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How  do fuel  and  air  mix,  if  a  liquid  fuel  is  injected  into  an  environment  featuring  pressure  and  temper-
ature  that  exceed  the  critical  pressure  and  the  critical  temperature  of  the  fuel?  It  is  subject  of  current
discussion  on  whether  and if  so  when,  the  fuel/air-mixture  becomes  supercritical  or not.  We here report
experimental  data  comprising  three  mixture  properties  that  are  relevant  for the  current  debate,  all  spa-
tially  and  temporally  resolved  throughout  the  spray  and  injection  event:  The  overall  composition  of  the
fuel/air-mixture,  the  liquid  fraction  of the  fuel/air-mixture,  and  the  temperature  of  the  liquid  phase.
To  this  end,  we  applied  Raman  spectroscopy  and  gave  special  attention  to the signature  of  the  Raman

brought to you by COREon and similar papers at core.ac.uk

provided by Technische Universität Bergakademie Freiberg: Qucosa
OH-band  of  ethanol,  which  we used  as fuel.  Its  signature  is connected  to the development  of a  hydro-
gen  bonded  network  between  the ethanol  molecules  and thus  extremely  sensitive  to thermodynamic
state  and  temperature.  Measurements  were  carried  out in  a high-pressure,  high-temperature  combus-
tion  vessel  in  a pressure  range  of  3−8  MPa  and  a temperature  range  of  573−923  K.  For  the highest  set
temperature  we  found  ethanol  in  liquid-like  mixtures  that exceeded  the  mixture  critical  temperature.
This  is an  indication  of  the  existence  of a  single-phase  mixing  path.
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rn energy conversion systems many processes involve
n of a liquid fuel into an environment at elevated tem-
nd pressures. Before the injection event, the fuel usually
ned to the liquid state, while the environment is either
supercritical. For long times after injection, when the
cess between fuel and environment is completed, the
ture can clearly be assigned to a certain state of phase.

ely, this is not straight forward for the instants between
 the injection event and the completion of the mixture
t is intensively discussed in literature how a fuel that is

 liquid transits to a supercritical mixture. This transition
 as transcritical mixing. On its way to the supercritical

 system may  pass the two-phase (liquid-gas) region or
y circumvent it and remain in a single-phase region.
is ongoing discussion in literature on when the classic
theory is no longer sufficient to describe the heat and
er processes governing the mixture formation. Numer-
have tried to shed light on the matter by applying optical
–8].
nsive theoretical framework covering the transition
ration-driven, two-phase mixture formation to dense-
-phase mixing at engine-relevant conditions was

y Dahms et al. [6,9,10]. Following their model, there
tain temperature-pressure regime where classic two-
ng across a clear interface between liquid and gas
ntinuous mixing across a broad diffusive mixing layer.

 to Dahms et al., Qiu et al. [4,11] introduced a dif-
oach to determine the adiabatic mixing temperature.
eir theoretical works involving phase stability analy-

pect to find well defined liquid/gas-interfaces even at
tions that are supercritical with respect to the pure fuel

merous recent experimental works on potentially tran-
xing processes, many have tried to detect structures
nterfaces or their lack by imaging the spray or the jet.
l. [8] reported images of single fluid elements formed
injector closing event of an n-dodecane injection at
vant conditions. They identified pressure-temperature
ere effects attributable to interface were clearly identi-
e at higher pressures these effects appeared to be less
ey also addressed a recurring problem when imaging at
re conditions: Fluctuations of the index of refraction in
ressed systems rendering clear images of the spray/jet
. In order to overcome imaging distortions, Falgout et al.

 ballistic imaging. They detected Schlieren-like struc-
e flanks of the fuel stream at pressures exceeding the
ameter of the respective fuels and also reported that
uel seems to fully exhibit these structures only at even
sures than they investigated. Furthermore, Falgout and

 pointed out that images do not yield information on
itical mixing process, and suggested Raman spectro-
surements. Another microscopic imaging approach by
] investigated the morphological distortion of droplets
e of interfacial forces during transcritical mixing. They
assical evaporation even at conditions exceeding the
ameters of the fuel, identified a transitional mixing
h diminished but still observable interfaces and found
r diffusive mixing at around 8 MPa  and 1100 K. Crua
kers pointed out the need for quantitative temperature
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nts, as only this information together with composition
lp describe the real transcritical mixing path.

