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1. Introduction

1.1. Motivation

Nowadays, it has been widely investigated by many mathematicians the following Cauchy

problem for semilinear wave models with time-dependent propagation speed and time-dependent

damping term:

g — a?(t)Au + b(t)uy = f(u,us, Vou), (t,2) € [0,00) x R™, (1.1.1)
u(0,2) = ug(x), u(0,2) = ui(x), x € R™. o

Many questions arise for qualitative properties of solutions to (1.1.1). Some of these questions
we itemize below.

o Asymptotic behavior of the solutions.
We are interested in the long-time behavior of weak solutions to the Cauchy problem
(1.1.1). In particular, under different assumptions the influence of the time-depending
coefficients a = a(t) and b = b(t) in the speed of propagation and damping term,
respectively, under reasonable regularity assumptions on the Cauchy data (ug,u;) and
the nonlinearity f(u,u;, V,u) we want to understand the long-time behavior (measured
in terms of energies or certain norms) of solutions to (1.1.1).

e Decay properties.
The significant progress in the study of nonlinear hyperbolic differential equations (with
or without damping term) is due to basic results on the decay in time of the solutions
to the corresponding linear wave equations.

e Local (in time) or global (in time) well-posedness of the associated Cauchy problems.
It is of interest to find suitable spaces for initial data to have local (in time) or even
global (in time) existence, uniqueness and continuous dependence on initial data. The
main arguments in the treatment are the contraction argument, together with some
energy estimates for families of linear parameter-dependent Cauchy problems.

e Associated nonlinear Cauchy problems.
Here we are interested in models with nonlinear source term f(u, u;, V,u) (for instance
the power source nonlinear term f(u) = |u|? with p > 1). All the questions raised in
the linear case may be extended to the nonlinear one. The main argument here is again
the use of contraction principle.

e Global (in time) existence.
The nonlinear source term f(u,u;, V,u) may cause a blow-up behavior of suitable so-
lutions. Thus, it seems to be reasonable to ask if under some assumptions the zero
solution is a steady state solution. Then, there exist global (in time) small data Sobolev
solutions.

e Blow-up and the control of life-span.
In the case of local (in time) existence results we may investigate whether the solution
may blow-up in some finite time, as well as study the behavior of such life-span with
respect to the parameters involved (for example, smallness of the initial data, regularity
of the initial data).
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The items just listed show the essential importance of the estimates for the solutions to the
Cauchy problem (1.1.1). There is an extensive literature about such results. We will sketch
some of them as it is presented in [11] and state the progress that has taken place up to the
present.

1.1.1. Cauchy problems for wave models with constant coefficients

Let us briefly recall some results about linear and semilinear Cauchy problems to wave models
with and without classical damping term. In particular, we present some known results on
energy estimates, LP — L7 decay estimates, global (in time) existence and blow-up results.

In order to study global (in time) existence of small data Sobolev solutions for semilinear
equations, the key tool is estimates for solutions to the corresponding linear Cauchy problems.
A systematic overview on global existence and uniqueness results can be found in books [11]
and [31].

Linear Cauchy problems for free wave equation

We consider the following Cauchy problem for the homogeneous linear free wave equation:

{utt — Au =0, (t,x) € [0,00) x R",

w(0,7) = uo(z), u(0,2) =u(x), xe€R" (1.1.2)

The Cauchy problem (1.1.2) is H*® well-posed, s € R, that is, for any (ug,u;) € H* x H*™!
there exists for all positive T" a uniquely determined energy solution u € C ([O,T],H S) N

C*([0,T], H*~') which depends continuously on Cauchy data.
Ifu € C([0,T], H')NC* ([0, T], L?), then the total energy of the solution to (1.1.2) is defined
by

B (u)() = 3 (IVault, M + ot )l )

and it holds the conservation of the energy, that is, Ey (u)(t) = Ey (u)(0) for all ¢ > 0.

The study of LP — L7 decay estimates for solutions to (1.1.2) bases on classical papers
[29, 41, 42, 45]. Such decay estimates are called Strichartz type decay estimates for the
energy Ey (u)(t) basing on the L? norm. In a precise formulation the estimate reads as
follows: R

ue(t, ), Voult, )|, < CA+ t)—T(ra)(HuOHW;va + HU1||WPNP) (1.1.3)
forn>2 pe|l,2), % + % =1and N, > n(% - %) Here W)¥» denotes the standard Sobolev
space over L? with regularity NV, € N.

Linear Cauchy problems for damped wave equation with constant coefficients

Let us consider the following linear Cauchy problem for the classical damped wave equation:

frn- v <o () € [0,00) xR, (11

u(0,2) = ug(x), u(0,2) =us(x), ze€R™

In this case the solutions to (1.1.4) describe the wave propagation with friction, such as the
telegraph equation and the heat conduction with finite propagation speed of perturbations.
The wave energy of Sobolev solutions to the Cauchy problem (1.1.4) is defined by

Euw (u)() = ¢ (IVau(t, 3 + ol )l ).

Here Ey (u)(t) is monotonically decreasing. This fact follows from differentiation of the energy
Ew (u)(t) with respect to t and integration by parts. That is, it holds

d

%EW(U)@) = / (upuy + Vu - Vug)de = / —uy(t,r)*dz < 0.
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Thus, we can not expect energy conservation because of the damping term. This gives no
information whether it tends to zero or remains positive for all times. However, it arises the
question for the behavior of the energy for ¢ — co. Of special interest is the question whether
the energy Ey (u)(t) tends to 0 for t — co. Such a behavior is called decay.

Sharp decay estimates for solutions to the Cauchy problem (1.1.4) are proved in [23]. The
author proved, that the solutions to the damped wave equation (1.1.4) satisfy the estimates
||DfD(;U(t, .T)||L2 S C(l + t)_%(#_%)_%_k (H'LLOHHM—\M + H’LL1 HHI«-HM—l + H (Uo, ul)HLm)
for t > 0 and m € [1,2]. Here the estimates are improved by assuming an additional L™

regularity with m € [1,2].

There is a difference in the influence on the decay order between spatial and time deriva-
tives like for estimates of solutions to the corresponding heat equation. We remark that the
previous estimates coincide in the decay order with the corresponding estimates for the heat
equation. The corresponding L? — L7 decay estimates to the Cauchy problem (1.1.4) are
given as follows:

Ju(t, ), Vault, )|, < CQA +t)—%(%—%)—%(”uo||wgp+l + [l )

forn>2 pell,?2), % + % =1and N, > n(% — %) That is, these decay rates correspond to
estimates for the heat equation (see [30]). Thus, this parabolic structure can be expressed in
terms of the so-called diffusion phenomenon and the asymptotic behavior of the solutions to
the damped wave equation are related to corresponding solutions of the heat equation.

Semilinear Cauchy problems for damped wave equation with constant coefficients

Now we consider the following semilinear Cauchy problem for the classical damped wave
equation:

{utt —Au+u = ’u|p7 (t’x) < [0’ oo) xR (1-1'5)

u(0,2) = ug(x), u(0,2) =us(x), ze€R™

There is a lot of effort from many authors devoted to the question of the global (in time)
existence or the blow-up in a finite time of Sobolev solutions to the Cauchy problem (1.1.5).
Small perturbations of the data in suitable Banach spaces preserve the property of the Cauchy
problem to have globally (in time) Sobolev solutions. It turns out that there exists a critical
exponent pit, a threshold between global and non-global (in time) existence of small data
Sobolev solutions.

In the paper [44], by using the Matsumura estimates for solutions to the linear Cauchy
problem (1.1.4), it is proved a global (in time) existence result for energy solutions to (1.1.5)
assuming compactly supported data (ug,u1) € H' x L? to be sufficiently small, p > pp,;(n) =
14 % and p < pen(n) = 5 if n > 3. Moreover, the authors also proved a blow-up result
for 1 < p < pryj(n), assuming the data satisfy some integral sign conditions.

Here ppyj(n) denotes the so-called Fujita ezponent, which is the the critical exponent of
the semilinear heat equations. This indicates that the damping term drastically changes the
asymptotic behavior of the solution to the wave equation. In other words, the solutions to
(1.1.5) seem to behave more like solutions of the heat equation at large times.

Later on in [50], the author showed that the critical case p = pgy;j(n) belongs to the blow-up
region applying the so-called test function method. This method bases on a contradiction ar-
gument and yields sharp results for models with a parabolic like decay for solutions. Moreover,
in [21] the authors extended the global (in time) existence result to certain non-compactly

supported initial data.

1.1.2. Cauchy problems for wave models with time-dependent coefficients

We consider now wave models with time-dependent coefficients. Results for such models may
help getting a better understanding of classical results for constant coefficients models, as
well, as giving hints to possible generalizations.
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Linear Cauchy problems for wave equation with time-dependent speed of propagation

Let us consider the following Cauchy problem for a wave equation with time-dependent

propagation speed a = a(t):

gy — a’(t)Au = 0, (t,x) € [0,00) x R™, (1.1.6)
u(0,2) = ug(x), u(0,2) =us(x), ze&R™ o

Then, the total energy of the solution to (1.1.6) is defined by

1
Ewa(u)(t) = 5 (O Voult, )2 + unt, )32 )-
One can observe many different effects for the behavior of Ey ,(u)(t) as t — oo according to
properties of the speed of propagation a = a(t).
If 0 <apg <a(t) <a; <ooforall t >0, then the energy Ew ,(u)(t) is equivalent to

Buwa (1) (1) = Ew (w)(t) = 5 (It )3+t ).

Although Ey (u)(t) is a conserved quantity for the classical wave equation, oscillations of the
time-dependent coefficient a = a(t) may have a deteriorating influence on the energy behavior
of solutions (see [7] and [35]). Namely, a time-dependent propagation speed can cause many
difficulties. This is shown in [35] by means of the Cauchy problem

uy — (2+ sint)zAu =0, (t,x) € [0,00) x R",
w(0,z) = ug(z), uw(0,2) =uy(x), =€R"

For an admissible solution w of this Cauchy problem it follows immediately that
Ew (u)(t) < Cexp(ct)Ew (u)(0)

with constants ¢,C' > 0. The authors showed that this energy estimate cannot be substan-
tially improved, even if LP — L7 estimates are considered. This means, that the oscillating
coefficients have a deteriorating effect on energy estimates.

In [33], the authors examined this effect more closely for propagation speeds of the form

a*(t) = 2 + sin ((log(t + 30))7>.

Then, for the given function a = a(t) does not damage the energy estimate for a suitable
~v > 0. For this reason, it is necessary to control the oscillating behavior of the coefficients.
Such a classification was proposed in [35] and can be used to control suitable energies. That
is, if
|a(k)(t)’ < Ck(]' + t)_k? k= 1a 2a

holds (due to the proposed classification, here only very slow oscillations are allowed), then
the so-called generalized energy conservation law (GECL) holds (see [33]). This means, that
there exist positive constants Cy and C} such that the inequalities

CiEw.q(u)(0) < Ewa(u)(t) < CoEw.qa(u)(0)

are valid for all ¢ € (0,00), where the positive constants Cy and C; are independent on the
data. This (GECL) excludes decay and blow up behavior of Ey,(u)(t) for t — oo.

One can allow faster oscillations of the coefficients if further structural properties of the
coefficients are supposed. In the paper [16], even though oscillations are very fast, the author
proved (GECL) to (1.1.6) provided that the following conditions to the coefficient a = a(t)
are satisfied:

0<a; <a(t) < as, (1.1.7)
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a® ()] < Cr(l+t)7 ", k=1,2,--- M, (1.1.8)

/t\a(f)—amldr <C(1+1t)7, (1.1.9)

1—
for some real a, and 8 € (0,1) with o > 3 + Tﬁ Here (1.1.9) is a so-called stabilization

condition and by this condition one can get some benefit of higher order regularity of a = a(t).

The situation becomes more complicated if one considers an unbounded propagation speed
a = a(t). If a(t) > ap > 0 is an increasing function satisfying a suitable control on the
oscillations, the author proved in [1] the estimate

Ew.o(u)(t) < Cra(t) (Ew.a(w)(0) + [[uol[?-)-

In the case of an increasing a = a(t) in the derived energy estimate for Ey,(u)(t) the H*
norm of uy appears, not only the L? norm of its gradient as in the case of bounded a = a(t).
It turns out that it is useful to write

where
e \ = \(¢) describes the increasing behavior (improving influence on estimates),
e w = w(t) describes the oscillating behavior (deteriorating influence on estimates).

In series of papers [34, 35, 37], the authors generalized the question for L? — L? decay estimates
to wave equations with a(t) = A(¢t)w(t). For a good survey see [32]. The authors proposed a
classification based on the interplay between A(t) and w(t) as follows.

Definition 1.1.1 (Speed of oscillations). We assume that there exists a real v € [0, 1] such
that the following condition is satisfied:

k
lw® ()] < Ck(i((tt; (log A(t))v) , forlarget, k€N, (1.1.10)
where A = A(t) is defined by A(t) :== [

o M(7)dr. The parameter  controls the oscillations of
w as follows:

e if v =0, then w has very slow oscillations,
e if 0 < vy < 1, then w has slow oscillations,
e if v =1, then w has fast oscillations,

e and if the condition (1.1.10) is not satisfied for v = 1, then w has very fast oscillations.

If the oscillations of w are very slow, slow or fast by assuming some suitable assumptions
on the smooth coefficient A = A\(¢) one can expect L — L9 decay estimates. If the oscillations
are very fast, then one can not expect such decay estimates without assuming a suitable
stabilization condition.

If (1.1.10) holds for « € [0,1], then the L? — L7 decay estimate

[t AVt Vo < CYMD AW T B8 (gl + ) (11.11)

holds for the solution u = (¢, x) to (1.1.6) with real value 7, > 0, which depends on ~. Here
n>2,pe(1,2], %—l—% =1and N, > n(% — %) There is a connection between the oscillating
behavior of w and the loss of decay, that is, the size of v, describes how the decay rate differs
from the classical one stated in (1.1.2).
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In the paper [19], the authors studied the Cauchy problem (1.1.6) after introducing a(t) =
A(t)w(t) with a monotonously increasing shape function A = A(¢) and a (bounded) oscillating
function w = w(t). By using the CM property of A = A(t) and w = w(t) and the idea of
stabilization condition they proved the two sided estimate

1
<
B0

where the nonnegative constants Cy and C depend on the data and E,(u)(¢) is defined as

EA()(t) = 5 (COIVau(t, )3 + et )3a)

Ex(u)(t) < C,

Linear damped wave equations with time-dependent dissipation

A further problem of interest is the Cauchy problem for the wave equation with time-
dependent dissipation

{utt — Au+b(t)u; =0, (t,z) € [0,00) X R™, (1.1.12)

u(0,2) = ug(x), u(0,2) =us(x), ze€R™

The term b(t)u, is called the damping term, which prevents the motion of the wave and
reduces its energy, and the coefficient b = b(t) represents the strength of the damping. The
asymptotic behavior of solutions and their wave energy change according to the positive
coefficient b = b(t) in the damping term.

In the PhD thesis [46], the author proposed a classification of the time-dependent dissi-
pation terms in the following way:

e scattering producing to the free wave equation,
e non-effective dissipation,

o effective dissipation,

e over-damping producing.

If the solution behaves asymptotically like that of the wave equation, that is, if the damping
term in (1.1.12) has no essential influence on the behavior of the solution, then the solution
scatters to that of the free wave equation when ¢t — oo. This case is called scattering
producing case. If the LP — L7 estimates of the solution to the Cauchy problem (1.1.12) are
closely related to those of the solutions to the free wave equation, then the damping term
is called non-effective. If the solution to the Cauchy problem (1.1.12) has the same decay
behavior as the solution of the corresponding parabolic Cauchy problem

Uy = ﬁAu, (t,z) € [0,00) x R",
’LL(O,%’) = Uo@)a z € R",
that is, if the damping term has a stronger influence, then the damping term is called effective.
Finally, if the energy of the solution has no any decay estimate, namely, if the damping term
has too strong influence, then the damping term is called over-damping producing.
In general for the cases scattering or over-damping there is no energy decay. Particularly,
the effectiveness to the model (1.1.12) is defined as follows.

Definition 1.1.2 (Effective dissipation). The damping term in (1.1.12) is called effective, if
b = b(t) satisfies the following assumptions:

(B1) b(t) > 0 for any ¢t > 0;

1

Ht)k, k=1,2, 4

(B2) b (t)] < Ceb(t)(
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(B3) b(t) is monotonic;

1 1 .
0] ¢ L' ([0,00));

(B5) [0/(t)| = o(b?(t)), that is, tb(t) — oo as t — oo;

(B4)

(B6) e L' ([0,00)).

b(t)(1+41t)?
In the case of effective dissipation, the L? — L7 decay estimates to the solution (1.1.12)
and their derivatives were given in the following way in [46, 48|:
1 Cdr \-5(G-5) -5k
DFDu(t, - <C——(1 / —
|PrDzutt: ), < bk(t)( "), b(T))
1). Note that this decay rate

where p € [1,2], p¢ = p+ ¢q and the regularity N, > n(% 4
coincides with the corresponding estimate for the heat equation.

(||U0\|W;Vp+w + Hulllwévpﬂa\fl),

Semilinear damped wave equation with time-dependent dissipation

Next, we consider the following Cauchy problem for semilinear time-dependent damped wave
equation:

w(0,7) = up(z), u(0,2) =wu(z), x€R"™ (1.1.13)

{utt — A+ b(t)uy = |ul?, (t,z) € [0,00) x R™,
Since the nonlinearity |u|? of (1.1.13) is a source term, in general the solution may blow up
in finite time even if the initial data is sufficiently small.

In the paper [22], the authors proved that the critical exponent for solutions to the Cauchy
problem (1.1.13) remains the same as for the Cauchy problem with b(t) = 1 with special
effective damping term b(t)u, = bo(1 + t)u, for —1 < 8 < 1, provided that the small initial
data belong to H' x L? with compact support. That is, the authors have obtained a blow-up
result if 1 < p < pgyj(n) and a global (in time) existence result if p > pgy;(n). Later, a global
(in time) existence result to (1.1.13) was extended in [10] to more general b(t) satisfying a
monotonicity condition and a polynomial-like behavior. Moreover, the authors relaxed the
assumption of compactly supported with data from exponentially weighted energy spaces.
The authors also dealt with initial data belonging to the class (H' N L') x (L* N L') when
n < 4. In particular, the global (in time) existence holds for p > pg,;j(n) and p < pan(n) = -5
with n > 3, if initial data are assumed to be small in exponentially weighted energy spaces.
In the paper [8], the authors treated subcritical and critical case 1 < p < pgyj(n). The authors
proved that there is no global (in time) existence of small data solutions, under a suitable
sign assumption.

Linear damped wave equations with time-dependent speed of propagation and
dissipation

In the PhD thesis [1], the author studied the following linear Cauchy problem with time-
dependent propagation speed and dissipation (see also [2]):

{utt - a2(t)Au + b(t)ut =0, (t’x) < [O’ OO) xR (1'1'14)

u(0,2) = ug(x), u(0,2) =us(x), ze€R™

Here a = a(t) describes an increasing propagation speed of waves and b(t)u, describes a
damping effect. More precisely, the author was interested in time-dependent coefficients
a = a(t) and b = b(t) having very slow oscillations only.

The author proposed a classification of the damping term b(¢)u; in terms of the increasing
speed of propagation a = a(t) as follows:
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e scattering producing to the wave equation,

e non-effective dissipation,

e effective dissipation,

e over-damping producing.
The increasing speed of propagation a = a(t) has the following properties:
(A1) a(t) >0 and d/(t) > 0 for ¢ € [0,00);

a(t) _ d'(t) a(t)
(A2) a0y < T = YA

, ag,a; > 05
" a(t) \?
(A3) |a"(t)] gaga(t)<A(t)) . ap > 0.

Then, by studying the interaction between a = a(t) and b = b(t), the effective dissipation is
defined as follows.

Definition 1.1.3 (Effective dissipation). The damping term b(t)u; in (1.1.14) is called ef-
fective, if the following assumptions are satisfied:

(B'1) b(t) >0 and b(t) = M(t)j&%;

(B2) |dFpu(t)| < Ckﬂ(t)(jl(t)y for k=1,2,--- ,¢;

t
(B’3) Z((t)) is monotonic and pu(t) — oo as t — oo;

@) G =050 ¢ 1 (0,00,

Thus, by the above effectiveness assumptions the following LP — L7 decay estimate holds
to (1.1.14):

a

| (we, a(t)Vou)(t, )| < Calt) (1 +/0 b((:)) dT)_g(p_Q)_z(Huo\ng N HU1HW1§VP*1)7

where p € [1,2], pg = p + ¢ and the regularity N, > n(% - %)
This shows that the model (1.1.14), in the effective damping case is hinted to relations
to parabolic models from the point of view of decay estimates for the long-time behavior of

solutions and its energies.

Semilinear damped wave equation with time-dependent speed of propagation and
dissipation

In the above cited PhD thesis the author studied also the following semilinear Cauchy prob-
lem for the damped wave equations with increasing time-dependent propagation speed and
effective dissipation term (see also [3, 4]):

{utt — a?(t)Au + b(t)u, = |ulP, (t,z) € [0,00) x R", (1.1.15)

u(0,2) = ug(x), u(0,2) =us(x), ze€R™
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In order to prove the global (in time) existence of small data Sobolev solutions to a given

semilinear Cauchy problem, after using Duhamel’s principle the estimates of solutions to the

following family of parameter-dependent Cauchy problems are necessary to estimate:

uy — a®(t)Au + b(t)u, = 0, (t,z) € [s,00) X R™, (1.1.16)
u(s,z) =0, u(s,z)=g(s,x), z=e€R" o

With the C? property of the above given assumptions (B’1) to (B’4) and the additional
assumption
a’(t)

(B’5) YEOI0) € L'([0,00)),

the author derived the following estimates of solutions to the Cauchy problem (1.1.16):

W%mﬁ%wH&WW%ﬁW%mm

1 ~3(3-1)-4
IVau(t, )2 < C@(1+Ba(s7t)) 8% g5, ) e

a’(t) R C S
Cb(s)b(t) (14 Ba(s,1))

where m € [1,2) and B,(s,t) := f: a;((:)) dr.

The author divided his considerations into two cases to derive results about global (in
time) existence of small data Sobolev solutions to the Cauchy problem (1.1.15): the case of
sub-exponential propagation speed and the case super-exponential propagation speed, which

are defined by the aid of the following auxiliary functions:
a(t) A(6t)

v(,t) := m a(60)

=

IN

-1
et ) 12 )7 1g(s, M mose,

and v(d):= tlim supv(d,t), 6 € (0,1).

Then, the following classification is introduced:
e the case of sub-exponential propagation speed if v(d) < 1,
e the case of super-exponential propagation speed if v(d) = oc.

By the additional assumption

mmmwmﬁ%uﬁmx

in the case of sub-exponential propagation speed, the result about global (in time) existence
of small data Sobolev solutions is formulated by means of the following parameters:

2@0 2
o =1 (1— )f,
p1 + 24+ R/n
5 20/0 2
5y = 1 (1—— )f,
N O ES L)
2a, )
po L 1 (e - )
= — 2+R 2+R 5 — 2fR 2+R o6 _
2 oo1- g pns) Mosatans s i

Here the nonnegative constants y; is from condition (C1), a is from condition (A2) and R
is from condition (B2) with £ =1 and p/(t)/u(t) > —Ra(t)/A(t).

In the case of sub-exponential propagation speed, under the following assumptions it
has been proved the global (in time) existence of small data energy solutions belonging
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to C([0,00), H') N C'([0,00),L?), where the initial data (ug,u;) are assumed to belong to
(H'NL') x (L*NL"):

p, P22 if n=1,2

g (2+ R)n p>p, p= 1 n=1,2,
V() 8a and 2<p<3=pen(3) if n=3,
i p=2=pcen(4) if n=4,

where p := max {131 ;Do ]53} (see [3]).
On the other hand, in the case of super-exponential propagation speed, the following
additional assumption was supposed to be satisfied:

A2
(C2) The function 6(t) := ®) satisfies the following conditions:

(1)
e 0(t) is increasing,
o 0'(t) < ae(t)logil(t) jl((?)’ a > 0.

It has been proved the global (in time) existence of small data energy solutions belonging
to C([0,00), H') N C'([0,00), L?), where the initial data (ug,u;) are assumed to belong to
(H'NLY) x (L*N L"), v(6,t) = O(log A(t)) and

2<p if n=1,2,
2<p<3=pen(3) if n=3,
p=2=paen(4) if n =4,

(see [4]).

1.2. Main goals, some results and plan of the thesis

In this thesis, we are interested in damped wave models with time-dependent propagation
speed and time-dependent damping term both having a time-dependent oscillation term.
More precisely, we are concerned with the Cauchy problem

{um = N (e () Au+ p(tw(thu =0, (1) € [0,00) x B, (12.1)

u(0,2) = ug(x), uw(0,2) = uq(z), r € R,

and the corresponding semilinear Cauchy problem with some power source nonlinearities on

the right-hand side, that is,

iy — NP () Au + p(to(thuy = Fu),  (t,2) € [0,00) x B, 122)
u(0,2) = ug(x), u(0,2) = uq(z), r € R™ -

To verify special properties of solutions (L? — L9 estimates on the conjugate line) we restrict
our considerations to the following Cauchy problem to the linear wave equation with time
dependent speed of propagation:

{utt — (0wt Au =0, (t,2) € [0,00) X R, (1.2.3)

u(0,z) = up(x), u(0,z) =us(x), =eR™

Here the time-dependent functions A = A(t), p = p(t) and w = w(t) are smooth and strictly
positive functions. In particular, A is a monotonously increasing nontrivial shape function
in the propagation speed, p is a nontrivial shape function in the damping term and w is a
bounded oscillating function in both propagation speed and damping term.
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Throughout this thesis, we restrict ourselves to “effective-like” (due to the oscillating term
w = w(t)) damping p(t)w(t)u, according to the classification in [2] and [48]. Here effective
means that the solution to (1.2.1) behaves like that of a corresponding parabolic problem.

The main goal of the thesis is to understand the influence of stronger oscillations on
Sobolev solutions to the linear models (1.2.1) and (1.2.3) and, consequently, to the semilinear
model (1.2.2). Especially, due to the deteriorating influence of oscillations on solutions, a
stabilization condition and higher order regularity of the time-dependent coefficients may
compensate “bad behaviors” arising from oscillations. In this way, stabilization condition
allows us to control a certain amount of very fast oscillations (see [16, 17, 19]).

From a mathematical point of view, it is an interesting problem to study how the oscilla-
tions in the propagation speed and the damping term affects the properties of the solutions
with a stabilization condition. In other words, in this thesis, we investigate how solutions
of the given linear and semilinear Cauchy problems differ from very fast oscillations with a
stabilization condition to very slow oscillations.

In this thesis we will represent the coefficients a = a(t) and b = b(t) in (1.1.1) by the
following products:

a(t) = AMt)w(t) and b(t) = p(t)w(t).

If we have in mind w(t) = 1, then a = a(t) and b = b(t) have very slow oscillations. In
this way, we will call the damping term with the oscillating function w is an “effective-like”
damping term.

Some results of the thesis

In this section, we collect the selected results described in this thesis.

In order to prove global (in time) existence of small data Sobolev solutions to the semilinear
Cauchy problem (1.2.2), after using Duhamel’s principle we need estimates of solutions to
the following family of parameter-dependent Cauchy problems:

{vtt = NP A + p)w(t)oy =0, (t,x) € [s,00) X R", 5 >0, (1.24)

v(s,z) =0, v(s,x)=g(s, ), x € R™.

We derived in Section 2 the following estimates of solutions to the Cauchy problem (1.2.4)
under the assumptions stated in Section 2.3:
A(s) —5-3(%-3
ot e £ 3o (4 Bals, 1) Go9) g5, Y pmpgmosto—1,
A(S) )\Z(t) _g_@(i_l)_l
t.. - < 1 B ,t 2 2\{m 2 :
ot e S 3y ma { < (14 Bas,0)

1

OFAM) (F(A@) 2 (s, )

where 0 € Ry, m € [1,2) and B,(s,t) := Ot A;((TT))dT.

To derive these estimates we use primarily the WKB-analysis and the method of zones. In
opposite to earlier literature, due to the influence arising from strong oscillations, we should
modify the definition of the zones used in related models. Particularly, first, we shrink the
hyperbolic zone by imposing an oscillation subzone. Next, in the same manner, we also need
to get a smaller elliptic zone, however, this leads to enlarging the dissipative zone. Therefore,
this brings competition between the estimates in ||v;(¢,-)|| z- deriving from the elliptic zone
and the dissipative zone, respectively.

L7anU 9

Main results for Sobolev solutions to the Cauchy problem (1.2.2) when f(u) = |ul?, p > 1,
are derived in Section 3 together with higher order energy estimates of solutions and their
partial derivatives. For the sake of simplicity, here we present our results for some typical
examples in our approach, which divide into two cases: case of sub-exponential propagation
speed and case of super-exponential propagation speed, respectively. We introduce only
simplified results under the assumptions stated in Section 2.3 and Section 3.1.1 with the
constructed admissible oscillation function in Section 2.6.
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e Case of sub-exponential propagation speed:
Let A(t) = (a+1)(1 +1t)*, a > 0. Then, we obtain

A= (1+6)°*" and O(t) = 1+, —1<y<a,
4-p

p(t) = (1+ 75)5*17 a—y<pB<20+2 and F(A(t)) =~ (14 t)>T2~1 .

<k <l
e Case of super-exponential propagation speed:
Let us choose A(t) = e’e®’. Then, we have
A(t)=¢" and O@)=¢€*, 0<r<1,
¢ q

p(t) ~e'e®™ 1—r<qg<2 and F(A(t)) ~ el +20e 1 <k <O.

We introduce the space
D;Jn = (HO‘ mLm) % (Hmax{a—l;o} ﬂLm>

with the norm

I(uo, ur)llog, == lluoll e + [luollLm + [lual| fmesio -0 + Jlua |,

where o0 € Ry and m € [1,2).

The space for initial data influences the choice of the space in which we look for solutions.
The results for global (in time) existence of small data solutions to the Cauchy problem
(1.2.2) are treated separately in the case of sub-exponential and the case super-exponential
propagation speed, respectively.

e If the data has a low regularity
(wo,w1) € (H*NL™) x (L*NL™),

where o € (0,1) and m € [1,2), then we prove a global (in time) existence result of
Sobolev solutions provided that the exponent p belongs to some admissible interval and
for the case of sub-exponential propagation speed also satisfies

ﬁ—a+1)2ﬂ

p>1+< a+1

—
Moreover, we have the following decay estimates in the case of sub-exponential propa-
gation speed:

lut, Yz S (1+ )~ Co P52 (ug, ) g,
H’DV“(t’ ')HLz <1+ t)f(zafmz)(%(%*%ﬂ%)||(u0,u1)||pgn'

~

In the case of super-exponential propagation speed we have the decay estimates

+

lut, e S e 0EE2 (ug, 1) oy

H|D’JU(t’ .)HL2 5 6—(2—11)(%(%_%)4‘%)6’5 ”(an UI)HD;-

Here the competition in the estimates of ||u;(¢,-)|| g- does not influence the admissible
exponents p, since we do not have a classical energy solution.

e If the data are taken from energy space with additional regularity, that is,

(uo,w1) € (H'NL™) x (L>NL™),
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then, the global (in time) existence of small data energy solutions can be proved for
larger dimension n, where it is provided that the exponent p belongs to some admissible
interval and in the case of sub-exponential propagation speed the exponent p also holds

b—a-+ 1)2ﬂ
a+1
Moreover, we have the estimates in the case of sub-exponential propagation speed
utt, Yz § U4+ 872G g, w) oy
11D lu(t, - (1 + 1)@= # (G272 (ug, uy) |11

1

e (t, )| 2 < max {(1 I t)—(za—6+2>%(%—a)—1;

p>1+< .
n

HLZ ~

1

(1 + t)*(2a+4n72)%(ﬁfé)72n+l} H (uo’ ul)H'D}ny
and in the case of super-exponential propagation speed
Jutt, ez S =02 D (g, )y
H|D’U,(t, ) < 6_(2 q (n %_%)—F%)ct”(um ul)HD}n;

[P
e (t, )| z2 S max{ete*@*q)%(%*%)et : ete_z”etef(”‘l“)%(i*%)et}H(uo,ul)

Here let us point out that it appears the competition between our estimates for time
derivative of the solution w. If the first components are dominant, then we extend the
results of [3] and [4] with w = 1 by using additional regularity L™, m € [1,2), for the
data.

e Next, we treat the Cauchy problem (1.2.2) for
(uo,ur) € (H7 N L™) x (H' A L™),

where o > 1. In addition to p > 1+ (Z=2+ O‘“) and after using the fractional chain rule

from Section A.7.4 in Appendix another condltlon comes into play which is p > [o] for
any space dimension n. Moreover, we have the estimates in the case of sub-exponential
propagation speed

u(t, )|z < (1 —|—t)f(h*ﬂ”)f(%fé)n(uo,U1)HD5L,

11Dt ), < (1 1) B”)(%(%_%)*%)\|(Uo,u1)||pg,
e (t, Y2 < max{(l +t>—(2a—ﬁ+2)%(%—§)—1;
(1+t) (2a+4Kk—2)% (m* )72N+1}H(UO,U1)||D%,

1

IDI7 et )|z S masc { (14 )2 (36D

o—1)\_
)72 (o, w) o,

(14 t)~@o+as=2 (3G —3)

and in the case of super-exponential propagation speed

e S e @ 0E G0 up, )|,
)

—2-a)(3(5-)+3

Jut,
(PRI

(t,-)
(t,-)

g (t, )| 22 < max {e e (2 q)%(%*%)ef«; o2t o= (24 3 (H—1)e! }H(UO,M)HDU,
(t,-)

H‘D|O‘71ut t, HL2 < max {e e (2 Q)(%(#_§)+U;1)Et ;

o—1

ete_%ete_(%r%)(%(%_%H%)Et}H(Um uy) || pg, -
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n

e Finally, a particular case o > % + 1 is treated. Using fractional powers from Section
A.7.6 in Appendix the condition p > [o] can be relaxed to p > o.

Plan of the thesis

The plan of the thesis is organized as follows.

In Chapter 2, for the linear Cauchy problem (L™ N L?) — L? m € [1,2), estimates are
obtained for the solution and its time derivative. In order to prove these estimates, some
known techniques are applied, such as, WKB-analysis, the method of zones. Besides, micro-
energies in different parts of the extended phase space, diagonalization procedure, symbol
classes and their hierarchies play an important role. In this chapter, the approaches developed
for the linear wave models with time-dependent coefficients with damping [1, 10, 48, 46] and
without damping [16, 18, 19, 33] are applied.

In Chapter 3 several global (in time) existence results are proved in the case f(u) = |ul?.
These results are divided into two cases with respect to the behavior of the propagation speed:
case of sub-exponential propagation speed and case of super-exponential propagation speed.
Firstly, it is considered results for Sobolev solutions below the energy level. Then, results
for energy solution and results for solutions with higher regularity than energy solutions
are derived. In particular, for the results in spaces with higher regularity some tools from
Harmonic Analysis are necessary to deal with the power nonlinearity in homogeneous Sobolev
spaces of fractional order. Finally, results for large regular solutions are considered.

In Chapter 4 some global (in time) existence results are derived in the case f(u) = |u;|? and
flu) = ||D|“u‘p with a € (0,1]. If f(u) = |u|?, we prove large regular Sobolev solutions to
(1.2.2) in the cases of sub-exponential and super-exponential propagation speeds, respectively.
These solutions are imbedded into L*°. So, we may use results on fractional powers. Moreover,
if f(u) = ’|D|“u}p with a € (0, 1], we obtain the global (in time) existence of small data energy
solutions in the classical energy space in the cases of sub-exponential and super-exponential
propagation speeds, respectively.

Chapter 5 is devoted to the Cauchy problem for the linear model in (1.2.3). We obtain
LP — L7 estimates on the conjugate line for Sobolev solutions of the Cauchy problem (1.2.3)
by following the approach in [33]. To get these LP — L7 estimates we apply the partial Fourier
transformation and employ the stationary phase method to the corresponding Fourier multi-
pliers. For these Fourier multipliers we divide our considerations into two steps: application
of Hardy-Littlewood inequality and of a Littman type lemma.

Finally, we proposed in Chapter 6 some further research problems for wave and damped
wave problems with time-dependent variables.

Concluding, in Appendix, we explain the notations used in this thesis, some useful lemmas
and mainly known results concerning Fourier Analysis and Fractional Calculus.
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2. The influence of oscillations on linear
damped wave equation with
time-dependent coefficients

2.1. Introduction

In this chapter, we consider the asymptotic behavior of solutions to the following linear
damped wave equation with time-dependent speed of propagation and time-dependent dissi-
pation:

(2.1.1)

{un — XD (t)Au+ p(t)w(t)u, =0, (t,z) € [0,00) x R,
u(0,2) = ug(x), uw(0,2) = uq(z), xr € R,

with suitable assumptions on the time-dependent coefficients A = A(t), p = p(t) and w = w(t).
Here A = A(t) and p = p(t) are nontrivial shape functions and w = w(t) is a smooth bounded
oscillating function.

The main goal is to prove higher order energy estimates to solutions (2.1.1) taking account
of the CM properties of the coefficients together with a stabilization condition. Generally,
without stabilization condition, for very fast oscillating coefficients one might expect to de-
stroy the estimates, which are valid for very slow oscillating coefficients (see [7, 35]). Roughly
speaking, it is expected to compensate “bad behavior” of oscillations by a stabilization con-
dition.

This idea was at first developed in [16] to investigate the asymptotic behavior for the total
energy of solutions of wave equations with time-dependent propagation speed. The stabi-
lization condition is an essential condition to the coefficients for estimates in lower frequency
part of the extended phase space to derive a benefit of the C* property of the coefficients to
energy estimates. That is, we can derive some improvements from the C™ properties of the
coeflicients by taking into account the stabilization condition.

2.2. Objectives and strategies

We are interested in understanding energy estimates of solutions u = (¢, x) for the model
(2.1.1) with oscillating coefficients. Let us explain our strategy.

e In the first step we apply the partial Fourier transformation and the “dissipative”
transformation to reduce the partial differential equation to an ordinary differential
equation for v = v(t, §) parameterized by the frequency parameter .

e We will divide the extended phase space into two regions by a monotonic separating
curve, the hyperbolic region and the elliptic region.

e We will also divide both regions of the extended phase space into different zones. The
stabilization condition allows us to use weaker assumptions on derivatives with respect
to those from the paper [2] by shrinking the hyperbolic zone. Also by shrinking the
elliptic zone we enlarge the dissipative zone.

e In different cases we propose a different WKB-analysis. The main tools to develop a
suitable WKB-analysis are definition of zones, symbol classes, to carry out a diagonal-
ization procedure, to estimate the fundamental solution and to glue the representations
in different zones together. These steps provide estimates for the energies.
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2.3.

In the hyperbolic zone we apply the C™ theory and M steps of the diagonalization
procedure to cope with the stronger oscillations. So, the remainder becomes integrable.
Then, we derive a suitable representation of the fundamental solution.

In the oscillation subzone we relate our model problem with the model where w(t) =1
to get desired estimates by using the stabilization condition.

In the elliptic zone, we will introduce an appropriate micro-energy to get a system of
first order. After two steps of the diagonalization procedure the remainder matrix is
integrable over this zone. We explain the matrix representation of the fundamental
solution which entries can be estimated by deriving a refined estimate.

In the dissipative zone introducing an appropriate micro-energy we get an integral
representation by using the fundamental solution to a first order system.

In the reduced zone, around the separating curve between the elliptic and the hyperbolic
region the model has no special type. We define an appropriate micro-energy to get for
it a system of first order. Then, we derive a representation of the fundamental solution.

Finally, by using the gluing procedure in the cases where the separating curve is
monotonously increasing or monotonously decreasing, we get the desired higher order
energy estimates.

Assumptions

We assume the following conditions for A = A(¢) and w = w(t) belonging to CM ([0, 00)) with
M > 2 (here we follow some ideas of [19]):

(A1)

(A2)

(A3)

(A4)

A(t) > 0 and X (¢) > 0 for all times ¢ > 0, and the derivatives of A satisfy the conditions

dEA(H)] < )\k)\(t)(j;((?))k, F=1,9 M,

A(t)
At = A S MA@

where )y and all )\, are positive constants and A(t) = 1 4+ fot A(7)dr is a primitive of
At);

0 < ¢g <w(t) < ¢ and the derivatives of w satisfy the conditions
|dfw(t)| < w275 (1), k=1,2,---, M,

— —
— — =

where all w;, are positive constants and = = Z(¢) is a positive, monotonous and contin-
uous function satisfying the compatibility condition

CLO(t) < Mt)Z(t) < CoA(t).

Here © = O(t) is a strictly increasing continuous function with ©(0) = 1, ©(¢) < A(t)
for t > 0 and O(t) = o(A(t));

w = w(t) is A-stabilizing towards 1, that is,
t
| At - 11dr < cse(t)
0

the following estimate holds:

[ e e < o),

t
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(A5) the function F' = F (A(t)) is defined by
1 (o)
—_— = A Y T)ZE2(r)dr and F(A(t)) > 00 as t— oo,
o = O (A®)

where we assume that A7 (¢)=72(¢) € L*([0, o0)).

Cauchy problems with increasing speed of propagation have been considered in [36]. Fol-
lowing their approach condition (A1) is standard. Condition (A3) is a so-called stabilization
condition, which allows us to control a certain amount of very fast oscillations. In particu-
lar, this stabilization condition describes an error made from the oscillating behavior of the
coefficients.

Remark 2.3.1. If we consider very slow oscillations, that is, if we choose formally ©(¢) = A(t)
and F (A(t)) = A(t), then conditions (A2) to (A5) trivially hold and by these choices the
stabilization condition disappears. Hence, the stabilization condition (A3) has a meaning
only in the case M > 2.

We will restrict ourselves to “effective-like” damping case in the sense of [2] and [48]. Here
effective means that the solution behaves like that of a corresponding parabolic equation.
Now motivated by the considerations from [2], in order to study the interaction between the
shape functions A = A(t), p = p(t) and the oscillating function w = w(t) we assume the
following conditions:

>
—~

t)
(t)’

(B1) p(t) >0 and p(t) = u(t)

=

A(t)\*
(B2) |dFp(t)] < pep(t) (AEt;) for k=1,2,--- M, where all u;, are positive constants;

(B3) X((g is monotonic and pu(t) — oo for ¢t — oo;

N1 MDA | o o,

(B5) u(t)% — 00 as t — 0o, this implies that |(p(t)w(t))/} =o((p(t)w(t))?) as t — oo;

NG
Bo) [

N(7)
p(7)

The conditions (B3) and (B4) describe the effective damping case related to a given
increasing propagation speed. In particular, (B4) excludes the over-damping case (see [2]).
The condition (B5) allows us to control a certain amount of very fast oscillations in the
damping term p(t)w(t)u,.

Remark 2.3.2. If we consider very slow oscillations, then it holds F' (A(t)) = A(t). Hence, the
condition (B6) trivially holds, since we have

TN [ADAE) L PADAE) s
/Op(T)dT_/O o dS/O dr S (D)

where due to p(t) — oo as t — oo, there exists a constant po such that p(t) > po for large t.

dr < C5F? (A(t)), where Cj is a positive constant.

2.3.1. Some examples

Now let us discuss some typical examples related to suitable shape functions A = A(t) and
p = p(t) in order to verify our conditions.
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Example 2.3.1 (Polynomial case). Let A\(t) = (o + 1)(1 4+ ¢)* with o > 0. Then, we get

Alt)=(1+8)*" and p(t) = (o + 1)1“(3.

Now taking account of the stabilization condition (A3), we can choose
) =1+, —l1<y<a
If we take p(t) = (1 +¢)°*! with « — v — 1 < 8 < 2a + 1, then we have
p(t) = (a+1)(1+1)°.
Moreover, from the condition (B5) we obtain

u(t)iég

= (1 +¢)Ftrott,
Hence, by these choices the conditions (A1) to (A3) and (B1) to (B5) are satisfied.
Example 2.3.2 (Ezponential case). Let \(t) = e'. Then, we obtain
A(t)=¢e" and p(t) = u(t).
If we consider the stabilization condition (A3), we can take
O)=¢€", 0<r<l.
We choose p(t) = u(t) = e?* with 1 —r < ¢ < 2. Then, from the condition (B5) we have

(t)% — elatr=1t

A(t)
Hence, by these choices the conditions (A1) to (A3) and (B1) to (B5) are satisfied.

Example 2.3.3 (Super-ezponential case). Let \(t) = ete? . Then, we get

t

A(t)=¢e® and p(t) = pu(t)e'.

If we consider the stabilization condition (A3), we can choose
O)=¢e*", 0<r<l.
Let us choose pu(t) = e with 1 —r < ¢ < 2. Then we have
p(t) = e®¢t.
Moreover, from the condition (B5) we obtain

(02 _ e

A(t)
Hence, by these choices the conditions (A1) to (A3) and (B1) to (B5) are satisfied.

Here we remark that the conditions (A4), (A5) and (B6) will be verify in the next section
for these kind of examples.
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2.4. Representation of solutions

In this section we transform our Cauchy problem (2.1.1) with time-dependent propagation
speed and dissipation to a Cauchy problem with time-dependent mass. We apply the partial
Fourier transformation with respect to spatial variables to the Cauchy problem (2.1.1), we
get that @ = 4(t, &) = Faose (u(t, z)) (¢, ) solves

{u R (DIEP + pltw(t)in =0, (1) € [0,00) x B,
7:6(0,6) = Uo(g), (ng) = a1(§)7 f € R™

Applying the transformation
1 t
it 6) =exp (- 3 / p(r)w(r)dr ot €).
0
transfers the Cauchy problem (2.4.1) into

Vgt + m(t,f)v =0, (t7§) c [O, OO) x R,
{U(O,f) = ’UO(g)a vt(O,,f) = U1(§), § e R, (242)

(2.4.1)

where

w(©) = o(€) and wi(6) = "Wq06) 4 i o)

and the coefficient m = m(t, £) of the mass term which is defined by

m(t,€) = N (OOl — § (pe(0)” ~ S (o0 (1) (243)
By condition (B1) we can rewrite the formula (2.4.3) as

m(t,6) = I - 1) et — 3 () Y’

Due to conditions (B2), (B3) and (B5) we see that (,o(t)w(t))/ is a negligible term in (2.4.3),
that is, it holds |(p(t)w(t))l| = o((p(t)w(t))?) as t — co. Indeed, we have
[(p(t)w®)'| _ [(®3Ge®)] _ I 01550 + Aad 1) 328 w(t) + p(t) 3w (1)
(ptw(®)” (@ (t) pe(t >22E?) w(t)
1= 1 o . 1 1
b W20 S 0 T X S @ T e

Motivated by the above considerations

N (O ()]E — 3p2(1)(1)

can be considered as the principal part of the coefficient m = m(¢,&) of the mass term
m(t,&)v. Hence, we can introduce a separating curve as

—{(t.9) € Do) xR Jg = 3400

which divides the extended phase space into two regions, the hyperbolic region Il and the
elliptic region Ilg,, as follows:

My = {(£€) €[0,00) xR : J¢ >

Ha = {8 €000 xR":[¢| <
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Let us define the auxiliary weight function

2(t
@ = OO - !—W o)l = )|
Proposition 2.4.1. It holds

MO () (AD0) ¢ = (1) 552) (025582
(£) A(t),w(t)

O(&)at)wr) = =

h A2 (t)w? (1) €]
w

0161 (E) sy w(ry = F oS

(Erww

where the upper sign is taken in the hyperbolic region.

)

Division of the extended phase space

Now we will divide both regions of the extended phase space into some zones in order to
organize the necessary steps of WKB-analysis. Here we follow some ideas of [2]. However,
we have to restrict the considerations to a smaller hyperbolic zone and smaller elliptic zone
in the extended phase space to cope with stronger oscillations in w = w(t) in our approach.

The zones are defined as follows:

e hyperbolic zone:

t)w(t
Zuas(N) = {(1,€) € 0,00) x B : g 2 VDY
and O()[{| > N;
e oscillation subzone:
Zowo (N, €) = {(t,g) € [0,00) x R" : &

O(t)[¢] < N and A(t)[£] > N;

e reduced zone:
_ " p( .
Zeeale) = {(,€) €10,00) X R : ()t < €

e elliptic zone:

Zen(do, €) = {(t,ﬁ) € [0,00) x R™ : [£| > 7
e dissipative zone:
d
Zdiss(dO) - {(t7£> € [0,00) X Rn : |£‘ S Wo(t))} mHell'

Here in general, N is a large positive constant and e is a small positive constant. Both will
be chosen later. Moreover, let us point out that to get a smaller hyperbolic zone we impose
an oscillation subzone, however, shrinking the elliptic zone leads to enlarging the dissipative
zone.

Let us introduce separating lines between these zones as follows:
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o by taiss = taiss(|€]), we denote the separating line between the dissipative zone and the
elliptic zone;

e by tan = ten(|€]), we denote the separating line between the elliptic zone and the reduced
zone;

® by trea = trea(|€]), we denote the separating line between the reduced zone and oscillation
subzone;

o by tose = tosc(|€]), we denote the separating line between the oscillation subzone and
the hyperbolic zone.

T 7L(11» - fr(td - t()sc
[ t
|\ w
( . \‘
\ |
' \
\\ |
\\ Zhyp
\
. \R
\ ’ N N Zosc
. Zen A \ Zen
\ \ \ !
Zred Zdiss \\\ Zer
Zdiss \\\ \\ diss \ 4'
° I >
0 [ 1]
a. The case that p(t)/A(t) is decreasing b. The case that u(t)/A(t) is increasing

Fig. 2.1.: Division of extended phase space into zones

Let us introduce

(€)= (LA s + (1~ XUEFA©)) A0l (2.4.4)

and

ho(t, &) = X<<§>)\(t)7w(t))8p(t)w(t) + (1 . X( <£>>\(t)7w(t))> <€>)\(t),w(t)a (2.4.5)

p(t)w(t) pB)w(t)
€5 2 T2

where x € C* ([0,00)) such that x(¢t) =1 for 0 < ¢ < $ and x(t) =0 for t > 1.
Now let us define the micro-energy

~ ~ T
U(t,€) = (ha(t, ©)at, €), Dria(t, €)) -
Then, we obtain from (2.4.1) the system of first order

Dy hq(t,)
_ T (t.0) I (t, §)
DU (t,&) = ORI
RO (it

A(t,8)

Ut €) (2.4.6)

with the initial condition U(0,&) = (h1(0,£)a(0, £), D,a(0,€)) " .
On the other hand, we define the micro-energy

V(t,€) == (ha(t, E(t, €), Dyo(t, €)) .
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Then, by (2.4.2) we obtain that V' = V(¢,&) satisfies the following system of first order:

Dthz(t,f) h2(t7 5)

DVEE = V(t,€) (2.4.7)

ha(t,€)

Av (t,6)

with the initial condition V(0,€) = (ha(0, £)v(0,£), D (0,€))".

Definition 2.4.1. For any ¢ > s > 0, we denote by E = E(t,s,§) and Ey = Ey(t,s,§)
the fundamental solutions of (2.4.6) and (2.4.7), respectively. That is, the matrix-valued
functions which solve the Cauchy problems

D.,E(t,s,§) = A(t,&)E(t,s,&), E(s,s,8) =1

and
DtEV(tvsag) :AV(tvf)EV(t757£)7 Ev(S,S,g) :Iv

respectively.

Hence, it is easy to prove that we have U(t,§) = E(¢,0,€) (hl(o,g)a(o,g),Dta(o,g))T

and V (t,£) = Ev(t,O,f)(hQ(O,E)U(O,§),Dtv(0,§))T. Moreover, for any t, > t; > 0 it holds
E(t7 tlv f) = E(t7 t27 f)E(t27 tlv g) and EV(t7 tlv é) = EV(tv t27 g)EV(t% tla 5)

Remark 2.4.1. By the previous considerations, after obtaining estimates for Ey = Ey (t, s,§)
it is sufficient to apply the backward transformation to the original Cauchy problem. That
is, we transform back Ey = Ey(t,s,{) to estimate the fundamental solution E = E(t, s,§)
which is related to a system of first order for the micro-energy (A(t)|¢|@, D,@), which gives
the representation

B(t,5,€) = T(1,€) By (1,5, 6)T (5, €), (2.48)
where the matrix T'(¢,€) is defined in the following way:

Dyl jpw(®) 1 Dy
25(t)ha(t,E)  o(t)

< A()[¢la ) _ ey O ( ha(t, €)v )

T(t,8)

with the inverse matrix

Wt
T*l(t 5) — )\(t)lgl
) (D) (1) (1) ,
—i%5swe - 0(0)

where the auxiliary function

is related to the damping term p(t)w(t)a,.

2.4.1. Considerations in the hyperbolic zone

In order to derive a representation of solutions in the hyperbolic zone we apply a diagonal-
ization procedure to a first order system corresponding to the Cauchy problem (2.4.2). This
procedure is well-known as WKB-analysis (WKB is an acronym of the physicists Wentzel-
Kramers-Brillouin).

Basically, we will consider a first order system with a coefficient matrix composed of a
diagonal main part and remainder part. The goal of this diagonalization procedure is to keep
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the diagonal part in every step of the diagonalization. However, after every step we get a
“better normwise estimate” for the remaining part in some scale of symbol classes.

An improvement of the diagonalization procedure was developed in [16]. The author
performed more diagonalization steps in order to use structural properties of the coefficient
matrices by assuming higher regularity of the entries of the matrix.

In the hyperbolic zone, we will apply M steps of diagonalization procedure. After M
steps of diagonalization procedure, we can guarantee that the remainder part is uniformly
integrable over the hyperbolic zone. Here we follow some ideas of [16, 18, 19].

First of all let us introduce the following family of symbol classes in the hyperbolic zone.

Definition 2.4.2. A function f = f(¢, &) belongs to the hyperbolic symbol class S5 {m, ma}
of limited smoothness if the estimates

IDFF(t,€)] < Crl€)S) wn E() 7" (2.4.9)

are valid for all (¢,§) € Zyy,(N) and all kK = 0,1,--- ,¢ with £ < M. Here M is the order
of the regularity of the time-dependent coefficients as well as the number of steps of the
diagonalization procedure.

We note that in the hyperbolic zone Zy,(N), the auxiliary symbol (&)xu)we) can be
estimated by

() .we) ~ A)[E]- (2.4.10)

From the definition of the symbol classes we may conclude the following rules.
Proposition 2.4.2. The following statements are true:
1. S5 {my,my} is a vector space for all nonnegative integers ¢;
2. Sﬁ,{ml,ng} - SELm, mbY} — 8L {my +m), ma+mb} for all nonnegative integers { and
¢ with ¢ = min{{, ¢'};
3. DFSY{my,mo} — S5 *{my, my + k} for all nonnegative integers £ with k < ¢;
4. S3A=M, M + 1} — LEL;{(Zpyy(N)) with M from condition (A4).

Proof. We only verify the fourth property. Indeed, if f = f(¢,&) € S%{—M, M + 1}, then we
have

/t F(r€)|dr < / (€5 L E M ()T < / €[N AN ()2 () dr

osc osc tose

S (A < 00,

NM
where we used (2.4.10), condition (A4) and the definition of the hyperbolic zone, respectively.
O

Proposition 2.4.3. Assume the conditions (A1), (A2) and (B1), (B2). Then, the fol-
lowing inequalities hold:

1. ‘Dé€<£>)\(t),w(t)| rg <£>)\(t),w(t)5_k(t) fOT’ all k = Oa ]-7 T 7£ with £ < M;
2. |Df(p(t)w(t))| S (E)rwywnEF(t) for all k =0,1,--- € with £ < M.
In the hyperbolic zone we have hy(t,£) = ({)aw)w)- We introduce the micro-energy
V =V(t¢) by
T
V = ((E)anwmv, D) .
Then, it holds

D (&) xt),w(®)

0 (a0 )
_ ’ (t),w(t)
DV = 0 v+ (p()(t))’ v
) w) -

2(E) x(t),w (1)
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Let us carry out the first step of the diagonalization procedure. The eigenvalues of the first
matrix are £(&)x¢)w(e)- Thus, the matrix of eigenvectors P and its inverse P~' are

(1 -1 41 1 1
P_(l 1) and P —2<_1 1).

Defining V() := P~V we get the transformed system

DV = [Dy(t,&) + Ro(t, )]V,

where
D)o@y (p(w(t)’
Do(t é_) . <£>)‘(t)aw(t) + 2<§>)\(t),w(1) 4(€>>\(t),w(t) O
R = _ D (&) x(t),w(t) (p(t)w (1)
0 <€>A(t)7w(t) + 2<~f)>\(t),w(t) + 4<E>A(t),w(i)
and
0 _Df<<§>>>\(t),w(t) (<P(>t)w(t))/
_ 2(E) x(1),w(t) 4 n(),w(t)
Ro(t,€) = _ DilOamwry  (pw(t) 0
2(E) x(t),w (1) AU A, w(t)

Note that Ro(t,&) € Sy '{0,1}. Now we want to carry out further steps of the diagonaliza-
tion procedure. The goal is to transform the previous system such that the new matrix has
diagonal structure and the new remainder belongs to a hyperbolic symbol class.

Lemma 2.4.4. There exists a zone constant N > 0 such that for any k = 0,1,--- , M we
can find matrices with the following properties:

e the matrices N, = Ni(t,£) € Sx%{0,0} are invertible and N,;* = N, *(t,&) €
Sy ~{0,0};

e the matrices Dy, = Di(t, &) € Sx'"{1,0} are diagonal and
Di(t,€) = diag (7, (£, &), 7 (t,€))
with [7f (8, €) — 7 (4,€)] > Cel&)aw wo
e the matrices Ry = Ry (t,€) € SN *{—k,k + 1} are antidiagonal;

all these matrices are defined in Z,,(N) such that the operator identity

(Dt - Dk<t7 f) - Rk(tv &))Nk(ta f) = Nk(ta 5) (Dt - Dk-i—l(t? f) - Rk-‘rl(tv é)) (2411)

18 valid.

Proof. The proof goes by direct construction. Let us denote the difference of the diagonal
entries by

5k(t7§) = le_(taé) - Tk_ (t7€)
Assume that we have given a system by D,V*®) = (Dy(t,£) + R (t,£))V® with

Dy(t,€) = diag (7 (1, €), 7 (t,€)) € Sy ~*{1,0}

satisfying
|5k(t7£)| = ‘le(t7£) - T;;(t,f)| > Ck<£>>\(t)aw(t)

and an antidiagonal remainder R; = Ry (t,&) € Sa *{—k,k + 1}. Then, we can construct

0 _ (Ri)i2

N®(t, &) = ( (R Oék ) € SNTH—k -1,k +1},

Ok
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such that N (¢, &) = I+N®) (¢, &) is invertible for a sufficiently large zone constant N. Indeed,

1
[EIFFINHL ()R ()

IN® ()] S (O3 pwwE "1 () <

1

1
< ORI (E) < N —0 as N — oo.

Furthermore, by construction

[Dk (t7 g)a Nk (t7 5)] = _Rk (t7 g)a
such that

B (t,€) = (Dy — Di(t, €) — Ri(t,€)) Nio(t, &) — Nio(t, €) (Dy — Di(t,))
= DyNj,(t,€) — [Di(t, &), Ni(t, )] — Ru(t, E)Ni(t,€)
= DyNi.(t,€) = Ry (t,€) (Ni(t,€) — I) € SN "~k — 1,k +2}.

Thus, by defining

Diya(t, €) = Dy(t, €) — diag (N, ' (£, ) BE (1, €))
and
Rira(t,€) = diag (N (£, ) BV (1, €)) — N7 H(t,6) BETD(8,€)

we obtain the operator equation
(Dt - Dk(ta 5) - Rk(ta g))Nk(t7 g) = Nk(t7 f) (Dt - Dk+1(t’ 5) - Rk?Jrl(tv 5))

with Dyyy € Sy F71{1,0} and Ryyy € SN " '{—k — 1,k +2}. The estimate for B**1) (¢, ¢)
implies that

C
|7’,;:_1(t,§) - TI;+1(t7€)| > |le(t7£) - T];(tf){ - <§>/\(t),w(t)ﬁ'

If we choose N sufficiently large, then the statement is proved with Cy,q := Cy — % O

Finally, we obtain for k = M a remainder Ry = Ry (t,§) € SY{—M, M + 1}, which is
uniformly integrable over the hyperbolic zone.

To complete the derivation of our representation we need more information on the diagonal
matrices Dy = Dy (t,&).

Lemma 2.4.5. The difference of the diagonal entries of D), = Dy(t,§) is real for all k =
0,1,---, M —1.

Proof. Let us prove this lemma by induction following the diagonalization scheme. We will

show that the above statement and the following hypothesis

(Hiy) Ri = Ry(t,§) has the form R, = <50 60’“) with complex-valued [y (t,&) for all
k

k=0,1,--- , M —1,

are both valid.
For k = 0, by the definition of Dy and Ry we see that the assertion (Hy) is satisfied with

O a).w(t) i (p(H)w(t))’

Bo = ﬂo(t,f) - 2<§>A(t),w(t) 4<§>)\(t)7w(t)

and

18t<§>>\(t ( (t)w(t) )l

+ +
o =T, (£, &) = £(E)rwwe) + + :
0 ° SECEC i 2<§>/\(t)w(f) 4 at) ()
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Assume that (Hy) is true and we will show that (Hj) implies (Hyy1). The construction
implies

N®(t,¢) = (Bok 05’“> with det N = W <e<1

with a suitable choice of the zone constant IN. Following the diagonalization scheme of
[16, 18, 19] and setting
|ﬁk(t £)|

(2.4.12)

we obtain

NEI(D}C—FR]C)N]Q: (dlag( _dka _6kdka7-k —dka +5kdk) —|—dkRk)

1—d,
and _ _
1 29,50 0 -9
N (DN, = o 7t an N &
“em -z (M0 ez ) (o T
such that
By - B B o Br B, Bu 1 /Bk B
Re 0, = Oy— + —0 = -0d;, = R
(5k ta,) <5k ‘5. 6 tak) g Otk = e<5k 5,)
implies
1 5k Br . Oy,
+ +
= —— | diby + 1 —
T =T TG, ( B+ Im((520 5,)) "2(d — 1)
Hence d;.4, is real again and Ry, satisfies (Hy. 1) and, therefore, both statements are true
forall k=0,1,--- , M — 1. O
Now we want to construct the fundamental solution E}‘l/yp = Ehvyp(t, 5,€), 0 < s <t, for

the operator
-Dt - DO(tv g) - RO(t7 5)

For this reason after M steps of diagonalization it is sufficient to construct the fundamental
solution satisfying the system

DtEM(ta S, f) = (Dkf(ta 5) + RM(tv f))EM(t7 S, 5)7 EM(Sa S, é) =1I
At first we solve the diagonal system
Dth(tu‘S?f) :DM(t,S,f)EM(t,S,€)7 SM(8757£) :I7 OSSSt

Its fundamental solution is given by

t
Em(t,s,&) =exp (z/ Dy (0, {)d@) = diag (ei Jimin@8d0 i f; 7151(9’5)‘19).

We make the ansatz FEy(t,s,&) = Eynlt, s,£)Qun(t, s,€) with a uniformly bounded and in-
vertible matrix Qy = Qu(t, s,€). It follows that the matrix Qy = Qu(t, s, &) satisfies the
System

DtQM(ta S, g) = RM(ta S, g)QIVI(t7 S, 5)3 QIW(57 S, 5) =1
with the coefficient matrix
RJM(ta S, g) = gM(Sv ta g)RM(ta f)gM(t> S, 5)
Taking account of Ry (¢, &) € SY{—M, M + 1} we obtain

R (t,5,6)] = [Rar (£, 8)] S (Oxywn= " (0 SIETHAMBHETM).
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The solution Q) = QO (¢, s,€) can be represented as Peano-Baker series (see Appendix A.2.1)

QM(t,S,f) :I+sz/ RM(t1a87§)/IRM(t27S7§)"'/k_1 RM(tk,S,f)dtk"-dtl.
]i?:l S S S

Then, we obtain the following statement.

Lemma 2.4.6. The fundamental solution EY, = EY (t,s,£) is representable in the following

hyp hyp
form:
M-1 M-1
E}‘L/yp(t787£) = P( H Nk(t7§))(€M(taSag)QM(tﬂgag)( H Nlc_l($7§))P_1
k=0 k=0

for all (t,€),(s,€&) € Znyy(N), where
e the matrices Ny = Ni(t,€) and N, ' = N '(t,€) are uniformly bounded and invertible;

e the matrices Qy = Qu(t,s,&) and Q,f = Qi) (t,5,€) are uniformly bounded and
invertible.

Proof. The standard construction of Qy = Qp(t,s,€) in terms of a Peano-Baker series
implies the uniform bounds for this matrix as follows:

Qultss. €)1 < exp ([ IRu(0.5.6)1d0) < oxp ([ Cledlh o= O)a0)

<exp<c) <exp( ¢ ) <1,
= IEMOM (to) ) = NM )~

where we used condition (A4) and the definition of Zy,(IN), respectively. Moreover, af-
ter applying Liouville theorem (cf. Theorem A.2.3) and the invariance of the trace under
multiplication we get

det Qp(t,s,€) = exp (2 /t tr Ry (6, s,f)dﬁ) = exp (2 /t trRM(9,§)d9) =1

S

and |9,/ (t,5,€)| < 1. The proof is complete. O

The asymptotic behavior of the fundamental solution EY, = EY (t,s,£) is given by the

) hyp hyp
following statement.

Lemma 2.4.7. Assume the conditions (A1) to (A4) and (B1) to (B3). Then, the funda-

mental solution Ey = Ey (t,s,£), satisfies the estimate
At) (11
v <

uniformly for all (s,&), (t,€) € Znyy(N).

Proof. The statement of Lemma 2.4.6 implies that

t
Bur(t,5. €)1 £ €t 5. ) = exp (~ [ Im(0.€)d9) for ¢ o0
uniformly for (s, ), (¢,€) € Zuyp(N). We can use our representation of 73 (¢, &) to deduce

0w _ N~ _ Ody(t.€)
25

Im 73 (t,€) = Im 7, (¢, &) = — 2(E) )t . m’
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where d; = d;(t,§) is defined in (2.4.12), such that

t = tar‘f (1),w(T) et -1
oo (- i)« [ S (2t
< VA w) < \/)\ )] _ N0
TV rwwe T VAB)IET \//\(s)

This completes the proof. ]

After constructing the fundamental solution EY = E\ (t,s,&) we use the backward
“dissipative” transformation to the Fourier transformed original Cauchy problem (2.4.1).
Thus, we get the following representation of the fundamental solution Eyy, = Ehyp (2, s,&) in

the hyperbolic zone.
Corollary 2.4.8. Assume the conditions (A1) to (A4) and (B1) to (B3). Then, the

fundamental solution Ey,, = E,,(t,s,&) satisfies the estimate

(1Bt 5.)]) < i((?) exp (5 / p(6)(6)a0) < o ) (2.4.14)

for all (s,8),(t,&) € Znyp(N).

Some examples

We complete this section with some examples for special coefficient functions in combination
with the fourth property of Proposition 5.2.5.

Example 2.4.1 (Polynomial case). Let A\(t) = (v +1)(1 4+ ¢)*, a > 0. Then, we obtain
At)=(1+t)*" and O@t) =1+, —1<y<a. (2.4.15)
Moreover, we have
pt)=(a+1)(1+t)°, a-—y—-1<pB<2a+1.
Now from condition (A2) let us choose Z(t) = (1 + ¢)* with

a—r
M+1

1>k>ky=1—a+~vy+ (2.4.16)
Let us suppose that the remainder Ry = Rar(t, &) belongs to SY{—M, M + 1} in Zyy,(N).
Then, by using the definition of Zy,(NN), in particular, (1 +¢)7"!{| > N, we get

/oo |Ras (7, €)|dr < /°°<5>_(T) T R(M+1) g

tosc osc

5 yé‘M/ (1 + T)faan(MJrl)dT f, \€|7M(1 _'_tosc)—(xM—n(M—‘rl)-‘rl
to

sc

< NM(L 4 1) OO TAM D (2.4.17)
by the condition (2.4.16).
On the other hand, from condition (A5) we obtain
FA®) ~ (1 +)*21 a+2k—1>0. (2.4.18)
By (2.4.16) and (2.4.18) we have
1— _
e O e

2 M+1.
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Finally, let us consider condition (B6). It holds that

(14 )27 < (1 ¢)2oH 20 > #. (2.4.19)
We can see that from (2.4.18) and (2.4.19), since 5 < 2« + 1, it holds
3—0 1—-«
_— > .
4 2
Therefore, we obtain that the range for admissible « is given by
3
K> 4 (2.4.20)

In the case a = 7, that is, no stabilization condition holds, then (2.4.17) is satisfied with
M =1, since in this case we have
1) = At)  a+1

A 1+t

(1]

Therefore, the estimate (2.4.14) coincides with the estimates given in [2], in the case of very
slow oscillations.

Example 2.4.2 (Ezponential case). Let us choose A\(t) = e'. Then, we have
A(t)=¢" and O()=¢€", 0<r<l1. (2.4.21)
Moreover, we have
p(t)=e 1—-r<qg<?2.
Now from the assumption (A2) we choose Z(t) = e** with

1—r

0>k 2> =r—1 .
K> Ky =T +M+1

(2.4.22)

Let us suppose that the remainder Ry = Ra(t, &) belongs to SY{—M, M + 1} in Zyy,(N).
By using the definition of Zy,,(NN), in particular, e"*|{| > N, we obtain

/OO |RM(T, §)|d7' 5 /oo<§>;(1\7_4)7w(7)e—m(M+l)TdT 5 |§|—M /oo e—M-re—n(M-H)-rdT
tOSC osc tOSC

S |§|7Me(fM7nM7n)tosc < ]\ffJV[er1\/Itosc+(7M71<M7,'{)t(,sC S 17 (2423)

by the condition (2.4.22).
On the other hand, from condition (A5) we obtain

F(A(t)) ~ 20t 1425 > 0. (2.4.24)

By (2.4.22) and (2.4.24) we have

S Sk
—=>r— .
2 M+1
Finally, let us consider condition (B6). It holds
2Dt < ARt > —%. (2.4.25)

We can see that from (2.4.24) and (2.4.25), since ¢ < 2, it holds

q 1
17Ty
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For this reason, we obtain that the range for admissible ¢ is given by

K> —%. (2.4.26)

We note that if = 1, that is, no stabilization condition holds, then (2.4.23) is satisfied with
M =1, since in this case we have

Therefore, the estimate (2.4.14) coincides with the estimates given in [2], in the case of very
slow oscillations.

