
Computer Science • 21(3) 2020 https://doi.org/10.7494/csci.2020.21.3.3618

Aleksander Jarzębowicz
Katarzyna Poniatowska

EXPLORING IMPACT OF
REQUIREMENTS ENGINEERING
ON OTHER IT PROJECT AREAS –
CASE STUDY

Abstract Requirements Engineering (RE) is recognized as one of the most important
(yet difficult) areas of software engineering that has a significant impact on
other areas of IT projects and their final outcomes. Empirical studies investi-
gating this impact are hard to conduct, mainly due to the great effort requ-
ired. It is thus difficult for both researchers and industry practitioners to make
evidence-based evaluations about how decisions about RE practices translate
into requirement quality and influence other project areas. We propose an idea
of a lightweight approach utilizing widely-used tools to enable such an evalu-
ation without extensive effort. This is illustrated with a pilot study where the
data from six industrial projects from a single organization were analyzed and
three metrics regarding the requirement quality, rework effort, and testing were
used to demonstrate the impact of different RE techniques. We also discuss the
factors that are important for enabling the broader adoption of the proposed
approach.

Keywords requirements engineering, impact, evaluation, case study

Citation Computer Science 21(3) 2020: 273–298

Copyright © 2020 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

273

https://doi.org/10.7494/csci.2020.21.3.3618
https://orcid.org/0000-0003-3181-4210
https://creativecommons.org/licenses/by/4.0/


274 Aleksander Jarzębowicz, Katarzyna Poniatowska

1. Introduction

Requirements Engineering (RE) is one of the most important (yet difficult) areas of
software engineering [4,6], as many RE-related problems and challenges are still being
reported by practitioners [15,26]. It is also known to have a significant impact on other
areas of IT projects and their final outcomes – numerous sources (e.g., [24, 26, 38])
describe the relationships between RE-related problems and many resulting project
failures or challenges.

However, when it comes to empirical studies investigating RE’s impact (i.e., the
consequences of decisions about the RE process, applied techniques, practices follo-
wed, etc.), there are not many available studies. Naturally, there are many papers
describing how a novel RE-related proposal (e.g., method, technique, or tool) is em-
pirically validated through controlled experiments, action research, or case studies
(e.g., [1, 19, 30]). The scope of such research studies is usually limited, however, as
their purpose is to apply and evaluate the particular proposal under consideration.
Also, a significant number of papers on comparing various RE techniques or practices
with respect to the inherent characteristics (e.g., [22,41]), applicability in specific con-
texts (e.g., [5, 43]), or effectiveness in mitigating known problems (e.g., [18, 28]) can
be found. Such works, however, usually focus on a relative comparison (sometimes
empirically-based, sometimes more speculative) and rarely analyze the wider scope of
the consequences implied by the use of a given practice. As a result, only a few sources
that attempt to analyze a wider set of RE process variables and their outcomes in an
industrial setting are available despite the fact that it is worthwhile to demonstrate
RE’s impact in a wider context [9].

The possible reasons for such a lack of empirical studies and quantitative data
include the difficulty to measure or manipulate essential variables and the very high
effort required [25]. Some examples that illustrate the scale of such effort include an
18-month project involving 9 companies [37], a 30-month project in a single compa-
ny requiring a serious commitment of the researchers [7], or 2 large survey studies
gathering data from more than 400 organizations [8].

Thus, it is difficult for researchers and even more for industry practitioners to
make evidence-based evaluations that investigate how decisions about RE translate
into requirement quality and influence other project areas. On the other hand, such
evaluations can provide valuable information, both about the more generic picture
of the effectiveness of RE practices among the IT industry as well as the opportuni-
ties of improvement for a particular company. By the latter, we mean focusing on the
specific context and processes of a company and using the results of the evaluations
to define the RE process for future projects. However, given the expected effort, it is
rather unlikely that a company (at least a smaller one) that runs commercial projects
would dedicate significant resources to such investigations, much less to conduct expe-
riments related to their development processes [16, 20]. This situation could change,
however, if the means for conducting such evaluations in a way that does not interfere
with project tasks and does not require much effort were provided.



Exploring impact of requirements engineering. . . 275

We tried to determine whether such means can be provided by utilizing the
existing (and popular) approaches and tools. For this reason, we conducted a case
study and analyzed data from six concluded projects from a single software company.
From the data and additional background knowledge provided by the people involved
in these projects, we were able to determine that the application of different RE
practices translated to differences in the metrics reflecting the requirement quality,
rework effort, and testing effectiveness.

Our work draws on the ideas of Agile experimentation [23], which proposes small-
scale experimentation in real-life industrial projects. Such an approach is expected
to provide more meaningful results than classroom experiments, for example, and
minimize the risk that experimenting may impede the main goal (delivering software
to the customer) or significantly increase the workload of project participants at the
same time. The research described in this paper can barely be called experimentation –
the pilot study we conducted was an ex-post analysis of the data from past projects.
We can, however, see the opportunity to use the proposed approach in ongoing or
planned projects for ex-ante predictions.

This paper is an extended version of a conference paper [14] that provided the
following main contributions: (1) an industrial case study investigating the impact
of RE practices on other project areas; and (2) a proposal of a lightweight approach
to evaluate RE’s impact in industrial projects, including experimentation in ongoing
projects. The additional contributions of this extended version include the following:
(1) inclusion of a larger set of related work sources; (2) a more detailed description of
the conducted study, especially with respect to the evaluated requirements engineering
techniques; (3) an additional section on validation activities involving RE experts;
(4) an expanded section on threats to validity based on established guidelines; and
(5) additional conclusions.

The paper is organized as follows. Section 2 provides more background by discus-
sing the related work. In Section 3, an industrial case study based on six projects is
presented along with its findings. In Section 4, we attempt to generalize the described
case study into a universal approach that enables an evaluation of RE’s impact and
experimentation in an industrial setting. The paper is concluded in Section 5.

2. Related work

The work related to our research encompasses broader empirical studies focusing
on RE and its impact. By broader, we mean those that take several variables into
consideration (as opposed to studies dedicated to a particular technique, which is
a common way of validating new proposals). Such empirical studies can be done in
many ways, including (1) those more similar to our work (e.g., case studies, action re-
search, or controlled experiments) and (2) questionnaire surveys or interviews. Below,
we summarize the research belonging to each of these two groups.