 comes to measuring the liquid phase temperature in a
se conditions, remote in-situ techniques are required

urb the hydrodynamics of the process. This calls for

sure of the
One mixing
region, one
a two-phas
mixing path
atic mixture formation pathways in a temperature composition (Tx)
sical, evaporative mixture formation crosses the two-phase region,
hase mixture formation circumvents the two-phase region by passing
al region.

niques, and especially tracer-free ones to not alter
amics of the system. We apply Raman spectroscopy spa-
ed along a line and scanned across the spray, and will
is work how to extract information on the composi-

 spray, the fraction of fuel with liquid-like properties
perature of the liquid-like mixture fraction from the

ectra. Our technique exploits the Raman signal from
tching vibration (mixture composition) as well as the
ng vibrations (liquid phase fraction and temperature)

 Using ethanol as a surrogate, although it not being
l, is acceptable since the physical mixture formation

hown to be independent of the fuel and as this com-
 properties is only measurable when using alcohols as
ates [12]. The stretching vibration of the OH bond of
anol (no hydrogen bonds) exhibits a sharp peak at a
t of 3680 cm−1, while liquid ethanol (hydrogen bonds)
road Raman band at Raman-shifts between 3200 and

 We  refer to this band as the Raman OH-band. This signal
ent in the liquid phase, and thus allows for discrimina-
n vapor and liquid phase [13]. Additionally, this Raman

 highly sensitive to liquid-phase temperature [14]. Mea-
of fuel fraction at engine conditions have been carried
15], and also liquid-phase temperature measurement in
aman spectroscopy exploiting the Raman OH-band are
asier accessible conditions [16,17]. Using Raman spec-

 probe mixture segregation at supercritical conditions
me approach has been carried out by Bassing et al. [18].
port on measurements providing all this information
usly at engine-relevant conditions.

dynamic considerations

l transcritical mixture formation pathways between
hich is a substitute for air, and ethanol, which here is a
or the fuel, are schematically shown in a temperature
n (Tx) diagram in Fig. 1. We chose a Tx diagram, as the
cess can be considered to be isobaric taking place at the
. The vapor-liquid equilibrium lines are taken from our

ork on the system ethanol/nitrogen for 8 MPa  [13]. The
s represent the states (composition and temperature)
gen and the fuel before the mixing process is initiated

 of the fuel. The fuel is assumed to adapt to the pres-
 chamber as soon as it is has left the injection nozzle.
e composition, liquid-phase fraction and - temperature
04777

 path crosses the vapor-liquid equilibrium two-phase
 circumvents it. Therefore, we  refer to the first one as
e mixing path and to the second one as a single-phase
. Along the two-phase mixing path, the heat and mass
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as to cross the phase boundary that separates the liquid
ase from the gaseous nitrogen-rich phase. As nitrogen
in huge excess, the final mixture is mainly composed of
d will accommodate to the nitrogen temperature and

sented by the cross that also represents the nitrogen
ng.
ntrary, especially when after injection the heat transfer
anol-rich volumes dominates over the mass transfer,
path, starting from the “start of mixture formation” in
mvents the vapor-liquid equilibrium region above its
perature and thus takes place completely in a single-
efore, the involved heat and mass transfer processes
fronted by interfaces. Then mixing would be governed
amics and diffusion.
ontext of Fig. 1, the two example mixing paths were
eferring to a Tx-diagram, which provides vapor-liquid

 data for a system in thermodynamic equilibrium. But
esses are far from thermodynamic equilibrium and thus
retation based on Tx-diagrams can only provide an ori-
ithin this study we aim at finding out under which
he mixing process follows which mixing path or maybe
o mixing paths merge. In order to being able to do this,

al measurement data are required that allow following
ing path in a Tx-diagram. Therefore we provide mea-

ata on the overall composition of the mixture, on the
e of the ethanol in a liquid-like state and on the fraction
n a liquid-like state.