Example 2.4.3 (Super-ezponential case). We choose () = e’e?’. Then, we have
At) =€ and O@)=¢", 0<r<1. (2.4.27)
Moreover, we have
p(t) =ele®, 1—r<qg<2.
Now from the assumption (A2) let us choose Z(t) = e~'e™ with
1—r
M+1

If the remainder Ry belongs to S{Y{—M, M + 1} in Zy,,(N), then by using the definition of
Zygp(N), in particular, ™' |¢| > N, we obtain

| R Oldr S [0 e e ar
tosc t

osc osc

O>k>ky=r—1+

(2.4.28)

oo oo
S |£|—J\l / e—M‘re—MeTe(M—i—l)‘re—n(M—i-l)eTdT — |£|_N] / ere(—J\I—IiM—n)erT
t

osc tosc

— —M— _ tosc _ tosc —M— — tosc
S |§| Jwe( M—-xkM—k)e SN MerMe 6( M—rkM—k)e <1

~ )

(2.4.29)

by the condition (2.4.28).
On the other hand, from condition (A5) we obtain

F(A(t)) ~ 29 1425 > 0. (2.4.30)
By (2.4.28) and (2.4.30) we have

N 14 1—r
_ /"“ p—
2 M+1
Finally, let us consider the assumption (B6). It holds
e(?*‘])et 5 6(2+4K)et’ K 2 _% (2431)

We can see that from (2.4.30) and (2.4.31), since ¢ < 2, it holds

q 1

17Ty
For this reason, we obtain that the range for admissible ¢ is given by

K> —%. (2.4.32)

We note that if » = 1, that is, no stabilization condition holds, then, (2.4.29) is satisfied with
M =1, since in this case we have

Therefore, the estimate (2.4.14) coincides with the estimates given in [2], in the case of very
slow oscillations.
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2.4.2. Considerations in the oscillation subzone

Basically, what we have done in the hyperbolic zone was to cope with the stronger oscillating
behavior of w = w(t), we have applied more diagonalization steps and restricted our consider-
ations to a smaller hyperbolic zone with respect to the one in the approach from [2]. In other
words, we have already chosen the hyperbolic zone as large as possible. For this reason we
have a zone between the reduced zone Z,.q(¢) and the hyperbolic zone Zy,(N), the so-called
oscillation subzone Zy(N,¢€).

The following question arises:

How to estimate the fundamental solution E,.. = FEu.(t, s,£) in the oscillation subzone
ZosC(N’ 5)?

The basic ideas are taken from [18, 19]. Essentially, in Z,..(V, €) we relate the fundamental
solution Eos. = Eoec(t, s, &) to the fundamental solution E\ = F\(t, s, &) to the corresponding
model with w(t) = 1 and effective dissipation.

Note that Z(N,e) C Z},,(N) such that we can use the known estimates for Ey =
E\(t,s,€) from [2] (see Lemma 3.5 of [2]). This estimate reads as follows:

(1B 5,9))) 5 %exp(— [ (1)

Let us introduce the micro-energy U = U (t,§) by

L T
U(t.) = (M®)lela D)
Then, we obtain from (2.4.1) the system of first order
Dix
DU = ( A(t()t) A®)IE] ) U
A)w?@)[E] ip(t)w(t)
At:€)

(2.4.33)

Our aim is to construct the corresponding fundamental solution, that is, the matrix-valued
solution of the system

DtEosc(t7 876) - A(t7£)Eosc(t7 875)7 EOSC(S7 375) - Ia 0 S S S t
If we set formally w(t) = 1 and define the micro-energy to the corresponding model by
. T
Ua(t,€) = (A(®)[¢]a, Dea) -,
then, it satisfies the system of first order
D A(t) )\ t
DtU)\ — ( A(t) ( )‘£| ) U)\.
A€l ip(t)

Ax(t,6)

We denote the corresponding fundamental solution as Ey = E\(t, s,§), i.e., the solution to
DtE)\<t7 875) = A)\(tvf)E)\(ta 375)7 E)\(S7 Své) = Iv 0 <s<t.

An estimate of the fundamental solution F\ = E\(t, s, £) is essentially given by the C? theory.
Hence, in Z,..(N,e) we relate Ey.(t,s,£) to E\(t,s,£) and use the stabilization condition
(A3).

Corollary 2.4.9. Assume conditions (A1) to (A3) and (B1). Then, the fundamental
solution E,s. = E,s(t,s,€) satisfies the estimate

(5t < Yoo [ o) (1 1)

uniformly for (s,€), (t,€) € Zow(N,e), 0 < s < t.
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Proof. In order to relate Eoe = Eos(t, s,§) to Ex = E\(t,8,€) in Zo(N,e) we make the
ansatz

Eosc(ta S, 6) = E)\(t, S, g)Qosc(ta S, g)
It follows that the matrix Qo = Qosc(t, s, &) satisfies
Dt Qosc(t7 S, ‘5) - E)\(Sv t7 5) (A(t7 f) - A)\(tv §))E)\ (ta S, 5) QOSC<t7 S, E)

with initial condition Qe = Qosc(s,s,&) = I. Taking account of Ey'(t,s, &) = E\(s,t,£) we
derive

|Ex(s,t,€) (A(t,€) — Ax(t,€)) Ex(t, 5,6)| S |A(t,€) — Ax(t,€)|
AB)IE][w?(t) = 1] + p(t
A€l lw () — 1] + pu(t)
A I€lw(t) — 1],

where we used the definition of the hyperbolic region. Hence, applying the Peano-Baker
formula and using the stabilization condition (A3), we get the uniform boundedness for the
matrix Quse = Qosc(t, 8,§) over Zoi (N, e) as follows:

() — 1]
A,
OGN

|Quelt, 5,€)| < exp cyg\/ AD)|e(r) — 1]dr )
< exp (C'¢[O(tose)) S 1.

Furthermore, we get | det Qus.(t,s,£)| = 1 from Liouville theorem and conclude that Q. =
Qosc(t, 8,€) is uniformly invertible within Z,..(N,e). Thus, we arrive at the desired estimate
for the fundamental solution Ey = Fosc(t, s,§). This completes the proof. O

2.4.3. Considerations in the elliptic zone

In a similar manner as in the hyperbolic zone, we will try to cope with the strong oscillating
behavior of w = w(t) by shrinking the elliptic zone. This leads to enlarging the dissipative
zone in the extended phase space since we do not propose any oscillation subzone between
these two zones.

In the elliptic zone we can follow the standard diagonalization procedure. However, con-
trary to the hyperbolic zone, we will not perform more diagonalization steps to obtain the
fundamental solution. We follow some ideas of [2] and [48].

Now let us introduce the following family of symbol classes in the elliptic zone Z.y(dy, €).
The following definition of symbol classes characterizes the necessary properties of the re-
mainder.

Definition 2.4.3. A function f = f(t,£) belongs to the elliptic symbol class S*{m;, my} of
limited smoothness if the derivatives of f satisfy the estimates

IDEF(EE)] < Cle) 20 (2.4.34)

for all (¢,€) € Za(dy,e) and all k < ¢ with 2 < /.

Note that the auxiliary symbol (£) @) .w) in Zen(do, €) can be estimated by

(E)r)w) ~ p(2t) ~ pu(t) 2)/\\(()) (2.4.35)

Some useful properties of the symbolic calculus are collected in the following proposition.

Proposition 2.4.10. The following statements are true:
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1. S{my,my} is a vector space for all nonnegative integers {;

2. S{my, my} - SE{ml, mlyYy < SH{my +m,, my +ml} for all nonnegative integers £ and
¢ with ¢ = min{¢, 0'};

3. DFSmy,my} — S“F{my,my + k} for all nonnegative integers £ with k < ¢;
4. SU2{—1,2} o LELH(Zaildo,€)) with £ > 2.

Proof. We only verify the integrability statement. Indeed, if f = f(t,&) € S*~2{—1,2}, then
it holds

[ s [ E0 g [ AD ROPAD),,

tdiss tdiss <§>)‘(T)$W(T) Ldiss M(T)A(T) FQ(A(T))
< R MdT I S < 1 <1,
1§l Jee F2(A(T)) 1 F(A(T)) Vs ™ [E1F (Afaiss))
. . L F(A®) ) —
where we used (2.4.35), definition of the elliptic region, =(t) = SOSF T and |€|F (A(taiss)) =
dg, respectively. O

In the elliptic zone we introduce the micro-energy V = V' (¢,¢) by

V= (<§>)\(t),w(t)va DtU)T

for all ¢t > s and (¢,€), (s,€) € Zen(do, ). Then, the corresponding first order system to the
Cauchy problem (2.4.2), with respect to the micro-energy V, is stated as

Dt {E)at).w(t)
0 (E)aw)wt) >V . GO v

D,V = /
t ( —(EA@).wt) 0 _ (e ()

2(E) x(t),w(t)
Performing the diagonalization procedure we get after the second step of the diagonalization
that the entries of the remainder matrix are uniformly integrable over the elliptic zone.

Step 1. We denote by P the matrix

consisting of eigenvectors of the first matrix on the right-hand side with the inverse matrix

1/ - 1
-1 _ *
P= 2 < i 1 ) ‘
Then, defining V() := P~V we get the system

D,V = [D(t,&) + R(t, €|V,

where
— (&) At),w(t) 0
D(t,§) = . ,
0 H{E)A@)w(t)
and
Del&amwny _ 5 (pH)w(t) _Dlhmew 4 5 (ew®)
R(t é) _ 1 2(E) (1), w(t) AE) (1), w(t) 2(E) (1), w(t) A(E) N (1), w(2)
’ 2 | _2wmwn _; @e®)  Delrw.wn 4 ; (pHw®)
2(E) A (), w(t) A{E) x(t),w(t) 2(E) A (), w(t) A(E) n (1), w(2)

Then, we obtain
D(t,¢) € SY{1,0}, R(t,€) € SM7{0,1}.
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Step 2. Let us introduce Fy(t,§) = diagR(t,€). Now we carry out the next step(s) of
diagonalization. The difference of the diagonal entries of the matrix D(t, &) + Fy(t, &) is

(p(B)w(®)”
2<£>)\(t),w(t)

for t > t, with a sufficiently large to = to(¢) by using |(p(t)w(t))/| = o(p?(t)w?(t)).
Now we can follow the usual diagonalization procedure. Therefore, we choose a matrix
N® = NMD(t €). The choice of this matrix was proposed in [49]. Let

- D (€)a().00(t) (p(B)w(t))’
R _
N(l)(t 5) _ 0 _a(tlé) ~ 0 ¢ HOX (1) w(t) 8(E)3 (t),0(r)
s Ro1 0 Z'Dt<§>>\(t),w(t) + (p(H)w(t))’ )

0
a(t€) 4<€>§(t),w(t) 8<€>§(t),w(t)

ia(t, §) = 2()at)w(r) +

Taking into consideration the rules of the symbolic calculus we have
N, &) e SM71{-1,1} and Ny(t,&) =1+ NW(t,¢€) e S¥1{0,0}.
For a sufficiently large time ¢ > ¢, the matrix N; = N;(t,§) is invertible with uniformly
bounded inverse N; ' = N;'(t,£). Indeed, in the elliptic zone due to condition (B5), it
holds
=) _ AW

[Ny (t, &) — 1| < (Eryww ~ u(t)O(1)

—0 for t— oo.

Let
BW(t,6) = DINW(t,€) — (R(L,€) — Fo(t,€))NW(t,€) € M2 {~1,2},
Rl(t’g) = _Nl_l(t’f)B(l)(tvg) € SM_Q{_LQ}‘

Then, we have the following operator identity:

(‘Dt - D(t,f) - ,R’(tag))Nl(tvg) = Nl(tvé)(Dt _D<t7§) - Fo(t,f) - 'R’l(tvé))'

Hence, the previous steps of the diagonalization give us the following lemma.

Lemma 2.4.11. Assume that A = A(t), w = w(t) satisfy the conditions (A1), (A2) and
(A5) and p = p(t) and w = w(t) satisfy the conditions (B1), (B2) and (B5). Then, there
exists a sufficiently large to such that in Z.;(do,€) the following statements hold:

e N, € SM=10,0}, invertible for (t,€) € Zuy(do, ) with Ny ' € SM=1{0,0};

_ Di{hriy,wy _ ; (p)w(®)) Dl wwy | ; (p(H)w(t)) M—1 .
o Iy = diag ( 2(E)x(t),w(t) Z4<£>>\(t),m(t)’ 2(E)x (1), (1) - Z4<§>)\(t),m(t)) €s {0,1};

o Ry € SM=2{—1,2} with M > 2.

Moreover, the operator identity

(Dt - D(t7§) - R(t7§))N1(t7§) = Nl(tag) (Dt - D(t7§) - Fo(t7€) - Rl(t7§))
holds for all (t,€) € Z.u(dy,€).

Step 3. Construction of the fundamental solution. In order to solve the transformed
system and construct its fundamental solution we can not follow the considerations from the
theory of the hyperbolic zone, since the main diagonal entries are purely imaginary.

Lemma 2.4.12. Assume the conditions (A1), (A2), (A5) and (B1), (B2), (B5). Then,

the fundamental solution EY,, = EY,(t, s, &) to the transformed operator
Dt - D(ta 5) - FO(ta 5) - Rl(ta 5)
can be estimated by
(E)at).w ' 11
(\E;/”(t,s,ﬁ)]) S Mexp / () w(ndrT 1 1/
<€>/\(s),w(s) s
with (t,€),(s,€) € Zeu(do,e) N {t > to(e)}, 0 < s < t.
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Proof. We transform the system for EY, = EY(t,s,€) to an integral equation for a new
matrix-valued function Q. = Qe (t, s,&). If we differentiate the term

e {~i [ (P, €)+ R, )ar 4t 5,6),

then we obtain

D, ((exp{ —i /: (D(7.€) + Fo(r,€)dr } EX (2, 5,€))
=~ + Bt ) e { ~i [ (P, €) + R, )dr} Blt,5.6)
texp{ - i/: (D(r€) + Fo(r,©)dr } (D(£,€) + Fo(t, ) + R (8,6)) Ely (1, 5,)
—exp{ —i /: (D(r,€) + Fo(r,€))dr [ Ra (1, €) B (8, 5,€).

Hence, by integration on the interval [s,¢], we obtain that EY, = EY(t,s,£) satisfies the
following integral equation:

B4 (05,8 = o {i [ (P, €) + Fo(r,)ar} B2, 5,0)

—I—i/: exp {z/; (D(r.€) + Fa(r.€))dr J Ry (0.6) B (6. 5,€) do

In general, the exponential term is not bounded if p = p(t) is increasing. In order to com-
pensate this “bad behavior” we introduce a weight factor. Let us define

Quilt.s.€) =exp { ~ [ B(r&)dr} B (t5,6),

with a suitable 8 = (¢, £). It satisfies the new integral equation

Qu(t5,8) =exp{ [ (&) +iFu(r.©) - 5ir. &)1 )ar)
+/: exp{/et (iD(7,€) + iFy(7,€) = B(r, 1) dr [ Ry (6,€) Qun (0, 5,€) d

The function Ry = Ry(6,&) € SM~2{—1,2} is uniformly integrable for M > 2 over the elliptic
zone by Proposition 2.4.10. Hence, if the exponential term is bounded, then the solution
Qe = Qen(t, s, &) of the integral equation is uniformly bounded over the elliptic zone for a
suitable weight 5(t, ). It remains to see that the exponential term remains bounded and this
is guaranteed by a sign condition on the exponent.

The main entries of the diagonal matrix iD(t, &) 4+ iFy(t, &) are given by

0w , (PH())
2<£)m yot)  HEwww)
(p
T

() = (Orwwn +

00wy (p(w(t)”
17 = - t),w(t
() Ehro + 2(&) nt),w(t) (Ertywt)

For the difference (1) — (I) we get

(p()w(®)) _  p*(w*(t) + (p(t)w()) — AN (O _
2(&) M) .w(t) 2(E) a0 w(t) o

(1) = (I) = =2(E)rt)w(t) —
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in Ze(do,€) for t > to by using |(p(t)w(t))| = o(p*(t)w?(t)). It follows that the term (I) is
dominant. Therefore, we choose the Welght B(t, &) = (I). By this choice, we get

0 0
D(7,€) +iFo(7, &) — B(1, )1 = ( 0 —2(E)x(r)uir) — LS ) :

2(E) A (r).w(r)

It follows
H(t.5.6) =exp{ [ (D(r.€) +iFu(r.€) - B(r.&)1)dr}

= diag (l,exp{/s <— 2<§>A(r),w(r) - W)dTD — ( (1) 8 >

as t — oo for any fixed s. Hence, the matrix H = H(t,s,£) is uniformly bounded for
(s,),(t,€) € Ze(do,€). So, the representation of Q. = Qen(t,s,&) by a Neumann series
gives

Quilt, ) = Hits,€)+ Y i* [ Httn ORi(1.8) [ Hltn o, R (12.)
k=1 s 8

te—1
/ H(ty_1,t5, &) Ra(ty, &)dty - - - dtadty.

Then, convergence of this series is obtained from the symbol estimates, since |R(¢,&)| is
uniformly integrable over Z.;(do,e). Hence, from the last considerations we may conclude

Bh(5,9 = e { [ B(r )i} Qut, . 6)

_ ' - (EOrnwn | (p(T)w(T))
B eXp{/s <<€>MT)’W) - 2(E)A(r),(r) " 4<§>A<r>,w<r>)dT}Qeu(t’875)’

where Q.1 = Qe (t, s,&) is a uniformly bounded matrix. Then, it follows

v ' Or ()N (r) (7 T)w(T
1250500 S e { [ (Do + 5 (ﬂ)w((ﬂ ! (pp(u))of(f)g) (1)

2
(E)r),w(t) /t 1
S oo P deT

<€>)\(s),w(s) { s (1),w(T) 1

This completes the proof. ]

Step 4. Transforming back to the original Cauchy problem. Now we want to
obtain an estimate for the energy of the solution to our original Cauchy problem. For this
reason we need to transform back to get an estimate of the fundamental solution Eg =
Eo(t, s,€) which is related to a system of first order for the micro-energy (A(t)|€|d, D,a).

Lemma 2.4.13. Under the conditions (B1) to (B3) the following holds:

pw(t) _ _ NHw®)*

. L : B < _
1. in the elliptic zone it holds (§)x),w() 5 < () ,
5(s) ' o [f N (T)w(r)
) < - —
% 5 &P (/ <§>A<T)7wmd7> < eXP( €l / o) dT),

where § = 6(t) = exp (3 fo dr).
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Proof. By using the property

Yy
< J
\/1‘4‘?4_\/54‘2\/5

for any z > 0 and y > —ux, the first statement is equivalent to the following inequality:

PPOW(E)  yin aipfee . POWE) N (w(t)|E]

The second statement follows directly from the first one together with the definition of 6 =
o(t). O

From Lemma 2.4.12 we get inside the elliptic zone, that is, for (¢,&), (s,&) € Ze(do, €) the

estimate
(IBL(t,5,9)]) S mexp (/ <€>A<r>’w<r>d7> ( } 1 )

This yields in combination with (2.4.8) the estimate

(IEan(t, s,6)l)
ADIE 0 t (T)w(T) 11 0
. ( p(t)  p(t) )eXp </ ({€xonetn - [)2)d7) ( 11 " )

© Al
EX2(7)w(r) e .
Sexp (- P / WdT) e (2.4.36)

A(s)[¢] p(s)

~__
VR
X =
2l &=
I

where we used Lemma 2.4.13.

Remark 2.4.2. Taking into account the estimates (2.4.36), we see that the estimates for
the first row are reasonable. However, the estimates for the second row seems to be not
reasonable. Because, the estimate for \E§ﬁ2)| is only reasonable for decreasing coefficients p(t)

and the estimate for |E"| is not optimal since the upper bound for |E$"| is not bounded
in the elliptic zone. This “contradicts somehow” the damping effect in our model. For this
reason we derive a refined estimate which we present in the next step.

Step 5. A refined estimate for the fundamental solution in the elliptic zone

Corollary 2.4.14. The fundamental solution E.; = E.(t,s,§) satisfies the following esti-
mate:

¥ o ey
(1 Eeu(t, 5,€)I) SGXP<— |f|2/s (;():J)(T)dT) ( v e |t 52Ej)) ( 8 (1) )

A(s)p(t)  p(s)p(t)

forallt > s and (t,€),(s,£) € Zoy(do,€).
Proof. Let us assume that ®, = ®,(t,s,£), k = 1,2, are solutions to the equation
Dy + N () (1)@ + p(t)w(t) P, = 0

with initial values

(I)k(8787£) :51k7 atq)k(8787§) :52k~

Then, we have

A(t) ,
) -[isg om0 ) o)
o g P o
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Our basic idea is to relate the entries of the above given estimates to the multipliers ®, =
O (t,s,€) and use Duhamel’s formula to improve the estimates for the second row using
estimates from the first one. Hence, if we compare with the estimates (2.4.36), then we
obtain

|@1(,5,6)] S exp(—|g|2/st)‘2(7_)‘“’(7)617_)7

p(T)
o [T N (T)w(T)
Bt 6] 5 e (=l [ D),
0,®1(t,5,6)| < P(t)exp<—|f|2/S (;();U)(T)dT)’
(t) o [ A(T)w(7)
oa(ts.€) 5 A e (g [ )

Let ¥ = W, (t,s,§) = 0,Pr(t,s,£), k =1,2. Then, we obtain the equations of first order

By, + p(Hw(t) Ty = —N2() (1) |2 Dy, i(s, s, E) = Oay.

Standard calculations lead to

Wit = 6l [ N G s dr

Balt,8) = o) 1P [ R0 Gl s,

If we are able to derive the desired estimate for |Wy(¢,s,£)|, then we conclude immediately
the desired estimate for |Wy(¢, s,£)|. Using the estimates for |9, (t, s, )| and applying partial
integration we get

Uy (t5,6)] < |£|2/A2 162 )exp( mg/s (;9();0( )d0>dT

)
N 5; FP/ S (1 eXp( 15\2/ AQ(;();(O)d9>dT

(1)

*(1)1€1” , [T A2(O)w(B )

<A ;;ggl / p(T)lw(T) exp (¢ / Mp()g)()de)afa (r)dr
S A(;(f()lﬂ (52( )Wexp(—\&?/@ Wd@)) t

) s
N (1)[¢ ] (p(Me(m)  NWIEPY (e [N O0)
52(t) /56(7—)<(,0(7')w(7'))2+ P2 (7) ) P |§|/s o)
<O(1)<Cp<1
N (b)e) 2 [PARMw(r) y  NIEP 6(s)
< Sy ow (e [ S - SRS

2
t
Here we have used A\*(t)[¢]* < pi )(1 — ¢?) from the definition of the elliptic zone and
(p(r)w(r))’
2
(p(7)w(7))

= 0(1). Now we verify that

NOIER 82(s) _ A(0)[e? s [N (r)w(r)
o(s) (1)~ p(t) exp (e [ -5 ).
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Then, it is sufficient to show that

ool [0

)
it o ([ (o) ==L
(

(
_ t (0w (n)E (p(r)w(r)
_exp</s (P(T)W(T) EGRG) p(T)w(T) ) )

b

Ct,s,8) = p

P

~

hs
’@

By condition (B5), the argument of the exponential term in the previous statement is larger
than 0 for 7 > t, sufficiently large. Hence, we have the desired estimate

N (@®)[E1° o [f N (T)w(7)
\@1(t,s,§)]§Wexp<—|§| /6 Tﬂdr).

Similarly, we can estimate |Wy(¢, s,€)| in the following way:

Wo(t,s,6) < 20) 4 18] /SAZ(TW(T)lexp(_|§\2[ww(9>d9)d7

62(t)  6%(t) p(s) p(0)
5(s) | A(t)IEP o [P A(T)w(7)
ST0 T o000 exp ((— [¢] / o dr). (2.4.37)
Summarizing all desired estimates are proved. O

Remark 2.4.3. We are able to derive a refined estimate for the fundamental solution, because
in the proof of Corollary 2.4.14 we use only estimates for Eéllll) and EEEIIIQ) and both estimates
seem to be optimal with our analytical tools.

Remark 2.4.4. If we choose a fixed s, then the first summand in (2.4.37) is dominated by the

second one. Indeed, if we set s = to, then by using A(ten)|&| ~ p(ten) we get the following
estimate:

A(t) A(t)

PN (T)w(T) Nter) XCterr)

< o 2 ) ell ell
(1Bt ton ) S exp (— e [ 05 Par) [ S0 50

A(ten)p(t)  A(ten)p(t)

2.4.4. Considerations in the dissipative zone

In the dissipative zone we define the micro-energy U = U(t, &) by

oy T A(t)
U= (y(t)a,D t) =
: : X : At)
because we will later need to estimate A(¢)|{|u and it holds A(¢)|£] < FOAD) due to the

definition of the dissipative zone. Then, the Fourier transformed Cauchy problem (2.4.1)
leads to the system of first order

Diy(t)
DU = [ e ,W(t) . (2.4.38)
NSO (1
A(t,8)

We are interested in the fundamental solution

EOD p(2)
Baiss = Eaiss (ta S, 5) - (E((iésls) Ec(léSQS)

diss diss
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to the system (2.4.38), that is, the solution of
Dy Eyiss(t,s,6) = A(t, ) Faiss(t, 8,€), Euaiss(s,5,&) =1,
for all 0 < s <t and (¢,£),(s,£) € Zaiss(dy). Thus, the solution U = U(t,§) is represented as
U(t,€) = Eaiss(t, 8, U (3, §).

We will use the auxiliary function

0(t) = exp (% /Ot p(T)w(T)dT)

which is related to the entry ip(t)w(t) of the coefficient matrix.
The entries E'" Z)( t,s,€), k,£ = 1,2, of the fundamental solution Fg(t, s, &) satisfy the

diss

following system of Volterra integral equations for k = 1, 2:

DEGI(ts,€) = D,;Ztg“ Egid (t,5,6) + /(D E (¢, 5. ),
2 2
DE)(1,5,6) = WE&%SQ@,S,@W@) (1) B2 (¢, 5.)

together with their initial conditions

Then, by direct calculations we get

(0 o
B89 = 20 400 [ s, ar

(21) il¢|? 2(T)w?(7) A o -
Edlbb(’ ag) (t)/ 7(7_) 5( )Edlbb( ) >£)d

B0, =) [ B (ros, €0
Flo) | P [P o
B8 = Sy + fag | e L (s )

The next lemma is important for deriving suitable estimates for the entries E''7 (¢, s, €),
kol=1,2.

Lemma 2.4.15. The assumption (B38) implies 62(? € LY(R,) with

__AQ
532(r) T~ 82ty

18 monotonously decreasing for large t.

A()

Moreover, 200)

1+6

Proof. From u(t) — oo as t — oo, it follows pu(t) > . Then, we may conclude that

#(0) = exp ([ srrstriar) z e ((1+2) [ 3 0ar) =,

which implies the integrability of 6’\2(—(%. Furthermore, for large ¢t we have

1 [ A1) > e A7) o0 1 A(T)
c/ 52<7>d‘/t w(7) 62<T>C”§/t (0= ) oy
/w HONE() M), /°° BN = A() | A

w(r)3%(7) 52(r) TR0
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Moreover, we have

d A1) _ MD) — p(Hw(DA®E) _ MBI = p(B)w(®)

dt 62(t) 62(t) B 62(t)
and p(t) > 14&5) for large ¢, which implies that 52((?) is decreasing for large t. This completes

the proof. 0

In order to estimate the modulus |E§]f:b (t,s,8)|, k, ¢ = 1,2, of the entries E((hi) (t,s,&) we
will use condition (B6).

Corollary 2.4.16. Assume conditions (A1) for A = \(t), (A2) for w = w(t), (B3) and
(B6) for p = p(t). Then, we have the following estimates in the dissipative zone:

NOIN B ol c
_ < ’ °
(‘Edzss(tasyg)D ~ F(A(t)) F(A(s)) A(s)

A(s) A(s)

with (s,€), (t,€) € Zyiss(dy) and 0 < s < .

Proof. First let us consider the first column, that is,

Eél}sls)( t,5,§) = —= + it / Ed?sls) (7,8,8)d
2 t 2
ECD (¢ _ Z‘§| / 2(T)w?(7) o U
dlSS( 7875) 52( ) s ’Y(T) 0 ( ) diss <T787£)d7—
Plugging the representation for ECY (¢, s, €) into the integral equation for E{Y (¢, s, €) gives
~(t ErAlE? T A2 (0)w?(0
B9 =20 i [ (55 / %( L5702 0.5.€)00 )
_ ) e / / 2 520) 1 _ay
— E! .
,Y(S) ‘€’ )\ (7_) ,}/(0) diss (07 87€)d9d7
It follows
v(s 0) (s
g =1- i [ [ 00 5O 1 B0, s, avar
By setting y(t, s,&) := FYE{XE((,ES) (t,s,&) we obtain
Y

s =116 [ [ 0005 0.5, aras

—1+ |§12/: A2(0)w?(6) /0 p(T)w(T)ﬁT(((;(T;)dT]y(Q,s,é)dG
=1+ |€|2/: X*(0)w?(0) :1 o1 /

~1 e [ ) 6) ~ 0w ]y“”s’@‘”

Then, we have

ly(t,s, )| S 1+ \512/ <Ap(9)w 59)5 (6) | N2(0)w(0)

S
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Applying Gronwall’s inequality (cf. Lemma A.1.1) we get the estimate

ly(t,s,6)| < exp <|€!2/S “(0)710) 52((3))d9+|§!2/ Wdﬁ)

<> 0) p(0)
<o (5t [ e i [ o)
8962(0)
B \5|2 1 52<9 (p0)w(®) , [P N(0)
—exp< p(t) <P (O)w(0 /s (p(@)w(&))z(s (0)d ) d / p(0) dH)
W)

=o(1)
O, o [P X6) NWIEE . & )
56’““( () ‘5'/ o (0) d‘)) eXp( 0 *FZ(A@))/S o(0) da)“

Here we have used % = 0(1) from condition (B5), A(t)[£] < p(t) from the definition of

A(t
(B6), respectively. Hence, we may conclude that
SVt s,6)] < v(t) _ A1) F(A(s)
s (15 v(s)  F(A®)  Als)

Now we consider E2! )(t, s,€). By using the estimate for |E 11)(25, s, f)‘ we obtain

diss diss

the elliptic region, |{] < from the definition of the dissipative zone and the condition

(21) 2 ! N*(7) 8%(7) (11
|Equ( 787£)| ,6 ’£| / ( ) 62( ) Edlsq ’ )5 }dT

2 2 1 AZ ‘§|2 2
ke [ S 7 / 5
= 1 >\2 |£|2 1 w\T 27' T

REOIRED /5,0<T>w<7>__,P<> ) (r)e

0:62(T)

L XOEP L s [ eem)
=56 80 <p<T>w<T>5”s+/s 2““)

~2

LR 1 FAGS) D)
S 56 ) ~ A0 S TG Famy

Here we used % = ( ) from condition (B5), A(t)|¢| < p(t) from the definition of the

elliptic region and |¢]| <

from the definition of the dissipative zone, respectively.

A(t
Next we consider the entries of the second column. We have
dlSS( ’ ’5) = t / EdlSS T, S é- dT
0(s) | ilgl® [FN(T)WA(T) o 2)
B (t5.6) v (VG (7,5, )dr
¢ §2(t)  0%(1) v(7) g
Plugging the representation for E$2 (¢, s, €) into the integral equation for E{2 (¢, s, €) gives
F0%(s) Al [T A(9)w(0)
E(2 (¢ = ir(t / ( / 52(0)EL2 (0 de)d
dlss( ’576) 1’7( ) ) 52(7_) + 52( ) (9) ( ) dlSS( S E) T

B ) o (Q)L (12) s -
= 005°6) [ i —lea0 [ [ 30050 B2 0.5 ann
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By setting y(t, s,&) := —E fs (t,s,€), it follows

()
ites.) = i0°6s) [ mdr i [ 0o [ Lo (GO ar]u.s g

In the same way as we did for Edfsls (t,s,€), after integration by parts we obtain

() 1y e [ (RO F0) ¥ 0)0)
.91 55%0) || S spar+ 6P || (S 70 * ey ) OO

Now we can use again Gronwall’s inequality, since the first integral can be estimated by
A 1
(s) —— due to Lemma 2.4.15. Then, we get

02(s) A(s)

A(s) s [N (0) 22(0) | [P NO)w(8) ) Als)
w501 < X5 o (jef o) 70 [ d")SMs)'

Thus, we obtain

12 A(s)  At) A(s)
B (5.1 SYO55 = Fa@) 2o

Finally, let us consider E¢ )(t s,&) by using the estimate for |Ed

diss

(t,s,€) } It holds

188

s (527 1
| B (8, 5,6)| (t)+|£|2 / N (r 52<(t T 5y B (725, )l

)
Fs) | NIELA) [

= 52<t> < A(s) | #ear
Fs) | NI Als) :
=) T o) <>/s p(ra(r) L (8 () dr

t s
8,6%()
A TPV

0%(s)  A(t)[E]P A(s) _ 6%(s)  A(s)
SRO T o A S 20 T ek

In order to apply Lemma 2.4.15 we rewrite the last inequality as

A(t) (22 A(t) 6°(s) | A(s) A(t)
O IR I 5720 A6 T as) a) Dl
A(s)  A(s) A(s)  A(s) A(t)
S 36 T RN A Fawy
Here we used that ?2((?) is decreasing for large ¢ due to Lemma 2.4.15. Thus, we get
2)(, (s) At) | Als) A() M) At)  Als
e (5 O S 3R T N6) FAWM) AD) ~ FA®) A(s)’

since A(t) > F(A(t)). This completes the proof. O
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2.4.5. Considerations in the reduced zone

In the reduced zone we introduce the micro-energy V =V (¢,&) by

Vo <€p(t);(t)U,Dtv>T'

Then, by (2.4.2) the function V satisfies the following system:

Dy (p(t)w(t)) gLw(t)
DV = ol v 2.4.39
Lt A ()w? () [€]° =7 (p(t)w (1) = 5 (p(t)w (1))’ 0 : (2.4. )

t)w(t
NIGEG

AV(t7€)

We want to estimate the fundamental solution EY; = EY (t,s,£) to (2.4.39), that is, the
solution to

DtEr‘gd(t) S, f) = AV(t) S)E:gd(tv S, 6), Er‘gd(sv S, 5) =1
Due to |(p(t)w(t))'| = o((p(t)w(t))?) for sufficiently large ¢ > to, it holds

|Dt (P(t)w(t)) |

o S b,

Moreover, we have the estimate

p)w(t)

<£>>\(t),w(t) Se B

Hence, we obtain the following estimate:

(N @)E]° — 1 (pt)w(®)® — F(pw(t)'] ‘2<§>§<t>,w<t> (p(t)W(t))"

5% - 6,0(t)w(t) Ep(t)w(t) ,S Ep(t)w(t)a

where we used ](p(t)w(t))l] =o((p(t)w(t))?).

Finally, the norm of the coefficient matrix of (2.4.39) can be estimated by ep(t)w(t) for
sufficiently large ¢.

Summarizing, the following statement holds.

Lemma 2.4.17. Under the assumptions (B1), (B2) and (B5) the fundamental solution
EY,=FEY (t,s¢) to (2.4.39) satisfies the following estimate:

red

(1Exa(t,5.)]) S exp (E/stﬂ(T)w(T)dT> ( i } )

for allt > s > tg with sufficiently large to = to(e) and (t,€),(s,€) € Z,ea(e).

Remark 2.4.5. From the backward transformation we may conclude that the fundamental
solution E,oq = E,eq(t, s,€) can be estimated as follows:

(Bualt,5.0)) S e (=5 [ pror)dr) (ELy(t.s€)).

Corollary 2.4.18. The fundamental solution E,.q = F,.q(t,s,&) satisfies the following esti-
mate in the reduced zone:

(Bnatt.0) S exp ( (= 3) /:pmw(ﬂ w11

fort > s >ty with sufficiently large to = to(g) and (t,£),(s,&) € Z,ea(e).
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2.5. Energy estimates of higher order

The main goal of this section is to prove on the one hand higher order energy estimates to
solutions of the following Cauchy problem:

{utt — X2 ()w?(t) Au+ p(t)w(t)u, = 0, (t,z) € [0,00) X R™,
u(0,2) = ug(x), uw(0,2) = uy(z), x € R™

On the other hand, we want to derive higher order energy estimates for solutions to the fol-
lowing family of parameter-dependent Cauchy problems with suitable initial data (0, g(s, :c))

{Utt = N()w?(t)Av + p(t)w(t)vy =0, (t,x) € [s,00) x R", s >0, (2.5.1)

v(s,x) =0, v(s,z)=g(s,z), x € R".
Here, in both cases we will assume some additional regularity of the data and our conditions
(A1) to (A5) and (B1) to (B6) are satisfied which are given in Section 2.3.

The representation of the fundamental solutions obtained so far allows us to conclude
estimates for the solution and their derivatives to the above Cauchy problems.

2.5.1. A family of parameter-dependent linear Cauchy problems
Let us consider the following family of parameter-dependent Cauchy problems:

(2.5.2)

{utt — X2(H)w?(t)Au+ p(t)w(t)u, =0, (t,z) € [s,00) x R?, s >0,
u(s,x) = f(s,x), w(s,z)=g(s,x), x€R"

We apply the partial Fourier transformation to (2.5.2) with respect to the spatial variables.
Denoting by @ = u(t,£) the partial Fourier transformation F,_,¢(u)(t,§) we obtain

iy + N (O (O[S0 + p(t)w()is =0, (£,€) € [s,00) xR", s >0, (2.5.3)
ﬂ(S,f) :f(57£)’ ut(s ) ( ) § eR™ o
Now we make the change of variables
o(t) . _ 1t
0.6 = 5ot e, )= e 5 /O p(r)o(r)dr). (2.5.4)
Then, we obtain the Cauchy problem
yAtt + m(t7§>g = 0? (t7£) e [37 OO) X Rn? S 2 07
(s, ) = f(s,8), §ERT, (2.5.5)

Gi(s,€) = 2220 f(5 €) 4 §(s,€), € E€R™,

where

mit, &) = N (£ ()] — 2 -

4 2
_ 2 A2 (Hw?(t) Aw(t)\'
= OO - 1010~ (MO5557)
Let us define the functions
00 = s = ok and @ = O OIEE - 20 0/1].

In the same manner as in Section 2.4 we divide the extended phase space [s,00) x R™ into
the following zones:
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e hyperbolic zone:

Zigo(N) = {(£,€) € [5,00) X R" : (et = NADw(@)(t) } N Ty,
and O(t)[¢] > N;

e oscillation subzone:

Zose(N,€) = { (1,€) € [5,00) x R" - eA(O)w(t)n(t) < (E)x0ot) < NAD@(B(E) } N T,
O(1)|¢] < N and A(t)[¢] > N

e reduced zone:

Zeea() = { (£,€) € [5,00) X R" : ()t < EMB(t0(D) }:

e elliptic zone:

n., dO .
Zaa(do,) = {(1:€) € [s,00) x R": 6] 2 s O{ € 2 EAD () 0 T

e dissipative zone:

d
F(A(1))

Zaiss(do) = {(£,€) € [s,00) x R" : [¢] < } N L.

2
t
Definition 2.5.1. We denote by By = B,(s,t) the primitive of (t)) which vanishes at
p
t = s. So, it is defined by

By(s,4) ::/s )\p((:))dT:BA(O,t)BA(O,s).

We introduce the limit
Noo = 1}1}2} 77(75) S [07 OO]

This limit exists because of the monotonic behavior of n = n(t).
Let us introduce the functions

b = ha(t,6) = (P g s+ (1= (PN A0 (25,6

and

hy = ha(t,€) = X<<§mt>)€p(t)w(t) +(1- X(Lﬁ(g) 20))y/Im(t, €)1, (2.5.7)

for our models (2.5.3) and (2.5.5), respectively. Here x € C*>[0,00) is a localizing function
with x(¢{) =1for 0 < ¢ <1 and x(¢) =0 for ¢ > 1.
Remark 2.5.1. In Zyi(dy) it is reasonable to choose hy(t,£) = F?ﬁi)), since from the definition

of Zyiss(dp) it holds A(¢)|¢] < XZ)) Furthermore from the definition of Z,.q(¢), for any

(£,€) & Zuea(€), it holds [m(t, €)| > Ce200  Therefore, hy(t, &) > Cye2eld)
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We define the energy

U(t,€) = (b (t,€)a(t, €), Dya(t,€)) "

Then, by using (2.5.3), U = U(t, &) satisfies the system

Sie Mt
1(t,€) 5
D,U(t, &) = , th . Ul(t,€). (2.5.8)
PO ip(ey(t)
A(t:)

For any t > t; > s, we denote by E = E(t,t;,£) the fundamental solution to (2.5.8), that is,
the matrix which solves

DtE(t,tl,g):A(t,f)E(t,tl,g), E(thtl,f) :[
For any t > t, > t; > s we can write

E(tatlag) = E(t7t27€)E(t27t17£)'

On the other hand, we use the dissipative transformed Cauchy problem (2.5.5) and we define
its energy by

Y (t,6) = (ha(t, €)i(t,€), D (£, €))
Then, from (2.5.5) we have

Tote ha(t,6)
DtY(t,f)z( e 20 )Y(t,g). (2.5.9)

ha(t,€)

AY(t,€)

We denote by EY = EY (t,t;,£) the fundamental solution to (2.5.9) for any ¢t > t; > s, i.e.,
the solution to

DEY (t,t1,€) = AV (L EY (t,11,€),  EY(t1,t1,€) = 1.
For ty > t; and (t1,€), (t2,€) € Znyp(N) we will introduce EY (t2,t1,£) = EY, (t2,t1,€) and

- hyp
we introduce corresponding notations in the other zones.

Remark 2.5.2. By proceeding like in the previous sections, we can obtain in each zone the
same estimates for the fundamental solutions £ = F(t,s,£) and EY = EY(t,s,£) to the
models (2.5.3) and (2.5.5), respectively.

Estimates in the zones
In the oscillation subzone Z,.. (N, €), by the result from Corollary 2.4.9 and for all (s, £), (¢,€) €
Zose(N, €) we have

N0

) eXp(;/:p(T)dT) < } } >;

in the reduced zone Z,.q(¢), by the result from Corollary 2.4.18 and for all (s,&), (¢,§) €
Zrea(€) we have

(IBosc(t,5,6)1) <

(Bt ) S e (2= 3) [ orratrar) (1 1)
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in the dissipative zone Zyiss(do), by the result from Corollary 2.4.16 and for all (s,€), (¢,€) €
Zgiss(do) we have

O e

. < ’ S E

(‘Edlss(t7 S, §)|) ~ F(A(t)) (A(S)) M ’
A(s) A(s)

in the hyperbolic zone Zyy,(NN), by the result from Lemma 2.4.7 and for all (s,€),(t,€) €

Zyyp(N) we have
At) (1 1.
(| hyp( ) 7§)|) ~ /7 ( > )

and finally, in the elliptic zone Zg(dy,€), by the result from Lemma 2.4.12 and for all
(575)5 (t’f) € Zell(dO’e) we have

(ACERINBS <<£>A exp (/:<€>A(T>,w(f)d7) ( 1 i )

g)k (8),w(s)

Representation of the solutions
Let us turn now to the Cauchy problem (2.5.2). We introduce K, = K, (t, 5,£) as the solution

of the Cauchy problem (2.5.3) with initial conditions (s, &) = 0 and 4.(s,&) = 1. Then, we
have the following identity for k = 1, 2:

)\iti\ﬁ\ 0 0\ *}fti‘f‘ 0 hi(t, &) K (t, 5, €)
< e >Ek(t,s,€)< 1 > = ( "Y1 ) ( thf(l(t,s,é)

_ ( ()€K (5, €) )
DK, (t,s,§) '

Moreover, it holds
ADEL 0 AL ek (t,5,€)
by (t,€) k — e (£,€) 12\, 5,
( 0 1 )5 (t’8’5)< 1> < 0 1 )(Séw,s,s))
_ ) (t s,§)
5( $,€) ’

where hy = hy(t,€) and hy = hy(t, &) are defined in (2.5.6) and (2.5.7), respectively. Moreover,
we define E'(t,s,€) := E(t,s,&) for the system (2.5.8) and E2(t,s,€) := EY(t,s,£) for the
system (2.5.9).

The above relations allow us to transfer properties of E = E(t,s,£) and EY = EY (t,s,€)
to K, = Kl(t, s,&) and vice versa. Thus, we obtain

Ki(t,s,&) = hlé €)Em(tsf) (2.5.10)
D.Ki(t,s,6) = En(t,s,€). (2.5.11)

Moreover, we consider a representation of the solution ky = ki(t,s,€) to (2.5.5) with the
initial conditions y(s,£) = 0 and §:(s,£) = 1. Then, we have

];‘1(75,8,5) = hg(i {)E%/Q(t § g)

Dtifl (t, S, 5) = E2YQ(t7 S, 5)
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Hence, by using (2.5.4) it holds

Ki(t,s,€) = 28 ko (t, s, )—5((‘3 ;YL((t ‘Zf), (2.5.12)
thﬁ(t,s,f) = (sig(Dtkl(t787£) ( ) ( ) ( ) aé))
08 [y p(t)w () y
= 50 (Pa(ts.8) = GG B, 9). (2:5.13)

In the same way we consider K, = Ko(t, 0, &) as the solution of the Cauchy problem (2.5.3)
with s = 0 and initial conditions 4(0,&) = 1 and 4,(0,&) = 0. Consequently, by the definition
of the fundamental solution given in Definition 2.4.1 we have the following identity:

SOTE he(0,6) \ [ 2L hi(t, €) Ko(t,0,€)
< h,E),@ 1>5k(t,0,§)< ko )‘( "o 1 thf(O(tO,O,i)

_ ( A(8)[€[Ko(t, 0,€) ) .

-DtKO(t7 07 g)

Moreover, it holds

ML o he(0,6) Y _ [ 7595 0 +(0. )8y (t,O
(858 1)ewen(M00)- (58 1) (gD

[ RSNl (£,0,9)
hi.(0,€)E5,(t,0,€ ’

where h; = hy (t 5 ) and hy = hs(t,&) are defined in (2.5.6) and (2.5.7), respectively. Moreover,
we define &' = £1(¢,0,¢) := E(t,0,&) for the system (2.5.8) and £2 = £%(¢,0,€) := EY (¢,0,¢)
for the system (2.5.9).

The above relations allow us to transfer properties of £ = E(t,0,£) and EY = EY (t,0,¢)

to Ky = Ko(t,O,f). Then, we get

Ko(t,0,6) = Zl((o gEu(tOS) (2.5.14)
DtlA{O(t’O)g) = hl(ovf)EQI(t’O’g)' (2515)

Moreover, we consider a representation of the solution ko = ko(t,0,£) to (2.5.5) with s = 0
and the initial conditions 4(0,¢) = 1 and 4,(0,&) = 0. Then, we have

]
Dtko(tvovg) = h2(0’£)E2Yl(t707£)

By using (2.5.4), it holds

1 h2 (07 g)

Ko(t,o,g):@ko(t,o,g) 50 (i e )Eﬂ(t,o,g), (2.5.16)
DR(10.8) = 575 (Dii(1.0.6) — 2 OO o (1,0.9))
- hQ(s(?t’f) (B3 (1,0,6) - 2}(12)@ ud é“; B} (£,0,€)). (2.5.17)

In our further approach we will distinguish between four cases:

nt) 0, 7)) M >0, n(t) "N >0 and n(t) oo
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The division of the extended phase space is given in the next figures in all these four cases.

/(Ii\‘\‘

€]
Fig. 2.2.: The case n(t) (0 Fig. 2.3.: The case n(t) \y oo > 0
T /\1i.\\
[N ty
| | “‘\
1 1
|t l |
\ [ |
\ Zenl }
'\tdiss : :
Z disp \ : :
s 1 l E R 11 l )
0 n(s)V1+ N2 nev1—eg? |€| 0 |€|
Fig. 2.4.: The case n(t) /" Neo > 0 Fig. 2.5.: The case n(t) /oo

We first consider the case that n = n(t) is decreasing, that is, n(t) \ e With 7., € [0, 00)

and (s,£) € Zaiss(dp), 1.e., |§] < %. Then, we have the following representations:

o If |£] > nov/ 1+ N2, then there exist parameters tosc > treq > ten > taiss > S, such that
for any t > t,s it holds

E(ta S, 5) = Ehyp (ta tosca g)Eosc (tosmtred) g)Ered (tred7 tella g)
X Eell(tell) tdissa é)Ediss (tdissa S, g) (2518)

o If nov1+e? < €] <NV 1+ N2, then there exist parameters t.eq > ton > taiss > S,
such that for any ¢ > t,.q it holds

E(t7 S, 5) = Eosc(tu tredv g)Ered (tred) tellv g)Eell(tella tdissa g)Ediss (tdissu S, 5) (2519)

o If nv1—e? <|{] <nwV1+ €2, then there exist parameters to; > tgiss > S, such that
for any t > t.; it holds

E(ta S, 5) = Ered (t, tella f)Eell(tellv tdiss7 g)Ediss(tdissa S, 6) (2520)
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o If

< €] € V1 — €2, then there exists parameters t4s > s, such that for any

A(s jl
t > tqiss 1t holds
E(t,s,£) = Ea(t, taiss: §) Eaiss (taiss, 5, ). (2.5.21)
hd If ’6‘ < F(A s))? then E(t S é) Ediss(tvsag)'

If we consider [£] > n(s)v/1+ N2, then we get E(t,s,§) = Euyp(t,s,€) for any ¢ € [s,00). In
the same way, if we take (s,£) in another zone, we can obtain F = E(t, s, &) as a glue of the
fundamental solutions in each zone.

Now we consider the case that n = 7(t) is increasing, that is, n(t) 7 1., with 1., € (0, 4+o00].
However, there is big difference in the localization of these zones (see Figures 2.4 and 2.5).
On the one hand we glue the estimates Z(do, ) with Zgis(do) for ¢t > tgiss > . Therefore,
we have the following relation:

E(t, S, f) = Eell(ta ZL/dissv é)Ediss (tdissa S, 5) (2522)

On the other hand, if (s,§) € Zuyp(N), then the situation is reversed according to the
decreasing case. Hence, we have the following representations for the fundamental solution

E = E(t,5,¢)

o If [¢] < M/ 1 — €2, then there exist parameters tieq > tose > thyp > S, such that for any
t > treq it holds

E(t, S, f) = Eell(t) treda g)Ered (tredu tosca g)Eosc(tosca thyp7 g)Ehyp (thypa S, §) (2523)

o If noov1 —e? < [€] <MV 1+ €2, then there exist parameters tos. > thy, > S, such that
for any t > t. it holds

E(t, S, 5) - Ered( 0sCy 5) osc( 0sCcH thyp? g)Ehyp(tllyp7 S é-) (2524)

o If nov1+e? <[] < nwev/1+ N2, then there exist parameters ¢y, > s, such that for
any t > tyyp it holds

E(t, S, 5) = EOSC(t7 thyp> g)EhyP(thym 5, 5) (2'5'25)

o If [£| > neoV/1 + N2, then E(t, s,§) = Enyp(t, s,§),

for the case n(s)v1+ N2 < [£] < nv/1 — e? (if this set is not empty).
In the same way, if we take (s,§) in another zone, we can obtain E = E(t,s,§) as a glue
of the fundamental solutions in each zone.

Estimates for the multipliers and time derivative of the multipliers

In order to estimate the norm of the solution of our original Cauchy problem we need to
estimate our multipliers | K (¢, s,&)| and |Ky(¢,0, &) in each zone of the extended phase space.
Applying a more refined approach in the elliptic zone Z.(dy,€), we can derive estimates for

0, K, (t,s,€)| and |9,K(t,0,)| as well.

Introducing
1 t
o(t) :=exp (2/0 p(T)dT)

we consider the following estimates of |K;(f,5,&)| in Zoge(N,€), Ziea(e) and Zuyp(N) as
Ko<(t,5,8), KX(t,s,&) and K|"P(t, s, £), respectively:
In Z,.(N,e) we have hy(t,&) = A(t)|£]. Then, it holds

(1. 6)] < Do) 11 als)

S XD VA o) D) o)

(2.5.26)
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t)w(t
In Z,ca(e) we have ho(t,&) ~ 5p( );( ) ~ A(t)|£]. Then, it holds

K 5.0) S 1 () (2527

where we choose € > 0 such that §:= Ce < %
In Zyy,(N) we have ho(t, &) = (E)aw)wey ~ A(t)[€]. Then, it holds

1 VA() d( 1 1 )
[KP(t,5,8)| S (5) _ L1 (s), (2.5.28)

ABIENVAG) 30— €l VADVAGs) 3(8)
It is clear that we can uniformly estimate |K(t, s, )| and |K|"P(t, s,£)| by the upper bound

from the estimate of |[K'®d(¢, s,&)| in (2.5.27), which is the worst among (2.5.26) to (2.5.28).
Indeed, by (2.5.26) and (2.5.27) we obtain the following estimate:

VAT _ VA

a(t)¢ ~ o(s)C’

where C' := 1—¢(1—20) and ¢ is a sufficiently small positive constant from condition (A2).
In order to prove this estimate we will show that the function

A(t)
h(t) =
is decreasing for large t. Indeed, we have
DS A2
W) = XD =CpMD) M wto — Crt)
o (t)2C = o(t)2C :

Due to the condition (B3), we have pu(t) — oo as t — co. Therefore, we obtain A'(t) < 0 for
large t. In the same way, from (2.5.27) and (2.5.28) we get

VAL _ VAGs)
567 ~ (s

Thus, we can glue Z,.q(¢) to the hyperbolic region and we define new regions by

Iy (N, €) = Zyrea(e) U Zypse (N, ) U Zhyp(N),
ey (do, €) = Zen(do, €) U Zaiss(do),

respectively.
We denote by taiss = taiss(|€]) the separating line between Z.y(dy,e) and Zyiss(dp) and by
tie) = t(|¢]) the separating curve between Il (do,e) and Iy, (N, e). This curve is given by

2 2 2,2 : —1 |£|
te) — €2 = e2n2(te), e, tig = (7)
- (te) — €] " (tel) g =1 =
In order to obtain energy estimates, first we establish some auxiliary estimates.

Lemma 2.5.1. Under the conditions (A1), (B1), (B2) and (B6) the following estimates
hold:

1. Supposing || F(A(tass)) ~ 1 it holds

exp ( - C’|§|2/0 )\:(( )) dT) ~ 1.
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2. Supposing |&| = n(tg)V1 —e? it holds

(L)
I€lp(te)

Proof. 1. We have the following estimate from the definition of Zg;s(do) and condition (B6):

) tdiss )\2(7.) . - 1 tdiss )\2(7.) . -
4l /0 p(7) s Fz(A(tdiss))/O p(7) irst

2. We get the following estimate by using the definition of the separating curve t¢:

€] = \/70(%) ﬁu(tm)
Atie)) Altig)

\dieitie)| 2

Then, we get

Al —= d pltg)
dtie boe dt|s|(/\(ts))'

Hence, it holds

‘u’(t‘g‘)A(tm) — ptig) A (e |~ HCte) T A () + altig)Ate)

dietiel| " <
|dietiel| -~ S A2(tg)) ‘N A*(tig)

This completes the proof. O

2.5.2. Estimates for the multiplier K

Now we distinguish between two cases related to the setting of the zones in the extended
phase space for a general s > 0.

Small frequencies

In this case if n = n(t) is decreasing, in general all zones appear (see Figures 2.2 and 2.3).
Otherwise, if n = 7(t) is increasing we have two different parts of the phase space (see Figures
2.4 and 2.5). Then, we have the following three cases:

Case 1: 0<s <t < tgies
In this case (¢,€) and (s,&) belong to Zgi(dp). It holds hy(t,€) = F(A/Eti)). Then, we have
the following estimates for all ¢ € [s, tgiss):

K (t,,6)] S

)
A A(t)  A(s)
|6tK1(taS>£)| N F(A(t)) )\(3)‘
Case 2: 0 <5 <tgis <t <ty

First let us consider the case (s,€), (¢,£) € Za(dy, <€), where it holds hy(t,£) ~ p(t). Then,
from Corollary 2.4.14 we have the following estimates:

Kt s,6)] < p(ls)exp(—cf|QBx(57t))7

: A%(t)[€]?
|0,K.(t,5,6)] < “—~I>—exp(—Cl¢|*By(s,t)).
t oot ™ )
Now we will glue the estimates in Z.(dy,e) from Corollary 2.4.14 and in Zyi(dy) from
Corollary 2.4.16. That is, we use the representations (2.5.21) and (2.5.22). Hence, we arrive
at the following statement.
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Lemma 2.5.2. The following estimates hold for all (s,€) € Zyiss(do) and t € [taiss, tig|):

A exp (- CERBa(5.0).

N (D)[E]* Als)

<
T ) Als)

Proof. The fundamental solution F = E(t, s, ) can be represented as

K (t5,6)] S

|6tkl(ta 57£)|

exp (— CIE[*Ba(s, 1)).

E(ta S, 5) - Ecll (t) tdissa g)Ediss (tdissa S, 6)
for all (s,£) € Zaiss(do) and t € [taiss, tje|]. Then, we have

(1E(t, 5,9)I)

S (‘Eell(tv tdiss7 5) ’) (‘Edissudissy S, f) |)

A(k(t) ) k((t)\f\) )\(t ) F(A(s))  A(s)

2 tdiss p(tdiss diss A(s) A(s)

SGXP(*C’ﬂ B/\(tdissat)) A2(t)|f| Az(t)‘f‘Q F(A(td )) (A(s
Mtaiss)p(t)  p(taiss)p(t) M) X
ABEIEGEE A5
2 A(s) A(s)
S exp ( — C’a B/\(S,t)) ( A€ F(AGs)  A2(B)IER Als) >
o6 ) p(t)  A(s)

du
>
o

(2.5.29)

where we used A(tgiss)|€] < p(taiss) and [€]F(A(taiss)) ~ 1. Moreover, due to the first statement
of Lemma 2.5.1 we can extend B, (taiss,t) to Bi(s,t). Hence, from the estimate (2.5.29) we
may conclude

. 1 A
Ralts. 9] % s Balt. .01 S 50 o3 (= CIEPB(5.0),
0 (1,5,6)) S 1Bt 5,6)] £ LR oy cpeey 1),

respectively. Here for the estimate |K; (¢, s, )| we have used A(t)|€| < p(t) from the definition
of I (do, €). This completes the proof. O

Case 3: t >ty

Firstly, let us consider (s,£), (¢,€) € Iy, (N, e). Then, from the estimate in Z,.q(¢) after
taking account of hy(t, &) ~ A(t)|£] we get the following estimates:

Rt 5 e (BN

~ A€ \a(t)
R s)\ 1-28
0K (t,5,8)] < (f;((t))) '

To derive the corresponding estimates for ¢ € [t¢|,00) we shall estimate the term

S(t, [€]) = exp ( - ClEP /Sta )\2(;_():;(7—)d7'> exp ( - ;/tt p(T)u)(T)dT).

This term explains the competition of influences from different zones.

Lemma 2.5.3. For anyt >t and for a sufficiently small positive constant C the function
S = S(t,|&]) satisfies the following estimate:

st 16 < max {exo (- cleP [ 20 ar)
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Proof. First we show that the first partial derivative d¢S(t, |€]) is negative for |£] small. For
this reason we calculate

8\§\S(t’ [3))
= 5(t, \il)( - 2C\§|/S : )\(;():})(T)dT -2 (tlgp)(iitf')'g' dieitie) + WCZ&%)
< S(t, |§|)( - (;(;);;w((ttz))m digitie) + W%%)

= S(t.1¢) (2 - o1 - ety Al llia) gy,

where we used
N (e )w? e IEl  plte)w(te) (1-¢?)
p(tie))w(tie) 4 '
oo

Hence, sufficiently small positive constants e and C' guarantee that (2—C(1—¢?)) w >
0. On the other hand, by using the second statement of Lemma 2.5.1 we have

(L)

[€lp(tie))
This shows the decreasing behavior of the function S = S(¢, |¢|) in |£]. Now let us fix ¢t > 0.

Then, the function S = S(¢,[£|) takes its maximum for [£| satisfying ¢t = tg. that is, the
second integral vanishes in S(t, |£|). This completes the proof. O

diettie) <0, |djgtiell > and p(te) — oo for [¢] — 0.

Now we consider the case (s,§) € Za(do,€) and (t,€) € Iy, (N, ). Then, we will glue
the estimates from Z,.q(¢) and Zy(do, €). Hence, we obtain the following statement.

Lemma 2.5.4. The following estimates hold for all (s,&) € Zoy(do,€) and t € [t¢),00):

|K1(t7 87£)| 5 ,0(8) exp ( - Cl|£|2B)\(5’ t))7
A NOIEE e
0. K1 (t,5,6)| S PORD) exp (— C'|¢[* Bx(s, 1))

Proof. We have the following estimates for all (s,&) € Zen(do,€) and t € [tj¢|, 00):
(Bt 5,O1) S (1Brea(t, tie, OI) (|Eentie), s, €)1)

5(t ) c 11 Altie)) Altie) €]
< €] 2 _ 2 A(s) ‘ p(s)
~ ( (5(t) > ( 1 1 ) exp ( Cl’f‘ BA(37t|§|)) ( )‘Q(t\g\)m )\z(tlé‘)m'z

A(s)p(tie)  p(s)p(tie)

Altle)  Ale)I€l

e)2 ) o(s)

S CeXp ( -C ‘§| B)\(87 t)) AMtie)  Ate)€l ’ (2530)
As) ()

where we used p(t¢)) ~ A(tg))|¢] and Lemma 2.5.3 with

(L)
3(1)

here ¢’ := min{C}, Cs}. Hence, from the estimate (2.5.30) we get

exp (= C1IE[Ba(s, i) ( )02 < exp (= C'[¢]*Ba(s, 1)),

- LAl epp s
1 / 2
< @exp(—clél Bi(s,t))
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for all t > t¢. Similarly, for the estimate |9,K,(t,s,£)| we have

N A
R (t5,6)] < (Z'f'))'f exp (— CEPBa(s, 1))

NOIE?
S St o

for all ¢ > t¢|. This completes the proof. ]

- Cl|€’23>\(37 t))

Finally, for small frequencies it remains to glue the estimates in Il (N, €), Zen(do, €) and
Zgiss(dp). In this case we use the representations (2.5.18), (2.5.19) and (2.5.20). We remark
that this case comes into play only if 7 = n(t) is decreasing.

We have already obtained in (2.5.29) the estimate after gluing of the estimates in Z.(do, €)
and Zgiss(dp). Denoting the glued propagator by (|€(¢,s,£)|) we will only glue the estimate
in Z,eq(¢) with the estimate (2.5.29). Hence, we have the following statement.

Lemma 2.5.5. The following estimates hold for all t € [t|¢, 00):

Ralts € 5 30 e (- CUPBA(s.0)
ot 91 5 SO o (- clepms.0)

Proof. We have the following estimate in Z,eq(¢):

(Bt oD 5 (30) " (1 1):
Then, by using the estimate (2.5.29) we obtain
(1B, 5,))
S ([Brealts tie, 1) (1€ (et 5, 6)1)
F(A(s \(t Als)
s (6&':)'))@ < i1 >eXp(_ CHIEFBas: ) ( A2(<ts|))||f€2| F(A) A2(<tlz))|§2| I )
p(te)) A(s) pltig)  Als)

Mt E17552 At €156
MteDI€l ZALD At ]2 )
for all ¢t > ¢|¢|. Here we have used A(tj¢)|¢| ~ p(t¢)) and by Lemma 2.5.3

exp (— C1l¢° Ba(s, tig))) ((ig?;l)) < exp (— C'[¢]*Ba(s, 1)),

where C" = min{C}, Cy}. Hence, from the estimate (2.5.31) we obtain
2 1 ( ) 1 ¢)2
Ki(t,s,8)| S —— § exp ( — C'|€]°By(s,t

< A(s)
™ A(s)

(2.5.31)

S exp (— C'[§]*Ba(s, 1)) (

exp (= C'[¢By(s,1))

for all t > t¢. In a similar way, for estimating |9,K,(t, s, )| we get

0K (t5,6)| < A(mgmsrféj exp (— C'EP B (s.1))
SOl e (— ClePBy(s.1)
X2()[€]? As) -
< W)‘(S) exp ( - C'l¢] B>\<3at))

for all ¢ > t¢|. This completes the proof. O
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Large frequencies

Case 4: 0 < s <t <t

If n = n(t) is increasing, then (¢, €) and (s, £) belong to I, (N, ). Taking ho(t, &) ~ A(t)[€]
we have the following estimates:

|Ki(t,s,8)| S A(tlm(g((j)))l_w, (2.5.32)
0K (t,5,6)] S (?i;})l_w. (2.5.33)

We remark that the estimates (2.5.32) and (2.5.33) remain true for large frequencies in the
case that n = n(t) is decreasing. If n = n(t) is decreasing, then we have only Z,,,(N) for
large frequencies.
Case 5: 0 < s <t <t

In this case we use the representation (2.5.23). We remark that this case comes into play
only if n = n(t) is increasing and there is no separating line if || > 7,/ 1 — 2. Then, we
have the following statement.

Lemma 2.5.6. The following estimates hold for all t € [t|¢|, 00):

Kty 5,6)] < @exp(—0'|erBA<s,t>),
ok 9 5 A0 e (~ ClePBAs.0)

Proof. We know that the estimate from Il ,(N) comes from Z,.q(e). Therefore, taking into
consideration the representation

E(t7 37 5) - Eell(ty tred? g)Ered (tred; tosm é.)EOSC (tosm thyp; S)Ehyp (thyp7 37 f)

leads to the estimate

(1E(t,5,6)]) S (1Ben(ts tie) OI) (| Brealtie)s 5,6)|)

S e | (O V(11

te| pltig] ?

Sexp (= GlEPBten D) | e 2w (5(t|€|)) ( 11 )
)

Atiep)  p(tie)p(t

A(t) A()

At Altre))

§exp(—C’|£\2B,\(s,t))( 2o o] ) (2.5.34)
Altig)e(t)  Altg)e(t)

where we used p(tj¢|) ~ A(t¢))|¢| and by Lemma 2.5.3 we may conclude

exp (— C1[€]*Ba(tig), 1)) (;(7(;?))02 < exp (= C'[¢]*Ba(s, 1)),

where C" = min{C4, Cy}. Hence, from the estimate (2.5.34) we obtain the following estimate
for |K1(tv S, 5)’

. L) e ) ;ex B
K1 (t,8,8)| < 0 A(tm)( C'|¢]*By(s,t)) < ) p (= C'|¢P*By(s, 1))
1 ! 2 1 ex . ’ 9 s
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Similarly, for estimating |9,K, (¢, s,£)| we have

018 (1:5.€) 5 s exp (= C'EPB(5.0)
oy e (= CIERB(s.)
< SE exp (= CIEPBA(s.0).
Here for both estimates we used n(s)v/1 — €2 < |£| < n(t)V/1 — &2, since n = n(t) is increasing.
This completes the proof. ]

2.5.3. Estimates for the multiplier K

In the same way as we derived estimates for the multiplier K, and its partial time derivative
0, K, we will derive estimates for Ky = Ko(¢,0,£) and 0, Ky = 0,K((t,0,¢) with s = 0.

Small frequencies

Case 1: t < tgiss

In this case (t,£) belongs to Zgi(dp). It holds hy(t,&) = % Then, we have the

following estimates for all ¢ € [0, tqiss):

: h1(0,€)
|K0(2,0,8)] < mt, >\E11(t 0,6)| <

10, Ko(t,0,8)| < 71(0,€)|Ea(£,0,8)| <

Case 2: taiss <t <t

In this case we need to glue the estimates in Zg(dy, €) from Corollary 2.4.14 and in Zg;s(dyp)
from Corollary 2.4.16 with s = 0. Then, by using the representations (2.5.21) and (2.5.22)
for s = 0 we get the following statement.

Lemma 2.5.7. The following estimates hold for all t € [tgiss, tie|]:

[Ko(t,0,6)] < exp (= CIE[*BA(0,1)),

A?(1)[€f?

10, Ko(t,0,8)] < Wexp(—mfl?&(o,w)-

Proof. We can proceed in a similar way as in the proof of Lemma 2.5.2. Then, from the
estimate (2.5.29) with s = 0 and taking hs(t,£) ~ p(t) we immediately get the following
estimates:

h( §)
ha(t, €)

10, Ko(t,0,€)| < ha(0,8)|Ean(t,0,8)| <

|—f(0(75’0,f)’ |En1(8,0,8)] S exp( C|§| Bx(0 t))
)

A (B)IE1*

p(t)
respectively. This completes the proof. O

exp (— CI¢]*Bx(0,1)),

Case 3: t >t

Firstly let us consider (¢,&) € Iy, (N, ). Then, from the estimates in Z,y,(N) and after
taking account of ho(t,&) ~ A(t)|£| we get

|Ko(t,0,6)] < ZZ((O g))IEn(t 0,6)] < >\(1t)(5(1t))12ﬂ’
0 (1.0.6) < ha(0. ) En(t.0.9] £ 161 (555)
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Now we glue the estimates from Il (N, e) and Zg(do,e). Hence, we obtain the following

d .
statement for 3% < [¢| and small frequencies.

Lemma 2.5.8. The following estimates hold for all t € [t|¢,00) and F(A(t)) < |¢]:

[Ko(t,0,6)] < exp(—C'[¢BA(0, 1)),
)

Bko(t,0.6)] < “WEE

s S e (- CIEPB0.Y).

Proof. We apply a similar argument to the proof of Lemma 2.5.4. Then, from the estimate
(2.5.30) with s = 0 and taking into consideration hq(t,£) ~ A(t)|£| we have

’K0<t707§)‘ S WA(t\f\)( - Cl’fFB/\(O?t))

< exp (— C'[¢[*BA(0, 1))

and
0, Ko (t,0,€)| S [|A(Her) exp (= C'I&*BA(0, 1))
A?(t) 1€
< =72 exp (— C'|€]P By (0,
p(t) ( ‘§| >\( ))
for all ¢ > t¢|. This completes the proof. O

Finally, it remains to glue the estimates in Il (N, €), Zen(do,€) and Zgiss(dp) for small
frequencies. In this case we use the representations (2.5.18), (2.5.19) and (2.5.20) for s = 0.
We remark that this case comes into play only if n = n(t) is decreasing. Hence, we have the
following statement.