Sommerville and Ransom [37] conducted a study during a project from the EU
Framework Program. Its main purpose was to improve the RE processes of nine so-



276 Aleksander Jarzębowicz, Katarzyna Poniatowska

ftware companies belonging to a project consortium. The metrics collected by them
showed the improvement (of varying degrees) in all companies as well as better bu-
siness performance. Damian and Chisan [7] focused on the RE processes of a single
organization during a 30-month study. They analyzed the processes, suggested impro-
vements to their practices, and evaluated the outcome, noticing a positive impact on
other project areas as well as on the general productivity, quality, and risk manage-
ment. Kamata and Tamai [17] investigated the correlation between the completeness
and quality of software requirement specifications (SRS) and project success (in terms
of schedule and budget). For this reason, they reviewed 32 SRS documents using the
IEEE 830:1998 standard [10] as a reference point. The results showed that successful
projects had a more balanced coverage of various requirement categories and that
the purpose, product perspective, and functions sections of SRS were crucial. Ra-
dliński [31] applied data-mining techniques to a large set of IT project data (ISBSG
dataset) to identify the correlations among RE practices (e.g., RE techniques, do-
cumentation developed in a project) and the overall project results. Rapp et al. [32]
developed a questionnaire-based method of RE process assessment and validated it by
assessing several industrial and semi-industrial projects. They also stressed that such
a method must minimize the assessment effort and provide a real business value to the
assessors and organizations undergoing the assessments. Bormane et al. [3] analyzed
12 software projects from a major Latvian company, comparing Waterfall/Agile and
small/large projects. They found that the Agile approach required much lower cost
of change and enabled a more accurate effort and budget estimation in the case of
large projects. They also analyzed elicitation techniques used in Waterfall and Agile
projects but were not able to draw conclusions from the datasets used. Liechti et
al. [21] proposed an approach for a continuous process improvement for Agile teams
that uses analytical dashboards based on data from software supporting tools, for
example. Their paper, however, does not provide many details on the metrics used
and impact observed; this is possibly due to non-disclosure agreements.

Verner et al. [39] surveyed practitioners from Australia and the U.S., gathering
data from 164 projects. Their findings indicate that effective requirement elicitation
and requirement management are the most important contributing factors to project
success. Bjarnason et al. [2] performed an interview-based exploratory case study in-
vestigating gaps in the communication of requirements. Among other things, their
study revealed that the consequences of such gaps affect the requirement quality, fa-
ilure to meet stakeholder expectations, and testing efficiency (for example). Sethia
and Pillai [35] used responses from an online survey to investigate the influence of
the general categories of elicitation issues (problems) on project performance. They
applied several statistical techniques to identify the most influential issues. Ellis and
Berry [8] conducted two worldwide surveys investigating the correlation between the
maturity of RE processes and project success (in terms of schedule, budget, and pro-
duct scope). The first survey allowed them to build an RE maturity model, while
the second demonstrated a positive correlation between RE maturity and the ratio
of successfully completed strategic projects. Mossakowska and Jarzębowicz [27] con-



Exploring impact of requirements engineering. . . 277

ducted a survey to identify which RE techniques are perceived by practitioners as
contributing to particular quality characteristics of a final software product.

In general, there are not many sources that could be considered to be directly
related work. Some of the studies on RE impact are based on surveys and interviews
rather than on a quantitative analysis of ongoing or concluded software projects.
Among the remaining ones, most studies required a large workload to conduct, which
contradicts our postulate to minimize the effort. The studies most similar to ours
are [3] and [17], which analyze the data from concluded projects and seek correlations
between RE and the outcomes measured at the level of a whole project. However, we
used different metrics; moreover, we outline a more general approach to be used in
further studies.

3. Industrial case study

We intended to investigate the feasibility of using the existing data from popular
software tools to evaluate the impact of RE practices. For this reason, we conducted
a pilot study using the available data from a particular software company that we
approached. This section provides the background information about the company
and its projects, describes the design of our study, and reports the obtained results.

3.1. Background

The research was conducted in a medium Polish company employing around 200
people. The company specializes in the development of electronic measuring devices
(dedicated to various utilities like water, heat, gas, etc.) and related software systems
(web and mobile applications for the configuration and administration of devices,
reading the measurements through a radio channel or other conduits, and processing
the measurement data). The customers of such software are both internal and external;
the external ones include domestic and foreign organizations.

The software development projects run by the company differ with respect to
their size and the methodology used, which led us to narrowing our focus to more
specific types of projects to be included in our study. The following description of
the development processes is also narrowed down to these types of projects. Such
projects are developed in small teams (six to nine people), including one or two
analysts responsible for requirements. They follow a hybrid development approach
based on an incremental software lifecycle model and integrate selected plan-driven
and Agile practices. This approach was most common for this company’s projects in
recent years. It was adopted as result of an intent to introduce Agile practices into
development processes based on plan-driven methods.

This hybrid development process can be summarized as follows. The analysis
phase is, to a large extent, completed at the beginning of a project and results in
capturing the project’s scope and generic requirements. The software product is then
divided into a number of smaller components (to be developed in separate incre-



278 Aleksander Jarzębowicz, Katarzyna Poniatowska

ments). Each increment starts with establishing and documenting the detailed requ-
irements for the component under consideration. Such a document is called a detailed
software requirement specification. It uses a standardized template based on IEEE
830:1998 [10] (despite the fact that this standard was superseded by ISO/IEC/IEEE
29148 [13]). The template was developed by the company for internal use in all of
their projects. The requirements are then reviewed by other interested stakeholders
for the purpose of verification (mostly by developers and testers) and validation (by
customer representatives). Verification by team members is supposed to check the
quality of the requirements (i.e., whether they are unambiguous, testable, etc.). After
reviews and possible corrections, the requirements are passed on to the developers,
who work on the code and (when in doubt) contact the analysts for clarification.
When the component is ready, it is passed on to testers, who verify its quality. This
is followed by a phase of fixing any defects and stabilizing it, resulting in concluding
the work on the component. Another increment dedicated to another component and
following the same workflow starts subsequently. Such a process continues until the
whole product is ready; then, delivery to the customer takes place. The Agile practices
are mostly related to the work of the development team and include self-organizing
teams, a prioritized work list, daily stand-up meetings, and retrospectives.

The software projects run by the company are supported by integrated Confluen-
ce1 and Jira2 tools (both provided by Atlassian) as well as an associated time-tracking
plugin. Confluence is a software tool based on the idea of a wiki, enabling collaborative
work on shared documents. It is used by analysts to document all requirements (both
generic and detailed). The requirements are available to other project participants
(like developers or testers) who can ask questions or report requirement defects by
adding comments to particular fragments of the specification. The company’s policy
is to register each query related to the requirements. In addition to the versioning
mechanism provided by Confluence, this allows us to track the evolution of the re-
quirement specification (including fixing the defects of particular requirements). All
such changes are also timestamped. Jira is an issue-tracking tool that can be used
for bug tracking and/or managing Agile development. In the software projects of the
discussed company, Jira is applied for both purposes. Apart from the typical use of
defining the issues representing the product features and development tasks (plus
updating their statuses and reporting the work effort), requirements engineering ac-
tivities are also strongly supported by this tool. The project manager defines an issue
corresponding to the task of the software requirements specification development, and
the analysts report the work effort dedicated to this task by registering the particular
activities they conducted along with the time spent on each. Moreover, if any other
project member participates in the work on requirements (e.g., by discussing them
or providing some input), then he/she is obligated to report the time spent on it.
Such information is registered and associated with this issue. When the requirement

1https://www.atlassian.com/software/confluence
2https://www.atlassian.com/software/jira

https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira


Exploring impact of requirements engineering. . . 279

specification is ready to be verified, the analyst creates new issues dedicated to the
reviews and assigns them to the developers, testers, and (if necessary) other team
members so the status and time effort of each review are registered in Jira as well.

3.2. Selected projects

As previously mentioned, we selected a set of similar projects from the whole portfolio
of software projects completed by the company. The reason was that we intended to
focus on RE and investigate how the differences in RE practices impact other project
areas. Analyzing software projects as case studies is not easy, as each project is like
a complex living organism with many influencing factors, both internal and external.
We wanted to avoid comparisons between significantly different projects (with respect
to size or development methodology, for example), as such differences could possibly
obscure the phenomenon we investigated.