ental setup and data processing

atic overview of the experimental setup, also showing
pathways, is shown in Fig. 2. It is mainly composed of

perature and high pressure injection and combustion
d the optical Raman spectroscopic setup. The chamber

ntly scavenged with heated nitrogen and can be oper-
 1000 K temperature and 10 MPa  pressure. The injector

al nozzle with three nozzle holes to allow for optical
single, isolated fuel stream (45◦ elevation angle, nozzle
20◦ apart, see Fig. 3). The attached common rail sys-
s injection pressures up to 250 MPa, and the nozzle tip
erature controlled between 243 K and 373 K. Thus the
l) is definitely injected as a liquid. To ensure that each
ent is unaffected by previous ones, the injection repeti-
s set to 1 Hz. The vessel and its peripheral components

ed in detail in [12], where also further information on
ed sprays can be found. A CAD sectional image of the
shown in Figure SI 1 of the supplementary information

imensional variation of parameters was  investigated in
The ambient pressure pa (where ambient refers to the
e chamber), the ambient temperature Ta, height above

 h and the time after visible start of injection tavsoi were
rding to Table 1. The injection pressure pi and the fuel
e Tf prior to injection were set to 120 MPa  and 363 K,
.

lite laser system (Epulse = 300 mJ, tpulse = 1 �s, � =
 5 Hz) is used for excitation of the Raman signal. The
e pulse is low enough to prevent optical breakdown

ated Raman scattering. The laser beam is guided to
r and focused by a 2′′, 300 mm focal length lens to
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 waist in the desired measurement volume. The beam
aged under 90◦ with a 3′′ lens system (250 mm focal
hamber side, 300 mm on spectrograph side, razor edge
ck elastically scattered light) onto the entrance slit of
hamrock 303i imaging spectrograph equipped with

the  ratio
nEtOH and n
signal inten
ture, with k
intensities f
2.5, 5, 10 25 - 1600623
923 2.5, 5, 7.5, 10 25 - 1000

 grating. Here, the spectrally dispersed and spatially
gnal is detected by an Andor Newton 971 EMCCD
00 × 400 pixels, 16 �m × 16 �m each). The excitation
on situation inside the chamber is schematically shown

 in Fig. 3a and in side-view in Fig. 3b. The excitation
 is oriented 45◦ to the spray axis and sections one of

ray streams. Along this beam waist of approximately
meter, the Raman scattered light is collected spatially

 90◦. One example signal collection pathway from one
ved volume elements is indicated in yellow.

 of 5.33 mm of the beam waist is imaged spatially and
esolved onto the camera chip. To enhance the signal-
tio (SNR), 800 × 200 superpixels were formed via two
ixel hardware binning. For further SNR enhancement,
se superpixels were software binned along the spatial

 leading to finally 25 × 800 (spatial x spectral) super-
ution. The sectional plane of the optical setup can be

 terms of vertical position (height above injector h) and
osition along the excitation axis. When adjusting for a
ight, the horizontal position has to be shifted accord-

ce the beam waist and detection position in the center
 stream.

set of conditions, 32 single measurements were carried
tively. For increase of data quality, the acquired images
ccumulated by software. An example signal distribution

 by the camera is shown in Fig. 4.
tral information S as a function of the Raman-shift �̄  is
he horizontal axis, the depth axis resolves the spatial
. Two spatial positions marked in Fig. 3 as P1 and P2
rked in Fig. 4 for reference. Each spectrum S has been

 to its respective maximum for better visibility, from
ditch in the nitrogen peak line results between 3 and
spectrum at P1 is from a position outside the spray. No
etected there, the nitrogen peak at 2330 cm−1 is visible.
m at P2 is inside the spray, the additional signal peaks
00 cm−1 and 3100 cm−1 emerge from the CH-vibration
hich at position P2 (stream center) exceed the nitrogen

ity. The ones between 3200 cm-1 and 3800 cm−1 emerge
-vibration of ethanol. According to,

IEtOH
IN2

(1)

 of the number of molecules of species ethanol (EtOH)
e composition, liquid-phase fraction and - temperature
04777

itrogen (N2) nN2 is proportional to the ratio of the Raman
sities IEtOH and IN2 of the respective species in the mix-

 beeing the proportionality constant. As Raman signal
or ethanol we consider the integral of the Raman spec-
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Fig. 2. Schematic overview of the setup around the high-pressure high-temperature (HPHT) chamber with optical pathways for excitation (green) and detection (red).

