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Abstract— Indoor navigation systems provide means to guide 

pedestrians to their various destinations. While many tools that 

take advantage of the Global Positioning System (GPS) for 

outdoor navigation exists, their usefulness is limited to the 

availability of GPS signal reception, which is usually poor in 

indoor environments. In this research, we propose a method that 

employs only images for indoor pedestrian navigation.  In the 

proposed method, a map of the indoor environment is first 

transformed into a graph model where features of indoor 

environment are attached to graph nodes and their distances 

represented by the graph edges. Feature images of initial and 

destination locations are provided by the pedestrian who needs 

to be guided. These images are fed into the created graph model 

and thereafter the Speeded-Up Robust Features (SURF) is then 

used to find a match to these images to discover their 

corresponding graph nodes. Graph nodes are identified in a 

manner that corresponds to pedestrian localized position and 

destination. Leveraging on these nodes in the graph, models are 

proposed to find the shortest path to user’s destination with 

instructions and graphical navigation path to enhance 

maneuverability. Experiment carried out on an indoor 

environment of the French South African Institute of 

Technology building, (Tshwane University of Technology) 

shows encouraging results. 

 

Index Terms— Image Localization; Image Matching; Image 

Processing; Pedestrian Navigation. 

 

I.  INTRODUCTION  

 

Navigation systems are of great advantage to users in 

traversing unfamiliar terrains with great accuracy. These 

systems are usually built to interact with the Global 

Positioning System (GPS). For outdoor users, such as 

commuters, the GPS device would guide them from any 

location to a desired destination with high precision.  

However, in indoor environments, the functionality of these 

devices is hampered due to highly degraded or unavailable 

GPS signals. 

Early research in computer vision-based-navigation is 

carried out  [1] and [2], where markers [3] or features snapped 

from the environments by the pedestrians are compared to 

those stored in a database. When a match is found, the 

pedestrian is localized. One of the problems with this approach 

is that additional infrastructures are required to be installed in 

the environment of interest in order to facilitate localization. 

This challenge was addressed by the introduction of sensors to 

vision-based navigation systems. One of such is proposed in 

[4], where two sensors are combined; the Inertia Measurement 

Unit (IMU) and the visual images for navigation. The IMU is 

used to track the navigation trajectory of the pedestrian, while 

visual images are used to improve the accuracy of the IMU.  

However, one of the drawbacks of the model is its cost, 

because two IMU devices have been used for their analysis 

with one of them installed on the user’s foot. In addition, the 

pedestrian is expected to wear a camera on the chest. This 

indicates that the model may not be deployed in a real-life 

scenario. The IMU wearable device is also investigated in [5] 

and [6] for indoor navigation. Also, in [7], research is carried 

out on an indoor environment, where office numbers are used 

to indicate the initial position and destination of the pedestrian. 

However, this approach might not work in the absence of 

office numbers.  In [8], a drone is developed to assist 

pedestrians to find their way in both indoor and outdoor 

environment, the drone is integrated with a mobile application, 

wherein a call can be placed to it.  Research has also been 

carried out on pedestrian navigation using smartphones. In [9], 

a method is developed where user navigation is based on 

camera phone. Firstly, the video of the indoor environment is 

obtained and thereafter, key frames from the videos and their 

camera positions are obtained. These key frames are then used 

to localize the pedestrian (armed with a camera phone) with 

additional markers installed on the floor to aid robust 

localization. In [10], an image-based approach for pedestrian 

localization in an outdoor environment using image matching 

algorithm is investigated. In recent time, navigation systems 

have also been developed for pedestrians on the wheel chair. 

In [11], an intelligent wheel chair is proposed, where its 

navigation system is based on obstacle detection and 

avoidance. In [12], a pedestrian localization is proposed for 

outdoor systems where image descriptors are used to find a 

match between a query image and descriptors of images stored 

in the database. 

A robust image matching algorithm is needed for 

localization as images acquired from pedestrians may be taken 

in a non-upright position, which means acquired images may 

have been rotated. There are various image matching methods 

in literature. One of such is the template matching algorithm. 

This model compares an image in question to reference 

images and the best match is picked [13] [14]. This is carried 

out by comparing their grayscale intensity values [15]. The 

Speeded-Up Robust Features (SURF) model [16] is also used 

for image matching and has the ability to match images of 

different orientation. The FAST method [17] uses extracted 

features (corners in images) for image matching. The Local 

Binary Pattern (LBP) has also been used for image recognition 

[18]. 

