARS2 genes 

arose early in evolution, and perchance, because of their presence from the beginning, these 

genes have been available for adaptation and recruitment to emerging cell signaling 

pathways, even those related to cancer. This functional flexibility allows ARS/ARS2 genes to 

play role in pathways other than protein synthesis. Clearly, the increase of ARS/ARS2 gene 

expression support increased protein synthesis in cancer cells and drives cell transformation. 

NARS is also involved in differentiation, presumably contributing to carcinogenesis. NARS, 

a class II ARS, identified as an up-regulated protein in this study. Our findings demonstrate 

that NARS is involved in cell proliferation, differentiation. Moreover, the current study 

demonstrated a novel role of NARS in promoting the migration ability of stromal fibroblast. 

On the other hand, WARS2 which is a mitochondrial aminoacyl tRNA synthetase gene 

involved in angiogenesis. Angiogenesis is an important factor playing a pivotal role in cancer 

cell metastasis and proliferation. Though these ARS/ARS2 genes are often considered as 

housekeeping genes recent evidence and our study clearly shows that their basal level of 
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expression to carry out normal physiological processes are often perturbed in disease 

condition. Our findings indicate that increase of the ARS/ARS2 genes must benefit fibroblast 

cells in some way favoring their survival and proliferation. How these genes promote 

myofibroblast phenoconversion are working in concert, if any, opens up a new arena of 

investigation. 
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CHAPTER 7 

CONCLUSION 

Emerging technological advances in genomics augmented an enormous amount of data at 

unprecedented high resolution (Khatri 2012). High-throughput sequencing of RNA allowed 

us to provide simultaneous measurement of RNAs sequence and expression at whole cellular 

level (Wang 2009). With the introduction of these new technologies, new bioinformatic 

approaches are required to analyze gigantic amount of data. In this thesis we have developed 

a pipeline for the analysis of RNA-Seq data and made contributions to the understanding of 

diet induced mouse model that are associated with the non-alcoholic fatty liver disease and 

the fibroblast to myofibroblast phenoconversion by using the human stromal fibroblast cell 

line.  

Widespread genome-wide transcriptome study reconciled by high throughput sequencing 

technique has revolutionized the study of genetics at unprecedented resolution. Recent 

research divulged that an enigmatic amount of regulatory coding and non-coding RNAs 

encoded in human transcriptome (Tripathi 2017). Previous report suggested many 

unmentionables technology has been developed and categorized these non-coding RNAs as 

dark matter” and “junks”. To debunk that idea, RNA-seq is an experimental technique that 

has been revolutionized and widely being used for studying non-coding RNAs recently due to 

its physiological and pathological significance.  

First, we have implemented a complete pipeline to analyze RNA-Seq data. This pipeline 

begins by performing a data quality assessment, next it aligns the cleaned reads to a reference 

genome, measures the data gene expression level, tests for differential expression and, finally, 

concatenates this data into GO terms to find out significant ontology terms that has been 

associated with the biological problems. The outcome of this pipeline is a table that contains 

the differentially active cellular process between the RNA-Seq samples being processed. This 

enables the user to draw patterns for cataloguing gene function from high-volume data. 
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Subsequently, we have included a step that can able to investigate if a certain biological 

pathway that is significantly differentially expressed on a given RNA-Seq dataset. In RNA-

Seq, the major problem in determining the conclusions is due to the low number of replicate 

samples. Lower number of biological replicates in RNA-Seq dataset provides a poor 

statistical significance. To overcome this problem, tailor pipeline incorporated cuffdiff step 

that perform a differential gene expression analysis. Gene ontology analysis is important to 

find the certain biological processes and molecular functions of the differentially expressed 

genes and it’s a common approach for the gene set enrichment analysis. The motivation 

behind the introduction of Gene Ontology (GO) has grown to be the largest resource of its 

type which infers functional relationship of the differential gene. In tailor pipeline we have 

added this gene ontology step that will provide the functionality of known and newly 

discovered genes. To detect an association between set of input gene and sets of an annotated 

gene is a prime interest in molecular biology. To overcome this problem, we have included a 

pathview step in the pipeline to identify the differentially regulated pathways. It maps and 

delivers user data on relevant pathway graphs based on the array of gene interest. Pathway 

analysis is useful for the validation of the conclusions extracted from user biological 

problems. It’s hopeful this complete package of pipeline can be useful not only for 

bioinformaticians but also for biologists in the future detect novel gene and their target 

pathway associated with any biological phenotype. 