Lemma 2.5.9. The following estimates hold for all t € [t|¢, 00):

[Ko(t,0,6)] < exp (= C'lgBa(0,1)),
Nlel

tK ) Yy 5

exp (= C'IEBA(0,1)).

Proof. We can derive estimates for | Ky(t, 0, )| and |8, Ko(t, 0, €)| in a similar way as we did in
the proof to Lemma 2.5.5. Hence, from the estimate (2.5.31) with s = 0 and taking account
of ho(t,&) ~ A(t)|£] we obtain

((0) (L)€l — C1EBA(0,1))

S exp (— C'IEBA(0, 1)),

\_/

|Ko(t,0,6)] £

and

[8:K0(t,0,6)| S MO)[E[A () €l exp (— C'I€[* BA(0, 1))
t)|¢] exp (= C'I¢[*BA(0,1))

O] ——
Sy exp (= CIEPBA0.0).

<
<

> >

2/\

This completes the proof. O
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Large frequencies

Case 4: t <t
In this case if n = n(t) is increasing, then (t,§) belongs to Il (NN,e). Here it holds
ha(t, &) ~ A(t)|€|. Hence, we have the following estimates:

A h2<07€) 1 1 S
|Ko(t,0,6)] < Tt 2) |Eq1(t,0,8)] < w(%) )
R 1 1-2p3
|0:Ko(t,0,€)] < 71 (0,8)|Ean(,0,)] S [€] @) '

We note that these estimates hold for large frequencies if n = n(t) is decreasing, too. If
n = n(t) is decreasing, then we have only Z,,,(N) for large frequencies.
Case 5: t 2 t|5|

Firstly let us consider the case (t,£) € Z(do,e). Here it holds hs(t,€) ~ p(t). This case
appears in the case that n = n(t) is increasing (see Figures 2.4 and 2.5). Then, from Corollary
2.4.14 we have the following estimates with s = 0:

N h2 ,
Ralt,0.9] £ 20810 (1.0.9] S exp (~ CIEPB0.0).
N )\2 2
0uot,0.6)] < ha(0. €)1 Es(1.0,6)] £ * " exp (= CIEPBA0.0),

where we used 7(0)v1 —¢e? < |£] < n(t)v1 —e2. We note that in this case if n = n(t) is
decreasing, then the above estimates remain valid, since the set of admissible parameters
forms in this case a compact set in the extended phase space.

Now taking into consideration (2.5.23) for s = 0 we have

E(t7 07 f) = Eell(ty tredu g)Ered (tredv tosca g)Eosc(toscy thyp) f)Ehyp (thyp7 07 5)
We remark that this case comes into play only if = n(t) is increasing. Then, we have the

following statement.

Lemma 2.5.10. The following estimates hold for all t € [t|¢, 00):
[Ko(t,0,6)] < exp (= C'lEBA0,1)),
. A2 (1)|€)? ,
10,K0(t,0,8)] < /()()t’f' exp (— C'|€]*BA(0,1)).

Proof. Tn order to derive the estimates for |Ko(t,0,€)| and |9,K,(t,0,€)| we can follow the
proof to Lemma 2.5.6. Then, from the estimate (2.5.34) with s = 0 and taking hy(t,£) ~ p(t)
we have

LMD
1 4 2

S exp (= C'l¢"Bx(0,1)).
To estimate |9,Ky(t,0,€)| we proceed as follows:

5 A1) €] e
0. Ko (t,0,8)] < WGXP( Cl¢|*BA(0,1))
A2 (@)[€1° >
~ m exp ( - Cl¢| BA<O7t))
< M08 e (- clgm0.0).

Here in both estimates we have used the monotonicity of A\ = A(t) and since n = n(t) is
increasing n(0)v1 —e? < [£| < n(t)v/1 — 2. This completes the proof. O
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2.5.4. Final estimates

Let us define
Q(s,t) := max {n(s),n(t) }vV1 — &2
for any t > s and s € [0, 00).

Remark 2.5.3. We distinguish between small and large frequencies. Small frequencies satisfy
the condition |£| < (s, t), while, large frequencies satisfy the condition |§]| > (s, t).

Summarizing we arrived at the following statements for the estimates of |K; (¢, s, €)| and
|0, K (t,s,&)| with t > s > 0.

Corollary 2.5.11. If [£] > Q(s,t), then we have the following estimates:

5 1 d(s)\1-28
< 7
. 5(s)\ 128
okl 5 (55) (2.5.36)
do . . '
If FOAD) < €] < Q(s,t), then we have the following estimates:
- A
Ralts O 5 5 o (= ClEPBs.0), (2.5.37)
; A2(1)I€]% A(s) 2
< —
|0 K1 (t,8,8)] < o) A) exp (— C"|€]*Ba(s, 1)). (2.5.38)
do . .
< 0 .
If €] < FOAD)’ then we have the following estimates
. A(s)
< A7
|Ki(t, s, 8] < Ns) (2.5.39)
. A(s)  A(t)
<
0K (L, 5,8)] < o) FOAD) (2.5.40)
We have similar results for the estimates of |Ky(t,0,£)| and |8,K,(t,0,€)|.
Corollary 2.5.12. If || > Q(0,t), then we have the following estimates:
. 1 1 \1-28
< — (=
. _ 1 \1-28
oko(t.0.01 5 Wl(5) (2.5.42)
do . . )
If FOAD) < €] < Q(0,t), then we have the following estimates:
|Ko(t,0,8)] < exp(—C'|¢2BA(0,1)), (2.5.43)
: < NP )2
a(t.0,)] 5 U exp (~ CIEPBA.D) (2.5.44)
Flel< =2 have the following estimates:
= FOA@D)’ en we have the following estimates:
1Ko(t,0,6)] < 1, (2.5.45)
00O 5 (2.5.46)
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2.5.5. Matsumura-type estimates with additional regularity of the data

In this section let us consider the following two Cauchy problems:

vy — N (W () Av + p(H)w(t)v, =0, (t,z) € [s,00) X R™, s> 0,
{U(S,x) = O7 'Ut(S,.’B) = g(S,ZC), = (2547)
and
wy — A? (t)wQ(t)Aw + p(t)w(t)w, =0, (t,z) € [0,00) x R™,
{w(o, {L‘) = f(:E), wt(O; ;L‘) = 0’ T € R™, (2548)

We have denoted by K; = K;(t,s,z) and Ky = Ky(t,0,x) are the solutions to the corre-
sponding linear Cauchy problems (2.5.47) and (2.5.48) with initial data g = o and f = d,
respectively, where §g is the Dirac distribution with respect to spatial variables in x = 0.
Using these notations for the solution u = u(t, z) to the Cauchy problem

i — N0 () Au+ p(Hw(t)u, = 0, (8,3) € [0,00) x R,

U(O,Hﬁ) = f(m)7 ut(oax) - g(:L'), z € R,
we have

u(t,x) = Ko(t,0,2) %) f(z) + Ki(t,0,2) %) g(z).

Thus, we may conclude the following estimates for the solutions of v = v (¢, x) and w = w(t, z):

lo(t, Mizz = 180t )|z < (Kt s,€)9(s, €)1z

and X A

Jw(t, ez = lw(t,)llze < [[Ko(t,0,€) f(E)]]z2-
In order to estimate the L? norm of 9;07 K, (L, s,x) *(x) g(s,z) and 9;07Ko(t,0,z) *) f(x)
for £=0,1 and for any o > 0, we can follow the techniques used in [4], [10] and [23].

Matsumura-type estimates with s > 0

In this case we assume additional L™ regularity for the data, with m € [1,2) in order to prove
estimates of solutions and their first partial derivatives to the Cauchy problem (2.5.47).
We have the following statements for large and small frequencies.

Lemma 2.5.13. We have the following cases for large frequencies || > (s, t):
1. If n = n(t) is increasing the following estimates hold for o +¢ > 1, £ = 0,1 and
t>s>0:

H |£|aaff{1(ta S, )g

N(t) /6(s)y 120
(5 ) ez = \(s) (7) lg(s, W aere—.  (2.5.49)

Moreover, if 0 = £ = 0 we have the estimate

. . 1 d(s)\'~2F
K (t,s,- N 2 st)) S ———r | —= )|z 2.5.50
1Bt 5,995, Mezaezemn S oy (i) 1965l (2:5.50)
2. If n = n(t) is decreasing the following estimates hold for o +¢ > 1, £ = 0,1 and
t>s2>0:
oAt i . A(t) (0(s)\1—2°
NElOE KL (59905, Maaqgzaceen S 3o (5iy) N9 Mareser (2551)
Moreover, if 0 = £ = 0 we have the estimate
~ . 1 d(s)\1-28
Ki(t,s,- I 2 ) S [ == )|z 2.5.52
|| 1( S )g(s’ )HL (1€1=82(s,t)) ~ 77(8))\(8) (5(t)> ||g(3 )”L ( )
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Proof. We have the following estimate for o + £ > 1:

||\§|”8ff(1(t 8,)4(s, - ||L2 (1€1>9(s,8))

< |H£|1 £8£K1 t S § ||Loc (1€]1>Q(s,t)) |H§|U+e 19(87 ')HLQ(\QZQ(S,Q)'

The second term on the right-hand side can be estimated by ||g(s, -)||zo+¢-1, since o 4 £ > 1.
Now let us consider the L> norm of K;(t, s, &) and its derivatives with respect to t. Indeed,
for £ = 0 by using the estimate (2.5.35) we get

: 1 6(s)\1 2 _ 1 6(s)\ 12
‘f"Kl(taS:f)’fSw(%) 5@(%) )

and for £ = 1 by using the estimate (2.5.36) we get

. S(s)NI-28  A(E) /6(s)\1=28 _ A(E) /6(s)\ 120
|atK1<t,s,5>|,<v(58) =AE§;(5<@§) SA((?)(()) |

Let 0 = ¢ = 0. Then, we use

For this reason we have the estimate

o 1 1 /d(s)\1=28 1 1 /6(s)\1-28
|K1(t75,§)\§mﬁ<%) 59( ( )) )

Finally, we arrive at

. 1 1 /(s)\128
K Nals. M ra < )
1Ba(t, )95 amiezoem £ gr 3 (s) 196l
This completes the proof. ]
Lemma 2.5.14. The following estimates hold for small frequencies + (A(t < €] < Q(s,t):
ol 10 ~
H|§‘ 8tK1(t7S )g( )||LZ(F(A(t))<|€|<Q(S t))
A2E(t) A(s — g m(1_1
s PO (g (6 0) (Bl 0) T D sl (2553)

~opt(E) Als)
forany o >0,t>s>0 and £ =0,1, where m € [1,2).

Proof. Let 1 < m < 2 and we choose m/ and p such that L + -1 =1 and %—i— L =1

Therefore, it holds % = L — 1 Then, applying Holder’s inequality with %4— 2 =1 we obtain
the following estimate:

H|§|J@fff1 (t,s,-)q(s, ~)HL2(F(A(Z)) <|e|<Q(s, t))

S || ‘f‘gafkl(t7 87 .)||Lp( <|£|<Q(.s t)) Hg(s7 .)HL"L (

PO e SK1<Q(s, n)’

We can estimate ||g(s, -)||m by ||g(s, )| = due to the Hausdorff-Young inequality. Therefore,

we have only to control the L” norm of the multiplier. Thanks to (2.5.37) and (2.5.38) we
have the following estimate:

|| ‘£|08t£f{1 (t7 S, ) HLP (

Sy,

S0 26 Uit < 16l < 0(s,)

Tty SIEISs.)

€70 exp (— Cple[*Ba(s, 1) de)
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Let us apply the change of variables
r = Cplé|*Bx(s,t), dr =2Cp|¢|d|€|By(s,t).

Then, we have

J

p(o+2¢0) - C QB d
<l <oy o (OB

7

_plo+20)4n OO n
< (Ba(s,t)) 7 / R BV
0

The integral on the right-hand side is bounded and we get the function

N2(E) A(s) e N() A(s)

S (Br(s.8) " (Ba(s,) F 2,

pt(t) Als) pt(t) Als)
This completes the proof. ]
Lemma 2.5.15. The following estimates hold for small frequencies |£| < F(io(t))
08[}% t) )" g ) " d
A(S) s sy /oy py — 2 —n (L1
D g, )l (2559)

(F2(A(1)) " (F2(A()*

SNOPA0)

foranyo >0,t>s>0 and £ =0,1, where m € [1,2).

Proof. In the same way as in the proof of the the previous lemma we have the following
estimate:

ElD .5, o gy < NEF70E K (Es)

HLP \§\< )Hg( )HL”L (‘§‘<F(A(f)))‘

T )

Thanks to the estimates (2.5.39) and (2.5.40) we obtain

H|§|Gatef{l (t) S, )H

L"(|f‘<F<A<f>>)

A(s)
<3 Fnc e <

A(s) V( ) o+2 M) —
: A(s) FE(A(1)) (F(A(t))) S A(s) F‘f(A(t))(F (A(1)))

amae)’ < 30wy (L M oo alel)’

FA( t))}

This completes the proof. O

The main result for the family of one-parameter dependent Cauchy problems (2.5.47)
follows from the statements of the Lemmas 2.5.13, 2.5.14 and 2.5.15.

Theorem 2.5.16 (Main theorem with s > 0). Let us assume that A = A(t), p = p(t)
and w = w(t) satisfy the conditions (A1) to (A5) and (B1) to (B6). Then, the solution
v =v(t,z) to the Cauchy problem (2.5.47) satisfies the following Matsumura-type estimates

fort>s, me|[l,2) and o > 0:

ot e S 3 @+ Ba(s:)FF D gl )l
A A(1) -5-3(-4)-1
ot e 5 3y max { e (14 Bals,0) ,

>
—~
~
N—
g
-
—
~
~—
~—
—
i)
—
-
—
~
~—
SN—
SN—
N
N
—
S\H
m\»a

M lg(s. )

LmNHo° -
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Proof. Combining and comparing all the estimates coming from three different parts of the
extended phase space we arrive at the higher order energy estimates of solutions to the
Cauchy problem (2.5.47). We have a “potential type estimate” because the estimates for small
frequencies (“potential type estimate”) are faster than the estimates for large frequencies
(“exponential type estimate”). That is, here we take into consideration that the estimates in
(2.5.53) and (2.5.54) are worse than the estimates from (2.5.49) to (2.5.52), respectively. On
the other hand, due to condition (B6) we have the estimate

Bi(s,t) < Bx(0,1) S F?(A(t)).
Hence, from (2.5.53) and (2.5.54) for ¢ = 0 we obtain

—_g_n(1_1 —g_n(l_1
(FQ(A(t))) 2 2(m 2) S, (B)\(S,t)) 2 2(m 2)’
Hence, we may conclude that the relevant behavior for the estimate of v = v(t, z) is coming
from the elliptic zone and the estimate of v, = v;(¢, ) is coming from the elliptic zone and
dissipative zone. Moreover, the regularity of the data is coming from the influence of the

large frequencies from (2.5.49) to (2.5.52).

Let us introduce Cy := § + 4 (i — l). We distinguish between two cases as follows:

m 2

Case 1: n =1(t) is increasing

In this case we shall compare the estimates (2.5.49) and (2.5.50) with (2.5.53). Moreover, we
will compare the estimates (2.5.49) and (2.5.50) with (2.5.54). Then, we have the following
cases:

Case 1.1. Comparison of the estimates (2.5.49) and (2.5.53)

In this case we compare the term

)\e(t) 0(s)\128 )\‘v’(t) 5(s)\2C )\L](t) ¢
A(S)( ) ~\s) ( ) ) eXp<_Cl/5 P(T)w(T)dT)

o(t)

o(t)

from (2.5.49) with the term

MO AS) b 0 (Bs 551 ZATO M) o Comt
2(8) A B0 (B0) 2(0) M) B0
from (2.5.53). We will show that
NE(E) £(8)\2C0 _ A%(t) A(s) —Cy—t
o G0) S 7w B

It follows

5(s)\ 2 1 e
(%) 5,,714@/\(5)(&(871?)) .

Due to n(t) is increasing, then there exists a constant ¢y such that C' = n(ty) < n(t) uniformly
for all ¢ > ty. Thus, we have
A*(1)

p2(t) = N2(t)n*(t) > C*N*(t), which implies p(t) > C? o0

for all ¢t > ty. This brings the desired dominance.
Case 1.2. Comparison of the estimates (2.5.50) and (2.5.53)
In this case we have ¢ = £ = 0. Then, we will show that

1 (5(3))201 < A(s)

n(t)A(s) \6(t) Als)

—c,

(B,\(s,t))
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Due to the considerations in the Case 1.1 and since 7(t) is increasing, this estimate holds for
all t > s.

Case 1.3. Comparison of the estimates (2.5.49) and (2.5.54)
In this case we compare the term

NE(E) 0(s)\20  NA(1) ¢
) (@> = o) exp ( — C’l/s p(T)w(T)dT)

from (2.5.49) with the term

A(s)
A(s)

(F2A0) " (F2aw) F 2 =X /;((Z))F(A(t))—wa—ﬁ

N6 F (M)

from (2.5.54). We want to show that

)‘e(t) (5(8))2C1 ,S )\Z(t) A(S)F(A(t))_zc”_é.

A(s) \o(t) A(s)

So, it suffices to consider the monotonicity of the function

FA0) o ()"

We form the derivative of this function

O [F(A(t))fzcrg ((S(t))zcl}

5(s)
= (=20, = 5)FO@) 2 OFAO) (50) "+ Cunown) (35) " FAm) e
_ 20,4~ / AN g _ L ult) FAQR))
_ F(A() 2G50 F (A(t))(é(s)) ( 20, = 5+ Crwld) F/(A(t)))
) 2C, =
:F(A(t))—QC«—2—1)\(t)F’(A(t))((SE?)) (—20(,—§+01w(t)”((’3 Alg)(A((tt)))),

F(A(t))
A/ F' (A1)
term in the last bracket tends to oo as ¢ tends to oco. Because, from condition (A2) we have
0<c<w(t)<e and O() < A(t)Z(t) < A(t). For this reason we obtain

pt) A=) e 1
w()A(t) F’(A(t)) NM()A(t) F,(A(t))a

where we used condition (A5), that is, Z(t) = . Here we can see that the last

where by the condition (B5) we have u(t)% — o0 as t — oco. Moreover, from condition
(A5) we have
1 _ABEE) o 6()
VEA®)  FA@) ™ FA®)

Thus, we arrive at the expected comparison.
Case 1.4. Comparison of the estimates (2.5.50) and (2.5.54)

In this case we have 0 = ¢ = 0. We want to show the estimate

L (N0 A e
TP GE) S e A

o(t)
Hence, due to the Case 1.3 and since 7(t) is increasing, this estimate holds.

Case 2: 1 =1(t) is decreasing
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Now we need to compare (2.5.51) and (2.5.52) with (2.5.53). Moreover, we will compare the
estimates (2.5.51) and (2.5.52) with (2.5.54).

Case 2.1. Comparison of the estimates (2.5.51) and (2.5.53)

In this case let us compare the term

o) (3 N0 A X0 (o [ o)

As) Vo(1) As) V(1) A(s)
from (2.5.51) with the term
A? (t) A(S) (BA(s,t))ie(B)\(S,t))igi%(ii%) _ A? (t) A(S) —Co—2

pit) As)
from (2.5.53). We will verify that the following estimate holds:

NE(t) (5(3))201 < A2(t) A(s)

A(s) \o(t) pi(t) Als)

—Co—t

(BA(Sv t))

It follows

1= W@NEEQ ) (Bas. )

Then, we consider the monotonicity of the function

(52) " (Bas.0)

We calculate the derivative of this function as follows:

o (50) " (Batent) ™
— Cip(t)w <>(8) (Ba(s,)~ C”‘e(—ca—ﬁ)(fﬁég)wl(&(s,wrc"

_(6(8) 2 —Co—t—1 N2 (t) 1 C1p? (t)w(t)
= (@) (B)\(S,t)) p(t) < )\2(7‘5) B)\(S,t) - C, — [)

Now we can see that the first term in the last bracket tends to oo as ¢ tends to co. Indeed,

—-1A%(t)
p(t)

we have
o2t (1) L) [N,
o 20 = g / ) C
P (A2 Ns) | [ N
BT ( 200) 2u<s>+/s 202 (7) d)
W(w(r)  pPOw) A2(s) Bt [FATA)
S S8 ) ) ) (2559

)
where we used condition (B2), that is, [¢/(¢)] < piu(t)A(t)/A(t). From the last estimate we
get

12 (t) /: A(T)A(T)dTZ( 1 )(u(t)— 12 (t) AQ(S))

A ), ur) T m A2(0) (o)
> (50 (0 = K AG) 2 uto)

n(t)
2A(1)

Thus, for a sufficiently large time t, the expression (2.5.55) is positive for all ¢ > ¢,. This
yields our expected comparison.

Here we have used the function n(t) = is decreasing and the function A(t) is increasing.
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Case 2.2. Comparison of the estimates (2.5.52) and (2.5.53)

In this case we have 0 = £ = 0. Then, we will show that

L BN M)
)‘(5)77(8)<5(t)) SA(S)(BA(,t)) .

It follows 5(8) 20
1) (35) " (Bal0)

Therefore, this estimate is satisfied due to the considerations in the Case 2.1.
Case 2.3. Comparison of the estimates (2.5.51) and (2.5.54)
This case can be shown in the same way as in the Case 1.5.
Case 2.4. Comparison of the estimates (2.5.52) and (2.5.54)

In this case we have 0 = £ = 0. Then, we will show that

A

1 d(s)y 2
A(s)n(s) (@)

Hence, from the considerations in the Case 1.5 this estimate holds for all ¢t > s.
In this way we have proved the desired statements. This completes the proof. ]

~ A(s)

Remark 2.5.4. We note that in our estimates we replace B,(0,t¢) by 1+ B,(0,t). This can
be done modulo a compact set in the extended phase space. Such a compact set will never
influence the desired estimates.

Matsumura-type estimates with s =0

We use the same approach to estimate Ko(t, 0,¢) and 8tK'0(t, 0,£). Again we assume addi-
tional L™ regularity for the data, with m € [1,2) in order to prove energy estimates for the
solutions and their first partial derivative in time to the Cauchy problem (2.5.48). We have
the following statements.

Lemma 2.5.17. The following estimates hold for large frequencies |§] > Q(0,t):

ol < 14 1 1-28
||‘§| 8 KO t O f||L2 |5|>Q(0 t)) ~ )\ (t) (@) ”fHHa-Hf (2556)

forany o >0 and £ =0,1.

Lemma 2.5.18. The following estimates hold for the small frequencies F(A 5y < 1€] < Q(0,t):
ocal 1 R
H|§| 8’5K0(t’0")fHL p<A<t>)<IEI<Q(0t))
A2t ) _e_n(1_1
= pz((t) (BA(0,1) " (Br(0,1) T2y ) (2.5.57)

for any 0 >0 and ¢ = 0,1, where m € [1,2).
Lemma 2.5.19. The following estimates hold for small frequencies |£| < F(A(t))

H|§|Uatéf(0(t7 01 )f”

22 (j¢1< 7ty )
S A F (A1) (FQ(A(t)))J(Fz(/\(t)))fg”(in) [ £l (2.5.58)

for any o >0 and £ = 0,1, where m € [1,2).
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The main result for the Cauchy problem (2.5.48) follows from Lemmas 2.5.17, 2.5.18 and
2.5.19. The estimate that we obtained in (2.5.57) and (2.5.58) are worse than the estimate
that we have for large frequencies in (2.5.56). Moreover, due to condition (B6) from (2.5.57)
and (2.5.58) for ¢ = 0 we have the estimate

The comparison arguments for small and large frequencies can be verified in a similar way as
in the proof of Theorem 2.5.16 with s = 0. Thus, we get the following result.

Theorem 2.5.20. Let us assume that A\ = \(t), p = p(t) and w = w(t) satisfy the conditions
(A1) to (A5) and (B1) to (B6). Then, the solution to the Cauchy problem (2.5.48) satisfies
the following estimates for o >0 and m € [1,2):

lult. Mg < (4 Ba(0,) 2 FF8 | £ e,

e (t, ) o S max{)\ *) (1 + BA(O’t))_%—%(W—%)ﬂ ;

~

AOFAO)FA0) D e,

We know that the solution u = u(t, z) to the Cauchy problem

{utt — X (D () Au+ pt)w(t)u, =0, (t,z) € [0,00) x R, (2.5.59)

u(0,2) = ug(x), uw(0,2) = uq(z), z € R™
can be represented as
u(t,x) = Ko(t,0,2) *z) uo(x) + K1(t,0,2) * ) ui ().
Summarizing, we obtain the following statement.

Theorem 2.5.21 (Main theorem with s = 0). We assume that A = A(t), p = p(t) and
w = w(t) satisfy the conditions (A1) to (A5) and (B1) to (B6). Then, the solution to the
Cauchy problem (2.5.59) satisfies the following estimates with m € [1,2) and o > 0:

1

e, Mo < (04 Ba0.0) 5 2 F ) (gl pmere + Lo )

Juelt, Mo S max {28 (14 By (0,) 75D

—g__
2

|3
—~
3

—_1y_1

) }(H“O”LmﬁHf’“ + Jur || Lmome)-
2.5.6. Some examples

We will conclude this section with some examples for special coefficients.

Example 2.5.1 (Polynomial case). Let us choose A(t) = (a4 1)(1 +¢)*, «a > 0. So, we
have
Aty =1+t and O@) =1+, —-1<y<a.

Moreover, we have

p(t) = (ot 1)

_20[_7ﬁ+1(1—|—t)ﬁ7 a—y—1<p<2a+1

Now we choose Z(t) = (1 +t)* with 1 > x > 22, Then, we obtain

FA()) = (14 )™,
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Hence, the hypotheses of Theorem 2.5.21 are satisfied.
Then, all the above choices give us the following estimates:

1

fu(t, Y ge S (14 8)~ e FDEG=DHE) |y

ronge [l ey
and
et e max { (14 )7 ComorD(EGDTE) 1 (1 g gy Rerie2 (3D g) v ]
X (|luollpmnsra+r + ||wr || L ). (2.5.60)

Now let us consider the competition between the estimates in (2.5.60). We introduce C, ,, ., :=
n(1
=3 +5 I

—20—0+1)Corpnm—1<—-2a+4k—2)Chpm — 26+ 1

holds, then we have

e, Yo S (14 £)~ A DEGEHE) 255 (|| g + | e ).
On the other hand, if
—2a—B+1)Corpnm—1>—-2a+4k—2)Copm — 26+ 1

holds, then we get

et M S (148~ DEGE=DEE) T (g o + [l s ).

We note that if we set formally x = 1, then we have F(A(t)) = A(t) and O(t) = A(t). Hence,
the last estimate is satisfied with —1 < 8 and and we say that this estimate coincides with
the estimate in the case of very slow oscillations.

Example 2.5.2 (Ezponential case). Let us choose A\(t) = ef. So, we have
A(t)=¢" and O()=¢€", 0<r<l1.

Moreover, we have
1

2—q

t
eq

p(t) = , 1—r<g<2.

Now we choose Z(t) = " with 0 > k > —4. Then, we obtain
F(A(t)) =~ e1+200t,

Hence, the hypotheses of Theorem 2.5.21 are satisfied.
Therefore, all the above choices give us the following estimates:

—(2— ncl _1y4 o
lutt o S @ EGEDF

pmame + |lur ||meH[”*11+)
and

e )l S max { -G (EGE—D#8)e; oo (3Gi-d+5))

X (HU0||meHU+1 + HU]_HmeHa). (2561)
Now let us consider the competition between the estimates in (2.5.61) introducing Cy ,, ., =

S5 -p
—2-q¢)Crnm < —24+4K)Copm — 2K

holds, then we have the estimate

,2/{t6—(2+4r€)(%(%—%)+%)t(

Jwr(t, ) e S e luolleness + lunllLmnme)-



2.6. Construction of admissible oscillating functions 77

Whereas, if
—2—=9)Conm > —(24+4K)Copm — 2K

holds, then we have the estimate

_ (92— nel 1 o
s (8, e S € EPEG D) (g pmgons + ||| pmnire)-

We note that if we set formally x = 0, then we have F(A(t)) = A(t) and O(t) = A(t). Hence,
the last estimate is satisfied with 0 < ¢ and and we say that this estimate coincides with the
estimate in the case of very slow oscillations.

Example 2.5.3 (Super-ezponential case). Let us choose A(t) = ete?’ . So, we have
Aty =¢" and O(t)=¢"*, 0<r<1.

Moreover, we have
1

zieteqet, l1-r<g<?2.
2—q

p(t)
Now we choose Z(t) = e~'e"" with 0 > k > —4. Then, we get

F(A(t)) ~ 020",

Hence, the hypotheses of Theorem 2.5.21 are satisfied.
By the above choices we get the following estimates:

—(2— nel 1 o\t
lu(t Mo < e @V EEDD (Jug me + [l pogio—ns ),
and

(. Yo S max {etem G- (FGDAE)E"; ooane’ maa(3 - 0)+8) )

X (||'U/O’ LmNHe+1 + H'Uq’ meHo). (2562)

Now let us consider the competition between the estimates in (2.5.62). If
—2-q¢)Crnm < —24+4Kr)Copm — 2K

holds, then we have the estimate

et e S €2 e @A EGDE) (|| gross + 1| o)
While, if
—2-q9)Chrpm > —24+48)Copm — 2K
holds, then we have the estimate

n

luae(t, e S et GO EGTHHE (|

mame+ + ||ug meHv)-

We note that if we set formally x = 0, then we have F(A(t)) = A(t) and O(t) = A(t). Hence,
the last estimate is satisfied with 0 < ¢ and and we say that this estimate coincides with the
estimate in the case of very slow oscillations.

2.6. Construction of admissible oscillating functions

Now we present an admissible nontrivial oscillating function w = w(¢) in the coefficients
of our model (2.1.1) satisfying the hypotheses of Theorems 2.5.16, 2.5.20 and 2.5.21. The
construction of the function w = w(t) was done in [19].



78 2. The influence of oscillations on linear damped wave equation with time-dependent coefficients

In order to construct a nontrivial function w = w(t) satisfying conditions (A2), (A3) and
(B5) let us choose the positive sequences {t;};, {J,}; and {n;}; in the following way:

tj — 00, (5]' S Atj = tj+1 — tj and 15 S 1 (261)

and a function ¢ € C}*(R) with

1
suppdh C[0,1], —1< () <1 and JC o (t)|dt = ~

t) = 1+inj¢(t;]tj).

The last sum is convergent, because by (2.6.1) for each ¢ at most one term is present. Fur-
thermore, if ¢y = minj ;1 (t) and ¢; = max 1) 9 (t), then we get the bounds

Then, we define

0<l+ec<w(t)<1l+a.

For (A2) we can take
C'E(ty) < 6; < CiE(ty) (2.6.2)

and the sequence {¢,}, satisfying
Co'Mtrs1) < Mtr) < CoM(tey1) and  Cy'A(trs) < A(tr) < CsA(tey) (2.6.3)

with positive constants C;, j = 1,2,3, which are independent of k. Indeed, by (2.6.1) and
the definition of w = w(t) we have

t—1¢
w(t) =1+ nkw(—’“) for all € [ty trsal.
Ok
Taking account of (2.6.2) and (2.6.3) it follows

diw(t)] < Ci% < GiE7i(t) for all ¢ € [ty tysa], i =1,---, M.

W

Using again the definition of w(t) we may conclude for all ¢ € [ts, tx.1]

AK@MwAW:QmAMMMMS

This implies that the stabilization condition (A3) is ensured if we assume 7;d; are small

enough. Indeed,
k
O(tes1) 27775 Atj) (Z )

—t 1
: J)‘ds < zjglnj(sj/\(tj_,_l).

Example 2.6.1 (Polynomial case). We consider A(t) = (a4 1)(1 +¢)*, a > 0. In order
to define one admissible function w = w(t) let us choose the parameters «, 7 and x from
Example 2.4.1 and positive sequences {t;};, {0,}; and {n,}, in the following way:

t]‘ = 2j, 5j = 2Hj S Atj = tj+1 - tj = 2j and n; = 2j('y—a—n).
From (2.4.16) and (2.4.20) we have
-
M+1

Therefore, from the last relations we get y—a—~ < 0 and this implies that we have 0 < n; < 1.
Moreover, the stabilization condition (A3) is satisfied, since

njéj = 2j('y—o¢) < 1,

3
1>/~$>TB>/—£M—1—0¢+7+

where v — a < 0 from (2.4.15).
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Example 2.6.2 (Ezponential case). We consider \(t) = e'. Let us choose the parameters r
and x from Example 2.4.2 and positive sequences {t,};, {d;}; and {n;}, as follows:

tj = j, (Sj = e”j S Atj = tj+1 — tj and 77j = €j(rinil).
From (2.4.22) and (2.4.26) we have

1-—r
M+1

O>I€Z—%>I€M:T—1+

Therefore, from the last relations we get kK < 0 and r —x — 1 < 0. These imply that we have
d; <1 and 0 <n; <1, respectively. Moreover, the stabilization condition (A3) is satisfied,
because

77]‘5]‘ = 6j(ril) < ].,

where r — 1 < 0 from (2.4.21).

Example 2.6.3 (Super-ezponential case). We consider A(t) = e’e®. Let us choose the
parameters r and x from Example 2.4.3 and positive sequences {¢;};, {0,}; and {n;}, as
follows:

ti=e, & =eTe™ <At;=t;,—t; and 7;=el TN,
From (2.4.28) and (2.4.32) we have

1—r
M+1

0>I€Z—%>I€]\/[:T—].+

Therefore, from the last relations we get k < 0 and r — k — 1 < 0. These imply that we have
d; < 1land 0 <n; <1, respectively. Moreover, the stabilization condition (A3) is satisfied,
since v

n;0; = e el Ve <1,

where r — 1 < 0 from (2.4.27).
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3. Global in time existence results for damped
wave models with power nonlinearity

3.1. Introduction

In this chapter we will consider the following semilinear Cauchy problem with time-dependent
speed of propagation and “effective-like” time-dependent dissipation together with an oscil-
lating term:

w(0,7) = uo(x), w(0,z) = ui(), xr € R"™ (3.1.1)

{utt — X2 ()w?(t) Au 4 p(t)w(t)u, = |ulP, (t,z) € [0,00) x R™,
Here we assume that the coefficients A = A(t), p = p(t) and w = w(t) satisfy the assumptions
(A1) to (A5) and (B1) to (B6) which are given in Section 2.3 and p > 1.

In the present chapter our aim is to prove some global (in time) existence results of small
data solutions to the Cauchy problem (3.1.1) with additional regularity of the data. In
order to prove these results our essential tools will be Banach’s fixed point argument and
energy estimates for the solutions to the linear Cauchy problem with vanishing right-hand
side. Moreover, the space for initial data influences the choice of the space in which we look
for solutions. The considerations are divided into two cases depending on the behavior of
the propagation speed: the case of sub-exponential propagation speed and the case of super-
exponential propagation speed, which are proposed in [3] and [4], respectively.

In Theorems 3.2.1 and 3.2.2 we assume low regularity of the data with additional L™
regularity, m € [1,2), for the case of sub-exponential and the case of super-exponential
propagation speed, respectively. So, we prove existence results for Sobolev solutions without
having a classical energy, that is, we do not have in general the total gradient of a solution
in L2

In Theorems 3.3.1 and 3.3.2 we suppose data in the energy space H' x L? with additional
L™ regularity, m € [1,2), to the case of sub-exponential and the case of super-exponential
propagation speed, respectively.

Next, in Theorems 3.4.1 and 3.4.2 we consider suitable higher regularity for the data with
additional L™ regularity, m € [1,2), for the case of sub-exponential and the case of super-
exponential propagation speed, respectively. In order to deal with the power nonlinearity
in fractional Sobolev spaces, we employ in Section 3.4 some fractional inequalities, as the
fractional chain rule and the fractional Leibniz rule, that will be explained in Appendix A.7.

Finally, in Theorems 3.5.1 and 3.5.2 we obtain large regular solutions to (3.1.1) for the
case of sub-exponential and the case of super-exponential propagation speed, respectively.
These solutions are imbedded into L*. So, we may use results on fractional powers from
Section A.7.6 in the Appendix.

3.1.1. Some assumptions and tools

Let us define for any o > 0 and m € [1,2) the space of data
Dfn = (Lm mHa’) % (Lm mHmax{afl;O})

with the norm

pe = |[uollLm + |[uoll e + lJur|lm + [Jur || gmaxto 1oy .

m

[ (g, 1)
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Let us introduce the function By = B (s,t) for 0 < s <t by

By(s,t) = / Apz((:))dT — By(0,4) — Bx(0, 5).

We have the following classification for the behavior of the propagation speed as in [3]
and [4]: case of sub-exponential propagation speed and case of super-exponential propagation
speed. We define for § € (0,1) and for large ¢ the auxiliary functions

>
—~

t) A(t
(t) A(6t)

~—

v(d,t) = and v(9) := tlirn supv(6,t). (3.1.2)

-

In this case we define
e the case of sub-exponential propagation speed if v(d) < 1,

e the case of super-exponential propagation if v(J) = co.

Moreover, due to the strong oscillating behavior of the time-dependent coefficients and
a competition between several later derived estimates, now we will also introduce the case
of oscillating sub-exponential propagation speed and the case of oscillating super-exponential
propagation speed by using the following auxiliary functions for § € (0,1) and for large ¢:

_ FAQ@) AQ1) o
V(9,t) = NOZ2(0) MoD) and 9(0) := tli}lllo sup (9, t). (3.1.3)

We define
e the case of oscillating sub-exponential propagation speed if ¥(0) < 1,
e the case of oscillating super-exponential propagation speed if ¥(9) = oo.

Remark 3.1.1. We see that assuming a suitable control of the oscillations, that is, in particular,
if we choose formally w(t) = 1, then we get F(A(t)) = A(t) and Z(t) = % Therefore, we
immediately conclude that the case of oscillating sub-exponential and the case of oscillating
super-exponential propagation speed coincide with the case of sub-exponential and the case
of super-exponential propagation speed, respectively. Namely, in this case we formally have

9(5,t) = v(5,1).

A family of parameter-dependent linear Cauchy problems

In order to prove the global (in time) existence of small data Sobolev solutions to given
semilinear Cauchy problems after using Duhamel’s principle we need estimates of Sobolev
solutions to the following family of parameter-dependent Cauchy problems:

(3.1.4)

{vtt — X2(H)w?(t)Av + p(t)w(t)v, =0, (t,z) € [s,00) x R™,
v(s,x) =0, v(s,z)=g(s, x), xr € R"™

Moreover, the corresponding linear model to (3.1.1) with vanishing right-hand side is

{utt - )\Q(t)wz(t)Au + p(t)w(t)ut =0, (t,z)¢ [O’ OO) xR, (3-1'5)

u(0,2) = ug(x), u(0,2) = uy(z), x € R™

We remark that the linear Cauchy problems (3.1.4) and (3.1.5) have been extensively dis-
cussed in the previous chapter providing a detailed analysis of the time asymptotic behavior.
The latter, in turn, provides the expectations on the semilinear Cauchy problems studied
here.
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Theorem 3.1.1. Assume that X\, p and w satisfy the conditions (A1) to (A5) and (B1)
to (B6). Then, the Sobolev solutions to the Cauchy problem (3.1.4) satisfy the following
estimates for t > s and data from the energy space (o = 1) with additional L™ regularity,
m € [1,2):

e SN0 o) G-
- {p(t) (1+ By(s,1))

XOFA®) (FA0) D lg(s,)

for higher regular data (o > 1) with additional L™ regularity, m € [1,2):

L™NL2,

Jot, )z <

(1+ Ba(s,1)) 28 1g(s, )

LmNHeo—1 9

>
—
~
N—
g
=
—~
~
SN—
SN—
—~
i)
—~
=
—~
~
SN—
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S~—
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—
o
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=
=
3
o)
T
i

117 it

L2~ \(s)

o=1_1

MOFAO)(F2AE)FF 7T Hig(s, )l

Theorem 3.1.2. We assume that \, p and w satisfy the conditions (A1) to (A5) and (B1)
to (B6). Then, the Sobolev solutions to the Cauchy problem (3.1.5) satisfy the following
estimates with m € [1,2) and data from the energy space (o0 =1):

lut, Mz S (14 Ba(0,8) " F 5 g, 0) |, (3.1.6)
11Dlutt, |, S (1+ Ba(0,6) 25578 (g, ) o (3.1.7)

A(1) ~3(H-4)-,

e (t, ) 2 gmax{m(1+B,\(0,t)) :
AOFA)E QD) 2D Yo u)loy.  (318)

for higher regular data (o > 1):

Jutt, Yee S (14 Ba(0,0) 2 (g, )l (3.1.9)
DIt )] S (14 Bat0,0) 5097 g, )l (3.1.10)

w(t, )2 < max A(t) —3(m—3)-

Jue(t, Mze  max {20 (1+ Ba(0,1) :
AOFAE)E QD) 2D Y g u)llg,.  (3.110)

D14 By(0,0)) 2R

)\2
1ID1 et )] S max { (

Y

AOFAE)EA0) 2T g ) oy, (3.112)
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In Theorem 3.1.1 the estimates for [|v,(t,-)[|z2 and ||| D] v,(¢,-)||,, are in competition to
some other estimates. Therefore, in order to avoid some difficulties in the treatment for the
semilinear Cauchy problem (3.1.1) we suppose that the following condition holds:

(C1) We assume that either the first component or the second component in the estimates
for [lvi(t,)||z2 and |||D|" (¢, -)HL2 is dominant for all t > s > 0 and o > 1.

We define the following functions:

P (s:t) = max { N0 (14By(s,1)) FED,

p(t)
)\(t)F(A(t))(F2(A(t)))*%(%*%)fl}’ 3.113)
(5.0) = max {5 (14 53(5.0) ™ AOFAO)(FA0) . (3.1.14)
Pamlsl) = max{f((f)) (14By(s, 1) 231,
A(t)F(A(t))(F2(A(t)))*%(%*%)f°‘gl71}’ i)
N*(t) o1,

<I>2(s,t):max{ (14B,(s,t) 2 ;A(t)F(A(t))(F?(A(t)))*‘%”}. (3.1.16)

We will show in our approach that condition (C1) is really satisfied in both cases, the case
of oscillating sub-exponential and the case of oscillating super-exponential propagation speed
by some typical examples.

Case of sub-exponential propagation speed

We assume the following additional condition in order to get some useful estimates for B, (s, t),
which will come into play in the treatment of the semilinear Cauchy problem (3.1.1):

(C2) There exists a constant p; € [0,2) such that

(0 < anlt) ) Jor t 20

Then, we have the following statement.

Lemma 3.1.3. We assume that the conditions (B1) to (B4) and (C2) are satisfied. Then,
for a fized § with § € (0,1) the following inequalities hold:

L (AX)  AX(s) . 2 ORI SO N
7~ e ) SBe0 <5 Gy~ G ) for se vl B1a7)
By (s,t) = By(0,t) for s€[0,dt], (3.1.18)
(f&?)“’*mo,w < By(0,5) < By(0,1) for s € [3t,1). (3.1.19)

Here we used condition (B2) for k = 1 such that there exist constants R > 0 and R >0
satisfying
A(t)

—Rut) 3 SH O < Ry(t)

Alt)

A(t)
We note that if p = p(t) is an increasing function, then we can choose R = 0.

For the proof see [3].
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Case of super-exponential propagation speed

Similarly to what we have done in the previous case, now we use the following condition in
order to get some useful estimates for B, (s,t):

A2
(C3) The function ¢(t) = ®) satisfies the following conditions:

p(t)

e ¢(t) is increasing,

A1
At) log A(t)’

Under these conditions we have the following statement.

Lemma 3.1.4. Let us assume that the conditions (B1) to (B4) and (C3) are satisfied.
Then, there exists a fized § with § € (0,1) such that the following inequalities of By(s,t) hold:

(6(t) log A(t)—¢(s) log A(s))
< By(s,t) < ¢(t)log A(t) — ¢(s)log A(s) for s € [0,t], (3.1.20)
Bj(s,t) = B\(0,t) for s € [0,dt]. (3.1.21)

a>0

o ¢/(t) < ag(t)

o+ 2

For the proof see [4].

Besides conditions (C2) and (C3), now we assume that the following condition is satisfied
which will be used later in both cases:

(C4) The function )’l\g((% satisfies the following conditions:
. )
A%(t)

e there exist positive constants By and (B, such that the following inequalities hold:

p(t) p(t) p(t)
PoXAm S ()\Q(t)> YOI}

These estimates, together with the estimates of Lemma 3.1.3 and Lemma 3.1.4, will play
an important role in the proof of global (in time) existence theorems for the case of sub-
exponential and the case of super-exponential propagation speed, respectively.

s decreasing,

Remark 3.1.2. By using conditions (B2) and (C2) we obtain the following two estimates in
order to specify the positive constants 8y and B;:

( p(t) ) _ HBN(E) = 2u(t) AN (1)
22(1) (1)
paa(6) T N2 () — 200 (B A () 5 2 u(#)
< = =20 R

On the other hand, we have

( p(t) ) _ WON(E) = 2u(H)ABN (1)

() (0
—Ru(t) 3 X3 (t) — 2Mp(A () 5 u(t)
- BEPT0 == (SR aay

Therefore, we can introduce 5y and (; such that

Bo > R+ 2)\1 and ,61 < 2)\0 —



86 3. Global in time existence results for damped wave models with power nonlinearity

Finally, we have the following auxiliary estimates, which will be used later in both the
case of sub-exponential and the case of super-exponential propagation speed

Lemma 3.1.5. We assume that condition (C4) holds. Then, from Lemma 3.1.3 and Lemma
3.1.4, respectively, we have the following estimates for all s € [0,¢]:

d( £ 1+ By(0,5) ") <) (1 p o 8))7a2(p)71d(1+B>\(078))

ds ~ A2(s) ds ’
d( £ (1 + Bx(0,5) ™" 14 B
<>\ (s)( ) > > w(s) 1+ BA(Ojs))—ag(p)—ld( + B1(0, s))

ds A2(s)

ds ’
where ay(p) = 5=p — 5 > 0.

Proof. First, let us prove this lemma for the case of sub-exponential propagation speed by
using the estimates (3.1.17) from Lemma 3.1.3. So, we obtain

d(g;g) (1+ By(0, s))“”(”’)

ds
p(s) —as(p) (5 A(8)A(s) p(s) d(1+ Bi(0,s)) 1
< e )(1 + B,\(0, )) (ﬁlWAz(S) as(p) s 1 —{—B,\(O,S))
/L(S) —az(P)d(1+B>\(07 3)) 1
S g BO) I TE B0
Moreover, we have
n(s) —az(p)
d(,\2(s) (1 + Bi\(0, 5)) )
ds
p(s) ~as(p) A(s)A(s) p(s) d(1+ B,(0,s)) 1
> oy (1 Ba0:5)) (-85~ ) Ry @) b EYNQ 5))
p(s) ~xmd(1+Bx(0,5) 1
2 (e L BA0s) s 1+ Bi0,5)
On the other hand, for the case of super-exponential propagation speed we get the following
estimates using the estimates (3.1.20) from Lemma 3.1.4:
d(;((ss)) (1 + B,\(O, S))—Ozz(P)>
ds
p(s) —ax(0) (5 A(S)A(s) p(s) 1 d(1+ Bx(0,5)) 1
S 22 ) (1 + B/\(O )) <51 H(S) AQ(S) 10gA(s) + 042(p) ds 1+ B)\(O, S))
11(s) —aa(m d(1 + Bx(0, 5)) 1
S ey L+ B0:9) ds 14 Bx(0,5)
Moreover, we find
n(s) —az(p)
d(,\2(s) (1+ Bx(0,5)) )
ds
p(s) ~as(p) A(s)A(s) p(s) d(1+ Bx(0,s)) 1
> )\2(8) (1 + B}\(Oy S)) ( ﬁo ( ) AQ(S) OZQ(p ds 1+ B,\(O, S))
wu(s) —as(p) A(1 4+ Bx(0, 5)) 1
R (e 1 BA0s) s 1+ B05)’

where we used
1

— < 2 < 2
3509 = )R Togap = @+
The proof is completed.
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3.2. Low regular data

In this section we are interested in the case of low regularity for the data, that is, L? regularity
under the energy threshold with additional L™ regularity, m € [1,2). More precisely, we will
assume (ug,uy) € D7, with o € (0,1). Therefore, we will consider the solution as a Sobolev
solution in C([0, c0), H?) only.

3.2.1. Case of sub-exponential propagation speed

We define the following parameters:

2
Prujm(n) =1+ M ofor > 1,
n

B 2m
() i=1+ (1~ )= for n>1,
P1m(n) + 5+ &) n or n >
B1 )
m 1-= 1- 2+RW 2m
Pom(n) == — + e —i—( TR R 5 | forn>1,
2 1- 2—p - 2—p1 v(9) 1- 2—p + 2— 1 v(5) n
PN, (n) = - _7120 for n > 20.

We have the following result for the case of sub-exponential propagation speed.

Theorem 3.2.1. Let us assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C2)
and (C4), and v(§) < 1 are satisfied. Let (ug,u1) € DI, with o € (0,1), m € [1,2) and
n < zi—"m. Moreover, we suppose that the exponent p satisfies

2 <p, oels1) ifn=1,
p>max {p1m(n); pom(n)} and 2 <p<pen.(1), o€(0,)) ifn=1,
2 <p<pene(n) = if n> 2.

Under these assumptions there exists a constant g > 0 such that, for all (ug,uy) € DI, with
| (uo, u1)||pg < €0, there exists a uniquely determined globally (in time) Sobolev solution

u € C([0,00), H)

to the Cauchy problem (3.1.1).
Furthermore, there exists a constant C > 0 such that the solution satisfies the following

decay estimates:

|

|
—~

3

|

|l
N—

—~

Ju(t, )|z < C(1+ Bx(0,t)) * U, u1)||pe
IDlutt, ), < O+ Br(0,8) " FF 578wy, ) g,

Proof. We define the space of solutions X (t) by

with the norm

1

N, Moz + (1 + BA0.7) 2 F D Dlut, ) ).

1

HUHX(t): sup [(1 _|_B)\(0’7_))%(m
0<7<t

N

We remark that if u € X(¢), then |[u||x) < ||ul|x@ for any 0 < 7 < t. Let us underline
here that the norm of the solution space X (¢) is defined according to the estimates for solutions
of the corresponding linear Cauchy problem with vanishing right-hand side in Theorem 3.1.2.
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Let us introduce the operator N for any u € X (t) by
N:u€ X(t) = Nu= Nu(t,z) = u"™(t,z) + u"(t,2). (3.2.1)

We denote by Ky(t,0,2) and K;(t,0,z) the fundamental solutions to the linear equation,
that is, .
u™(t,x) == Ko(t,0,2) *() uo(x) + K1 (t,0,2) 1) u ()

is the solution to the linear Cauchy problem

{utt = Nt (t)Au+ p(t)w(t)u, =0, (¢, z) € [0,00) x R™,
u(0,2) = ug(x), uw(0,2) = uy(z), x e R™

On the other hand, by Duhamel’s principle

t
u™(t, ) ::/ Ki(t,s,2) %) f(s,x)ds
0
is the solution to the non-homogeneous Cauchy problem

{utt — X(Hw(B)Au+ p()wt)u, = f(t,z), (t,z) € [0,00) x R,
u(0,z) =0, u(0,2) =0, x € R™

Therefore, we formally set
t
Nu(t,z) = Ko(t,0,2) %) uo(z) + K1(t,0, ) %4 ui () —i—/ Ki(t,s,x) *@) f(s,x)ds
0

and try to find fixed point u = Nu of the mapping N : X(¢) — X (t). We show that the
mapping N satisfies the following two estimates:

INullxy < Coll(ato, ur) o, + Cr(®)llull%: (3.2.2)
|Nu=Nolx < Cal®)llu— vl (ull%e + Iol%), (3.2.3)

where C4(t),Cs(t) — 0 for t — 0 and C4(t),Cy(t) < C for all t € [0,00). These estimates
indicate the existence of a unique solution of v = Nu. We can use the idea of proving
Banach’s fixed point theorem. Therefore, to complete the proof it remains only to establish
(3.2.2) and (3.2.3). In this way we get the global (in time) existence of small data solutions
and local (in time) existence of large data solutions.

Firstly, let us begin to prove the estimate (3.2.2). From the estimates of Theorem 3.1.2
and the definition of the norm of the solution space X (t) we have

Wi = sup [(1+ Ba0,7) 58 june, .
0<7<t

1 1

V(14 By0,7) 5 g, )|

+ (14 Ba(0,7) G plings, ')Hp}

N|=

< sup [(1 + B)\(O,T))%(

0<r<t

o
Dnz

1

+ (14 By(0,7) 7

S [I(uo, ur)llpg, -

Nl

Y14 B0,7) T g ) g

Consequently, we get .
lu™ xS ll(wo, ua)llog, (3.2.4)

Then, in order to conclude the proof of (3.2.2) it remains to prove the following inequality:

Hunl”X(t) N HUHI;((t)‘
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First we have that
t
IDlum(t, )|, < 0/0 11D (Ka(t, 5,2) oy fu(s, 2) )| ds.

Now, we can use two different strategies to estimate the integral term in [0,¢] by splitting
this interval into [0, 0t] and [0t,t], where 0 is fixed and § € (0,1). In particular, if s € [0, d¢],
we use (L™ N L?) — L? estimates with m € [1,2) and if s € [0t,¢] we use L? — L* estimates
from Theorem 2.5.16. So, we have the estimate

o nl 8 A(s ~5-%(%—3%)
Il < € [ 350+ Bs) [rOSTE—
e tA( ) (14 By(s, )% [[uls, )P .ds (3.2.5)
st A(s) ’ ’ Lz o
Using
[Tw(s, PN e S Muls P+ s, )P e = luls, M + luls, )72,
Gagliardo-Nirenberg inequality comes into play. We can estimate
luls, Mo < 1Dl )™ fluls, 550 0 (3.2.6)
lus, Mo S IDI7us, )| ™ s, )l 0, (3.2.7)
where ) ) . .
n n
GU(mp):g(g—m*p) €10,1], 90(229):;(5—%) €10,1].

Therefore, the requisite 6,(mp) > 0 implies that p > % and the requisite 6,(2p) < 1 implies
that p < pano(n) = -5 (3.2.6), (3.2.7) and the norm of the
solution space X (t) we obtain the following estimates:

(5, s < (14 B0 7s>>‘%““>p 0
= (14 B:(0,5)) ™" [y, (3.2.8)
(s, e S (14 By(0,5)) 2 0F 28000 e
=(1+BA< 05) T R - (3.2.9)
Hence, we can estimate |||u(s, -)|p|}meL2 as follows:
s, W] e S (1 Ba(0,8)) " ful ), (3.2.10)

since it holds 6, (mp) < 6,(2p). Plugging (3.2.9) and (3.2.10) into (3.2.5) and using ||u||xs) <
|l x ) for any 0 < s <t, we get

DI ()], < Cllu \X@/ 1;23(1+BA(s,t))_g_g(’1‘_é)(1+BA(O,3))_;"p+£”ds

FA(s)

+ Cllullk /& w(

Now we want to estimate the integral terms A and B in order to get the desired estimates.
Let us consider

wla

14 By(s,t)) "2 (1+ By(0,5)) > ¥ds.

B

A< (1+By(0,0) F2G3) /:t 1:((;) (1+ BA(0,5)) " 2 s, (3.2.11)

Al(t)
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where we used (3.1.18). Denoting 041( ) = 5=p — 5= we get for a;i(p) # 1 the relation

Ay(t) = / & Az L+ By(0,5)) (1 + BA(0,9))

ar(p)+1 %t

0

- 1—;@ /O& (1+ BA(0, s))“l(p)+ld<f2(<ss)>)'

Now we shall distinguish between three cases.

2
Case 1: a;(p) > 1, ie,p>1+ ™ 4 this case it holds
n

_ L ps) )"
A < T v U B09) 0

) 0‘1(5;—1 /0 (1+BA(0,5) """ (1+ By(0, 5)))\'us)ds

1 u(s) oy @+
ST w) e RO,

—an A%(s)  p(s)
1+ B\\(0, S)) Wmds

51 ot
e, ¢
1 p(s) oy @]
STa e RO,
B1 /& A(s)
(041(17) - 1)(2 + R) 0 )\(3)

(1+ By(0,9)) _al(p)ds,

Ai(t)
where we used condition (C4) and (3.1.17), respectively. Thus, from the last estimate of
A; = A, (t) we obtain

b
(+ Gom a0

t —Q1
S (1+ B(0,1) W

>
[ V)
—~
()
=
>
[N}
—~
=g
~—

It implies that

\./

n(0) — p(dt
A0S N0 e

Case 2: a;(p) < 1. In this case we have the estimate

(1+ By(0,6)) ™,

Ar(t) > 1 (s

—ai(p)+1 3
T 1—o(p) X%(s (L+B5(0.) ™"

0

S, ~—

t

51 —ai(p) :LL(S)
T /0 (14 BA(0.9) 7 (14 By(0.9) 5 s
U

1 s) —an(p)+1|%
2 T m@ g B
5, o @A) u(s)
Hamerm ), 0 Be) LS
1 () oy @]
= ) () (1+ B\(0,9)) .
B /& A(s)
-2+ R) o As)

+ (1 +B,\(0,s))7al(p)ds.

Aq(t)
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Then, it follows

B 1 (0t) —anm+1 - 1(0)
(1- A=) R)>A1(t) R 2a(sn (Lt B0, 1)) T 00)

It implies that

( B B )A < #0)  p(dt)
(1= 0u(p))(2+ R) FYN0)  2(6t)

We can guarantee that A; = A;(t) is bounded by the condition p > p; ,,(n). Because, if

51 /81 )27771
(1-ai(p)(2+R) 2+R

which we have assumed in the statement of the theorem. Otherwise, we need to show that

—ai(p)+1

(1+ Bx(0,0t)) (3.2.12)

—1>0, then p>1+(1—

A, (5t) = ;‘2((552) (1+ By\(0,5t)) P

is strictly decreasing in t. Indeed, taking the derivative of function A; = A;(t) we get

Ault) = (52(8)),(1 +B(0,6) "+ (—anlp) + 1) 2t Ap(gt)) (1+ By(0,1)) ™™
_ N o
< __51A(§:)(f\)(t) (1+ BA(0,1)) + (— au(p) /\ } (»)
[ B wu(t)  A2(t) )
< armaam e T }
< __25_1]% a1 (p )—i—l} Z;(())(l—i—B/\(O t))—al(p).

The condition p > p; ,,(n) implies that A} (t) < 0. This shows us that the right-hand side of
(3.2.12) is bounded.

Case 3: a;(p) = 1. In this final case we have

5t A(s) 1 ot A(s) p(s) o p(s) Als)
a0 = [ 5B s s 7S8R = [ LR

M( ) L 1(s)
>logA( )O _/o IOgA(S>d(A2(s))
u(S) % u(s) A(S) 4
< (s )10gA(s) . + () logA(s)A(S)d ,

where we have used (3.1.17) and condition (C4), respectively. Now we will show that for a
sufficiently small positive constant € we have the estimate

;((t t)) log A(t) <

Therefore, we form the derivative of the function

A= (b).

As(t) = ;(é)) A%(t)Tog A(L). (3.2.13)

Using condition (C4) it holds

A (t) = (M())AE() A + D oa1 1) og Adr) + LMD e

() () (1) AQD)
p(t) p(t) p(t) .
<[~ A 3am A+ Xnam A0+ sag A0
1 p(t) .
<|-Bitet logA(t)} DA EAOA D).
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Hence, for a sufficiently large time ¢ and sufficiently small constant € > 0 we get A, (t) < 0.
This shows the decreasing behavior of A; = Ay(t). Hence, we obtain that A; = A;(t) is
uniformly bounded.

Summarizing, from the above three cases we get our desired estimate

A< (1+By(0,0) TG, (3.2.14)
Now let us consider the case s € [0t,t]. Denoting as(p) := 5%p — % it holds

b A(s)
st A(s)

= [ (11 By(0,9) (14 Bafs.t) (1 4 Bas.1)

[N

B = (1+ Ba(s,t)) £ (1+ Br(0,5)) "*®ds

t
—g+1

_ (1+ Bx(0,5)) " (1 + By(s,1))

ot

/; (1+ B,\(S,t))_gﬂd()f\;((?) (14 B (0.5) ")

t

(1+ Bx(0,9) (1 + Ba(s, 1)) "

pS
[N
—~
»
N—

ot

—Z+1 d(l + B)\(O, S))
14 B)\(O, 8)

t

+

p(s) “an(p)
=2 Jy ey T B0 T Basnt)

where we used Lemma 3.1.5. Then, we obtain

p(01)
A2(5t)

+/5t ;2 (1+ Br(0,)) """ (1 + Ba(s,1))

241

(1+ Bx(0,6t)) ** (1 + By(ot,1)) ¢

BS

—

—Z+1 d(l + B)\(O, S))
14 B)\(O, S)

~—

Hence, due to 1 — ¢ > 0 and multiplying both sides of the previous inequality by the function

(14 Ba(0,8) 550 e find
(1+ By (0,1) 1B
< R 1 Ba0.00) (14 By (0,0 D
B (1)
+ 6: ;((Z)) (14 B, (0,)) " (1+ BA(O,t))Z(Sn%)Hd(llj]ix((ofia;)))

B> (t)

In order to prove that By = B(t) and By = Bs(t) are uniformly bounded it is sufficient to
show for a small positive constant ¢ we have the estimate

1(01) (
A2(5t)

w3
3=

€

(14 By(0,60) % (1 + Br(0,6) 9% < (14 B,(0,60)) .

Hence, we will show that the following function is bounded:

p(01)
A2(6t)

(14 By (0,60) (14 By(0,0) *)*,
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Taking account of the estimates of B,(s,t) in (3.1.19) we obtain

1(dt) —az(p) e 2(L-1)+1
200 (1+ Bx(0,6t)) (1+ Bx(0,1))
< ;(gt)) (1+ By(0,1)) () imee) (ZE\((?))) PR ). (3.2.15)

In order to show the monotonicity of this function we form the derivative of By = B (t). It
holds

ot) \/ n(l_1 —as e s A(0t)\ @+R)(—az(p)+e)
Bi(t):(u< )) (1+B)\(0,t))2(m 2)+1 (p)+ ( ( ))

Il(t)

+ ((1 + Bx(0, t))%(%fé)ﬂfaz(p)ﬁ(

A(8t)\ C+R) a2+ 14(5t)
30 ) ) S,

I>(t)

Then, I; = I;(t) satisfies the following estimates:

Li(t) < =B ;((%?) 2(&(1 + By(0,1)) (1 B)\(O,t))g(:n5)‘3‘2(P)+6</}X((5t1;>)(2+R)(_a2(p)+€)
381 A(dt) A*(2) (5 —5)—az()+e (A(0T)\ GHR(—a2®)+e) pu(6t)
< =3r RAGY pp LTBOD) <A(t) ) N(5t)”

On the other hand, I, = I5(t) satisfies the following estimates:

L(t) = <”(1 D)+ 6) Y(U) () 4 g0,y (h ) e

2\m 2 p(t)
A(0t)N @+R)(=e2(p)+e) 4(6t) IN(Gt)A(t) — A(t)A(ot)
(W) e(or) T2+ R=aalp) + I AZ(D) )
o (jjf((i}f))) (2+R)(—az2(p)+e)—1 (1 N B/\(O, t)) %(#—%)+1—a2(p)+e ;(((?t))

t
- (24 R)(as(p) — € 1 A%(t) A(t) A(6¢) (j\\((t) A(st) 5>]

(24R)(—az2(p)+e) n(L1_1)_q, 6

A() A?(6t)
< [(B(E - D 1)+ o5+ (020 - ) 2R a0 -0
A2(£) A(8t) FA(6t) E+RI(—ezm)+e) 2 (& -4)—ea()re p(d1)
() A1) ( N0 ) (L+5:(0.0)* 2(3t)

Hence, we get
Bi(t) = Li(t) + L»(t)
< {— N (Z(; ~ ) 41— aulp) +e)1/((5,t) T (asp) — ) 2 (05, 0) - 0)

2+ R 2 2
A¥(0) AG3t) (A(t)y R0 () eatre 181
e A(5t)<A(t)) (1+B5(0,1)) 2 (5t)
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Since p > pa.m(n), for large time ¢ and a small positive constant € we may conclude that

_4QTR+(ZQ;—;)+1—%@0w®+axm§fiown—a<0

This implies that Bj(t) < 0. Therefore, for all p > ps,,(n) we have

B < (1+By(0,) F #0), (3.2.16)

11D ()] S (14 Ba(0,8) 5 Dz . (3.2.17)

In the same way one can derive

't ) e S (1+ Ba(0,8) 2 Hjufz . (3.2.18)

Using the norm of the solution space X (¢) and (3.2.17) and (3.2.18) we get
o = sup [(1+ Bx(0,7) ) jur(r, s
0<r<t

+ (14 By0,7) 0 Dpra(r, ]

< sup (14 By(0.7) 28 (14 By (0.7) D,
0<r<t

1 _

£ B0 D 4 By 0m) T gy, ]
S lull -
So, this gives the desired estimate and together with (3.2.4) the estimate (3.2.2) is proved.
Now let us prove (3.2.3). We have that

|Nu— Nv||x@) = H/ Ki(t,s,2) %@ (|u(s,z)[” = |v(s, z)[? dsH

Thanks to the estimates for the solutions to the family of parameter dependent Cauchy
problem we can estimate

|||D\"K1(t 8,) *(z) (|u(3,x)\p — ]v(s,a:)|p)“L2

A 14 0,) 5D s — oo

lpiges € 10,81,
- A((S; g (3.2.19)
Aoy (1 Bals:0) s, )1 = ot se [ot.1]

So, we use the fact that
[[u(s, 2) [ = Jo(s, 2) [P < |u(s, z) = v(s,2)[(Ju(s, 2)["~" +[o(s, 2)["7").
By Holder’s inequality we obtain

llu(s, )P = To(s, )Nl S Hluls, ) = v(s, Mzme (luls, s + To(s, ) ws),
[luls, )P = [o(s, W)l S Nuls, ) = v(s, )z (luls, e + llv(s, ) I)-

In a similar way to the proof of (3.2.2) we use again Gagliardo-Nirenberg inequality to the

following terms:
[uls,-) = o(s, )pos  [luls;)]e and [lo(s, )|z
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with ¢ = mp and ¢ = 2p. Then, we obtain the following estimates as we did for (3.2.8) and
(3.2.9):

lus, ) — (s, Mime S (14 Ba(0,5)) u—vlxe

lu(s, ) = v(s, M S (14 Ba(0,5) ™ ||u— vl|x (o),
lu(s, Mt < (14 By(o, ) A siw) 0
(s, st S (1+ Ba0, ) )00, ||X<),
lo(s, MEmh S (1 Ba(o, ) U #m) ey, rX(),
lo(s, YEsE < (14 Ba(o, ) UFB) 00y e

Then, we get
s, )P = ols, WPl S (L Ba(0,9) 2 flu = wllx o) (Ilul p_l) +loll%)s
(s, )P = o, )] S (14 Ba(0,8) " Jlu = vl xo (lullihy + oll5)-
After plugging the previous two estimates into (3.2.19) we arrive at the following inequality:
1DI7 (Nu = Nv) (&, )| 2 S llw = ollx (lullf + vlke)
ot c_n(1 1 __n_ _n_
y </ A(S) (1+B)\(8,t))7§ Q(m 2)( +B)\(O S)) Qmp+2md8
0 A(s)

P A(s)
st A(s)

+

(1+ B,\(s,t))_% (1+ Bx(0, s))_;’”erst).

Applying the same ideas as we did to estimate |||D|7u" (¢
estimates for p > p; ,,,(n) and p > pan(n):

;')HLz one can get the following

IID17 (Nu = No)(t, )| . < (1+Bx(0,t))_%_%(ﬁ7>llu—vme(HUH” )+ oll),

H(Nu—Nv)(t,-)”L2 < (1+B>\(0,t))_%(m 2)HU_UHX(t)(H“”X(t +||U‘X(t))

Hence, from the definition of X (¢), we can conclude the proof of the statement (3.2.3). In
this way the proof of the theorem is completed. O

Remark 3.2.1. In the last theorem we can see from the definitions of p; ,,(n) and ps ., (n) if

limv(6) =1,

5—1

then we have

b )Lm
2+R '
Example 3.2.1 (Polynomial case). Let A(t) = (a+ 1)(1 +¢)*, a > 0. Then, we get

Prm(n) = Pam(n) =1+ (1 .

At) =1+t and O() =1+t -1<y<a.
Moreover, choosing
pt) =1+t)° a—vy<pB<2a+2,

we have
plt) = (a+ 1)(1+ 1)
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where by condition (C2) we can define 8 := p;(a+1). Due to condition (C4), the parameter
(1 satisfies
200 — f3

0<p < —,
frs a+1
Now applying Theorem 3.2.1 we also get v(§) = § and R = 0 (we can choose R = 0, since
in this case p = p(t) is increasing). Therefore, taking account of the parameters p; ,,(n) and
pa.m(n) the “critical exponent” is

8 < 2a.

1+(5—a+1>2ﬂ

pl,m(n) — p2,m(n) - a + 1 n .

Consequently, we have the global (in time) existence of small data solutions for

5 s 2 <p, cel31) ifn=1,
P> 1t (T ) T = paln) and § 2 <p<pene() =y o€ (0.8) ifn=1,
% Sp SpGN,cr(n) = ﬁv if n > 2.