Some of the methods of pedestrian navigation proposed in 

literature requires that devices be mounted on the foot or the 

chest or a marker be installed in a given environment or might 

require expensive device such as drones. Hence, laborious 

work is needed on the part of the pedestrian to achieve indoor 

navigation [19]. This suggests that such systems may not be 

explored commercially. Therefore, in this paper, we propose a 

method for pedestrian navigation in an indoor environment 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/327208796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Telecommunication, Electronic and Computer Engineering 

 ISSN: 2180 – 1843   e-ISSN: 2289-8131   Vol. 12 No. 2   April – June 2020  46 

using only visual images. First, leveraging on graph theory, 

the environment is transformed/mapped into a graph model. 

Feature images in the indoor environment are attached to 

graph nodes while edges of the graph indicate the distances 

between nodes. When a pedestrian supplies images (initial and 

final locations) of the environment, image features are 

matched using SURF and the corresponding initial and 

destination nodes are discovered on the graph. The pedestrian 

is then localized on the graph and the shortest path to the 

destination is investigated, while providing sequence of 

images and navigation instructions that will be observed along 

the path. 

There are distinctions that can be observed from previous 

image based pedestrian navigation system. In [2], a 

localization problem is only solved where a pedestrian 

supplies an image, and this is matched against a collection of 

database images in an outdoor environment. Once an image 

match is found, the pedestrian is localized. In addition, the 

issue of false localization is not addressed. However, in our 

proposed model, we solved the localization problem for an 

indoor environment using graph theory and also tackle 

problems that may arise from false localization owing to 

identical images found in different locations. In addition, a 

robust and intuitive model for suggesting optimal navigation 

path that shows direction with labelled features in the graph 

path is put forward. In [4], a combination of sensors is used 

for aiding navigation (IMU and visual images), however, in 

our proposed model, only visual images are used for 

navigation. Also, in [9] an image-based navigation system is 

proposed leveraging on installed markers, but in our approach, 

markers are not installed in the considered environment. In 

[7], pedestrian localization is based on office numbers, 

however, not all offices have numbers. Section II of this paper 

puts forward the concept of graph theory and it application to 

indoor environment modelling. The following section 

evaluates the proposed model. Discussion and conclusion 

sections followed respectfully. 

 

II.  INDOOR NAVIGATION USING VISUAL IMAGES 

 

The proposed model comprises three stages. Firstly, a 

transformation/mapping stage where the indoor environment 

is transformed into a graph model in which images are 

assigned to node(s). Thereafter, the graph is transformed into 

a graph-map to give positions to identified nodes. Secondly, 

images supplied by pedestrians taken from the indoor 

environment are uploaded and their corresponding nodes are 

discovered using SURF. In addition, the positions (x,y) of 

these nodes  in the graph-map are identified. The coordinates 

are then used to calculate the shortest path to the destination. 

Finally, the shortest part is realized and images and 

instructions aiding the movement of the pedestrian to the 

destination is given. 

 

A.  Generating a Graph-Map of FSATI 

The FSATI indoor environment encapsulates lecture 

theatres, offices, toilets, printer room, laboratories and dining 

rooms, with an estimated size of 16,000 square meters. A 

graph G = (N, E) consists of nodes N and edges E as observed 

in Figure 1(a). In the figure, the circular shapes represent 

nodes, while the arrows represent edges. The edges are 

bidirectional, i.e. they can traverse either directions, as 

indicated. Intuitively, this concept of a graph can be used to 

model any environment where important features (images) in 

the environment are attached to nodes and edges are the 

pathways or directions leading to the adjoining node as 

observed in Figure 1(b). 

 

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

Figure 1: (a) A graph with circles representing nodes and arrows representing 

edges, (b) A graph map of FSATI building where circles represent nodes and 

edges as lines connecting nodes, and (c) A graph map of FSATI building 

 

In Figure 1(b), the nodes are assigned numbers, as observed. 

The graph has been manually drawn. An example of hand 

drawn maps for robotic navigation can be seen in [20]. While 

the graph in Figure 1(b) gives the layout of nodes and their 

pathways or connections in an indoor environment, they lack 
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positioning. In order to achieve positioning, the nodes are 

assigned coordinates using the 2d coordinate system. 