We selected six software projects conducted during the period of 2014–2017. The
selected projects are summarized in Table 1. Each of them took from 9 to 18 months to
complete. They all followed a similar development process (described in Section 3.1).
Other similarities between them included product type and size (measured by the
number of requirements) and the experience of the analysts responsible for RE (junior
analysts supervised by a senior analyst). As for the size, some differences can clearly
be noticed, but these do not exceed 25% (and it is difficult to expect equal values
from real-life examples).

More-significant differences concern the requirements (in particular, the techniqu-
es of requirement elicitation and requirement documentation). The “Req. elicitation”
row of Table 1 enumerates the elicitation techniques used by the analysts in a given
project. The following elicitation techniques were used (the descriptions were adopted
from recent industrial standards on requirements engineering and business analysis):

• Interviews – An interview is a formal or informal approach to elicit information
from stakeholders that is performed by a business analyst by asking prepared
and/or spontaneous questions and documenting the responses [29]. This techni-
que is very interactive and allows for modifying the order of the previously pre-
pared questions depending on the interviewees’ answers and the situation [33].
Interviews are often conducted on an individual basis between an interviewer and
an interviewee but may involve multiple interviewers and/or interviewees [29]. An
interview can also be used for establishing relationships and building trust betwe-
en business analysts and stakeholders in order to increase stakeholder involvement
or build support for a proposed solution [11].

• Prototyping – Prototyping is a technique that enables us to obtain early feedback
on requirements by providing a working model of the expected product before
building it [29]. Prototyping is used to identify both the missing or improperly
specified requirements and unsubstantiated assumptions by demonstrating what
the product looks like and how it acts in the early stages of design [11]. The



280 Aleksander Jarzębowicz, Katarzyna Poniatowska

purpose of prototyping in requirements elicitation is exploring the requirements
by encouraging stakeholders to consent or object or to clarify and amend [12].

• Observation – Observation is a technique that provides a direct way of viewing
people in their environments to see how they perform their jobs or tasks and car-
ry out processes [29]. This consists of watching the users’ activities and processes
and identifying the system requirements on this basis [33]. On-site observation is
conducted by watching the users working and documenting the processes, tasks,
and results; in some cases, however, observation is extended to interviewing users
about their jobs and how they accomplish their tasks [33]. This technique is par-
ticularly helpful for detailed processes when stakeholders experience difficulties
or are reluctant to articulate their requirements [29].

• Document analysis – Document analysis is used to elicit information (including
contextual understanding and requirements) by examining the available mate-
rials that describe either the business environment or the existing organizational
assets [11]. Examples of documents include process models and maps, process
descriptions, organization charts, product specifications, work procedures, stan-
dards, and instructions, templates of documentation, etc. [33].

• Workshop – Workshops bring stakeholders together in order to collaborate on
achieving a predefined goal [11]. Workshops involve people who have different
points of view on a given problem and help determine and describe the requ-
irements coming from various perspectives [33]. This is a primary technique for
quickly defining cross-functional requirements and reconciling stakeholder diffe-
rences [29]. Moreover, workshops can be used to establish a solution’s scope: to
discover any hidden requirements, to define the priorities of the requirements,
or reach a consensus when it comes to reaching an agreement on the require-
ments [33].

• Interface analysis – Interface analysis is used to identify where, what, why, when,
how, and for whom information is exchanged between solution components or
across solution boundaries [11]. The interface can be understood as a user in-
terface of the developed solution but also as an API/data interface between two
systems or an interface between business processes [11]. An analysis of user in-
terfaces can utilize more-specific techniques like wireframing or display-action-
response models [29].

• System archaeology – In system archaeology, requirements are extracted from
existing systems: legacy systems as well as competitor systems or even analogous
systems (systems in a different context with a similar functionality). This tech-
nique is mainly used if an existing system has been used (and possibly changed)
over many years and is now to be replaced by a new system. This is especially use-
ful if no other current documentation is available for discovering what a system
really does [12].

One additional explanation is necessary with respect to the document-analysis
technique applied in some of the considered projects: SIWZ is the Polish abbrevia-



Exploring impact of requirements engineering. . . 281

tion of a document type used in public projects. The public organization acting as
a project’s customer is obligated by Polish law to publish the request for proposals
and the terms of reference. The latter are described in a SIWZ document (and its
attachments) and can include quite-detailed information about the requirements.

Table 1
Summary of selected projects

Project P1 P2 P3 P4 P5 P6

Team size 6 9 7 7 7 10

Number of
business
stakeholders

3 4 1 1 2 1

Number of
requirements

41 48 44 47 39 52

Requirements
elicitation

interviews,
proto-
typing

interviews,
obse-

rvation,
proto-
typing

document
analysis
(SIWZ),
interviews

workshop,
obse-

rvation

document
analysis
(SIWZ),
interface
analysis

document
analysis
(SIWZ),
system
archa-
eology

Requirements
documenta-
tion

user
stories,
tables

tables,
UC

tables
tables,

UC
tables tables

Number of
requirements
defects
reported

11 12 16 13 14 21

As for requirements documentation (“Requirements documentation” row of
Table 1), the following techniques were used:

• Table – a tabular requirement template with the following fields: ID, type (func-
tionality, security, constraint, etc.), source, and description. The description was
expressed in a natural language without any internal structure.

• UC – use cases providing a structured description of the functional requirements
with detailed interaction scenarios (basic and alternative).

• User stories – a simplified form of expressing requirements: as a (role), I want
(capability) so that (goal).
All of the analyzed projects (P1–P6) used tables to represent the requirements;

however, some of them refined the functional requirements to the use cases (P2, P4),
and in one project (P1), user stories were additionally used because the project team
wanted to try out a new approach for documenting the requirements.



282 Aleksander Jarzębowicz, Katarzyna Poniatowska

3.3. Study design

The data from Jira and Confluence can be exported to a spreadsheet format. We
received the data from the above-mentioned projects in such a form and used it to
conduct our study. Additionally, we could contact some people involved in these pro-
jects who were able to provide us with background information that is not necessarily
registered in the supporting tools (e.g., the requirement elicitation techniques applied
or stakeholder attitude).

We started this research with the intent of exploring the quantitative impact of
RE on requirement quality and on the work done in other areas of an IT project. We
had not formulated more-specific research questions a priori, because such a study
was dependent on the data we could obtain (unlike with a controlled experiment).
For instance, if data about requirement-related defects was not available (because
a company’s procedures had not required reporting them or the supporting tool does
not allow us to distinguish them from other issues), it would be impossible to investi-
gate any consequences of such defects. The scope of the reliable information we could
gather from people involved in these projects was limited – for example, an analyst
is likely to remember the elicitation techniques he/she applied in a given project but
not the precise amounts of time spent on particular tasks. Thus, we would not be able
to use this metric in case the time was not registered by the tools.

After the initial examination of the data and gathering background information
related to the investigated projects, we were able to define the following three research
questions:

• RQ1: Does the approach to requirement elicitation affect the quality of the re-
quirements?

• RQ2: What is the impact of requirement quality on rework that could have been
saved?