The restriction for n depends heavily on the choice of the parameters m, «, 8 and o. Let

us denote r := ﬁ%‘_‘fl and we remark that r < 1, since 8 < 2a. Then, we have the following

statements for n > 1:

1. If m € [1, =2t tlom) then max {2;p,,(n)} = 2 and the restriction of the dimension

4 o
—m’

n will be n <

2. If m e [=nivntlbm W,Q}, then max {2;p,,(n)} = pn(n) and the restriction of the
2rmo

dimension n will be n < .
rm—o

Let us discuss in the following table the conditions for p in some special cases which depend
on the parameters n, m, o and r to get the admissible range for p. We are interested in the
case n < 5 only.

n m o r Admissible range for p
1 m & —1+\/1+7167“ 2) S (1-:;;”171) Te(()’l) 1+2m7’<p<00
n = :
e [T 2) [ 7€ (niinrd) | 1€ ) | Trzmr<ns
e[ ) [ e [ e | 2ives
n:
me L —1+m> se[=m ) | re(0,d) 2<p< i
J | me[HEER) [ oe 1) | re0)) | 14m<p<il
n =
me |1, —WW) oe (22 1) | re(01) 2 <p< i
_—3 \/m rm rm
n=23 me S ’2) U€(2§m+3’1) rE(O,%) 1+23 <p§3320
m € _1 _3+\/m> o€ [fom,l) r e (07 %) % <p< 3_320
—1+4+/1F4r rm rm
o me[L BRI foe (B | re(0d) | 1ep<psh
_;5 /254807 5mr 5 2rm 5
n=>5 me :+T72> oc [2rm+5’1) re (0’ Sm) 1+?<p 5—20
—5+1/25+80r —5m
m e ngli) oe [L=im 1) | e (0,3) 2 <p<

Tab. 3.1.: Admissible range for the parameters
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Remark 3.2.2. We can see that we have a benefit of the additional L™ regularity of the
data. It allows to have results for higher dimensions n. We note that the previous case with
additional L! regularity can be proved for n < 4 only.

Example 3.2.2 (Ezponential case). Let us choose \(t) = e'. Then, we obtain
A(t)=¢" and O()=¢€", 0<r<l1.

Moreover, we choose
plt) =eMt 1—r<p <2.

By condition (C4), the parameter (3, satisfies
0<51§2—,U,1, /,L1<2

Applying Theorem 3.2.1 we get v(6) = 1 and R = 0 (we can choose R = 0, since in this case
p = p(t) is increasing). Therefore, taking account of p; ,,,(n) and ps ,,(n) we obtain

. 61 2m
pl,m(n) =1 + (1 - ?) n )
m -z 1-4 2m
p2,m(n) - 2+1—22M1(1—5)+<1—22H1(1—5))n'
Choosing § close to 1 gives
2m
P1m(n) =pam(n) =1+ (1 - %)7

So, we have the global (in time) existence of small data solutions for

B\ 2m 2 <p, celsl) ifn=1,

1 .

p>1+ (1 — 3) - and 2 <p<pene(l) = 52, €(0,3) ifn=1,
2 <p<poxe(n) =15, if n>2.

3.2.2. Case of super-exponential propagation speed

In a similar way as in the previous section, now we will discuss low regularity for the data in
the case of super-exponential propagation speed. We have the following statement.

Theorem 3.2.2. Assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C3) and
(C4), and v(§) = oo are satisfied. Let us choose the data (ug,u;) € DY with o € (0,1) and

m € [1,2). Moreover, we suppose that the following condition for the function v = v(4,t)
holds:

v(d,t) = o(log A(t)). (3.2.20)
Let 4
o
< 3.2.21
"= 2—m ( )
and that the exponent p satisfies
<D 3.1) ifn=1,
2 <p<peno.(l) =15, o€(0,)) ifn=1, (3.2.22)
2 < p < powa(n) = 2 ifn>2

Then, there exists a constant ey > 0 such that, for all (ug,u1) € D, with ||(uo, u1)|lps < €o,
there exists a uniquely determined globally (in time) Sobolev solution

u € C([0,00), H)
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to the Cauchy problem (3.1.1).
Moreover, there exists a constant C > 0 such that the solution satisfies the following decay
estimates:

N

lu(t, e < cu+BmuwrﬂﬁﬁMwmmww
|IDI7u(t, )

][ Dl gy 1) -

IN
Q
—~
—
+
Sy

>
—~
o
~
~—
SN—
|
vl
|
vl
—~
3
|
(N

Proof. The proof of this theorem is similar to the proof of Theorem 3.2.1. The goal is to
show that the integrals A and B in the estimate

A _e_n(1_1 Cn
0P, < Cllully [ 3000+ Bats,) 5 FE D 04 By 0,0) 7 s

b A(s)

+ Cllul /t @(1 + Ba(s,8)) 2 (1+ By(0,5) 7" ds

satisfy the desired decay estimates with the condition (C3). Hence, we will only establish
the estimates

| Nullx )
[Nu — Nvlxq

S [(wo,wi)llog, + HUHX(t)7 (3.2.23)
S lu=vlxe (HUHXm + loll)- (3.2.24)
From the definition of the norm of the solution space X (t) and the estimates of Theorem
3.1.2 one can immediately conclude

™ o) < Nl (wo, wr) g, (3.2.25)

To prove the first inequality it remains to estimate ||u™| x (). Firstly, we have

A< (1+B0,) Y /0& /;((g (14 Bx(0,5)) ™" ds, (3.2.26)

Ay(t)
where we used (3.1.21). Let us define a;(p) := 5-p — 5~ and discuss the following cases:

Case 1: a;(p) # 1. In this case, it holds

Au(t) = /0& ;‘2(2) (1+ Bx(0,5) " ®d(1 + By(0, 5))

B 1 w(s) §)
ST O

_ 71 ) /o& (1 + BA(O,S)) o H ( (S)

L(p)+1 %

0

1—o )
1 p(0t) a1 p(0)
S o) ey 4+ B0 = 5)
1 ° u(s) —an(p)+1 A(S)
T o xee LHBOD) TR

where we used condition (C4). Now we shall show the integral A; = A,(t) is bounded.
For this reason, by choosing an arbitrary small positive constant ¢ we want to verify the
inequality

p(t)

2(1)

(14 B,(0,)) """ < A(p)~—
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Then, we need to show that the following function is bounded:

Ai(t) = ;%Mt)ﬁa + By (0,1)) P (3.2.27)

Let us consider the monotonicity of A; = A,(t) by taking its derivative. Indeed, by using
condition (C4) and (3.1.20) we have

A (t) = (;((tt))),A(t)e@ + B,y (0,1)) P 5;(&))A(t)l\(t)“(l L By(0,) P

- e (<tt)>A(> (u)é)(t) (1+ Bx(0,1)) "

< [(= 81 o) L+ Br0.0) + (L= ca) 33| (14 Baf0.0) ™ V(e
< [(219 A{Z)(i)@) o0 + (- () 3| (14 B(0.0) ™ V(e
< (‘ff‘;) + (1= ai(p)| (1+ BA(0, 1) “1(’””;((:))1&@)6.

This inequality implies A’ (t) < 0 for a small positive constant ¢ and for large ¢. Hence, we
get

o p(s) a1 (p)+1 A(S) o —e—1
/O oy (1 Ba(0,) 0 T s </ A(s)=A(s)ds < 1.

Therefore, we may conclude that A; = A;(¢) is uniformly bounded.

Case 2: ay(p) = 1. In this case we have

o P A(s) 1 MA(s) u(s) 1
A(t) = /0 ) (1+ Bx(0,5)) ds < /o ds

 p(s) As) o p(s) o p(s)
/ 2(s) A(s) )\2( )logA( )0 /0 IOgA(S>d()\2(s))
p(s) a As)

< (s )logA —1—50/) )\2 )A(s)d&

where we used (3.1.20) and condition (C4), respectively. Then, we show that for a sufficiently
small constant € > 0 we have the estimate

uit) log A(t)

(0 A5 (D).

Therefore, let us compute the derivative of the function

An(t) = PO A=) 10g A(H).

0
It follows
Ay (t) = ( lé(ft))/AE(t) log A(t) +¢ ;((?)/\(t)AE‘l(t) log A(t) + ;(8) AE@)Z‘%
p() p(t) pt) 7.
< [~ 55mam A0+ <xam A0+ xgaq O

IN

[( — B +¢)log A(t) + ] Yon )(t)<t) A1),
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Then, for sufficiently large time ¢ and sufficiently small € > 0 we get A;(t)_ < 0. This shows
the decreasing behavior of Ay = Ay(t). Hence, we obtain that A; = A;(¢) is uniformly
bounded.

Consequently, we arrive at the following desired estimate in both cases:

A< (1+By(0,8) T8, (3.2.28)
Now let us consider the case s € [0t,t]. Defining as(p) := 5%p — % it holds
t
A A —a
B= [ 204 B 60) T4 B0.5) s
st A(s)
t [ed
= [ ) (14 By (0,9) P (14 Ba(s, 1) Fd(1 4 Ba(s.1)
st A%(s)
— LM B 0,6) P (14 Ba(st)
1—2X(s) ’ ’ 5t
I —g+1 ¢ pu(s) —as(p)
1+B 2 1+B .
#img J, 0 Be0) (G a4 Bi09) )

Using Lemma 3.1.5, we obtain

< ;2((?2) (1+ B(0,6t)) (1 + By(0,1))
" u(s) —az(p) —z+1d(L+ B,(0,))
+ () (1+ By(0,9)) (1+ Bx(0,1)) T B0

o n 1 1
EJFE(m*i

%inge 1 — 2 > 0. Multiplying both sides of the last estimate by (1 + B,(0,t))
n

(1+B,(0,6) 5 p
< ;(é% (14 By(0,60) " (1 4+ By(0,1) * ()"
By(t)
) eatp #(3-1)01 4L+ 5(0.9)
+ () (1+ By(0,s)) (1+ Bx(0,1)) T B.0.5)

Bg (t)

We will prove that on the right-hand side of the previous inequality By, = By(t) and B, =
Bs(t) are uniformly bounded. Therefore, we will show that for a constant v > 0 we have

ot —ay n(1_1 _
;‘2((&)) (14 B2(0,66) ™ (1 + By (0,6) ¥ 8™ < (14 B, (0,60)) . (3.2.29)
For this reason we will check the monotonicity of the following function:
= (St —ag n(1l _ 1
Bi(t) = ;‘2((&)) (1+ Bx(0,68)) (14 By (0, 1)) ¥ )11, (3.2.30)

Indeed, by taking the derivative of B; = B;(t) we get

Bi(t) = (;(gtt)))'@ + Bx(0,6)) (1 4 B)\(O’t))%(ifg)Jrl

I_l(t)

(14 Ba0.60) 7 (14 By(0,1)) 250 LGN

L(t)
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I, = I,(t) satisfies the following estimate:
p(dt)

onA@En LT B0 56)) "2 (14 By (0,1))F

L(t) < —3b1; DAG
u(st)

= 2 GnAen

x (14 Bx(0,86)) "7 (14 By (0, ) F (" 7H)

< 0045 3 ) 9000 g A GO0 o ALt

x (14 Bx(0,6t)) """ (1 + B,(0, t))%(#‘%),

(14 Bx(0,6t)) (1 + Bx(0,1))

where we used (3.1.20). On the other hand, for I, = I,(t) we get

1) = | (= o)+ ) 8 (14 By0.0) + (55— 5) +1) 0+ B0,
X (14 Bx(0.50) P (14 B, (0,0) 2 ;(é;%
< [_0‘;(?; 7 A(‘Zfzéég&) o(t) log A(t) + g(% — %) + 1> A(Z)(/;)(t) ¢(0t) log A(5t)]
% (1+ Bx(0,66) P (14 B,(0,4) 5+ ;(g;tt))
. [—a;(i) 2+ g 2((((5% ()6 (6t) log A(t) + g(% _ %) n 1) 2((3(;5@)(;3(&) log A(6t)]
% (1+ By(0,66) 777 (14 By(0,1)) F 1) 400

—aa(p)+y 1 n,l 1 At) A(6t) 1 A(6t)
= [ a+2 logh(st) | (2(m -3+ 1) A() No1) log Az )} NCD)
x $(1)6(5t) log A(t) log A(5¢) (1 + Bx(0,86)) P77 (1 1 B(0, 1)) F (%)

Here we have used condition (C4) and (3.1.20). Hence, we have
By(t) = L(t) + (1)

az(p)+v 1 n,l 1 A(t) A(ot) 1 (1)
B log A(ST) (( 5) + 1) A(t) A(6t) log A(t) | A(6t)
X $(1)d(5t) log A(t) log A(5¢) (1 + Bx(0,81)) P77 (1 1 B0, 1)) # (%) ((52).

Now we can use the assumption (3.2.20), which implies B} (t) = I, (t) + L(t) < 0 for large t.
This shows that B; = B;(t) is bounded for large ¢t. Moreover, for B, = Bs(t) by using the
estimate (3.2.29) we immediately get

‘ o B 1 _ 1
By(t) < /& (14 Ba(0,5)) " d(1+4 Ba(0,5)) = v(1+ Bx(0,8t))"  ~(1+ Br(0,8)) ~

Consequently, we obtain the desired estimate

B < (14 By(0,0)) 7 #0573, (3.2.31)
From (3.2.28) and (3.2.31) we may conclude

DI (4, )] S (14 Ba(0,8) T 5 E Dy (3.2.32)
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Similarly, we can get

1

J(t, Y ee S (14 Ba(0,8) 2 D i, (3.2.33)
Replacing the estimates (3.2.32) and (3.2.33) in the norm of the solution space X (t) we obtain
lullx o < llull - (3.2.34)

Hence, by (3.2.25) and (3.2.34) the proof of (3.2.23) is completed.
Now let us prove (3.2.24). Following the same steps of the proof of Theorem 3.2.1 we get
D17 (Nu = No) (&, )| 2 S 1w = ollxe (lulie + lvlke)

y % A(s) o)) FE(ER) o) FE
</0 A(s) (1+B>\( 7t)) (1+B>\(0, )) d

" A(s) -3 R
+ (14 Bx(s,t)) *(1+ Ba(0,s)) ds ).
st A(8)
Proceeding as for proving ||[D|u"(t,-)||,,, we have

1

1D (Nu— No)(t. ). S (L+Ba(0,8) 5 20— vl (lullfee + l0lle)
JVu = No) ) S (0 Ba,0) = el (lligh + ellgh).
Using these estimates in the norm of X (¢) we obtain (3.2.24). This concludes the proof. [

Remark 3.2.3. Now let us discuss in the following table the conditions (3.2.21) and (3.2.22)
of the last theorem in some special cases which depend on the parameters n, m and o to get
the admissible range for p. We are interested in the case n < 6 only.

n m Regularity o | Admissible range for p

I m € [1,2) oe 1) 2<p<oo

m € [1,2) | o€ 3", 3) =SSP
n=2|mell,2) | o€ [3521) 2 <p< =
n=3|mell,2) | oe[=2m1) 2 <p<
n=4|me(1,2) | c€[2—m,1) 2 <p< S
n=>5|me (32 o€ [*5™1) = <SPS 5
n==6|me(3,2)| oe 1) 2 <p< P

Tab. 3.2.: Admissible range for the parameters

Remark 3.2.4. We can see that we have a benefit of the additional L™ regularity of the
data. It allows to have results for higher dimensions n. We note that the previous case with
additional L! regularity can be proved for n < 4 only.

Example 3.2.3. We choose A(t) = e‘e®’. Then, we have
Aty =e, O@)=¢", 0<r<l1.

A1)
w(t)

Moreover, since ¢(t) = is an increasing function from condition (C3) choosing

2¢!

/J,(t)zg, a>0
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we get p(t) = p(t)e! = e1-ie2e",
Applying Theorem 3.2.2 we obtain v(J) = oo, namely, we are in the case of super-
exponential propagation speed. Then, using the condition (3.2.20) we obtain
1 A(t) A(Gt) 1 ee e 11

t = = _ =
VOTND ~ Mo Mot logAD) — e e ol ot

So, we have global (in time) existence of small data solutions for

+<p, ce 1) ifn=1,
% <p<penos(1) = 1_1207 o€ (0, %) if n=1,
2 <p<pane(n) = 5 if n>2.

Example 3.2.4. Let us choose \(t) = ele e Then, we have
Aty =€, Ot)=¢e*", 0<r<1.

Moreover, we choose the function p = pu(t) satisfying condition (C3) in the following way:

2¢¢"

y="—r, a>0
W) = —rs @

we get
p(t) = p(t)ete = elell=o)e g2e"
Applying Theorem 3.2.2 we obtain v(§) = oo, namely, we are in the case of super-
exponential propagation speed. Hence, by using the condition (3.2.20) we find
V(6.1) L A(t)A(ot) 1 _ elee” e 1 eit‘
"log A(t)  A(t) A(dt) log A(t) ee’ edteettee e edtee’

So, we have the global (in time) existence of small data solutions for

2 <p, cels 1) ifn=1,

2 <p<peno(l)=15, o0€(0,1) ifn=1,

2 < p<pone(n) = 2, if n>2.

3.3. Data in energy space

In this section we are interested in the case 0 = 1 which corresponds to the classical energy
space H' x L? with additional L™ regularity, i.e., the data are assumed in D} with m € [1,2).

3.3.1. Case of sub-exponential propagation speed

We define the following parameters:

2
Prujm(n) =1+ T ofor m >1,
n

2
P1m(n) !=1+(1—2f_1R);n for n>1,
~ 5 /31 2m
e (- B
P2, (n) + ) 2+R) or n >
P3,m(n)
5

m 11— 2+Ru(6) 2m 0 Bi\2m
‘= maxq — + = 5 -|-( 7 5 7;14_(1_ s

{2 1— =8 +2+ Loy \l - 2R RS ) 19(6)2)n

for n > 1,

pan(n) == — for n > 3,
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where we set
Prm(n) := max {P1m(n) ; Pom(n); Pam(n)}. (3.3.1)
Because of the data belongs to D}, we apply the classical Gagliardo-Nirenberg inequality
in order to estimate the nonlinear term in (3.1.1) for the L? norm and the L™ norm, m € [1,2).
Therefore, from the application of the classical Gagliardo-Nirenberg inequality the restrictions
for the exponent p of the nonlinear term implies the conditions p > % and p < -5 if n > 3.
Moreover, we require that the admissible range for the exponent p satisfies the condition
p > Pm(n) in order to guarantee the integrability and boundedness of some terms in the
energy estimates.

Theorem 3.3.1. Assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1), (C2)
and (C4) are satisfied. Let v(6) S1 and 9(6) S 1, where v = v(5) and ¥ = 9(0) are defined
in (3.1.2) and (3.1.3), respectively. We suppose that (ug,u,) € D}, with m € [1,2), n < 32—
and that the exponent p satisfies

»<p<oo if n=1,2,

>pn(n) and
P> Pun(n) {;Spsmn):x_g if n>3,

where p,,(n) is defined in (3.3.1). Finally, we consider the following condition:

n(f11)>HmX32+RV«”;f%®}, (3.3.2)

) )
where the parameters 1 and R are from condition (C4) and (3.1.17), respectively. Under
these assumptions there exists a constant ¢g > 0 such that, if ||(ug, u1)|p: < €9, then there
exists a uniquely determined globally (in time) energy solution to the Cauchy problem (3.1.1)
m
C([0,00), H') NC'([0,00), L?).

Furthermore, there exists a constant C' > 0 such that the solution satisfies the estimates
~3(%-3)
lu(t, )llze < C (1 + BA(0,1)) [(uo, ur)[Ipy,
(0

11DJut, | < C(1+ Ba0,6)FF D7 g, 1)
(1)
p(t)

n(1

(1+ By(0,1) 207,

lue(t, )|z < Cmax{

O FA@)EA) 5 g, ) -

Remark 3.3.1. Let us compare the parameters p; ,,(n) and p ,,,(n) from Theorem 3.2.1, where
o € (0,1) and parameters p; ,,(n), P2.m(n) and ps,,(n) from Theorem 3.3.1, where o = 1.

e For the parameters p; ,,(n) and p1 m(n), we have py ., (n) = p1.(n).

e The parameter p,,,(n) appears only in Theorem 3.3.1. Because, in this theorem we
have [|u(t,-)||z2, however in Theorem 3.2.1 we have ||[D|7u(t,-)||,, with o € (0,1).
Namely, in the case low regular data we do not have the total gradient of the solution
in L2

e The first component of the parameter ps,,(n) coincide with the parameter ps,,(n).
However, when we deal with the estimates of the norm |[ul!(¢,-)||z2, due to the com-
petition between several estimates, which appears only in the energy solution, we find
also the second component of the parameter ps,,(n) having the competition between
the first one.

e Finally, we have also a difference between Theorems 3.2.1 and 3.3.1 with the condition
(3.3.2). This condition comes into play in the treatment of |[u™(¢,-)|| and [|ul(¢,-)]],
which do not appear in Theorem 3.2.1.
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Proof of Theorem 3.5.1. Let us introduce the space of solutions X (t) by
X(t)=c([0,t], H') nc'([0,t], L?)

with the norm

+(1+ B0, ﬂ)g(*‘%)*%mmm W+ 550, 7)ue(r,)2].

where ®; ,,, = ®1,,(0,7) is defined in (3.1.13) with s =0 and t = 7.
Let N be the operator which is defined by (3.2.1). Therefore, for any u € X (t) we have

t
Nu(t,x) = Ko(t,0,2) %) uo(x) + Ki(t,0,2) *@) ui(z) +/ Ki(t, s, x) *(z) |u(s,z)|Pds.
0

Our goal is to prove the existence of a fixed point for the operator N. We know that
(X(t), || - llx) is a Banach space. Then, in order to use Banach’s fixed point theorem we
shall prove for u,v € X (t) and for any (ug,u;) € D}, the following two estimates uniformly
with respect to ¢ € [0, 00):

[ Null x )
[Nu— Nvl[x

(o, u) oy, + llulli e, (3.3.3)
e = wllxen (lulliey + llvle)-

AR A

After these considerations we know that to show the global (in time) existence for small data
solutions is equivalent to show the inequalities (3.3.3) and (3.3.4).

Let us begin with inequality (3.3.3). Basically, using the estimates for solutions to the
linear Cauchy problem and taking account of the norm of the solution space X (t) we obtain
immediately

[u™ xS (w0, ua)llps,- (3.3.5)

To complete the proof of (3.3.3) we have to estimate ||u™||x). Then, we use
t
IDP o™ (t, )] . < € / 1DF0; (Kt 5,2) %00y uls, 2)I7)]| s

for j+ ¢ =0,1. Hence, we can estimate the integral term over [0,¢] by splitting this interval
into [0,0t] and [0¢,t], where § is fixed and 6 € (0,1). In particular, if s € [0,dt] we use
Theorem 3.1.1 with m € [1,2) and if s € [0t,¢] we use it for m = 2 only. So, it follows

39l ( o A(s) -3(&-%)-3 wls. )P s
Jipbofu e |, < € [ @605 1+ Bysit) (e "
+C ; (s t)/;(::))(1+B,\(s,t))_%|||u(s,-)|”||L2ds (3.3.6)

nd ®%(s,t) = 1 and, in the

for j + ¢ =0,1. Here in the case £ = 0 we define ®Y  (s,t) =
= ®,(s,t) are defined in (3.1.13)

case £ = 1 the functions @], (s,t) = @1 ,,,(s,t) and ®l(s,1)
and (3.1.14), respectively.
Using

Pe-li—‘
/-\QD

[lu(s, I e S Mlulss )P L+ [Tuls, VP o = luls, M + uls, )1
and applying the Gagliardo-Nirenberg inequality we get
s, Mmn S (1D, ) [ s, )l (33.7)
luls, M S [[1DRus, )™ p<1 e, (3.3.8)
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where 0(mp) = n(3 — m%;) € [0,1] and (2p) = n(5 — zip) Therefore, §(mp) > 0 implies
p > % and 6(2p) < 1 implies p < pen(n) = 25 for n > 3. Now we are able to estimate

|[w(s, )P|| oy by using (3.3.7), (3.3.8) and the definition of the norm of the solution space
X(t). We have the estimates

1

(s, ||, S (14 Ba(0,5) "2 F B =500 e
= (14 Bx(0,9) 7" ¥ ulk o), (3.3.9)

s, WPy S (1 -+ Ba(0,)) ¥ D200 e
= (1+ Bx(0,)) """ |l o, (3.3.10)

since it holds #(mp) < 6(2p). Therefore, plugging (3.3.9) and (3.3.10) into (3.3.6) and using
llullxs) < |lullx@ for 0 <'s <t we find

[IDP ou (2, )] .

ot A S 1)y (L_1)_1 _n_ n
< C”UHI;((t)/ @f’m(s,t) )\((S)) (1 —I—B)\(s,t))([ 1)2(m 2) 2(1 +B)\(O, S)) 2mp+2md8
0
D
! 14 A(S) -4 oy e
+C\|u||§((t)/ ¥ (5,) 35y (14 Balo ) (14 Ba(0,9) 7 s (3.3.11)
a5t

E

n n

We begin to estimate the integral D. In this case, introducing a4 (p) := 5%p — 7= and using
(3.1.18), we have

ot A(s)
A(s)

D <!, (0,6)(1+ BA(o,t))“*”%(i*%)*% / (1+ Bx(0,5)) " Pds
0

D1 (t)

for j4+¢ = 0,1. We have already shown in the proof of Theorem 3.2.1 the condition p > p; ,,(n)
guarantees that the integral term A; = A;(¢) in (3.2.11), which coincides with D; = D, (t),
remains bounded. Thus, for all p > p; ,,(n) and for j 4+ ¢ = 0,1 we get the estimate

k.

D <!, (0,6)(1+ By(0,) T EETEE (3.3.12)
Now let us consider the integral E. We have
¢ A -1 —Q2
E:/¢ﬁu)“HHJM&m2@+Bmm» ® s
5t A(s)
. ‘ ) p(s) —az(p) -4
= — [ ®i(s, t))\2(5> (1+ Bx(0,9)) (1+ Bu(s,t)) *d(1+ Ba(s,t)),
5t
where a,(p) := 5~p — 4. To obtain the desired estimates we consider separately the cases

4+ 0=0,1.
For j = ¢ =0 and ay(p) # 1 we get

t

g [ M) (1+ Bx(0, ) P d(1 + Bx(0, 5))

st A%(s)
K 1 ! —aa(p)+1 [ (8)
_/5 (14 By(0,5) 7 (12,

S S (C) .
(1+ Bx(0,5)) s 1= Js 22(s)

1= an(p) A(s)

—az(p)+1
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Case 1: az(p) > 1. In this case it holds

E < 1—}“2(17);((83)) (14 By(0,s)) ="+ ;
! 1—%2@ /5 (1+ By(0,5) " (14 BA(0,9)) A(g(i)(s)ds
<o ;2@) ;((SS)) (1+ By(0,5)) ™" ;
- a2<f>1><2 TR) / (1+ B«m@)‘““’”ﬁ@&ds
< 1—}“2(19)52((55)) (14 By(0,s)) =+ ;
= %(5)1)(2 TR ﬁ(()) (14 Br(0,8)) ™" ds,

where we used condition (C4) and (3.1.17), respectively. Then, we get

(1+ (0a0) _ﬁf)(z + R))E < ;(&tt)) (1 + Bx(0,68)) """ — ;((tt)) (14 By(0,1)) =@+,
It follows
E < 52(2% (1 + By(0,8t)) @ - ;((tt)) (14 By(0,8) "
Case 2: ax(p) < 1. In this case we have the estimates
E > 1—}“2(17)52((53)) (1+ B0, s))““(”)“ ;
+ 1_50[12@) /5: (14 By(0,5)) " (1 + B (0, S))Mgﬁ)@ds
2 o ;((Ss)) (14 By (0,5)) " ;
= az(f)l)@ +R) /5: (L+Bx(0, 3))_(12@)/&?&@
> 1—}“2(19)52((55)) (14 By(0,s)) = ;
e [ 290 g0

This implies

b (ot) (1+ Bx(0,6t)) = — ) (14 By (0,8)) @,

—1JE <
(T—awierm Y2 m X(t)
Here we can guarantee that
B . m b1\ 2m
-1 f — 1-— —.
I—wmp)e+r %1 p>2+( 2+R>n

It is clear that the above condition for p is satisfied by the condition p > p;,,(n). Then, for
all p > p1.m(n) it holds

< ;(((?t)) (14 B, (0,8t)) """ = f;((t 2) (14 BA(0,8)) 2,
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Now in order to get our desired estimate for E in the case j = ¢ = 0 we will show that the
following estimate holds:

(1+ BA(0,1))” G
1(6t)
~ A2(6t)

(1 _i_BA(O’t))%(#*%)(l + By(0, 5t))*02(17)+1 _ /é((tt)

where we used the fact that az(p) = a;1(p)+% (£ —3). The second summand on the right-hand
side of the previous estimate, that is,

(14 B\ (0,2)) """ <1,

Eu(t) == ’”‘Q(tt)) (14 By (0,8)) @™ (3.3.13)
is bounded due to the condition p > 1 (). Tndeed, we have
E(t) = (;((tt)))/ (1+ Ba(0,8) " 1 (—ay(p) +1) ;((?) );)2((75? (14 Bx(0,8)) "
<|- 51)\(?)(2)@) (14 Bx(0,)) + (— ax(p) + 1)Aéf) (1+ By(0,4)) ™"
B A(t)

< [_ 24+ R - Oél(p) + 1}W(1 +B>\(O,t))_a1(p).

Then, we can get

—b
2+ R

B )Qﬁ

—ai(p)+1<0, if p>1+<1—2+R

Hence, we have £ (t) < 0 by p > p1n.(n), namely, & = &(t) is decreasing. Therefore, it
remains to ensure the boundedness of the term
p(0t)
A2(dt)

1

(1+ B,\(O,t))%(ﬁ_%) (1+ B\(0, 5t))—a2(p)+1

in both cases 1 — ay(p) > 0 and 1 — ay(p) < 0. In the case 1 — a(p) > 0 we have

B0 (1 4 By (0,0)) 25D (14 By (0,6)

< MO (1 g,y 3D ;((‘;2) (1+ B, (0,0) 7 = &0,

2
>
&)
=)

Now in order to guarantee that the function & = &;(t) is decreasing we compute its derivative
as follows:

&) = (55{?5)' (14 By0.0) "+ () + 1) A:((t)) (L+ Ba(0,6)) "
<|—-46p5 )’l\g(((i;t)) 2(55?)(1 + B)\(O,t)) + ( — Ozl(p) 4 1) M(((S(;;)) 2((;))} (1 + B}\(()’t))—al(l))
[_ OB plot) A() AX(Y) (8t) A(t) A2(t) o)
<= av e aen p T @@ “)Ag(&) A t) |+ By0,1))
[_ B pu(dt) A(ot) A*(¢) o (p)
<[ - 3R+ (- @+ 00| 5 6 (L B0

Then, for a large time t we can guarantee that &,(t) < 0 by

—0p
2+R

+ (= ai(p) + 1)v(8) <0,
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and this can be concluded from p > ps ,,(n). In the other case 1 — az(p) < 0, our desired
estimate can be obtained directly from the case 1 — aa(p) > 0. Therefore, for all p > p; ., (n)
and p > Pa,,(n) we arrive at the expected estimate

E < (1+By(0,8) FF4), (3.3.14)
Case 3: as(p) = 1. In this case it holds

o A(s) ~ Jse A(s) A%(s)
pu(s) A(s) . pu(s) t pu(s)
A ™ = Ny A0, ~ [ e r e ()
p(t) 11(6¢) " u(s) A(s)
< () log A(t) — (o) log A(dt) + () log A(S)A(s) ds,

where we have used (3.1.17) and condition (C4), respectively. Then, it follows

(1+ By (0,0) 0 HE < 52((>) (1+BA(O £)# 6 10g A1)

HESE IR C)
(0,1)) log A(s) 5

In order to prove that (1+ B,(0,t))? ( )E is bounded, we will show that for a sufficiently
small positive constant € we have the estimate

p(dt)
\2(5t)

So, it suffices to form the derivative of the function

1

(1+ Bx(0,8)F D 10g A(61) < A (61).

£4(t) == ;((‘; )) A°(658) (1 + Bx(0, ) FH 10g A61).

Indeed, it holds

( ))AE (36) (1 + Bx(0,6)) # 5 7%) 1og A(5t)

(SR

1 260D 5 (50 A1 (58) (1 + Ba(0,1) F 52 1og A(61)

X2(51)

#5 (o 2SO g 0 B0 ) oGy

+6 ;((%?) AS(6t) (1 + By (0,8) 2+ Y j\(((;?)

<[-on (( )) e ((g?) ! g(% - %> f(it; 1+ le(o,t) " 52(((23 logi(dt)}
Afgtt))A (01 (1 + Bx(0,8)* ) 1og A(s1)

<[~ 95 3+ <5y ¢+ 5 e~ D)9+ K60 i)

O =50y (1 4 B 0,6) 2D 10g A(51)

\2(51)
< [_51+6+(2+R)g<%—

w(5t) (6t
X2(ot) A(5t)

1\ v(0,t) 1
2) 5t +logA((5t)}

A°(68) (1 + Bx(0,8)) 7 1og A61).
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Then, for sufficiently large time t and sufficiently small constant € > 0, if

nel  1\v(d)
24 R)—(——=)— — 0
which is related to condition (3.3.2), we get £;(t) < 0. This shows the decreasing behavior of
Es = &;(t). Hence, we obtain

t 1

1(s) 3(-1) A(s) o
L N2(s) (1+ By(0,1)) logA(s)A(S)dS < ; A== (s)A(s)ds < 1.

In the same way, by condition (3.3.2) we can also derive

3

1O 4 gy0,6)FF D iog A < 2O (14 BL(0,6) D 10g Ar) < A= (61).

A2(t) ~ A2(6t)
Consequently, in the case j = £ = 0 we obtain the desired estimate
E< (1+B,(0,0) f7 %), (3.3.15)

Now let us consider the case j = 1 and £ = 0 for the integral E. In this case we have

t

B )l\g((i)) (1 + BA(Ov S))_a2(p) (1 + BA(S7 t))_%d(l + BA(Sv t))

o u(s) —ax(p)
= _2/\2(3) (1+ Bx(0,5)) (1+ Ba(s,1))

+2 /; (1+ Ba(s, ) d( LONTEENG $) ")

t

E:

1t
2

ot

_ 1(s) o)) RS
< () (1+ B»(0,s)) (1+ Bi(s,1))

t

ot

1d(1+ By(0,s))

() (1+ Br(0,5) " (14 Bu(s,1))

+ N A
st A2(s) 1+ B,(0,s)
where we used Lemma 3.1.5. Then, we get
(14 By(0,0) (7 )*Eg
S(m—3)+s

< ;(é% (14 Bx(0,60)) 7 (14 By(5t,0))* (1 + BA(0,1))

t

1d(1+4 B,(0,s))
1 + B)\(O, S)

)+

SIS
W=

i(s) —as(p)
5 A2(s) (1 + B,\(0, s)) (1 + B,\(s,t))

4 (14 By (0,6)
Hence, it follows
(1+ By (0,) 5 )+Eg

< 20 (14 By(0,60)) P (14 By(0,1)) HR DT

El(t)
t

p(s) ~aa(p) 3(£-1)n1d(1+ Bi(0,5))
(1+ Bx(0,5)) (1+ Bx(0,1)) T B0

+
st A%(s)

B3 (t)

In order to prove that Fy = Ei(t) and Ey = Ey(t) are uniformly bounded it is sufficient to
show that for small positive constant ¢ we have

L £

;((%tt)) (1+ Bx(0,6)) " ** (1 + By(0, t))%("‘*%)+1 S (14 Bx(0,0t) .
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Then, employing (3.1.19) we get

p(t) —az(p)+e 3 (&-4)+1
14 By(0,6t 14 By(0,t))*\™ 2
)\2(5t)( + /\(07 )) ( + A(Oa ))
) 2 (L-1)+1-as(p)+e [ A(6E)\ @FR(—e2)te)
< 1+ B t " —= = t). 3.1
We may conclude immediately that the function £ = &,(t) is bounded by the aid of the
condition p > pPs3,,(n), because this function coincides with the function B; = B;(t) in

(3.2.15). Consequently, for the case j = 1 and £ = 0 we obtain the expected estimate

E<(1+B,(0,0) fF 8% (3.3.17)

Finally, it remains to consider the case j = 0 and ¢ = 1 for the integral E. In this case we
have

¢ A(S) —s=p+

E= P t 1+ B,(0 mtitd
/& (503 U 0) i

where ®; = ®,(s,t) is defined in (3.1.14). Due to the competition between the estimates in

®, = &4(s,t), from condition (C1) we are interested in the following two cases only for all
s € [dt,t]:

A% ()

Case a: ®y(s,t) =
0=

(1+ B,\(s,t))_l. Then, it follows

A1) [ As) -1 —as(p)
B=C0 /5M J04 B(s. 1) (14 Baf0,) s
20 [ ) .
=700 Ju e O
)

N pls (1+ BA(O’S))fa’"(p) log (1 + B)\(Svt))‘

—
»

—az(p) d(l + B>\(S, t))
1 =+ B)\(S, t)

t
ot

‘) [ 1i(s) —as(p)
+o0 ) e (1 B,\(sj))d()\z(s) (1+ By(0,5)) ")
< Ap((tt)) ;‘2((?) (1+Bx(0,5)) " log (1 + Bx(s,1)) ‘;
() [ p(s) —~az(p) d(1+ Bx(0,5))
0 /& A% (s) (1+ B:(0:5)) log (1+ Ba(s,8)) + B,(0,5)
Thus, we have
5(%-4)+ o)
(1+ Bx(0,1)) ¥0)
< ;((%tg) (1+ Bx(0,66) P (1 + Br(0,6) ¥ 1) 1og (1 4 B, (0, 1))
E3(t)
[0 B 0,) 04 B 0.0) D g 14 B0, Ji?(o(f’j)

E4(t)

In order to prove that F3 = E3(t) and E,; = F4(t) are bounded we will show that for a small
positive constant £ we have

11(5t) —aa(p) 2 (
sy (L Ba(0,90) (L By (0.0))

3=

" og (14 By(0,) < (1+ B(0,61)) .
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This implies to deal with

p(0t)
A2(5t)

(1+ Bx(0,6)) " (1 + B, (0, t))%(%*%)“ log (1 + B»(0,1)).

Hence, for the boundedness of E3 = Fs3(t) we have

Ey(t) < log (1 + B,(0,t))

log (1 + B, (0,1)) <
~ (14 By(0,0t)"

Gt s (14 Bx(0,6t))" ~

(3.3.18)

for large t. Here we used the boundedness of & = &,(t) which is given in (3.3.16) and
I'Hospital’s rule (cf. condition (B4)) for

lim sup log (1 + BA(O,t)) < Jim sup v(d,t) <1
t—00 (14 B(0,8t))" ~ t=o0 (14 BA(0,0t))" ~

respectively. On the other hand, for E, = E,(t) we have

B, < log (1+ By(0, )/ (1+ Bx(0,5)) " "d(1 + Bx(0, ))

_ log (14 Bx(0,£)) log (1+B,(0,)) _
e(14 B2(0,0t))"  e(1+By(0,8)" ~ 7

where we used (3.3.18). Therefore, in the Case a we obtain the desired estimate

1
m

w\:
=

g )(1 + By(0,1))” ), (3.3.19)

p(t

)
Summarizing, in the Case a from (3.3.14), (3.3.15), (3.3.17) and (3.3.19) for j + ¢ = 0,1 we
arrive at

E < A:e(( )) (14 By(0,8) FF3) 73, (3.3.20)
Case b: ®4(s,t) = F()\jit()t)) In this case we have
tA(s —as(p
E = F()\/&?f)) ; )\((s)) (1+ By(0,9)) ®) gs.

Case b.1: as(p) > 1. In a similar way as we did in the Case 1 we have

—az(p)+1 M t)

2(t)

Case b.2: as(p) < 1. Similarly as in the Case 2 for p > p; ,,(n) we conclude

A —az(p)+1
F()\(g))Eg AQ((‘;)) (1+ By(0, 6t)) e

(1+ By(0,¢))

FIA®) - #(1)
NORREYt))

—a@1 Bt —as(p)+1
(1+ Bx(0,4t)) ~ R0 (1+ Bx(0,1)) )

Then, it follows

S am) e
: ;(((?t)) (F2(A1))* D (14 By (0,00)) P - ;‘2% (14 By (0,1)) ¥ r ) a1,



3.3. Data in energy space 113

where we used condition (B6), that is, By(0,t) < F?(A(t)). We have shown in (3.3.13) by
using the condition p > p;,,(n) that the second summand on the right-hand side of the
previous inequality, that is,

p(t) 5 (1) 0241
i )(1 + Bx(0,1))

is bounded. For this reason let us consider the first term only, that is,

v (L

MO (o) * 5

—az(p)+1

=

)1 + B0, 61))

A2(6t
(5 1’2((‘?2) (P @) LR (F ) T = s, (32)
T et g0 () aa 2a#) = 0ale) +5 (i —5). Now if wo form the
£410) = (s ) FIA®) 27 12( = i) + 1) et AOF (A0 F(A ()
< |- AQ(( 52) i(( : )) +2(— au(p) + 1) f(((istt)) F(Ajgt()t))F/(A(t))}F(A(is))—wp)+2
<[-omr2(-am+1) F()\jgt(i)) )i :ffa(fé?) i((gf)) ) 52(((?2) iifng (Ao
iy S
<[ =86 +2(— ai(p) +1)9(5,1)] ;‘2((55?) mF(A(t)) 201 ()42
where from condition (A5) we used F'(A(£)) — ;; sza(féz) Then, for a large time ¢ by using

P > P3.m(n) we obtain
=01 +2( = au(p) +1)9(9) <0,

which implies &, (t) < 0. Similarly, in the case as(p) > 1 the desired estimate can be derived
as in the case as(p) < 1. For this reason, we obtain the expected estimate

3=

E < AOF(A@))(F2(A) FF 8 (3.3.22)

Case b.3 : ay(p) = 1. In the same way as in the Case 3 we obtain

F(A(?)) p(t) p(01) " p(s) A(s)
NG E< (1) log A(t) — (o) log A(6t) + (s )l og A(s )A(S)ds.
Then, we get
F(A(1)) (e 2(E < HO) o 5(%-3%)
N (Fam) B < SR (P a0) T e ac)
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In order to show the desired estimate we assume that there exists a sufficiently small positive
constant € such that we have the estimate

p(0t) (2 HES
2 (00) (F*(A()))

(NI

) log A(5t) < A~<(5).

Thus, it is sufficient to consider the derivative of the function

p(01)
A2(6t)

El

) log A(51). (3.3.23)

£a(t) i= 00 A+ o) (2 (1)) 2

It follows

(

A%(dt)

() A(6t) n(i—1>} A(t) A(6t)

+ 50D pe sty p(A @) (b
( 1
) 5Faw T MO+ 15 logA(ét)]

IN
|
F

IN

|
&
4
™
+
3

|-
|
|

INT M) F2A®L) AGSE) |
)i F AD) N (DE2(0) Mot) T logA((St)}

1) ¥(0,1) 1

w(t) A(6t) . s
e(ot) Aoy » ODFA®) (5:2) 1og A(51).

Here from condition (A5) we used F'(A(t)) = . Hence, for a small constant ¢ > 0

and for large time ¢ after taking account of

futetn( - )"0

0
2 <5

which is related to condition (3.3.2), we have & (t) < 0. Analogously, using the decreasing

behavior of the function A“Q((t t)) one can also prove by (3.3.2) the estimate

o (@) 5D 1o a0) 5 00 (a0 T o Ae) 5 4740
Thus, we get

—1

B S AOFAO)(F(a@)
Summarizing, from (3.3.20), (3.3.22) and (3.3.24) for j =0 and ¢ = 1 we get

(3.3.24)

Nl=

E< max{)\Q(t) (1+ By(0,1)) # -

)1, 2 —2(L-1)1
p(t) A F (A1) (F2(A(1))) } (3.3.25)
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Consequently, from (3.3.12), (3.3.20) and (3.3.25) we arrive at the statement

S

] n (_)%i_%_
IDP ™ #, )  < [ull 0 (0,8) (1 + Ba(0, )V EEFTE)73,

where ®1  (0,t) = ®1,,,(0,1) is defined in (3.1.13) for s = 0 and @9, (0,t) = 1. Replacing
the estimates for j 4+ ¢ = 0,1 in the norm of the solution space X (t) we obtain

™ xS Nl - (3.3.26)
Then, after the estimates (3.3.5) and (3.3.26) imply (3.3.3).
Now let us prove (3.3.4). We have

t
rNuNmumzHAJQWa@*mﬂm&mww@xwwﬁXt

Thanks to the estimates for the solutions to the family of linear parameter dependent Cauchy
problems with vanishing right-hand side we can estimate

[[DF O/ K (L, 5, %) @0 (Ju(s, 2)[” = |v(s, 2)[")]| ..

L, (s, );‘8 (1+ By(s,0) T EE D (s, ) — o, )| per s € [0, ]
- O (s,t) Als) (14 Ba(s,t) )7%H|u(s,x)|p — |U(8,$)|p”L2, s € [dt, t].

A(s)

We use the fact that
[[u(s, 2) [ = Jo(s, 2) [P < Ju(s, ) = v(s, )| (Ju(s, )P~ + [o(s, 2)[P7).
By Holder’s inequality we obtain

[fuls, )P = fols, )P . luls, ) = v(s, W (lus, M + l0(s, s ),
[[uls, )P = fo(s, )| . lus, ) = v(s, )lzee (lus, )7z + [lv(s, )ll7a).

In a similar way to the proof of (3.3.3) we use again Gagliardo-Nirenberg inequality to the

following terms:
lu(s,-) —vls, Lo, Muls, )ee, Nvls,)lLe

with ¢ = mp and ¢ = 2p. Summarizing, we arrive at the following inequality:

<
S

11D 0 (Nu— Nv)|| . < llu—vllxe (lullie + lol%e)
ot 1_1\_J __n_ n_
y (/ (I)é ( )/)\\ES (1+B)\(S,t)>(E71)E(E 2) 2(1—|—B>\(0 8)) 2"”p+2mds
0
/ D (s, t)A( (1+ Bx(s,t) ¥ (1 + By (0, s))*ﬂp”ds).
st A(s)

Thus, we can repeat the same arguments to the proof of (3.3.3) in order to estimate these
two integrals employing the conditions p > p,,(n) and (3.3.2). Finally, we may conclude the
proof of the statement (3.3.4) from the definition of the norm of X (¢). In this way the proof
of the theorem is completed. O

Remark 3.3.2. Let us choose formally w(t) = 1. Then, we have A(t) = ©(t) = F(A(t)) and
v(6) = 9(6). Let u = pu(t) be an arbitrary function satisfying the assumptions (B1) to (B6),
(C2) and (C4). Hence, choosing 5, = 2\ and applying Theorem 3.3.1 with m = 1 we can
see that the definition of parameters p; ,,(n) to ps ,(n) are related to the results of the paper
[3].
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Remark 3.3.3. From the parameters p ,,(n), pa,m(n) and ps,,(n) of the last theorem we can
see that if the condition
limr(d) =1

6—1

holds, then we have

~ . B 61 2m
Prm(n) = Pam(n) =1+ (1 -5 +R)7
and 3 0 Lo
~ _ P g, _ zm
p37m(n)fmax{1+<1 2+R> - ,1—|—(1 19(5)) n}
Moreover, the condition (3.3.2) holds
_h > max{2 + R; 219(5)}
n(1 1 ’ .
5(m—2)
On the other hand, if
%ILI} v(d) = (lslir% () =1,
then we get
(1) = Brn(n) = Bylm) = 1+ (1 572 2"
pl,m p2,m P3m 2+R n )

where the condition (3.3.2) yields

&>(z+mgg%—%)

Remark 3.3.4. Let us point out that the phenomenon of loss of decay appears in order to
discuss some typical examples in the case of sub-exponential propagation speed. We will
propose some decay rates for solutions or some of their derivatives to the semilinear models
which are worse than those given for the solutions to the corresponding linear models with
vanishing right-hand side to treat the semilinear model (3.1.1), that is, we allow a loss of decay.
This strategy comes into play to get some advantages when dealing with the competition
between the estimates in (3.1.13) and (3.1.14). Here let us remark that if we allow a loss of
decay in Theorem 3.3.1, this idea does not influence the conditions of this theorem.

Example 3.3.1 (Polynomial case). Let A(t) = (a+ 1)(1 +¢)*, a > 0. Then, we obtain
At)=(1+t)*" and O@)= 1+t —-1<y<a.

If we choose
p(t) =(1+1)°, a—y<p<2a+2,

then, we get
p(t) = (a+1)(1+6)",

where due to condition (C2) we define 8 := py(a + 1) with p; € [0,2). Moreover, taking
- 4
E() =1 +1)", 1>/€ZT

we find
F(A(E)) = (1 4+ £+,

Finally, due to condition (C4), /3, satisfies

2% —
0<pB < a—p

—_— 2a. 3.2
ST B < 2« (3.3.27)
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Taking account of the construction of the oscillating functions as in Section 2.6, the func-
tion w = w(t) is defined in the following way:

t—1

Vg

w(t) =1+ ¢k¢< k) for all ¢ € [ty, tpr1),

where
tk = 2k, Vg = 2Rk S Atk = tk+1 — tk = Qk, Pk = 2k('y—a—f~c) S 1.

Moreover, 1 € C}(R) and it holds

supp € [0,1],  —1<w() <1  and /O1 (1)t = %

Then, the oscillating function w = w(t) satisfies the related estimates in condition (AZ2).
Moreover, the stabilization condition (A3) is satisfied, since vy @y is small enough. Indeed,
we have v, = 2F0~) < 1.

Now let us consider

~ )\2 t — 1 - 2
D, (s,t) = max{ p((t)) (14 Ba(s,t)) H’Y A F(A() (F?(A(t)) a }, (3.3.28)
which appears in the proof of Theorem 3.3.1 for j = 0 and ¢ = 1. Here v; and 7, are
positive constants and these constants stand for the loss of decay in comparison with the
corresponding decay estimates for the time derivative of the solution u to the linear Cauchy
problem with vanishing right-hand side. In this case, we get a benefit of allowing a loss of
decay.

As we did in the proof, from condition (C1) we will only consider the following two cases
of the function ®; = ®,(s,t) for s € [dt, t]:

4 A2(75) —14m
Case a: ®(s,t) = o0 (1+ Ba(s,t)) for s e [0t,t]
This case implies that we have
)\ t — 1 - 2
M4 B ) FAD)(FA@)
Then, it follows
—14+m
(1 F(1+ t)2o¢7ﬁ+2 1+ S)2o¢7ﬁ+2) > (1+ t)ﬁ72n72a+272(a+2n71).

Therefore, if we assume 5 — 2k — 2a + 272(a+ 2k — 1) < 0 and v, > 1, then for s € [0t,¢] the
first component in (3.3.28) becomes dominant.
Here let us remark that if we do not allow a loss of decay, namely, if we choose v, = v, = 0,
then we have
(1 + S)Qa—,8+2 Z 1 + (1 + t)2a—[j’+2 _ (1 + t)2a+2}§—6‘

In order to show that we have one case which implies that the first component is dominant
in (3.3.28), we have to assume 2a + 2k — 3 > 2o — 8 + 2 in the the last inequality, namely,
k > 1 which contradicts the choices of k. For this reason, we assume a loss of decay in
L? — L? estimates for the time derivative of the solution u to the linear Cauchy problem with
vanishing right-hand side to get the desired estimates.
Case b: ®y(s,t) = A(t)F(A(t))(FQ(A(t)))_HA/2 for s € [dt,t]
Then, we have

At

t)

~—

(1+B,\(S,t))_1+71 < F(A(t))(FQ(A(t)))_lJ”?'

)
—~~
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Assuming v, > 7, for s € [0t,¢] it follows

1471

(1 (14 t)20¢7ﬁ+2 i 8)2047,3+2)7 <(1+ t)ﬁ72n72o¢+272(a+2/{71)‘

Then, this shows that the second component is dominant in (3.3.28).

Applying Theorem 3.3.1 we also get v(§) = J(6) = 0 and R = 0 (we can choose R = 0,
since p(t) is increasing). Moreover, taking into consideration the condition (3.3.2) for as(p) =

51 >n(% — 1)

5=p— 4 =1 we have
2

This implies that we have

1 1 2c0 —
n(——7)<51§ a 6, B8 < 2a.
m a+1

Therefore, the “critical” exponent is

B;:‘_Yl) mo_ s ). (3.3.29)

Pr.m(n) = Pam(n) = Psm(n) =1+ ( "

Consequently, we have the global (in time) existence of small data solutions for

s () |

if n=1,2,

P . (3.3.30)
p<pen(n) =% if n=3.

e 3w
IAIA

We remark that by (3.3.27) we can see that we have ﬁ%’gl < 1. For this reason, we have
Pm (1) < Projm(n)-

Example 3.3.2 (Ezponential case). Let us choose A(t) = e'. Then, we obtain
A(t)=¢" and O()=¢€", 0<r<l1.

Moreover, we take
p(t) =plt) =e"', 1—r<p <2

Now taking

[1]

(t) = e™, 0>/€2—%

we get
F(A(t)) ~ eI +201,

The condition (C4) implies that
0<pB1 <2— 1.

Now let us define the oscillating function, as we explained in Section, 2.6 as follows:

t—tg
wt)=1+ @kw(Tkk) for all ¢ € [ty, tpr1],

where
tk = k, Vg = e”k < Atk = tk+1 — tk, P = ek(riﬁil) < 1.

Moreover, 1 € C}*(R) satisfies

1
supp C[0,1],  —1<p@#) <1  and /0 \@b(t)]dt:%.
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Then, the oscillating function w = w(t) fulfills the related estimates in condition (AZ2).
Moreover, the stabilization condition (A3) is satisfied, since vy is small enough. Indeed,
we have vy, = e*"™D < 1.

Now let us consider the case

&, (s, t) = max { A:(it)) (1+ Ba(s, 1)) AR F(A®)) (F2(A())) ™ } (3.3.31)

Here v, and 7, are positive constants which describe the loss of decay in comparison with the
corresponding decay estimates for the time derivative of the solution u to the linear Cauchy
problem with vanishing right-hand side.

As we did in the proof of Theorem 3.3.1 from condition (C1) we will distinguish between
two cases only.

Case a: ®y(s,t) = );2(%) (1+ B,\(sjt))_pr"Yl for s € [ot,1]

This case implies that we have

)\(t) “14m1 2 —1+2
o (L Baen) T 2 FAM)FA) ™

If we assume p; — 2k — 2 + 279,(1 + 2k) < 0 and ; > 1, then for s € [d¢,¢] it holds

—147
(1 4t _ 6(2—u1)8) TS 224295 (1420t

Therefore, this shows that the first component is always dominant in (3.3.31), because we
have a benefit of allowing a loss of decay.
Case b: ®y(s,t) = )\(IS)F(A(t))(FQ(A(t)))_HA/2 for s € [dt,t]

This case implies

>
~—

(t
)

Assuming v, > v, for s € [0t,¢] it holds

(1+ B,\(S,t))_“ml < F(A(t))(Fz(A(t)))_1+72_

)
—~

(1 4 et _ 6(27;11)8) “hm < plm—26—2+27(1426))t

Then, this shows that the second component is dominant in (3.3.31).

Now applying Theorem 3.3.1 we also find v(§) = ¥(d) = 1 and R = 0 (here we can choose
R =0, since u(t) is increasing). Moreover, the condition (3.3.2) for as(p) = 5=-p — 5 = 1 is
satisfied with

P 1
> —.
-1
So, we have
n/1 1
g(a—*) <PL<2-—m
Therefore, we get
- . 51 2m
Pim(n) =1+ (1 — 3)77
- o ,81 2m
Pam(n) =1+ (1 - 5;)7,
m 1-z 1-62 2m
Pam(n) = - + 2 2 —
21— zfm(l—é) (1— 22#1(1—5)) n
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Choosing § close to 1 gives
- ,81 2m
m =1 (1 - 7) -
Dm(n) + 5 ) +e
with a positive arbitrary small €. So, we have the global (in time) existence of small data
solutions for

2

p>1+(1—%)27m+5 and {”;

m

P if n=1,2,
p <pen(n) =15 if n>3.

IA A

3.3.2. Case of super-exponential propagation speed

Now we will deal with the case of super-exponential propagation speed where the data belong
to energy space H' x L? with additional L™ regularity, m € [1,2).

Theorem 3.3.2. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C3) and (C4) hold. Let v(§) = oo and 9(6) = oo, and we suppose that the following
condition for the functions v =v(d,t) and 9 = 9(d,t) (see (3.1.2) and (3.1.3)) holds:

max {v(8,t); 9(6,t)} = o(log A(t)). (3.3.32)
We consider (ug,u1) € D}, with m € [1,2), n < 52— and that the exponent p satisfies

2 <p<oo if n=1,2,

p / (3.3.33)

= <p<pen(n) =% ifn=3.

Then, there exists a constant g > 0 such that for all (ug,u1) € Dy, with ||(uo,u1)|pr < eo,
there is a uniquely determined globally (in time) energy solution to the Cauchy problem (3.1.1)

C([0,00), H') NC'([0,0), L?).

Furthermore, there exists a constant C > 0 such that the solution satisfies the following
estimates:
et Mlze < O+ Br©,8) 5 g, ),
[IDfutt, ), < €+ Br0,6) 258 g, ) oy,

e (t, -)||2 < C'max { );)(Stt)) (1+ Bx(0, t))*%(if%)fl;

O FAD) (F2A) D7 g, ) o,

Proof. We proceed in the same way as we did in the proof of Theorem 3.3.1 to verify that the
integrals D and E, which are given in (3.3.11), fulfill the desired estimates. For this reason
our goal is only to prove the following inequalities:

[ (uo, ur) |, =+ [[ul% ), (3.3.34)
lu — vl xeo (lullie + 0l%)- (3.3.35)

| Nullx )
[Nu— Nvlxq

AR A

Let us start with inequality (3.3.34). To complete the proof of (3.3.34) we have to estimate
lu(t, )|l x(t)- For this reason, we begin with the integral D for j + ¢ = 0, 1, that is,

(1 + B,\(0, s))_ﬁﬁﬁds,

D S, (0,)(1+ By(0,) Vi) /‘” 1;((5))

D1 (t)
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where we used (3.1.21). Here ®9  (0,t) =1 and ®;,,(0,t) = ®1,,(0,) is defined in (3.1.13)
for s = 0. Here the integral D; = D;(t) coincides with the integral A, = A,(t) in (3.2.26),
which has been already shown that it is uniformly bounded in the proof of Theorem 3.2.2.
So, Dy = D (t) is uniformly bounded, too. Therefore, we may conclude the following desired
estimate for j 4+ ¢ =0,1:

J

D <!, (0,6)(1+ By(0,)EETHE (3.3.36)
Now let us consider the integral E, that is,

05

= - /5: 1 (s, 1) ;((‘2)) (14 B:(0,9) "7 (1 + Ba(s,8) 1d(1+ Ba(s,1)),  (3.3.37)

(14 Ba(s,) 2 (1+ Bx(0,5)) " ias

where a,(p) := 5%=p — %. We define for £ = 0 the function ®(s,t) = 1 and for £ = 1 the
function @%(s,t) = d,(s, ) is defined in (3.1.14).
For j = ¢ = 0 we will discuss the cases as(p) # 1 and ay(p) = 1, respectively.

ﬁ\ﬁ

0
Case 1: as(p) # 1. In this case, by using condition (C4) we have
FA(s)
5t A(s)
1 {u( 5)
1 —as(p) LA*(5)

5))
1 () —an(p)+1
S T L 0+ B20)

Then, it follows

E=

(1+ By(0,5)) **Pds = t;(( ))(1+BA(0 $)) " *d(1 + By(0,5))
L4 B(0.5) (4|

( >
() —as(p)+1 A(S)
N (s) (1+ By(0,9)) As) ds] :

az(p)+1|!

(1 + B,(0,

t
ot /(St
t t

+ /
ot 5t

(1+ By(0,8) 2 0F

2 t) (14 BA(0, t))*axmﬂ(l LBy, t))%(#%)

Eq(t)

(1+ Bx(0,6)) " *** (1 4 By (0, t))%(#

1)

Ex(t)
" p(s)

(14 Bx(0,5)) """ (1 4 By(0,1)) ) AL
st A2(s)

" A(s)

Es(t)

Since az(p) = ai(p) + %(i — 2), we may conclude for large ¢ the relation

m

(1 +B(0,8) T S (WA AWM <1,

where £ = &,(t) is defined by

g1(t) = ;(gz)Ag(t)(l —I-BA(O,t))ial(le,

It is shown in (3.2.27) that & = & () is decreasing. So, we find that E; = E;(t) is bounded.

Now in order to prove that E, = E,(t) and Es = E5(t) are both uniformly bounded it is
sufficient to show that for a small positive constant ¢ we have

()

A%(0t)

n 1

(L + By (0,6)) """ (1 + B,(0,) 7 73) < a5ty (3.3.38)
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Therefore, we will consider the monotonicity of the function

w3

(%-4)

N|=

E(t) == ;((?2)/\(&)6(1 + By (0,6t)) P (1 + By (0,1))

Performing the derivative of the function & = &,(¢) we obtain

£4(6) = (DY Nory (1 4 By(0,51) ™7 (14 By(0,1)) FF7)

\2(6t)
+ed ;(((?))A(ét)/\(ét)el(l + By(0,01)) P (14 By(0, ) F ()
B u(3t) o AGHA(Y) —aa®) s(2)
+ (= az(p) +1) /\2(&)/\(&) (6 (1+ By(0,4t)) (1 + B)(0,1))
5 (= o) A (L B(0.00) 0 2 (1 By 0,) HE
AGE) (Gt Ao 1 At) 1
= [_ oo tOh0n TP DG g A 500 - *) A(D) Tog A(t)]

p(9t)
(&)A((St) (1+ Bx(0,6t)

)
§[—5ﬁ1+65+(—a2(p)+1)1 1 1 ) Et) A(dt) 1 })\((575
)

S\H
ol
N
|
—

042

x ¢(t) log A(t)p(5t) log A(dt) (1 L B(0,1)" 3(L-

>/

n )
ogA(at)+§(E A1) M0t) log A1) | A(6%)

a2 (%7%)71.

NE

ot
x ¢(t) log A(t)p(6t) log A(dt) )\2(( &))A(ét) (1+ Bx(0,6t)
Here we used the condition (C4) and (3.1.20) with condition (C3), respectively. Now em-

ploying the condition (3.3.32), we immediately get &,(t) < 0 for large t. This implies that
Ey = E,(t) is bounded and using (3.3.38) we find

(1 + B, (0,1))

Es(t) < tA(s)_E_l)\(s)ds < 1.

ot

Hence, we may conclude in the case j = ¢ = 0 the estimate

E < (1+B,(0,0) 7%, (3.3.39)
Case 2: as(p) = 1. In this case it follows
_ 5: 1;((3 (1+ By(0,5)) 'ds = 5: )’l\g((z))d(log (1+ Bx(0,5)))
_ () t ' fu(s)
= 320y 108 (1 Br©:9))| | = [ Tog (14 Ba(0, s))d(v(s)>
p(t) p(dt) " p(s) A(s)
— /\2( ) log (1+B/\(0 t))_ )\2((5t) log (1+B>\(075t)) + 50/& /\2(8) log (1+B>\(0’ 3))wd87

where we used condition (C4). Then, it holds

)

3
Nl

(1+ BA(ojt))%(#fé)E < ;(( )) log (1 + B (0,)) (1 + BA(O,t))%(

o /& ;62((55)) log (1 + B,(0,5)) (1 + Bx(0,)) 27 73) Als)

A(s)

n(1 1
Similarly, in order to prove (1 + B,(0,t))? (5 2)E is uniformly bounded we will show that
for a sufficiently small positive constant € we have the estimate

)/é(((;tt)) log (1+ B»(0,60)) (1 + Ba(0,)) (574 < A(o1)~
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Then, for an arbitrary positive constant r we have

1(dt)
A2(6t)

A1) log (1+ Ba(0,60) (1 + Ba (0,0))#

wf3

u(dt) A( )Elog (1+ Bx(0,6t))
(14 Bx(0,6t))"

A(6t) (1 4 Bx(0,6t)) (1 + By (0, t))%(#_%),

( _

3
o=
~—

(1+ Bx(0,6t))" (1 + Bx(0,1))

where we have employed I'Hospital rule (cf. condition (B4)) as follows:

A(BDA(51)
log (1 + B,(0, 0t
lim sup og (1+ Ba( ) = lim sup 11(5¢)

100 (14 Bx(0,6t))" == p§(1+ By(0,5t))2 COSOU (14 BA(0,6t))"

-1

= lim su

N
e P L5 (1 1 Ba(0, 0t))
Therefore, taking account of the monotonic behavior of & = &,(t) we find the desired estimate
E< (14 B, (0,0) FFH), (3.3.40)

Now let us consider (3.3.37) in the case j =1 and ¢ = 0. Then, we get

B [ I;(( ))(1 + Ba(s,8)) 2 (1 + Ba(0,5) " ds
[ ;((‘1)) (14 Ba(0,5) " (1 + By(s,£)) *d(1+ B(s.1))
. ,u( ) —az(p) s 3 ¢
= 2A2( )(1+BA(() s)) (1+ Ba(s,t)) N
1o 1(s) —aa(p)
+2/& (1+ By(s,1)) d()\2(8)(1+BA(O,s)) )
S )\MQ(( )) (1 + BA(O ))—0‘2(1”)(1 + BA(Svt))% ;
" u(s) az(p) %d(1+BA(078))
+ o N2(s )(1+BA(0 5)) (14 Ba(s,t)) B (05)

where we have used Lemma 3.1.5. After, multiplying both sides of the last estimate by
(1+ B\(0,t))° #(m-d)+ , we find

(14 By(0,0) 27 2)*Eg
< ;(gg) (1+ Bx(0,58)) P (1 + By (0, 1)) F - )*
" p(s) ~as(p) 2(2-2)+1d(1+ By(0,9))
+ (s )(1 + B)(0,s)) (1+ B\(0,1)) TIB0s)

To derive the desired estimates for the two summands on the right-hand side of the previous
inequality, employing (3.3.32), we proceed in the same way as we did in the proof of Theorem
3.2.2 to estimate the terms B, = B, (t) and B, = By(t). Summarizing, we have the estimate

(7-2)-

|3
3=
=
W=

E < (14 By(0,t) (3.3.41)
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Finally, we will consider (3.3.37) in the case j = 0 and ¢ = 1. So, we have

_ ' M —az(p)
E_/(Stfbl(s,t) 5+ By0.9) s

where ®; = ®,(s,t) is defined in (3.1.14). Employing condition (C1) we are only interested
in the following two cases, which explains that we have either the first component or the
second component is dominant in ®; = ®4(s,t) for all s € [d¢,¢].

A2(t _
Case a: ®y(s,t) = ( )(1 + Bi(s,t)) ', In this case it holds

p(t)
E— /:(it)) /(; f;((j)) (1+ Bx(s,8)) " (14 By (0,5)) *Pds
_ _Ap?((tt)) 5: ;(@)) (1+ By (0,5)) " W
- _A:((tg) ;L(SS)) (14 BA(0,5) P log (1 + Bu(s.1)) ‘;
+ A:((f)) ;log (1+ B,\(s,t))d(;(( )) (14 By(0, ))-a2<p))
_)\z(t) he) s)) 2P 10 s t
S o(1) N2(s) (1+ Bx(0,5)) log (1 + Bi(s,1)) }

d(l + B\\(0, S))
1+ By (0, s)

RRSGNAIC) (1+ Bx(0,5) " log (1 + B(s.1))

A%(t)
ot —as n(1_1
< 52((5)) (14 B:(0,88) " log (1 + Bx(0,1)) (1 + By(0,1)) (7 7)1+
E4(t)
L[ ) log (14 By(0.0) (1 + By(0, )G 41 1 B0, 5)
st A2(s) (1+ B\(0, S))M(p) 1+ Bx(0,s)
E5(t)
After applying the I'Hospital rule for v > 1 (cf. condition (B4)) we find
ABA
. log (1+ Bx(0,t)) . (Z(t)(t)
i sup 0 gy s =
(14 Ba(0,4t)) Y8 (14 Bx(0,)) 240200 (1 + B, (0, 6t))”
A(t)
< lim sup m¢( )
~ -1
e () log A(t) 358 (68 (1 + BA(0,6t))”
, A(t) A(dt) 1 1
< lim sup — <1, (3.3.42)
P K (1) 00 GO0 B A (14 By (0.00) "

where we used (3.1.20) with condition (C3). Therefore, to prove E, = E,(t) and E; = E5(t)
are bounded we use the estimate
1(01)
A2(dt)

(1+ Bx(0,66) P (1 + Br(0,6) 2™ < (14 B (0,80)) . (3.3.43)
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Then, we have

Eu(t) = (14 Bx(0,66)) (14 By(0,0) ¥ < 1, (3.3.44)

To prove the boundedness of the function & = &,(t) we follow the proof of B; = B, (t) which
is defined in (3.2.30). Hence, by using (3.3.42) we get

log (1+ By(0,1)) -

~ (14 B(0,6t)” &)<

log (l—i—B,\(O,t)) <
(14 Bx(0,0t))" ~

for large t. Moreover, for E5 = Es(t) using (3.3.43) and (3.3.44), respectively, we obtain

t

By(t) < log (1 + Bx(0,1)) / (1+ Bx(0,5)) " d(1 + Br(0, %))

log (1+ Bx(0,1)) _t log (1 + Bx(0,1)) <
- ’Y(l + B,\(0, 5t))7 ’y(l +B,\(0,t))7 ~

I

where we used again the I'Hospital rule from (3.3.42). Consequently, we obtain that E, =
E,(t) and E5 = E5(t) are uniformly bounded. This implies

(

w3
3
[

g ) (14 B(0,1))~ ), (3.3.45)

~ ()

Taking account of (3.3.39), (3.3.40), (3.3.41) and (3.3.45), in the Case a and j+ ¢ = 10,1 we
arrive at the estimate

A*(t) ~3(3-4)-4-¢
E < ) (1+ Bx(0,1)) . (3.3.46)
Case b: ®4(s,t) = F()\jgt(i)) In this case we have
_ A A ~as(p)
B = Zam) o a1+ Ba08) s
L0 [ s) . S
~FAD) 1y 22(s) (1+ Bx(0,5)) d(1+4 Bx(0,5)).

Now we distinguish between two cases.