Fig. 3. Excitation and detection situation inside the chamber. The laser beam waist sections one of the three spray cones, detection in 90◦ , spatially resolved along the beam
waist.  a) Top view of the excitation and detection; b) Side view from detection side.

Fig. 4. Intensity distribution of Raman signals on camera chip. Spectral dimension on horizontal axis and spatial dimension on depth axis. Two spectra P1 and P2 are marked
as  outside and inside the spray. The nitrogen peak at about 2330 cm−1 is highlighted in red, the CH-signal of ethanol at ∼2900 cm-1 in blue. The OH-signal of ethanol is
highlighted in grey.
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 The calibration factor k is obtained by calibration mea-
described in detail in the supporting information.

on procedures

uel fraction xEtOH

ows the linear relation between the molar ratios nEtOH
nN2

sured intensity ratios IEtOHIN2
according to Eq. 1, where the

 best linear fit function is the desired calibration factor
 The data points shown in this figure were measured at
ssures (3 MPa  - 5 MPa) and temperatures (573 K–673 K).
ly of pressure and temperature, their correlation can
ted by one temperature and pressure insensitive lin-

 then possible to calculate the bulk molar ratio or the
fuel (ethanol:EtOH) fraction xEtOH = 1

1+ nEtOH
nN2

from spec-

d in the spray by applying Eq. 1. The intensity ratios
. 5 are averaged either spatially over the 25 spatial incre-

 the 5.33 mm long measurement length (detected beam
mporally over 32 consecutively made measurements.
ars represent in the case of spatial averaging the stan-
ion of the 32 consecutively made measurements, while
f temporal averaging the error bars represent the stan-

ion of the 25 spatially resolved increments along beam
he calibration measurements, made at the largest ratio
d rather little amount of nitrogen has not been suffi-

erate a perfectly mixed ethanol/nitrogen-mixture in the
system. Therefore, the composition of the calibration
iving in the calibration chamber varied in time, which
by the larger error bar. For all other calibration points
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ulated molar fuel fraction xEtOH does not hold informa-
ther the fluid is a single-phase liquid, a single-phase gas
gle-phase supercritical state or a liquid/gas two-phase

ere might be either a homogeneous and compara-
h mixture of certain composition in the single-phase
alternatively a two-phase mixture of identical com-
t segregated into liquid domains of almost pure fuel

 by fuel-lean atmosphere (droplets surrounded by gas).
ination of the fluid state can be achieved by analyzing

 OH-band of ethanol, shown in Fig. 4. A zoomed view
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squares minimization of the residuals for Raman-shifts
00 cm−1 and 3750 cm−1. The restriction of the fitting
ge to Raman shifts from 3400 cm−1 to 3750 cm−1 brings
e advantage. Especially at high temperatures, the liquid
ctra Sliquid(T10K ) are rather insensitive to temperature
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e. Therefore also in the event of having superheated
sent in the probe volume, the least squares minimiza-

 works using simply a high temperature spectrum of the
superheated) ethanol-rich phase. The final liquid phase
ctrum is then obtained by

Sexp(T) − a · Sgas (2)

ing  the fitted gas phase spectrum Sgas from the exper-
ctrum Sexp(T). Following this method Sliquid(T) is not
y the 10 K temperature resolution of the set of spec-
e from previous vapor/liquid-equilibria measurements

izing, the separation of the contributions of ethanol in
xture and ethanol in a gaseous mixture to the spec-

 overall mixture is solely based on the deconstruction
an OH band of ethanol. For the calculation of the liq-

 fraction xEtOH,liquid (fraction of ethanol contained in the
e)

nEtOH,liquid
nEtOH,liquid + nEtOH,gaseous

=
(

1 + IEtOH, gaseous

IEtOH,liquid
· z

)−1

(3)