Therefore, the graph in Figure 1(b) where G = (N, E) is 

transformed into a graph-map (GM) where GM = (𝑁(𝑥,𝑦), E) 

in Figure 1(c). The x and y coordinates of each node can now 

be obtained and the distance separating two nodes can be 

derived. This distance is also referred to as edge weight. 

 

B. Adding Images to GM Nodes 

Each feature image acquired from the considered indoor 

environment is attached to a node n n (n 𝜖 𝑁(𝑥,𝑦)). Nodes are 

assigned numbers (Figure 1(c)) (n ∈ {1,2……….38}) such 

that when a node number is found, its corresponding feature 

image(s) can be retrieved. Also, when one or more images 

attached to a node are matched by an input image, the node 

can be retrieved. 

 

  
  

(a) (b) 

  

  
  

(c) (d) 
  

Figure 2: (a) A portion of the indoor environment, (b) Image attached to node 
18, (c) Image attached to node 18, and (d) Image attached to node 18. 

 

C. Pedestrian  Localizarion and Destination 

Identification 

The SURF model is used to match the images obtained from 

pedestrians to that attached to graph nodes. Once images are 

successfully matched, their corresponding nodes can be 

discovered on the graph model. Therefore, the shortest path to 

destination can be calculated. The SURF uses a box filter to 

convolve the image under question, using integral images and 

thereafter generates an image scale space. The next stage is to 

detect features in the image scale-space. These features 

(blobs) are detected using the determinant of the Hessian 

matrix (H)) [21]. Each element in the matrix holds the second-

order derivate of the image V (Equation (1)). The determinant 

of the Hessian matrix (Equation (2)) is known to detect sudden 

changes in color or greyscale intensity of image V. These 

detected features (sudden change in color) are described in a 

vector form and are immune to rotation and translation. These 

features are then used to match images attached to graph 

nodes. The highest matched feature is discovered and its 

corresponding graph node is identified.  

 

H =  

𝜕2𝑉   

𝜕2𝑥
 

𝜕2𝑉 

𝜕 𝑥𝜕 𝑦
    

𝜕2𝑉   

𝜕 𝑥𝜕 𝑦

𝜕2𝑉   

𝜕2𝑦
  

(1) 

   

𝑑𝑒𝑡(𝐻) =  
𝜕2𝑉 𝜕

2𝑉  

𝜕 𝑥2𝜕 𝑦2
− ( 

𝜕2𝑉 

𝜕 𝑥𝜕 𝑦
)

2

 (2) 

 

The discovery of nodes aid pedestrian localization and path 

planning. However, the localization strategy adopted by 

SURF has its challenges as the pedestrian might be localized 

on a wrong node leading to false localization. This is the case 

when an input image 𝐼𝑖  returns the highest matched feature of 

a wrong image attached to a node. Possibly the image is found 

in more than one location and the wrong node has been 

retrieved. 

 
D = [𝑑1, 𝑑2  … … … 𝑑𝑧]𝑇 (3) 

  

P = [(
𝑑1 

𝑑2 
) , (

𝑑2 

𝑑2 
) … … … . (

𝑑𝑧 

𝑑2 
)]𝑇 (4) 

 

The probabilities of matching 𝐼𝑖  with node images are 

obtained in Equation (4). When two or more matches have a 

minimum probability of 0.8, then their corresponding nodes 

(N > 1) are potential candidates for false or true pedestrian 

localization. The pedestrian is then instructed to input another 

nearby image, within the vicinity, until a single node (N == 1) 

is returned with a minimum probability of 0.8. This 

localization strategy is shown in Equation (5) and (6). 𝐼𝑓 is also 

an input image that discovers the destination node 𝐼𝑓 can be 

retrieved from a text to image conversion where a pedestrian 

selects a text say “printer room” and then converted to 𝐼𝑓  

attached to a node. Once the initial and destination nodes are 

retrieved, their corresponding positions (𝑆(𝑥,𝑦) 𝐸(𝑥,𝑦))  on the 

GM are known. 