Case b.1: as(p) # 1. It holds

W(F%A@)))?(i‘%)E < ;‘2((?) (14 Bx(0,8) " (F2(A()) F )
Fi(t)
+ ;L?(((istt)) (1+ Bx(0,88)) P (F2(A 1)) 25 2)
F(t)
s [ 1 m0.9) T EA@) )

Fs(t)
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Let us begin to estimate F} = F(t) for both cases as(p) > 1 and as(p) < 1. If as(p) > 1,
then we have

(NI

)< O (praay) 2 H) = A o),

A < 20 () Y < 2(51)

— %)

t)
N2 (t

form the derivative of the function F; = F,(t). It follows

where we used the decreasing behavior of the function {5 from condition (C4). Now we

m):(“(5’”)’wa))n(ﬁ—mn(i— ) LA F (M) F (A

A%(dt) m )\2(515)
<[-om (((;?) *”(%*%)F )) (A(®)) )\ A=)
s
[0 0
<|- 5ﬁlm + n(% - %) (6,t 1A ] 2 log A(t) F(A(£))" (%),

w(d
()4 A%(
Fr(A®)

Therefore, by using (3.3.32) we

INOEION
find F,(t) < 0 for large t. Analogously, if a,(p) < 1, by using condition (B6) we get

where from condition (A5) we used F'(A(t)) =

v (L 1

Fi(t) < iy (FQ(A(t)))ioLZ(p)H(FQ(A(t)))%(H*E)

— ()
M(t) 2 —ai(p)+1 /,L((St) 9 —a1(p)+l =
Hence, in the same way we obtain
— (551 19(6, t) /J,((St) )\(5t) —2a1(p)+2
ZOR B A A ) A(t)} 3e(t) Aor) 8 MO FALR) :

Thus, if as(p) < 1, employing the condition (3.3.32) we may conclude that F, = Fi(t) is
uniformly bounded for large t. B B B
Now, in order to show that Fy = F5(t) and F3 = F3(t) are uniformly bounded we verify

()

A2(0t)
with an arbitrary small positive constant €. Then, we may conclude

ﬁ@wétr(l + Ba(0,60) O (P A) F Y 51,

in both cases as(p) < 1 and ay(p) > 1. In the case as(p) < 1 we have
1(3t)
A2(6t)

S ;((itt))A(ét)f(FQ(A(t)))g(’;_é)_az(’))ﬂ . )/\'52(((;2)/\(675) ( (A(t)))—al(P)-H — ]_.3<t>’

(1+ By(0,86) 7 (F2(A(1))) P8 < A(or)

A (1 + By(0,60) P (72 (A1) * 7Y

where we used condition (B6). We can estimate the derivative of the function F3 = F3(t) as
follows:

6(f1 — ¢

9(0,t) 1 p(dt) A(0t)
3(t) < [_ log A(t)

logA(t)} 22(5t) A(dt) logA(t)A(dt)f(F(A(t)))ﬂal(p)ﬁ

+2(— au(p)+1)
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Therefore, employing (3.3.32) we obtain that F4(t) < 0 for large t. On the other hand, if
as(p) > 1, then one can derive for large ¢ the estimate

1(3t)
A2(6t)

1 1

At (14Bx(0,08) P (F2(A 1)) * ) < ;(gt))

At (F2(A@)

Summarizing, in the case aq(p) # 1 we obtain the desired estimate

n

E < AOF(A@®)(F2(A) FE 87 (3.3.47)

Case b.2: as(p) = 1. In this case it holds

Nl

B < PO 1og (14 B, (0,0)) (F2(A (1)) F D)

2 2(&-
(F(A0) o

Fyu(t)

B 1oy (1 -+ Ba(0,00)) (F2(A (1) )

\2(6t)

+ OB, (1+BA(0,3))(F2(A(t)))g("%‘é)iigds.

Applying the 'Hospital rule for » > 1 (cf. condition (B4)) we find

MDA

log (1 + Bx(0,t
lim sup og( + Bl ))—lim sup u(t)

e (L4 Ba(0,00)" =T 6 (14 By (0,4)) 2002 (14 gy (0,61))

A o)
6(1)log A(t) 288 6(5t) (1 + Bx(0,61))
At) A(01) 1 1
A(#) A(3t) ¢(5t) log A(t) (1 + B, (0, 6t)) " <1, (3.3.48)

< lim sup
t—o0

< lim sup
t—o0

where we used (3.1.20) with condition (C3). Therefore, in order to estimate Fy = F,(t), by
using the estimates of (3.3.48) we find

- u(st) log (1+ Bx(0,1)) . (a1)
Fy(t) < N(51) (14 By (0, 60)) (1+ Bx(0,6t)) (F?(A(¢)))

S ;(((?t)) (1+ By (0,60) (F2(A(1))* (1),

Now, using condition (B6) we continue in the same way to F, = F(t) and we may conclude

Fi() % g (14 By0.00) (P00) 8 < K (Pam) 97 <1

Now in order to estimate Fy = Fy(t) and Fs = Fy(t) we verify the estimate

1(3)
\2(61)

log (1 -+ Bx(0,80) (F(A(1)) * 72 < Aon)

with an arbitrary small positive constant e. Then, using again (3.3.48) and proceeding in the
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same way to estimate Fy = JF3(t) for large t, we have

1(01)
A2(6t)

E\H

A1) log (1+ BA(0,50)) (F(A()) * 1+ 2)

6log( + B, (0 t))
(14 Bx(0,4t))"

)

=

(1+ Bx(0,00) (F2(A @) 27

1

t A@ (F2(A))) FE DT <,

|
>
[ V)
—~
=
SN—

Consequently, in the case as(p) = 1 we obtain the desired estimate

-1

E < MOF(A)(F(A) F0 (3.3.49)

Now taking account of (3.3.39), (3.3.40), (3.3.41), (3.3.47) and (3.3.49) in the Case b and
j+£=0,1 we obtain the estimate

Nl
~—
|
[
|
~

3=

E S AN ()F (A1) (1 + By(0, t))’%( (3.3.50)

Combining (3.3.36) and (3.3.50) we may conclude

Wk

NIDPOLu 2, )] S [l @ (0, ) (1 + By (0,1) P EGH

where @], (0,t) = ®;,,(0,%) is defined in (3.1.13) for s = 0. Replacing the estimates for
j+£¢=0,1in the norm of the solution space X (¢) we obtain

||UHIHX(t) N ”uHi(t)-

In order to prove (3.3.35) proceeding in the same way as in the proof of Theorem 3.3.1,
we get the following estimate:

1D (Nu = Nv)|| . < llu = vllxco (e + Ivllke)

([ 0603 0 B 0) D (0,0

(s
¢ (s
/&q) (50309

Thus, we can repeat the same arguments as in the proof of (3.3.34) to estimate these two
integrals. Finally, we can conclude the proof of the statement (3.3.35) from the definition of
the norm of X (¢). This completes the proof. O

>>«

I\J\L»

(1+ Ba(s,1)) (14 By (0, s))fm“zds).

>

Remark 3.3.5. Let us choose formally w(t) = 1. Then, we have A(t) = ©(t) = F(A(t)) and
v(6) = 9¥(0). Let u = pu(t) be an arbitrary function satisfying the conditions (B1) to (B6),
(C3) and (C4). Hence, choosing f; = 2)¢ and applying Theorem 3.3.2 with m = 1 we can
see that our results are related to the results of the paper [4].

Remark 3.3.6. We will discuss some examples in the case of super-exponential propagation
speed. Proceeding in the same way as we did in the examples to the case of sub-exponential
propagation speed, we take the derived energy estimates for the solutions to the corresponding
linear Cauchy problem (3.1.1) with vanishing right-hand side and allow in the solution spaces
some parameters describing a loss of decay. Therefore, we will get some flexibility when we
deal with the competition between the estimates in (3.1.13) and (3.1.14) with the following
examples. We remark that if we allow a loss of decay in Theorem 3.3.2, this idea does not
influence the conditions of this theorem.
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Example 3.3.3. Let us choose A(t) = efe®’. Then, we have
Aty =€,  O@)=¢e*, 0<r<l.

Moreover, choosing
ut)y=e?, 1—r<qg<?2

we get

p(t) = e'u(t) = e'e’®
Now we take Z(t) = e~tere with 0 > K > —4%. Then, we get
F(A(t)) ~= 020",
Now let us define the oscillating function as we constructed in Section 2.6 as follows:

t— 1t
(&

w(t) =1+ @kw( ) for all ¢ € [ty, tpi1],

where
t, = e”, vp 1= e ke < Aty = thr1 — g, P = et < 1,

Here ¢ € C}!(R) satisfies

supp ¢ C [0, 1], —1<y(t) <1 and /01 |(t)|dt = %

Then, the oscillating function w = w(t) satisfies the related estimates in condition (AZ2).
Moreover, the stabilization condition (A3) is satisfied, because vy, is small enough. Indeed,

we have v = e Fer=De" < 1,

Now let us consider the case

d,(s,t) = max { A;((tt)) (14 By(s,8)) " AR F(A®) (F2(A®£)) } s € [6t,1], (3.3.51)

which appears in the proof of the last theorem in the case j = 0 and £ = 1 (with v, = v, = 0).
Here v, and -, are positive constants and these constants stand for the loss of decay in
comparison with the corresponding decay estimates for the time derivative of the solution u
to the linear Cauchy problem with vanishing right-hand side. In this case, we get a benefit
of allowing a loss of decay (cf. Remark 3.3.6).

As we mentioned in the proof of the last theorem, from condition (C1) we will only
consider the following two cases from the definition of the function ®; = ®,(s,¢) in (3.1.14):

A% ()

Case a: ®1(s,t) = (1+ B,\(s,t))_lﬂl. This case implies that we have

p(t)
(

oL Bi(s,t)) 7" = F(AM) (F2(A) ™

If we assume ¢ — 2k — 2+ 292(1 4+ 2x) < 0 and ; > 1, then for s € [0t,¢] it holds

which shows that the first component is dominant in (3.3.51).
We remark that if we do not allow the loss of decay, namely, if we choose v; = 75 = 0,

then we have
6(27(])65 Z 1+ 6(27q)et o e(2/<7q+2)et"
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Therefore, in order to show that we have one case which implies that the first component is
dominant in (3.3.51), we have to assume 2x — g+ 2 > 2 — g from the last inequality, that is,
k > 0, which contradicts the choices of k. For this reason, we allow a loss of decay in the
L? — L? estimates for the time derivative of the solution u to the linear Cauchy problem with
vanishing right-hand side to get the desired estimates.

Clase b: (i)l(s’t) - )‘(t)F(A(t))(FQ(A(t)))ﬂﬂZ. This case implies
& s, 1)) 2 14y
S Bals )T < FA@) (FHA0) T

Assuming -, > ~; for the case s € [§t, ] it holds

(1 +€(2—q)et o e(2—q)es)_1+’y1 < e(q—Qn—2+2w2(1+2n))et

Then, this shows that the second component is dominant in (3.3.51).

Hence, applying Theorem 3.3.2 we obtain v(§) = oo and

1 At A(GE) 1 ele e 11

v(9,¢) logA(t)  A(t) A(0t) log A(f) e edtee et ot

Moreover, we have 9¥(0) = oo and

¥(4,t) 1 F(A®) A(st) 1 etz oo I
"og A(t) ~ AB)Z2(t) A0t) log A(t)  elec’ e 2ene’ etee™ et ot

So, we have the global (in time) existence of small data solutions for

{

Example 3.3.4. We choose A(t) = e‘e® e . Then, we have

if n=1,2,

p
pngN(n):# if n> 3.

IAIN

3o 3w

t t

At) = e, Ot)y=e"", 0<r<l.
Moreover, choosing
pt) =€, 1—r<qg<?2
we get
p(t) = e pu(t) = e'e’ e

—t —et

Now we take Z(t) = e 'e ¢ e with 0 > k > —%. Then, we get

et

F(A(t)) ~ 6(1+2H)e

Now let us define the oscillating function as we constructed in Section 2.6 as follows:

—t
()—l—i—gokqp( o > for all ¢ € [ty, txr1],

where
ek ok
ty = eek, Uy = e ke ere < Aty =t — ty, Y = elr=r=e" < q,

Here 1 € C}!(R) satisfies

1
supp € [0,1],  —1<d(t)<1  and / o(t))dt =
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Then, the oscillating function w = w(t) satisfies the related estimates in condition (AZ2).
Moreover, the stabilization condition (A3) is satisfied, since vy is small enough. Indeed,

k ek
we have vy, = e Fem® D" < 1,

Now let us consider the case

®,(s,t) = max { X (1+ Bi(s, t))fHM; )\(t)F(A(t))(F2(A(t)))71+w}, s € [dt,t]. (3.3.52)

p(t)
As we did in the proof of Theorem 3.3.2 we will distinguish between two cases only.
~ 2 —
Case a: ®4(s,t) = A ((tt)) (1+ Ba(s,t)) " This case implies that we have
P
At 147 —147
M0+ Bys.0) 2 FAO) (FA0)

If we assume ¢ — 2k — 2+ 272(1 4+ 2x) < 0 and ; > 1, then for s € [0t,¢] it holds

Therefore, this shows that the first component is dominant in (3.3.52).
Case b: ®,(s,t) = A(t)F(A(t))(F2(A(t))) 7. This case implies

)\(t) —14m 2 —1472
o0 (L Baen) T S FAMFA@)

Assuming v, > 7y, in the case s € [dt, t] it holds

(1 +€(2—q)eet _ 6(2—q)e‘is)_1—"_’y1 < e(q—Qﬁ—2+2’yQ(1+2fi))eet.

Then, this shows that the second component is dominant in (3.3.52).
Applying Theorem 3.3.2 we obtain v(§) = co and

t et ect ecst t
(6.1) 1 e'e’e e 1 e
v - _— = —
’ IOgA(t) 66& e5teeéteec5f ec! e&tee‘;‘

Moreover, we have ¥(d) = co and

et erst
1 e(1+2n)e e 1 et

9(5,1) - —_

log A(t)  etec’ee e=2te—2¢ e2re itget e’ e¢'  edtee’

7.

So, we have the global (in time) existence of small data solutions for
2
{:

3.4. High regular data

P ifn=1,2
p<pan(n) =72 if n>3.

VARVAY

In Sections 3.3.1 and 3.3.2 we discussed the Cauchy problem (3.1.1), that is,

{utt — () w?(t)Au + p(t)w(t)u, = |[ul?,  (t,z) € [0,00) x R™,
u(0,2) = ug(x), u(0,2) = uy(z), x € R™,
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taking the data from the energy space H' x L? with additional L™ regularity, m € [1,2),
in the case of sub-exponential and case of super-exponential propagation speed, respectively.
Therefore, in order to estimate the nonlinear term in (3.3.6) we derived for the exponent p
the conditions p > % and p < "5 if n > 3 from the applications of the classical Gagliardo-
Nirenberg inequality with the norms L™ and L2, respectively.

The goal of this section is to study again the Cauchy problem (3.1.1), but now with suitable

higher regularity for the data
(uoy ) € H” x H'™!, o e (1,1+ 7]

with an additional regularity L™, m € [1,2). In particular, by assuming higher regularity
for the data we want to weaken the condition on p from above, that is, the data will be
considered in H° x H°~!, with ¢ > 1 and additional L™ regularity.

In the present section we shall use fractional tools from Harmonic Analysis such as frac-
tional Gagliargo-Nirenberg inequality, the fractional chain rule and the fractional Leibniz
rule, which are explained in Appendix A.7. These tools play an important role to prove our
global (in time) existence results (more details can be found in [28]).

3.4.1. Case of sub-exponential propagation speed

We define the following parameters:

R oc+1 81\ 2m
= — — >
DP1.m(n) 1+( 5 2+R) - for n > 1,
) 51 2m
D =1 1— —— — f >1
D2m(n) + ( v(d) 2+ R> n orn=14
Pa.m(n)
o+1 B1 é
m 1-% 2 21Ru(0) >2m o B Qm}
;= max{ — + 2 +( 4 (1 )=
Grrar s g ()
for n>1,
where we set
ﬁm(n) ‘= max {ﬁl,m(n) ; ﬁ2,m(n) ; ﬁ3,m(n)}‘ (3'4'1)

We state the main result for the case of sub-exponential propagation speed with suitable
higher regularity of the data in the following way.

Theorem 3.4.1. Let us assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C2) and (C4) are satisfied. Let v(§) < 1 and ¥(6) < 1, where v = v(6) and 9 = 9(9)
are defined in (3.1.2) and (3.1.3), respectively. We suppose that the data (ug,u1) € D?, with
o€ (1,1+2] and m € [1,2), and that the exponent p satisfies

2
- A < y
p > max { [o]; m} and Ppp(n) <p <1+ p— if n>20. (3.4.2)
Moreover, we assume that the following condition holds:
B v(9) 9(9)
v >max§(2+ R)—%; 2— ¢, (3.4.3)
5 —3) { 0 0 }

where the parameter By is from condition (C4) and the parameter R is from (3.1.17).
Then, there exists a constant g > 0 such that for all (ug, u1) € Dy, with ||(ug, us)|lps < o,
there is a uniquely determined energy solution

u € C([0,00), H”) NC*([0,00), H'™")
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to the Cauchy problem (3.1.1).
Furthermore, there exists a constant C' > 0 such that the solution satisfies the estimates

lut Yz < O+ Br(0,5) 28w, 1) 1

DIt )], < C(1+ Ba(0,) " FF 78 (g, u) g,

ot oo < Comax {2 (14 By(0,0) FOD

>
—
~
S~—
—~
=
—~
~
N—
S~—
o
o
—~
=
—~
~
SN—
S~—
SN—
|
|3
—
e
|
vl
N~—
|
—
H,_/
—~
I
=)
<
=
S~—
9
39

1 . = o

XOFAD) (F2A) 75 g, ) g

Proof. Let us proceed analogously to the proof of Theorem 3.3.1. We introduce the family

of spaces
b X(t) = ¢ ([0, 1], H7) N C ([0, 1], ")

with the norm

)

[V E

Ju(r e = sup [(1+B0,1) ()

<r<t
+ (14 By0,n) T IDputr,
+ ®70,(0,7) e, 2 + @5 4,0, PIDI7 e, ) -
Here ¢4, = ®,,,(0,7) and &5 ,,, = ®5,,(0, 7) are defined in (3.1.13) and (3.1.15), respectively
fors=0and t =7.
We consider once again the integral operator N which is defined in (3.2.1). We know that

the space X (t) is complete. For this reason, by standard arguments the uniqueness, local and
global (in time) existence can be concluded from the following two inequalities:

INulxe £ Coll(uo,wn)llg, + Calt)]ull%. (3.4.4)
INu=Nollxey S Callu— vl (lullz, + lolld). (3.4.5)

where C(t), C2(t) — 0 when ¢t — 0 and Cy(t), Co(t) < C for all t € [0, 00).
Let us start with the proof of inequality (3.4.4). We see that, if we apply Theorem 3.1.2
for the solution

ulin(t7 .f) = Ko(t, 07 IL') *(16) u0<$) + Kl (t7 07 .%') *(’I‘) ul(x>7
of the linear Cauchy problem with vanishing right-hand side, we immediately obtain
lu™ I xco) < Il (uo, u)llpg, - (3.4.6)

In order to complete the proof of (3.4.4) let us continue with the “nonlinear part” of the
solution u, namely

t
u™(t, ) = / Ki(t, s, x) *(z) |u(s,z)|Pds
0
as in the proof of Theorem 3.3.1. For this reason we have to control the norms
||unl(ta')||L27 |HD’Uunl<t7’)||L27 ||U?l(t, ')HL2 and ||‘D’071u?1(t7 ')||L2'

Let us begin to estimate the norm ||| D[7u"'(t,-)||,,. We have

t
1D e < [ NDI (B0 5.2) 0 2P o
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In order to control the norm ||[D|7u™(t,-)||,, we use the (L™ NL*)— L? estimates if s € [0, 5t]

and L? — L? estimates if s € [dt,t] from Theorem 3.1.1. Therefore, we have the following
estimate:

ds

Il 5 [ 3 B ) D

"A(s)
st A(s)

Now we have to estimate the following norms:

| ~
L™NL2NHe—1

o [ 204 By (5,6) 7 s, P ds:

H|u(s )|? and H]u(s )|?

[leaCs, ) Il

17l I
) Lm? fo-1°

For the first two norms, by using the classical Gagliardo-Nirenberg inequality we obtain

(s, VP = s, ) om S ||1DI7uls ||p9 7y (s, ) [5G0 ),

Jlus = lluls, Ve S N1DI7uCs, ) [l \p““gf’”

) ’pHL2
where 0, (mp) = 2 (5—5) € [0,1] and 6,(2p) = 2(5—3,) € [0,1]. Thus, we get the following
conditions for the exponent p:

2

%Sp if n <20,
<p

m

7% +277ln
u(s, Nime < (14 Bx(0,5)) " lul% ), (3.4.7)
lu(s, Mo S (14 BA(0,8)) 7" flul%. (3.4.8)

Now we want to estimate the norm |[||u(s Using the fractional chain rule from

Proposition A.7.7, we get

’ ')|pHH071'

[1D17 fuls, )]l o S s, Iz 1D uls, )|, for p> o =11,

with ) ) )
p p—
+ —=_. 3.4.9
a1 q2 2 ( )
We can estimate the two norms that appear on the right-hand side of the previous inequality
by using the classical (cf. Corollary A.1.3) and fractional Gagliardo-Nirenberg inequality (cf.

Corollary A.7.3), respectively. Therefore, we obtain

s, My S M1, D" e, "
< (1+BA(O s)) " 2'“||u||x5>,
DI (s, | < [1DI7s, )7 s, 1)
5(1+BA(0,3))_7+%_ HUHX@%

where 0, (q1) = 2(3 — ql) 0,1] and 0,1, (q2) = 2(3 — =+ =1) € [=+,1]. Consequently,

o\2

by using (3.4.9) we get

< (1+ By (0, s))(*ﬁ+ﬁ)(p71)(1 +B,(0,5)) T Jull% )

”Ho—l ~

= (1+ By(0,s)) *

[[uCs, )"

+ -
o HuHX(b (3.4.10)
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The requirements on 6,(¢;) and 6,1 ,(g2) imply the following conditions for ¢; and g¢»:

{2§q1 if n <20, {2§q2 if n <2,

2<q <22 if n> 20, 2<qp <2 if n>2.

Then, we obtain for the sum pq;ll + q% the following restrictions:

1 .
e+ €08 if n <2,
et s et if 2 <n <20, (3.4.11)
el oy Log (=20l 4 one2 2] if > 20,

The conditions on ¢; and ¢, can be written in the following way:

L e(0,1] if n <20, L e(0,4] if n<2,
qll ) o ‘ ‘112 . . . (3412)

Since the relation q% = % — p;ll, we can write the condition on ¢; equivalently as a condition

on ¢, namely,

ie[l—g,%) if n <20,
q2
q%G[lfg,l—%Jr(%*%)p] if n > 20.

We should point out that the interval for q% is not empty, since p > 1. Hence, in order to
guarantee the existence of ¢; and ¢, it is sufficient to intersect the two intervals for ¢, to

become non-empty.
Firstly, let us consider the case n > 20. In this case, taking account of the intervals of g,

we should verify that
R N G I
Therefore, we have

1 1 p o o 1 2
S —ell-f1-4 (== thatis, 1+=-<p<1
2 ne[ 2’ n+(n 2)p}, o +n_p_ +n—2a’
o 1 11 2
p .
_ £ - _ - = < Z
1 26[2 n’Q]’ that is, 1<p_1+n
These two conditions for p imply
l<p<1+ (3.4.13)

n—20’

which is one of the assumptions of the theorem.
Now, we consider the cases 2 < n < 20 and n < 2. In these cases we should verify that

p 1 1 11 p 1 1

1-53)nlz-al #0 ad [1-55)n(ez]#e

respectively. Therefore, these two conditions are satisfied if and only if p > 1.
Consequently, there exist suitable parameters ¢; and ¢s.

Summarizing, from (3.4.7), (3.4.8) and (3.4.10), and ||u||x() < ||ullx@) for 0 < s <t we
arrive at the estimate

%t A(s _n(1_1)_e Cn.n
D0 5 il [ 5070 BaGe.) #7731 0.) 57

G

(1+ Bx(0, 3))_ﬁp+%ds.

[N

i [ S0+ Bals)”

H
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Let us consider the integral G. In this case we have

G<(1+ B,\(O,t))fg(%ié)i% /Oét [;((::)) (1 + By(0, 5))7ﬁp+ﬁds, (3.4.14)

Gl(t)

where we used (3.1.18). We have already shown in the proof of Theorem 3.2.1 that the

condition p > 1+ (1 — 2i1R)27m guarantees that the integral term A; = A;(t), which is given

in (3.2.11) and coincides with G; = G4 (t), remains bounded. For this reason, since we have
o+1 51 ) 2m S
2 2+ R

by the condition p > p; m(n) we may conclude the estimate

b1 )2m

p>1+< 2+ R) n’

1+(1—

n

G < (1+By(0,0) #F2)%, (3.4.15)

n n

>-p — 4 we have

Now we consider the integral H. Introducing as(p) :=

(1+ Bx(0,5)) " (14 By(s,8)) Fd(1 + By(s, 1))

t

_ (1+ Bx(0,5) (1 + Ba(s,1))

ot

- U/; (1+Bx(s,t))‘5+1d()/f2((i)) (14 By(0,5)) ™).

We shall distinguish between the following cases:

Case 1: —% +1 > 0. It follows

1

1< -0 14 p0,6) " + #OD (L (0,60) P (14 By(st,1) F

~N2(1) 22(6t)
t
N(S) —az(p) —£+1d(1+B>\(07 3))
1+ B, (0, 1+ By(s,t)) ?° ——————~,
¥ Jua U B0 A B D) T T
where we used Lemma 3.1.5. So, we have
(14 By(0,0) )+
p(dt) —a2(p) 2(L-1)+1
< m
S N (ot) (1 + By(0,6t)) (14 Bx(0,1))
Hy(t)
t
() —aa(p) 2(4-3)+1d(1 + BA(0,5))
+ ; )\2(8)(1+B,\(0,s)) (1+ By(0,1)) RO

Ha(t)

In order to show that H, = H,(t) and Hy, = H,(t) are uniformly bounded we suppose that
there exists a positive constant £ such that we have

1(6t) 3(3-4

g

o 1+ B0, 51)) P (1 + By (0,0)FF 7 < (14 B (0,61) ™ (3.4.16)
Employing (3.1.19), from the previous estimate we have
1(6t) —as(p)te 3 (&-1)41
1+ B 14+ B
)\2((515)( + A(Oaét)) ( + )\(Ovt))
1(6t) 2 (2 1) H1-an(p)te (A(5E)\ CGHRIa2m)+e)
< 1+ B 2Amo2 —_— = . 4.1
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Analogously as we did in the proof of Theorem 3.2.1 for deriving the decreasing behavior
of the function B, = By (t), which is given in (3.2.15), we may conclude that H,(t) < 0 by
p > P3.m(n). This gives the expected estimate for H, = H,(t). Moreover, using (3.4.16) we
obtain the desired estimate for Hy = H,y(t), as well.

Case 2: —% + 1 < 0. In this case it holds

S )/\12(( )) (1 + B\\(0, t))faz(l’) . ;(((?2) (1 —i—B)\(O,(St))ia?(p)(l +B>\(5t,t))7%+l
s —a2p —g4+1d(1+ Bx(0,s
v/ AMQ((S)) (15 Bx(0,5) ™7 (14 By(s,8)) % W

where we used again Lemma 3.1.5. Then, we have

(1+ By (0,1) 5 )5

S MQ(tt)) (14 By(0,0)) #2072
Hs(t)
") 0a(0) $(+-3)+5 AL+ Br(0,5))
+/ (s )(1+BA(0 s)) (14 Bx(0,1)) T B (0.5)

Hy(t)

Using az(p) = o (p) + 2(% — 3) we find

Hy(t) = ;‘2(( )) (1+ By(0,1)) " ®*E,

Then, we consider the monotonicity of this function as follows:

Hy(t) = (%)/(1 +B00.) " 4 (o) + 5) )\2(( )) AQ(()) (1+ By(0,) "2

i
—a1(p)+3 -1
7t)(1+BA(O,t))+(—a1 ) ]1+BA0t

IN

1 o1 A —ou(p)+2 -1
[—QiR—al(p)JrJ)\((g(lJer(O,t)) st
3

where we used condition (C4) and (3.1.17), respectively. Then, we get Hy(t) < 0 if

o . o 51 2m
—al(p)+§<0, that is, p>1—i—(2 2—|—R>

This condition holds by p > p1,.(n) and we find that Hs = H;(t) is strictly decreasing.
Similarly to H; = H;(t) and Hy = H(t), we can show that Hy = H,(¢) is uniformly bounded.

Case 3: —% + 1 =20. In this case we have

" p(s)
 Js A2(s)

p(s) e (p) t
~32gay L+ Br0:9) " log (1+ B(s. )|

5: log (1 + B,\(s,t))d()/\‘?(( )) (1 + B0, ))*az(p))
< M(s
S TN
" u(s)
5t A%(s)

_a2(p)d(1 + B)\(S,t))
1+ B,\(S,t)

(1+ Bx(0,5))

t

\/

(1+ Br(0,5)) " log (1+ Bu(s,1))

\_/

d(1+ By(0,s))

+ 1—|—B)\(O,S)

(1+ Bx(0,5)) " log (1 + By(s, 1))
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Thus, with ¢ =1 we have

(14 By(0,0)f )+

< ;((‘Z)) (14 B2(0,80) """ (1 + By(0,6)F 578 log (1 + B,(0,1))
Hs(t)
# [ e o) B0 t>>?<*-%>+uog<1+Bx<o,t>>w

Hg(t)

We want to verify that Hy = Hs(t) and Hg = Hg(t) are uniformly bounded as we did for
H1 = Hl(t) and H2 = Hg(t) For H5 = H5(t) we find
log (14 Bx(0,1)) log (1 + B,(0,1)) <

B0 S 0 By 0.00)° (L+By(0.60)" =

Ha(t) S

with an arbitrarily chosen small positive constant € and for large ¢t. Here we have used the
boundedness of H; = H,(t) which is given in (3.4.17) and I'Hospital’s rule (cf. with condition
(B4)) as follows:

lim sup log (1 + BA(0, ) < lim sup v(9.4)
t—o0 (14 B(0,0t))" ~ im0 (1+ By(0,6t))" ~

)

respectively. On the other hand, for Hs = Hg(t) using (3.4.16) and the previous estimate, we
find

—e—

Halt) < log (1+ Bx(0,1)) / (14 Bx(0,8) """ d(1 + Bx(0,5))

_log (14 B,(0,2)) log(1+B,(0,1)) <
©e(14By(0,6t)" (14 By(0,8)"

Consequently, we obtain the desired estimate

3

H < (1+B,(0,0) (548, (3.4.18)

Therefore, from (3.4.15) and (3.4.18) we arrive at the estimate

DI (1) S el (1 + Ba(0,8) HF 7%,

In the same way, following the proof of Theorem 3.3.1 one can prove

e, ) S el (1 Ba(o,1) 0
by the conditions p > p1,,(n), p > P2.m(n) and (3.4.3). Moreover, again analogously to the
proof of Theorem 3.3.1 one can also prove
A2(t) —2(L-3)1
nl 2\m 2 .
't M % el max {251+ Ba(0,0) ,
“3(m—3)1
O FA®D) (F2(Ar)) F 8

provided that the conditions p > p; ., (n), p > Psm(n) and (3.4.3) are satisfied.

Now let us continue to estimate the norm ||| D["~ u}'(t, N .- We get

DI 0 & [ DI (a9 20 s, )Py
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Proceeding in the same way as we did to estimate the norm ||[D|7u™(t,-)||,,, we obtain the
following estimate:

A(s)
A(s)

* /6t (1)2(57 t) I;Ez; H|u(8, ')|p||L2mH“—1dS’

ds

ot
DIt (¢, )], < / By (5,6) 0 (s,

Wlnzzame

where @5, = @5 ,,(s,t) and Py = Py(s,t) are defined in (3.1.15) and (3.1.16), respectively.
Summarizing, using the estimates of the norm H lu(s, ~)]”]|me20m_l from (3.4.7), (3.4.8) and
(3.4.10) with no other requirements to the admissible exponents p and ||ul|x () < ||ul|x @) for
0 < s <t we arrive at

1D ()] e < lull " (s 025 (14 By(0,5) s
t \b )2 = xw J 2,m(8, \5) A (0,
K
' A(S) 7Lp+g
P o t 14+ B, (0 P ge
+ Hu||X(t) ~/5t 2 (s, ))\(8) ( + B)(0,5)) s
L

Let us consider the integral K. In this case we have

ot A s Y
K 5 (p27m(07 t) / (8) (1 + B)\(O, S)) 2mp+2m d$7
o Als)

Kl(t)

where we used (3.1.18). From G; = G;(¢t) in (3.4.14) we may conclude that after using
D > P1.m(n) the integral Ky = K;(t) is uniformly bounded, too. Thus, we obtain

K < ®,,,(0,t). (3.4.19)

We consider now the integral L, that is,

¢ A(s —as

L= /& (I)Q(S’t)A((s))(l + Bx(0,5)) *Pds,
where a,(p) := 7=p — . We see that we have a competition between the influence on the
estimates of both components of &, = ®,(s,t) in (3.1.16) for all s € [dt,t]. Then, analogously
to the proof of Theorem 3.3.1, condition (C1) comes into play which helps to avoid some
difficulties in the treatment. That is, we are only interested in the following two cases, which
implies that we have either the first component or the second component is dominant in
O, = Dy(s,t) for all s € [dt, t]:

MN2(¢t _o—1_
Case a: Py(s,t) = (St))(l + Bi(s,t)) * ', In this case we have
p

L X /t A(s) o1

(14 Ba(s,t))” 7 ‘(14 By(0,5)) “*Pds

s
—~~
~
S—
&
>
—~
VA
S~—

o=l 1

(14 Bx(0,5)) P (1+ By(s,8)) = 'd(1+ Bx(s, 1))

|
>
o
=
o\ﬁ
=
»
~—

o—1t

_ (14 B3(0,9) " (14 B(5,1)

ot

/(: (1+ BA(S,t))fonld( /1’2((2)) (1 + B, (0, S))*az(p))‘

>
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Using Lemma 3.1.5, it holds
plt) )
A2(t) ™ A%(Y)

" p(s)
5t A2(s)

(1+ Bx(0,8)) " — ;(gs )) (11 Ba(0,6))" (1 + By(ot, )~

_l’_

Then, we have

t n(l_1)yo—t
p() (1+B)\(O,t))2(m 2)+ 3 +1L

A2(t)
< 52((?)( + B,(0, t)) 2(E %)+ +1—az(p)
L1(t)
" s fz& )> (14 Br(0,5)) " (1+ BA(o,t))3<ﬂ;)+fy+1W

Lo (t)

We begin with L; = Ly (¢). Using aa(p) = o (p) + 2(+ — 1) we have

m 2

Ly(t) := ;(ft))(1+B)\(O )T

If we take the derivative of this function, then it follows

1) = () 1+ B0.0) 7 (TR o) 5 S 0+ ma0) T
p(t)

[ N ()(1+BA(Ot))+<7
)

<[_ B o+1
- 2+ R 2

- oa(p)} —t(l + B\(0, t))%l‘“l(’”).

We get L (t) < 0, namely, L, = L,(t) is decreasing if

_ b1 oc+1
2+ R 2
which can be concluded from p > p;,,(n).

Let us continue now with Ly = Lo(t). We choose an arbitrarily small positive constant e
such that it holds

- al(p) < 07

5t —Q n(l1 __1 o—1 e

Q$U+&@M)@ﬁ+&@m*”””“gu+&@m)_
Using (3.1.19) we find
(ot —aa(p)te n(1l_1)yo=1
(( ))( —|—B)\(0 5t)) (p)+ (1—|—B)\(O,t))2(m 2)+ 5 +1
p(t) 2(L-3)+ 252 +1-as(p)+e (A(1)\ CHD(—ez(p)te)
< 1+ B " — = .
< xe(eny L B0:0) () £a(t)

From p > fis,(n) we may conclude that £,(t) < 0 following the same considerations we
have done for H; = H;(t) and Hy = H,(t). Then, this gives the uniformly boundedness of
Ly = Ly(t). Therefore, we obtain

N*(1)
~ p(t)

w3

Grmd)== 1, (3.4.20)

(1 + B,\(0, t))_
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Case b: ®y(s,t) = )\(t)F(A(t))(FQ(A(t)))_UT_l. In this case we have

L= )\(t)F(A(t))(FQ(A(t)))—”T’I—l : /;((:‘i ( +BA(O’S))—az(p)ds
— MOF(A0)(F* (A1) T : )\2(('1)) (14 Bx(0,5)) P d(1+ Bx(0, 5)).

Following the the proof of Theorem 3.3.1 in both cases, namely Case b.1: ay(p) > 1 and
Case b.2: as(p) < 1, we find the desired estimates with the conditions p > Pim(n) and

p>1+(1- %%) 2;” Moreover, by the condition (3.3.2) it holds ﬁ > 219 ©) which
gives the desired estimate in the Case .3 : ay(p) = 1. Hence, we get ;
L < AOF(A®) (F2(A)) F) = (3.4.21)

Consequently, the estimates (3.4.20) and (3.4.21) yield

A*(t)

~5(%-3)-% 1,
0 (1+ Bx(0,1)) :

DI ()] < lllpy e {

All together yields
le xS lull (3.4.22)

From (3.4.6) and (3.4.22), we get (3.4.4).
To prove (3.4.5) let us firstly recall

t
¥ = Nollsey = || [ Bits.) 50 (uts ) = fo(s. ) ds |

X(t)

We only show how to estimate the norm |||D|?(Nu — Nv)(t,-)||,,. In the same way we
estimate the other terms appearing in the norm ||[Nu — Nv|| x(). It holds

101 [ Katt0) 20 G, ) = ot s

”L nAL2NHo—1

< [N 1) D g —

o Als)
' (3) -z v )
+ st A(s) (L4 Ba(s,t) *[[luls, 2) [ = Jo(s, 2) || Lo,y ds- (3.4.23)

By Holder’s inequality we conclude for & = m, 2 the estimates

[lu(s, )P = [o(s, Wl S Hluls, ) = v, llew (luls, Mg + lvls, 7))

We apply the classical Gagliardo-Nirenberg inequality to the following terms:

[u(s,-) = vls, ew,  us, )l and flo(s, )|z

Summarizing, we arrive at the following inequalities for ||u(s, ) — v(s,)||zrs:

H”U,(S,')|p— ‘U(S,')|pHL2 5 (1+BA(O>3)) it %HU_UHX S)(H“HX(&) + H’U’X(s))
(s, )7 = Jols | S (14 Ba(0,9) 2 u — vl gy (lulliecdy + ol
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By using the integral

Let us turn now to the estimate of the norm ||[u(s, -)[* —|v(s,)[?|| ;. _.-

representation

lu(s, )P — |v(s,z)|P —/0 %|wu(s,x) + (1 —w)v(s,2)["dw

= [ (o) = v(s,0) Gl ) + (1 = w)os, ),

where G(u) = u|u|P~2, we obtain

1
It =l Pl oS I ((uts,) = (s, ) G lwnts. ) + (1= who(s, ) | .
Using the fractional Leibniz rule from Proposition A.7.3 we can proceed as follows:
H ’U(S, )|p - "U(S, '>‘pHH0—1
1
S Dl = w(os D, [ Gt + (0 ol )
1
+ [Ju(s,-) —v(s, )| L /0 H\D]”_lG(wu(s, )+ (1 —w)u(s, )) HL,.4dw
S ID1 (uls, ) = 0, Doy (Nl Ml + o, ko)
1
Hluts) = o5, [ NIDF G wuls, ) + (1= who(s. ) dw, (3.424)
where 2 5= = —|— === —|— —. Employing the fractional Gargliardo-Nirenberg inequality from
Corollary A'7.3 e get
o— 05 —1,05(T1 1-05_1,6(r1
D17 (u(s, ) = v(s, )| 1oy S s, ) = v(s, )57 fuls, ) = w(s, )"
< (14 By(0,5)) 2 7% Hu—vHX () (3.4.25)
O, (T2 T2
s, )| praw—n S fJuls, )52 )HU( S FF
< (LB (0,9) T o, (3.4.26)
where 0,1 ,(r1) = (3 — —+o) € [2=1,1] and 0, (r2(p—1)) = 2(3 — 7‘2(1}71)) € [0,1]. For
the choices of r; and r; we have the following conditions:
LS%, igpgl if n <2,
1 1 1 " "
—+—=5 and {Z2<l<d Lcrpd if 2<n <20,
r r 1 T1 T2
b R L, 2 p-1) <A< if n> 2

We can see immediately that we can repeat exactly the same arguments as we did for ¢; and
g2 in (3.4.12), choosing % instead of q% and i instead of pq;ll. Therefore, we get again the
condition (3.4.13).
After getting (3.4.25) and (3.4.26) we may conclude the estimate

1217 (s, =, ) |y (s M s + e, )5 )

S (14 By(0,8) 7T lu— vl (Jull%ed + ol%).

Now we turn to estimate the remaining terms, that is, the second summand of the last
inequality in (3.4.24). For the first term of this summand applying the classical Gagliardo-
Nirenberg inequality we get the estimate

(s, ) = v(s, )| S Iluls,) = v(s, )5 uls, ) —v(s, )= ")
S (14 Ba(0,5)) 7 75 [lu — vl x(0)s (3.4.27)
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where 0,(r3) = 2(5 — —) [0,1]. On the other hand, let us devote to estimate the second

term. Using the fractional chain rule from Proposition A.7.7 for p —1 > [0 — 1| we obtain
the estimate

[I1DI771G (wu(s, ) + (1 = w)o(s, ) .,
S Jlwa(s, ) + (1= w)o(s, )| |7 (wu(s, ) + (1= w)o(s, )]

where = == 2 4 Ti For the first term on the right-hand side of the last inequality, after
using the classical daghardo—Nlrenberg inequality we find
p—2

ku(s, )+ (1 —w)v(s, )} -
< JJwuls, <) + (1= w)o(s, )| %2 fwals, -) + (1 = wo(s, )| 5 27070

L76?

He L2
< (14 Ba(0,9)) 7y - (1 — w2
where 0,(r5) = 2(3 — Ts) [0,1]. Moreover, for the second term applying the fractional

Gagliardo-Nirenberg inequality, we may conclude the estimate

11D17 (wuls, ) + (1 —w >(Sv'))’m
S ||wu(57') || o 1a(rﬁ)ku(s,‘) ||1 0o—1,0(r6)

< (14 By(0, s))iijLWi ||wu + (1 —w)v

HX(s)’
where 0, 1,(rg) = 2(3 — L + ==1) € [2=L1].

o\2 n o

Consequently, from the "fast two estimates we arrive at the estimate

IIDI7~1G (wuls, ) + (1 = w)v(s, ).,

< (14 By(0, ) F I TE OISR 4 (1 w)v.
= (1+ B.\(0, s))*ﬁ(mﬂﬁ*% |wu + (1 - w)v||§;(8). (3.4.28)

Now we should verify that we can choose in a suitable way all parameters r3, 74, r5 and
re such that 6,(r3), 0,(rs5) and 6,_1 ,(r¢) are in a suitable ranges and the conditions
1 1 1 p—2 1 1

—+ —=_- and 4+ —=—
r3s Ty 2 Ts r6 T4

are fulfilled.
Let us begin with the parameters r3 and r,. From the conditions of 6,(r;) € [0,1] and

using i = % — i we get the following conditions for r3 and ry:
iE(O,%] if n <20, ie [0,%) if n <20,
iG[%—%,%J if n > 20, iG[O,%] if n > 20.

Therefore, we can choose in a suitable way the parameters r3 and r,, which satisfy the
previous conditions.

Now let us continue with the parameters 5 and rg taking account of the conditions 6, (r5) €
[0,1] and 0,1 ,(r6) € [0,1]. Then, we have

{16(0,;] if n < 20, {le(o,l] if n <2,

5
Le[l-21] if n> 20, Le[i-1 1 ifn>2

Moreover, using the relation - o= =1 - 2=2 and the obtained conditions for , We can express

the cond1t1on on r¢ in the followmg}1 way “after using the condition for r5:

ie[i_%,i] if n <20,
iE [i—%,i—(%—%)(p—%] if n > 20.
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Hence, in order to ensure that we get a non-empty range for the parameters r5 and rg we will
consider the following cases:

Case 1: n > 20 : For choosing in a suitable way r5 and r¢ we require

b ol -2 (- Do

or equivalently

1 1 o 1 1 p-—1

—el(==2)p-2)+=-—- =]

7"46[(2 n)(p )+2 n 2 }
Thus, we get a second condition for r4. Therefore, ensuring a non-empty range for r,, we get
on the one hand, the possibility to find a suitable r3 and, on the other hand, we guarantee
the possibility to choose in a suitable way rg, and in turn, r5. So, a non-empty range for ry4
is given in the following way:

b2 (- e+ 5125 0

Lol 252200

or equivalently, since p > 2 we can write

T4

-2 0 ) 0
which is equivalent to p > 1.

Case 3: n < 2 : In this case we should guarantee that the range for r4 is not empty, that is,

(.20l -2 ] #o

1 -1
T4 (O 2 }’
which implies p > 1.
Consequently, as in the paper [28] we show that the condition (3.4.13) is not only a
sufficient condition but also a necessary condition for a suitable choice of these parameters.

or, in an equivalent way

Now, using the estimates from (3.4.27) and (3.4.28) we arrive at the estimate
(s, ) — v, Ml oas [1DI71G (wuls, ) + (1 — w)o(s, )]
S (14 Bx(0,8) "7 flu— vl x (o) Jwu + (1 — w)o]|

L4
p—1
X(s)

Thus, we obtain
(s, )P = (s, )P as N/ (1+ By (0, s))*#“%*%uu = vl o+ (1= w)o[} | dw

1
2711. +4
S [ B0 v (Rl + ol e

S(1+ By (0,8) 5T lu — vl (ul5 + [0l1%d)-
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Taking account of (3.4.23) and ||u||xs) < ||ullx@) with 0 <'s < ¢, we find

t
1217 [ 1tt5.2) 0 (futs )l = ot < il + ol = vl

" A(s) ~#(2-4)-% RS
X (/0 ) (1+ Ba(s,t)) (1+ Bx(0,5)) ds

P A(s) —g —pt2
+ (14 Ba(s,t)) > (1+ Bx(0,s)) ds |.
st A(8)
Following the same steps to estimate the term |||D[7u® (¢, )| ,2» We can immediately conclude
[1DI”(Nu — Nu)(t,)]|,. < (1+BA(0,t))7(T§)7Hu—v||x<t>(||UHX<t) +lvle)-

In the same way, with no other requirements to the range of admissible exponents p one can
derive

H(Nu—Nv)(t,-)HLz IS (1+B>\(0 t))ig(iii)uu_”HX(")(Hu’X(t + v ‘X(t))
10:(Nu = No)(t, )| . S @rm(0,)][u = ollxery ([l + ol
[IDI7 1 0:(Nu — No)(t,-)]| ;. S Pom(0,)[|u — UHX(t)(HU|!§<(t1) +lvle)

where @, ,, = ®,,,(0,¢) and ®,,,, = ®;,,(0,¢) are defined in (3.1.13) and (3.1.15) for 7 = ¢,
respectively. The proof is completed if we replace all these estimates into the definition of
the norm of the solution space X (t) to get (3.4.5). O

3.4.2. Case of super-exponential propagation speed

Now we will consider the case of super-exponential propagation speed with suitable higher
regularity of the data and additional L™ regularity, m € [1,2), similarly as in the previous
section. We have the following statement.

Theorem 3.4.2. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C3) and (C4) hold. Let v(§) = oo and ¥(§) = oo and the following condition for the
functions v = v(0,t) and ¥ = 9(0,t) (see (3.1.2) and (3.1.3)) hold:

max {v(6,t); 9(6,t)} = o(log A(t)). (3.4.29)

We consider the data (ug,u;) € DS, with o € (1,1+ 2] and m € [1,2), and that the exponent
p satisfies

2 2
p>max{[a];—} and p<1+
m n—

if n>20. (3.4.30)

Then, there exists a constant g > 0 such that for all (ug,uy) € Dy, with ||(uo, u1)|lps < €0
there is a uniquely determined energy solution

u € C([0,00), H”) NC*([0,00), H'™")

to the Cauchy problem (3.1.1).
Furthermore, there exists a constant C > 0 such that the solution satisfies the following
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estimates:
lut, )22 < C(1+ Bx0,6) ) g, 1) g
IDIu(t, ), < C(1+ Ba(0,) 2875 (g, uy)||pg .

1 1

e (2, )llz= < C'max{)l\o ((t’;) (14 By(0,1) HEHL

AOFAO)FA0) D (g, ) oy,
A2(t) (1 _i_B/\(O’t))—E(%—%)—"T_l—l’

||‘D’071ut(t7 ')HL2 < CmaX{

XOFAO) (FA0) D7 g, 1) g

Proof. We proceed analogously to the proof of Theorem 3.4.1. We introduce in the same way
the space of solutions X (t) by

X(t)=c([o,t],H") nc*([o,¢], H )

and its norm ||u||x() as follows:
HU(T, ')HX(t) = sup [(1 + B/\(OvT))i(;_E) HU(T, ')HL2
0<r<t

+ (14 B2(0,7) F D D, )
27, (0,7l (r, )22 + @35, 0. DIDI ()] .

Here @, ,,, = ®1,,(0,7) and @5 ,,, = P, ,,(0, 7) are defined in (3.1.13) and (3.1.15), respectively
fors=0and t=rT.
Our aim is again to prove the following two inequalities:

[INullx@ey < ll(uo,us)llog, + llullk ), (3.4.31)
INu—Novlxey S llu—ollxelulie +lvike)- (3.4.32)

Let us begin to the proof of inequality (3.4.31). By Theorem 3.1.2 it is clear that
W™ x )y = || Ko (¢, 0, ) *(zy wo(x) + Ki(t,0,2) %) ui(x)]| x) S || (o, wr) || pe. (3.4.33)

To complete the proof of (3.4.31) it remains to estimate the integral term

t
u™(t,z) = / Ki(t,s,x) *() |u(s,z)|Pds
0
as in the proof of Theorem 3.3.2. Therefore, we consider the following norms:
||unl(t7’)||L27 H|D’0unl(t7‘)||L27 Huirtll(tv ')HLQ and |||D|071U?1(t, ')HLQ'

We start to estimate the norm |||D|7u"(t, ')HLz' As we derived in the proof of Theorem
3.4.1 employing fractional chain rule (cf. Proposition A.7.7) and the fractional Gagliardo-
Nirenberg inequality (cf. Corollary A.7.3), respectively, we may conclude the estimate

l1Drrwre, )l < ||u||§<<t)/o 28(1 + Ba(s, 1) FO

n

)-% (1+ Bx(0, s))im“ﬁds

3
N

G

[N

» L A(s) - —oapth
+ ”U'HX(t) (1+B>\(S7t>) (1+B>\(07 5)) ds
ot

A(s)

H
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with the same requirements to the admissible exponent p

2
l<p<1l+ and p>[o—1].
n—
Similarly as we did in the proof of Theorems 3.2.2 and 3.3.2, now we want to estimate
the integrals G and H by using the estimates for B)(s,t) from Lemma 3.1.4 by the aid of
condition (C3).
Firstly, let us consider the integral G. It holds

G < (14 By(0,0) (7 3)% /O‘” /A\((j)) (1+ Ba(0,5) """ " ds,

G1(t)

where we used (3.1.21). We have shown in the proof of Theorem 3.2.2 that the integral
Ay = Aq(t) in (3.2.26), which coincides with G; = G4(t), is bounded for large time ¢ in the
cases a;(p) # 1 and ay(p) = 1, respectively. Therefore, we may conclude the estimate

G < (1+By(0,0) #F3)%, (3.4.34)
Next, we consider the integral H. Defining ay(p) = 5%p — % it yields
" u(s) —az(p) -4
H = () (1+ Bx(0,9)) (1+ Bx(s,t)) *d(1+ Bx(s,t))
5t
= —1 pls) (14 Bx(0,s)) « p)(l—i-B,\(s ) 41|’
1— % A%(s) ’ 5t
st [ B (A 1 0, ) ).
</, X2(s)
We will distinguish between the following cases:
Case 1: —% + 1> 0. It yields
—a 6t —ao -z
H< - ;‘2(( )) (14 Br(0,8)) """ + ;((52) (14 B (0,6) " (1 + B\ (5t,1)) "

_z41d(1+4 By(0,9))
1+ B)\(O, 8)

" p(s) —aa(p)
(s )(1—|—B,\(0 ) (14 Bx(s,t))

where we used Lemma 3.1.5. Then, it follows

+

2(L-1)+ d(1+ By(0,s))
1+ By(0, s)

+ t“(>(1+BA(0 ) (14 By(0.1))

Hy(t)

In order to derive the desired estimate for H we suppose that there exists a positive constant
€ such that it holds

()
\2(61)

—az(p) —€

[NE

(14 B3(0,0) * 5D < (14 By(0,01))

(1+ Byx(0,4t))
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Then, from the previous estimate it is sufficient to consider the monotonicity of the function

¥ 1(01) —az(p)+e 2(L- )+1
t) = 1+ B ot 1+ B,(0,t

o) = A0 (14 30.00) (14 By0,0)

From (3.2.30) we can see immediately that 7,(t) < 0 by the condition (3.4.29). This gives

that H; = H,(t) and Hy = H,(t) are both uniformly bounded. For this reason we obtain

(3.4.35)

H < (14 By(0,1) (#7375,
Case 2: —% + 1< 0. It holds

1

HS d ) (1+BA(0 1) _ ;((i)) (14 Ba(0,80) % (1 + By(ot, 1) "%

_z41d(1+4 BA(0,5))

(1+ Bx(0,) " (1 + Ba(s,1)) o B05]

)\2

where again we used Lemma 3.1.5. Then, we get

(1+ By (0,1) 57+

1

. " p(s) (1 + By(0, ))7a2(p)(1+BA(0’t))%(m 1)+ ’w

5t A2(s) 1+ B,(0,5)
H4(t)
For Hy = Hs(t), using az(p) = ou(p) + 2(% — 3) we find
— t —a Z
Hy(t) = "Q(t))(1+BA(o,t)) P2

Then, it follows

Hy(t) = ( p(t) )(1 + BA(()’t))*al(pH% n (_ ar(p) + E) w(t) N2(¢) (1+ BA(O’t))fal(pH%ﬂ

A%(t) 27 22(t) p(t)
[ By ()( )()(H—BA(O t))+(—al(p)+;)ﬁé;)}(1+BA(0,75))‘“1(””3‘1
<|-= b 1ogA()—al(p)+ZR(“))(1+BA(0,75))‘“1(””‘5‘1,

where we used condition (C4) and (3.1.20), respectively. Then, for large time ¢ we obtain
H,(t) < 0. As for H, = H,(t), we may conclude the desired estimates similarly to H, = H, (t)
and H, = H,(t). Hence, we arrive at the desired estimate

—g
2

H < (1+B,(0,6) %)

Case 3: —% + 1 =0. In this case we have

H- [ ;\(( ; (1+ By(s,8)) " (1 4 Bx(0,5)) *Pds
" p(s) ~as(p) A(1 + Bx(s,1))

st A2(s )(1 + B, (0, )) 1 —f—Bi,\(s,t)

= ;(( )) (14 Bx(0, ))_am)) log (14 Bx(s,t)) :t

+ /5t log (1 + BA(S,t))d()/\J'Q((‘Z)) (1 + B}\(()’ S))*az(P))‘
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Applying Lemma 3.1.5 and since § = 1 we have

ot s n(l_1
< Af((;)) (1+ BA(0,60) ™ (1 + By(0,6) * 578 10g (1 4 By(0,1))
Hs(t)
t
p(s) ~aa(p) 3(%-3)+1 d(1+ BA(0, )
1+ B, (0, 1+ B,(0,t log (1 + B)(0,t)) ———————
I 32(s )( + Bx(0,5)) (1+ Bx(0,1)) og ( A(0,1)) T B (0,5)
Hg(t)
For the boundedness of H; = H;(t) we have
) log (14 BA(0,1)) - log (1 + By(0, ¢
fiy(r) = BB D) g ) s L BOD)

(1+ By(0,4t))° (1+Bx(0,61))" ~

for a positive constant € > 1 and for large time ¢. Here we have used the boundedness of
M, = H:(t) which is given in (3.4.35) and I'Hospital’s rule (cf. condition (B4)) for

lim sup log (14 B\(0, t)e) . A(t)(/t\)(t)
t-00 (14 Ba(0,0t))" =27 e5(1 4 By (0,1)) 2080 (1 4 By (0, )
o NGIAY)
O o AQY) X80.6(61) (1 + Bal0,58))
< lggo sup Al A@Y) ! ! <1. (3.4.36)

A() A00) SO0 og A (1 + By (0,50))
On the other hand, for Hs = Hg(t) after using H, = H,(¢) and (3.4.36), respectively, we have

Hy(t) < log (1 + By (0, )/ (14 B(0,5)) " d(1+ By(0,5))

_ log (1+Bx(0,)) log(1+ B(0,1)) -
(14 B:(0,60)°  e(1+Bx(0,0)" ~

Therefore, we obtain the desired estimate

H < (1+ B, (0,8) #5578
Taking into consideration the derived estimates for G and H we arrive at

(%-1)-

3

N
SIS

IIDI7a(t, ) 12 < lulliq (1+ Ba(0,8)
In the same way, following the proof of Theorem 3.3.2 one can prove

nl

a8, )] S Nl (1 + Ba(0,8) "2 (%),

||U?1(t,~)||L2 S ||U|\§((t) max{/\pit)(l + B (0,1)) %(#—%)—1;)\(t)F(A(t))(FZ(A(t)))_%(#_%)_l}-

Now let us continue with the estimate of the norm ||| D["~ u}'(t,- [

with no other requirements to the

Proceeding in the

same way as we did to estimate the norm ||| D|7u"(¢, -) ||L2
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admissible exponents p we have the following estimate:

ot A Cm o
1D % ol [ BT (14 Ba0,9) 7 s

0
K
t A(S) — s pt+
p @ t 1 B 2m 4 .
e [ a0 55 (04 B0.9) " s
L

Here ®,,, = ®5,,(s,t) and ®3 = Py(s,t) are defined in (3.1.15) and (3.1.16), respectively.
Firstly, we consider the integral K. We have

ot A o
K /S (I)Z,M(Ovt) / (S) (1 + B}\(O, S)) 3m Pt 3m dS,
0 )\(S)

Ki(t)

where we used (3.1.21) to By(s,t). We have shown in the proof of Theorem 3.2.2 that the
function A, = A,(t) in (3.2.26), which coincides with K, = K,(t), is bounded for large ¢.
Thus, we have

K < ®5,,(0,1). (3.4.37)

n

Now we consider the integral L. Defining a;(p) := 5%p — %, we restrict our considerations
to the following two cases only, for all s € [§t,t] by condition (C1), as we did in the proof of
Theorem 3.3.2.

Case a: o(s,1) = A:((f)) (1+ Bx(s,4)) "7 . In this case we have
= A%(t) (" A(s) s -1 s —az(p) s
L= 07 3w (0 B 0) T 1 B0, )

N [ ) )02 e .
0 /6t A2(s) (14 Bx(0,5)) (14 Ba(s,1)) d(1+ By(s,t))
2 A2(t) p(s) . —as(p) . _ooyt

= T 0 (14 Bx(0,s)) (14 By(s,1)) )

2 A\(t)

/; (14 By(s.0)) " d 4O (14 By )

After using Lemma 3.1.5 it follows

p(t) p(t)
()~ N o)

t

—ax(p)  p(02) —as(p) ES]
(1) (14 Bx(0,01)) (14 By(3t,1))

(1 + BA(Ov t))

_e1d(1+ By(0,9))
1+ B)\(O, 8)

1(s) (1+ Br(0,5) " (14 By(s,1))

+
st A%(s)

So, we have

A%(1)
u(t) 2(L-3)++1-2(p)
< 2 m 2 2
S %m (1+ By(0,1))
il(t)
t
uls) ~as(p) s(-1)+srtn AL+ B0, 9))
1+B 1+ B S A
+ ; A2(8)( + B1\(0, s)) (1+ Bx(0,1)) T B(0.9)

l_/Q (t)
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So, we may conclude

Li(t) = (u(t) )/(1 +BA(0,8) T 0 4 (% 1 01 (1)) ult) X(0) ) | p (o) F

2 ) 2 (1) plh)
< [~ o1+ Ba0.0) + (“‘2“—a1<p>)§(<g](1+BA<o,t>)°’“1“’)
<[ (55 - o) iy g A0+ B0 T

where we used again condition (C4) and (3.1.20), respectively. Then, for a large time ¢ we
get L (t) < 0. Therefore, this shows that L; = L;(t) is uniformly bounded. For L, = Ly(t),
we assume that there exists a constant £ > 0 such that

1(0¢)
A2(dt)

This implies to introduce
SR 1C1)

2( ) T y2
A2(dt)
Then, analogously as in the proof of Theorem 3.2.2 for deriving the decreasing behav10r of

B, = By (t) in (3.2.30), employing the condition (3.4.29) we may also conclude that £,(t) < 0.
This gives the desired estimates for L, = L,(t). Therefore, we obtain

—ax(p) 3(&-3)+2+1 —e

(l—l—BA(O,t))z(

(1+ Bx(0,0t)) < (1+ Bx(0,61))

—H+t

(1+ Bx(0,86)) P (1 1 B,(0,0)) ! 7

L 20 po) DT (3439

Consequently, in the Case a from (3.4.37) and (3.4.38) we obtain

A(1) ~3(%-4)-52-1
) (1+ Bx(0,1)) :

11Dt )] S Nl (3.4.30)

1+ B\(0, s))iw(p)ds

— MO FA®) (FXA@)7 ; ;((5)) (14 Br(0,5) P d(1 + Bx(0, 9)).

To get the desired estimate for L we follow the proof of Theorem 3.3.2 in the Case b.1:
as(p) # 1 and in the Case b.2: as(p) = 1 by using (3.4.29). Thus, we may conclude

o—1_1q

L < (O F(A®) (F2(A) D)7 (3.4.40)
Consequently, in the Case b from (3.4.37) and (3.4.40) we have
DI (1) S Tl MOPA@) (F(A(r)) D)7, (3.4.41)

Together with the estimates (3.4.39) and (3.4.41) it yields the desired estimate

1 1

DIt % Nl o {2 ) (14 B, 38775

MO F(A®) (F2(A)

[SIE
S~—

q

®| |
-

|

—
—
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Taking into consideration the norm of the solution space X (t), all together the derived esti-
mates for the norms |[u™(¢, )| zz, ||| D]7u™ (¢, )||zz, ||ul (¢, -)]|z2 and ||| D] ull(t, )||L> yield

Il (& ey < Nlulli- (3.4.42)
From (3.4.33) and (3.4.42), we get (3.4.31).

Let us consider now the estimate (3.4.32). We proceed as we did in the proof of Theorem

3.4.1. The goal is to estimate the norm |||D|”(Nu — Nv)(t,-)|,,. It holds

1017 [ Bt (uts ) = s, 0P|

< [ A0 ) D fags ) — ot 0

HmeLZ’mHo 1

~ o Als)
" A(s) s "
LG )(1+BA(s 1) uls, )| = [0(s,2)[7| 2 o ds. (3.4.43)

Employing the tools which we explained in Appendix A.7 and applied in the same way as in
the proof of Theorem 3.4.1, by the conditions

2
l<p<1l+ with n > 20 and p> [o],
n— 20

we may conclude the estimate

ipI” / Kt 5,2) o) (luls, 2)]* = lo(s,2)")ds|| | < (lulfey + [0l%) e = ollxco

" A(s) ~3(%-4)-3 Bt
‘ < /0 S (1 Bi(s.) (14 By(0, 5)) ds

"A(s)
st A(S)

Following the same steps to estimate the norm ||| D|7u"! (¢

+

(1+ B,\(s,t))_% (14 Bx(0, 5))_;”p+2ds>.

;)| .. We obtain

D] (Nu— Nv)(t,-)|| . < (14 Ba(0,4))” %(”_E)_%Hu—v||x<t>(IIUHX<t +lvll%)-

In the same way, with no other requirements to the admissible exponents p we can derive
the estimates [|(Nu — Nv)(t,-)||z2, [|0:(Nu — Nv)(t,-)||z> and |[|[D]7'0,(Nu — Nv)(t,-)]| .-
Finally, we replace all these estimates into the definition of the norm of the solutlon space
X(t) to get (3.4.32), and this concludes the proof. O

Remark 3.4.1. From the condition (3.4.2) of Theorem 3.4.1 and from condition (3.4.30) of
Theorem 3.4.2, if p € (Pﬂ, 1+ n_220] when n > 20, then this condition implies that we have

(n—20)([o] —1) < 2. Therefore, the admissible range for p is not empty for o close to 1 in

low space dimensions, whereas higher space dimensions are allowed to suppose if o close to
n

5
Remark 3.4.2. In the proof of the Theorem 3.4.1 and Theorem 3.4.2, if we choose o = 2, then
we have |||u(s, )P —|v(s, -)|PHH1. Therefore, we can easily handle this norm without using the
fractional chain rule from Proposition A.7.7. Because, in this case the differential operator
V is a local operator which appears in the proof of the Lipschitz condition. Therefore, we
avoid the lower bound [o] of the admissible range for p.

Remark 3.4.3. Our goal was to weaken the upper bound of admissible exponents p by sup-
posing a suitable higher regularity of the data. Indeed, for o > 1 we have

n
— <1+

if n > 20,
n—9 _Jln g

which clarifies the expectation.
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Remark 3.4.4 (Choice of the parameters ¢;, g and 71, - -+ , 7). One choice for the parameters
q1, g2 and r1,--- 16 in the proof of Theorem 3.4.1 may be given as follows:
2n 2n 2n 2n 1
= = T = To = —_—
G T BT Ty T Ty n—20p—1’
and
2n n 2n 2n
r3=———+—, Ty=—, I's= ———, Tg= )
T =200 ' T o " T n—20 " n—2

3.5. Large regular data

We consider once again the Cauchy problem (3.1.1), i.e.,

{utt — X2 ()w?(t) Au 4 p(t)w(t)u, = |ulP, (t,z) € [0,00) x R,
w(0,2) = ug(x), u,(0,2) = uy(x), x € R™.

In this section we discuss the global (in time) existence of small data solutions with large
regular data. In this case we suppose for the data the embedding

HO™ s [ 0>1+g.

Therefore, in order to estimate the norms |||u(s, -)\”HH(,_1 and ||u(s,-)[? — |v(s, -)]”HHU_1 we
are able to use fractional powers rules instead of fractional Leibniz rule and fractional chain
rule as we did in Theorems 3.4.1 and 3.4.2. Finally, if o > 1 + 2, then by using fractional
powers rules the condition p > [o] may be improved to p > o.

3.5.1. Case of sub-exponential propagation speed

We define the parameters pi,,,(n), p2.m(n) and ps,,(n) as we defined in Section 3.4.1, and
P (1) := max {p1,m (1) ; P2m ()5 Pam(n)}-

We have the following statement for the case of sub-exponential propagation speed.

Theorem 3.5.1. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1), (C2)
and (C4) are satisfied. Let us consider v(§) < 1 and ¥(9) < 1, where the functions v = v(0)
and ¥ = 9(0) are defined in (3.1.2) and (3.1.3), respectively. Let the data (ug,u1) € DI, with
o>1+% and m € [1,2). Moreover, we assume that the exponent p satisfies

. 2
p>pm(n) and p> max {a, E} (3.5.1)

Finally, we suppose that the following condition holds:

> max{(2+R)@; 2@},

; ; (3.5.2)

5 —2)

where By is from condition (C4) and R is from (3.1.17).
Then, there exists a constant €9 > 0 such that for all (ug,u,) € Dg, with ||(ue, u1)|ps < €0
there is a uniquely determined energy solution

u € C([O, 00), H”) N Cl([oa 00), Ho_l)

to the Cauchy problem (3.1.1).
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Furthermore, there exists a constant C > 0 such that the solution satisfies the estimates

lult, Mz < CO+ Ba(0,8) " ) g, ) g
DIt )], < C(1+ Ba(0,8) " FF 78 (g, )

[Jue(t, )22 < C’max{),\o((tt)) (1+ BA(O,t))*%(%f%)fl;

O FPAD) (F2A) D (g, )l

117 ue(t, )| L. < C'max{

AOFAO) (FA0) D7 g, 1) g

Proof. We will follow the same approach used in the proof of Theorem 3.4.1 to prove this
theorem. The definition of the evolution space X (¢) and its norm ||u||x () are just the same as
in the proof of Theorem 3.4.1. Therefore, it is sufficient to verify the follovvlng two inequalities:

INullxy S lluosw)llog, + lulg, (3.5.3)
INu=Nollxey Il vl (lul% + lol%e). (3.5.4)

To treat the “nonlinear part” we estimate on the one hand the norms
H’U(S,‘)PHL{Z and |Hu(37)’p - ‘U(S,‘)|p||Lq

with ¢ = m and ¢ = 2, as we did exactly in the proof of Theorem 3.4.1. So, from Gagliardo-
Nirenberg inequality we have the following estimates for p > 3:

luls, Wime S (14 Ba(0,8) 5 full% ), (3.5.5)
_2m +4
lu(s, Mrar < (14 Ba(0,9) 7" *lul%,,- (3.5.6)

On the other hand, we turn to estimate the norms |||u(s and |[[|u(s, )| —

a‘)|pHHo_1

(s, -)[”|| ;.. by using results on fractional powers for o — 1 > %.
Firstly, let us begin to estimate the norm |||u(s,-)|"||,,_,- We apply Corollary A.7.10

with o — 1 € (%,p) and Proposition A.7.13 with a suitable 0* < 7, from Section A.7 in the
appendix, respectively. Therefore, we obtain

(87 .)‘pHHﬂ—l 5 ||U’(87 ')HH"*l HU(S, )| ;2;1
-1
S uls, Mo (luls, Mor + luls, ) go-r)”
S ulss Mo lluls, e + lluls, I, -

Applying the fractional Gagliardo-Nirenberg inequality and using the definition of the norm
of the solution space X (t) we derive

o—1,0 1-65_1,0
(s, Yliros < s, )% lfuls, 1%
< (14 By(0,) FF T 0,
O o J
s, Mo S llals, I s, )|

L2

< +BA(0,s))’5( 7)7T||ullx<s>v

(I

where 0,_; , =1— i and 0, , = "7 Hence, by choosing the parameter o* = 7 —e < 2 with
a sufficiently small positive € we have

s, 7o S (14 By(0,5) ¥ 055200 (35.7)
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For this reason, in order to get the desired estimates from the estimate

5t A _a(1_1)_a
H’D|aun1(t,.)}|m§/o )\((z)) (14 Bi(s,t)) (1) [l )P o oo s

P A(s)
st A(s)

after taking into consideration (3.5.5), (3.5.6), (3.5.7), 0* < % and

(1+ Ba(s,6)) " [Ju(s, )7 ds

L2NHe—1 )

+

S O ST S\ WO ek N AP
om? T om T T T d T To\n T 2)P T T g P

where we choose 0* = ¢ — ¢ < § and ||ul|x() < |Jul|x@ with 0 < s < ¢, we arrive at the
estimate

o,,n o A(S) 7%(%
DI a(t, )0 < Nl / Sy (1 Balsn )

n
+ 3

*ds

N

)75 (14 By(0,5)) F

G

¢ A S _a o n n
bl [ 50+ Bals 1) F (14 Ba0,9) 7 s,
5t A(s)

H

Proceeding analogously to the proof of Theorem 3.4.1 we have

_n(l1 _1\_o ot A _n_ n_
G < (14 B(0,0) ¥ /0 /\((z)) (1+ Bx(0,5)) """ ds.

