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Abstract

Delays in railway networks cause problems in the daily operation and result in reduced reliability of the
railway operation. The article defines methods based on the two closely related concepts of regularity and
punctuality. These methods cover the traditional measures for trains based on the realized and simulated
operation but also more advanced methods that take the passengers’ experience into account. This is done
by using passenger delay models that estimates the delays of the passengers based on train delays and
knowledge about the passenger behavior. For high-frequent operation, the traditional measures cannot
describe the perceived service reliability of the passengers as passengers can travel with delayed trains
without knowing of the delay. Here, the article presents other reliability measures. Using the presented
reliability approaches, the article illustrates how the reliability of railway operation can be improved
through reliability analyses.

1 Introduction

Delays in a railway network are one of the biggest problems in the daily operations of a railway company
(Berger, Hoffmann, Lorenz & Stiller 2011). Therefore, attention to transit quality and efficiency in general
and reliability in particular is increasing. (van Oort, van Nes 2010). For railway services, reliability can be
defined as the continuity of correct service (Avizienis, Laprie, Randell 2001). Seen from the passengers
point of view, the reliability can be divided into the two closely related concepts regularity and punctuality.
Regularity is the variation in headways while punctuality relates to the deviation from the scheduled arrival
and departure times (van Oort 2005).

Trains are not allowed to depart before time since from a passenger perspective, the next departure is
“late” by the frequency (Bush 2007). Therefore, the trains will always depart “on time”/punctual or
delayed. If the time is divided in small time intervals (e.g. seconds), it is very difficult for the trains to depart
exactly on time. Since the trains are not allowed to depart before time, the risk of (very) small delays is high
(Landex 2009). To avoid discussions of when a train deviates from its timetable (i.e., the train is punctual),
most countries have decided on threshold values for when a train is on time. In Denmark it is decided that
the trains are punctual if they arrive within the following thresholds (Landex et al. 2007; Landex 2008):

e S-trains — 2}, minutes

e Regional trains — 5 minutes

e Intercity and Intercity Express trains — 5 minutes

e Freight trains — 10 minutes
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The threshold value for when a train is punctual differs by country. In the USA, the threshold value varies
from 5 to 30 minutes depending on the length of the train service and not the average travel distance for
the passenger (Bush 2007). In Europe, the threshold values vary too, but also where to measure the
punctuality varies. E.g. The Netherlands measure the punctuality at the departure from 32 measuring
stations spread out over the network, while Germany and Norway measure the punctuality at arrival at the
terminal station' (Daamen et al. 2007; Olsson and Haugland 2004). Because of the different ways of
measuring punctuality only few international comparrisons of train delays (e.g. (Nederlanse Spoorwegen
2001; Vromans 2005)) are conducted, cf. Figure 1.
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Figure 1: Trains arriving less than 5 minutes late in year 1999-2002. Data from (NEA 2003).

In high-frequency systems, more focus on headway deviation is common because travelers tend to arrive at
random (van Oort, van Nes 2010). However, in case the vehicles operate slower than planned, the headway
deviation method may not be sufficient to describe the reliability of the railway operation. To achieve a
method with low complexity, the headway deviation can be combined with the running time deviation of
the vehicles (Landex 2009).

To guesstimate the impact on the reliability of the railway operation in case of altered timetables or
modified infrastructure, it is necessary to conduct a simulation of the railway operation. Therefore, this
article first (in section 2) presents the traditional method of simulating train delays. This is (in section 3)
followed by an approach that takes passenger delays into account when measuring the reliability of the
railway operation. In section 4, reliability measures for high-frequent train operation are presented. Before
the conclusions (section 6), section 5 discuses how the reliability of railway operation can be improved
based on the described methods.

2 Simulation of Train Delays

The delay propagation and the total delay can be calculated for a given initial delay provided that the
timetable and the characteristics of the infrastructure are known. However, these calculations of delays are
only possible for idealized situations. This is because only one railway line would be examined, no
dispatching would be included, and it will be assumed that the timetable will regenerate before the next
delay occurs. However, a delay on one railway line may influence other railway lines too, and the total
amount of delay may be reduced through dispatching (e.g. changing the order of the trains). Furthermore,

! In Norway, punctuality is measured at some importat stations too.
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if two initial delays occur shortly after each other, the second delay might not have the same influence, as
the train would have got a consecutive delay, also if the delay did not occur, cf. Figure 2.
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Figure 2: Two initial delays shortly after each other (broken lines are the planned timetable).