entire ethanol present in the observed volume,
er the Raman CH-signal intensities IEtOH,gaseous =

gasd�̄  and IEtOH,liquid =
�̄=3100cm−1∫
�̄=2700cm−1

Sliquidd�̄  of the before

aseous Sgas and liquid ethanol Sliquid(T) spectral con-
n the respective equation (Eq. 3), the correction for the
ectric excitation fields in the liquid phase and in the
ase is incorporated via

 liquid + 2
)4

aseous + 2
)4

(4)

ices of refraction nrefr., liquid and nrefr., gaseous, respectively

mpositions of the liquid phase and of the vapor phase
wn (we only can quantify the overall mixture com-
hich is an assembly of fluid elements in the liquid,

 and supercritical state) we cannot apply the Lorentz-
ion for the estimation of the indices of refraction of both
refore, we take for the index of refraction of gaseous
efr., gaseous = 1 and for liquid mixtures that one of pure
tandard conditions nrefr., liquid = 1.361 [21]. A value of

esults from these assumptions. It can be expected that
 analyzed high pressures and high temperatures, the
efraction of the gaseous and the liquid mixture are
1 and smaller than 1.361, respectively, as also the den-

 gaseous and liquid phase converge towards the critical
 mixture. Consequently, the indices of refraction that
bove, underestimate the liquid fraction in the mix-
ing equality of the indices of refraction of the liquid

eous phases, a value of z = 1 results. Considering z = 1
 = 1.575 would overestimate the liquid fuel fractions
hus, the real fraction of ethanol contained in the liquid
,liquid is in between the values of xEtOH,liquid,z=1.575 and
1 we obtain for the extremes of z = 1.575 and = 1.

perature of the liquid fraction Tliquid
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ut data for the determination of the temperature of
thanol is the spectrum of the liquid ethanol Sliquid(T)
ained in the previous step. We  then use the integrated
ference spectrum (IADS) approach [21,22] for the tem-

given as in
the real ind
surements 

liquid fract
points show
mperature Tliquid along section of spray in 5 mm height. Ambient pres-
ambient temperature is 923 K, 700 �s after start of injection. xEtOH,liquid
or two different indices of refraction.

termination. From each liquid phase spectrum Sliquid(T),
e difference to a reference spectrum of liquid ethanol
t the respective ambient pressure pa and at a injec-

rature Ti of 363 K is calculated. Integrating the signal of
e difference spectrum yields an intensity that correlates
rature. In [14], we  showed that this correlation in the
essure and temperature conditions related to internal

 devices is neither sensitive to pressure nor influenced
ence of nitrogen in the liquid mixture. Furthermore, we
he IADS function to temperatures above the mixture
perature and thus were able to estimate the temper-

perheated ethanol. As it is not possible to calibrate at
d conditions, simply because they are in the thermo-
gion of meta- or instability, we  cannot detail on the
e extrapolated superheated temperatures and just pro-
s estimation. Nonetheless, this method, simply based on
ined temperatures, enables the differentiation between
ed liquid and a non-superheated liquid phase.

e described evaluation methods, it is possible to derive
 the molar ethanol fraction xEtOH in the mixture, the
ethanol contained in the liquid phase xEtOH,liquid of the
uid ethanol fraction) and the temperature Tliquid of that

ion from the spectra measured along a line in a certain
e the injector nozzle exit. Fig. 7 shows this combined
neously acquired information spatially resolved (hor-

ition in Fig. 7) along the beam waist. The shown data
ured at injection conditions of pa = 6 MPa, Ta = 923 K ,

 after the start of injection, when the spray stream is
(no more effect of the needle opening behavior). The
ed is 5 mm above the injector nozzle. Due to the eleva-
f 45◦ the penetration depth of the center of the stream is
th variants for the correction of the index of refraction

 Eq.(3) are shown, either for z = 1.575 or z = 1. Since
e composition, liquid-phase fraction and - temperature
04777

ex of refraction of the liquid phase during the mea-
is assumed to be somewhere within this range, the real
ion is also bound to be somewhere between the data
n here.