 

𝑓(𝐼𝑖  ) = {
𝑓(𝐼𝑖  ),   𝑃(𝑁 > 1| 𝐼𝑖  )    𝑎𝑡 𝑃 ≥   0.8

𝑁,           𝑃(𝑁 == 1| 𝐼𝑖  )  𝑎𝑡 𝑃 ≥  0.8
 (5) 

  

𝑓(𝐼𝑓 ) ={
𝑓(𝐼𝑓 ),   𝑃(𝑁 > 1| 𝐼𝑓 )    𝑎𝑡 𝑃 ≥   0.8

𝑁,           𝑃(𝑁 == 1| 𝐼𝑓 )  𝑎𝑡 𝑃 ≥  0.8
 (6) 

 

The localization strategy adopted by SURF has therefore 

been improved. Given any input image 𝐼𝑖  its matched feature 

values across the entire images of nodes are collected in a 

vector form (Equation (3)), given that we have a total of z 

images attached to all nodes in the graph. Thereafter, each 

element in Equation (3) is normalized and transformed into a 

probability. Given that element 𝑑2 has the highest number of 

feature-match with 𝐼𝑖  Equation (3) is normalized to give 

Equation (4).   

 

D. Algorithm for Shortest Path  

The Dijkstra algorithm [22] finds the shortest path in a 

graph model but unfortunately, it fails when an edge weight is 

negative and also performs an exhaustive search amongst 

nodes. We take a different approach from the Dijkstra 

algorithm to suit the research work in two areas. Firstly, the 

shortest path is discovered bearing in mind the destination 

node in order to minimize exhaustive search. Therefore, when 

a path leading to the destination is collinear, this path is 

assumed the shortest path and the algorithm terminates. Given 

some initial and destination nodes at 𝑆(𝑥,𝑦)and 

𝐸(𝑥,𝑦)respectively, a path is collinear if either Equations (7), 

(8) or (9) holds true. 

 
𝑆(𝑥) -  𝐸(𝑥)  = w; {w = 0} (7) 

  

𝑆(𝑦) -  𝐸(𝑦)   = w; {w = 0} (8) 

  

((𝑆(𝑥) − (𝑆 + 1)(𝑥)) 
2+(𝑆(𝑦) − (𝑆 + 1)(𝑦)) 

2) 1/2   + 

((𝐸(𝑥) −  (𝑆 − 1)(𝑥)) 
2+(𝐸(𝑦) −  (𝑆 − 1)(𝑦)) 

2) 1/2   ==  ((𝑆(𝑥) −

 (𝐸)(𝑥)) 
2+(𝑆(𝑦) − (𝐸)(𝑦)) 

2) 1/2 

(9) 
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However, when nodes leading to the destination do not 

satisfy neither equation, the algorithm then searches for any 

two paths leading to the destination and choose the shortest 

distance from a collection of possible paths discovered. One 

may suggest that selecting the path with minimal nodes 

encountered can provide the shortest path; however, this may 

be wrong as their Euclidian distances may suggest otherwise. 

Secondly, negative weight edges (distance between two 

nodes) are avoided using the Euclidean distance d in Equation 

(10). The shortest path algorithm is given Algorithm 1. 

 
d = ((𝑆(𝑥) − (𝑆 + 1)(𝑥)) 

2+(𝑆(𝑦) − (𝑆 + 1)(𝑦)) 
2) 1/2 (10) 

 

The shortest path algorithm is given below. 

 
1. Input: GM = (𝑁(𝑥,𝑦), E), start and end nodes (𝑆(𝑥,𝑦), 𝐸(𝑥,𝑦) 

obtained from Equations (5) and (6) respectively  

2. Output: Shortest path between  𝑆(𝑥,𝑦) and 𝐸(𝑥,𝑦) 

3. Begin: 

4. Initialize 

5. List<node> path (Create a variable, path, that stores a single path 

from 𝑆(𝑥,𝑦) to 𝐸(𝑥,𝑦) 

6. List<List<node>> paths (Create a variable, paths, that stores a 

collection of possible paths from 𝑆(𝑥,𝑦) to 𝐸(𝑥,𝑦) 

7. distances[] (create  variable distance to store a collection of  
distances in paths  

8. pathCounter = 0 (counts the number of paths from 𝑆(𝑥,𝑦), 𝐸(𝑥,𝑦)) 

9. function ShortestPath (GM, 𝑆(𝑥,𝑦), 𝐸(𝑥,𝑦)) 

10. if (Equation (7))) || (Equation (8)) || ((Equation (9)) 

11. path.add(n) (add all the nodes from 𝑆(𝑥,𝑦), 𝐸(𝑥,𝑦)) 

12. paths.add(path) 

13. else 

14. path.add(𝑆 ) (add start node) 

15. while (pathCounter < 2) 

16. for each node n in identified path id from  𝑆(𝑥,𝑦) to  𝐸(𝑥,𝑦) 

17. path.add(n) 