Instead of calculations on idealized situations, simulation can be used. Originally, the science of simulation
was the reproduction of a real object or a process as a model. In a simulation, this model was used instead
of the original. However, given the success of computers as a technical tool, almost all processes can now
be simulated with computer programs. During recent years, it has become clear that simulation is a suitable
method to reproduce the reality in a virtual process. The results can help to understand and analyze
processes more easily (Siefer 2008).

Simulation models are often more precise than the idealized formulas. This is because simulation can take
delays occurring immediately after each other into account and because simulation models often have
detailed knowledge about the infrastructure and train operation so that they can, for example, calculate
the delay caused by speed reductions due to restrictive signals. Furthermore, more railway lines can be
examined at the same time, dispatching can to some extent be included, and previous delays are included
when the total amount of delay is computed. There are many simulation models that can be used for
different analysis but in general, the models can be divided into three categories, cf. Figure 3.

For analysing delays and delay propagation, tactical (and/or operational) models can be used (e.g. RailSys
(Siefer, Radtke 2005) and OpenTrack (Nash, Huerlimann 2004))>. These types of simulation models are
generally built up in several steps. First, the infrastructure must be built up before constructing the
timetable. Then, the delay distribution of the initial delays must be entered together with the rules for
dispatching. Finally, the simulation can be run and the results can be evaluated, cf. Figure 4. To ensure a
stable and reproducible result, 50-200 simulations should be conducted (Siefer 2008)°.

2 (Barber et. al 2007) and (Koutsopoulos, Wang 2007) give an overview of different simulation tools.
® (Radtke, Bendfeldt 2001) suggest 50100 simulations.
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Figure 3: Different types of simulation models and their main types of analysis. Based on (Kaas 1998).

The advantages of simulation models compared with the analytical models are the high accuracy and the
possibility to test future changes in the infrastructure and the timetables for an entire network.
Furthermore, simulation models can estimate the impact of the trains in the case of reduced speed and
queuing, skip any conditional stops, and changing the order of the trains to reduce the amount of
consecutive delays. However, simulation models also have their limits. Although simulation models are
more accurate than idealized formulas, they cannot dispatch the trains in the same way as does the
dispatcher in real life where more tools to relieve the disruptions exist, e.g., (Jacobs 2008, Jespersen-Groth
et al. 2007):
e Overtaking”: Choose to overtake another train to have better overall relief in the disruptions
e Change in stop pattern: A delayed train can skip some stations to recover from its delay. Another
train might then have additional stops. This kind of dispatching is often used on the Copenhagen
suburban railway network
e Inserting an on-time train: In the case of delays, the delayed train can be replaced by another train
running on time. This kind of dispatching is often used on the Coast line (from Copenhagen to
Elsinore) in Denmark
e Increasing residual capacity/cancel train(s): Cancellation of one or more trains can ensure
sufficient capacity to avoid too many consecutive delays. In this way, the number of disruptions can
be reduced. The cancellation of trains can be over the entire route or only part of it. This kind of
dispatching is often used on the Copenhagen suburban railway network
e Use of alternative routes: If there are parallel routes between two stations along a railway
corridor, the train can choose an alternative route. It might be necessary to skip some stations to
be able to change to another train service. This kind of dispatching has been used in Denmark for
freight trains in the case of major incidents
e Bundle trains: In the case of reduced capacity (e.g. due to a closed track), extra capacity can be
gained by bundling the trains. The trains in the same direction can be bundled by speed or by
direction for unscheduled single track operation. This kind of dispatching has been used in Denmark
in cases of construction/maintenance work and in cases of unscheduled closure of tracks

* Simulation tools often allow unscheduled overtakings in the case of disruptions but the dispatcher might choose the overtaking based on criteria
other than the dispatch algorithm—and possibly even combine the overtaking with other dispatching actions.
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Coupling trains: In some cases, two or more trains can be coupled to one train. In this way fewer
trains have to pass a bottleneck and capacity is gained. This kind of dispatching has been used in
Denmark in cases of construction/maintenance work and in cases of unscheduled closure of tracks
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Figure 4: Typical steps when simulating delays in railway networks (Landex, Nielsen 2006a).

Besides the dispatching rules, the difficulty in calibrating simulation models comes from the difficultly in
entering the right initial delays, because it is difficult, or even impossible, to find a standard distribution
type that is widely applicable (Yuan 2006). To calibrate the models the initial delays can be extracted’ from

collected data about the actual operation® (Tromp 2004). By identifying the consecutive delays’, it is
possible to derive the initial delay from the actual operation. These initial delays can be entered in the
simulation model and the final calibration can be conducted based on the outputs, cf. Figure 5 and re-

running the steps in Figure 4. This calibration can be time consuming (Kaas 2000) as even small changes in

the delay distribution(s) can result in changes elsewhere in the network.

