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 36 
ABSTRACT 37 

 38 
Precision agriculture has renewed the interest of farmers and researchers to conduct on-farm 39 
planned comparisons and researchers with respect to field-scale research. Cotton yield monitor 40 
data collected on-the-go from planned field-scale on-farm experiments can be used to make 41 
improved decisions if analyzed appropriately. When farmers and researchers compare treatments 42 
implemented at larger block designs, treatment edge effects and spatial externalities need to be 43 
considered so that results are not biased. Spatial analysis methods are compared for field-scale 44 
research using site-specific data, paying due attention to local and global patterns of spatial 45 
correlation. Local spatial spillovers are explicitly modeled by spatial statistical techniques that 46 
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led to improved farm management decisions in combination with the limited replication strip 47 
trial data farmers currently collect.  48 
 49 
 50 
 51 

INTRODUCTION 52 

Precision agriculture has renewed the interest of farmers and researchers in conducting on-farm 53 

planned comparisons with respect to field-scale research. Yield monitor data can be collected as 54 

on-the-go and planned on-farm experiments, and can be implemented, harvested, and analyzed 55 

without interfering with field operations if precision technologies are appropriately used. 56 

Farmers conducting their own field-scale research often use limited-replication large block 57 

experimental designs (Cook et al., 2018; Marchant et al., 2019; Piepho et al., 2011), which are 58 

not well founded in classical statistics. Specifically, lack of homogeneity in soils and other 59 

factors as well as the typically limited number of replications, are at odds with classical statistical 60 

inference principles, potentially interfering with experimental yield results. While farmers are 61 

not as focused on statistical inference as researchers, they care intensely about the reliability of 62 

results. Are the yield differences observed the result of random variation, or repeatable 63 

mechanisms? The vision is that if statistical techniques can be developed to use yield monitor 64 

and other precision agriculture data to assess the reliability of inputs and agronomic 65 

management, those statistical techniques could be incorporated into easy to use decision support 66 

tools.  67 

When farmers aim for a comparison of input products, application rates or agronomic 68 

management, larger treatment blocks are often substantially easier to implement than small plots. 69 

Large block designs are particularly important for some inputs specific to cotton (Gossypium 70 

hirsutum L.), such as tillage equipment or midseason insecticides, growth regulators, and 71 

defoliants applied with aerial applicators. Spatial analysis techniques have been evaluated at field 72 
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scales in collaboration with farmers (Griffin et al., 2008). If information that is more reliable can 73 

be gleaned from the limited replication data that farmers are already collecting with cotton 74 

harvesters equipped with yield monitors, better farm management decisions can be implemented. 75 

These methods have been shown to be beneficial especially for cotton because of large scale 76 

input application practices. It is therefore important that a thorough methodology is used, capable 77 

of capturing and controlling heterogeneity and dependence across large treatment blocks. Spatial 78 

regression models have been shown to be capable of providing such a framework (Anselin et al., 79 

2004; Liu et al., 2005; Liu et al. 2014, Liu et al., 2015; Griffin and Lowenberg-DeBoer, 2019). 80 

One key problem with precision agriculture data, and particularly yield monitor data, is 81 

that the data are inherently spatially autocorrelated. This spatial correlation can have a rather 82 

wide or ‘global’ range, due to similarities in soil composition or hydrological characteristics over 83 

a substantial spatial range in the field. Within an experimental context, the experiment itself 84 

introduces local patterns of spatial correlation as well, due to nearby locations being subjected to 85 

the same treatment (Lambert et al., 2004; Hurley et al., 2004, Liu et al., 2015). Tests for spatial 86 

autocorrelation have power over other types of spatial effects such as spatial heterogeneity, 87 

therefore spatial diagnostics may detect spatial structure imposed by more elaborate 88 

experimental designs. The objective of this study was to determine whether appropriate spatial 89 

data analysis techniques modeling local and global spatial autocorrelation patterns in the data can 90 

contribute to better farm management decisions based on large-block field-scale on-farm data 91 

farmers currently collect with yield monitors. Specifically the concept of modeling local spatial 92 

spillovers induced by treatment edge effects was evaluated against aspatial and spatial regression 93 

models. 94 
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 To investigate how spatial analysis methods can be applied to on-farm planned 95 

comparison research, this study uses spatial regression models to analyze a large block field-96 

scale tillage experiment. In the example, yield monitor and georeferenced soils data collected 97 

from a cotton tillage experiment are used. Four cotton tillage treatments were replicated five 98 

times at the University of Arizona’s Maricopa Agricultural Center. The analysis compares an 99 

aspatial regression model estimated as ordinary least squares (OLS) to spatial regression 100 

methods. The aspatial model estimated as OLS is mathematically identical to analysis of 101 

variance (ANOVA) with continuous covariates but estimated with regression techniques. 102 

Specific attention is paid to including local spatial autocorrelation patterns induced by the design 103 

of the experiments that provides results for higher-order models allowing for the simultaneous 104 

presence of local and global spatial autocorrelation processes. The hypothesis is that spatial 105 

regression that models local or global autocorrelation processes can provide more reliable results 106 

than aspatial models. Specific hypotheses include 1) cross regressive models aimed at addressing 107 

local spatial correlation facilitate estimation of treatment differences by explicitly modeling 108 

treatment edge effects and 2) model specification with the proposed local spatial spillover via 109 

cross regression is as useful as more elaborate spatial regression models at discerning treatment 110 

effects in field-scale experimentation. 111 

  112 

Precision agriculture: practice and research 113 

Precision agriculture builds on the use of modern information technology in agriculture, 114 

including global navigation satellite systems (GNSS) and geographical information systems 115 