18. end for each 

19. paths.add(path) 

20. pathCounter = pathCounter + 1 

21. end while 

22. end if 

23. for each p in Paths 

24. for each node 𝑛(𝑥,𝑦) in p 

25. 𝑥1 =  𝑛(𝑥) , 𝑦1 =  𝑛(𝑦) 

26. 𝑥2 =  (𝑛 + 1)(𝑥) , 𝑦2 =  (𝑛 + 1)(𝑦) 

27.  distance = distance + ((𝑥1 − 𝑥2 )  
2 + (𝑦1 −  𝑦2 )  

2) 1/2 

28. end for 

29. distances [] = distance  
30. end for 

31. find the index of the least value in distances and assign to l 

32. paths[l] is the shortest path  
33. end if 

34. end function 

 

Algorithm 1: Shortest path algorithm 

 

In Algorithm 1, when a path leading to the destination node 

is collinear, the path from the initial to the final node is 

considered the shortest path. However, when the initial and 

final nodes are non-collinear, two paths leading to the 

destination node are discovered and the shorter distance to the 

destination is considered the shortest path. 

 

E. Generating Route Guide And Instructions  

Route instructions show pedestrian’s current location in the 

graph and how to navigate to their destination. In addition, 

guided instructions are needed to help pedestrians know where 

and how to make a turn. Graphical images are provided to 

enhance pedestrian maneuverability. There are four scenarios 

considered. The first is when the pedestrian is localized on the 

constant y axis of the GM (Figure 1(c)) (pedestrian at  𝑆(𝑥)) 

and based on the shortest path, if  𝑆(𝑥) is less than the next node 

(𝑆 + 1)(𝑥), then the pedestrian is instructed to face the right 

direction in the graph and proceed to walk (Equation (11)). 

Otherwise, the system instructs the pedestrian to face the left 

direction. Either way, a feature is shown that informs the 

pedestrian that he is on the right path. A red line is drawn in 

Figure 3 to highlight this path (node 19 to 31). 

 

𝑓((𝑠 + 1), 𝑠) = {
𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡,       𝑆(𝑥) < (𝑆 + 1)(𝑥)

𝑡𝑢𝑟𝑛 𝑙𝑒𝑓𝑡, 𝑆(𝑥) > (𝑆 + 1)(𝑥)
 (11) 

 

For example, in Figure 1(c), if the navigation path is from 

node 9 to 8, which is on a constant y axis, node 9 is   𝑆(𝑥),  and 

has x,y position (7, 4) and node 8 is (𝑆 + 1)(𝑥) with (9,4). The 

second node in this path is 8, its x position is 9, while its 

predecessor’s node has its x value to be 7. Since 9 is greater 

than 7, then the pedestrian is instructed to turn right and move 

from node 9 to 8. A feature image of node 8 is shown to the 

pedestrian. However, if the navigation path was from node 8 

to 9, then the pedestrian is instructed to move in the left 

direction. 

The second scenario is when the pedestrian is localized on 

the constant x axis of the GM (Figure 1(c)). Based on the 

shortest path, if the y value of the initial node (𝑆(𝑦)) is greater 

than the next node (𝑆 + 1)(𝑦), then the pedestrian is instructed 

to face the right direction in the map and proceed to walk. 

Otherwise, the pedestrian is instructed to face the left direction 

(Equation (12)). Either way, a feature is shown that guides the 

pedestrian and a red line is drawn in Figure 3 to highlight this 

path. 

 

𝑓((𝑠 + 1), 𝑠) = {
𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡,        𝑆(𝑦) > (𝑆 + 1)(𝑦)

𝑡𝑢𝑟𝑛 𝑙𝑒𝑓𝑡 , 𝑆(𝑦) <  (𝑆 + 1)(𝑦)
 (12) 

 

The third scenario comes to a realization when the 

pedestrian is currently on node s and s-1, s, s+1 have either 

constant x or y values. In this case, the pedestrian is instructed 

to keep moving straight as seen in Equation (13). A feature 

image is also presented as a guide and a red line is drawn in 

Figure 3 to highlight this path. 