• RQ3: Does the requirement documentation technique affect the effectiveness of
the testing?
Each research question was refined for the purpose of operationalization. We

used the GQM (Goal-Question-Metric) method [36] to identify the measurements to
be made.

3.3.1. RQ1

The requirement elicitation approach serves as an independent variable here. As shown
in Table 1, we were able to identify the particular elicitation techniques used in each
project. However, a more fundamental related issue was communicated by company
employees. In some of the investigated projects (P3, P5, P6), the main source of re-
quirements was a document prepared by the customer (SIWZ), and the communication
with the customer representatives was very limited (by phone only; moreover, stake-
holders were often reluctant to cooperate and required a significant communication ef-
fort from the analyst). In these projects, the most common technique applied was do-
cument analysis. Additionally, analysts used other techniques like interface analysis or



Exploring impact of requirements engineering. . . 283

system archaeology (on competitor systems) that could provide them with information
that was difficult to get directly from the customer representatives. In the remaining
projects (P1, P2, P4), the analysts were able to act more actively and meet customer
representatives, organize requirement elicitation sessions, and get to know the environ-
ment in which the prospective users worked. The stakeholders were rather cooperative;
techniques like interviews, workshops, prototyping, and observation were used. We de-
cided to distinguish two general approaches to requirement elicitation; namely, active
(P1, P2, P4) and passive (P3, P5, P6). We were also able to investigate whether any
difference between the quality of the requirements elicited by them could be noticed.

To measure the requirement quality, the following GQM structure was used:
• Goal: Assess the quality of the requirements.
• Question: How many defects does the requirement specification contain?
• Metric: Percentage of requirements for which defects were reported by the pro-

ject participants.
We verified that the data exported from the tools allowed us to trace the com-

ments containing defect suggestions, doubts, questions, etc. associated with particular
requirements as well as the history of the changes made to the requirements. Addi-
tionally, we decided to categorize the defects related to the requirements. This task
had to be done manually, however, because no such categorization was used when
reporting defects in the considered projects. As a result, this turned out to be the
most effort-consuming task of our study. We defined the defect categories as the vio-
lations of the particular characteristics of requirement quality. The following set of
requirement quality characteristics, adopted from [13] (Section 5.2.5) and [11] (Section
7.2.4), was used:

• Consistency: The requirement is free of conflicts with other requirements.
• Unambiguity: The requirement is stated in such a way so that it can be inter-

preted in only one way.
• Atomicity: The requirement is self-contained and capable of being understood

independently of other requirements or designs.
• Correctness: The requirement addresses an actual stakeholder’s need and defi-

nes an essential feature of the system or a constraint.
• Testability: The requirement has the means to prove that the system satisfies

the specified requirement.
• Feasibility: The requirement is technically achievable and fits within system

constraints (e.g., cost, schedule, technical, legal, regulatory) with acceptable risk.
• Completeness: The requirement has the appropriate level of detail to guide

further work and needs no further amplification because it sufficiently describes
the stakeholder’s need.

3.3.2. RQ2

The second question explores the correlation between requirement quality and rework.
Requirements quality is measured in the same way as in RQ1 – by the percentage of



284 Aleksander Jarzębowicz, Katarzyna Poniatowska

requirements that contained defects. The rework, understood as the work that has to
be done because of any defects (and could possibly be saved in the absence of such
defects), turned out to be difficult to measure. When analyzing the data about the
effort reported by the project participants, it was impossible to reliably distinguish
the ordinary work and rework caused by defects. We were only able to capture it in
a partial manner by identifying (on the basis of background information provided by
the project participants) the people who were not initially involved in the considered
projects but were engaged later on a temporary basis to deal with the consequences
of the requirement defects. This group included domain experts, additional analysts,
and developers, for example. We are aware that this operationalization does not fully
reflect the phenomenon we intended to investigate; still, we believe even such a partial
analysis can be interesting. Consequently, we derived the following GQM structure:

• Goal: Assess the amount of rework caused by requirement defects.
• Question: What was the proportion of additional person-hours?
• Metric: The number of person-hours reported by additional participants/the

total number of person-hours initially planned for RE activities.

3.3.3. RQ3

In this research question, we intended to find out whether different requirement do-
cumentation techniques affected the work of the testers. As shown in Table 1, three
techniques were used in P1-P6: tables, use cases, and user stories. Among these three
techniques, use cases are much more detailed representations than the remaining ones.
We decided to compare projects where use cases were applied with those remaining.
The rationale was that more-detailed requirement specifications can help testers de-
sign more-thorough test cases and test scenarios (both positive and negative). To
quantify the impact on the work of the testers, we proposed the metric of testing
effectiveness, which is defined as the proportion of software bugs found during the
internal testing by the company to all of the software bugs uncovered in the product
(those found during internal tests and those reported by customers or other external
parties). As the products of all of the considered projects were delivered to customers,
stabilized, and used for some period of time, such external bug reports were available.
We counted all of the issues assigned to the bug report category and distinguished
them according to the source (internal/external). The GQM structure for this part of
our research was as follows:

• Goal: Assess the impact of the requirement documentation technique on the
effectiveness of testing.

• Question: What is the difference in the effectiveness of testing between the
projects that applied use cases and the remaining projects?

• Metric: The proportion of bugs found during the internal testing to all bugs
found in a given software product.



Exploring impact of requirements engineering. . . 285

3.4. Study results

The investigation of defects in requirements (RQ1) allowed us to identify the erroneous
requirements and categorize them. Most of the defects were reported before imple-
menting the requirements (e.g., developers asking for explanations of ambiguous re-
quirements and testers questioning requirement testability), but there was a minority
of defects registered after implementation (e.g., feedback from a business stakeholder
about a wrong software feature that was traced back to an incorrect requirement).
The summary of our findings is shown in Table 2. An additional visualization is
provided in Figure 1, which depicts the percentage of erroneous requirements and
distinguishes the projects according to their general approaches to requirement eli-
citation (active/passive). An observation can be made that those projects where an
active approach to requirement elicitation was used had relatively fewer defects.

Table 2
Requirement defects in analyzed projects

Project P1 P2 P3 P4 P5 P6

Elicitation
approach

active active passive active passive passive

Total number of
requirements

41 48 44 47 39 52

Number of
erroneous
requirements

11 12 16 13 14 21

Figure 1. Percentage of requirements containing defects in analyzed projects



286 Aleksander Jarzębowicz, Katarzyna Poniatowska

We conducted a further investigation to try to determine which kinds of requ-
irement defects were encountered in particular projects. Each defective requirement
was reviewed and assigned a defect type that was consistent with the categorization
introduced in Subsection 3.3.1. The results are presented in Table 3 and additionally
visualized in Figure 2.

Table 3
Categorization of defects found in analyzed projects

Category
Number

Total
P1 P2 P3 P4 P5 P6

Consistency 2 3 3 – 1 2 10

Unambiguity 4 – 5 3 1 6 19

Atomicity – 2 1 5 3 3 14

Correctness 3 2 3 1 1 4 14

Testability – 2 1 4 3 3 13

Feasibility 2 – 2 – 3 1 8

Completeness – 3 1 – 2 5 11

All 11 12 16 13 14 21

Figure 2. Percentage of requirements containing defects with defect classification

The most frequent kind of defect concerns unambiguity (in both active and pas-
sive projects; however, the former are not as affected as the latter). One possible
explanation is that an active approach forces an analyst to ensure that the require-
ments that he/she elicit from a stakeholder are mutually understood in the same way.