(GIS). Information-intensive precision agriculture technologies continue to be adopted at the 116 

farm level with 42% of corn and 45% of soybean acreage harvested in 2005 and 2006, 117 
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respectively, using yield monitors (Schimmelpfennig and Ebel, 2011). However, percent of 118 

cotton acres with harvesters equipped with yield monitors are reported to range from 10 to 20 119 

percent of the total U.S. cotton crop (Griffin, 2010; Daystar et al., 2017; Hellerstein et al., 2019). 120 

Adoption of cotton yield monitors are envisaged to follow similar patterns as corn and soybean.  121 

 In yield monitoring experiments, spatial analysis techniques have been used to improve 122 

the reliability of farm management decisions. Cotton farmers with GNSS-equipped yield 123 

monitors report that on-farm experimentation is the number one use of the technology (Griffin, 124 

2010). Spatial statistical techniques have been developed primarily in geostatistics and 125 

geography (Cressie, 1993) where an emphasis on modeling induced the emergence of the field of 126 

spatial regression (Anselin et al., 2004; Florax and van der Vlist, 2003). Site-specific production 127 

functions, i.e. variable rate application, have been estimated using spatial regression (Lambert et 128 

al., 2006; Hurley et al., 2005; Ruffo et al., 2006; and Bullock et al., 2009). For cotton, spatial 129 

analysis can help growers and those that advise them to cope with the large plots required by 130 

aerial application, field scale tillage equipment, and spatial patterns created by irrigation or 131 

natural soil factors. The finer scale swath width of cotton harvesters allows for greater spatial 132 

detail and flexibility in analysis than grain harvesters. Suspect data points, outliers, or even entire 133 

cotton rows may be removed from the analysis leaving an adequate number of observations for 134 

properly planned experiments. 135 

Several publications have described on-farm comparison and field-scale research in 136 

mechanized agriculture (Bramley et al., 1999; Griffin et al., 2007; Knighton, 2001; Nafziger, 137 

2003; Whelan et al., 2003; Wittig and Wicks, 2001) and the economic ramifications when 138 

replications, treatments, or site years are reduced (Young et al., 2004). These methodologies for 139 

on-farm comparisons were derived from small plot designs developed in the early twentieth 140 
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century for the technology available at that time. Concurrent publications recommend designs 141 

such as strip or split planter trials to accommodate variability across the field. Some studies have 142 

taken on-farm comparisons a step further by integrating precision agriculture technologies to 143 

measure variability and record yield data (Adams and Cook, 2000; Anselin et al., 2004; Brouder 144 

and Nielsen, 2000; Cook et al., 2013; Knight and Pettitt, 2003; Lark and Wheeler, 2003; Liu et 145 

al., 2015; Lowenberg-DeBoer et al., 2003; Lyle et al., 2003; Nielsen, 2000; Whelan et al., 2003). 146 

Anselin et al. (2004), Florax et al. (2002), Griffin et al. (2008), Lambert et al. (2004), Lambert et 147 

al. (2006), and Liu et al. (2015) used spatial regression models to analyze site specific field data. 148 

This paper extends the work of Griffin et al. (2005) and builds upon Florax et al. (2002), 149 

Lowenberg-DeBoer et al. (2003), Hurley et al. (2001), Lambert et al. (2004), Liu et al. (2015), 150 

and Anselin et al. (2004) by applying spatial statistical and spatial regression techniques to field-151 

scale experimental designs in cotton production by applying proposed cross-regressive models of 152 

Griffin and Lowenberg-DeBoer (2019). While most of the above studies used binary dummy 153 

variables to model terrain and soils, Florax et al. (2002), Liu et al. (2015) and Griffin et al. 154 

(2005) used continuous covariates. Griffin et al. (2005) and Vories et al. (2015) used Boolean 155 

Euclidean distance weights matrices, and Liu et al. (2005) used inverse distance weights, while 156 

others used a first-order queen contiguity weights matrix (Velandia et al., 2008; Liu et al., 2015). 157 

“Queen contiguity” links a data point to all contiguous polygons vertical, horizontal and 158 

diagonal, i.e. includes neighboring observations that share a side including those of zero length. 159 

Although the first-order queen matrix may have been the appropriate spatial interaction structure 160 

for those particular datasets, it is not likely to be universally the most appropriate due to limited 161 

connectedness. In many ways this analysis of large block designs provides a complement to the 162 

on-farm research designs suggested by Bullock and colleagues (e.g. Bullock and Mieno, 2019). 163 
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Those designs focus on using precision agricultural technology to treat relatively small plots 164 

when accurate control is possible (e.g. fertilizer rates, plant population).  165 

 It has long been known that crop yields vary spatially, even over small areas. Fisher 166 

reported that one acre of wheat in 1910 at Rothamsted was harvested in 500 small plots, with 167 

yield varying by approximately 30% from the mean (Fisher, 1931). Field heterogeneity is not 168 

randomly but systematically distributed, with plots near one another more alike than plots farther 169 

apart (Fisher, 1931; Littell et al., 1996; Tobler, 1970). Reducing experimental unit sizes, i.e. plot 170 

size, has traditionally counteracted this pattern of spatial autocorrelation, until it could be 171 

assumed that the experimental units were homogeneous. In addition, randomization and 172 

replication were used with entire replicates placed such that no spatial autocorrelation was 173 

assumed to exist within the replicate (Fisher, 1926). Data on soils, topography or other field 174 

characteristics are used with spatial analysis to help explain patterns. Inferences drawn on the 175 

basis of regression models estimated by ordinary least squares (OLS) are, however, 176 

compromised when spatial autocorrelation is present in the data (Anselin, 1988). If the 177 

systematic spatial patterns in variability can be appropriately analyzed, farmers can have more 178 

confidence in results from experiments they conduct at landscape scale on their farms.  179 