To evaluate the developed tools, we have studied two biological problems such as a diet 

induced SAMP6 mouse RNA-Seq dataset and the stromal fibroblast cell line dataset to study 

the myofibroblast phenoconversion. In the diet induced SAMP6 mice system transcriptome 

was collected from population of cells infected with high fat diet and low-fat diet. On the 

other hand, transcriptomics analysis performed on stromal fibroblast cell line data set which 

is characterized by the induction of CXCL12 and TGFβ.  



75 
 

Regarding the analysis of these datasets with the developed pipeline, it was possible to 

extract biological meaningful conclusions. To initiate metabolic syndrome, fat, high blood 

pressure, and elevated glucose levels are the key factors to promote metabolic syndrome in 

diet induced SAMP6 mice model system which concurrently initiate to develop diabetes, 

heart disease and finally cancer. Understand the transcriptional landscape is an important 

factor that can able to diagnose of these diseases. Until date, several studies reported that 

development of metabolic syndrome has been shown to be very closely associated with lack 

of physical activity and consequently it provides a tendency to rise of obesity rates among 

adults. Often NAFLD highly associated with the development of metabolic syndrome that 

can lead to liver dysfunction, cirrhosis of liver, and hepatocellular carcinoma. Previous 

studies showed SAMP6 mice can develop type-2 diabetes, a key factor to reduce the quality 

of life and health of the mice. We are trying to investigate how NAFLD affect the 

transcriptional landscape in liver pathophysiology. Transcriptomics analysis of HFD-fed mice 

showed many genes were up-regulated when compared to LFD-fed mice and associated with 

inflammations. It insinuates us to find any immune-related genes in our dataset that might be 

correlated between metabolic syndrome and inflammation which is not previously been 

stated. Additionally, this analysis showed some down-regulated genes associated with 

metabolic processes, which was able to point towards the fatty liver organ dysfunction. On 

the other hand, in HFD-fed mice, the significant up-regulated “PPAR-gamma signaling” 

pathway was the top up-regulated pathway in our study. Emergence of next generation 

sequencing technology showed HFD induced SAMP6 mice showed liver enlargement with 

accumulation of fat which conclude our mice might suffer from NAFLD. Several biological 

processes involved in including inflammation, metabolism, cellular stress responses, and 

ECM deposition have allowed us to scrutinize this exceptional transcriptional rejoinder to 

NAFLD, which can support in further understanding this disease. In our study, we have failed 

to find any cancerous or fibrotic phenotype of SAMP6 mice upon treatment with high fat 
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diet. However, growth factors such as EGF1, EGF2, and heat shock proteins, and collagen 

such as COL1, COL3 so on which have been overexpressed in this study and suspecting they 

are associated early stages of tumorigenesis and hepatocellular carcinoma. Finally, we were 

able to find the transcriptional association and the hallmark that are associated with NAFLD 

and early stages of tumorigenesis. Finally, molecular fibrosis signature associated with 

NAFLD disease increases our understanding towards the cellular response in mice model 

which is a novel approach towards the better understanding of translational application of the 

human fibrosis processes. 

To strengthen the reliability of the tailor pipeline, a new dataset, with more robust 

information, has been processed by using the developed pipeline described above. In the new 

dataset we have aimed tissue fibrosis which is reconciled by the associations of several pro-

fibrotic proteins that induce fibroblast to myofibroblast phenoconversion. Previous report 

suggested fibroblast to myofibroblast phenoconversion occurs through Smads and MEK/Erk 

proteins independently. In this study, we have treated the stromal fibroblast cell line with 