Exploring impact of requirements engineering. . . 287

On the other hand, an active approach results in more inconsistencies. This is proba-
bly due to the fact that requirements are elicited from many stakeholders representing
different viewpoints while, in a passive approach, the main source of requirements was
a document that could have its deficiencies but at least was internally consistent.

The most surprising result was that an active approach resulted in fewer defects
concerning feasibility. We discussed this issue with a group of analysts (with 11, 7,
and 5 years of experience, respectively). The discussion led to the conclusion that
the document analysis elicitation technique can possibly decrease the awareness of
an analyst – he/she can make an unfounded assumption regarding feasibility (that,
if a requirement was included in an official document, it can be implemented) and
refrain from consulting it with developers.

An exploration of RQ2 led to a juxtaposition of the requirement quality and
RE rework effort, which is presented in Table 4. To represent quality, the percentage
of erroneous requirements was used; this was computed on the basis of the values
from Table 2. The rework is represented by the number of person-hours reported by
additional personnel who had to contribute to the project. As already mentioned,
we are aware that this representation is imperfect, but we were not able to extract
more-accurate measurements from the available data. In Table 4, we also show the
relative value of RE rework by comparing the effort reported by additional personnel
to the total effort for the RE activities included in a project plan.

Table 4
Additional RE effort in projects

Erroneous
reqs [%]

Additional
personnel

E1: Effort of
additional
personnel
(person-
-hours)

E2: Effort
planned for
RE (person-

-hours)

E1/E2
[%]

P1 26.8
Domain expert: 1;

Developer: 1;
Analyst: 1

7 168 4.2

P2 25.0 Domain expert: 1 5 176 2.8

P3 36.4
Domain expert: 1;

Developer: 1;
Analyst: 1

19 168 11.3

P4 27.7
Domain expert: 1;

Developer: 1;
Analyst: 1

3 182 1.6

P5 35.9
Domain expert: 1;

Developer: 1;
Analyst: 2

16 176 9.1

P6 40.4
Domain expert: 2;

Developer: 1;
Analyst: 2

31 104 29.8



288 Aleksander Jarzębowicz, Katarzyna Poniatowska

It can be noticed that the more erroneous requirement specifications resulted in
more work for the additional people (especially in the case of P6, where the overhead
reached nearly 30%); however, this is not a simply proportional dependency.

As indicated in the description of RQ3 in Section 3.3, we compared the effective-
ness of the testing between projects that had functional requirements represented as
use cases with the remaining projects. The results, which are summarized in Table 5,
show the difference – projects with use case specifications had more than 80% of the
bugs found by the company’s testers, while for the other projects, the effectiveness of
the testing was about 70%.

Table 5
Testing effectiveness in analyzed projects

Project P1 P2 P3 P4 P5 P6
Use cases no yes no yes no no
Testing effectiveness [%] 75 87 71 84 67 69

A further investigation via conducting interviews with three testers (who partici-
pated in some of the analyzed projects) revealed that they considered use cases as the
most helpful requirement documentation technique and criticized other techniques,
especially user stories (which they found too vague without well-defined acceptance
criteria). Use cases also allowed testers to save much work by reducing the need to
contact the analysts (and request clarifications) and by the fact that use cases can
relatively easily be transformed into test cases. This finding is, however, based on
interviews only, not the quantitative data derived from tools. In addition, we include
some direct quotes that express the viewpoints of the testers we interviewed:

• I appreciate when I get a specification of a use case including the main flow
and alternate flows. Usually, it is enough to slightly rewrite them to develop
corresponding test cases.

• The greatest problems I have are caused by user stories because analysts in our
company don’t have the habit of defining acceptance criteria. I find use case
specifications very useful; they allow me to perform functional tests in a very
effective and time-efficient manner.

• The best situation possible is when an analyst provides a requirement with tra-
ces to associated use cases. The use cases should be described using main and
alternative scenarios; this makes it easier for me to understand a system’s func-
tionality. User stories did not work out for us, but this could be due to the fact
that the team was not prepared for Agile development at the time.

3.5. Validation

Validation is a term that is frequently used in scientific papers; however, it is usually
in the context of demonstrating that a given proposed solution is effective or has some
other expected properties [42]. In our case, the purpose of validation was different, as



Exploring impact of requirements engineering. . . 289

we intended to find out whether our study results can be considered valuable from the
point of view of RE practitioners and consistent with their experiences. We selected
interview-based expert opinions as a method of validation and conducted interviews
with two experienced RE practitioners (hereafter referred to as Practitioner 1 and
Practitioner 2). Practitioner 1 had nine years of industrial experience with diverse
responsibilities (two years in software testing, five in RE, and two in project manage-
ment), mainly in projects delivering IT solutions for large corporations. Practitioner
2 had ten years of industrial experience as an IT analyst, mainly in software projects
for customers from the financial domain. Before conducting the interviews, each inte-
rviewee received a written document with the description of our work (an extended
version of the information provided in Sections 3.1–3.4). The interviews were conduc-
ted separately while using the same set of previously prepared questions. The main
questions are preceded by introductory questions verifying whether the descriptions
of the study and its results are clear and sufficiently comprehensive to the interviewe-
es. The questions and answers obtained are summarized in Tables 6, 7, and 8 (each
dedicated to a separate RQ).

Table 6
Expert opinions regarding RQ1 (impact of elicitation approach on requirement quality)

Practitioner 1 Practitioner 2
Q1.1: Is the purpose and design of the conducted research study comprehensible?
Yes, I know such issues from my experien-
ce, I understand the dependencies descri-
bed.

I had no problem with comprehending the
study’s aim and design.

Q1.2: Is the presentation of the results obtained in this study clear and unambiguous?
Tables and graphs were most helpful to
capture the dependencies found by the stu-
dy.

Yes, the results can be easily read from the
tables and figures. Their interpretation is
straightforward as well.

Q1.3: Are the results obtained consistent with your professional experience?
Yes, I noticed that, when I include work-
shops and interviews in the elicitation pro-
cess, writing down requirement specifica-
tions is easier, which also translates into its
better quality. And when developers have
some questions or issues regarding these re-
quirements, sorting them out takes me less
time.

I agree that direct face-to-face contact with
the customer is beneficial to the specifi-
cation document. Personally, I prefer to
specify requirements on the basis of my
own notes taken during meetings with sta-
keholders, as it makes me aware of their
intent. It gives me more confidence when
specifying requirements and improves the-
ir quality.

Q1.4: Do you consider these results to be useful for IT projects practitioners?
Yes, I believe it is worthwhile to show these
results to project managers and customers
to demonstrate which elicitation techniqu-
es can be used to achieve high-quality re-
quirements.

Yes, I would gladly replicate such an ana-
lysis in my company. The results are in-
teresting for the analysts and show them
directions to improve their competencies.



290 Aleksander Jarzębowicz, Katarzyna Poniatowska

Table 7
Expert opinions regarding RQ2 (impact of requirement quality on rework effort)

Practitioner 1 Practitioner 2

Q1.1: Is the purpose and design of the conducted research study comprehensible?