Precision agriculture technologies such as GNSS-equipped yield monitors and others 180 

provide many geo-referenced observations per acre at relatively low cost. From the standpoint of 181 

classical statistics, one of the key problems with precision agriculture data, and particularly yield 182 

monitor data, is the inherent spatial autocorrelation. Spatial heterogeneity can also be present in 183 

the data or even be induced by spatial autocorrelation. Spatial regression methods are useful for 184 

modeling spatial autocorrelation (Anselin, 1988; Cressie, 1993). Lambert et al. (2002) identified 185 

several types of spatial statistics appropriate for analyzing spatially autocorrelated yield monitor 186 
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data. Anselin et al. (2004), Florax et al. (2002) and Hurley et al. (2001) used spatial statistics to 187 

analyze data from designs derived from small plot statistics. Anselin et al. (2004), Florax et al. 188 

(2002), and Lambert et al. (2004) corrected for spatial heteroskedasticity using groupwise 189 

heteroskedasticity models with and without spatial regimes. Lowenberg-DeBoer et al. (2003) 190 

suggested that large block limited replication designs may be appropriate if spatial statistics are 191 

used. Cressie (1993) wrote that randomization and replication were not always possible 192 

especially for landscape scale ecological and environmental science.  193 

This idea can be extended to the agricultural field sciences with precision agriculture as 194 

an example of a new set of technologies. Cressie (1993, p. 249) also observes “classical 195 

experimental designs of agricultural field trials ignore the spatial position of the treatment in the 196 

design”. By taking spatial variation into account, the researcher can obtain unbiased rather than 197 

biased as well as more efficient estimates (Cressie, 1993; Duby et al., 1977; Wilkinson et al., 198 

1983; Martin, 1986; Besag and Kempton, 1986; Grondona and Cressie, 1991). 199 

 Many university extension systems provide regional recommendations for input use 200 

under general agricultural practices. Incorporating on-farm comparison results can often make 201 

better farm management decisions. Urcola and Lowenberg-DeBoer (2007) report most 202 

commercial Corn Belt farmers do some planned comparisons each season. Most of these 203 

comparisons are large block, split field or paired field designs (Cook et al., 2018). Farmers base 204 

their decisions on average yield per block or field, paying little attention to within field 205 

variability or reliability indicators. On-farm comparison data seem to be most important for 206 

farmers who use yield monitors. Cotton farmers are expected to increasingly conduct similar 207 

experiments (Griffin, 2010). 208 
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Traditional agronomic cotton on-farm comparisons use strip plot designs intended to 209 

reduce heterogeneity within experimental units. Those strip plot protocols are based on classic 210 

small plot experimental designs such as randomized complete blocks, Latin squares and split 211 

plots require intensive planning, management, labor, and human capital efforts during planting 212 

and harvesting operations (Piepho et al., 2011). Field activities associated with planting and 213 

harvesting (Griffin and Barnes, 2016) are the most critical to the success of the farm operation, 214 

causing the value of farmer’s management time and labor to be at a premium, thus discouraging 215 

implementation of classical experimental designs (Griffin et al., 2014). Familiar experimental 216 

designs are often costly and cumbersome, interfering with production logistics. Even though on-217 

farm comparison designs derived from small plot research, such as strip or split planter trials, 218 

reduce time requirements compared to classical randomized complete block designs, the 219 

perceived benefits of research may still not overcome resource and time costs (Lowenberg-220 

DeBoer et al., 2003).  221 

For instance, there are logistical problems associated with strip trials. For split planter 222 

trials on a farm with a six-row cotton picker, filling every six planter boxes with a different 223 

variety, seed treatment, furrow insecticide or fungicide potentially leads to human error. When a 224 

change of treatments is made, filling planter boxes with small quantities of seed and cleaning 225 

boxes for successive varieties hinders planting operations. Minor planter alignment problems 226 

may lead to seeding rate, seeding depth, or row spacing issues that impact yield response. With 227 

larger acreage farms, the person planning may not be the person planting, potentially leading to 228 

communication and coordination problems. From the viewpoint of the analyst, it is a complex 229 

and tedious task to keep treatments and cotton picker passes in line.  230 
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Moreover, timing and application of inputs for cotton production complicate 231 

implementation of on-farm comparisons. In general, cotton farmers apply more inputs than grain 232 

farmers. In addition to variety, fertilizer, herbicide, and planting time insecticide treatments 233 

commonly used by grain farmers, cotton producers might wish to compare mid-season 234 

application of insecticide, growth regulator, or defoliant products. Aerial applications of those 235 

mid-season inputs are quite common in cotton such that strip trials are difficult to implement. 236 

Furrow irrigation is commonly practiced in cotton such that important differences in the amount 237 

of water plants receive from one end of a field to the other can occur (Adamsen et al., 2000).  238 