Please cite
in transcr

RESSG Model
SUPFLU-10477

ical Fluids xxx (xxxx) xxx 7

All spati
and Tliquid fo
in [22].

In  Fig. 7,
to left. The 

spray axis, a
are expecte
and the frac
metric, resu
angle with 

Firstly, hori
penetration
portion of t
is right of t
the maximu
of the maxi
spray strea
and mass tr
nitrogen, th
xEtOH,liquid s
center than
exposed to
to shorter h
gaseous or 

The lowe
tion of the h
the flanks o
hand side o
temperatur
found, indic
a superheat

In  order
culated wh
The data q
laser beam 

tal position
and refracte
etrating the
with depth 

xEtOH,liquid o
1 are thus n

Fig. 8 sh
and 8 MPa  /
Tliquid over t
for differen
boiling (BPC
previous in

Most of 

line in the 

gle gaseous
that we on
locations fo
fraction xEt
ing. The pr
point is app
waist) time
213 �m (in
within this 

xEtOH will ju
contained i
ethanol-lea
of matter in
xEtOH will b
fore, the dat
though for 

ture. The sa

iquid phase temperatures Tliquid over the measured ethanol molar fraction
 two e
). The
tected

reme
n the
EtOH

the v
id an
for a

 or d
 adv

 we a
aller

 poss
e co
n th

(xEtOH
8). Th

 the 

e reg
 pro
e tem

 exce
ved i
the M
side
t set
ratur
ARTICLE IN P7; No. of Pages 9

T.C.  Klima, A. Peter, S. Riess et al. / J. of Supercrit

ally and temporally resolved data for xEtOH , xEtOH,liquid
r all investigated operational conditions can be found

 the laser beam penetrates the spray steam from right
horizontal position of 2 mm can be assumed to be the
s along the spray axis the largest ethanol fractions xEtOH
d. The distribution of the ethanol molar fraction xEtOH
tions of ethanol in the liquid phase xEtOH,liquid are asym-
lting from the sectioning of the spray stream under 45◦

respect to the spray’s axis. Two consequences result:
zontal positions left of the spray axis feature a shorter

 depth than those right of the spray axis. Secondly, the
he spray stream left of the spray axis is smaller than it
he spray stream center. Thus, xEtOH on the left side of
m increases steeper than it decreases on the right side

mum. Due to the shorter penetration depth left of the
m center and thus due to less time available for heat
ansfer between the injected ethanol and the ambient
e distribution of the ethanol fraction in the liquid phase
hows larger values on the left side of the spray stream

 on the right side. The fuel on this side has not been
 the ambient gas as long as on the right side, leading
eating and less transfer from the liquid phase to the

supercritical phase.
st liquid phase temperature Tliquid is found in the posi-
ighest xEtOH,liquid, with increasing temperature towards
f the spray with decreasing liquid fraction. On the left
f the spray, with respect to the figure, a liquid phase
e above the mixture critical temperature of ethanol is
ating dense volumes with large fractions of ethanol in
ed state.

 to ensure reliable evaluation, xEtOH,liquid was only cal-
en xEtOH > 0.1, and Tliquid only when xEtOH,liquid > 0.05.
uality also depends on the penetration depth of the
through the spray stream and thus onto the horizon-
. The laser beam is scattered from liquid/gas interfaces
d from gradients of the index of refraction when pen-

 spray stream, resulting in degrading signal-to-noise
of penetration through the spray stream. Data for xEtOH ,
r Tliquid calculated for horizontal positons between 0 and
ot reliable and are therefore neglected in the following.
ows for two operational conditions, 8 MPa  / 573 K (top)