 
𝑓((𝑠 − 1), 𝑠, (𝑠 + 1)) =

{
𝑘𝑒𝑒𝑝 𝑚𝑜𝑣𝑖𝑛𝑔 𝑠𝑡𝑟𝑖𝑎𝑔ℎ𝑡, (𝑆 − 1)(𝑦) == 𝑆(𝑦) == (𝑆 + 1)(𝑦)

𝑘𝑒𝑒𝑝 𝑚𝑜𝑣𝑖𝑛𝑔 𝑠𝑡𝑟𝑖𝑎𝑔ℎ𝑡 , (𝑆 − 1)(𝑥) == 𝑆(𝑥) == (𝑆 + 1)(𝑥) 
  

(13) 

 

The fourth scenario is when the pedestrian is moving from 

a given point a to b, however both their x or y values differ 

(Equation (14)). An example of this scenario is when the 

pedestrian moves from node 1 to 2 in Figure 1(c). In this case, 

the pedestrian is instructed to move straight. A red line is 

drawn in Figure 3 to highlight this path. 

 
𝑓(𝑠, (𝑠 + 1)) 

= {𝑚𝑜𝑣𝑒 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑆(𝑦)  ≠  (𝑆 + 1)(𝑦) 𝑎𝑛𝑑 𝑆(𝑥)  ≠  (𝑆 + 1)(𝑥) 
(14) 

 

F.  Navigating Graph and Image Sequence 

Navigating graph and image sequence enables pedestrians 

to have a smooth navigation path to their destination. 

Navigation path is highlighted in red with additional 

instructions and numbered sequence of images matching node 

numbers on the graph. Assuming a pedestrian is on node 

number 19 and wants to navigate to the male’s toilet (node 31). 

The pedestrian uses a mobile device to take an image of a 

nearby feature, on node 19; and therefore selects a text “males’ 
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toilet”, which is then transformed to a feature image. These 

images are used by Equation (5) and (6) for the discoveries of 

node 19 and 31. Algorithm 1 finds the shortest path (shortest 

path is 19-18-26-27-28-29-30-31), while this navigation path 

is highlighted in Figure 3 with feature images (Figure 4), seen 

along selected path. At node 19 (Figure 3), the “start” word is 

written, indicating the pedestrian has been localized. And on 

node 31, the “stop” is written, suggesting the destination node. 

Highlighting navigation path similar to Figure 3 also has an 

advantage of implicitly informing pedestrians, where to turn 

as not all scenarios of turns, in the real world, are addressed in 

the previous section. For instance, at round-about or at forks. 

 

 
 

Figure 3: Graph highlighting navigation path in red 

 

You are 
here 

 
  

 (a) Node 19 
  

Turn 
Right 

 
  

 (b) Node 18 

  

Keep 

moving 

straight 

 
  

 (c) Node 26 

  

Keep 

moving 

straight 

 
  

 (d) Node 27 

  
Keep 

moving 

straight 

Node 28 

  

Turn Left 

 
  

 (e) Node 29 
  

Keep 

moving 
straight 

Node 30 

  

Turn Left 

 
  

 (f) Node 31 

  
Figure 4: Instructions and sequence of images in navigation path selected in 

Figure 3 

 

III. EVALUATION  

 

The proposed model is evaluated on two fronts. The first is 

on the node identification capability when images are 

supplied. This is the ability to recognize nodes via images 

taken by mobile phones especially when only portions of the 

image are captured. The ability to recognize and match images 

is crucial as it aids localization and path planning from initial 

location to destination. Hence, a rigorous process is adopted 

to test the robustness of proposed model on pedestrian 

localization. 58 images [23] captured from mobile phones at 

various times, and of varying degree of rotation have been 

considered for the evaluation of pedestrian localization in the 

considered environment. Any of these 58 images may serve as 

either the source or destination image. 

Evaluation metric used is the Pedestrian Localization 

Accuracy (PLA) (Equation (15)). 

 

𝑃𝐿𝐴 = 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑓𝑖𝑒𝑑 𝐼𝑚𝑎𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑
 (15) 

 

The second evaluation verifies the correctness of the 

shortest route discovered. We identify various navigation 

routes and benchmark them against the ground truth. The 

ground truth gives the shortest path and obtained by taking 

measurements on the actual environment.  