Many of the problems associated with small plot, strip designs, or specific factors 239 

affecting cotton on-farm comparisons could be eliminated if larger experimental units could be 240 

used for on-farm comparison designs. Many farmers already conduct planned comparison 241 

experiments on single non-replicated large blocks, particularly with new varieties to guide seed 242 

decisions in subsequent years. This effort to compare treatments indicates farmers are interested 243 

in conducting on-farm comparisons and willing to implement large single block designs. They 244 

choose experimental designs for which the cost (mainly in terms of time) is acceptable relative to 245 

the perceived benefit. For instance, instead of cleaning planter boxes and taking the time to refill 246 

with selected varieties or different types of treated seed, with large block designs planter boxes 247 

are filled with the same product and then treatments could be changed during normal reloading 248 

times; and areas of the field with mixed seed due to transitioning between treatments can be 249 

tagged with a dummy variable (Griffin et al., 2006). Aside from calibration (Vories et al., 2019), 250 

collecting yield monitor data requires little extra time during harvest season. Other than planning 251 

and analysis in the off-season, large block designs require minimal additional effort during 252 

planting or harvest compared to no comparisons. Large blocks also offer the advantage of being 253 
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less sensitive to human and mechanical error or treatment edge effects, especially from drift of 254 

aerial applied pesticides and mobility of pests. 255 

The cotton spindle harvester yield monitor has a distinct benefit over the combine yield 256 

monitor because pickers can collect and record row-wise data. Combine yield monitors 257 

aggregate data across combine heads, which may be approximately 18.3 meters (60 feet) wide or 258 

more with grain cut from the ends of the head entering the yield monitor several seconds after 259 

grain cut from middle of head. Cotton picker yield monitors subsequently avoid aggregation and 260 

combine dynamics problems that grain yield monitors are vulnerable to as suggested by Lark and 261 

Wheeler (2003). To generate usable data, grain growers need to be very careful that harvest 262 

passes match exactly the pattern of planter or input application equipment to avoid mixing yields 263 

from different treatments. Large blocks offer the benefit of manageable treatment edge effects. If 264 

treatment edge effects are thought to exist, yield monitor points near treatment borders can be 265 

excluded from analysis.  266 

Treatment edge effects are not to be confused with boundary value edge effects 267 

commonly identified in spatial statistics (Anselin, 1988). In practice, real data sets often show 268 

observable areas in which a spatial pattern can be identified, but this area is a part of a larger, 269 

partly unobserved area in which the underlying process operates. This is similar to the missing 270 

starting period observation in time series analysis, although spatial data may contain many more 271 

edge effects due to being multidirectional rather than unidirectional. The essential difficulty is 272 

that unobserved data and/or processes outside the sampled dataset may interact with data within 273 

the observed data. Since the out-of-sample data are not observed, it is difficult to account for 274 

edge effects, and currently no satisfactory treatment for spatial edge effects is available. Here, 275 

spatial effects arising from treatment edge effects are explicitly modeled via methods proposed 276 
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by Griffin and Lowenberg-DeBoer (2019) by applying their proposed cross regressive models to 277 

experimental design effects rather than relative elevation terrain position.  278 

An exhaustive search of the literature yielded one existing study that attempted to model 279 

field-scale treatment edge effects with spatial processes. Bongiovanni et al. (2007) hypothesized 280 

relatively narrow widths of treatment strips may induce non-constant variance across 281 

observations such as within the same strips. Testing whether treatment strips were a source of 282 

error dependence required an additional spatial weights matrix. Their estimation of the model 283 

specification with a weighting matrix correlated observations belonging to the same treatment 284 

strip. They reported spatial autocorrelation and groupwise heteroskedasticity were induced in 285 

wheat yield response to applied nitrogen due to experimental design, i.e. treatment strips. Rather 286 

than modeling treatment edge effects as cross regressive variables, they explicitly modeled as a 287 

spatial error process with separate spatial weights. Specification of spatial weights matrix 288 

identified observations from the same treatment strip rather than identifying the proportion of 289 

neighboring observations near treatment edges (Bongiovanni et al., 2007).  290 

  291 

Data collection and data filtering 292 

The field study was conducted at the University of Arizona’s Maricopa Agricultural Center 40 293 

km south of Phoenix in 2002. Two soil series dominated the field; Mohall (fine-loamy, mixed 294 

hyperthermic Typic Haplargid) and Casa Grande (fine-loamy, mixed hyperthermic Typic 295 

Natrargids), Arizona’s state soil. These sodic-saline alluvial soils formed in the floodplain of the 296 

Santa Cruz River. The 6-hectare (15-acre) precision-leveled field was planted to cotton 297 

(Gossypium hirsutum L., cv Delta Pine 448B). Operations included a conventional and three 298 

alternative tillage treatments: CONVENTIONAL OR CONV (shred, disk, rip, disk, list), ROTOVATOR 299 
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or ROT (shred, Rotovate), SUNDANCE or SUN (shred, root pull, rip/list), and PEGASUS or PEG 300 

(single combined operation), in five large block replications and implemented in a randomized 301 

complete block design (Figure 1). The individual treatment strip size ranged from 165 m (540 302 

feet) long in the north to 174 m (570 feet) in the south. Treatment blocks were approximately 40 303 

m (130 feet) or 40 cotton rows wide for CONVENTIONAL and 11 m (36 feet) or 12 cotton rows 304 

wide for the three reduced tillage treatments.  305 

 306 

 307 
Figure 1. Spatial distribution of the experimental design with four different tillage treatments. 308 

 309 

Soil clay content was derived from 2,508 EM38 measurements taken approximately 3.8 310 

m (12.5 feet) apart within each transect and approximately 7 m (23 feet) between transects. Data 311 

from EM38 are similar to electrical conductivity (EC) measurements taken from devices such as 312 

Veris’ Mobile Sensor Platform measuring the resistance of electrical flow through the soil 313 