To be honest, I had to read it twice; finally,
I understood the meaning of rework consu-
ming project reserves.

Yes, it was described clearly to me.

Q1.2: Is the presentation of the results obtained in this study clear and unambiguous?

I know this topic from my experience, and
I had no problems when reading and inter-
preting the results.

Yes, I understand the outcome of this re-
search.

Q1.3: Are the results obtained consistent with your professional experience?

I do not know how exactly requirement qu-
ality influences the rework effort, but, for
sure, poorly elicited requirements cause de-
lays. We have to spend additional hours of
work on consulting domain experts or the
customer.

Yes, well-specified requirements definite-
ly minimize the time spent by program-
mers on adjusting system functionalities,
for example.

Q1.4: Do you consider these results to be useful for IT project practitioners?

Yes I do. Research like this can make ma-
nagers realize that it pays to dedicate time
to train analysts because the quality of the
requirements impacts a project’s schedule.

I think it is an interesting research area.
In practice, it is really difficult to fit into a
project’s schedule. It is worth noticing that
this research does not consider all factors
but focuses on analysis only; however, ana-
lysis is one of the most important areas.

Table 8
Expert opinions regarding RQ3 (impact of documentation technique on testing effectiveness)

Practitioner 1 Practitioner 2

Q1.1: Is the purpose and design of the conducted research study comprehensible?

Yes. Yes.

Q1.2: Is the presentation of the results obtained in this study clear and unambiguous?

Yes. Yes.

Q1.3: Are the results obtained consistent with your professional experience?

I am not really able to answer that becau-
se, in my job history, I have rarely used
detailed use case descriptions.

I agree that preparing use case specifica-
tions helps testers in their tasks, but at the
same time it is time- and effort-consuming.



Exploring impact of requirements engineering. . . 291

Table 8 (cont.)

Practitioner 1 Practitioner 2

Q1.4: Do you consider these results to be useful for IT projects practitioners?

I believe these results will be useful to se-
nior analysts who are in charge of analysis
activities in a project and have to select
the documentation techniques to be used
in such a project. It is important to know
that the way requirements are documented
influences the work of other project parti-
cipants (in this case, testers).

In the projects for which I have worked,
I often encountered the problem of insuf-
ficient time to thoroughly test a product,
which later resulted in increased numbers
of bug reports from customers. Despite the
fact that specifying use cases is expensive,
after learning about this study’s results,
I think I will try to introduce it to my cur-
rent team. I believe further studies on this
matter would be beneficial.

This structured part of the interview was followed by a less formal one aimed at
discussing the findings and the possibility of generalizing the approach used as well
as at sharing ideas on the directions of further research. The results of the informal
part of the interviews are incorporated in the discussion of our approach (Section 4)
and conclusions (Section 5).

3.6. Threats to validity

We consider the presented study to be an initial attempt, and we are aware of its
limitations and threats to validity. Below, we discuss the four aspects of validity
following the guidelines for reporting case study research available in [34]:

• Construct validity – this is a question to what extent the operational measures
that are studied really represent, what the researchers have in mind, and what
is investigated according to the research questions. We minimized such threats
by applying a systematic GQM approach in order to derive concrete metrics
(preferably based on hard numbers) contributing to each research question.

• Internal validity – this aspect is important when causal relationships are exa-
mined and expresses the risk that another factor not considered by researchers
can affect the investigated phenomena. We made an effort to minimize the li-
kelihood of such a situation by selecting projects of similar product sizes, team
sizes, and developmental approaches. Despite this effort, we cannot claim that
the relationships we identified (e.g., between the requirement elicitation appro-
ach and elicited requirement quality) were completely free from other influencing
factors. A real-life software project is a very complex enterprise; contrary to con-
trolled experiments, it is simply not possible to organize projects in a manner
that ensures that they are shielded from any factors except for a small number
of independent variables. This is the threat we accept and acknowledge.



292 Aleksander Jarzębowicz, Katarzyna Poniatowska

• External validity – this aspect questions to what extent it is possible to genera-
lize the findings outside the specific investigated case. Our study was conducted
using the data from a single company, which does not allow us to reach strong
conclusions and generalize our results. The company and its products are not
very unique nor strikingly different from the industrial practice, but they cannot
be considered to be representative of the industry in general (e.g., for other ty-
pes of products, from entertainment software to safety-critical control systems).
Even within the context of this single company, our results are not entirely ge-
neralizable, as we analyzed a low number of projects similar to each other. This,
however, was a trade-off to mitigate the other (internal validity) threat: attemp-
ting to establish dependencies and causal relationships in the presence of other
significantly influencing factors.

• Reliability – is the concern to what extent the data and the analysis are de-
pendent on the specific researchers. All of the steps of the presented study as
well as the detailed activities were planned in advance in a consensus-based man-
ner, which minimized the threat of bias being introduced by a single person. As
the study was based on data from software supporting tools, most of the data
(including all of the quantitative data) was directly extracted from these tools
and did not require any additional analysis. An exception is the classification of
requirement errors (presented in Section 3.3), as it may sometimes be difficult
to pinpoint the exact defect category and decide whether such a requirement is
ambiguous or rather incomplete, for example. It was merely an extended analysis
of the relationship between requirement elicitation techniques and the resulting
requirement quality. Determining the relationship itself did not require any of our
decisions – erroneous requirements were pointed out by the project participants,
not by us.

4. Discussion of our approach

As presented in the previous section, the data stored in the Jira and Confluence tools
as part of the usual development activities (without any additional reporting) could
be used to investigate some aspects of the impact of the different RE practices used
among the considered projects. We presented a single study that we conducted, but
we believe it can be generalized; i.e., similar analyses can be applied to the data from
other projects supported by such tools. Jira is one of the tools most widely used in
software projects, especially those that apply Agile methods or at least some Agile
practices (like the company presented in this paper). The results of the most recent
Version One survey [40] announced Jira to be the most popular Agile management
tool. Confluence is a team-collaboration tool offered by the same manufacturer and
easily integrated with Jira. It is clear that an evaluation approach dedicated to such
a toolset is likely to have widespread application.

The case study demonstrated that it is possible to explore various correlations
and investigate any possible causal relationships, even despite the fact that we had no



Exploring impact of requirements engineering. . . 293

influence on the processes and work procedures of the considered projects – we merely
received data from those projects that had already been finished. We could not even
plan a priori the exact research questions, as we were dependent on the contents of
the received dataset. Such datasets should be considered as a potentially rich source
of information. Various kinds of research studies can take advantage of them; this
can serve as a post-mortem analysis (using the data from concluded projects, as we
did), action research (where the outcomes of decisions made in an ongoing project
are investigated), or even controlled experiments (which, however, are unlikely in an
industrial setting, as discussed in Section 1). The most promising direction (with
respect to the value provided) would be to apply our approach to ongoing and future
projects for the purpose of predicting and/or monitoring a project. In the cases of
larger samples, the statistical significance can be checked by the appropriate tests
(which we omitted due to the small size of our data).