 
Table 1 

Comparison of Image Matching Models 
 

Model 
Image 

Number 

Number of 

Correctly 

Classified 

Number of 

Wrongly 

Classified 

PLA (%) 

Template 

Matching 
58 20 

38                                

34.5 
34.5 

Fast 58 14 44 24 

SURF 58 48 10 82.8 

Proposed 

Model 
58 55 3 94.8 

 

Table 1 shows the localized accuracies of different 

localization models investigated. The table shows that the 

proposed localization strategy outperforms other considered 
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models such as the FAST and the template matching 

methods. SURF model has the capability to match images of 

different orientation (Figure 5), thus giving it a score of 82.8 

% for PLA. The proposed model exhibits better performance 

by ensuring that the input image provided by the pedestrian 

is unique before localization, which results in a PLA score of 

94.8 %. The robustness of SURF is also demonstrated in 

Figure 5. Apart from the input image (Figure 5(b)) being 

slightly rotated, image features are not completely captured, 

yet it is able to localize accurately (Figure 5(c)). The input 

image is recognized and its corresponding node is retrieved 

(localization). 

 

  
  

(a) (b) 

  

  
  

(c) (d) 

  

 
 

(e) 

 

Figure 5: (a) Ground truth (image attached to node 33), (b) Input image from 

camera phone, (c) Returned image via SURF (localized at node 33), (d) 

Returned image via template matching (localized at node 7), and (e) 
Returned image via FAST (localized at node 37) 

 
Table 2 

Shortest Path Evaluation of Algorithm 1 

 

Nodes 

(see Figure 1(c)) 

Shortest Path by 

Proposed Model 
Ground Truth 

21 - 11 

25, 24, 23, 22, 21, 20, 

18, 17, 16, 15, 14, 13, 

12, 10, 11 

25, 24, 23, 22, 21, 20, 

18, 17, 16, 15, 14, 13, 

12, 10, 11 

19 - 32 
19, 18, 26, 27, 28, 29, 

30, 32 

19, 18, 26, 27, 28, 29, 

30, 32 

1 - 28 
1, 2, 4, 5, 37, 36, 35, 

34, 38, 28 
1, 2, 4, 5, 37, 36, 35, 

34, 38, 28 

11 - 27 
11, 10, 12, 13, 14, 15, 

16, 17, 18, 26, 27 

11, 10, 12, 13, 14, 15, 

16, 17, 18, 26, 27 

6 - 27 
6, 5, 37, 36, 35, 34, 38, 

28, 27 

6, 5, 37, 36, 35, 34, 38, 

28, 27 

3 - 31 
3, 4, 5, 37, 36, 35, 34, 

38, 28, 29, 30, 31 
3, 4, 5, 37, 36, 35, 34, 

38, 28, 29, 30, 31 

19 - 35 
19, 18, 26, 27, 28, 38, 

34, 35 

19, 18, 26, 27, 28, 38, 

34, 35 

Nodes 
(see Figure 1(c)) 

Shortest Path by 
Proposed Model 

Ground Truth 

35-20 
35, 34, 38, 28, 27, 26, 

18, 20 

35, 34, 38, 28, 27, 26, 

18, 20 

 

Evaluation of Algorithm 1 is shown in Table 2. The 

shortest paths suggested by the proposed Algorithm are 

benchmarked against actual shortest paths in the 

environment. The test results show that all considered 

scenarios passed. 

 

IV. DISCUSSIONS  

 

This research presents pedestrian navigation using only 

images. The proposed approach employs graph theory to 

model the considered indoor environment and thereafter 

transformed to a graph map (GM), where nodes acquire 

positions. The GM is then used to develop guides which aid 

pedestrians in traversing from their initial location to their 

destination with great accuracy. When non-unique image 

features are provided by the pedestrian for localization, there 

is a high possibility of false localization. Therefore, the 

proposed model instructs pedestrian to input another nearby 

feature until a match probability, not less than 0.8, of a single 

node is obtained. Thus, the pedestrian is localized.  

 

V. CONCLUSION 

 

The contributions in this research are three-folds. First, the 

recognition of supplied images by pedestrians for their 

localization on a graph node. Second, the path planning from 

the localized node to destination node. Finally, the 

introduction of navigation guide together with the sequence of 

images that will be encountered in the chosen path. These have 

been achieved by exploring the graph theory for indoor 

environment navigation.  Indoor feature images are attached 

to graph nodes and are discovered (nodes) by matching images 

uploaded via mobile phones. In addition, the ability to 

transform the generated graph into a graph map, where nodes 

have coordinates, has provided the platform to develop models 

for the shortest path to destination and instructions for 

pedestrian navigation. The proposed navigation model, which 

does not require markers to be installed in the considered 

indoor environment, can also be extended to other scenarios 

such as shopping malls, especially for pedestrians on a wheel 

chair in order for them to optimize their movement. 
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