(Corwin and Lesch, 2003). Although electrical conductivity does not directly affect plant growth, 314 
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an indirect measure of factors that may affect productivity is provided. The EM38 data was 315 

calibrated with additional soil samples analyzed in the laboratory and correlated to soil clay 316 

content (Triantafilis and Lesch, 2005). Yield data from a four-row cotton picker was collected by 317 

optical flow sensors in each vacuum chute by an AGRIplan system and aggregated across the 318 

rows before logging a total of 12,824 points in 2002. Yield data points were recorded 319 

approximately one meter apart within the row and aggregated over four rows. A weigh boll 320 

buggy was used to monitor the calibration of the cotton picker yield monitor.  321 

 322 

Table 1. Parameters, criteria, and number of points deleted in yield data filtering. 323 
Parameter Criteria Points deleteda 
Maximum velocity (kph) 4.8 528 
Minimum velocity (kph) 0.6 1,447 
“Smooth” velocity (%) 0.15 1,062 
Maximum yield (kg ha-1) 11,209 276 
Minimum yield (kg ha-1) 1,681 1,988 
Standard deviation filter 3 2,112 

a Points deleted are not cumulative, i.e. the “same” point can be deleted by multiple criteria. 324 

 325 

Subsequently, cotton lint yield data were filtered and cleaned for potentially erroneous 326 

data with Yield Editor (Sudduth and Drummond, 2007) using parameters set as presented in 327 

Table 1 following the procedures set forth by Griffin et al. (2007). The treatment dummies and 328 

distance from the irrigation water source was appended to each EM38 soil data point. A 4-m 329 

noncontiguous buffer was created around each EM38 point, and a simple average of yield data 330 

points within this buffer were assigned to the EM38 point for the purpose of assigning dependent 331 

data points (yield) to the location of explanatory variable data points (soil data) in the statistical 332 

analysis. A 4 m buffer was used because it was slightly less than the distance between rows of 333 

differing treatments blocks so that yield data from adjacent treatments would not be included in 334 

the yield estimate. Dummy variables for tillage treatment were added to the respective data 335 
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points. Of the total 2,508 EM38 points, 57 did not have yield data within 4 meters or were not 336 

assigned to a treatment thus omitted from the analysis, leaving 2,451 total observations in the 337 

final dataset.  338 

 339 

Spatial interaction structure 340 

In applications of spatial regression techniques to precision agriculture, spatial spillover effects 341 

have exclusively been modeled as global rather than local processes. Local spatial spillovers 342 

exist with only immediately adjacent observations while ‘global’ refers to each location in the 343 

field being linked to any other location in the field (Anselin, 1988; Anselin, 2003). Global 344 

linkage processes are inherent to, for instance, the frequently used spatial autoregressive error 345 

model: 346 

 347 

 µελεεβ +=+= WXy , , (1) 348 

 349 

where y is an n x 1 vector of observations on the dependent variable, X is an n by k matrix of 350 

explanatory variables, β is an k by 1 vector of regression coefficients, , 𝜺𝜺|𝑿𝑿 ≈351 

𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁�0,𝜎𝜎𝜀𝜀2 𝐈𝐈𝑛𝑛 𝑛𝑛�, and μ an independently and identically distributed (i.i.d.) error term. 352 

Substitution and rewriting shows the presence of a spatial multiplier term 1)( −ξ− WI , where ξ  353 

represents the spatial parameter. As a result of the inverse term, each location is linked to any 354 

other location when 0≠ξ , irrespective of whether they are linked through the specification of 355 

the weights matrix. For the spatial error model, rewriting leads to the specification: 356 

 357 

 µλ−+β= −1)( WIXy  358 



25 
 

 µ=β−λ− ))(( XyWI  359 

 µβλβλ +−+= WXXWyy , (2) 360 

 361 

which embeds a set of k–1 nonlinear constraints commonly known as the Durbin or common 362 

factor model (Mur and Angulo, 2006). Further rewriting gives: 363 

 364 

 )()( 1 µ+βλ−βλ−= − WXXWIy  (3) 365 

 366 

Equation (3) embeds a series of nonlinear constraints and it contains spatially lagged exogenous 367 

variables in addition to the exogenous variables itself (Anselin, 2003). 368 

 Although both specifications have been overwhelmingly popular in spatial regression 369 

precision agriculture analyses, they are unlikely to be the data generating process. The spatial lag 370 

model a priori assumes that the spatial correlation extends to the whole spatial system. The 371 

spatial error model implicitly includes a priori nonlinear constraints on the local spatial 372 

autocorrelation, and it is based on the assumption that the global and local correlation intensity is 373 

the same. The spatial error process can be characterized by the autoregressive (AR) or the 374 

moving average (MA) error process resulting in global and local spillovers, respectively.  375 

Therefore, the spatial autoregressive (SAR) was estimated. It should be noted that although 376 

spatial moving average (SMA) models were desirable (Baltagi et al. 2019; Dogan and Taspinar, 377 

2013; Fingleton, 2008a, 2008b), these have not been developed into readily available statistical 378 

software. In addition, the specification of the spatial weights matrix is by definition the same for 379 

the local and the global autocorrelation processes. The implementation of different tillage 380 

treatments by its very design induces local spatial correlation patterns in the data. This represents 381 
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an omitted variable problem that should ideally be solved before testing for residual spatial 382 

correlation.  383 

 Florax and de Graaff (2004, page 42) present an example of omitted variable problem 384 

based on the “true” model µγβα +++= Wxxy , where µ  is the usual iid error term with mean 385 

zero to exemplify this point. If autocorrelated exogenous variables are omitted, the actual 386 

regression becomes, ε+β+α= xy , where Wxγµε += , but now 0)(E)(E ≠=⋅= mxWε , with 387 

m symbolizing the omitted variable bias. The covariance between the residuals at locations i and 388 