TGFβ/TGFβR and CXCL12/CXCR4. Previously, several reports suggested TGF-β1 

promoted the transcription of both αSMA and COL1, which is coupled to myofibroblast 

phenoconversion. We therefore aimed whether CXC-type chemokines upregulated the level 

of αSMA and COL1 expression. Transcriptomics analysis reveals several upregulated 

transcripts COL1A1 and COL1A2 genes and resulted in increased levels of procollagen 

production, characteristic of myofibroblast phenoconversion. This analysis divulged 

unreported pathway name as ubiquitin mediated proteolysis, activates COPII-mediated 

vesicle formation responsible for transportation of large cargo complex, from the 

endoplasmic reticulum (ER) to the Golgi apparatus. Therefore, induction of 

CXCL12/CXCR4 facilitates the procollagen secretion and initiates ECM deposition which is 

a characteristic of tissue fibrosis. Several upregulated transcripts reported in this analysis 

such as CUL3 and KLHL12 are promoted in increased level of procollagen secretion, 
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transported from the ER to the Golgi in prostatic fibroblast. Increased level of procollagen 

promotes ECM deposition, hallmark of tissue fibrosis.  Earlier transcriptomics analysis 

identified protein-coding genes only. Recently emerging technological innovation upfront 

multifarious capability identified uncharacterized ncRNAs, figuring out its biological 

significance. Tailor pipeline enables us to identify 15 differentially expressed ncRNAs in the 

stromal fibroblast analysis. It is noteworthy MALAT1, NEAT1, TUG1, PTENP1, Kcnq1ot1, 

DNM3OS and Scarb2 that were significantly differentially expressed in CXCL12/CXCR4 

axis and the TGFβ/TGFβR axis, insinuating us to perform further research to decode their 

role in fibroblast to myofibroblast phenoconversion. In conclusion, the results of this study 

further highlight the pivotal roles played by ncRNAs in mediating changes in gene expression 

and cell functions occurring during pulmonary fibrosis. In particular, our results identified 

these lncRNAs as a new determinant of prostatic fibrosis and mechanistically ascribed its 

profibrotic effect to the regulation of myofibroblast phenoconversion leading to CXCL12 and 

TGF-β-dependent activation of stromal fibroblasts. We thus anticipate this analysis may 

represent a new effective therapeutic option to treat fibrosis in the future. Recent report 

suggested that over expression of MALAT1 may contribute to the development of fibrosis in 

non-alcoholic steatohepatitis (NASH) in liver through mechanisms involving inflammatory 

C-X-C motif chemokine ligand 5 (CXCL5) (Leti 2017).  It may be concluded that potential 

consequence of myofibroblast phenoconversion may be associated with impaired smooth 

muscle activity, disrupted smooth muscle function and consequently deposition of ECM.  

To regulate gene expression at the post-transcriptional and translational level, miRNAs 

play an important role (Morris et al. 2004). Based on gene ontology and literature mining, 

revealed their involvement to regulate cellular proliferation and cellular growth. In this study, 

miR22HG and miR100HG are presented strong evidence these miRNAs expressed 

significantly. However, their role in the context of myofibroblast phenoconversion and 

accumulation of ECM is still an open area of research and whether under-expression of 
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MIR22HG and MIR100HG have the optimal specificity and sensitivity for liver cancer 

diagnosis also needs future confirmation. 

From this analysis it is clear that not all ARS/ARS2 genes are altered in cancer rather 

that they are cancer specific. This is presumably due to the codon bias for the oncogenes 

specific for a cancer. WARS2, though suspected, has never been implicated in fibrosis 

earlier. We provide here direct evidence of anomalous WARS2 and NARS expression in 

myofibroblast phenoconversion.  In general, our study collectively implies that genes like 

AARS/AARS2 which are often designated as housekeeping are dysregulated in disease 

condition and plays an important role in cancer cell survival/proliferation.  

The pipeline described in this thesis will provide a new arena in the field of genomics 

research. With the rapid advancement of sequencing technology coupled with augmented 

knowledge of the role of genomics in human disease, speeded up for the diagnosis for 

patients. We believe, the increasing 'mainstreaming' of whole genome sequencing is 

important of genomics research for many clinicians. Hope tailor pipeline will endow with a 

genomics research and its clinical applications, including its contribution to personalized 

medicine.  
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