G1(t)

We may conclude by using

o+1 51 )Qm (1_ 51 >2m

e | i
5 “a+r)n U TR

o :

that Gy = Gy(t) is uniformly bounded. Therefore, with p > p;,,(n) we obtain the desired
estimate .
G < (1+By(0,0) #F2)%, (3.5.8)

n

Now, let us consider the integral H. Defining as(p) := 5%p — 4 we have (for o # 2)

e | ;((i)) (14 Bx(0,5) " (14 Ba(s,1) *d(1+ By(s,1))
_ =1 (s —o2(p) _aq)t
= To 20 (1+ Bx(0,)) (14 Ba(s,t)) )
! t g1, H(s) —az(p)
+ 1_;/& (1+ Bi(s,1)) d(A2(s) (14 Bx(0,s)) )

To get the desired estimate in this case we distinguish between the following cases and we
summarize the conditions for the exponent p from the proof of Theorem 3.4.1. Let us point
out that o > 1 + 7 leads to some conditions for the space dimension n.

e Case I: —2 +1 > 0. This case comes into play only if n = 1 and by p > ps,,(n) we
obtain the desired estimate for H.

e Case 2: 7 +1 < 0. This case appears if n > 2 and by the conditions p > p; ,,(n) and
P > P3.m(n) we get the desired estimate for H.
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o Case 3: —% + 1 = 0. Similarly, this case holds only if n = 1 and by p > ps mm(n) we
find the desired estimate for H.

Consequently, we arrive at the estimate
H < (1+By(0,1) F )%, (3.5.9)

Therefore, from (3.5.8) and (3.5.9) we have the estimate

3

11w (1) < Nl (1 + Ba(o, 1)) 050 (35.10)

To complete the proof of (3.5.3) one can prove in the same way

(8, )| o S llley (1 + Ba(0,£))~F(FH) (35.11)

by the conditions p > p1 m(n), p > P2.m(n) and (3.5.2), respectively.

Now let us continue to estimate the norm ||[D|"~'u}'(t,)||,,. We have

t
H|D’g_lu?l(t7 ')HLz 5 /O H|D|U_1(K1(tv va) *(z) |U(va)|p)HmeL2d5'
Proceeding in the same way as we did to estimate the norm |[|D[7u"'(t,-)||,, we have the

following estimate:

3 A s
||‘D|U_lu7rtﬂ(tv')”ll2 S,/ q)Q,m(Sﬂf) ( )H’u(87.)’pHLanZQHaflds
0 A(s)

t A(s)
P t [P . _.ds,

+/§t 2(85 ))\(S) H|U(S, )| HL2QH(7‘71 S
where @5, = @s,,(s,t) and $y = Py(s,t) are defined in (3.1.15) and (3.1.16), respectively.
Summarizing, using the estimates of the norm || |u(s, -)|pHmeL2mﬁlU71 from (3.5.5), (3.5.6) and
(3.5.7) with no other requirements to the admissible exponents p we arrive at

ot A o .
D1 0 % Bl | @nls (5) (14 By(0,5)) s

0
K
t A(S) — 2 pt+ 2
£ d t 1+ B,(0 it .
Hlulky [ @ale )30 (4 By0.9) s
L

In order to obtain the desired estimates for K and L we follow exactly the same considerations
from the proof of Theorem 3.4.1. Then, by the conditions p > p1 ,,,(n), p > P3.m(n) and (3.5.2)
we obtain the estimate

DI '8, )| el e {
n(l_1)_o—1_

H(72) - 1}. (3.5.12)
Moreover, analogously one can prove

" (82 S Nl maX{Apf:)) (14 By(0,7) F 87

ANOFA@)F @) T @53)
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provided that the conditions p > py (1), p > psm(n) and (3.5.2) are fulfilled.
Consequently, using the norm of the solution space X (), from (3.5.10), (3.5.11), (3.5.12)
and (3.5.13) it follows
™ xS Ml e)-

Now we want to prove (3.5.4). By the definition of the solution space X (t) and its norm
we have

s, )P = ols, )Pl e S (U4 Ba(0,9) 7 u = o] o (Jlullis ) +lvle),
[[lu(s, )" = Jv(s, I”HLm S (14 Ba(0,8) ™" u = wllx o (lull% i + 0l

On the other hand, to estimate the norm

[Tws, )P = Jo(s, )7 o

we use the integral representation

lu(s, x)|? — |v(s,z)|P = /0 %|wu(s,w) + (1 —w)v(s,2)["dw

—p [ {u(s.2) ~ v(s.0) G wu(s. ) + (1 = w)ols, ) dw,

where G(u) = u|u|P~2. Then, we have

1
s, = ot )Pl [ [IPF((uts, ) = o5, )G wuts. ) + (1= w)o(s, )| dw.
Now we apply Corollary A.7.12 in order to estimate the last statement. Therefore, we get

[[[uls, )" = Jv(s, |”||HH

< [ o) = vt e 6wt )+ 1 = wpets, )]
+ /0 |lu(s, ) — v(s, -)HLOOHG(wu(s, )+ (1 —w)u(s, -))Hm_ldw.

Employing the fractional powers rules from Corollary A.7.10 and Proposition A.7.13, respec-
tively, we obtain

|G (wu(s, ) + (1 = w)v(s, )| o

S [lwus, ) + (1= w)os, )| oo [Jwnls, ) + (1 = w)o(s, )|
S Jwu(s,-) + (1 = w)ols, )| 4.
< (s, )+ (0= wpuls ) e+ wouts, )+ (0= wpois, ) -)
< [fwu(s, ) + (1 - > : ||HU lwus, ) + (1= w)o(s, )|[5.-
+ [Jwu(s, -) + ( HHU i

To conclude the estimate for the previous statement we need the following estimates:

—amti— T

lwu(s, ) + (1 —w)v(s ||Ha L S (14 Ba(0,8) 2 ku+( )UHX(S),

wu(s, ) + (1 —w)v(s, )| g S (1+ Bx T PR D=5 P2 (1 — w)||P A
(s, ) + (1 = wyo(s, Y[42 S (14 Ba(0,5) FFEITEEDTTC (o pfh?
Therefore, we arrive at the estimates

ku(s,-)—k(l—w)v (s, ||HU .

(1_{_3/\ )) e (=1 + 5 (p—1)— T3 — 5 (p— 2)H u_|_(1—w)v||§(_(i)’

||wu )4 (1 —w)u(s,- ||2;2

(1 —w)v

lwu(s, ) M

+ (s,
< (l—l—B)\ 0, )) 2 (p—1)+ % (p—1)— <5 (p— ku—i—(l— ||X( y
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where by o* < 2 it holds

- -1 - T - 0= > =)+ S - T )

This implies
HG(wu ) (1 w)v(8>'))”Ho—1

_.l_ —
< (1 +B}\(()’8))*ﬁ(P*1)+%(P*1)*GT71*§(P*2)ku+ (1- HX( -
On the other hand, applying Proposition A.7.13 with o* < 7 we have
HG(wu(S? ) + (1 - w)v(s, )) HLoc
< [lwals,) + (1= w)o(s, |- +||wu )+ ( s

S (14 By(0,5)) #0000 0 ku+ (1-w) UH .

s (p— 1)+ % (p—1)— 5= (p—1)

+ (1 + Bx(0,5)) * [|lwu + (1 H
< (1_~_BA(078)) 2 (p—1)+2 (p—1)— % (p— 1)||wu—|— H
Consequently, we arrive at the estimates
lus,-) = v(s, Mo |G wuls, ) + (1 = w)o(s, )|
< (4 Bu0,9) T IO + (- wpo

lu(s, ) = v(s, o= [|G(wuls, ) + (1 =

w)v(s,) || o s
< (14 By(0,5)) 2 F4” -

||U—U||Xs>Hqur H

_o-1_o*
2 2

Thus, we obtain
|Hu(sa’)|p - ‘0(57 ’)|pHHU—1

_nopyng, o1 o*(, 1
S (14 Ba(0,8) P HTTIEOY [l + (1= wolil de

am Pt T - 2( 1)
S (14 By0,8) T [ i + ol

21_ 2 (p 1)

—geptip—2 - -
< (14 Bx(0,5)) lu— UHX(S)(H“H?((S) + HUH%(;))'

Taking into consideration (3.5.7), 0* = & — e < & with € > 0 and ||ux¢) < ||ul|x@ with
0 <s<twefind

i [ Ka(t.2) o (fulo. )7 — [o(s,2)P)ds]| 5 (lh + [oll50) = vl o

t A(S) ] —amP+i
) (1 Bast) (14 BA0,5) ds).

In order to conclude the proof of the estimate (3.5.4) we can follow the same steps of the
proof of (3.5.3). Hence, we arrive at the estimate

[N
M\Q

7 (1+ By(0, S))iﬁmﬁds

_l’_

1ID1 (N = No)(t )] o S (14 Ba(0,) " F 57 ol (lullfd + lol%).
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In the same way, with no other requirements to the admissible exponents p one can derive

H(NU_NU (tv HL2 S (1+Bk<07 3))7%(777)Hu_UHX(t)(HuHX(t) + HU”p 1)
[0u(Nu = No)(t, )| o S 1m0, ) lu = ol xqo (lullfs + lollke)
) S

[[DI7~ 0 (Nu = Nv)(t, )| . @2, (0, 1) = vllx oy (lullier) + 19115y

where @4 ,, = ®1,,(0,t) and D5, = @5,,(0,t) are defined in (3.1.13) and (3.1.15) for 7 = ¢,
respectively. Thus, from the definition of the norm of the solution space X (t) we may conclude
the proof of (3.5.4), which completes the proof of the theorem. O

3.5.2. Case of super-exponential propagation speed

Finally, we conclude this section with the treatment of the case of super-exponential propa-
gation speed for large regular data belonging to L*>°. For this reason, we choose the regularity
parameter o from the interval o € (1 + 3, oo). We have the following statement.

Theorem 3.5.2. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C3) and (C4) hold. Let v(0) = oo and ¥(§) = oo, where the functions v = v(J) and
¥ = 9(9) are defined in (3.1.2) and (3.1.3), respectively. Moreover, the following condition
for the functions v and ¥ holds:

max {v(6,t); 9(6,t)} = o(log A(t)). (3.5.14)

We choose the data (ug,u;) € Dy, with o > 1+ % and m € [1,2). Finally, the exponent p
satisfies p > max {o; 2 }.

Then, there exists a constant o > 0 such that for all (ug,u,) € D, with ||(ug,u1)|ps < €0
there is a uniquely determined energy solution

u € C([0,00), H”) NC*([0,00), H*™")

to the Cauchy problem (3.1.1).
Furthermore, there exists a constant C > 0 such that the solution satisfies the following
estimates:

)7 g, 1) g
DR

lu(t, )lze < C(1+ By

N\q

(0
< C(l + B, (0

D[P I(uo, ur) o,

Jue(E, )|z < C’max{);)((;)) (1+ BA(O,t))‘%(#—%)—l;

o-1_

(14 By(0,) 28,

H‘D’Uilut t, ')HL2

SC’maX{

AOFPAD) (F2 M) g, 1) g

Proof. To prove this theorem we will proceed in an analogous way as in the proofs of Theorems
3.4.2 and 3.5.1. We want to prove the following two inequalities:

[Nl x )
[Nu — Nv| x

[[(uo, u1)[|pg, + HUIIP ) (3.5.15)

Let us derive estimates of the following norms:

||unl(t7’)||L27 H|D’Uunl(t7')||L27 ||uir§ﬂ(t7 ')HLQ and ||‘D|071U?1(t, ')HLQ'

IZANR A
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We begin to estimate the norm ||[D|7u™(t,-)||,,. In the same way as we derived in the
proof of Theorem 3.5.1, employing the fractional powers rules from Corollary A.7.10 with
c—1¢ (g,p) and Proposition A.7.13 with 0* < § we obtain

at n(1l __1)_ _n n_
DIt < kB [ (14 Bst) 2D F (14 By (0,9) 0 s
o A(s)

wlQ

G

' A -Z _no,4n
+ Hu”l))((t) / (s) (1 + BA(s,t)) 2(1+ Bx(0,5)) 7Pt g
st A(s)

H

Now we want to estimate the integrals G and H, as we did in the proof of Theorem 3.4.2.

Setting a1 (p) := 7=p — 5 the integral G can be estimated as follows:

G S (14 By(0,1) *F3)73 /M As)

—ai(p)
1+ B d
. )\(S) ( + )\(O,S)) S,

G1(t)

where we used (3.1.20). We have shown in the proof of Theorem 3.2.2 that the integral
A, = Ay(t), which is defined in (3.2.26) and coincides with the integral G, = G,(t), is
bounded for large time ¢ in the cases a;(p) # 1 and «;(p) = 1, respectively. Therefore, we
may conclude the estimate

NS

G < (1+By(0,8) )%

Now we consider the integral H. Introducing a,(p) := 5=p— 7 in the case o # 2 it follows

st A*(s)
1__1(; )/:LQ((Z)) (1 + B,(0, 8)) 2() (1 + By (s, t))*%Jrl .
+q _1 z /& (1+ BA(S,t))_§+ld(§2((‘2)) (1+ By(0, S))—Oéz(P)).

To get the desired estimate for H we shall distinguish between the following cases from the
proof of Theorem 3.5.1. These cases give us some conditions for the space dimension n, since
o > 1+ %. Then, by using the condition (3.5.14) we may summarize it in the following way:

o Case 1: 7 + 1 > 0. This case comes into play only if n = 1 and we obtain the desired

estimate for H.

e Case 2: —% +1 < 0. This case appears if n > 2 and we get the desired estimate for H.

o Case 3: —2 + 1 = 0. Similarly, this case holds only if n = 1 and we find the desired

estimate for H.

Therefore, we arrive at the estimate

1

H < (1+BA(O,t))7%(’"

_l)_g2
2 2

Taking into consideration the derived estimates for G and H we get

1Dt )], S (1+ Ba(0,) FF Dy (35.17)
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Similarly, one can derive
() S (0 Ba0,0) F g, (3.5.18)

Now let us continue to estimate the norm ||| D] u}'(¢, -) Proceeding in the same way

’" HL?'

we have the following estimate:

as we did to estimate the norm ||[D|7u™(t,-)||,,

st
A iy
D] u (¢, .)HL2 < HuHﬁ((t)/O Dy (s, 1) )\((z)) (1+ By(0,9)) Pt g

St A(s)

L

Here @5, = ®5,,(s,t) and ®y = P4(s,t) are defined in (3.1.15) and (3.1.16), respectively. In
order to obtain the desired estimates for K and L we follow exactly the same considerations
from the proof of Theorem 3.5.1. Then, we obtain the estimate

D17 g ()] e S el I’“E“X{((tt))(1 T By(0,) HE T
XOFA@)(FA@) D7 35.0)

Moreover, analogously we can also prove

A2 _n(1_1)_
Hu;ﬂ(t,.)HLzA<J|]u|’)’((t)max{[)(<TT>)(1+B,\(O,7-)) 5(m—3) 1;

AP (FAE) T @5.20)

Consequently, using the norm of the solution space X (t), from (3.5.17), (3.5.18), (3.5.19)
and (3.5.20) we arrive at

™ (& ey S Null-

Let us consider now the estimate (3.5.16) analogously as we did in the proof of Theorem
3.5.1. The goal is to estimate the norm |||D|”(Nu — Nv)(t, ) ||L2. Employing the tools which
we explained in Appendix A.7 and applied in the same way as in the proof of Theorem 3.5.1

we may conclude the estimate

t
1217 [ 1tt5.2) 0t ) = o)) < il + ol = vl

" As) ~3(%-4)-3 Bt
‘ (/0 N (1 Ba(s.) (14 By (0, 5) ds

FA(s) -% —rd
+ (14 Ba(s,t)) > (1+ Bx(0,s)) ds |.
st A(8)
Following the same steps to estimate the norm |||D|7u"(t,-)|,, we obtain

[D17(Nu = Nv)(t,)|| . < (1+ Ba(0,2)) et lu = vllxe (Il + lvlq)-

In the same way, with no other requirements we can derlve the estimates for |[(Nu —
No)(t, )22, [|0:(Nu — Nv)(t,-)||z2 and ||[D]77*9,(Nu — Nv)( HL2 The proof is com-
pleted if we replace all these estimates into the definition of the norm of solution space X (¢)
to get (3.5.16). O
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4. Global in time existence results for damped
wave models with different power
nonlinearities

4.1. Introduction

In this chapter we consider the following Cauchy problem:

{utt — X2 (t)w?(t) Au + p(t)w(t)uy = f(us, |D]*u), (t,x) € [0,00) x R", (4.1.1)

w(0,2) = ug(x), u(0,2) = uy(x), r €R",

with some different power nonlinearities on the right-hand side. Our goal is to discuss again
the global (in time) existence of small data Sobolev solutions with source power nonlinearities
|u.|P and HD[“u‘p, a € (0, 1], respectively. The main approach to deal with these kind of source
terms is similar to the one we used to treat the Cauchy problem (3.1.1).

Let us recall again the following auxiliary functions from Chapter 3 under condition (C1):

o) = (01,0240,

p(t)
)\(t)F(A(t))(17’2(/\(15)))*%(i*%)71}7 (4.1'2)
o 1) = e {20 (1B O PAD) (F(A0) (1.1.3)
2m(s,1) = max { >[\)2((;)) (14Bu (s, t))‘%(%—%)—”gl '
)‘(t>F(A(t))(FQ(A(t)))’%(L*%)*‘%Iﬂ}’ L)
A2 () S

®,y(s,t) = max {

4.1.1. Philosophy of our approach

In this section, we will apply the estimates for the solutions to the family of linear parameter-
dependent Cauchy problems from Theorem 3.1.1 to prove the global (in time) existence of
small data Sobolev solutions to the semi-linear model (4.1.1). Denoting by K, = K, (t,0,x)
and K; = K,(t,0,z) the fundamental solutions to the corresponding linear equation with
vanishing right-hand side, we write the solutions in the form

u™(t, ) = Ko(t,0,2) %) to(x) + K1 (t,0,2) %) up(z).

On the other hand, applying Duhamel’s principle leads to the following formal implicit rep-
resentation of the solution to (4.1.1):

Nu(t,x) = KO(ta 07 1)) *(x) u0($) + Kl(t’o)x) *(x) Ul(l')

t
+ / Ki(t,s,2) %) f(u, |D]|*u)(s,z)ds =: u"™(t, z) + u™(t, x),
0
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where f(ug, |D|*u) = ||D|%u|”, a € (0,1] or |u,|? and K; = K,(t,s,2) is the fundamental
solution to the corresponding parameter-dependent linear Cauchy problem (3.1.4). Now we
introduce the operator N for any u € X (t) by

N:u€ X(t) = Nu= Nu(t,z) == u™(t,z) + u"(t,2),

and try to find a fixed point u = Nu of the mapping N : X(t) — X (¢). We will show that
the mapping NV satisfies the following two estimates:

[N ul| x
[Nu = Nvl[xe)

I Cao ) g, + Ilul% . (4.1.6)

IANR YA

~1 -1
lw = vllxe) (lullk ) + ol q)- (4.1.7)
These estimates indicate the existence of a unique solution of u = Nu. Therefore, to complete
the proof it remains to establish (4.1.6) and (4.1.7).

Remark 4.1.1. From the estimates in Theorem 3.1.1 and the definition of the norm in X(¢)
we may easily conclude

™ x ) S (w0, wr) | pg, -

m

For this reason, to complete the proof of (4.1.6) we need to show
lu™lx S Nl

After that we shall prove (4.1.7). Then, from the estimates of Theorem 3.1.1 it is necessary
to estimate the term |u(s,-)[? — |v(s,-)|? in L™ N L*> N H°~'. In general, straight-forward
calculations yield the desired estimate of the L™ norm and L? norm. However, to estimate
the H°~! norm we use tools from the Appendix A.7.

4.2. Semilinear damped wave models of the derivative type power
nonlinearity |u|?

We study the Cauchy problem for the following semilinear damped wave model:

(4.2.1)

{utt — XMW (t)Au + p(t)w(t)u; = |u?,  (t,x) € [0,00) X R™,
u(0,2) = ug(x), u:(0,z)=ui(z), z € R,

where (uo,u1) € Dy, with 0 > 1+ % and m € [1,2). In this case we have the embedding
H7=' — L . So, we obtain large regular solutions to (4.2.1) by using the fractional powers
rules. Let us point out that, in order to use fractional powers the condition p > o is necessary

to suppose.

The case of sub-exponential propagation speed

In this case we assume the following condition.

() AT(E)
(D1) The function () (D)

satisfies the following conditions:

18 increasing,

e there exist positive constants d; and dy such that the following inequalities hold:

gy N (u(t) A2”(t))’ u(t)  A*(t)
MDA pr(t) T \N2(E) pr(8) ) T MDA pr(t)
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Remark 4.2.1. By using conditions (A1), (C2) and (D1) we obtain the following estimate

forp>2and n > 2:
(u(t) Vp(t))’
AZ(t) pr(t)

pp=1(t)
(P = 2)A AP~ BAPH(E) + pAP”H(APTH(E) — (p— D AL APH (1)
pP=(t)
ADA() )p—l
1(t)
plt)  Nr(t)
A@A(E) pr(t)

Here we assume (p —2)A\g+p — (p — 1)y > 0 with A\g — p; + 1 > 0, which implies

Y

=((p—2X+p—(p— 1)#1)(

=((p—2)M+p—(p—1)m)

2X0 — 1

>2> —.
P Ao —p1+1

Example 4.2.1. Let us consider A(t) = (o + 1)(1 +¢)*, a > 0. Then, we get
Ay =1+t and O@) =1+, -1<y<a.

Moreover, we choose
pt) =14+t)°, a—vy<B<2a+2,

which implies
pt) = (a+ 1)1+,
where due to condition (C2) we define 8 := py(a + 1) with p; € [0,2). Then, we have

pu(t) >‘2p(t) " XD?Q(t)Ap(t) " p—2 p(2a—B+1)+8—20)
()\Q(t) pp(t)) N ( puP=L(t) ) N ((a+1) (L g)pemires )
=(a+1)P2((p—1)(2a — B+ 1) + 1) (1 + ¢)p~ ¥,

Here with 2a — f+ 1 > 0 we find

200 — 3

-1 (2a — 1 1 >0, thati >2> —
(p )((X B+ )+ 5 at 18, p 206—,8+1

Example 4.2.2. Let us choose A(t) = e'. Then, we obtain

A(t)=¢€" and O(t)=¢€", 0<r<1.
Moreover, we take
pt) =pt) ="', 1—r<p <2.
Then, we find

wu(t) N2 (t) r AP=2($)AP (1) RIS e
(m) pp<t>> B <W> = (@ VE=Y = (p— 1)(2 — )PV,

where (p —1)(2 — p1) > 0, that is, /(*2((?) ’\;p((tt)) is increasing.

The case of super-exponential propagation speed

In this case we assume the following condition.

2p
(D2) The function )'L\LQ((?) /:)p((tt)) satisfies the following conditions:

18 increasing,
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e there exist positive constants ds and dy such that the following inequalities hold:

M0N0 L) Wty s N0
MDA () log ) — W) (1) ) = “XOA®D p7(t) log AD)’

Example 4.2.3. We choose A(t) = e’e?’. Then, we have

Aty =e, Ot)=¢", 0<r<1.

Moreover, since ¢(t) = % is an increasing function from condition (C3) choosing

2¢et

pu(t) = —, a>0 we get p(t) = u(t)e' = e(1—a)t 2e’
eOt

Therefore, we find

AP ! NP2 () AP ! —24ap—a)t ! _ p—2+ap—a)t
(iﬁ) pp((lfg)> =( up(?(t)(t)) = () = -2 ap el )

p(t) NP ()

which implies the condition p — 2 + a(p — 1) > 0 to conclude that NONIO)

is increasing.

We introduce now statements for both cases for proving global (in time) existence theo-
rems.

Lemma 4.2.1. We assume that conditions (D1) and (D2) hold. Then, from Lemma 3.1.3
and Lemma 3.1.4, respectively, we have the following estimates for all s € [0,t]:

(s) A**() —aa(p)
d(;%s) sty (L1 Ba(0.5)) ) < Hls) A(s) —asp-14(1+ BA(0,5))

(]— + B/\(Ov 5))

ds ~ A2(s) pr(s) ds ’
s) AZP —aa(p)
d(;(w)) iy (14 Ba(0,) ™ ) p(s) X**(s) —ausm-14(1+ By(0, 5))
> — (1—|—B)\(0,8)) )
ds ~A2(s) pP(s) ds

where a,(p) = 35p— % +p > 0.

Now we introduce the following conditions which come into play if the second component
of the functions ®;,, = ®1,,.(s,t), &1 = P1(s,t) and Py, = Po,u(s,t), Py = Py(s,t) is
dominant.

(D3) We assume that the following estimate holds with k; > 0:

=/(t) < k:lE(t)j{((?).

Then, by using conditions (A1) and (D3) there exists a positive constant v such that

=

t)

(NP(AB)E2()) < pAAPL(E) A1) A()Z2(t) + N BE2(E) + 2k NP () A1) Z(t) G

A(t)
< (pA+ 14 2k ) NPTHOEP (1) < rAPTH()EP(2).

-

(D4) We suppose that the following estimate is satisfied:

FA®))

) A0
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4.2.1. Case of sub-exponential propagation speed

We define the following parameters:

cr+1+ d, ) 2m .mr~|—n—m}

p1(m,n,o) ::max{n+2m+( 5 P

n+2m’ n+m
AT A R IR
p2(m,n, o) = max{ + n;?z’; m 2+12% i+ < 2R M21+VR ) ’
2(n+2m) 1-— e 1— 320+ 20 V(a) n+2m’

m(n —2) 1 rm v(9) 1 m

2(n+m) +19(6)n+m+ 0 (2(m_2> +2> (2+R)n+m}’
where we set

p(m,n,o) := max {p1 (m,n,a); p2(m,n,o)}.

We have the following result in the case of sub-exponential propagation speed.

Theorem 4.2.2. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C2), (D1), (D3) and (D4) are satisfied. Let us suppose v(§) < 1 and 9(5) S 1, where the
functions v = v(d) and ¥ = 9(9) are defined in (3.1.2) and (3.1.3), respectively. Let the data
(ug,u1) € DY, with o > 1+ %, n>2 and m € [1,2). Moreover, we assume that the exponent
p satisfies p > p(m,n,o) and p > o.

Then, there exists a constant €9 > 0 such that for all (ug,u,) € DY, with ||(uo, u1)|ps < €0
there is a uniquely determined energy solution

u € C([0,00), H7) NC*([0,00), H* ")
to the Cauchy problem (4.2.1). Furthermore, the solution satisfies the estimates
gt e S (1+ Ba0,) "2 o, )

n(l_ 1\_ao
D1 u(t, e S (14 Ba0,8) ™ 578 1 (ug, ug) 1o

[ (2, )IILz

Smac{ S 04 50.0) DT A0PAO)FA0) D i, u)log,

D17 et )]l

*(t) 5 (m
Smax{ 0 (1+ Bx(0,1)) (

Proof. We introduce for all t > 0 the functions spaces

AGFA@)EA0) T g, 1) g

X(t)=c([o,t],H") nc*([o,¢], H )

with the norm

[N

)

Jutr e = s [+ Ba0,7) 5 jutr,

<<t
B %7% +3 o
+ (14 By (0,7) FF D, ),
£ 2010, g7, )z + 25 0 PIDI7 () ]
Here ®,,, = ®;,,(0,7) and ®5,, = ®1,,(0,7) are defined in (4.1.2) and (4.1.4), respectively

for s = 0 and t = 7. In order to prove (4.1.6) let us begin with the “nonlinear part” of the
solution u, namely, with

t
u(t, z) = / Ki(t,s,2) %) |u(s, x) P ds.
0
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For this reason we have to estimate the norms

H|D|Uunl(ta')HL2a Hutnl(tv')HL’z and H|D|U_1u?1(tv'HL2’

Hunl(t")HLw

Case 1: Let us assume that the first components are dominant, that is,

buns,) = 2D (14 B (5 0) F DT and @y = 20145y (5,1)) 7

=7 and ®y(s,t) =

@ (s0) = Sl (L4 Bafst)) H0F
for all ¢ > s > 0. In order to estimate the norm H|D|0unl(t, '>HL2 we use the (L™ N L?) — L2

estimates if s € [0,0t] and L? — L? estimates if s € [dt,t] from Theorem 3.1.1. Therefore, we
have the following estimate:

o, nl 5t A(S) _%(#_%)_% )
Dl 5 [ S 1+ Bal0) T "
P A(s) i T S
+ ) (14 Ba(s, 1)) |[lue(s, )P Loy o2 ds-

It remains to estimate the following norms:

(IEACARIE PR (ICD ] AT (O] s

For the first two norms, by using the fractional Gagliardo-Nirenberg inequality one can get
for p > 2 the estimates

o 0, (mp) (m
”Ut(s, ) Lmp S H|D‘ HP D H t )Hp (1—0, (mp))
)\QP( ) ~amPtam—
S s) (1+Bx<oas>) S [T (4.2.2)
o 0, (2p)
||ut(57 ) 72p H|D‘ ut )Hp P ” t( )le 65 (2p))
< )\2 ( ) 1 B 0 2mp+4 —p 42
~ pr(s) (1+Bx(0,5)) I HX() (4.2.3)

Now, we turn to estimate the norm H [ug (s, -) [P H ;-1 Dy using results on fractional powers for

o—1> %. We apply Corollary A.7.10 Wlth c—1¢€¢ (g,p) and Proposition A.7.13 with a
suitable 0* < 7, from Section A.7 in the Appendix, respectively. Therefore, we obtain

e, )| o llua (s, )17

S
S N, Mo ([l (s, )HH“*+Hut( Miro-1)"
S

e (5, )l o llue (s, MGt + (s, ) -

Applying the fractional Gagliardo-Nirenberg inequality and using the definition of the norm
of the solution space X (t), we derive

[T, )] s

-1

Oo—1,0 1-0o—1,0
[[e (s, Ml gro—1 S M, o™ Ml (s, )l 2

A2(s) —2(m—3)-%-1
< (1+ By(0,9)) (-2) [l (s),

~ p(s)

e (8, )| o S [we(s, )H “lu(s, )"0
A*(s “5(m) -
<211 B 0,5) FE DTy,

~ p(s)
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where 0,1, =1— i and 0, , = "7 Hence, by choosing the parameter o* = 7 —e¢ < 2 with
a sufficiently small positive € we have

AP (s (1 _1),_o=1_
H|ut(57')‘pHH0—1 rg pp((S)) (1+B>\(075)) 2(m 2)1’ : (P b= p” ”X(e) (424)

For this reason, in order to get the desired estimates after taking into consideration (4.2.2),
(4.2.3), (4.24), 0* < % and

where we choose 0" = 4§ —¢ < 2 and ||ul|x () < [Jul|x@ with 0 <5 <, we may conclude

H ’D|0unl(t7 ')HLz

ot A(S)/\ P(s) ~3(3-3)-% i,
1+B ) 2\ 2)72 (1L B 3m Pt am
S llull " Ms) pP(s) (1+ Ba(s,t)) (1+ Bx(0,9)) ds
M
$ -3 T A
Hlull | S (5:6) F (1+ Br(0,5)) ds.

N

Let us consider the integral M. Using (3.1.18), we have the estimate
" As) X*(s)

M < (1+ By(0,1)) f(m2)% 14 By(0,5)) **"g 425
N( + A( ) )) 0 )\(S) pp<8) ( + )\( 75)) S, ( )
]Vfl(t)
where as(p) := 5-p — 5= + p. Then, it follows
ot A2p Cas
Mi(t) = His) A7(s) (1+ Bx(0,5)) P d(1 + B,(0,5))

o A2(s) pr(s)
1 pu(s) AP(s) )o@+
= T ) ) L B0 :

IS S §)) e p(s) A (s)
1—a3(p)/o (1+B:(0,9)) d(AZ(s) pp(s))'

We consider the integral M; = M, (t) only in the case as(p) > 1. In this case it holds

1 /,L(S) A2p<8) as(p)+1 ot

Mi(t) < — s (p) N2(s) pP(s) (1+ BA(0,5))” O
: a<§>—1 /0& (14 Bx(0,) " (14 BA(0,5)) M?;i)(s) A;pé)) ds
= 1= ;3@) ;((i)) A,;p(f)) (1 + By(0,5)) " 1%
M (t)

where we used condition (D1) and (3.1.17), respectively. Thus, we obtain

) i p(0) N2(0)  p(5t) A (51)
(1= =) Y40 % 50, ) ~ ¥t

—az(p)+1

(1+ Bx(0,0t))
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We can guarantee that M; = M, (t) is bounded by

dl . d1 2m
- > 0, that is, >1+4+ .
(az(p) —1)(2 — 1) P (2—u1)n+2m
Therefore, we obtain the desired estimate
M < (14 By(0,1)) #7878, (4.2.6)

Now, let us consider the integral N. Defining a4(p) := 5%p — § + p we have

(1+ Bx(0,) P (1+ Ba(s,)) %d(1 + Ba(s, 1))

t
2+1

— s —aua(p) (s -
=120 i) (1+ Bx(0,s)) (1+ Ba(s,1))

1 —g+1 ¢ p(s) A*(s) o (p)
+ /5 (14 Bys0) (02T 14 B 09) ).

Here we consider only 1 — 2 < 0, because p > ¢ > 2 with n > 2. Then, applying Lemma
4.2.1 we have

ot

t AZP t — Qg n(Ll_1 Z
5 /’L( ) ( )(1 +B)\(0,t)) (p)+2(m 2)+2

Ni(t)
" p(s) A*(s)
st A%(s) pP(s)

—au(p n(l_1 +zd 1 B)\ O,S
(14 By(0,) ™7 (14 By(0,0)) (527 (I:Bk(((),s)))

Ng(t)

Using au(p) = as(p) + 2(+ — 3) we find

m 2

Nl(t) — ;((tt)) );:((tt)) (1 + B}\(Ojt))—as(l))"r%

In order to show that N; = N;(t) is uniformly bounded we study the monotonicity of this
function as follows:

p(t)
OO

N.(t) < [dy

- _

[ —as(p)+%-1
< ——= (14 B»\(0,t :
>~ »2 — ( + )x( ) ) )

where we used condition (D1) and (3.1.17), respectively. Then, we get N,(t) < 0 if

dl g d1 2m
+(5+ ) .
2 — 1 2 2—pw/n+2m

o
- 4+ — <0, thatis, >
Namely, by p > pi(m,n,o) we obtain that N; = N;(t) is decreasing. In order to show that
Ny = Ny(t) is uniformly bounded we suppose that there exists a positive constant e such that
we have

[~

=
=g
~
S~—
>

(6t

~—

)+

3
Wl
[ME)

(1+ Bx(0,66) ™" (1 + Br(0,)) ¥ < (1+ BA(0,6t)) ",
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Employing (3.1.19), from the previous estimate we have

=
—
=9
~
N—
>
Do
il
—
C>z
=

1

)+

A((St) ) (2+R)(—aa(p)+e)
A(?)

D=
[N

—aa(p)+

5(1+BA(0,t))%(

(1 +BA(o,t))f‘<%*%)*%*a4(’”>“( — No(1).  (4.2.7)

Analogously as we did in the proof of Theorem 3.2.1 for deriving the decreasing behavior of
the function B; = B;(t), which is given in (3.2.15), we may conclude that N, (¢) < 0 by the
condition

52 illm i <”<1 _ }) + g _ a4(p)> v(0) + a4(p)22j/i (v(6)—46) <0

which may be concluded from the condition p > py(m,n, o). All together gives the expected
estimate for Ny = N,(t). Consequently, we obtain

N < (1+By(0,) F#)%, (4.2.8)

Therefore, from (4.2.6) and (4.2.8) we arrive at the estimate

N
[

11D17u (8, ]2 S Hellegy (1 + Ba(0,8) ")

To complete the proof of (4.1.6), by using the conditions p > p;(m,n, o) and p > ps(m,n, o)
one can prove in the same way

a6, ]2 S lulley (1 + Ba(0,8) 4, (4.2.9)

7ttt )]
we obtain the following estimate:

Now let us turn to estimate the norm H|D
we did to estimate the norm ||| D[7u"!(¢

Proceeding in the same way as

7')”[)7

ds

‘) |pHL""ﬂL2ﬁHU*1

[ COR] s / A<(>) §<(>) (14 Bals, ) H DT s

2(1) A(s) ey 3
o o0 Moy T BN D)l ol

Then, using the estimates of the norm ||u,(s,-)["||, .. wmpanpe ftom (4.2.2), (4.2.3) and (4.2.4)
with no other requirements to the adnnsmble exponents p we arrive at

[1D17 g (2, ) .

e [ R AG) V() R,
~ H HX(t)/ p(t) )\(S) pp(s) (1+B>\( 7t>)

3

7%)7%171(1 + B,\(0, s))iﬁﬁﬁipds

P

' X2(E) Afs) W7 (s) ey et
e /M G iy (L Bals ) (1+ By(0,5)) ds.

R

In order to obtain the desired estimates for P and R we follow the same considerations from
the proof of Theorem 3.4.1. In this way we obtain

A2(t Cn(a_1y_o=1_1 [ A(g) \2P o
( >(1+BA(0,t)) 2(m 2) 2 1 (S) (S) (1 +B)\(0,S)) S P+ 5 —D

<
~ o(t) o Als) pP(s)
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where we used (3.1.18). From the treatment of M; = M;(t) in (4.2.5) we may conclude that
the integral P; = P;(t) is uniformly bounded, too. Thus, we obtain

1)y_o=1_1

p< A;(tt)) (1+BA(O,t))7%(%72)7 71 (4.2.11)

Now we treat the integral R as follows:

LX) [ ) V()
R=="0 Ju %) 0s)
2 () uls) M(s)

71 p(t) X2(s) p(s)

2 X oy g (1) X (s) Jp—e
e /M (1+ Bi(s,1)) d<A2()pp(s) (1+ B(0,5)) )

where ay(p) := 5%p — § + p. Using Lemma 4.2.1, it holds

2m

(14 B(0,) P (1+ Ba(s,£)) * 'd(1+ Ba(s,1))

(1+ Bx(0, 8))7044(;0)(1 + Bi(s,t)

+es141d(1+ By(0,5))
1+ B,\(O, S)

We begin to estimate R; = R;(t). Using au(p) = as(p) + 2 (£ — 1) we have

p(t) A (t)
A2(t) pr(t)

If we take the derivative of this function, then it follows

EESR
Ri(t) == (1+ By(0,)) 7 @@,

10 < a5t 0 00+ (5 50100
<[ (75 o) 3]y (4 B0.0) T
<[5 illul G ﬁ(())A >) (14 By(0,1) T .
We get R, (t) <0, that is, Ry = R(t) is decreasing, if
B) illul +2 ;L . —as(p) <0, this is equivalent to p > — +”2m (" ;L 1, . ihM)n iﬂ;m

which can be concluded from p > p;(m,n,o). Let us turn to estimate Ry = Ry(t). We choose
an arbitrarily small positive constant ¢ such that it holds

u(5t) A (5t)
X2(5t) pr(ot)

Using (3.1.19) we find

—€

(1+ Bx(0,56)) P (14 By(0,4) 2 1) < (14 B, (0, 61)

)+t 41

(1+ Bx(0,86)) (1 1 By(0,0)) F (7

3(3-3) 5 1 autorie (A(BE)| CHR)+9)
)21 o ( ) — Ra(t).

A(t)
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Analogously as we did in the proof of Theorem 3.2.1 for deriving the decreasing behavior of
the function B; = B (t), which is given in (3.2.15), we may conclude that R,(t) < 0 by

2 (G 2) T ) 0 ey e -0 <o

which is concluded by p > p,(m,n, o) and this gives the uniformly boundedness of Ry = Ry(t).
Therefore, we obtain

A2 (t _n(i_1)_e-1_
R )(1+Bx(0,t)) Hmd)-e (4.2.12)
p(t)
Consequently, the estimates (4.2.11) and (4.2.12) imply
o— n )\2(t) -3 %_% _UTl—l
1110 ) 5 il Sy 0+ Bao,y) #0572

Similarly, one can also prove
A%(t)

Hu?(’ )HL?NH Hp ()

Now we want to prove (4.1.7) in the Case 1. By the definition of the solution space X ()
and its norm we have

[NE

(541

(14 B\(0,t))

A\2P(s _nogin_
s 3P = Pl s 5 55 (( ))(1+BA<0 ) I~ oy (lullZd + 3,
P p )‘QP( ) — 5P tae
o O = s, P S 250+ B 09) Pl — vlxeo (all52 + ol

On the other hand, to estimate the norm |||u(s, )" — |v.(s
representation

s,-)|"|| ;.. we use the integral

1
d
lug (s, )P — |ve(s, )P = / %|wut(s,$) +(1- w)vt(s,x)‘pdw
0

1
= p/ (ue(s,z) — ve(s,2)) G (wu,(s, ) + (1 — w)ve(s, z))dw,
0
where G(u) = u|u¢[P~2. Then, we have

[Tue (s, )7 = Jve(s, P[] o

1
S /0 H’D|U—1<(Ut(5, ) = vi(s, )G (wug(s, -) + (1 — w)vy(s, )))‘
Now we apply Corollary A.7.12 in order to estimate the last integral. Then, we get

H|Ut P = Jvi(s, )P HHU 1

< / le(5, ) = w15, ) Lo |G (w5, ) + (1 = wvi(s, )| duo

dw.

L2

+ / o5, ) = ve(5, Ml || G (wrn(s, ) + (1 — wyo(5,)) | o

Employing the fractional powers rules from Corollary A.7.10 and Proposition A.7.13, respec-
tively, we obtain
||G(“’Ut(5» )+ (1 —w)v(s, ‘)) ||Ho—1
5 ‘|wut(57 - w)vt S, )”HU 1 kut(sv ) + (1 - ’LU)Ut(S, )Hi;

(1
(1 —w)v(s,
(

Mo

s (JJwa(s, ) + (1= w)ons, ) goe + s ) + (1= who(s M)
+(1- ) )HHU . kut(s, )+ (1 —w)v(s, )HZ?

+ [|wu (s, ) + (1

)+
< ||wut(s, )+
(
)

/S kut(sa

O] e
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To derive a suitable estimate for the last norm we apply the following estimates:

kut )+ (1 —w)v, ")Hma

<A%)@+BAOQY4+Tﬁ"ﬂWu+O wyl|
~ p(S) ’ X’
[wue(s, ) + 1
AP 2)( ) 3 (=24 3 (p-2)~ 5 (r-2)~(p—2) -2
5 W(l—i—B)\(O,S)) b b b b ku—i‘(l—W)UHi( )

Therefore, we arrive at the estimates

wiee(s, ) + (1= w)vi(s, )| oo [[wre(s, ) + (1 = w)ve(s, )| pon

AZP_l) _n (. oy 1)—o=l_ o o\ _(p_
< T(S)(lJrBA(O,s)) (= D)+ 2 (p—1)— T2 — 5 (p—2) —(p 1>Hw ”X(s)’
p ( )
[wue(s, ) + ][
2 1 n n fod
< NP ( )(1 —I—B)\(O, S))*m(plez(pfl)*f(pfl)*(pfl)H ”X( ;

pP=1(s)
where due to o* < 5 it holds

c—1 o
2 2

To-1-T -1~ (p-1).

=1+ 1)~ i ;

2m 4
This implies
||G(wut(37 )+ (1= w)v(s, ‘)) ||m—1
A1 (s) 2 =D+ 3 -1 -7 - 5 (-2~ (p-1)
< W(l—i—BA(O,S)) [Jwu +
On the other hand, applying Proposition A.7.13 with o* < 7 we have
|G (wuy(s, ) + (1 — )Ut( )”LW
< [Jwue(s,+) + ( HHU* + [Jwu(s, ) + (1 - ||HU 1
< A2(P=1) ()
~opri(s)
Consequently, we arrive at the estimates

(s, <) = ve(s, M gror || G wre(s, ) + (1 = w)ve(s, )] .

(-2~ (-1 > —5--1)+

ol

(1 + By\(0, S)>—m(p—1)+%(p—1)—f(p—1)—(p—l ku + (1 — w)”“?(_(i)'

)\21) _n ny_o=1_o*( 1\_(p— _
5 pp((ss)) (1 + B)\(O, S)) s P+ IP— 75 —(p—1)—(p UHU i U”X(s)ku + (1 o UJ)UH;(;,
[Jue(s, -) — vils, |L°°||G(wut( )+(1— w)ve(8,)) | s
\2p _
= pp<(§>) (14 Ba(0,5) FHHTmE 000 o s+ (1 - whl)

Thus, we obtain

[[[ue (s, )P = Jvels, P[] o

A?P(s) — gt oo (p—1)—(p—1) [ _

S 1+ Br(0,9) /O lu— vllx o lwu + (1 = wyolf duw
A (s) —Ept 3-S5 - )-(-1) [

S — (14 By(0,s)) =% 8 8 / [l — vl|x) ([Jull X(s) + [l ))dw
pP(s) 0
A*(s) et T3 -5 (-1~ )

S ) (1+ Bx(0,5)) """ T e = vl (lulli) + lolisy)-
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Taking into consideration (4.2.4), 0* = & — ¢ < § with € > 0 and ||ux@) < ||ul/x@ with
0<s<twefind
|ip” / Ki(tys,2) %) (Jus(s, ) = [ou(s, 2))ds|| | S (huliedy + ol e = vllxo

X " A(s) X(s) -3(%-%)-% S)) TP
( o M) () (1+Bi(s:1)) (1+ Bx(0,5)) d
A(s) A7(s)

st A(s) pr(s)

In order to conclude the proof of the estimate (4.1.7) we can follow the same steps of the
proof of (4.1.6). Hence, we arrive at the estimate

(1+ By(s,t)) " E(1+ B.(0, s))znm””pds)

[1D17(Nu = No)(t, )|, S (1+ Ba(0,4)) %(T§>_%\\u—v\lxu)(llﬂlm +lvll)-

In the same way, with no other requirements to the admissible exponents p one can derive

[(Nu— Nv)(t, )| . < (14 Ba(0, 8))7%(777)!\u—vHx<t>(HU||X(t) +lvle)

[0:(Nw = Nu)(t, )| . S (1+ BA(0, 5) HEA lu = vl (Il + lollfe)

1IDI710,(Nw = No)(t, )| S (1+Ba(0, )~ FF 8777 ) ey (] +\|v|x<t)

Thus, from the definition of the norm of the solution space X (¢) we may conclude the proof
of (4.1.7) in the Case 1.

Case 2: Let us assume that the second component of the functions ®; ,, = ®4,,(s,t), &1 =
O, (s,t) and Dy, = Po (s, 1), Po = Po(s,t) is dominant, that is,

By (s, 1) = MOFAD) (F2A®)) FF D7 @y(s,8) = MOF(AW) (F2(A®))
Do (5, ) = A F(A(E) (FA(A(1)) 2

_o-1_4

ST 0,35, 1) = MO F(AWD) (FAA®)

w3
3=

forallt > s> 0.

In order to control the norm |||D[7u"'(,-)||,, we use the (L™ N L?) — L? estimates if

s € [0, 6t] and the L? — L? estimates if s € [6 ,t] from Theorem 3.1.1. Therefore, we have the
following estimate:

ot A _n(l_1)_go
1D 5 [ 3 (1 Bats, ) F O s ds
0

A(s)

’ ')‘pHmeL2nH<r_1

" A(s) —g
+ st A(s )(1 + Ba(s, ) H|ut(8 pHLzmHafldS'
Now we have to estimate the following norms:
[[ee(s, VPl s [Huels, Pl . and - [[Jue(s, )P o

For the first two norms, by using the fractional Gagliardo-Nirenberg inequality one can get
for p > % the estimates

o (mp) —0,(m.
e (s, W Emn S ||I1D] 70 (s, - H P lug(s, ) |25 =0 o)
,2L o —
S A (s)FP(A(s ))( ( (S))) ’ p” HX( ) (4.2.13)
e (s, ) 1220 S 1D17a(s, )2 e (s, )26

< N(s)FP(A(s)) (F2(A <>>)’“”H ull - (4.2.14)
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Now, we turn to estimate the norm H lu (s, by using results on fractional powers for

el gra-s
o —1> % Firstly, let us begin to estimate the norm |||u(s, -)|”||Hc,71. We apply Corollary

A710witho — 1€ (%,p) and Proposition A.7.13 with a suitable 0* < 7, from Section A.7
in the Appendix, respectively. Therefore, we obtain

e (s, )| o S Nute(s, ) gz e, -)\’ﬁ;l

S e (s, Mgz llua (s, s+ lua(s, )y

Applying the fractional Gagliardo-Nirenberg inequality and using the definition of the norm
of the solution space X (t) we derive

e (5, )l gro—s S N, )% s, )"
< () FP(A(s)) (F2(A()) 2 D77
e (s, ) g S Maae (s, )10 s, ="

< W (s) (A () (F2(A()) 75 7y,

where 0,_, , =1— i and 0, , = "7 Hence, by choosing the parameter o* = 7 —e < 2 with
a sufficiently small positive € we have

(5.9 o2 S W FPA) (FA(A(s))) 872500 (49.15)

Hu‘lN

For this reason, in order to get the desired estimates after taking into consideration (4.2.13),
(4.2.14), (4.2.15), 0" < § and

n n n ny/1 1 c—1 o
e (LR S

2m 2m 2m 4 2\m 2

where we take account of ||u||xs) < ||ul|x) for 0 < s < t, we arrive at the estimate

H ’D|Uun1(t7 ')HLz

Sl [ AL
~ X 0 )\(3)

)‘p(s)Fp(A(s))(l + B)\(S,t))ig(#fé)fg(F2(A(8)))*#p+ﬁfpd8

el /& 1;((3 NP(s)FP(A(s)) (14 By(s, 1)) 2 (F*(A(s))) 2" 5 Pds.

T

Let us consider the integral S. Using the property (3.1.18), we have the estimate

)_ ot

[SS)

3=
M

S < (1+ B,(0,0) ¢ A(s)NP~1(5) F(A(s)) " 5P+ 5P ds (4.2.16)

0

S1(t)

Then, introducing as(p) := “p — = + p it follows

Sy(t) = /& N (s

- VA F(A)

[I]

(s)F(A(s)) " 72d(F(A(s)))

ot

0
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where from condition (A5) we used F'(A(s))A(s) = /\F(zgégsl)) Since as(p) +1 > 0, then, it
holds

Sl(t)

where firstly we used condition (D3). Then, from conditions (A5) and (D4) we used =%(t) =

F2(A(1)) F(A(1)) : : _
woram @4 maay < A(t), respectively. Thus, from the last estimate of S; = S;(t) we

obtain

(1- W}Sl () < W (0)A0)Z2(0)F(A(0)) =1 — XP(8t)A(51)Z2(51) F(A(68))~+®)1.

This implies that with

1_$>07 that is, p>w
as(p) +1 n+m
gives the desired estimate
S < (14 By(0,1) FF )75, (4.2.17)

Now let us consider the integral T. We have

FA(s)

T <
~ Jst A(s)

NP (s)FP(A(s)) (F2(A(s))) #" Pds.

T (t)

Then, proceeding in the same way as we did to estimate the integral S; = S;(¢) and intro-
ducing ag(p) = =p — 5 + p we get

ne =/ N (s)A(s)=Z2(s) F(A(s)) """ 72d(F (A(s)))

= VM F(As)

ot

1 g —ag(p)—1 P(g $)=2(s
+a6(p)+1/& F(A(s)) @1 d(W (s)A(s)=Z%(s))

< WAP(S)A(S)EQ(s)F(A(S))—ae(z))—l .

+ -
as(p) + 1

/5 AN (S F(A() s,

Ty (t)
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Then, we find
(1= oy 51) o) S X EOABHZAEOF(AGH) P~ = N (OAO (O F(AB)

We know that by using p > p;(m,n, o) we have 1 —
estimate we have

m > 0. In order to get the desired

(1+ Ba(0,0) * T
< N(S)A(G)EX (S F(ASH) @1 (1 + Bx(0,6)) 27 8*E —1p).
We will show that the function 7; = 71(¢) is uniformly bounded. Indeed, we get

3=
[SIS)

TI(t) < {MAPH(MEZ(&) — 8(as(p) + 1) N (56)Z2(5t)A(81) m

nl 1IN 0N e AGOADAR) 1
+<2(m_2)+2>)\ (OD="0) 50~ n 1+BA(0,t)]

F(A(S))~ =1 (14 By(0,1))*
(

)
A(6t) F(A(dt)) ns,1l 1 o A(5t) \(t)
N0t) Ao)E2(0t) < (* - *) + ) (2+R)

X NPHL(5)Z2(5t) F(A(5t)) =1 (1 4 B,(0,1))* 2(2-3)+

< :7“ — (as(p) +1)9(6,t) + <Z(nll — %) + ;) 2+ R t)]

X SAPTL(§E)E2(61) F(A(51)) )1 (1 4 B, (0,8)) 37 8)7%

< |16 = 5(ae(p) + 1)

Then, for large time ¢ after using p > po(m,n, o) we have

nys1

r— (a(p) + 1)9(6) + <( - 1) + ;) e+r Y <o

2\m 2

Therefore, we arrive at the estimate
Ty(t) < (1+ By(0,1)) 3373,
This estimate together with (4.2.17) concludes
DI (e, )], < (14 By(0,1) *(F 2%,

Now let us continue to estimate the norm |||D["~'u}'(¢,-)||, in the Case 2. Proceeding

in the same way as we did to estimate the norm |||D|u™(t,-)|,,, we obtain the following
estimate:

0P % [ S AOFA@FA@) D s, ds.

’ HmeL%HU 1
Summarizing, using the estimates of the norm |||u,(s, -)\1"HLmﬂL2qu1 from (4.2.13), (4.2.14)
and (4.2.15) with no other requirements to the admissible exponents p we arrive at

[1D]7 (¢

)" HL2

Sl AEF(A®) (F2(A®))

S\H
l\)

(A()) (> (A(s))) "= " ds

= [[ull% o MO FAW@) (F2(A ()02 / NP (s)A(s)F(A(s)) ™ PP ds

U
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Similarly to the treatment of S; = S;(t) and T} = Ti(t), we obtain

Y= /Ap $)Z*(s) F(A(s)) ™" 72d(F(A(s)))

— S V()M ()2 (5) F(A(s) @ !

0

as(p )
tom +1/ F(A(s)) =P =1d (0 ()A()Z2(s),

where as(p) = Zp — = +p and as(p) +1 > 0. In this case it holds

1 P =2(g §))-as ()1 t

U< —m)\ (S)A(S)_, ( )F(A( )) ») 0

+ 015(]))—0—1‘/0 A(S))\p*1(s)F(A(s))*%(P)ds,
F2(A(1))

where from condition (A5) we used =%(t) = and from condition (D4) we used

AZ(E)F(A(t))

F,((?\((S)) < A(s), respectively. Thus, from the last estimate of U we obtain

(1 - m)U S AP(0)A(0)Z2(0) F(A(0)) P =1 — XP(£) A (1) () F(A(t) =~

Since we have 1 — > (0, we may conclude the estimate

_r
as(p)+1

_o=1_1

DI (8], <l MO PA®) (F2 (A FF 877

Now we want to prove (4.1.7) in the Case 2. By the definition of the solution space X ()
and its norm we have

Jaae(s, )P —oi (s, )17
S N (8)FP(A(8)) (F2(A() 7" 57w — vl (lullidy + llol5ed)s
e (s, )P =i (s, )7

S N () F(AS)) (F2 (M)l = ol (lullie )y + 0I5

On the other hand, to estimate the norm ||[us(s, -)|” — |vi(s,
ations from the Case 1. Thus, we obtain

P H ;01 we follow the consider-

e, )P = o5, )P o
nono ool gt 1y 1y [ _
S N(s)FP(A(s)) (F2(A(s))) Tt ir = -5 o= 1)O||U—U||X(s)||wu+(1—w)UHg((;)dw
< \P(s)FP(A F2(A — -5 -2 (p-1)—(p—1) _
< N(s) FP(A(s)) (F?(A(s))) e — vl (lalliy + ol%ed,)s

where o0* < . Taking into consideration (4.2.15), 0" = § —e < § with € > 0 and [Jux() <

|l x @ with 0 < s <t we find

1017 [ 80,21 v (s, = P, < i + o = il

X < i t 1;(( iz\p( JFP(A(s))(1 +Bk(s,t))fg(%fé)fg(F%A(s)))iﬁﬁ#wds
P A(s) A(s)

st A(8) A(s)

(1+ By(s,t))"* (F?(A(s)))‘ﬂn’””"”ds).
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In order to conclude the proof of the estimate (4.1.7) we can follow the same steps of the
proof of (4.1.6). Hence, we arrive at the estimate

nf(l _ 1Y) o
|ID]7 (Nu — No)(t, HL2 < (14 BA(0,1) H(5d) lu— vl x t)(HuHX(t) + [lv] X(t))
In the same way, with no other requirements to the admissible exponents p one can derive

|| Nu — Nv)(

e
< (1+BA(0 s>)‘%<*">uu—vuxu)(\\uup + ol

Hat (Nu— No)( HL2

< A(t)F(A(t))(F%A(t)))*%(**%)* = oll o (lullZeh, + TolBd)s
[[D]7~ 0 (Nu — No)(t,-)||,.,
< AMOFAM)(FA0) FF DT ol (lullid + lol%).

Thus, from the definition of the norm of the solution space X (¢) we may conclude the proof
of (4.1.7), which completes the proof of the theorem. O

4.2.2. Case of super-exponential propagation speed

We define the following parameters:

N(mna)'—max{ n +(0+1 ) 2m .mr—m—i-n}

piim,n, ) = n+2m 2 Jn+2m’ m4n ’
nm 2m

D ,0) = ————— + dyd 2 ,

p2(m,n,0) 27"L+4m+ 20( + )n+2m

where we set
p(m,n,o) :=max {pi(m,n,c); p2(m,n,o)}.
We consider now the case of super-exponential propagation speed for large regular data

belonging to L*°. For this reason, we choose the regularity parameter ¢ from the interval
oe(1+ 5 oo) with n > 2. We have the following statement.

Theorem 4.2.3. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C3), (D2) and (D3) hold. Let v(d) = oo and 9(8) = oo, where the functions v = v(d) and
¥ = 9(9) are defined in (3.1.2) and (3.1.3), respectively. Moreover, the following condition
for the function v is supposed to be satisfied:

v(5,t) = o log A(t)). (4.2.18)

We choose the data (ug,u1) € D7, with o > 1+ % and m € [1,2). Finally, the exponent p
satisfies p > o and p > p(m,n,o). Then, there exists a constant £y > 0 such that for all
(uo,u1) € DY, with |[(uo, u1)|ps < €o there is a uniquely determined energy solution

u € C([0,00), H") NC*([0,00), H* ")
to the Cauchy problem (3.1.1). Furthermore, the solution satisfies the following estimates:

lut, Mze < (1+ Ba0,) ™25 ug, wr) g

DIt )| S 1+ Br(0,0) 232 (g, ) o
o,z
A*(t) 5 (x-4)-1 20a()) 33
Smax {25 (04 By(0.0) D 0P @) (F @) fitwo, m) o
D17 et )] 2
A(t) ~2(2-1)-5- ~#(%-4)-=
Smax {29 (14 Ba0.0) DT P E @) DT g, m)llog
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Proof. To prove this theorem we will proceed in an analogous way as in the proof of Theorem
4.2.2. We want to prove the inequalities (4.1.6) and (4.1.7). Let us only derive estimates of
the following norms:

Hunl(ta')HLm H|D|Gunl(t7'>HL2a Hu?l(ta ')HLZ’ and H|D|U_1u?1(ta ')HLT
Case 1: Let us assume that the first components are dominant, that is,
_ X -3(%-1)-1 _ N -1
Dy n(s,t) = e (14 Bx(s,t)) and ®(s,t) = o0 (14 Bi(s,t))
_ X -3(#-4)-521 _X(t) ey
Dy n(s,t) = 0 (14 Bx(s,t)) and ®y(s,t) = 0 (1+ Ba(s,t)) :

forallt > s > 0.

We begin to estimate the norm H |D|7u™(t In the same way as we did in the proof of

) ) HL2 :
Theorem 4.2.2, employing the fractional powers rules from Corollary A.7.10 with o —1 € (%, p)

and Proposition A.7.13 with o < Z we obtain

H’D|Uunl(tv ')HLz
ot A(S) AP ( Q(L,l),g _nppn g,
< p 2\m 2 2 2m 2m
N HUHX(t) . Ns) s (1+ Ba(s,t)) (1+ Bx(0,9)) ds
M
As) A(s) s e
+ HUHx(t) /t w o (s) ( (S,t)) (1 + B, (0, s)) ds.

N

Let us consider the integral M. Using condition (3.1.21) we have the estimate
)\21’

1+ By(0,s)) " ds, (4.2.19)

6t
M < (14 By(0,1)) s 2‘2/ s

M. (t)

where a3(p) := 5-p — 5= + p. Then, by (D2) it follows

ot 2p
/A2 ) A (1+B (0,5)) P d(1 + By(0,5))

) pP(
pi(s ) "(s) —as(p)+1[%
A2 ( ) (S) ( +B>\( )) 0

A2
—as(p)+1 ,( Ju(s) A*P(s)
(1+ Bx(0,s)) d(}ﬁ(s) p(s) )

ot

1-— ag( )
1
1 — az(p)
1 pu(s)
~ 1—as(p) )\2(52

A p(S) —as(p)+1
pp(s) (1 +B)\(0,S))
(

1+ BA(0,5)) " (14 B,\(0,9))

0

5t
(1+ B\(0, s))_as(p)Jrl .

(1+ Bx(0,5)) —e Py,

where a3(p) > 1. Then, it follows

B O\ p(0) A(0)  p(dt) AP (ot) i
<1 as(p) — 1) M= %20y o)~ 2(6t) (o) (14 5,(0.40) '
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We can guarantee that M, = M, (t) is bounded by

dg 2m
1— ———— >0, orequivalent, >14d ,
asz(p) —1 quy P “n+2m
which can be concluded from the condition p > p;(m,n,o). In this case we arrive at the
following desired estimate:

M < (14 By(0,1)) F G 8)7%, (4.2.20)

n

Now let us consider the integral N. Defining ay(p) := 5%p — § + p it holds

"A(s) AP(s)

st A(s) pr(s)
[ uls) A(s) o)) NS }
s A2(s) pr(s) (1+ 5,(0,5)) (1+ Ba(s,t)) "d(1+ Ba(s,t))

p
= L O A )P (14 By (s 1)

N = (1+ Ba(s,£)) (14 By(0,5)) “Pds

t
2+1

ot

L 1L /(St (1 —I—BA(S,t))ng(;((i)) );zoés)) (14 BA(O,s))*“‘*(”)).

Here we consider only the case 1 — § < 0, because p > o > 2 with n > 2. Then, employing
Lemma 4.2.1 we get

1

(14 By(0,0) F¥iN
o pt) At

~—

(14 Ba(0,)) 34

Ni(t)
" () A(s) o)) 2(4-3)+zd(1+ B0, 5))
+/& N ey A Ba0:9) " (14 By(0.1) B0
Na(t)
For N; = N;(t), using au(p) = as(p) + 2 (L — 1) we find
Nl(t) — /,L(t) )\Q;D(t) (1 _‘_B)\(O’t))*as(P)ﬂL%‘

Then, it follows

’

N, (t)
W) 1 o A V() I
< [dQ)\(t)A(t) g A5 (1+ Bx(0,1)) + (— as(p) + §>W} 6 (1+ B, (0,1))

where we used condition (D2) and (3.1.20), respectively. Then, for large time ¢ we obtain

N,(t) < 0 by p > py(m,n,o). In order to derive the desired estimate for Ny = N,(t) we
suppose that there exists a positive constant € such that it holds

w(dt) AN (6t)

N2(6t) po(01)

Then, from the previous estimate it is sufficient to consider the monotonicity of the function

- ot) AP (ot

iy 200 2001

A2(dt) pr(ot)

(1 1

(14 Bx(0,60) ™ (1 + By (0,6) T D% < (14 B, (0,61) ",

1 1

(14 Bx(0,66) (1 1 By(0,1)) F (7 1)E, (4.2.21)
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Indeed, by taking the derivative of Ny = N5 (t) we get

N;(#)
—oy(p) +e€ 1 n,l 1 o\ A(t) A(6t) 1 A?P(6t) p(dt)
= {(d“” a2 )logA(ét) + <2(m -3+ 2> A(D) M30) Tog A1) ] pr(6t) N2(5%)
% (1)6(5t) log A(t) log A(68) (1 + Bx(0,86)) P71 (1 4 B (0,0))F (7 3)+8 ! ((Z))

where we have used condition (D2) and (3.1.20). We can see that N, (t) < 0 by the condition
(4.2.18) and

a4(p) . nm 2m

d , that is, > dsd 2 .
2 + 2 I 2n+4’m+ 20(0 + )n+2m

This gives that Ny = Ny(¢) is uniformly bounded. For this reason we obtain
N < (14 By(0,1) (7375,
Taking into consideration the derived estimates for M and N we arrive at
D1t Sl (1 + Ba0, )5 4%,

In the same way, one can prove

Hunl(t7 .)HLZ g ||u||1)7((t)(1 + B/\(Ovt))ii(ﬁii)a

Hu?l(t’ ')HLQ g HuH:g((t) ,O(t)

Now let us continue with the estimate of the norm || |D|7~ tul( Proceeding in the

t, ) ||L2 .
same way as we did to estimate the norm H |D|7u™ || ;> With no other requirements to the

admissible exponents p we have the following estimate:

[1D]7~ g (¢

)" HL2

"AR(E) Als) A*(s) N 1 )R Er
~ H HX(t)/ p(t) )\(S) pp(S) (1—|—B)\( >t)) (1+B>\(O> )) d

P

FX(E) A(s) N () e i
+ llull /& o) Ns) () (14 Bx(s,t)) (1+ By(0,9)) ds.

R

Firstly, we consider the integral P. We have

3=

t (1+BA(0,t))—%( —1)-zxion [0 A(s) A (s)

— 5Pt an P s
a0 o o) pts) O >

Pl (t)

where we used (3.1.21) to estimate By(s,t). Similarly as we did to estimate M (¢) in (4.2.19)
one can show that P, = P;(t), is bounded by the condition p > p,(m,n, o). Thus, we have

< AT()
™~ opP(t)

w3

Grt)==t (4.2.22)

(1+ Bx(0,t))
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Now we consider the integral R. Defining ay(p) := 5%p — § + p, we find

o )\2( ) (8) )\21’( ) s —aq(p) S 7“7*171 <

R=- p(t) S5 N2(s) po(s) (1+ Bx(0,5)) (1+B>\( ,t)) d(1+ By( ,t))
_ 2 N(t) p(s) AF(s) ) . ;
T o —1 p(t) N2(s) p(s) (14 Bx(0,9)) (1+ Ba(s,1))

2_X0) =g —aa(p)
o—1 p(t) / (1+Bi(s,1) d<>\2(5) v (s) (1+ Bx(0,5)) >

After using Lemma 4.2.1 it follows

)
—~
~
~—
—~
—_
_l_
™
>
—~
~—
~—
3
—~
3
N
~—
+
q
+
=

(F—3)+55t+1-au(p)

w3

)+e52+1d(1 + Bx(0,5))

" p(s) A*(s) —au(p) 2(L-1
+ (1+ By(0,9)) (1+ B\(0,1)) T B (0.5)

éz(t)
We begin to estimate Ry, = R;(t). Using au(p) = az(p) + 2(L — 1) we get

Rl(t) — :u(t) )‘2p(t) (1 _‘_BA(O’t))UTH*‘XS(P)‘

So, we may conclude

R\ (t)

O o+1 A(£)]A2(1) o1y
< [dg)\(?)A(t)lOgA(t)(lJrBA(O,t))+( ; —as(p))m} o L B0.0) ®)
< [t T3t = )] (0 Ba0,) T

where we used again condition (ID2) and (3.1.20), respectively. Then, for a large time ¢ we
get R,(t) <0 by

oc+1

U—i—l+ ) 2m

d ;
2t 2 *)n+2m

n
- <0, thatis, p> (
@s(p) ais P n+2m+

which follows from the condition p > pi(m,n,o). Therefore, R, = R,(t) is uniformly
bounded. For R, = Ry(t), we assume that there exists a constant € > 0 such that

3+l —e

(14 By (0, 5t))‘“4 (1+BA(O t))%(’ < (14 By(0,61))

This motivates to introduce

() ()
Rall) = 3305y poion)

o3)

(1 + By(0, 51&))’“4(””6 (1+ Bx(0,t)) HG

Then, analogously as we did to estimate Ny = Ny(t) in (4.2.21) we may also conclude that
R,(t) < 0 by the condition p > py(m,n, o). This gives the desired estimates for Ry = Ry(t).
Therefore, we obtain
2
o0

~ p(t)

w3

Grt)== (4.2.23)

(14 Ba(0,t))
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In order to conclude the proof of the estimate (4.1.7), proceeding in the same way as in the
proof of Theorem 4.2.2 and following the same steps of the proof of (4.1.6) we obtain the
estimate

I1DI (N = No)(t, )] o S (1+ Ba(0,8) 5 F D% ju ol (lullid + ol50).

In the same way, with no other requirements to the admissible exponents p one can derive the
estimates for ||(Nu — Nv)(t, -)||L2, |0:(Nu — Nv)(t, -)||L2 and |||D]""*0,(Nu — Nv)(t, -)HLQ.
Thus, from the definition of the norm of the solution space X (¢) we may conclude the proof
of (4.1.7) in the Case 1.