 923 K (bottom), the measured liquid phase temperature
he measured ethanol molar fraction xEtOH as data points
t measurement heigts above the injector nozzle. The
) ad dew (BPC) point curves are taken again from our

vestigations [13].
the data points occupy the region left of the dew point
region that thermodynamically is assigned to a sin-

 phase. But in the sections above it was described
ly can derive a liquid ethanol temperature Tliquid from
r which we also were able to detect a liquid ethanol
OH,liquid > 0.05. This conflict is justified in the follow-
obed volume that corresponds to one measurement
roximately 200 �m in depth (diameter of laser beam

s 200 �m in height (diameter of laser beam waist) times
cremental resolution along the laser beam waist). If
volume liquid and gaseous mixture ligaments coexist,
st provide the composition averaged over the ligaments
n the entire volume. If the amount of matter in the
n gaseous ligaments significantly exceeds the amount
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 the ethanol-rich liquid ligaments, the overall measured
e dominated by the ethanol-lean gaseous phase. There-
a points in Fig. 8 occupy the single phase gaseous region,
all of them we also detected ethanol in a liquid mix-
me consequence arises from averaging 32 single-shot

condition 8
the only on
ber of liqui
temperatur
perature ab
xample operational conditions 8 MPa  / 573 K (top) and 8 MPa  / 923 K
 isothermal projection of the data points for which liquid ligaments

 to the single phase liquid region is indicated by the arrows.

nts to mean data points. If at a certain measurement
 fluid phase (liquid or gaseous) fluctuates from shot to

after averaging the spectra also provides just an aver-
arious 32 measurements from which some correspond
d others to gaseous mixtures. The same conflict would
ll other measurement techniques that are not able to
etect phase heterogeneities within the probed volume.
antage of the here presented measurement technique
re able to detect the existence of liquid ligaments that

 than the spatial resolution of the measurement setup.
ible because of the analysis of xEtOH,liquid. We  assume

mposition of the liquid mixture ligaments can only be
e one of pure ethanol (xEtOH = 1) and the saturated liquid

= xEtOH,boiling , composition along the boiling point line
erefore, we can project all the data points in Fig. 8 that

single-phase gaseous region into the single phase liquid
ion, as indicated by the arrows in Fig. 8.

jected data points then approximate the composition
perature of the liquid mixture ligaments only. The data
eding the mixture critical temperature (MCT) cannot
sothermally across the boiling point line (not existing
CT). Therefore we did not project them.

ring all analyzed operational conditions, only for the
 temperature of 923 K we detected few liquid phase
es exceeding the MCT  (compare Fig. 8). The operational

 MPa/923 K (highest pressure at highest temperature) is
e composition, liquid-phase fraction and - temperature
04777

e for which we  were able to detect a significant num-
d phase temperatures exceeding the MCT. For ambient
es below 923 K we  did not detect any liquid phase tem-
ove the MCT. Hence, we conclude that superheated
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ility density presentation of the mixture compositions xEtOH measured
ints for which the simultaneously detected xEtOH,liquid was between 0
quid phase existing).

res (Tliquid >MCT) exist at the highest set ambient tem-
f 923 K, though also the other ambient temperatures
ove the Ta > MCT  and therefore could have resulted
- but did not - in liquid phase mixture temperatures
CP.

mmarizes all measured mixture compositions xEtOH for
id not detect the existence of a liquid fraction, i.e. for
raction of ethanol in a liquid phase was  between the

 xEtOH,liquid ≤ 0.05 in a probability density presentation.
eals that all mixture fractions xEtOH measured for mix-

did not contain liquid mixture ligaments are below
 This implies that in all these single-phase mixtures
ighly diluted with nitrogen. We  did not find a single

epresenting a single-phase mixture that did not contain
ents (0 ≤ xEtOH,liquid ≤ 0.05) but featuring at the same
ns of ethanol above xEtOH > 0.2.

ion

izing the interpretations related to Figs. 8 and 9, we  can
at we were able to detect for ambient temperatures

xtures that contained liquid ligaments which were not
ted
es that did not contain liquid ligaments but contained
20 mol-% ethanol.

ient temperatures Ta = 923 K we were able to detect

n-superheated together with few superheated liga-
ith an increasing occurance of superheated ligaments
asing pressure (volume specific enthalpy).
ixtures that did not contain liquid ligaments but con-

s than 20 mol-% ethanol.

er detected mixtures that did not contain liquid lig-
 with ethanol fractions between 0.2 < xEtOH < 1. We
nclude that for Ta < 923 K the mixing path that we in
ed to as single-phase mixing process effectively does
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