j, where i and j are not first- or second- order neighbors, equals: 389 

 390 

 ( ) 2)(E))((E),(Cov mmm jijiji −=−−= εεεεεε   (4) 391 

 392 

where 393 

 394 

 ( ) jijjiiji WxWxWxWx )()(])(][)([E)(E 2ρ=ρ+µρ+µ=εε  (5) 395 

 396 

such that the residuals comprising the omitted variable tend to be correlated, regardless if 397 

topologically invariant or of relative spatial arrangement. Therefore, evaluating omitted spatially 398 

autocorrelated exogenous variables with spatial misspecification tests may not adequately detect 399 

failures of the model (Florax and de Graaff, 2004, page 42). 400 

To compare local and global spillovers, separate spatial interaction structures were 401 

chosen for use in the separate regression models. Two row-standardized spatial weights matrices 402 

are constructed, one for local effects referred to as W1 and one for global effects referred to as 403 

W2. Both weights matrices are constructed such that 0=iiw , 0>ijw  for observations considered 404 
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neighbors, and 0=ijw  for non-neighbors. The W1 matrix was selected on the basis that only 405 

immediate neighboring observations are of interest, so a first-order queen criterion was 406 

constructed in R with spdep contributed package (Bivand et al, 2013; Bivand and Wong, 2018). 407 

Since the experimental data is such that there are two transects of data in each reduced tillage 408 

treatment and four transects of data in the CONVENTIONAL tillage treatments, a first-order queen 409 

criterion may include neighbors from differing treatments. As a result, the cross-regressive terms 410 

TDW1 , where TD  is dummy variable with ones for a specific treatment T, captures local 411 

dependence and spatial externalities (Arbia, 2014) arising from experimental treatment edge 412 

effects that would otherwise have been missed. Pre-multiplying TD by W1 creates spatial 413 

weighted average of the specific treatment dummy variable on all neighbors specified by the 414 

weights matrix such that TDW1 is bound by 0 and 1. The cross-regressive term TDW1 equals 1 415 

when all neighbors are of the treatment in question and less than 1 if a portion of neighbors are 416 

of a differing treatment.  417 

An inverse-distance criterion is selected for W2 and the matrix was created using the 418 

spdep contributed package to R (R Core Team, 2019). The inverse distance weights matrix was 419 

chosen because it implies a smooth distance decay of spatial correlation, up to an empirically 420 

determined relevant distance band.  421 

The full model specification includes cotton lint YIELD as the dependent variable, and 422 

percent clay content (CLAY) and its square, distance to the water source (DIST) and its square, 423 

tillage treatment dummies and their spatially weighted average using weights matrix W1, and 424 

interaction terms of tillage treatment and CLAY, and CLAY and DIST. Table 2 provides an 425 

overview of the explanatory variables. 426 

 427 
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Table 2. Description of explanatory variables.a 428 
Variable Description 
CONSTANT Intercept  
CLAY Percent clay content of the soil 
CLAY2 Square of CLAY 
CLAYDIST Interaction term between CLAY and DIST 
DIST Distance of the soil point to the irrigation canal 
DIST2 Square of DIST 
PEG Dummy variable for PEGASUS 
ROT Dummy variable for ROTOVATOR 
SUN Dummy variable for SUNDANCE 
PEGC Interaction term of PEG and CLAY 
ROTC Interaction term of ROT and CLAY 
SUNC Interaction term of SUN and CLAY 
W1CLAY Spatially weighted average of CLAY using W1 
W1PEG Spatially weighted average of PEG using W1 
W1ROT Spatially weighted average of ROT using W1 
W1SUN Spatially weighted average of SUN using W1 

 a W1 is a standardized first-order contiguity matrix based on the queen criterion. 429 
 430 

An inverse distance weights matrix with a 75-meter band was selected as the appropriate 431 

spatial interaction structure for the spatial regression portion for this particular data. 432 

Underspecifying the weights matrix causes greater estimation errors than over-specifying 433 

indicating that distances larger than thought appropriate are preferred to distance less than 434 

appropriate especially for tests of spatial autocorrelation (Florax and Rey, 1995). Summary 435 

measures with respect to the connectivity structure implied by both weights matrices are 436 

provided in Table 3. The inverse-distance weights matrix assumes a considerably greater spatial 437 

range than the first-order contiguity matrix.  438 

 439 

Table 3. Connectivity data for the different spatial weights matrices. 440 
 First-order queen, W1 75 m inverse-distance, W2 

Dimension 2,451 2,451 
Nonzero links 14,324 1,182,982 
Nonzero weights (%) 0.24 19.70 
Average weight 0.17 0.002 
Average number of links 5.84 482.65 
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Largest root (eigenvalue) 1.00 1.00 
Smallest root (eigenvalue) –0.57 –0.23 
     
# and frequency of neighbors # Neighbors Frequency # Neighbors Frequency 
 2 3 177 - 232 36 
 3 49 233 - 288 91 
 4 119 289 - 344 224 
 5 329 345 - 400 365 
 6 1696 401 - 456 327 
 7 178 457 - 512 331 
 8 67 513 - 568 321 
 9 8 569 - 623 384 
 10 2 624 - 678 372 

 441 
 442 

 443 

Empirical analysis 444 

The whole field YIELD average was 5,908 kg ha-1 (5,271 lbs ac-1) with a standard deviation of 445 

556 kg (1,225 lbs). Seed cotton yields ranged from a minimum of 1884 kg ha-1 (1,681 lbs ac-1) to 446 

a maximum of 10,094 kg ha-1 (9,006 lbs ac-1) (Table 4). Soil CLAY content ranged from a 447 

minimum of 7.9% to a maximum of 31.6% with a mean of 23.2% (Table 4). Moran’s I test 448 

statistics were 0.45 and 0.58 for YIELD and CLAY, respectively, indicating that the dependent and 449 

continuous explanatory variables are spatially autocorrelated (Clift and Ord, 1981; Anselin, 450 