Case 2: Let us assume that the second component of the functions @4 ,, = @y ,,(s,t), &1 =
®,(s,t) and Dy, = Po (s, 1), Po = Po(s,t) is dominant, that is,

1

By (s, 1) = AOFAD) (FA®) FEDT @y(s,0) = A F(A®) (F(A1)

n _e-1_4

By (5, 8) = AOF(AD) (F2(A1)) T F 7T 0y (s, ) = MO F(AW) (FAA®) 7

3

for all t > s > 0. From Theorem 4.2.2 we have

|| ’D‘Uunl(ta .)HLZ

5t A(s B
Sl [ SV EF AL+ Bi(s.0)

S

+ ||U||§((t) /(St 1)\\((2)) )\p(s)FP(A(s))(l + B)\(S’t))*%(FQ(A(S)))*ﬁZH%fpdS‘

|3

(52072 (2 (s)) 74 7

T

Let us consider the integral S. Using (3.1.18), we have the estimate

wl3
[N

(E=0)-5 [ § () (s) F(A(s)) 757 (42.24)

0

S < (1+ Bx(0,1))

S1(t)

Following the proof of Theorem 4.2.2 from (4.2.16), we may conclude the desired estimate

(3-4)-

vl

w3
=

S < (14 Bx(0,1)) (4.2.25)
by the condition
mr—+n-—m
P> —.
n+m
Now let us consider the integral T. We have
¢ A —n_ n__
T < ES;AT’(S)F’)(A(S))(FQ(A(S))) 2P g
st A8
Tl(t)
Then, proceeding in the same way to estimate the integral S; = S;(¢) and introducing

ag(p) = £p— % +p we find

N3

(1+ B, (0,0) 5 D in )

)+

|3
3=
N
NEY

< A(S)AGH)EX (S F(A(SE) @1 (1 + By(0,8)) (7

—_
~—~
~~
~—
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We want to show that the function 7; = 7;(t) is uniformly bounded. Therefore, we estimate
the derivative of this function as follows:

TH(0) < [roN(BZ2(61) ~ dlaalr) + N GO 0OAGH 5

n,l 1 1 A(68) A(H)A(2) 1
+<2<m_2)+ )A (6t)= ()A((St u(t) 1+BA(O,t)]

2
F(A(St)) @~ (1 + BA(O,t))%(# 1)+
) F(A(5t))
A(8t) A(6t)Z2(dt)

n/l 1\ o AGH)ADAG) u(t) 1
+ <<m -3+ 2>(O‘ T30 al) A2 logA t)]

X XL (SE)Z2(S) F(A(68)) 0P~ (1 + By (0,1)) ¥ (F 1)

< [ro—ateatp) + o0 + (3(5 - 2)+3)
X AT BF(A(60) P L+ Ba(0,0) F R,

wlq

Then, for large time ¢ we have 7/(t) < 0. Therefore, we arrive at the estimate

),

Nl
[N

Ty(t) < (14 Br(0,1) 2

This estimate together with (4.2.25) concludes

D7 (1, )], < (14 Ba(o,1)) #0538
To estimate the norm ||| D]~ u}' (¢, - HL2 in the Case 2 we follow the proof of Theorem 4.2.2.
Then, by the condition
mr+n—m
p>———(

n+m
we may conclude the estimate

o—1,n -5 i_% - Ugl -1
11D e, ) e MO FA@) (A )27
Moreover, to prove (4.1.7) in the Case 2 again we follow the proof of Theorem 4.1.6 which
completes the proof. ]

4.3. Semilinear damped wave models of the generalized type
power nonlinearity ||D\au’p and a € (0, 1]

Now we consider the following semilinear Cauchy problem:

{Utt = N (t)w?(t)Au + p(t)w(t)u, = HD[“u’ (t,z) €[0,00) x R", (4.3.1)

w(0,z) = ug(x), u(0,2) =uy(x), x € R™,

where a € (0, 1] and the data (ug,u;) € D}, and m € [1,2).
Here the pseudo-differential operator |D|%, a > 0 is defined as follows:

|D|*uw = F~'(|¢|*F (u)) forall ue H ™.

So, it is a nonlocal operator for a € (0, 1].
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4.3.1. Case of sub-exponential propagation speed in energy space

We define the following parameters:

n 051 2m
5 110y = 1- ) K
pi(a,m;n) n+am+( 24+ R/ n+am
n 6 B 2m
s 1, = 1- ) ’
p2(am,n) n—l—am+( (0)2+ R/ n+am
pS(aa m)”)
m )
— maxd T n(l-7%) n ( 3R (5 > 2m_
' 2(n + am) (n+am)(1_§jR 4 2+RL6)) 1— L 2HE s J ot am

2
n
+(1- &i
n+am 2 9J( 6 n 4+ am
where we set
p(a, m,n) := max {pl(a, m,n); pa(a,m,n); pg(a,m,n)}.

Theorem 4.3.1. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1), (C2)

and (C4) are satisfied. Let us consider v(§) < 1 and ¥(5) < 1, where the functions v = v(0)

and 9 = 9(6) are defined in (3.1.2) and (3.1.3), respectively. Let the data (ug,u,) € D}, and
€ [1,2). Moreover, we assume that the exponent p satisfies

2
p >pla,m,n) and p>—.
m

Finally, we consider the following condition:

B
50Gr—2)
where the parameters 51 and R are from condition (C4) and (3.1.17), respectively.

Then, there exists a constant g > 0 such that for all (ug, u1) € Dy, with ||(ug, us)|lps < o,
there is a uniquely determined energy solution

> max{(2+R)V(;); 2’9?)}, (4.3.2)

u € C([0,00), H') NC'([0,00), L?)

to the Cauchy problem (4.3.1). Furthermore, there the solution satisfies the estimates

lut, Yz < (1+ Br(0,£) ™2 78 (g, uy) I |

(
DNt )2 < (1 + Br(0,) ™ E 5% g, 1) .
(

=

et Y22 max{p(tf(uBA(o 1) 2T @A) EA0) T g, u) o,

Proof. We introduce for all ¢ > 0 the functions spaces
X(t)=c(o,t],H")nc'([0,t],L?)

with the norm

Jutr e = sup [+ Ba(0,7) 5 (e, s

<7<t

1

(U B0, 7) D Dlu(r ) + 75, 0.7) (. )22

Here ®, ,, = ®;,,(0,7) is defined in (4.1.2) with s =0 and ¢ = 7.
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To complete the proof of (4.1.6) we have to estimate ||u™||x(). For this reason we use

I, ds

t
[[1DFofu™ (¢, )] S/O [IDV0; (K (t, 5, 2) () || D] “u(s, )[")

for j+¢=0,1. If s € [0,0t], then we use Theorem 3.1.1 with m € [1,2) and if s € [d¢,t] we
use it for m = 2 only. So, it follows

jan o A(s)
liDPofu ) 5 [ (s 3

/6t P (s,) A(s) (L+ Ba(s, 1)) *[[|IDI"u(s, )| .ds

for j +¢ =0,1. Here in the case £ = 0 we define &7 ( t) =1 and ®Y(s,t) =1 and, in the
case £ =1 the functions @], (s,t) = ®y,,(s,t) and ®!(s,t) = ®y(s,t) are defined in (4.1.2)
and (4.1.3), respectively.
Taking account of
[1D1"u(s, )|” < [[1D[uls, )|l

)" ’ HmeLz ~ " Hme

(14 Ba(s,0) 7 Dprags,

7‘ | ||meL2

ds

s
—
Va)
~—

+[|ID|“u(s, [

)" ”LQP

and using the fractional Gagliardo-Nirenberg inequality we get for p > % the estimates

l1D1u(s, )3, < [lIDI7u(s, ->||p9”“””)u (5, ) [550eeme)

S (14 By(0,5)) 775 ”’H ull% (4.3.3)
[1DI7us, 2y S (1017w, s, 760

5(1+BA(0,5)) s 2p\|u||§((s), (4.3.4)

where 0, ,(¢q) = 2(3 — % +2) and £ < 6,,(q) < 1.

o \2

Now we are able to estimate ||||D|%u(s,-)|"|
using ||ul|x(s) < ||ullx@ for 0 <s <t we find

||DFofu(t

Lmnpe DY using (4.3.3) and (4.3.4). Therefore,
) : HLZ

" A(s) (-3 (-1)-4 =t
S ||U”x(t/o cbi,m(sat)w(l_FB)\(Sat)) (5-3) (1+ Bx(0,5)) mPrEm TRl g

A%

+ Hu!é’((t)/ q)f(s,t))\((j; (1+ Ba(s,t)) * (1 + Bx(0,5))” TP tESP g (4.3.5)
5t

Y

Now we want to estimate the integral terms V and Y in order to get the desired estimates.
We have

n(1_1\_J ot A __n_ n _a
V <!, (0.8)(1+ By(0,1)VEGTE) / () (1 4 By(0,5)) # " F54s, (4.3.6)

o As)
Vl(t)
where we used (3.1.18). Denoting a1 4(p) := 5=p— 5= + 5p we get for ay 4(p) # 1 the relation
st
S —Q1.q
nw= [ 2y 0™ (p)d(1+BA(0,s))

o A%(s)

1 () —ana(P)+1[%

= 1+ B ’
o) xe(e) L BA09)) 0

(s
T1- all,a(p) /0& (1+ B0, S))al’a(pmd(;((i)))'
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Now we shall distinguish between three cases.

2m+n
am—+n

Case 1: a1 ,4(p) > 1, ie,p> . In this case it holds

—j/t(1+=BA«LS»’“L“”(1+nBA«LS))F‘S)ds

—a1,a(p)+1|%

(14 Bx(0,5))

0

b " A(S) —a1,4(p)
B (an.(p) —1)(24+ R) /0 A(s) (1 + B/\(O,S)) ds,

Vi(t)
where we used condition (C4) and (3.1.17), respectively. Thus, we obtain

o) u(st)

22(0)  A2(5t)

—a1,a(p)+1

Vi(t) < (1+ Bx(0,6t)) <1

Case 2: a; 4(p) < 1. In this case we have the estimate

—ai,q(p)+1 ot

1 1(s)
Vill) 2 T 5 )
)

1 ‘ ~a1.4(p) p(s)
+1—mAMA (1+ By(0,9)) (L%&mﬁnﬂgﬂgﬁ

1 (s
= T ana(p) N ()

b " A(s) —
(1—a14(p)(2+R) /0 A(s) (1 + Bx(0,5)) ds.

(1 + B)\(Ov S))

0

ot

~—

(1 + B)\(O, S)) —a1,q(p)+1

0

+

Then, it follows

B
(t=ooperm Y

‘/1 5 IU’(O) _ ,"L((;t) (1+B>\(0’6t))7041,a(p)+1.

(4.3.7)

We can guarantee that V; = V;(¢) is bounded by the condition p > p;(a, m,n). Because,

-1 foll f
=)+ B) >0, follows from p>n+am+

b1 n (1 51 ) 2m

n+am’

24+ R

which we have assumed in the statement of the theorem. Otherwise, we need to show that

Vi (0t) :== ;(((?t)) (1 + B,(0, 5t))—0‘1,a(p)+1

is strictly decreasing in ¢t. Indeed, taking the derivative of the function V; = V,(t) we get

5i)
24+ R

_ Oé1,a(p) + 1} 1)\\2;)(1 + BA(()J))*O‘La(P)'

Vi < |-
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The condition p > p; (a,m,n) implies that V;(t) < 0. This shows us that the right-hand side
of (4.3.7) is bounded.

Case 3: ai 4(p) = 1. In this final case we have

B st A(s) -1 ot A(s) pu(s) . o p(s) A(s)
Vi(t) _/0 ) (1+ Bx(0,5)) ds < ) AQ(s)dS =)o 20 A(S)ds

_ ils) S ()

= %) log A(s) o " log A(S)d<)\2(s)>

" + G logA(s)i((z))

1(s)

A%(s)

where we have used (3.1.17) and condition (C4), respectively. Now we will show that for a
sufficiently small positive constant € we have for large ¢ the estimate

Therefore, we form the derivative of the function

Va(t) = ;‘2((% A%() log AD). (4.3.8)

Using condition (C4) it holds

’

V() < | Br+e+

1 p(t) .
logA(t)} MO log A(t)A°(t).

Hence, for a sufficiently large time ¢ and a sufficiently small constant ¢ > 0 we get V,(t) < 0.
This shows the decreasing behavior of V, = V,(t) for large ¢t. Hence, we obtain that V; = Vi (t)
is uniformly bounded. Summarizing, from the above three cases for j + ¢ = 0,1 we get our
desired estimate

(-3 (£-1)-;

V S ,(0,t)(1+ Bx(0,1)) (4.3.9)
Now let us consider the integral Y. We have
¢ A -3 —Qz.q
v = [ o520 (14 Ba(s,t)) 2 (14 By(0,5)) " Pds
5t A(s)
’ ? /’L(S) —Q2 a(p) -1
:_/ (I)l(svt))\z(s) (1+B/\(075)) Y (1+B>\(S’t)) Qd(l_’_BA(Svt))’
5t

where s 4(p) := 7=p — % + %p. To obtain the desired estimates we consider separately the

cases j+ ¢ =0,1.
For j =4 =0 and as,(p) # 1 we get

t

Y:

©(s) —az.4(p)
() (1+ By(0,9)) d(1+ B\(0,9))

_ 1 p(s) o)) Ca ()L
- 1— Oéz,a(p) )\2(3) (1 + B,\(O, ))

L [ (e o) (.

1-—- a2,a t

t

ot
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Case 1: a3 ,(p) > 1. In this case it holds

< 1 N(S) (1 _{_B)\(O’S))*Oéz,a(lﬂ

+1|t

ot

61 t —a2,q4(p)
o) J, B9 (14 Ba0.9) 555

t

1 —Q2 q
/‘I’(S) (1 +B/\(0,S)) La(p)+1

ot

b AG) —a,4(p)
+ (1 —au(p)(24+ R) Jsi A(s) (1 + B, (0, 3)) ds,

Y

where we used condition (C4) and (3.1.17), respectively. Then, we get

1) —a2.q(p)+1 —az,4(p)+1
< 52((;2) (1+ Bx(0,6t)) == ®* ;((tt)) (1+ Bx(0,8)) =@+,

Case 2: as4(p) < 1. In this case we have the estimates

Y>> O}Q’a(p) ;((Ss)) (1+ By(0,5)) "
: 1—521@(1@ /5: (14 B:(0.9)) " (14 By, s))A(g)(i)(s)ds
N fz((ss)) (14 By(0,5)
+ﬂ—amé»@+m ;%3“+Bﬂ&@)”“u&

t

ot

—aza(p)+1|t

ot

Y

where we have used (3.1.17). This implies

b1 M(ét) —az,q(p)+1 M(t) —az,q(p)+1
— 1) Y < ———5(1+B,(0,6t ’ - 1+ B, (0,1t ’ .
(o rm )Y S xagan 1+ 500) (g HHO0)
Here we can guarantee that
B1 . nm 51 2m
—1 lentl _ 1-— .
> 0, or equivalently p>2(am+n)+( 2+R>am—i—n

(1= a24(p)(2+ R)
It is clear that the above condition for p is satisfied by the condition p > p;(a, m,n). Then,

for all p > py(a, m,n) it holds

0 —a2,q(p)+1 —az q(p)+1
< ;L;(;t)) (1+ By (0,6t)) == ®* ;‘2((% (1+ Bx(0,8)) "%,

Now to get the desired estimate for Y in the case j = ¢ = 0 we will show the following

estimate:
(14 By(0,0) Yy
(0t) 2(2-1) —asap+1 fl(t) —o1,a(p)+1
< 1+ B,(0,t))*'™ */(1+ B,(0,dt — 1+ B,(0,t <1
~ )\2((5t)( + )\( ) )) ( + A( ) )) )\Q(t)( + A( ) )) ~
L %) The second summand on the

where we used the fact that oo .(p) = a1.(p) + 2(=
right-hand side of previous estimate, that is,

Vi(t) = )\'L;((?) (1 + B}\(O’t))—m,a(m-&-l
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is bounded due to the condition p > p;(a, m,n). Indeed, we have

/ B A(t) —a1,4(p)
< | — — =\ ,
V(1) < [ sr R Ma) T+ 1} 0 )(1 + B,(0,1)) :
Then, we can get
—b1 . n 081 2m
— 1 f 1— )
2+ R a(p) +1<0, i p>n+am+( 2+R)n+am

Hence, we have Y, (t) < 0 by p > p1(a,m,n), namely, Yy = Y (t) is decreasing. Therefore, it
remains to ensure the boundedness of the term

p(dt) HEY) —az(p)+1
1) (1+ Bx(0,1)) (1+ Bx(0,0t))
in both cases 1 — as 4(p) > 0 and 1 — as 4(p) < 0. In the case 1 — ay ,(p) > 0 we have
wu(ot) 2(&-1) —aza(p)+1
XZ(&)(1+BA(0 )2 (1+ Byx(0,6t))
11(5t) 2(L-3) a1 p(0t) —ara(p)+
< 1+ B,(0,t))* ™ 2 = 1+ B t =

To guarantee that the function Y, = )5 (t) is decreasing we estimate its derivative as follows:

5f1 p(0t) A(0t) A*(t)

—at,a(p)
2+ R @) At () LT BAOD) T

Vo < [ 5+ (= analp) + )06, 1)]

Then, for a large time ¢ we can guarantee that V,(t) < 0 by

—0f
24+ R
and this can be concluded from p > ps(a,m,n). In the other case 1 — as,(p) < 0, our

desired estimate can be obtained directly from the case 1 — as,(p) > 0. Therefore, for all
p > p1(a,m,n) and p > pa(a, m,n) we arrive at the expected estimate

+ (= a1a(p) + 1)v(8) <0,

Y < (14 By(0,8) FF73), (4.3.10)
Case 3: as4(p) = 1. In this case it holds for large ¢
A(s) p(s)

(14 Bx(0,5)) 'ds <

Y- l e M) 225)
() uls) Co ()
; 2 AGs) ds = 2(s) log A(s) o /& log A(S)d</\2(s)>
p(t p(6t) " p(s) Als)
< )\Z(t)l og A(t) — )\2(&)1 og A(6t) + () logA(s)wds,

where we have used (3.1.17) and condition (C4), respectively. Then, it follows

(14 5,0.0) Y < B0 (14 5 0,) Do)

" p(s) 555 100 A () 2 0) g
+ (s )(1+B>\(0 1)) log A( )A(s)d :

n 1
In order to prove that (1+ B, (0,t))? (= 2)Y is bounded, we will show that for a sufficiently
small positive constant € we have the estimate

1(3t)

s (L B0, 1) 10g A(6t) < A< (81).




4.3. Semilinear damped wave models of the generalized type power nonlinearity ||D|“u|p and a € (0,1] 193

So, it suffices to estimate the derivative of the function

Vs(t) = ;(((?t))AE((St)(l + By(0,) 2 log A(61).
Indeed, it holds
Vy(t) < [— Bit+e+(2+ R)%(% B %) 1/(? t) 1Ogi(5t)}

(st) A1) e
X2(st) A(5t) A*(dt) (1 + BA(0,1)) log A(dt).

Then, for sufficiently large time ¢ and a sufficiently small constant £ > 0, if

oemih- - aca

which is related to condition (4.3.2), we get Vy(t) < 0. This shows the decreasing behavior
of V3 = Y5(t). Hence, we obtain

" u(s) TE VRV C) I N,
5 N2 (s )(1+Bx(0 1)* log A( )A(s)d 5/&/\ (s)A(s)ds < 1.

In the same way, by condition (4.3.2) we can also derive for large ¢ the estimates

)
~ \2(ot)

1O 14 g 0.6)F D ogAh) < (1+ B (0,6) ) log A(t) < A< (51).

A%(t)
Consequently, in the case j = £ = 0 we obtain the desired estimate
Y < (14 B,(0,0)) 23, (4.3.11)

Now let us consider the case j = 1 and £ = 0 for the integral Y. In this case we have

Y= [ B 14 By 0,9) (4 Byfs,0) (14 By(o,0)

,U(S) —a2,q(p)
72)\2(5) (1 + B1(0, s)) (14 Bi(s,t))

+2/5: (1+Bx(s,t))5d(;(( ))( + B,(0, ))‘”“‘p))

(s) —az,a(p)
< — (s )(1 + B1(0, 5)) (14 Bx(s,1))

t

Nl=

ot

t

N

7;

ot

+ F ) (1 + By(0, s))_%'“(p)(l—i—BA(s,t))%—d(l + 5,(0,5))

7;

st A2(s) 1+ By(0,s)
where we used Lemma 3.1.5. Then, we get
(14 By(0,1) F 5 )ty
(5 —Qas g n(1_ 1
< f(w)) (14 BA0,80) " (14 B0, 5D

Yi(t)
+/t ) (4 B0, s) (1 +Bk(o,t))%(%*%)“w

1+ B)\(O, S)

Yg(t)
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In order to prove that the functions Y7 = Y;(t) and Y; = Y3(¢) are uniformly bounded it is
sufficient to show that for small positive constant € we have

1(dt)
N2 (5t

€

(1+ Bx(0,6t)) "> (1 + By (0, t))%(%‘%)+1 < (1+ By(0,6t)) .

~—

Then, employing (3.1.19) we get

N3

p(dt) —az,a(p)+e (1-1)41
B (14 B0.00) ™ (14 By(0,0)
<

(131 ans (e L A(BE)Y ZHR) (—a(p)+2)
10D () 4 B, 0,0) G e (5”) T o). (4312)

(ot A1)

~—

We may conclude immediately that the function ), = Y,(t) is bounded by the aid of the
condition p > ps(a, m,n), following the considerations for the function B; = By (t) in (3.2.15).
Consequently, in the case j = 1 and £ = 0 we obtain the estimate

Nl

Y < (14 By(0,8) FF3)74 (4.3.13)

Finally, it remains to consider the case j = 0 and ¢ = 1 for the integral Y. We have

v- [ A(s) —ptE-%p
= 1(8,75)—(1 + B,\(0, 8)) ds,
5t )‘(5)

where ®; = ®,(s,t) is defined in (4.1.3). Due to the competition between the estimates
for ®,(s,t), from condition (C1) we are interested in the following two cases only for all
s € [0t,t]:

A% (1)
p(t)

N(t) [ p(s)
st A2(s)
() ps) §)) o2 ®) s

= 2 R (L Ba0.9) " og (14 B(s. )|

' N(S) —2.4(p)
+ 0 /5t log (1 + BA(s,t))d(AQ(S (1+ Bx(0,5)) )

)
A2(t) p(s) —az,q(p)
< o00) 22(s) (1+ Bx(0,5)) log (1 4+ Bi(s,t))

N2(E) [* p(s)
p(t) Jse A(s

Case a: ®(s,t) = (1+ B,\(s,t))_l. Then, it follows

—an.a(p) A(1 + Bi(s,1))
1+ B,\(S, t)

(1 + BA(O, S))

)

~—~
~

SN—

t
ot

t

d(1+ Bx(0,s))

* 1+B>\(O,S)

(1 + B>\<07 8))_(12)”’(1)) log (1 + BA(S7 t))

~—

Thus, we have

-3)+1 p(t)
0

(1+ By(0,8) 2 0r

< ;(((istt)) (14 By (0,60) P (1 + By(0,6) ¥ 8 105 (14 B,(0,1))

Y3(t)
t

ML (14 30,00 (14 B3 0,0) X5 g (14 0,0) S,

+
st A2(s)

Yy (t)
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In order to prove that the functions Y3 = Y3(¢) and Y, = Y,(¢) are bounded we will show that
for a small positive constant € we have
p(0t)
A2(6t)

—&

(14 Bx(0,66) " (1 + By(0,6) ) log (1 + BA(0,8)) < (1 + Bx(0,6t))

This implies to deal with

f1(5t)

N2(6t) (14 BA(0, 5t))_02’a(m+6(1 + B, (0, t))%(i_%)Jrl log (14 B,(0,1)).

Hence, for showing the boundedness of Y3 = Y3(t) we have

log (14 Bx(0,1))
(14 B (0,0t))°

log (1 + Bx(0,1)) <
(1+ By(0,6t))" ~

Y3(t) < Va(t) < (4.3.14)

for large t. Here we used the boundedness of )}, = Y,(¢) which is given in (4.3.12) and
I'Hospital’s rule (cf. condition (B4)) for

log (1+B,(0.1)) _ g ;@((S&é)mf =
+ BA(0,

lim sup

= < lim
t—00 (1 + B,(0, 575)) t—o00

9

respectively. On the other hand, for Y; = Y,(¢) we have

t e log(1+B,\0t)
Y, < log (1 + B (0,t / 1+ By(0,5)) " 'd(1+ By(0,5)) < L <1,
4 g( A( )) Jt( >\( )) ( >\( )) (1—|—B>\<0 5t>)
where we used (4.3.14). Therefore, in the Case a we obtain the desired estimate
A2(t _n(1i_1)_
Y < p((t)) (14 By(0,4) F72)1, (4.3.15)

Summarizing, in the Case a from (4.3.10), (4.3.11), (4.3.13) and (4.3.15) for j + ¢ = 0,1 we
arrive at

A1) 5(%-4)-4-¢
Y < 0 (1+ By(0,1)) (4.3.16)
Case b: ®4(s,t) = F()\/SZ)) In this case we have
y= 2O A G g (g Ps,

F(A®)) Jse Als)
Case b.1: as,(p) > 1. In a similar way as we did in the Case 1 we have

FAM) y - 1(6t)
O D)

(1 + B}\(O7 5t>)7a2,a(p)+1 _ )/\'LQ((tt)) (1 + B}\(O7 t))fag,a(p}kl'

Case b.2: as,(p) < 1. Similarly as in the Case 2 for p > p;(a, m,n) we conclude

FAD)y, (o)
MO Y2t

(1 + BA(O,(;t))_OQ'a(le — MQ((tt)) (1 + B)\(O,t))_az’“(p)+1'

Then, it follows

(F2A0) FFH (14 By(0,56) "
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where we used the condition (B6), that is, B5(0,t) < F?(A(t)). We consider the right-hand
side of the last inequality in both cases a2 ,(p) < 1 and as,(p) > 1. In the case as,(p) < 1
we have

1(0t) (o 3(%-14) a2, (p)+1
/\2(575) (F (A<t))) (1 + B,\(O, 5t))
< )\2((5;2) (F2(A(t)))%(#—%)—%,a(p)-s-l _ 52((6;2) (F2(A(t))) ai.a(p)+1 = Vs (1),

where again we used condition (B6) and s .(p) = a1,.(p) + 2 (
the derivative of the function Vs = YV5(t) we get

— %) Now if we estimate

3=

Vi(t) < [ = 881 +2( — aralp) + 1)9(6.1)| 45 5))()) (A(£)) 22

where from condition (A5) we used F'(A(t)) = . Then, for a large time ¢ by using
p > p3(a,m,n) we obtain

061+ 2(— a1q(p) +1)9(8) <0,
which implies due to condition (4.3.2) the estimate Y, (t) < 0. Similarly, in the case as q(p) >

1 the desired estimate can be derived as in the case s ,(p) < 1. For this reason, we obtain
the expected estimate

§\H

Y S AOF@O)(FEA@)) (43.17)
Case b.3 : as(p) = 1. In the same way as in the Case 3 we obtain

F(A(t))Y< ut) log A(t) — Hot) log A(0t) + L) logA(s))\(S) ds.

A) AR X2(3t) 52 A2(5) A(s)
Then, we get

1(8) o £(55) 100 Als
5 A2(s) (F (A(t))) log A(s)

In order to show the desired estimate we assume that there exists a sufficiently small positive
constant € such that we have the estimate
p(0t)
A2(0t)

+

1

(F2(A()) F T8 10g Ast) < A (5¢).

Thus, it is sufficient to consider the derivative of the function

1(0¢)
A2(5t)

Va(t) = A58 (F2 () F T8 1og A(st).
It follows

\2(5t) /A\(((; ))AE(&)F(A(t))”(ﬁL‘%) log A(5t).

' 9(6,
yﬁ(t)§|:_/61+5+n<;l—;> (5t)+10g11(5t)]5 1(0t)

Here from condition (A5) we used F'(A(t)) = (():( 272) Hence, for a small constant € > 0

and for large time t after taking account of

—61+5+n<%——)7<0,
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which is related to condition (4.3.2), we have V;(t) < 0. Analogously, using the decreasing

behavior of the function ;((t t)) one can also prove by (4.3.2) the estimate

Nl

O prp @)D og age) < 2O (p2(a ) E 8 10g Ar) < A= (58).

A2(t) ~ \2(6t)
Thus, we get
-5(%-3)-1
Y S AOFA®)(FAA@) T (13.18)
Summarizing, from (4.3.16), (4.3.17) and (4.3.18) for j =0 and £ = 1 we get

1
m

w3
(NI
[N

)L AW FAW) (F2A@)) T

Y < max { ),:)((tt)) (14 Bx(0,t))

Consequently, from (4.3.9), (4.3.16) and (4.3.19) we arrive at the statement

>‘1}. (4.3.19)

7
2

PP ()] o S [l @4 (0,8) (1 + Ba(0,8)) " a2,

where @ (0,t) = ®;,,(0,%) is defined in (4.1.2) for s = 0 and @7, (0,%) = 1. Replacing the
estimates for j + ¢ = 0,1 in the norm of the solution space X (¢) we obtain

||Un1||X(t) N ||UHZ))((t)‘

Now let us prove (4.1.7). Thanks to the estimates for the solutions to the family of linear
parameter dependent Cauchy problems with vanishing right-hand side we can estimate

IDF8; K (2, 5,2) #) (||D"u(s, )| = || D] ssvHHLz

5t

Als _1)n _1)\_4J
S, Hnte) <(§<1+B< 0) EE P (s )~ 1D, 2 s
¢ A(S) —% a a
+/& 25,305y (4 Balos ) 1Dt )" = D105, ) s
By Holder’s inequality we obtain

1DIu(s, )" = [1D1*o(s, )" ..
S DI u(s, ) = [DI*v(s, ) o (1D1 s, )5 + D10 (s, 0,

D1 [us, )" = [1D1"v(s, )
S (1D u(s, ) = DI (s, ) | o (121, Ny + 12105, )72,

In a similar way to the proof of (4.1.6) we use again Gagliardo-Nirenberg inequality to the
following terms:

[1D"u(s,-) = [D[*v(s, )| .o [IDI"uls, )| or  [[IDI"0(s,0)]]

with ¢ = mp and ¢ = 2p. Summarizing, we arrive at the following inequality:

1D 0; (Nw = No) || . < 1D1u = 1DI*]| ., ([1210]cy + 1210 )

X(/O @1 (5, )A((S))(1+B( ))“*1)5(;’5)7(1+BA(0,3))*#“#*%%3

(5,25 (1 1 By (s,
/& ( ) A(S) ( /\( ))
Thus, we can repeat the same arguments as we used in the proof of (4.1.6) in order to
estimate these two integrals employing the conditions p > p(a, m,n) and (4.3.2). Finally, we
may conclude the proof of the statement (4.1.7) from the definition of the norm of X (¢). In
this way the proof of the theorem is completed. O

M\N

(1 + B,\(0, s))_ﬁ”ﬁz_gpds).
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4.3.2. Case of super-exponential propagation speed in energy space

Theorem 4.3.2. We assume that the Hypotheses (A1) to (A5), (B1) to (B6), (C1),
(C3) and (C4) hold. Let v(d) = oo and ¥(6) = oo, and we suppose that the following
condition for the functions v =v(d,t) and 9 = 9(d,t) (see (3.1.2) and (3.1.3)) holds:

max {v(8,t); 9(6,t)} = o(log A(t)). (4.3.20)

We choose data (ug,u,) € D} with m € [1,2), n < Z%m and suppose that the exponent p
satisfies

2 <p<oo if n=1,2,
m =P J (4.3.21)
2 <p<pen(n) =5 if n>3.

Then, there exists a constant g > 0 such that for all (ug,u1) € D, with ||(uo,u1)|p: < eo,
there is a uniquely determined globally (in time) energy solution to the Cauchy problem (4.3.1)
mn

C([0,00), H'") NC* ([0, 00), L?).

Furthermore, the solution satisfies the following estimates:

lut, Y2 < (1 + Ba0,6) ™5 58 (g, un) o

(0,
I1DJu(t, )2 S (14 Br(0,) 2372 (ug, 1) [y,
2t

)
p(t)

Proof. We proceed in the same way as we did in the proof of Theorem 4.3.1 to verify that the
integrals V and Y, which are given in (4.3.5), fulfill the desired estimates. For this reason
our goal is only to prove the inequalities (4.1.6) and (4.1.7).

To complete the proof of (4.1.6) we have to estimate ||u™(t,)||x. For this reason, we
begin with the estimate of the integral V for j 4+ ¢ = 0, 1, that is, with

1 1

(1+B(0,0) T D PA@) (F2(A ) F

D7) o, ),

e (t, )] 2 SmaX{

¢ e-ng(x-1)-1 [*Als) T
Vs (I)l,m(ovt)(l + B)\(O,t)) )\(S) (1 + B>\(07 S)) ds,
0

Vi(t)

where we used (3.1.21). Here ®7  (0,t) = 1 and ®{,,(0,t) = ®1,,(0,) is defined in (4.1.2)
for s = 0. Let us define oy 4(p) := 5%p — 5= + 5 and discuss the following cases:

Case 1: ay 4(p) # 1. In this case, it holds

Vi(t) = 0& 114 By(0.9) V(14 B,0,9)
1 M(S) —a (p)+1%

(1 + BA(Oa 5))

0

T 1= ar.(p) A2(s)
B 1 ot )@ ALs)
G [ 0B (520))
(

-0y,
1 11(6t) —aram+1  p(0)
S T an) ey 1+ Br0.01) ~ %)
1 o pu(s) —ara(+1 A(S)
T onm o w LT E0) A ™

where we used the condition (C4). Now we shall show that the integral Vi = V;j(t) is
bounded. For this reason, by choosing an arbitrary small positive constant € we want to
verify the inequality

p(t)

2(1)

(1+B/\(07t))—011,a(17)+1 5A(t)_€
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Then, we show that the following function is bounded:

Vi(t) == ;(g)A(t)E(l + By(0,1)) @t (4.3.22)

Let us consider the monotonicity of V; = V,(t) by estmating its derivative. Indeed, by using
condition (C4) and (3.1.20) we have

Vi(t) < [(‘fﬁ‘;) log A(t) + (1 = an,a(p) | (1 + BA(0, t))al’“(pﬂ;((gA(t)a.

This inequality implies V}(¢) < 0 for a small positive constant ¢ and for large t. Hence, we

get
st st

p(s) ar.a()+1 A(S) o
o A%(s) A ES A(s) 7 A(s)ds S 1.

Therefore, we may conclude that V; = V;(t) is uniformly bounded.

(14 Bx(0,s))

Case 2: a; (p) = 1. In this case we have

N g ass [ AL ) L
Vl(t)—/o o) L ED09) s S S g A

" p(s) As) p(s) o p(s)
< ; /\2(3) A(s)ds 22 (s) log A(s) . —/0 logA(s)d()\z(S))
p(s) o * pu(s) A(s)
g )\2( ) IOgA( ) + BO o )\2(3) IOgA(s)A(S) d87

where we used (3.1.20) and condition (C4), respectively. Then, we show that for a sufficiently
small constant € > 0 we have the estimate

pi(t)
() log A(t)

Therefore, let us compute the derivative of the function

A== ().

V(t) = ;((tt)) A%(t) log A(L).

It follows

Vy(t) < [( — Bi+¢) log A(t) + 1} mAa(t).

Then, for sufficiently large time ¢ and sufficiently small € > 0 we get V,(t) < 0. This shows the
decreasing behavior of V, = Vs (t). Hence, we obtain that Vi = V;(¢) is uniformly bounded.
Therefore, we may conclude the following desired estimate for j + ¢ =0, 1:

1

V <o, (0,0)(1+ Ba(0,1)VEETEE (4.3.23)

Now let us consider the integral Y, that is,

Y APV C) -4 O
Y = [ ®i(s,t) (14 Bx(s,t)) *(1+ Bx(0,s)) ds

st A(s)
t i
_ / B (s, t))’lf((s)) (1+ Br(0,5)) " P (14 By(s,t)) *d(1+ Bs(s,1)),  (4.3.24)
st
where ay ,(p) := — %+ 2p. We define for £ = 0 the function ®{(s,z) =1 . For £ = 1 the

function @} (s, t) ( ) is defined in (4.1.3).
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For j = ¢ = 0 we will discuss the cases as ,(p) # 1 and as ,(p) = 1, respectively.

Case 1: as4(p) # 1. In this case, by using condition (C4) we have

Y = ¢ 1;((?)) (1 + BA(O, S))_O‘2=a(p)ds — t )/\12(( )) (1 + B)\(O ))—aza(md(l + B)\(O, S))
_ 1 1(s) —aza@+1|t K §))0za @)+ p(s)
T 1 —aal(p )[/\2( )(1+B>\(0 s)) st /6t (1+ Bx(0,5)) d()\z(s))}

! /JJ( ) —az.a(p)+1|" ' /J’(S) —az,q(p)+1 A(S)
~ 1 — asq(p) {)\2( )(1+B,\(0 5)) 5t+ 2 (s) (1+ By(0,9)) A(s)ds}'

Then, it follows
(1+ B,\(O,t))%(#*%)y < “2(?) (1+ Bx(0,8)) " a(p) +1(1 LBy, t))f(#fé)
Yi(t)
Ya(t)
+ | ;(( )) (14 By(0,5)) P (14 By (0,0) *(+~ é)i((?)ds.
Ya(t)

V|3

Since a4 (p) = a1.4(p) + (% — 1), we may conclude for large ¢ the relation

Til6) = s (L Ba0.) ™ = 3 0A0 £ A0 S 1

where ), = ) (t) is defined by

j)l(t) = )/\g((tt)) Ae(t)(l + B)\(O,t))_al’a(p)—ﬂ.

Let us consider the monotonicity of Y, = Y;(t) by taking its derivative. Indeed, by using
condition (C4) and (3.1.20) we have

ai,q(p) A(t)

Pt Y 1og A(t) + (1 - ana(p)) | (1 + Ba(0,)” SOLCE

j{(t) < [<_a—|—2

This inequality implies ! (t) < 0 for a small positive constant ¢ and for large . Hence, we

get
st

1(s) ara(@+1 A(5) .
0 )\2(8)(1+B,\(0,8)) As )d < i A(s) A(s)ds < 1.

Therefore, we may conclude that ¥; = Y;(¢) is uniformly bounded.
Now in order to prove that Y, = Y5(¢t) and Y3 = Y3(t) are both uniformly bounded it is
sufficient to show that for a small positive constant £ we have

p(0t
A2 (5t

ot

N

(1+ Bx(0,68) > (14 By (0,6)) 2 %) < Aoty <. (4.3.25)

~—

Therefore, we will consider the monotonicity of the function

372(25) = 52((5;2)/\(&)6(1 + B,\(O,ét)) az,q(p) +1(1 n BA(O t))%(%_%)_
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After performing the derivative of the function V) = ),(t) we obtain the estimate

. L ns1 NAOAGH) 1 A6
Vo) < | =00+ 20+ (= aalp) + 1) s + 5 2) A1) A(0F) og A(D) | A1)
p(9t) (%-3)-1

x (1) log A(t)é(6t) log A(5%) A(8t)F (1 + Bx(0,6)) > (1 + By(0,1))

A2(dt)

Here we used the condition (C4) and (3.1.20) with condition (C3), respectively. Now em-
ploying the condition (4.3.20), we immediately get V,(t) < 0 for large t. This implies that
Y, = Y,(t) is bounded and using (4.3.25) we find

) < [ A A(s)ds S 1.

ot

Hence, we may conclude in the case j = £ = 0 the estimate

Y < (14 By(0,1) 8, (4.3.26)

Case 2: as ,(p) = 1. In this case it follows

_ [TAGs) ) s — b op(s) o )
Y=/ ) (1+ Bx(0,5)) “ds= ; )\Q(S)d(l g (1+ Bx(0,5)))
M( ) ¢ K 1(s)
e 8 (1+B:0.9)], — | log(l—i—BA(O,s))d()\z(S))
u(t) p(0t) " u(s) A(s)
S 3oy 08 (LHBA(0.0) = Gz log (L Ba(0,60) + | 5575105 (1+ Ba(0.5)) Tvds.

Then, it holds

(1+ By 0,0) )y < ;62((752) log (1 + B(0,6)) (1 + By(0,1)) ¥ (7 %)
) . HE-D) M),
+ (s >1 g (14 Bx(0,5)) (1 + Bx(0,t)) A(s)d ,

Similarly, in order to prove (1 + By(0,t))> #(5- 2)Y is uniformly bounded we will show that
for a sufficiently small positive constant € we have the estimate
p(dt)
A2(0t)

N|=

log (1 + B.(0,68)) (1 + Bx(0,) ¥ %) < A(st)—

Then, for an arbitrary positive constant r we have

()
\2(6t)

(%-1)

N3

A(6t) log (1 + B, (0,6t)) (1 + Bx(0,1))

< K(dt)

~ )\2(5t)A(5t)5(1+B)‘(0’5t)) (1+B/\(0 t))%(i %)’

where we have employed I’'Hospital rule (cf. condition (B4)) as follows:

) log (1 + B, (0, (515)) ) 1
lim sup = = sup =<1
100 (1 + Bx(0,6t)) t=oo g (14 By(0,0t))

Therefore, taking account of the monotonic behavior of ), = Y, (t) we get the desired estimate

Y < (14 By(0,0)) £ 3), (4.3.27)
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Now let us consider (4.3.24) in the case j = 1 and ¢ = 0. Then, we get

t

1) (14 By (0,5) P (14 Ba(s, 1) Fd(1+ By (s, 1))

Y= o)
_ M(S) —a2,q(p) 1t
= —2)\2(5) (1 + B, (0, s)) (1 + By (s, t)) N
! 3 M(S) —az,q(p)
+2/& (1+ Bu(s,1)) d(v(s) (1+ By(0,5) ")
< ;((88)) (14 Ba(0,5) " (1 + By(s, 1)) ;
" p(s) 2.0 (p) 1d(1+ B)(0,5))
+ () (1—|—B,\(0,s)) (1+BA(s,t)) H—B—,\(O,s)

where we have used Lemma 3.1.5. Multiplying both sides of the last estimate by the function
(1+ B\(0, t))%(mié)JrE, we find

< ;(((?t)) (14 Bx(0,66)) "7 (1 + By(0,)) (77
o [ EE 4 B(0,9) 7P (14 By(0,0) (DR dLEBAO9)

st A%(s)

To derive the desired estimates for the two summands on the right-hand side of the previous
inequality, employing (4.3.20), we proceed in the same way as we did in the proof of Theorem
3.2.2 to estimate the terms B, = Bi(t) and B, = B,(t). Summarizing, we arrive at the
estimate

1+ B)\(O, S)

=

Y < (1+ By (0,1) 87 (4.3.28)

Finally, we will consider (4.3.24) in the case j = 0 and £ = 1. So, we have

v [ B, (s,1) )

—Q2 a(p)
14+ B)(0,s s,
5 15 B0

where ®; = ®,(s,t) is defined in (4.1.3). Employing condition (C1) we are only interested
in the following two cases, which explains that we have that either the first component or the
second component is dominant in ®; = ®,(s, t) for all s € [0t,¢].

A2(t _
Case a: ®y(s,t) = ( )(1 + Bi(s,t)) ', In this case it holds

p(t)
Y= L By )
_ _A:((tt)) ;((SS)) (1+ Bx(0,5)) """ log (1 + By(s, 1)) ];
+ A:(tt)) 5: log (1 + Ba(s, t))d(;((i)) (1+ By(0,5) ")
< - A;((tt)) ;‘2((2)) (14 B(0,5)) " log (1 + Bi(s,1)) ;
LA [ ) (15 By(0,5)) """ log (1 +B,\(s,t))d(1 + BA(0,5))

1+ B)\(O, S)
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Then, we have

1(t)
A?(4t)

S (14 B(0,88) ™" log (1 + Ba(0,1)) (1 + By (0,1)) FF72)+!

Ya(t)

* u(s) log (1+ Bx(0,8) (1 + By (0,6) ¥~ a1 4 B, (0, 9))
5t A(s) (1+B,(0,5) ™" 1+ B5(0,9)

Y5(t)

+

After applying the I'Hospital rule for v > 1 (cf. condition (B4)) we find

. log (1 + Bx(0,1)) r A(;)(/t\)(t)
SRS T B 060 e P (50A (1) T
(1+ B(0,4t))" ¥6(1 4 Bx(0,1)) 20200 (1 4 B, (0, 6t))
A(t) A(51) 1 |
<hm sup — <1, (4.3.29
A N60) 300 o8 AW (1 1 Bro.a) T )

where we used (3.1.20) with condition (C38). Therefore, to prove that the functions Y, = Y, (t)
and Ys; = Y;(t) are bounded we use the estimate

1(01)
A2(5t)

E\H

(1+ By(0,68) (14 By0,0) D < (14 By(0,60)) 7. (43.30)

Then, we have

3

Wu(t) == Hot) (1+ Bx(0,6t)) ***P*7 (14 B,(0,1)) (-4)+ <. (4.3.31)

A%(dt)

To prove the boundedness of the function Y, = Y,(t) we follow the proof of B, = B, (t) which
is defined in (3.2.30). Hence, by using (4.3.29) we get

o . log (1+ B(0,t)) u(6t)
Yi(t) = (1+B,\(O,5t))7 \2(5t)

_ log (1 + B,\(0, t)v) Iulh) < log (1 + B,\(O,t)v) <1
(1+ Bx(0,6t)) (1+ Bx(0,0t))

1

(14 Bx(0,66) """ (14 By(0,0))F 79

for large t. Moreover, for Y5 = Y5(t) using (4.3.30) and (4.3.31), respectively, we obtain

Y5(t) < log (1 + Bx(0,1)) /t (1+ Bx(0,5) " ""d(1+ BA(0,5)) < log (1+ BA(0,1)) _

1
ot (14 Bx(0,6t))" ~

?

where we used again the I'Hospital rule from (4.3.29). Consequently, we obtain that Y, = Y,(t)
and Y5 = Y;(¢) are uniformly bounded. This implies

A2(t _n(1_1)_
Y < ((t)> (1+ By(0,)) 2 3)71, (4.3.32)
Taking account of (4.3.26), (4.3.27), (4.3.28) and (4.3.32), in the Case a and j+ ¢ = 0,1 we
arrive at the estimate 2t
t _n(1_1)_Ji_
y < AL )(1 + By(0,1)) FETR)E (4.3.33)

™~ p(t)
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At
Case b: ®(s,t) = (*) . In this case we have

F(A))

At) " p(s)
F(A(L)) Jsr A*(s)

Y = (1+ Bx(0,5)) "> d(1+ By(0, ).

Now we distinguish between two cases.

Case b.1: as,4(p) # 1. It holds

Ao am) iy
< B (4 B0.0) T ()Y
Z1(1)
i (1 B0,60) 7 (P (ae) )

Zg(t)

# [ B 0.) 0 F0) D0

Zs3 (t)

Let us begin to estimate Z; = Z,(t) for both cases as ,(p) > 1 and ag4(p) < 1. If a4 (p) > 1,
then we have

W=
N

Zu) < L0 () 208 < 2O, (o ) 368 ),

(1)

w(t)
AZ(t)

estimate the derivative of the function Z; = Z,(t). It follows

where we used the decreasing behavior of the function

from condition (C4). Now we

20 < [ 081w+l — )70 0555 f;(?t)) Xg)) log A F(AH)" 7,
where from condition (A5) we used F'(A(t)) = )\};:t()A:(Qt()t)) Therefore, by using (4.3.20) we

find Z,(t) < 0 for large ¢t. Analogously, if ay,(p) < 1, by using condition (B6) we get

Zl(t) < /J’(t) (FQ(A(t»)*O‘Z,a(p%H(FZ(A(t)))%(m %)

A
< 52(8) (F2(A(t)) """ < ;(((?2) (F2(A(1))) P = Z,(1).

Hence, in the same way as above we obtain

, g 36 9(6, 1) ] 1(5t) A(6t)

—2a1,q(p)+2
20 = |~ oeam og A(0)) 32(61) A(er) 28 MO (FAW®) ‘

+2(—ai.(p) +1)

Thus, if o ,(p) < 1, employing the condition (4.3.20) we may conclude that Z; = Z;(t) is
uniformly bounded for large t. Now, in order to show that the functions Z, = Z,(t) and
Z3 = Z3(t) are uniformly bounded we verify

p(t) —ara(P)+1 ) 2(&-1) .
/\2(525) (1 + B,\(O, 5t)) (F (A(t))) 5 A((St) )
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with an arbitrary small positive constant €. Then, we may conclude

p(01)
A2(6t)

A(6t)°(1 + B, (0, 6t)) —o2a(P)H (F2 (A(L))) 3(&

in both cases as ,(p) < 1 and as,(p) > 1 as well. In the case as,(p) < 1 we have

n

< LD A0 (r(a) 30— LBy () = 240,

where we used condition (B6). We can estimate the derivative of the function Z5 = Z5(t) as
follows:

2000 < [~ 00— )y + 2~ ana) + DIO0 ]

;(g?) A((‘;; log A(£)A(3t)° (F(A(#))) 2™,

>

X

Therefore, employing (4.3.20) we obtain that Z4(t) < 0 for large t. On the other hand, if
a4 (p) > 1, then one can derive for large ¢ the estimate

KA (14 By 0,80) 7 (P2(A0) 8 < A G (A 0) P 51
Summarizing, in the case s ,(p) # 1 we obtain the desired estimate
Y < AOFA@)(F2(a)) FF 3 (4.3.34)

Case b.2: as,,(p) = 1. In this case it holds

F(A()) o 2(4-1)
W(F (A(t))) Y
S 4k tog (14 B,(0.0) (F(A0) )
Z4(t)
+ ;((‘?t)) log (1 + Bx(0,68)) (F2(A(t))) (%)

Z5(t)
t

_l’_

s) | ) (F? HESH RGN
; A2(8)1 g (14 Bx(0,5)) (F?(A(1))) A(s)d )

Zg(t)

Applying the I'Hospital rule for » > 1 (cf. condition (B4)) we find

ADAR)

. log (1+ Bx(0,1)) 4
lim sup 7= lim sup NOD)A(5F) r—1
AOAGH 1 |

< lim sup

oo A(t) A(ét) ¢(5t) logA(t) (1 + B,\(O,(st))T_l 51’ (4'3'35)
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where we used (3.1.20) with condition (C3). Therefore, in order to estimate Z, = Z,(t), by
using the estimates (4.3.35) we find

_ 11(6t) log (1 + By (0,1)) )

[N

40 % ) (1+ Bx(0,6t))" (14 Ba(0,60) (F*(A (1)) * 7
< L Ba0.00) (P a0) ),

Now, using condition (B6) we continue in the same way as we did to estimate Z, = Z,(t)
and we may conclude
> p(0t)
Zy(t) S
0= 3 n)

(1 By0.8) (P 0) ) < o () D <

Now in order to estimate the functions Z; = Z5(t) and Zs = Zs(t) we verify the estimate

(5:-

wl3
S\H
kv\»—‘

WO g (1+ By (0,00) (F2(A0) 5 < Aty

X2(6t)

with an arbitrary small positive constant €. Then, using again (4.3.35) and proceeding in the
same way as we did to estimate Z; = Z3(t) for large ¢, we have

p(0t)
A2(6t)

A(8t)*log (1 + Bx(0,4t)) (F2(A )))%(%f%)

(t
_ log (1+ B»(0,1))
a )\2(5t)A( f (1+ Bx(0,6t))"

< N(étt) A((St)a(FQ(A<t)))%(#7%)+r51

)

Nl

(1+ By(0,38)) (F2(A(£)))

|
>
V)
—
o9
~—

Consequently, in the case as(p) = 1 we obtain the desired estimate

Y < AOFA@®)(F2(A)) FFH7 (4.3.36)

Now taking account of (4.3.26), (4.3.27), (4.3.28), (4.3.34) and (4.3.36) in the Case b and
j+£=0,1 we obtain the estimate

ol=
~—
|
ol
|
~

3

Y < N(O)F (M) (1 + Br(0,1)) (4.3.37)

Combining (4.3.23) and (4.3.37) we may conclude

Vi

IDPOf (8.0 S ey @ (0,0)(1 + By (0,1)) VG072,
where @1, (0,t) = ®1,,(0,t) is defined in (4.1.2) for s = 0. Replacing the estimates for
j+£¢=0,1 in the norm of the solution space X (¢) we obtain the expected estimate.

In order to prove (4.1.7) we proceed in the same way as in the proof of Theorem 4.3.1 and
repeat the same arguments as in the proof of (4.1.6). Finally, we may conclude the proof of
the statement (4.1.7) from the definition of the norm of X (¢). This completes the proof. [
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5. LP — L1 estimates for wave equations with
strong time-dependent oscillations

5.1. Introduction

Let us consider the following Cauchy problem for the wave equation with time-dependent

speed of propagation:

gy — a’(t)Au = 0, (t,x) € ]0,00) x R™, (5.1.1)
U(O,l‘) = UO(:E)’ ut(o’x) = u1($), zr € R", o

where a = a(t) is a positive function. In the case a = a(t) is a positive constant, then L? — L4
decay estimates, or Strichartz estimates are well-known in [41, 42] (cf. [45, 5, 29]). In a
precise formulation such LP — L7 decay estimates on the conjugate line read as follows:

1

C<C1+t) TG (Iletollyy 1+ [l [y (5.1.2)

n—1
B

||Ut(t7 ')7 qu(t, )|

withn >2,p € (1,2], %—i—% =1land N, > n(% — %) Here W denotes the standard Sobolev
space over LP with regularity NV, € N.

The treatment of the Cauchy problem (5.1.1) with time-dependent propagation speed is
quite delicate. In a series of papers, the authors [34, 35, 36, 37] began to study the question
for LP — L9 decay estimates on the conjugate line (p + ¢ = pq) for wave equations with
time-dependent coefficients. The authors generalized the question for such decay estimates
to the wave equation with a(t) = A(t)w(t), where A = A(¢) is a strictly increasing function
and w = w(t) is a bounded oscillating function. They proposed a classification of oscillations
based on the interplay between A and w in the following way.

Definition 5.1.1. We assume that there exists a real v € [0,1] such that the following
estimate is satisfied:

|w(k)(t){ < Cy (1);((2(logA(t))7)k, for large t, k € N, (5.1.3)

where A = A(t) is defined by A(t) := fot A(T)dr. The parameter -y controls the oscillations of
w as follows:

e if v =0, then w has very slow oscillations,

e if 0 < v < 1, then w has slow oscillations,

e if v =1, then w has fast oscillations,

and if the condition (5.1.3) is not satisfied for v = 1, then w has very fast oscillations.

If (5.1.3) holds for v € [0,1], then LP — L9 estimates to the solution u = u(t,z) in (5.1.1)
with a(t) = A(t)w(t) are given by

I MOV} (8, ) e < CYAOAD) ™ 5 (ugll s + usllyp). (5.1.4)

where the real value 79 > 0 depends on . Heren > 2, p € (1,2], %—l—% =1land N, > n(%—%).
Moreover, if the condition (5.1.3) does not hold for v = 1, then no such estimate can be
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found: a counterexample is constructed in [34]. There is a connection between the oscillating
behavior of w and the loss of decay, that is, the size of vy describes how the decay rate differs
from the classical one in (5.1.2). This means, if the oscillations of w are very slow, slow or fast
by assuming some suitable assumptions on the smooth coefficient A\ = A(t) one can expect
LP — L7 estimates as shown above. If the oscillations are very fast, then one can not expect
such type of estimates.

Then, in the paper [33] the authors proved L” — L? decay estimates for Sobolev solutions
to (5.1.1) in the case that the coefficient a = a(t) is bounded, sufficiently smooth and an
oscillating function. Here let us point out that the authors studied the limit case of (5.1.3),
where A(¢) = 1 which is not covered by the above cited results. The main idea of their
approach is to gain the WKB representation of solutions to the ordinary differential equa-
tion corresponding to (5.1.1) through the Fourier transform, and apply the stationary phase
method to the Fourier multipliers.

Our main goal in this chapter is to derive L” — L? estimates for Sobolev solutions to the
Cauchy problem (5.1.1) in the case that the coefficient has very fast oscillations. To do this
we want to modify the conditions to allow stronger oscillations. More precisely, we want to
study the remaining case of the above cited papers. Our approach follows similar arguments
used in the papers [34, 35, 36, 37] and [33], and based on explicit representations of solutions.
There are two major differences to the situation of the cited papers: the hyperbolic zone
is smaller (which makes it necessary to invoke a new argument for small frequencies) and
the weaker assumptions for derivatives make it necessary to perform more diagonalization
steps. In consequence, representations by Fourier integrals contain an inhomogeneous phase
function.

We know that the time-dependent coefficients makes the problem more difficult, especially
oscillating coefficients. Therefore, if one proves some decay estimates, then we should consider
a balance between the coeflicients. It turns out that it is useful to write

a(t) = Mt)w(t)
where

e A = \(t) describes the increasing behavior (improving influence on L? — L9 decay
estimates),

e w = w(t) describes the oscillating behavior (deteriorating influence on LP — L9 decay
estimates).

Some tools are used from the paper [19]. In this paper the authors only studied L? — L?
estimates of energy solutions to (5.1.1) with a(t) = A(t)w(t), where A = A(¢) is a strictly
increasing function and w = w(t) is a bounded function. By using the CM property of
A = A(t) and w = w(t) and the idea of a stabilization condition they proved the two sided

energy estimate
1

Alt)
where the nonnegative constants Cy and C; depend on the data and E,(u)(t) is defined as

EA(u)(1) = 3 ((OIVult, )3 + et )]32)

Co < —=Ex(u)(t) < Cy,

5.2. Representation of solutions

We consider the following Cauchy problem:

uy — N (H)w?(t)Au = 0, (t,x) € [0,00) x R™, (52.1)

u(0,z) = up(x), w(0,z) =us(x), zeR™ o

Here A = A(t) is an increasing shape function and w = w(t) is a bounded oscillating function.

Then, one has to explain the interplay between both parts. This can be given by the following
conditions.
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5.2.1. Assumptions

We suppose that the smooth time-dependent coefficients A = A(t) and w = w(t) satisfy the
following conditions:

(A1) A(t) > 0 and N'(¢) > 0 for all times ¢ and the derivatives of X satisfy the conditions

dEN(t)] < /\k/\(t)<2(é))>k, forall k=1,2,-,

where )y and all )\, are positive constants and A(t) = 1 4+ fot A(7)d7 is a primitive of
A);

(A2) ¥(t) > 0 and ¥'(t) > 0 for all times ¢ and the derivatives of 9 satisfy the conditions

ORA0)

J(t)
o) =

o(t)’

I(t)

9 o

k
<9, |dEo(t)| < ﬁkﬁ(t)( ) forall k=1,2,-,

where ¥y and all 9, are positive constants and O(t) = 1 + fot Y(7)dr is a primitive of

V(t);

(A3) for M > 2 the following estimate holds:

[ 2@ e v < e
t

(A4) 0 < ¢y <w(t) <c and the derivatives of w satisfy the conditions

|dfw(t)| < E(t)fk, forall k=1,2,---,
where = = =Z(t) is a positive and continuous function satisfying the compatibility con-
dition

o[t A(t

o <z s,

A(t) A(t)

here © = O(t) is a strictly increasing continuous function with ©(0) = 1;

Alt)
A(%)

In order to develop L? — L7 decay estimates for the solution u and its partial derivatives
ug, and V,u to (5.2.1) we investigate solution representations by using Fourier multipliers.
For this reason we apply the partial Fourier transformation with respect to spatial variables
to (5.2.1). Then, we get that 0(¢,&) = Foe(u(t, x)) (¢, €) solves the Cauchy problem

(A5) the function

E(t) is decreasing.

{@u XD (E)[€[2 =0, (1,€) € [0, 00) x R, (5.2.9)

@(ng) = @0(€)7 @(075) = @1(6)7 é € R"”.

In this chapter we apply a diagonalization procedure to the Cauchy problem (5.2.1) with
sufficiently smooth time-dependent coefficients A\ = A(t) and w = w(t) aiming to find a
representation for the solution by Fourier multipliers. The core of this strategy was given in
[49] and further developed in [36, 37, 33, 16, 19] for the treatment of the large-time behaviour
of uniformly strictly hyperbolic systems.
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Division of the extended phase space

To find a WKB-representation of the solution to (5.2.2) we divide the extended phase space
[0,00) x RE into three zones: the hyperbolic zone, the oscillation subzone and the pseudo-
differential zone. This division enables us to use the hyperbolicity of our starting problem
(5.2.1) and tools from hyperbolic theory in the hyperbolic zone.

For a given N > 0, these zones are defined as follows:

e hyperbolic zone:
Zio(N) = {(,€) € [0,00) x RZ : ©@1)|¢] > N},

e oscillation subzone:

Zore(N) = { (£,€) €0,00) x RZ : ©(1)[¢] < N < A@)lel },
e pseudo-differential zone:
Zpa(N) = {(£:€) € [0,00) x RZ : A(t)[¢] < N }.

We introduce separating lines between these zones as follows:

e by tig = t(|¢]), we denote the separating line between the oscillation subzone and the
pseudo-differential zone, which solves A(t¢)[¢| = N;

e by ¢ = t(|£]), we denote the separating line between the hyperbolic zone and the
oscillation subzone, which solves O(fj¢|)|¢] = N.

t

ZOSC s 1
Zhyp Zy

1yp

0 N [

Fig. 5.1.: Division of extended phase space into zones

Remark 5.2.1. We have that the hyperbolic zone is Zy,,(N) = Z;

hyp

(N)U Z|

hyp

(N). In the

zones Zi (N), Zos(N) and Z,q(N) we consider only small frequencies and in the zone
Ztyp(N) we consider only large frequencies. The zones Zj5 (N) and Z{  (N) will be defined

and considered in the next section.

5.2.2. Considerations in the pseudo-differential zone

We define V (,&) = (A(t)|¢]0, D,d)" . Then, from (5.2.2) it follows

QV:( 2080 Amm>v
MOl 0

A(t,€)
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We denote by E,q = Epq(t, s, ) the fundamental solutions of (5.2.2) for any 0 < s < ¢, that
is, the matrix-valued functions solving the Cauchy problem

DtEpd(ta Saf) = A(tvg)Epd(t7 Sa§)7 Epd(s7 375) =1

Hence, we can write V(t,§) = Eya(t,0,8)Vp(§). The fundamental solution E,q = E,q(t, s,§)
can be written as an infinite sum via Peano-Baker series

Epd(t,s,é.) = I+ Z/ A(tlgé) / ! A(tg,g) .. ./jl A(t]7£)dt] .. dtl
For (t,&) € Z,a(IN) we have

' ' "N(7) A(t) A(t)
< < — < 7
LyA@gwh_c%tlA@mT+s 4 < CAMIE +n T8 < ON 41 T
where we used the Euclidian norm of the matrix A = A(¢t, ). Hence, we get
' A(t)
< 2N\Y
exp (/S ’A(T7€)‘d7> ~ )\(S)'

Following the considerations from the paper [19] we have the following two statements.

Proposition 5.2.1. Assume that A\ = \(t) satisfies (A1). Then, there exists a real 6 € (0,1)
such that

A(t)° /t A7) 0dr < A(t).

Proposition 5.2.2. We assume that conditions (A1) and (A4) are satisfied. Then, the
fundamental solution E,q = E,q(t,s,&) satisfies the following estimates for 0 < s <t < tyg:

A(t A(E) oAt
(’Epd(ta&f)’) S < \flf(fgt) d )(\(35)1—6 (®) )7

where K (t) = [ N(T)dr < A(t)A(t).

5.2.3. Considerations in the oscillation subzone

In Zy.(N) we will carry out only two steps of diagonalization. Two steps of diagonalization
allow us in the study of Fourier multipliers to apply the Hardy-Littlewood theorem not only
in Z,q(N), but also in Z.(N).

Definition 5.2.1. The time-dependent amplitude function f = f(¢,£) € C(Zus(N)) be-
longs to the symbol class Sy{mi, ms, mz} with infinite smoothness, if it satisfies the symbol-
like estimates

DEDEF(E,€)] < Caglel™ 1 A1 E(1) " (5.2.3)

for all (¢,£) € Zose(N) and all multi-indices o and all k. Here the constants C, ;. are inde-
pendent of N.

We introduce V (t,€) = (A(t)|€], D;9)" . Then, it holds

DiA(t)
D,V = " MOREY I O 1%
A @)l 0 0 0

Let us carry out the first step of the diagonalization procedure. The eigenvalues of the
first matrix are +A(t)w(t)|£]. Thus, the matrix of eigenvectors P = P(t) and its inverse
P~ =P7(t) are

PO =55 (uly wtr ) P05 (20 1)
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Defining V) := P~1(#)V, we get the transformed system
D,V® = [Do(t,€) + Ro(t, )]V,

Dy(t,&) = < Al 0)IE] 0 ) € Sy{1,1,0}

where

0 —A)w(t)[¢]
and
D(Mtw(t)) (1 -1
2)\(t)w(t)< -1 1 ) € Sn{0,0,1}.

(Dt - Dl(tv 6) - R (t7 5))‘/(1)(757 5) =0,

Ro(t, &) :=

We can write

where
Dy (A(t)w(t))
D (1 L () ()’f“'_ 2X(t)w(t) 0
1(t,€) = 0 Di(ABw(t)
—AMOw ()€l + =550
and
0 _w
Rit:8) = | _poweey g0 |
A w(t)

Note that Ri(t,§) € Sx{0,0,1}. The next lemma shows that it is reasonable to carry out
one more step of the diagolization procedure in Z...(N).

Lemma 5.2.3. Assume (A1) to (A3). Then, there exist matriz-valued functions N, =
Ni(t,&) € Sn{0,0,0} and Ry = Ra(t,§) € Snv{—1,—1,2} such that the following operator-
valued identity holds:

(D = Di(t,€) = Ri(t,€))Ni(t, &) = Ni(t,€)(D; — Di(t, &) — Ra(t,€)),

where Ny = Ny(t,€) is invertible and belongs together with its inverse Ny ' = Ny '(t,&) to
Sx{0,0,0}.

Proof. Let us carry out the second step of diagonalization procedure. Therefore, we introduce

R 0 _ D)

1 T, —T 4 w

N, &) = RED ro = | D.o@Ww®) (% @) e Sy{-1,-1,1},
— 0 (D ()]

T T

Ni(t, &) = T+ NW(t,€) € Sy{0,0,0}. For sufficiently large time ¢ the matrix N, = Ny (t,§)
is invertible with uniformly bounded inverse N=' = N~!(¢,£). Now we can follow the usual
procedure of the diagonalization. Let

BW(t,&) = DiNW(t, &) = Ra(t, )NW(t,€) € Sy{-1,-1,2},
Ro(t,&) = —N"'(t,§)BY(t,€) € Sy{-1,—1,2}.
Then, we may conclude
(Dy = Di(t,€) = Ru(t, ) Ni(t, §) = Ni(t,€)(D: — Di(t,€) — Ra(t,€)).
This we wanted to have. O
Remark 5.2.2. If Ry = Ry(t,&) € Sn{—1,—1,2}, then we have for all ¢ < t < t~|5‘ the

estimates

A
/£R2 S dT</s| E7IA(T)TIE(T) T S Alte) ‘/|s/\ “12(r)2dr < @E?SS

where we used A(t)¢)|¢| = N and condition (A3).
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Example 5.2.1. Let A(t) = (a+ 1)(1 4+ ¢)* with a > 0. Then, we get
Ay =0 +t)*™ and O@) =1+t O0<y<a
Moreover, for M = 2 we have

2(t) = (1+t)", 1>/@>1+%.

Then, from Ry (t,£) € Sv{—1,—1,2} and A(tg)|§| = N we find

/ Ro(r, € d7</ €A () E () 2dr = ;fA(tK)/t AF)IE(r)2dr

1 «
= Oé]_\{; (1+t|5|) +1/ (1+T> aiQndT
tie|

. o+ 1 a+1 —a—2k41 —2Kk+2
= N(_a_QﬁJrl)((le) (1+1) —(1+tg) ")

S+ ’5|s|)_2ﬁ+2

Here we used the following relations:
k<l iff —2xk4+2>0,

Hzl+¥ iff —1>—a—2k+1+7.

Example 5.2.2. We consider A(t) = e’. Then, we obtain
Alt)=¢€¢" and O()=¢€", 0<r<l.

Moreover, by M = 2 we have

r—1

[1]

(t)y=e€" 0>kr>

Now, from R,(t,€&) € Sy{—1,—1,2} and A(ti)¢| = N we find

/t:R2(T,§)dT§/E €A () 1E(r)2dr

1 t
At A7) PE(T) 2dT = —elel / (—1=28)7 g
‘5‘ / T = Ne ; e T

tig| 1€]

S ——— PP S DL 6—2'“‘45\) < g 2nte
N(—l — 2K) ( ~ ’

where we used

1
O>ﬁ2TT 0> —r>—1— 2k

Now we want to construct the fundamental solution E,s. = Eus(t, s,§), teg <s<t< 5\5\7
for the operator
-Dt - Dl(ta g) - Rl(t7 g)

For this reason after two steps of diagonalization it is sufficient to construct the fundamental
solution satisfying the system

DtEQ(t7 S, é) = (D1<t7§) + R2(t7 é))EZ(ta S, g)? E2<Sa S, f) =1
We begin to solve the diagonal system

D,&E(t,5,8) = D1(t,8)E(t,s,§), &Eas,8,6) =1, 0<s<t.
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Its fundamental solution is represented by
t
Eut.s.€) = exp (i [ Di(6.)d8) = diag (117 00 (117 010,

We make the ansatz Es(t, s,§) = & (t, s,£)Qa(t, s,€) with a uniformly bounded and invertible
matrix Qs = Qs(t, s,&). It follows that the matrix Q, = Q(t, s, ) satisfies the system

D,Qs(t,s,8) = Ra(t,s,£)Qa(t,s,£), Qals,s,&) =1 (5.2.4)
with the coefficient matrix
Ry(t,s,€) = Ea(s,t,€)Ra(t, §)E (L, s,€). (5.2.5)
Taking account of R(¢,&) € Sy{—1,—1,2} we obtain
|Ra(t,5,6)| = [Ra(t,6)| S [€I7 M) TTE(®) 2

The solution Q, = Qs(t, s,£) can be represented as Peano-Baker series

Q(t,s,f):I—F Zk R(t787§) IR(tv‘g?g)"' k_lR(tha"g)dtdt
2 ; /S' 2\t1 /S 2\t2 /S' 2\VEk k 1

Due to the representation of Ry(t,s,£) in (5.2.5) we have
R2(t7 74:|§| ) é) =& (t|§|a t, £)R2(ta 5)82 (t, t|§| ) 6)

B Téll) rém)e*?i\ﬁ\ Jije Mw(r)dr
- % EON(T)w(T)dT ’
2D LI M) 2

Applying Lemma 5.2.3 we deduce
RQ = R2(tvt\£\7£) € SN{ila *]-a 2}

The standard construction of Q; = Qs (t, s, &) in terms of a Peano-Baker series implies uniform
bounds for this matrix as follows:

|Qa(t, b, €)| < exp </t |§|1A(9)1E(9)2d9>

tig|

< exp (A(tm) /tI Z A(0)15(0)2d9> < exp (gg'é'l))), (5.2.6)

where we used A(tg)[€| = N.
Remark 5.2.3. The micro-energy V (t,§) = (A(t)]f\f),Dt@)T can be represented as

V(e = L PN (80,5 005 OM (5.0 PO V(0. (627
with uniformly bounded coefficient matrices Ny, Ny ' € Sx{0,0,0}.
Proposition 5.2.4. We assume the conditions (A1) to (A3). Then, the fundamental so-
lution Ey = Es(t,s,§) to
(D — D1 (t,£) — Ra(t,€)) Ea(t, ,6) =0, Eao(s,s, &) =1

can be represented as

Es(t,s,&) =~ A®) Es(t,5,6)Qa(t,8,€) forall tg <s<t<tg

A(s)
with an amplitude Qy = Qs(t, s,§) satisfying the following estimates:
A(t -
[Qa(t,s,&)] < exp ((;(85))> for all tig < s <t <t (5.2.8)
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5.2.4. Considerations in the hyperbolic zone

In Z,,,(N) for the further considerations we need suitable classes of symbols.