If a research study is planned for an ongoing or future project, some analyses can
be easier to conduct if an additional piece of information is registered. One should be
careful not to place the burden of additional reporting on project participants, as it
contradicts the principles of Agile experimentation. However, the addition of a single
data field can sometimes make a huge difference. In our case, the explicit categori-
zation of each discovered requirement defect (completeness, unambiguity, testability,
etc.) would significantly reduce the effort necessary to obtain the information pre-
sented in Table 2 and Figure 2. If such a categorization was given when submitting
a defect report, the effort would drop from the many hours we spent on classifying the
defects to zero. It is also quite likely that such a field would help analysts understand
any reported problems and introduce their corrections. This would require a change
in reporting practices and in the software tools; however, Jira is known to be a very
configurable tool.

Some information is unlikely to be extracted from the datasets exported from
tools. In our case, such missing information included requirement elicitation tech-
niques, for example. Each requirement stored in Jira had a source (a stakeholder)
assigned, but there was no information about the RE technique used to elicit a given
requirement; from our knowledge, this is a rather typical situation. Fortunately, we
were able to gather the information we needed (including elicitation techniques) from
the people involved in software projects. Access to such people is usually possible
when researchers cooperate with a company; this is even more likely if the company
is investigating its own data.

To facilitate such analyses, Jira could be extended with a dedicated plug-in. We
reviewed the Atlassian Marketplace3 website, which lists more than 1500 Jira plug-ins;
however, we found no such plug-in. This seems to be a niche worth exploring.

3https://marketplace.atlassian.com/addons/app/jira



294 Aleksander Jarzębowicz, Katarzyna Poniatowska

5. Conclusions

In this paper, we discussed the feasibility of a lightweight approach to analyzing the
impact of RE practices. From a literature review, we identified that few similar rese-
arch studies had been published and that the cost of this kind of research (the work
effort required) is probably the main obstacle preventing its wider adoption. Inspired
by the ideas of Agile experimentation, we proposed an approach based on using popu-
lar tools and data registered in them during their standard usage in a software project.
We conducted an initial case study by analyzing the data from six similar projects,
and we were able to show some potentially interesting dependencies by comparing
the measurements of projects that used different RE practices; namely, requirement
quality, RE rework effort, and testing efficiency. Despite our study’s limitations, we
consider it to be a proof of concept that such a lightweight approach to investigating
RE-related phenomena is feasible, and we also believe that other project areas (and
their related measurements) can be selected; e.g., architectural design or development
(coding). We outlined our idea, included the lessons learned from the conducted study,
and identified some of the factors facilitating the adoption of our proposal.

Implications for researchers: this paper identified a research gap – the lack of
a feasible low-cost approach to investigate and measure the impact of RE on other
project areas. We presented a proposal of such an approach and the results from the
initial case study, which are, however, not a definite argument due to the study’s
limitations and the validity threats. Therefore, more research in this area is needed
to be able to confirm or contradict our findings and to understand the broader range
of the effects that RE practices and techniques can have on the various areas and
activities of an IT project.

Implications for practitioners: we were able to demonstrate our findings related
to three dependencies between RE practices and some results of their applications.
Despite the limitations of these findings, they can be considered by practitioners when
making decisions regarding the requirement elicitation and requirement documenta-
tion techniques to be used in a given project (or at least expert opinions gathered
during validation indicate that it could be worthwhile). Also, these findings can be
used to argue the importance of requirement engineering to decision-makers (mana-
gers, project sponsors, etc.), as RE activities unfortunately tend to be occasionally
neglected in practice.

The most natural direction of any future work is to conduct more case studies
and gather a larger and more diversified dataset. We are currently negotiating with
two other companies to gain access to the databases of their tools. This would provide
us with a significantly larger set of software projects, including more-complex ones
that record their activities in the form of several thousands Jira issues, for example.
A further step that we consider is the design and implementation of a Jira plug-
in to support analyses similar to those described in this paper. However, this would
require decisions about particular metrics to be computed, and we believe it should be



Exploring impact of requirements engineering. . . 295

preceded by identifying the questions and metrics considered most useful to analysts,
project managers, and other industry practitioners.

References

[1] Ambroziewicz A., Śmiałek M.: Applying Use Case Logic Patterns in Practice:
Lessons Learnt. In: Proceedings of 20th KKIO Software Engineering Conferen-
ce, Engineering Software Systems: Research and Praxis, AISC series vol. 830,
pp. 34–49, Springer, 2018.

[2] Bjarnason E., Wnuk K., Regnell B.: Requirements are slipping through the gaps
– A case study on causes & effects of communication gaps in large-scale software
development. In: 2011 IEEE 19th International Requirements Engineering Con-
ference, pp. 37–46, IEEE, 2011.

[3] Bormane L., Gržibovska J., Bērzǐsa S., Grabis J.: Impact of requirements elicita-
tion processes on success of information system development projects, Informa-
tion Technology and Management Science, vol. 19(1), pp. 57–64, 2016.

[4] Broy M.: Requirements engineering as a key to holistic software quality. In: Inter-
national Symposium on Computer and Information Sciences, pp. 24–34, Springer,
2006.

[5] Carrizo D., Dieste O., Juristo N.: Systematizing requirements elicitation tech-
nique selection, Information and Software Technology, vol. 56(6), pp. 644–669,
2014.

[6] Cheng B.H., Atlee J.M.: Research directions in requirements engineering. In: 2007
Future of Software Engineering, pp. 285–303, IEEE Computer Society, 2007.

[7] Damian D., Chisan J.: An empirical study of the complex relationships betwe-
en requirements engineering processes and other processes that lead to payoffs
in productivity, quality, and risk management, IEEE Transactions on Software
Engineering, vol. 32(7), pp. 433–453, 2006.

[8] Ellis K., Berry D.M.: Quantifying the impact of requirements definition and ma-
nagement process maturity on project outcome in large business application de-
velopment, Requirements Engineering, vol. 18(3), pp. 223–249, 2013.

[9] Gorschek T., Davis A.M.: Requirements engineering: In search of the dependent
variables, Information and Software Technology, vol. 50(1-2), pp. 67–75, 2008.

[10] IEEE Standard 830-1998 – IEEE Recommended Practice for Software Require-
ments Specifications, 1998.

[11] IIBA: A Guide to the Business Analysis Body of Knowledge (BABOK Guide)
version 3, 2015.

[12] IREB: Handbook of Advanced Level Elicitation according to the IREB Standard,
2019.



296 Aleksander Jarzębowicz, Katarzyna Poniatowska

[13] ISO/IEC/IEE: ISO/IEC/IEEE Standard 29148-2011. Systems and Software En-
gineering – Life Cycle Processes – Requirements Engineering, 2011.

[14] Jarzębowicz A., Poniatowska K.: Towards a Lightweight Approach for the
Evaluation of Requirements Engineering Impact on Other IT Project Areas,
pp. 171–186, Springer International Publishing, Cham, 2020. http://dx.doi.org/
10.1007/978-3-030-26574-8˙13.

[15] Jarzębowicz A., Ślesiński W.: What is Troubling IT Analysts? A Survey Report
from Poland on Requirements-Related Problems. In: Proceedings of 20th KKIO
Software Engineering Conference, Engineering Software Systems: Research and
Praxis, AISC series, vol. 830, pp. 3–19, Springer, 2018.

[16] Juristo N., Moreno A.M.: Basics of software engineering experimentation, Sprin-
ger Science & Business Media, 2013.