1988).  451 

 452 

Table 4. Descriptive statistics for variables. 453 

 Descriptive Statistics Wald test 
on normality 

Randomization 
Assumption 

 Mean S.D. Min Max Wald Prob Moran's I z-value S.D. 
Yield (kg ha-1) 5905 1375 1884 10094 32.15 0.0000 0.45 251.95 0.0018 
Clay (%) 23.2 4.4 7.9 31.6 325.37 0.0000 0.58 325.59 0.0018 

 454 

A general moments (GM) estimator is more appropriate than the traditional maximum 455 

likelihood (ML) estimator for site-specific data because site-specific data tends to be large sample 456 
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size data and normality is unexpected. Maximum likelihood estimation uses an eigenvalues 457 

computation of the Jacobian matrix which loses numerical precision beyond 1,000 observations. 458 

Although GM is not as efficient in general as ML, this limitation is overcome by the large sample 459 

size of site-specific data. General moments estimation can be conducted for very large data sets of 460 

several thousand observations without the assumption of normality. 461 

  In addition to estimating the aspatial model, a cross-regressive model utilizing WX plus 462 

traditional spatial models are estimated. The cross-regressive model is estimated as OLS and is 463 

intended to account for local spatial externalities (Anselin, 2003) due to treatment edge effects of 464 

neighboring observations and is given as: 465 

εγβ ++= XWXy 1          (6) 466 

Where W1X is the cross-regressive term as described above, γ is the vector of regression 467 

coefficients on the cross-regressive term, and the other terms as already defined (Griffin and 468 

Lowenberg-DeBoer, 2019). A traditional spatial model was estimated using W2 to account for 469 

global spatial externalities.. The spatial error model has spatially autocorrelated errors and is 470 

similar to the traditional aspatial model with the exception that the error term ε is spatially 471 

autocorrelated and given as: 472 

εβ += Xy  where µελε += 2W        (7)  473 

where λ is the spatial autoregressive parameter, μ is the new vector of errors and the remaining 474 

terms as previously defined. The spatial error model more concisely written is:  475 

µλβ 1
2 )( −−+= WIXy        (8)  476 

The spatial error model indicates that the spatial process is present in the whole system of data 477 

while the cross-regressive model only addresses local spatial externalities (Anselin, 2003). Since 478 
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the spatial covariance structure realized from the traditional spatial models relates all locations in 479 

the dataset to all other locations, these models are said to be global (Anselin, 2003).  480 

 481 

RESULTS AND DISCUSSION 482 

As previously stated, the full regression model specification includes cotton lint YIELD as 483 

the dependent variable with explanatory variables including percent clay content (CLAY) and its 484 

square, distance to the water source (DISTANCE or DIST) and its square, tillage treatment dummy, 485 

an interaction term of tillage treatment and CLAY, and an interaction term between CLAY and 486 

DISTANCE (Table 2). The square of clay was included because the relationship is expected to be 487 

quadratic, i.e. it is known that water holding capacity is directly correlated with clay content. 488 

However, at high clay content levels may prevent soil aeration and subsequent crop growth. The 489 

square of distance was included because it is expected that plants close to the irrigation canal 490 

may have over applications of water to irrigate the opposite side of the field which may not have 491 

received adequate water or any water at all. Interaction terms of clay with the tillage treatment 492 

dummies were included in the model to allow each tillage treatment to be estimated with its 493 

individual slope coefficient, allowing each tillage system to induce a differing cotton yield 494 

response to clay content. Interactions between distance and clay were included to capture pooling 495 

effects of irrigation water due to changes in soil surface properties and differing crop residue. 496 

The full model can be presented as: 497 

YIELD = CLAY + CLAY2 + DIST + DIST2 + CLAY*DIST +TRTi + TRTi*CLAY   (9) 498 

where TRTi = PEG, ROT, SUN 499 

 500 
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 In this study, CLAY and the three alternative tillage treatment dummy variables were 501 

chosen as the cross-regressive terms for inclusion in the local spatial correlation model. If 502 

localized spatial externalities exist in the system, an omitted variable problem occurs unless these 503 

effects are modeled. In traditional aspatial or traditional spatial regression models, these 504 

localized spatial effects are overlooked. The W1CLAY, W1PEG, W1ROT, and W1SUN variables 505 

were added to account for local differences in clay content and tillage treatments. These 506 

variables exist in the explanatory X variables just as with aspatial model, plus as spatially 507 

weighted lag cross-regressive terms using the first order queen contiguity matrix W1. The 508 

W1CLAY term accounts for localized differences in the soil clay content. The W1PEG, W1ROT, and 509 

W1SUN variables account for potential treatment edge effects induced by tillage treatments. Since 510 

PEGASUS, ROTOVATOR, and SUNDANCE are binary dummy variables, the value of the W1PEG, 511 

W1ROT, and W1SUN are bounded between zero and one, inclusive, and can be presented as: 512 

 513 

YIELD = CLAY + CLAY2 + DIST + DIST2 + CLAY*DIST +TRTi + TRTi*CLAY + W1*CLAY + W1*TRTi
  (10) 514 

 where TRTi = PEG, ROT, SUN 515 

 516 

Lagrange Multiplier (LM) results arising from using the 75-meter inverse distance matrix 517 

(referred to as W2) were examined for guidance in choosing a spatial model (Table 5). Lagrange 518 