Definition 5.2.2. The time-dependent amplitude function f = f(t,£) € C°°(Zyyp(N)) be-
longs to the symbol class Sy {mi, ms, mz} with infinite smoothness, if it satisfies the symbol-
like estimates

(DEDEF(EE)] < Conle™ A1) ™2 (0) 7 (5.2.9)

for all (¢,€) € Zny,(IN) and all multi-indices o and all k. Here the constants C,  are inde-
pendent of N.

Proposition 5.2.5. The classes Sx{mi, ma, m3} have the following properties:
1. Sx{my,mqo, m3} is a vector space;
2. Sy{my, ma,ms} — Sy{my + k,ma + k,mz — k} for all k > 0;
3. Sx{mi,ma,mz} - Sy{m/i,mh,ms} < Sx{mi + m}, my + mb, ms+ mi};
4- DfD?SN{ml,mmm?)} — Sn{my — |a|,ma, ms + k};
5. Sy{—M,—M,M + 1} — L L{(Zpyp(N)).

Let us introduce the micro-energy V (¢,€) = (A(t)|¢]9, Dt@)T. Then, we get

DiA(t)
D,V = / AlD)IE] V4 A 0 V.
ABw?(@)E] 0 0 0

Thus, the matrix of eigenvectors P = P(t) and its inverse P! = P(t)~! are

ro- (L ) i

Setting V) := P(t)"'V, we get the transformed system

DtV(l) = [DO(t, 6) + RO(ta 6)] V(1)7

where

A)w ()]
0 —A)w(t)[¢]

Di(ABw(t) (1 -1
e (-1 1) €Sei0o

(Dt - Dl(t7 5) - Rl <t7 5))‘/(1)(757 5) = 07

DiA(B)w(t)
Dyt [ O o
0 () ()|£‘+ ;)\t)w(t

Dy(t,§) == < ) e Sy{1,1,0}

and
RO (t7 g) =

We can write

where

and
0 _DtE\A(t)w(t))
2 w
Ri(t,8) ={  bp.owew) 8) ® .
2X(H)w(t)

Note that R1(¢,€) € Sn{0,0,1}. Now we want to carry out further steps of the diagonaliza-
tion procedure. The goal is to transform the previous system such that the new matrix has
diagonal structure and the new remainder belongs to a hyperbolic symbol class. To prove
L? — L7 estimates we need diagonalization mod Ry € Sy{1 — M,1 — M, M}.



216 5. L? — L7 estimates for wave equations with strong time-dependent oscillations

Lemma 5.2.6. Assume the conditions (A1) to (A3). Then, there exists a zone constant
N > 0 such that we can find matrices with the following properties:

e the matrices Ny = Ni(t,€) € Sy{0,0,0} are invertible and N;7* = N, *(¢,€) € Sx{0,0,0}
for all (t,€) € Zp,,(N);

e the matrices Dy, = Dy(t,§) € Sx{1,1,0} are diagonal and
Dy, = D(t,€) = diag (7 (t,€), 74 (1,¢))
with [7f (t,€) — 7 (t,€)] > CuA(®)I€];

o the matrices Ry = Ri(t,€) € Sn{1 — k,1 — k,k} are antidiagonal;

such that the following operator-valued identity holds:
(Dy = Di(t, &) — Ri(t,€)) Ni(t, &) = Ni(t,6)(Dy — Diga (t,€) = Risa (8,6))
for all (t,€) € Zp,,(N).
Proof. Here we refer to [19]. We denote the difference of the diagonal entries by
Ou(t, €) =7/ (t,6) — 7 (¢, ).
Assume that we have given a system by D,V*®) = (D, (¢,€) + R (t,€))V® with
Dy (t,§) = diag (le(tvf)vﬂ;(taf)) € Sy{1,1,0}

satisfying
|0k (8, )] = [ (t,€) — 7 (1, €)| = CuA(B)I€]
and an antidiagonal remainder Ry, = Ry(t,€) € Sy{1 — k,1 — k, k}. Then, we set

0 R;:z)
N(k)(t,f) = ( R (2D O ) € SN{_kv _k7k}7
L 0

O
such that N (t,€) = I+N®) (¢, &) is invertible for a sufficiently large zone constant N. Indeed,

1 1
INW(E O] < 6] A) 21" < EEIOE < 0as N oo

Furthermore, by construction [Dy(¢,€), Ny (t,€)] = —Ri(¢,€). So, we may conclude
BEHI(E€) = (Di = Dyt €) = Ralt ) Ni(t, €) = Ni(t, €) (Dr = Di(1,€))

= DtNk 13 5 [ch t,f Nk(tvf)] _Rk(t7£)Nk(t’£)
= DtNk(taf) - Rk( 75) (Nk(tag) - I) € S]Jy_k_l{_kv _knk + 1}'

After defining
Dy11(t,€) = Di(t,€) — dlag( (t,¢)B k+1)(t 5))
R (t,€) = diag (N (£,€) BV (1,€)) — N (8, BH(¢,€),
we obtain the operator equation
(D — Di(t,€) — Ri(t,€)) Ni(t,€) = Ni(t,€) (Dy — Diga (£, €) — R (£,6))

with Dyy1 € Sy{1,1,0} and Ryy1 € Sy{—k, —k, k+1}. The estimate for B**+V (¢, £) implies
that

C
|7',j+1(t,§) - 7'1;+1(taf)| = |T,j(t,§) - 7'1;(7575)| - )‘(t)|§|ﬁ

If we choose N sufficiently large enough, then the statement is proved. O
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Finally, we obtain for k = M a remainder Ry = Ry (t,§) € Sy{1 — M,1— M, M}, which
is uniformly integrable over the hyperbolic zone.

Lemma 5.2.7. The difference of the diagonal entries of D), = Dy(t,§) is real for all k =
1,---, M.

Proof. Here we refer to [19]. We proceed by induction over k and follow the diagonalization
scheme. We will show that the above statement and the conjectures

(Hy) Ri. = Ri(t,€) has the form Ry, =i (50 Bok> with complex-valued 8y = (¢, &) for all
k
k=1,---,M,

are both true.
For k = 1, by the definition of D; and R, we see that the assertion (H;) is satisfied with

(A(Dw(t)) (A(w(t))
A(H)w(t) AOw(t)

Now we assume that (H}) is true and we will show that (Hy) implies (Hjy1). The construction
implies

Br=pi(t,€) = and 77" = 77 (£, €) = EAO)w(t)[¢] — i

®(t,¢) = (Bok _05") with det N*®) = W <e<1

with a suitable choice of the zone constant N. Following [16, 18, 19] and setting

EAGI

dk - dk<t 5) (52(t é—)

we obtain

N YDy, + Ri) Ny, =

(dl&g ( — dka — 6kdk, Tk dka_ + 5kdk) + dkRk>

1—d,
and B
1 P9, 0 0 -8
—1 — Ok ték o t5k
et = 2 | (5] a)*(a )
such that
/Bk Bey 5k /Bk 5k By _ 1 _ 5k Br
(5k 5k> <5k 5 o 5k)_ atdk_Re(ak 5k)
implies

1 Br - Bk . Oudy
+ _ 4+ _ _
Tir1 = Th :qil_dk(dk(sk—i—lrn((skaték)) ZZ(dk—l)'

Hence d;41 is real again and Ry, satisfies (Hjyy1). Therefore, both statements are true for
alk=1,---, M. O

5.2.5. Some auxiliary estimates

In order to apply the stationary phase method we need some symbol-like estimates for the
amplitudes of suitable Fourier multipliers. Let us begin with the following important remark
to simplify the calculations.
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Remark 5.2.4. Let g = ¢g(|£|) be a sufficiently smooth function satisfying the estimates

|Dila(l€N] <l
for all £ € R™. Then, we have for all multi-indices a the estimates

[Deg(EN] < Ie7
Indeed, applying Faa di Bruno’s formula we get that

||

D) = | 3 Cana (D TT D]

J=1 1+ +Bj=a

]

<> ¥ |cﬁl,‘..,5j||g<j><m><\[[10?‘

i=1 BittBj=a

el

||

<Y Y (G|l gD

J=1 B+t pj=a
< Calg] 7.
Proposition 5.2.8. Let us assume that t¢ is the separating line between the oscillation

subzone Z,s.(N) and the pseudo-differential zone Z,,;(N). Then, we have the following esti-
mates:

D¢ [ (5.2.10)

t ~Y

|£|‘ )\( )

for all multi-indices o with |a| > 0.

Proof. Let us consider the first derivative with respect to £ of £|¢| as follows:
Altig)[€] = N implies  digti At €] + Altig) = 0.

Then, we obtain

Altig) -y
digitig) = — = ¢ 5.2.11
%= 3 = T (o211
Now, we assume that
| Digitiel] < i )Ifl 1 (5.2.12)

holds for all 1 < k& < M. Multiplying (5.2.11) by A(t¢|) and taking M derivatives with respect
to |£] gives

g (dietie Mtie))) = —diy| (ﬁ)
> Chdit i dld A (tg) = (=1)M (M +1)!

GRS

respectively. So, we have

| g Atien)| < |§‘M+2 + Z |l " teidjg " At (5.2.13)

Applying Faa di Bruno’s formula we get

mn n! mir+ma—-+-1TMn =
dig Atie) = Abmatmatetma) (g T (degtie) ™
=1

my!11mimyl21me ..o Inlms
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where the sum is taken over all n-tuples of nonnegative integers (mq, ms, - -- ,m,,) satisfying
the constraint
1-m+2-me+---+n-m, =n.

The assumption (A1) together with (5.2.12) yields the estimate
Alte) - ms
Ay Ate)| S Y At
| At <D ('5')(A(t§| H( M) ‘§|J+1)

) e
SO M) (ii?z))

>m1+m2+'“+mn

>m1+mz+~~~+mn 1
mitmo+t-+my
(/\(t\f\)’f‘) ‘§’m1+2m2+m+nmn
At
< (§|j). (5.2.14)
Combining (5.2.13) and (5.2.14) we obtain
1 = 1 Alte) 1
d¥ T e At + < .
et M to)| < gz + 2 Sere gt~ g
Then,
1
dM+1t < —
e el < Xgger
This completes the proof. O

Proposition 5.2.9. Let us assume that f\&\ 1s the separating line between the oscillation
subzone Z,s.(N) and the hyperbolic zone Zy,,(N). Then, we have the following estimates:

1

ay 1—|af
[Detie| < 5 il (5.2.15)

for all multi-indices o with |a] > 0.

Proof. We will apply the principle of induction as we did in Proposition 5.2.8. Let us consider
the first derivative with respect to £ of t|¢| that can be obtained directly from the following
calculations:

Otg)lEl = N implies  digtieI(Ee)|€] + O () = 0.
Hence, we obtain

A Q(Elél) _ N 2
gty = IEeld o )IS\ (5.2.16)

Now, let us assume that
~ 1
Dt S —=—¢7 " 5.2.17
| Dieitil] < ﬂ(tm)'g' (5.2.17)

holds for all 1 < k < M. Then, following the same steps to the proof of Proposition 5.2.8
and using condition (A2) the proof is completed. O

Proposition 5.2.10. We assume that g = g(|¢|) with & € R™\ {0} is an infinitely differen-
tiable function. Then, it holds

dlgleg (1€h _C(kl,kg,"' , eg IEI)Z Z Hdlélg ‘§|

j=1 ki+-+kj=mi=1
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Proposition 5.2.11. Let us introduce A, (t) = f(f AT)w(T)dr. Then, the following estimates

hold:
Alter)
A(tig)

|Dg (Au(tie)lE])| < Ca\ﬂ*'“‘( E(t|£|)>1_|a‘7

where |a| > 1.

Proof. We start with the following identity:

|Dg (Au(tie)IE])| =

> Cap DA (te) DBZIS!‘-

B1+P2=c

Thus, we need to estimate |D§1Aw(t|€|)|. It holds

|DeMos(tie))| = ‘DE/O : )\(T)W(T)dT‘
= |A(tie))w(tie)) Detie)]| < Atie)w(tie)) | Detie| < €172
Moreover, we have
| DA (tie)| = ’Dg(A(t\a)w(%)Dstwl)‘
< X (te)|w(tie) [ Detie|* + Altie)|w' (e || Detiel|* + Atiew(tie )| D2l

A A
SIE+ E<t|g|>—1£$rf\—3 S Ete) ™ A((;;; €17,

where we used conditions (A1), (A4) and (A5). Therefore, by the induction principle we
may conclude the estimate

| D¢ Au(tie)| S 16177 ( M) 5(%)) o (5.2.18)

On the other hand, we have
| D& €] < Cp, €]~ (5.2.19)
The estimates (5.2.18) and (5.2.19) help us to conclude the desired inequality. O

Definition 5.2.3. The function h = h(t, ) belongs to symbol class Sy {my, my, ms} with
restricted smoothness [y, [ if it satisfies the following estimates:

| DED;R(E€)| < Caulél™ N ™E(t) ™
in Zy,,(N) for all |a| <1y and k < [;.

Obviously, it holds

1,1

S {my, ma, ms} < Sy {my, my,ms} forall 1) <ly, 1) <ls.

Using the definition of Z,,(N) we have
S my —k,my — k,ms + kY — SWP{my, my,ms}  for all k> 0.
This property will be essentially used in the diagonalization scheme.

Proposition 5.2.12. The family of symbol classes Sﬁ\}’lz{ml,mg,mg} generates a hierarchy
of symbol classes having the following properties:

11,1 :
o Sy {myi, ma, m3} is a vector space;
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° Sf\l,’b{ml, mg,mg}Sf\}’lz{m’l,m’Q, my} — Sﬁ&,’lz{ml +mj, mg +mb,ms +mi};
o DFDg Sy {my, ma,ms} — Skl — al, my, ms + k} ;

o SYM{1—M,1— M, M} < LEL} (Zy,,(N)).

The next proposition shows us that the multiplication by e*é/A«(tic)) is not a well-defined

operation on the symbol classes Sy{m, my, m3}, this means, that we remain in the hierarchy
of symbol classes after deriving an estimate.

Proposition 5.2.13. The following relation holds for all h = h(t,§) € Sy{my, ma, ms}:

’DfD? <€:‘:i1\w(t\€|)‘§‘h(t, 5)) ‘ < C(Lk]§|m1_|a‘)\(t)m25(t)_m3_k (2((1;)) (tlﬁl))

=l

Proof. We choose h = h(t,&) € Sy{m1, ma,m3}. Then, it holds
’DfD? (eiiAw(t|s\)\§\h(t7 g)) ’ - ’ Z Ca, azDg‘leii|5|A“(t'5‘)DfD?2h(t, 5)‘
a1 tas=«
By the aid of Proposition 5.2.10, it is enough to consider the following estimates:
Z Cal,a2DII?I1\eii\E\Aw(%\)Dngz h(t, g)’

a1taz=a

la]

< Y G (Cllan) ey S [T (el ()| )| DEDEA(E©)|

aytaz=a J=1 b+ lj=|a| i=1

o] 1—¢;
S5 DURCHN (CZ%) SR SIS § (Sl L=(00) B [ ]
ajtoaz=a J=1 b4 Hlj=|a; | i=1 |§|

) S (M) 2 wnt (Ae) = VY e s
< ¥ (0 3 (=) 14 (R =) ) IDEDEn )
—laa]

S e v = ) I R U R

a1 tas=a

—lal

Mtiel) =y

< Cale™ A2 (T E )

where in the third line we have used Proposition 5.2.11. O

Remark 5.2.5. Proposition 5.2.13 tells us that it is allowed to extend the phase function

i]{\/ A(r)w(r)dr in exp(ii!{\/t A(T)w(f)df),

tig|

which we use later to get LP — L9 estimates to the phase function

:I:]§|/ AT )w(T)dT in  exp :l:z]§|/ AT dT)

Here we use that the remainder term

exp (£ ilg] /Otg A(7)(r)dr)

[Dige 1] 5 |§||a<1);((i|£|)) (te |))7‘a|.

Yiel) into the amplitude.

satisfies

Thus, we can put the term e®éA«(
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Construction of the fundamental solution in Z,, (V)

Now we want to construct the fundamental solution Ely, = Ehyp(t, s, &), tjeg < s < t for small
frequencies £ and 0 < s <t for large frequencies &, respectively, for the operator

Dy —Di(t,€) — Ra(t, ).

For this reason after M steps of diagonalization it is sufficient to construct the fundamental
solution satisfying the system

-DtE]\/I(tu S, f) = (DM(ta 5) + RM(tu é))EM(t7 S, 5)7 E]V[(Sa S, 5) = I
At first we solve the diagonal system
Dth(t,S,g) :DM(t,g)g]\/[(t,S,f), SM(‘S?S?{) =1, 0<s<t.

Its fundamental solution is given by

t
Enilt,5,€) = exp (i / Dy (0,€)d0) = diag (¢ 7 OO, ¢ [ 7a0.000),

We make the ansatz Ey(t,s,§) = En(t,s,€)Qun(t, s,&) with a uniformly bounded and in-
vertible matrix Qy = Qu (¢, s,€). It follows that the matrix Qy = Qu (¢, s, ) satisfies the
system

DtQM(ta 3,{) = RJW(ta 8,§)QM(757 37‘5)7 QM($7 37‘5) =1

with the coefficient matrix
Ry (t,5,8) = Em(s,t, Rum(t, E)Em(t, 8, €). (5.2.20)
Taking account of Ry = R (t,§) € Sy{1 — M,1 — M, M} we obtain
| Ras(t,5,€)| = [Rar (£, )] < [ A0 ME@) .

The solution Qy; = Qp(t, s,£) can be represented as Peano-Baker series

QM(tysag):I"i‘Zik/RM(tl,S,f)/IRM(tQ,S,f)"-/k_lRM(tk,S,f)dtk--'dtl. (5.2.21)
k:l S S

Due to the representation of Ry = Ry(t,s,€) in (5.2.20) we have
Rur(t, g, €) = Ena(tie)s t, )Ras (t,§)Em (¢, Eie, €)

—2i T A(T)w(T)dT
— 5\}11) 75\}2)6 zlf‘ftm e
23 NP w(T)dT .
7“5511) |§|ff\£\ (Tw(r) (22)

Lemma 5.2.14. We assume conditions (A1) to (A4). Then, the fundamental solution
EM = EM(t, S,g) to

(Dt - DJVI(ta 5) - RM(ta g))EM(tv S, g) = 07 EJW(Sv 875) =1
can be represented as

NG

Ey(t,s,6) = )

Em(t,s,6)Qum(t, s, )

forallt,s > t~|5| with an amplitude Qy = Qur(t, 8,§) satisfying the following estimates:

_ ~ ~ PNCARNLD
D2 Quit f, ODZHie] < Conan (7)) I (5.2.22)

for all t > t~‘5| and all multi-indices B with 5 < «a and |a| < M — 1.
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Proof. Let us consider the first statement. The standard construction of Qy = Qu (¢, s,§)
in terms of a Peano-Baker series implies the uniform bounds for this matrix as follows:

uttdi 6 < e ([l a0z an)

tlg|

< exp <0\§|1 M / A0 3(9)—”1(19)
te|

< ' B C’ <1
> exp ’§|Mf1@(g|§|)Mf1 = &Xp NM-1 ]~

where we used condition (A3) and the definition of Zy,,(V), respectively.

Now let us take a derivatives with respect to £ in the representation formula for Q (¢, zﬂ e &)
n (5.2.21). Then,

D Q]V[(t t‘f‘ f ZZkDa (/ RM tl,t‘g‘ f / R]\/[ t27t‘5‘ f / R]\/[ t}c,t|§| f)dtk dt)

tie) tle) tie|
Let us consider terms of the form

th—1 B
/ D¢ R (t, Big, f/ Dg* R (t2,tje), &) - - / Dg* Ry (ty, tig, )ty - - dty
g

tig| tlg|

with 25:1 ay, = |af. Therefore, we have

Ol M) [ (=2 ) [ (A ) )

tig| tig|

th—1
X - / (|£|1_M_|O”“D‘(tk)l_ME(tk)_M) dty - - - dt,

g

< C'(, M, N)lg| .
We have to care for derivatives of the lower integral bound t~|§|. Then, there arise terms as
a—p Y B7
D" Raa(tiels te» €) Dete-

For |3| =1 we can estimate as follows:

‘D?_ﬁ (RM (ﬁfhf\aﬁ)dmﬁ\a) (

= ‘ Y CavauDE Ru(figy ey, €) DE 5t|£|‘

lea | +les|=lal-1

<Cla) Y M) M E ) M I(Ee) gL

lon |+ ez | =l =1

=Cle) Y, ]l lea M e ) M E (f ey )

lon |+ ez |=la] -1

()€1l 1 A(tlﬁl) o ]
= OO e v =

A(’«ﬂﬂ
(el

>
Q:

(Fe
D(te
where we used Proposition 5.2.9 to estimate the terms ]D?ZH? f|§|‘. We use that the terms
!DE‘IRM(ﬂﬂ,f‘E‘,Q! can be estimated in the following way:

~—

)

~—

| D¢ Ras(Frep ey )] S L€ 1N G e ) M E ()™
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Indeed, due to the representation of Ry (t,s, &) we have

RM(EKI ) f\s\ ) f) = RM(flﬁl ) 5)

Applying the generalized version of Fad di Bruno’s formula we obtain for the case |a| = n
the relation

' aWRJ\/I g - 1171 1112
D R t E E E (t | | D t D’
M €15 5 . Hz 11—[ Lay! 85;80‘2 IEI § al |£| 5)

where the respective sums are taken over all non-negative integer solutions of the Diophantine
equations as follows:

> = ki 4 2ky 4+ 0k, =

Z_>Q11+Q12 = k1,
1

Z — n1 +qn2 = kna

and . .
plzz%’la (%3 :Zqua
i=1 i=1

|/~$|:k1—|—k2—|——|—kn:p1—|—|a2]

By virtue of 0¢, & = 0, we may conclude that ¢;» = 0, for all i > 2 and |as| = ¢12. This yields
the estimate

| DeRa(frer, )]

SO eI @e) M EE )M T O
0 1 n =1

— Z Z - Z ‘€|1*M*Q12A(£‘f‘) E(t|5| —M—p1 H,ﬁ t\f\ —p1 ’é“ p1+qi2—i(qi1+qi2)
0 1 n

i=1

=D D D M) M E ()M T I (Fg) P T
0 1 n
. . 1
= R ‘5‘1*M*Q12*P1+Q12*71)\(t‘£‘)17M5(t|5‘)*M*P1Ni
; ; ; O(t1g)P

1—M—nn /5 = 1 1
=22 TG T ) e G g

1 A(t\a)’“
£ O (#1g))Pr I(Eie))P
)

ST A Y E )™ (ﬂEZ))

§|*(i+1)qz‘1 5‘(*”1)%2

SIEM AR ge) M E R Y

where we used Proposition 5.2.9 and from condition (A4) the estimate O(t) < A(¢)=(t). This
completes the proof of this lemma. ]

Following a similar procedure as in the proof of the previous lemma, we may conclude the
following proposition for the estimates of the derivatives with respect to £ in the representation
formula (5.2.4) appearing in the treatment in the oscillation subzone.
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Proposition 5.2.15. We assume the conditions (A1) to (A8). Then, the amplitude Qy =
Qs(t,s,&) from (5.2.4) satisfies the following estimates:

A(t|§|))‘5‘+1

| D¢~ Qa(tie) el €) Detiel| < Canlél ™ exp <@(t|g|)

(5.2.23)
for all multi-indices § with B < «.

Transforming back to the original problem

In the hyperbolic zone we divide our considerations for large and small frequencies. We want
to construct the fundamental solution iy, = Eynyp(t, s,€), tig < s <t for small frequencies £
and 0 < s <t for large frequencies &, respectively, for the operator

Dy —Di(t,€) — Ra(t, ).

After constructing the fundamental solution Ey; = Ej(t, s,£) we want to transform back to
the original problem and get in the hyperbolic zone the representation that we are looking
for. We know that,

(Dt - Dl(ta 5) - Rl(ta 5))NM(ta 5) = NJV[(tv 5) (Dt - Dl(t7 5) - RM(t7 5))
If By = En(t,s,€) is the fundamental solution to

NM(taf)(Dt —Di(t, &) — RM(t7§))7
then
(Dt - Dl(tag) - Rl (t7£))NM(t>£)EM(t7 575) =0.

In this way we have that (¢, s, )N (¢, &) and Ny (¢, ) En(t, s,€) satisfy the same initial
value problem.

Large frequencies. The representation of the fundamental solution in Z}llyp(N ) is

Ehyp(tv S, 5) - P(t)NJVI(t7 g)EM(tv S, g)NM(& E)_lp(s)_l

= iéz)) P(t)NM(t, §)5M(t, S, f) QM(t7 S, g)NM<8?€)71P(8)71

for f|§| < s <t and with uniformly bounded coefficient matrices Ny;, N;;' € Sx{0,0,0}.
Remark 5.2.6. For large frequencies it holds

V(t,€) = Enyp(t, 8,6)V(s,&) for tg <s<t.

Then, we have the following representation of the micro-energy V(¢,£) = (A(¢)[¢]4, Dtﬂ)T in
Zflyp(N ):

At)
A(s)

Small frequencies. We will consider a different representation for small frequencies, because
in this case we shall use a “gluing procedure”. In Z; (N) we should remember that for

t‘g‘ S t‘g‘ S t we have

E(t,0,8) = Enyp(t, b, €) Bose(tig) te), §) Epaltie), 0,€).

Then, taking into account Eyy, = Epy, (¢, ¢, &) for £ <t <t we have

Engp(t, T, €) = P(t)Nar(t, &) Ens (t,11e), ) Nas (), €) 7 Pte)) ™

;(\;t) (E)Nar(t, €)Enr (t, Ty, €) Qi (8, ey, ) Nas (Frey, €) T P(Fe))

V(t7§) = P(t)NM(t,g)g(t,S,f)QM(t,8,f)NM(S,f)_IP(t)_l‘/(S,g).
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5.3. [P — LY estimates on the conjugate line

In this section we will use the representations for the solution to the Cauchy problem (5.2.1)
in order to derive LP? — L9 estimates on the conjugate line. To get these estimates we need
to derive a representation of the solution to (5.2.1) by the aid of Fourier multipliers. Then
one has to discuss mapping properties of these Fourier multipliers. This will be done after
localizing the amplitudes by using a suitable dyadic decomposition related to the division into
zones of the extended phase space. The part of the dyadic decomposition which belongs to
the pseudo-differential zone and oscillation subzone generates Fourier multipliers which can
be studied by the Hardy-Littlewood inequality. The part which belongs to the hyperbolic
zone needs a Littman-type lemma. These are results for oscillating integrals with localized
amplitude away from the origin.

The stationary phase method together with usual properties of the Fourier transformation
leads to a L' — L™ estimate for Fourier multipliers with localized amplitude. After deriving
a L? — L? estimate some interpolation gives suitable LP? — L4 estimates on the conjugate line.
Gluing all these estimates for Fourier multipliers with localized amplitudes together leads to
the desired LP — L7 estimates for the Fourier multiplier, the energy operator itself on the
conjugate line for p € (1,2]. The supposed regularity of the data we need to avoid constants
depending on the parameter of the dyadic decomposition in the L” — L7 estimates for the
Fourier multipliers with localized amplitudes.

Theorem 5.3.1 (Main theorem). We assume that the conditions (A1) to (A5) hold. Then,
we have the following LP — L7 estimates for the kinetic and the “elastic” energy:

e (£,2), MOV ()],
S \/%max {@(t)‘"(%‘%) exp (g(?) ; A(t)_%(%—%) (/){((i))E(t))M(p

x (HUOHW;VPH + Hmllwgp)

with reqularity N, = n(% — %), p € (1,2] and % + % =1.

Proof. Let us consider the following zones in the extended phase space:

Zio(N) = {(1,€) € [0,00) x RE : ©(1)|¢] = N} n {J¢] < N},
Zo(N) = {(t,€) € [0,00) x RZ : [¢] > N},
Zowe(N) = {(£:€) € [0,00) x RZ : ©(1)[¢] < N < A@)lel },
Zpa(N) = {(t:€) € [0,00) x RZ : A(t)[¢] < N}
More precisely, we introduce a cut-off function ¢ = ¢(t) € C5°([0, 00)) such that ¢(t) =1 for

t< 3, 9(t)=0fort>2and ¢'(t) <0. Then, we can define the characteristic functions ¢pq,
Poscs Phyp and goflyp of the zones Z,q(N), Zos(N), Z;,,(N) and Zt _(N), respectively, by

hyp

Ppa(t, &) = (O)|EIN"Y) p(A)[EINT),
Posc(t,€) = @ (O()[EINT1) (1 — p(A®)[EINTY)),
Pryp(, ) = (1= 0(O®)[EINTY))(IEINT),
Chyp(t:6) = (1= p(OM)[EINT)) (1 = o (IEINT)),

such that ¢pq + @osc + Ohyp T gpflyp = 1 on the whole extended phase space.
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5.3.1. [P — LY estimates for Fourier multipliers with amplitudes localized in
Zpd<N)

In Z,4(N), we have
V(t? 5) = Sopd(tv g)Epd(t7 0, §)V(Oa 5)

For this reason, we consider the model Fourier multiplier

Y
La

|77 (enalt. OB (2,0, F(v) )

where v € S, ngil)(t, 0,€), k,l = 1,2 are the entries of the fundamental solution E,4(t,0,¢).
The main tool is the Hardy-Littlewood inequality from Theorem A.6.1. It holds

|7 (et OB 0.0,0F @) | < [enat OEE ¢ 0.0 F @)
< llppalt, O, 2 || Ege (8,0, ) o I1F ()| o
S AW GHER1,0,0) \|Lw\|v<~)HLv-

Summarizing, from Proposition 5.2.2 with § = 1 and max {|£|)\ VN } = \/A(t) we have

2
|7 (epalt, )0e(t, )HLq + Hf_l(%d(tﬁ) @€t )| L,
S AA(L) T ) (lao ()l zo + llur ()l 2s).- (5.3.1)
5.3.2. [P — L9 estimates for Fourier multipliers with amplitudes localized in
Zosc(N>
In this zone we use the “gluing procedure” for 0 <t <t < f|§| as follows:
E(ta())g) = Eosc(tat\f\ag)Epd(t\E\aOag)'

Then, we consider the Fourier multiplier

B el L Amwndr /(L)
f ! @osc(tg)ei el
H ( Atier)

where used the estimate of Eu(t,t),&) from Proposition 5.2.4 and d = d(t,§) is related
to the entries of &, Qp, Ny and P from (5.2.7). Here v € L? and 2 < ¢ < oco. Moreover,
El()ﬁl)(t‘g‘,O,g), k,l = 1,2 are the entries of the fundamental solution Eyq(t,0,£). Finally,
the function d = d(t, &) satisfies the following estimate from (5.2.6):

i(t.9) < 0 (5

A(t, ) B (g 0,6 F (v)) |

)
La

The main tool is again the Hardy-Littlewood inequality from Theorem A.6.1. So, we have

_ 7 ¢ T)w(T)dT )\(t)
F ! Sposc(tu g)ei « ftm M
H ( Altg)

<|7 (%Sca, £ I\ (1) (1, €) F (v) )|
< oMD" e (U Ol
< 20O 6D exp (5 [0

d(t, BN (11,0, ) F(v))

La

La
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provided that 1 < p <2 and % + % = 1. Here d; = d,(t,€) is given as follows:

tig|

(€)= e (Filgl | Mrw(r)dr)d(t,€)

and we used the following estimate from (5.2.6):

4y (8,)] < exp (o0,
Summarizing, we have shown
|77 (ot e XD [\ @), €0 F (A0)w(0) DIu(0, ) + ,(0,)) )|
< Vw3 exp(gﬁg)(uuo(»um||u1<->m)-

Therefore, we arrive at
|7 (o1, i1 >Hm T (Pt ONDIEE ),
OO0 6D e (G (il +1Ols). 632

La

5.3.3. [P — L9 estimates for Fourier multipliers with amplitudes localized in
Znyp(N)

The micro-energy V (¢,€) = (A(¢)|€]0, Dt{))T in Zyy,(N) is given by

V(t7§) = P(t)NM<t,§)(‘:M(t,S,f)QM(t,S,S)NM(S,f)ilp(S)il‘/(S,f)?

with uniformly bounded coefficient matrices Ny, N, € Sy{0,0,0}. The diagonal matrix
Eu(t, s,€) has entries eIl L2 XM«()dT - For this reason we will consider suitable localizations
of the following Fourier multipliers:

f*l(eﬂ:ilﬂfoﬁ )\(T)w(T)dTj\\((z;b(tyg)|§‘rf(v))7 (533)

where 7 is a real number and in the moment we suppose v € S. Moreover, here b = b(t, &)
is related to the entries of £y, O, Nir and P. We will consider the last Fourier multiplier
for large frequencies with s = 0 and for small frequencies with s = fw, respectively. For the
small frequencies, in order to continue with the phase function e=il¢lJo XM«()dr e will shift
the remainder terms in b = b(¢,&) (see Remark 5.2.5). The key tool in these two parts is a

Littman type lemma from Lemma A.5.1.

Estimates for large frequencies

In this part of the extended phase space we will consider large frequencies |{| > N only. We

analyze
T

with 2 < ¢ < oo and v € S. Here the amplitude b; = by(t, &) is related to b = b(¢,§) from
(5.3.3) with s = 0. Then, from (5.2.22) it holds

| Dby (8,6)] < Canrwle]
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for 3 = 0 and |a| < M—1, because Ny (t,£) € Sy{0,0,0} and | DgQus(t,0,€)| < Conr,v €717
Now we choose a non-negative function ¢ = ¢(s) € C5°([0,00)) with supp ¢ C [ ,1] such
that 3372 #(277s) =1, s # 0. Let us define a dyadic decomposmon {¢;};ez by

¢;(t,€) = p(277[¢INT), jEL

Since ¢}, (t,&)¢;(t, &) = 0 for j < 0, we have

Sohypté. Z¢]t§

This allows us to investigate every sum stated in the right-hand side for ;7 € N separately.
The goal here is to apply the Riesz-Thorin interpolation theorem from Theorem A.4.1. For
every 7 € N let us examine the oscillatory integral

FH (hy (1 )5 (1, )OI N1 €] 701 (1, F ().

One basic assumption to apply this theorem is that the amplitude b; = b, (¢, €) is subjected to
symbol-like estimates. The strategy of the proof in this part of the extended phase space is to
obtain an L? — L9 estimate by interpolating L' — L*° and L? — L? estimates with Riesz-Thorin
interpolation theorem. We introduce

I = |77 (P (8,05, =N [\l b1, 6) )|
= (ot st )= AP Iyl )|
We want to derive the following estimates:
e a L' — L™ estimate for I;,
e a L? — L? estimate for I;.

L' — L estimates. For all j < 0 we have I; = jzj = 0. For j > 0 we perform the change of
variables £ = 2/ N7 and conclude as follows:

F ((t, 2 Ny)e=2 N0 I\ @)l (1,2 N )|
F ((t, 2 Na)e=2 SR @) |~ b1, 2N)) |
<Y (14 2jNC~’]\(t))JTil\/7 ) S HD”‘( (t, 29 Nn)|n|~"bs (t, 2/ Nn) )H

|| <M

I < C2i(n=r)

< 0in=r)

n—1

<CYUT(HUNCAE) T A DD sup [pl T (20N 2N )

loy4+an| <M 1/2<n|<2
. _n—1
< CQJ(n—r)(l —I—A(t)) 2 )\(t),
where @y (t,€) = 1 for j > 2 and A(t) := fo T)dr. Moreover, in the second estimate we
have used Lemma A.5.1 with a sultably positive constant M. The constant M determines
the necessary steps of diagonalization. Here we choose M > "T+5 Additionally, we take

advantage of 14+ A(t) <1+ 2/NCA(t) for all j > 0 and N sufficiently large. Thus, we get
I = [ F 7 (ot €)1, )= 2O Ix (1) |7y (1, ) F (v) ) |

<200 N+ A®) T o).

Lo
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L? — L? estimate. In order to have an L? — L? estimate we shall estimate I;. If we use the
change of variables ¢ = 29 N7, then we have

I;<C sup ot 22 Nn)\JA() (2 Nnl) " [br(t, 27 N)| < 2777 /A1)

1/2<n|<2

for 7 > 0. Consequently, we arrive at the following estimate:

[ 771 (ot 065, €)= X207 [x )l (4, ) F (@) )|, S 277y A@ 0 a2
LP — L7 estimates. Applying the Riesz-Thorin’s interpolation theorem we have
[ 77 (ot €)1 ) 20 [ty g b 8,9)) |
< 20G=0=) (1 + aw) TG,

Finally, we fix r = N, = n(% - %) and apply Theorem A.4.3 for 1 < p < 2. Then, we have

|77 (Php (8, )X [ (1) €] b (£, €) F (A0)w(0)| D™ u(0, )
+ D", (0,) )|
VMO +AO) T 8 (g (Y lyees + s Ollye).

Thus, we may conclude
[F = (Phyp (8 0t D o + 177 (i (8 OB IENB(E )
SO0 FAO) T CD (gl + T Olly ). (5.3.4)

Using the density of S in W)» we may assume uo € W,»*" and uy € W' as well.

La

Estimates for small frequencies
For small frequencies we use the “gluing procedure” for f|§| < t as follows:

E(ta 0, 5) = Ehyp(t7 El&l ) g)Eosc(E\ﬁ\ ) t|§| ) é)Epd(tKla 0, 5)

Then, we consider the model Fourier multiplier

i 2 T)w(T)aT 7 {‘ Tw(T)dT >\ t
) e XD o e 118 e Y20

FH hyp(t, e = t
(w (t,& o) e d(tg, €)

< B (e, 0,)l€[ 7 F(v)

where d = d(t, ) is related to the entries of &, Q,, N» and P from (5.2.7). So, we estimate

the following norm:

ilg] [} Mr)(r)dr A(t) b
Altier)

where in the moment v € S, Eéil)(t‘g‘,(),f), k,l = 1,2, are the entries of the fundamental

solution E,q(ti),0,£) and by = bi(t,§), d = d(fm,g) satisfy the following estimates from
(5.2.22) and (5.2.23), respectively:

|D?b1(t7‘£>| S Coz,M,N’g‘_‘al for Elfl S t7

A(@&\) > '
O(t¢|)

|71 (el 00 (1. &), B (19,0, €)1 F )|

|D2d(Fig),€)] < Conlé] ™ exp (
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Moreover, we define

) tig| 1
9(t.8) = exp (Fale] [ Mr)(r)dr) ———bi (1. E)d(Fi B (g,0.€)
0 Alte)
which satisfies the following estimate from Proposition 5.2.13:
Atie))

—lal
|D?9(ta§)| < Ca,M,N( E(t|£|)> [~ for all |af < M — 1.

A(tg))
We can rewrite the Fourier multiplier of our interest in the following form:

F () IHAD [3 (1) €] g 1, ) F(v)).

We use again a dyadic decomposition by defining
¢;(t,[€]) = o(2770M)[EINTY), jeZ,
with ¢ € C5°([0,00)). Thus, for j > 0 we will estimate the following L>° norms:
~ Hf— (Phplts 5t (€)== [rlg| o (ODIEIN ) g(t0) | .
(£ )6 (8, )= T XD A @)l (O@)IEINT)g(t, )|

Our goal is to derive

e a L' — L™ estimate for I;,

e a > — L? estimate for I;.

Hence, an interpolating argument yields L? — L7 estimates for small frequencies.
L' — L™ estimates. We perform the change of variables A(t)§ = 29 Nn and get the estimates

) <¢(®(t()|77|)6iiészlnl\/EMFTSD(W)QG’ 213\](\15[;7)>
< 021 (1 4 C2N) A N n)\ﬁ

< 5 foref A&i‘)"‘)'m—w(”‘img<a 230))

I; < CPIA@) || F

Lo

oy (PNl (PN le2l ) (A 2y 71
Xa1+azz<M1/2S%u5<2|"| Ga) Gg) " (GeE0)

< 0 (F AW M0 (/A\(?E(t))M,

where again we used in the second estimate Lemma A.5.1 with M >
|7 (it )05 (1, Jgex41 W(ﬂdw/ Bl e(O®IEN gt OF )0

< e (3E0) IOl

L? — [? estimate. Now we shall estimate Ij. We have

be0, o WOCse)

1/2<n|<2

S 27 AWAW

242 Thus, we have

o(“2i ) ol 5
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for j > 0. This implies immediately

|77 (it 0652, 16D 20 [\l o (0(0) €N ) g (¢, ) F(0)()) |

L2
S A AD2TAW) () e
LP — L7 estimates. After applying again an interpolation argument it follows
[ 771 (Pt 58 [ghe* 1610 2D [yl o (OWIEIN ) gt OF (@) ()) |

< 2 F G0 NO) 1+ A®) ”““(285@))%”Ha(-)ﬂm.

ntl ) and using Brenner’s lemma from Lemma A.4.3

Therefore, after the choice r = ?(l —1
p q

for p € (1,2] we may conclude the following estimate:

e 0070

S VAO+a@) T D (X)),

uniformly for all j > 0. From the last estimate it follows

|74 (it eI N @)1= h(t, €)F (AO)w(0) DI (0, )+|D[ (0, ) )|
<A+ Am) TG jg )" Qg + s Ol

Summarizing, we may conclude

177 (Pl (8 O a8 ) o + 77 (0 (8 OA@IENALE )

1

< VMO@+Am) T (j((gam)m”(Huoc)nwgu +luO)llwy). (5.35)

Finally, we combine and compare the estimates from the four different parts of the extended
phase space, i.e., the estimates from (5.3.1), (5.3.2), (5.3.4) and (5.3.5), respectively. Then,
we see that from the point of view of decay the estimate in the pseudo-differential zone is
better than those in the hyperbolic zone and oscillation subzone. The desired regularity of
the data comes from the estimate for large frequencies in the hyperbolic zone. However, the
desired estimate from the point of view of decay estimates comes from the estimates in the
oscillation subzone and for small frequencies in the hyperbolic zone. In this way the proof is
completed. ]

La

[1]

Remark 5.3.1. If we suppose that the function w = w(t) has only very slow oscillations, as a
(1) = 20

representative we can put w(t) = 1, then from (A4) we have O(t) = A(t) and Z(t) = OR

Therefore, we arrive at the following estimate from Theorem 5.3.1:

et 1 MOVt S YAOAD TG (ol + Nurlyre)  (5:3.6)
with regularity N, = n(; — E)’ p € (1,2] and 2 S+ E =1.
Remark 5.3.2. The estimate (5.3.6) corresponds to the estimate in [33]. More details about

LP — L decay estimates can be found in the paper [32].
Remark 5.3.3. If we choose in Theorem 5.3.1 p = ¢ = 2 and employ the stabilization condition

/O A()l(r) — 1ldr < 6(1),

then our result corresponds to the L? — L? estimate which is given in the paper [19]. Because,
At)

a( t)) is estimated by a positive constant.

by using the stabilization condition we find that exp (
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6. Further research topics

In this short final chapter we give some problems arising in connection with the content of
this thesis.

6.1. Optimality
We consider the Cauchy problem

{mt—a%oa 0, (t,z) € [0,00) x R™,

u(0,x) = uo(x)_, w(0,2) = uy (x), x€R™ (6.1.1)

In the paper [16], the author proved (GECL) to (6.1.1) provided that the following conditions
to the coefficient a = a(t) are satisfied:

0<a; <a(t) < as, (6.1.2)

a® ()] < (@ +t)7F, k=1,2,---, M, (6.1.3)
t

[ latr) = aslar < c+ 07, (6.1.4
0

1—
for some real a,, and g € (0,1) with o > 3+ Tﬁ Here (6.1.4) is a so-called stabilization

condition and by this condition one can get some benefit of higher order regularity of a = a(t).

Necessities of CM property (6.1.3) and stabilization condition (6.1.4) are still interesting
open problem. That is, there are no results to prove the sharpness of the assumptions and
there are no counterexamples that show that these conditions really appear.

Let us give also a remark about condition (6.1.3). The control of the first derivative allows
us to diagonalize the Fourier transformed system once. This yields a diagonal part and a
remainder part. But this remainder part is too “bad” to be of any help. The advantage of
the C? theory is that we can diagonalize twice so that we get a remainder which is better in
some hierarchies of symbol classes. In this way we get an advantage of C™ theory together
with stabilization condition (6.1.4).

6.2. Wave models with decreasing time dependent propagation
speed

Let us consider the following Cauchy problem:

{utt — A2 (t)w(t)Au = 0, (t, ) € [0,00) x R", (6.2.1)

u(0,2) = ug(x), u(0,z) =wus(z), xe€R",

with a decreasing time-dependent shape function A = A(¢) in the speed of propagation and a
bounded positive oscillating function w = w(t).

In several papers (see [34, 35, 36, 37, 16]) the authors studied special properties of Sobolev
solutions to the Cauchy problem (6.2.1) with an increasing shape function A\ = A(%).

An interesting research problem is to study L? — L? decay estimates or generalized energy
conservation law (GECL) under some suitable conditions for the time-dependent functions
A, w and a stabilization condition which is related to the decreasing behavior of .
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As an example for this kind of model we can choose the anti-de Sitter model
Uy — €X' Au = 0.
If we inverse the time variable, t — —t, it becomes
uy — e *Au=0.

This equation is called de Sitter model, but we consider it for positive time ¢t. Hence, the
Cauchy problem (6.2.1) may lead to study some new problems: de Sitter model with very
fast oscillations.

6.3. Damped wave models with different oscillation functions

We consider the following Cauchy problem to the damped wave equation with time-dependent
propagation speed and time-dependent damping:

u(07x) = Uo(SC), ut(O,x) = (SU), r €R", (631)

{un = N (Wi ()Au + p(ten(thu; = f(w), (t,2) € [0,00) x R,
where the time-dependent functions A = A(t), p = p(t), w; = wi(t) and wy = wy(t) are smooth
and strictly positive functions. In particular, A is a monotonously increasing nontrivial shape
function in the propagation speed, p is a nontrivial shape function in the damping term. The
crucial point here is that w; # ws. Then, one can arrive at a generalization of a research
problem to this thesis. Firstly one needs to study higher order energy estimates for Sobolev
solutions to the Cauchy problem (6.3.1) with vanishing right-hand side.

6.4. Weakly coupled systems of semilinear damped wave models

Let us consider the following Cauchy problems for weakly coupled systems of semilinear
damped wave models with time-dependent propagation speed and time-dependent damping:

{Utt — a®(t)Au + b(t)u, = [v]?, vy — a*(t)Av + b(t)v, = |ul?, (6.4.1)

w(0,z) = ug(z), u(0,2) =ui(z), v(0,z)=uve(z), v:(0,2)=1vi(x),

where a = a(t) > 0 is an increasing propagation speed and b(t)u, and b(t)v, are effective
damping terms in the sense of [2] and [48]. Moreover, the time-dependent functions a = a(t)
and b = b(t) have very slow oscillations only.

The corresponding linear model with vanishing right-hand sides is

u(0,2) = ug(x), u(0,2) = us(x). (6.4.2)

{utt — a*(t)Au+ b(t)u, = 0,
The first motivation of this problem is to get sharp (L™ N L?) — L? estimates with m € [1,2)
to the Sobolev solutions of the Cauchy problem (6.4.2) which has been already derived in [4].
Using these estimates plays a fundamental role in the treatment of corresponding semi-linear
models (6.4.1). For this reason, the main motivation is to prove the global (in time) existence
of small data Sobolev solutions to (6.4.1) by applying the obtained estimates to the linear
Cauchy problem (6.4.2) and some developed tools from Harmonic Analysis (see, Section A.7
in Appendix).
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A. Basic tools

A.1. Basic inequalities

Lemma A.1.1 (Gronwall’s inequality). Let f and h be continuous and nonnegative functions
defined on I = [a,b] and let g be a continuous, positive and nondecreasing function defined
on I. Then, the inequality

F(t) < g(6) + / ) e, e

implies that
¢
f(t) < g(t)exp ( h(r)dr) , ted

For the proof see [26].

Proposition A.1.2 (Classical Gagliardo-Nirenberg inequality). Let j,k € N with j < k and
u € C§(R™). Let us consider £ <0 <1 and 1 < p,q,r < 0o such that

j—%z(k—%)@—%(l—&).

Then, it holds _

V7l o S IV ull 2 [l 2 (A.L1)
provided that (k — %) —j &N, thatis, * > k—j or 2 ¢N. If (k—2) —j €N, then, (A.1.1)
holds provided that % <0 <1.

In the special case j = 0, k = 1 and » = p = 2, applying a density argument, we obtain
the following result.

Corollary A.1.3. Let us consider a finite ¢ > 2 such that ¢ < —nzfQ if n > 3. Then, it holds
0 —0
lullze < IVl 7 ffull 2
n _ 1 1
for any u € H'(R"), where (q) =n(5 — ¢)-

For the proof see [12].

A.2. The Peano-Baker formula

Let us consider the following first order systems of ordinary differential equations:
D,U =At)U, U0)=U,ecC"

with ¢ € [0,00). In order to solve this Cauchy problem, we find the fundamental solution
E = E(t, s) to the following matrix valued system:

%E(t,s) = A(t)E(t,s), FE(s,s)=1. (A.2.1)

Hence, it holds U(t) = E(t,0)U,.
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Theorem A.2.1. Let A = A(t) € L}, (R,C™™). Then, the fundamental solution E = E(t, s)
to (A.2.1) is given by the Peano-Baker formula (or the matrizant representation)

E(t,s) _I+Z/ tl/ A(ts) - /_A(tk)dtk---dtgdtl.

k=1v*%

The proof follows by differentiating the series term by term. To prove the convergence of
the series and its formal derivative one uses the domination by the exponential series following
next statement.

Proposition A.2.2. Assume A = A(t) € L},.(R). Then

loc

/: |A(t,)) /:1 |A(ts)| - ../:kl |Aty) |dty, - - dt, < l:'(/t ‘A(T)‘dT)k

for all k € N.

The proof follows by induction over k.

In several applications we need not only estimates for the fundamental solution, but also
statements about its asymptotic behavior and invertibility. It is convenient to use the Theo-
rem of Liouville in the following form.

Theorem A.2.3. Let A= A(t) € L}, (R,C" ™). Then the fundamental solution E = E(t, s)
satisfies
t
det E(t,s) = det E(s, s) exp (/ tr A(T)dT).

S

A.3. Faa di Bruno's formula

In this section we will recall the formula for derivatives of higher order of a compound function.

Proposition A.3.1. If functions of a real variable f,g are n-times differentiable, then

n n! n (0) \ ke
D VAL Ve

k=0 ki+ko+-+kn=k (=1
k14+2ko+---+nk,=n

For a proof of the previous formula one can see [39].

In several variables we have the following result proved in [15].

Proposition A.3.2. If a real-valued function g = g(xy, -+ ,2,) and a function of real vari-
able [ are n-times differentiable, then the following identity holds regardless of whether the
n variables are all distinct, or all identical, or partitioned into several distinguishable classes
of indistinguishable variables:

o 9B Ig
v — (Ifr\)
Oxy--- 83:7,,f(g) Z / H [ oz’

TEP Bem

where

7 runs through the set P of all partitions of the set {1,--- ,n},

e B €1 means that B runs through the list of all blocks of the partition 7,

|| denotes the number of blocks in the partition T,

|B| denotes the cardinality of the set B.

Let us give some generalizations of Faa di Bruno’s formula for a composite function with
a vector-valued argument, see [25].
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Theorem A.3.3. If f and t are scalars, z(t) = [x1(t),x2(t), - , 2. (t)]" is a r-vector and
f(a:(t)) s a composite function for which all the necessary derivatives are defined, then

n! 8kf - i\ i1 i\ di2 i\ dir
D" — R 4 4 R
Fl0) =22 2 G T Ty 4 e g LL ) (@)™ )™

i=1

where the respective sums are taken over all non-negative integer solution of the Diophantine
equation as follows:

Z—>k1+2k2+"’+nkn:na
0

Z—>Q11+Q12+"'+Q1r:k17
1

Z%in"i_QnQ"i_"‘ran:kn?

and D = % is the differential operator, p; is the order of the partial derivative with respect

to x;, and k is the order of the partial derivative, more precisely,

pj:qu+q2]++qnj7 j:172)"'a’r)
k:p1+p2++pr:kl+k2++kn

A.4. Some results from Interpolation Theory

In order to handle with L? — L? estimates we state the important Riesz-Thorin interpolation
theorem.

Theorem A.4.1 (Riesz-Thorin interpolation theorem). Let 1 < pg,p1,q0,q1 < 00. If T is a
linear continuous operator in the space E(Lp0 > qu) N E(L”1 — L‘“), then

T € L(LP — L%)
for any 6 € (0,1), where

1 1-6 0 1 1-6 0
— = +— and — = +—.
Do Po b1 9o qo q1

Moreover, the following norm estimate holds:

1Tl 2wromszaoy < TN Loors ooy I TNz o1 -

For the proof see [31, Appendix A].
In order to handle with L' — L* and L? — L? estimates, we have the following lemma.

Lemma A.4.2. Let a € L*. Then, we have

o If H]-"*laHLm < Oy, then H]-"*l(a}"v) < Collv]| -

I~

o Ifla|lL~ < Cy, then H]—"*I(a]:v) < Ch|jv]| 2.

I

o If H}"*laHLm < Cp and ||a||p=~ < Cy are both satisfied, then

|7 (aFv) || < CoCH 0] e,

HLP’

+L=1andf=2.

where p € [1,2], -

=

1
p
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The proof of this lemma can be found in [5].

Let {¢;};cz denote a dyadic decomposition with ¢,(y) = ¢(277y), where ¢ € C5° and
supp ¢ C [%, 2}. By using Lemma A.4.2 and some embedding theorems concerning Besov
spaces, one can prove the following result (see [5]).

Lemma A.4.3. Let a € L*(R"™) and assume that

17 (ag; Fo) |, < Clvlls

uniformly for all j € Z with 1 < p < 2 and pqg = p+ q. Then, there exists a constant A
independent of the function a such that

|F~  (aFv)|,, < AC||v| Lo

0

A.5. Littman type lemma

If we want to obtain L' — L* estimates for solutions of a given linear equation, then the
following result might be useful.

Lemma A.5.1 (A Littman type lemma). We assume that K = K (t) is a real-valued function
and the amplitude function d = d(t,§) is supposed to belong to C5°(RE). Then, the following
L — L™ estimate holds:

HJ’*I(GZ'K(t)K'd(t?Q)HLW <c( +K(t))‘”T_1 > IDgd(t, 6],

la|<G
where G > "TH and the constant C' is independent of t and &.

The proof is based on the method of the stationary phase and can be found in [36] or [11,
Section 16.3].

A.6. Hardy-Littlewood inequality

By L? we denote the space of tempered distributions f € & satisfying the estimate
1f *ullee < Cllullz

for all u € § with a constant C' which is independent of u. Thus, L is isomorphic to a closed
subspace of the Banach space of all bounded linear mappings of L” into L?. The multiplier
space M is defined as the set of all Fourier transforms F(f) of distributions f € L. The
elements F(f) € M are called multipliers of (p,q). Thus, the Hardy-Littlewood inequaltiy
is given as follows.

Theorem A.6.1 (Hardy-Littlewood inequality). Let f be a measurable function. Moreover,
we suppose the following relation with suitable positive constants C, b € (1,00) and all positive
T:

meas {{ € R" 1 |[f(&)| > 71} <COr°

with 1 < b < 0. Then,fEMgifl<p§2§q<ooand}%— L

1
q b’

The proof can be found in [20, Theorem 1.11].

A.7. New tools from Harmonic Analysis

We present some results from the theory of Harmonic Analysis which are helpful and im-
portant tools for proving results on global (in time) existence of small data solutions for
semilinear models with power nonlinearities. In particular, these tools allow to estimate
power nonlinearities in homogeneous Sobolev spaces.
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A.7.1. Bessel and Riesz potential spaces

Let se R and 1 < p < co. Then,

Hy(R") = {u e S'[R"): |[(D)*ul|,, = llullm; < oo},
H:R") ={ue Z'[R"):||D|* ull,, fHuHH;<oo}

are called Bessel and Riesz potential spaces, respectively. If p = 2, then we use the notations
H*(R") and H*(R"), respectively. In the definition of the Riesz potential spaces we use the
space of distributions Z’(R™). This space of distributions can be identified with the factor
space S’ /P, where P denotes the set of all polynomials.

For Bessel potential spaces we have the following embedding theorem.

Theorem A.7.1. Let s >0 and 1 < p < oco. Then, the following embedding relations hold:

i) if sp <mn, then H;(R") < LY(R") for any p < q < p*, where p% = % 2

i) if sp =n, then H3(R") — Lj

loc

(R™) for any p < q < 0o;
i) if sp > n, then H3(R") < Cy(R"™).

A.7.2. Fractional Gagliardo-Nirenberg inequality

The first inequality is the fractional Gagliardo-Nirenberg inequality which is a generalization
of the classical Gagliardo-Nirenberg inequality to the case of Sobolev spaces of fractional
order.

Proposition A.7.2. Let 1 < p,po,p1 < o0 and s € [0,0). Then, it holds the following
fractional Gagliardo-Nirenberg inequality for all u € LP*(R™) N HY (R"):

lulliry < Nl Tull, (A.7.1)

1

where § = 0, ,(p, po, p1) = % and £ <9 <1.
PO
For the proof one can see [14].

Corollary A.7.3. Let 1 < p,m < o0, 0 > 0 and s € [0,0). Then, we have the following
inequality for all u € H7(R™):

0, a(p m)
)

D]l < iz |||

where O, ,(p,m) = g(i — 1% + %) and 2 < 0, ,(p,m) < 1.

m

A.7.3. Fractional Leibniz rule

Proposition A.7.4. Let us assume s > 0, 1 <r < oo and 1 < p1,p2,q1, G2 < 00 satisfying

the relation
1 1 1 1 1
-—=— 4+ —=—+ —.
r P11 D2 q1 q2

Then, the following fractional Leibniz rule holds:

D1 (o), < DIl llellzrs + el |1 DI0 (A7.2)

Lr1 La2

for any u € H;l (R*) N L (R™) and v € H,jz (R™) N LP>(R™).

For the proof see [13].
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A.7.4. Fractional chain rule

Proposition A.7.5. Let us choose s € (0,1), 1 < r,r1,75 < oo and a C' function F
satisfying for any T € [0,1] and u,v € R the inequality

|F'(ru+ (1= 7)v)| < u(r)(G(u) + G(v)),

for some continuous and nonnegative function G and some nonnegative function u € L' ([O7 1])
Under these assumptions the following estimate is true:

IE @) e S NGl [l g, (A.7.3)

for any u € Hﬁz (R™) such that G(u) € L™ (R™), provided that

1 1 1
=4 =,
r T1 T2
For the proof of this result one can see [6] or the proof in a slightly modified version in
27].
In particular, we can apply Proposition A.7.5 for F'(u) = |ulP or F(u) = +ululP~!. After
choosing G(u) = |F'(u)| and pu is a positive constant we obtain the following result.

Corollary A.7.6. Let F(u) = |[ul? or F(u) = +ulu|P~* forp > 1, s € (0,1) and r,r1,75 €
(1,00). Then,

p—1
L™

IE )l e S el llull g,
for any uw € L™ N H; , provided that

p—1 1

1
r T1 T2
The last corollary can be found in [6] and [40] which is true only for s € (0,1). But we
need to estimate the term || F'(u)| ;7. for larger s. For this reason we recall the following result
introduced and proved in [28].

Proposition A.7.7. Let us choose s >0, p > [s] and 1 < r,1ry,ry < 00 satisfying
1 -1 1
P,

r N T1 T2
Let us denote by F(u) one of the functions |ulP, +|u|P~ u.

Then, it holds the following fractional chain rule:

[IDI*F(u)|,,, < llul

Lr ~

p—1
L™

D]l

(A.7.4)

L2

for any uw € L™ (R™) N HﬁQ (R™).

A.7.5. Fractional homogeneous Sobolev embeddings

Sometimes one can apply in proofs for global existence results for semilinear Cauchy problems,
instead of the fractional Gagliardo-Nirenberg inequality the embedding of a homogeneous
fractional Sobolev space with suitable order H* in LY. Hence, we apply the following result.

Proposition A.7.8. Let ¢ > 2 and k = n(% — %) Then, it holds the fractional Sobolev
embedding

H*(R"™) — LI(R").
Therefore, there exists a constant C = C(n,q) > 0 such that
[ulle < Cllul|

for any u € H*(R™).
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A.7.6. Fractional powers

Sobolev embedding is very useful in estimates for ||\u|PH 00 Where s > 2. We apply a result
from [38] for fractional powers.

Proposition A.7.9. Let p > 1,1 <r < oo and u € H:(R"), where s € (%,p). Then, the
following estimates hold:

p—1

el < o el

Hp
[l . S ullz lullz

for any uw € H3(R™) N L>(R").

We can derive the following corollary from Proposition A.7.9.

Corollary A.7.10. Letp > 1,1 <r < oo andu € H?, where s € (%,p). Then, the following
estimates hold:

[ul”|l . < lull g llull<,

[ulul”™] . < lull g lull 7=
for any v € H*(R") N L=(R").
For the proof see [11] or [38].
Proposition A.7.11. Letr € (1,00) and s > 0. Then, it holds the following inequality:

lwvll ey S lullmgllvllee + llullze vlla;
for any u,v € H(R™) N L= (R™).

The proof can be found in [38].
Now, let us state the corresponding inequality in the homogeneous space H?(R").

Corollary A.7.12. Let r € (1,00) and s > 0. Then, it holds the following inequality:

[uol

s S lullgellvllze + llulle [[o]] g

for any u,v € H?(R™) N L>®(R™).

Proposition A.7.13. Let 0 < 2s* < n < 2s. Then, for any function u € H*" (R™) N H*(R")
it holds the following inequality:

ullze < lull groe + llull ge-
The following proof taken from the paper [9].
Proof. Let us recall the following Sobolev’s embeddings:
[ulle~ < lJullmg  for ag>n
and

S*UHLZ for 0<s" < =

el 2. < ID .

n—2s

2n
n—2s*

If we fix ¢ = and a = s — s*, then we get

lullzee < Nl e + [[ID17u]] | 2s.

[ n—2s% n—2s

S Dl o + 1217wl -

This completes the proof. O
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B. List of symbols and abbreviations

Symbols used throughout the thesis

| denotes the absolute value or the norm of a vector;

’<> which stands for (z) = /1 + [z]?;

(-1 denotes for a matrix the matrix of the absolute values of its entries;

[] the ceiling function, i.e., [x] = min{m € Z : z < m};

[ ]+ which stands for [z], = max{z,0}, z € R;

[, -] which stands the commutator for two matrices, i.e., [A, B] = AB — BA,;

Rez real part of z € C;

Im z imaginary part of z € C;

v spatial gradient, i.e, V=V, = (8951, ‘e 8%);

A Laplace operator in R”, i.e., A=A, =377 97 ;

|D|” pseudo-differential operator with symbol |£]7;

D, denotes D, = %&g;

Fosse Fourier transformation F,_,¢(u)(t,&) = 3 fR Syt x)d;

Feire inverse Fourier transformation F,_ (u )(t {) T o e Cu(t, £)dE;

f<g if there exists a constant C' > 0 such that f < C’g,

fzyg if there exists a constant C' > 0 such that f > Cg;

f=g if fSgand f2g;

f~g if there exists a constant C' > 0 such that f = Cy;

det A determinant of the matrix A;

diag A diagonal matrix with entries a;; € R, j = 1,--- ,n on the diagonal;

supp u support of the function u;

B, — By continuous embedding of B; in Bs;

o denotes the partial derivatives 95 := 93! - -- 9¢" with a multi-index
a= (g, ,a,) € R, where |a| :=a; + - ay;

[ *a@) g convolution of the functions f and g with respect to spatial variables;

f~g if limy oo gg)) =1, i.e., f and g have the same asymptotic behavior;

f(t) = O(g(t)) if there exist constants C' > 0 and ¢, > 0 such that
|f()] < Clg(#)] for all t > to;
f(t) =o(g(t)) if for every positive constant e there exists a constant ¢, > 0 such that

| ()] < €e|g(t)| for all t > ¢, ;
i denotes 6;,; =1 for i = j, §;; =0 for ¢ # j for i,j € N;
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B. List of symbols and abbreviations

Zell
Zdiss

hl(ta 5)
h2(t7 5)

U(t, &)
V(t,€)
E(t,s,§)

EV(t7 S, §)
By (t, 8, €)
EOSC(t7 87 E)
Erea(t, s, §)
Ee(t, s,€)
FEaiss(t,5,€)

tdiss
ten
tred

tOSC

At) =14+ [3 A

o(t) = ult >A§i§,

6(t) =exp (3 fo (T)dr);

(Erwww = \/|>\2 WA (b)[¢[ — U,

A .
F(A(#))?

(
o(t) = exp (5 Jy p(r)dr);
Moo = hmt_mo n(t);
By(s,t) = [ 22 dr;

hyperbolic region in the extended phase space;

~
~
I

elliptic region in the extended phase space;
hyperbolic zone in the extended phase space;
oscillation subzone in the extended phase space;
reduced zone in the extended phase space;
elliptic zone in the extended phase space;
dissipative zone in the extended phase space;

ha(,€) = X(EIF(AD)) s + (1= X(EIF(A@) ) M@l

(t &) < mt)>ep(t);(t) + (1 — X(W)) <§>)\(t),w(t);
micro-energy U (¢, &) = (hi(¢,€)a(t, €), Dya(t, f))T satisfies D,U = A(t, &)U
micro-energy V (t,£) = (hz(t,f)v(t,ﬁ),Dtv(t,g)) satisfies D,V = Ay (t,&)V;

fundamental solution to D,U = A(t,£)U, i.e., the matrix-valued
solution to D;E = A(t,&)E, E(s,s,§) =1;

fundamental solution to D,V = Ay (t,&)V, i.e., the matrix-valued
solution to DyEy = Ay (t,§)Eyv, Ev(s,s,§) =1 in Section 2.4;
fundamental solutions in the hyperbolic zone;

fundamental solutions in the oscillation zone;

fundamental solutions in the reduced zone;

fundamental solutions in the elliptic zone;

fundamental solutions in the dissipative zone;

separating line between the dissipative zone and elliptic zone
which solves F'(A(t4iss))|&| = do;

separating line between the elliptic zone and reduced zone

which SOLves (€)x(ty)w(rar) = &5
separating line between the reduced zone and oscillation subzone zone

which solves (&) x(to),w(ten) = NM and A(t.eq)[E] =
separating line between the Osc1llat10n subzone and hyperbohc zone

which s0lves (€)x(r...)w(to) = N2El2lere) and Ot )|E| = N



245

EY(t,s,€)

ENt,s,€)
E2(t,5,€)
Ko(ta Oa 5)

Kl(t7 S, g)
]%O(ta 07 6)

kl(ta S, 5)

Function spaces
C>(R™)
C(R")
LP(R™)

[

L=(R")

fundamental solution to D,Y = AY (t,£)Y, i.e., the matrix-
valued solution to D,EY = AY (t,§)EY, EY (s,s,£) = I;
Elt,s,8) = E(t,s,8);

E2(t,5,8) = EV (¢, 5,8);

solutions to the corresponding linear Cauchy problems with
initial data 4(0,&) = 1 and 4,(0,&) = 0;

solutions to the corresponding linear Cauchy problems with
initial data 4(s,&) = 0 and a.(s, &) = 1;

solutions to the corresponding linear Cauchy problems with
initial data ¢(0,£) =1 and 4,(0,£) = 0;

solutions to the corresponding linear Cauchy problems with
initial data §(s,&) = 0 and 9,(s,&) = 1;

separating curve between Il (do,€) and Ty, (N, €)

which solves 1 (t¢) — [€]* = e?n?(t}¢) in Section 2.5;

v(0,t) = %//\\Egg, Vo = limsup,_, _ v(0,1);
9(6,1) = see g, Voo = limsup,,  9(6,1);
o(t) = 29,

a1(p) = 55D — 303

ay(p) = ﬁp -5

Fujita exponent;

modified Fujita exponent;

Gagliardo-Nirenberg exponent;

modified Gagliardo-Nirenberg exponent;

exponent which appears in the fractional Gagliardo-Nirenberg

inequality, 0 < s < o}
special case s = 0.

space of k-times continuously differentiable functions;
space of infinitely continuously differentiable functions;

space of functions belonging to C*(R") with compact support;
LP(R™) = {u:R" = R| [g. |u(z)Pdz < xo};

denote LP—norms, where ||ul|z» = ( [g. |u(x)|Pdz) Up,

where the functions u are Lebesgue measurable and 1 < p < oo;
L>*(R") = {u: R" — R| esssup,cg. |u(z)| < oo};

denotes the L>*-norm, where ||u||p~ = esssup,cg. |u(x)];
Sobolev spaces based on LP(R"), 1 < p < oo, m € N;

Sobolev spaces of fractional order or Bessel potential space;
Sobolev spaces of fractional order based on L?(R");

homogeneous Sobolev spaces of fractional order;

homogeneous Sobolev spaces of fractional order based on L?*(R™).
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