[17] Kamata M.I., Tamai T.: How does requirements quality relate to project success
or failure? In: 15th IEEE International Requirements Engineering Conference
(RE 2007), pp. 69–78, IEEE, 2007.

[18] Khan H., Asghar I., Ghayyur S., Raza M.: An empirical study of software requ-
irements verification and validation techniques along their mitigation strategies,
Asian Journal of Computer and Information Systems, vol. 3(03), 2015.

[19] Kopczyńska S., Nawrocki J., Ochodek M.: An empirical study on catalog of non-
functional requirement templates: Usefulness and maintenance issues, Informa-
tion and Software Technology, vol. 103, pp. 75–91, 2018.

[20] Lethbridge T.C., Lyon S., Perry P.: The Management of University–Industry
Collaborations Involving Empirical Studies of Software Enginee. In: Guide to
Advanced Empirical Software Engineering, pp. 257–281, Springer, 2008.

[21] Liechti O., Pasquier J., Reis R.: Beyond dashboards: on the many facets of me-
trics and feedback in agile organizations. In: 2017 IEEE/ACM 10th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),
pp. 16–22, IEEE, 2017.

[22] Maalem S., Zarour N.: Challenge of validation in requirements engineering, Jo-
urnal of Innovation in Digital Ecosystems, vol. 3(1), pp. 15–21, 2016.

[23] Madeyski L., Kawalerowicz M.: Software engineering needs agile experimenta-
tion: a new practice and supporting tool. In: Proceedings of 18th KKIO Software
Engineering Conference, Software Engineering: Challenges and Solutions, AISC
series, vol. 504, pp. 149–162, Springer, 2017.

[24] McManus J., Wood-Harper T.: Understanding the Sources of Information Sys-
tems Project Failure – A study in IS project failure, Management Services Jour-
nal, vol. 51, pp. 38–43, 2007.

http://dx.doi.org/10.1007/978-3-030-26574-8_13
http://dx.doi.org/10.1007/978-3-030-26574-8_13


Exploring impact of requirements engineering. . . 297

[25] Méndez Fernández D., Mund J., Femmer H., Vetrò A.: In quest for requirements
engineering oracles: dependent variables and measurements for (good) RE. In:
Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering, p. 3, ACM, 2014.

[26] Méndez Fernández D., Wagner S., Kalinowski M., et al.: Naming the pain in
requirements engineering: Contemporary problems, causes, and effects in practice,
Empirical Software Engineering, vol. 22(5), pp. 2298–2338, 2017.

[27] Mossakowska K., Jarzębowicz A.: A Survey Investigating the Influence of Business
Analysis Techniques on Software Quality Characteristics. In: Proceedings of 19th
KKIO Software Engineering Conference, Towards a Synergistic Combination of
Research and Practice in Software Engineering, SCI series, vol. 733, pp. 135–148,
Springer, 2018.

[28] Oliveira Neto de F.G., Horkoff J., Knauss E., Kasauli R., Liebel G.: Challenges
of Aligning Requirements Engineering and System Testing in Large-Scale Agile:
A multiple Case Study. In: 2017 IEEE 25th International Requirements Engine-
ering Conference Workshops (REW), pp. 315–322, IEEE, 2017.

[29] PMI: Business Analysis for Practitioners A Practice Guide, 2015.

[30] Przybyłek A., Kowalski W.: Utilizing Online Collaborative Games to Facilitate
Agile Software Development. In: 2018 Federated Conference on Computer Science
and Information Systems (FedCSIS), pp. 811–815, IEEE, 2018.

[31] Radliński Ł.: Empirical Analysis of the Impact of Requirements Engineering on
Software Quality. In: International Working Conference on Requirements Engi-
neering: Foundation for Software Quality, pp. 232–238, Springer, 2012.

[32] Rapp D., Hess A., Seyff N., Spörri P., Fuchs E., Glinz M.: Lightweight Require-
ments Engineering Assessments in Software Projects. In: 2014 IEEE 22nd Inter-
national Requirements Engineering Conference (RE), pp. 354–363, IEEE, 2014.

[33] REQB: REQB CPRE Foundation Level Syllabus ver. 2.1, 2014.

[34] Runeson P., Höst M.: Guidelines for conducting and reporting case study research
in software engineering, Empirical Software Engineering, vol. 14(2), p. 131, 2009.

[35] Sethia N.K., Pillai A.S.: The Effects of Requirements Elicitation Issues on So-
ftware Project Performance: An Empirical Analysis. In: International Working
Conference on Requirements Engineering: Foundation for Software Quality, pp.
285–300, Springer, 2014.

[36] Solingen van D.R., Berghout E.W.: The Goal/Question/Metric Method: a prac-
tical guide for quality improvement of software development, McGraw-Hill, 1999.

[37] Sommerville I., Ransom J.: An Empirical Study of Industrial Requirements En-
gineering Process Assessment and Improvement, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 14(1), pp. 85–117, 2005.



298 Aleksander Jarzębowicz, Katarzyna Poniatowska

[38] The Standish Group: Chaos Report available: https://www.projectsmart.co.uk/
white-papers/chaos-report.pdf, 2014.

[39] Verner J., Cox K., Bleistein S., Cerpa N.: Requirements Engineering and Software
Project Success: An Industrial Survey in Australia and the US, Australasian
Journal of Information Systems, vol. 13(1), 2005.

[40] Version One: 12th Annual State of Agile Report, https://explore.versionone.com/
state-of-agile/versionone-12th-annual-state-of-agile-report, 2018.

[41] Wellsandt S., Hribernik K.A., Thoben K.D.: Qualitative Comparison of Requ-
irements Elicitation Techniques that are Used to Collect Feedback Information
about Product Use, Procedia CIRP, vol. 21, pp. 212–217, 2014.

[42] Wieringa R., Maiden N.A.M., Mead N.R., Rolland C.: Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion, Require-
ments Engineering, vol. 11(1), pp. 102–107, 2006.

[43] Zhang Z.: Effective Requirements Development – A Comparison of Requirements
Elicitation Techniques. In: Berki E., Nummenmaa J., Sunley I., Ross M., Sta-
ples G. (eds.), Software Quality Management XV: Software Quality in the Know-
ledge Society, pp. 225–240, British Computer Society, 2007.

Affiliations

Aleksander Jarzębowicz
Gdańsk University of Technology, Faculty of Electronics, Telecommunications,
and Informatics, Department of Software Engineering, Gdańsk, Poland,
olek@eti.pg.edu.pl, ORCID ID: https://orcid.org/0000-0003-3181-4210

Katarzyna Poniatowska
Gdańsk University of Technology, Faculty of Electronics, Telecommunications,
and Informatics, Department of Software Engineering, Gdańsk, Poland,
katarzynaponiatowska94@gmail.com

Received: 12.01.2020
Revised: 24.05.2020
Accepted: 25.05.2020

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://orcid.org/0000-0003-3181-4210
olek@eti.pg.edu.pl
https://orcid.org/0000-0003-3181-4210
katarzynaponiatowska94@gmail.com

	Introduction
	Related work
	Industrial case study
	Background
	Selected projects
	Study design
	RQ1
	RQ2
	RQ3

	Study results
	Validation
	Threats to validity

	Discussion of our approach
	Conclusions