Multiplier and Robust LM tests indicated that spatial autocorrelation was in both the dependent 519 

variable (lag) and the error term (Table 5). A spatial error model (Anselin, 1988), spatial lag 520 

(Anselin, 1988), and a higher order model simultaneously correcting for both lag and error 521 

autocorrelation (Kelejian and Prucha, 1998) were conducted to account for spatial 522 
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autocorrelation in the data. Aspatial diagnostics and regression results for OLS, local spatial 523 

correlation (LSC), and spatial autoregressive error model (SEM)  are presented in Table 5.  524 

 525 

Table 5. Estimated results for aspatial, local spatial and global spatial models, n=2,451 526 
  OLS LSC SEM 

CONSTANT -901.16 
(-2.285) 

-897.456 
 (-2.268) 

-1004.47 
(-2.630) 

CLAY 286.32 
(7.424) 

219.213 
(5.154) 

310.51 
(8.594) 

CLAY2 -1.09 
 (-1.128) 

-0.897 
(-0.926) 

-1.93 
(-2.151) 

CLAY_DIST -1.28 
(-10.925) 

-1.190 
(-10.069) 

-1.12 
(-9.697) 

DIST 38.58 
(12.747) 

36.401 
(11.930) 

36.03 
(11.768) 

DIST2 -0.01 
(-1.575) 

-0.014 
(-1.617) 

-0.02 
(-2.254) 

PEG -262.97 
(-0.952) 

-745.138 
(-2.482) 

-303.72 
(-1.187) 

ROT 872.71 
(3.137) 

319.496 
(1.080) 

665.15 
(2.565) 

SUN -497.59 
(-1.921) 

-1124.59 
(-3.726) 

-468.61 
(-1.925) 

PEGC -32.22 
(-2.808) 

-32.316 
(-2.842) 

-30.39 
(-2.863) 

ROTC -68.39 
(-5.747) 

-70.118 
(-5.954) 

-59.14 
(-5.334) 

SUNC -16.39 
(-1.484) 

-15.424 
(-1.379) 

-20.44 
(-1.978) 

W1CLAY   
  

59.897 
(4.461) 

  
  

W1PEG   
  

529.458 
(3.289) 

  
  

W1ROT   
  

764.588 
(4.922) 

  
  

W1SUN   
  

770.511 
(4.899) 

  
  

λ   
  

  
  

0.329 
(93.766) 

LM Error 28056.64 29459.79   
  Robust LM Error 24834.77 25625.99   
  LM Lag 3221.88 3836.83   
  Robust LM Lag 0.02 3.03   
  AIC 40862.6 40804.9 38763.7 

aIn parentheses t-values are reported for OLS and LSC, and z-values for the spatial models.  527 
 528 
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The variable CLAY was significant in all four regression models, but CLAY2 was not 529 

significant in any model. Distance to irrigation water source was significant for every model but 530 

the distance squared term was significant only for the two traditional spatial models. The PEG 531 

and SUN treatment dummy variables were significant for only the cross-regressive model while 532 

the ROT treatment dummy was significant for all the models except the cross-regressive model. 533 

The CLAY by PEG and CLAY by ROT interaction terms were significant for all models while the 534 

clay by SUN interaction term was significant only for the three traditional spatial models. All four 535 

cross-regressive terms, W1CLAY, W1PEG, W1ROT, and W1SUN, were significant for the cross-536 

regressive model.  537 

As expected from a priori agronomic information, the LM and Robust LM tests for the 538 

OLS residuals indicates that the spatial error model dominates the spatial lag model for this 539 

dataset, although the LM test for spatial lag was significant (Table 5). Based on spatial 540 

diagnostics and a priori conceptual understanding, only the spatial error process models were 541 

run. The estimated spatial autoregressive term λ is significant at 0.329 for the spatial error model.  542 

A key contribution of spatial models is that it clarifies the effect of soil clay on tillage 543 

choice. In this dataset, spatial models more clearly demonstrated the yield superiority of 544 

CONVENTIONAL tillage treatment across a wider range of soil clay levels, and it clarified the role 545 

of soil clay content levels in choice of alternative tillage systems. Probably because the clay 546 

variable explained substantial proportion of yield variability by essentially absorbing spatial 547 

structure, the yield response to clay content of all four tillage systems were similar under OLS 548 

estimation while were substantially different when spatial structure of dependent yield and 549 

independent explanatory variables were explicitly modeled.  550 
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If the relationships in the 2002 data were confirmed in subsequent seasons, a grower who 551 

wanted to use reduced tillage systems for soil conservation or other reasons might decide on a 552 

field-specific tillage plan. Varying tillage within fields is unlikely with current equipment 553 

because it would complicate logistics. But fields where soil clay content is low might be 554 

managed differently from those which have generally higher clay contents. Tillage effects may 555 

also be related to other soil and landscape properties such as slope, aspect, or organic matter. 556 

 557 

CONCLUSIONS 558 

This study provides comparisons and an example for the potential for modeling local and 559 

global spatial externalities of precision agriculture data, particularly in cotton tillage 560 

experiments. Given the spatial effects present at field scales, aspatial analyses were misspecified 561 

because the assumption of independent errors was violated, and the soil clay variable absorbed 562 

spatial structure effects. Diagnostic tests on OLS residuals indicated spatial error was preferred 563 

to spatial lag. These techniques for modeling localized spatial externalities in topographical 564 

attributes are being modeled for crops grown in rolling terrain. Both hypotheses were supported. 565 

Modelling local spatial spillovers led to improved farm management decisions in combination 566 

with the limited replication strip trial data farmers currently collect.  567 

 568 
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