When using (microscopic) simulation models to predict effects of scenarios it is necessary to calibrate the

simulation models to give the results actually observed. However, the literature on calibration of rail

simulation models is limited (Koutsopoulos, Wang 2007). The difficulty calibrating simulation models to give
exactly the same results as in real life operation, results in ad hoc adjustments based on simple statistics or
performance measures to compare the simulation output to field observations. Here, the adjusting of the

model parameters is often done by trial and error, or some kind of estimation, until the simulated

measures are close to the observed ones, cf. Figure 5. Often the purpose of calibrating simulation models is

® It should be noted that the observed delays are the sum of the initial delays and the consecutive delays.
® (de Fabris, Longo & Medeossi 2008) describe a method to analyze the actual operation.
" (Daamen, Goverde & Hansen 2007) describe a method to identify consecutive delays.
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to reproduce the operation of an average day, to be able to examine the consequences of changes in the

operation and/or infrastructure.
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Figure 5: Calibration of simulation models. Based on (Toledo, Koutsopoulos 2004).

A robust timetable is able to deal with only minor initial delays—a few minutes of delay—because no
reasonable timetable is sufficiently robust in the case of large delays (Vromans, Dekker & Kroon 2006).
Perturbed operation causes delays and, at least in congested areas, this requires frequent real-time
modifications (D'Ariano 2008). This is further complicated by the limited dispatch algorithms, which makes
the calibration even more complicated.

Microscopic simulation models perform according to the applied algorithms and the rules entered.
However, in the case of delays more passengers might want to use the same train, which might result in
longer dwell times. This means that delayed trains generally have a higher risk of becoming even more
delayed. This is generally not taken into account in micro simulation models. However, if another train
going in the same direction has overtaken the delayed train and is running immediately in front of the
delayed train, the delayed train might have fewer passengers and thereby possible shorter dwell times,
which is why the train may pick up time faster.

Although simulation models have disadvantages, they are more accurate than simple delay calculations. To
overcome, or at least reduce, the disadvantages of simulation models, the results are often compared
relatively to each other. In this way, it is possible to examine the relative differences for different projects
and choose the best alternative.

Microscopic simulation models are powerful, but they require extensive work to enter the detailed
infrastructure topology, train characteristics, signal locations and timetables. Furthermore, these models
require more computing time compared with simpler models, which is why it might be tempting to use
these simpler macroscopic or operational research models®. Although these models are suitable for
evaluating the overall stability of timetables of interconnected lines, they cannot be used to estimate the
distributions of consecutive delays and the punctuality level of the scheduled trains, as they are generally
based on a deterministic modeling approach (Yuan 2006). Nevertheless, the simpler models give an
indication about the delay(s) that might be satisfactory—at least in a screening process with several
alternatives. To achieve better simulation results from simulation models, further research and
development is needed, especially within dispatching algorithms.

8 Microscopic models require more detailed data than do the simpler models. In some countries these data are difficult to procure, but in Denmark
there is open access to the necessary data.
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3 Passenger Delays

Simulation of train delays does not reflect the passenger’s perception of reliability. This can instead be
done by calculating travel time for passengers for the planned situation and the actually performed
operation. These times can then be compared, and the extended travel time of the passengers — or
passenger delay — can then be used as a measure for the reliability of the operation.

Several methods have been applied to calculate rail passenger delays. The majority of these do not include
schedule-based route choice models; in the following classified as o™ generation models. Some methods
are simple and straightforward to implement, but also simplified and inaccurate, while other methods are
more precise. The simplest methods (0th generation) are not reported in the international literature, as they
have been developed and used by railway companies (Landex 2008). Although the o™ generation methods
are simple and inaccurate, these models found the basis for the later 1%, 1%, 2" and 3™ generation
passenger delay models (based on (Landex 2008)):

e o generation models are the simplest models where the passenger delays are assumed equal to
the train delays or the train delays multiplied with either amount of passengers in the train (cross-
section delays) or the amount of alighting passengers at the stations (counting train delays). These
models do not take transfers and changed routes/trains due to delays into account.

e 1% generation models compare the time the passengers use in the system calculated by an optimal
route choice model based on the planned timetable and the actually performed operation. These
models take the passengers’ entire route into account but the models assume that the passengers
know all delays in advance.

e 1% generation models are similar to 1** generation models but are improved as the passenger is
not assumed to know all delays in advance before arriving at the station. However, the models still
assume that the passengers know all delays in advance — but the passengers first receive this
knowledge when they arrive at the first station.

o« 2™ generation models assume that the passengers know the delay distribution of the train
service(s) and include this when the passengers consider their routes using a 1* generation model.

o« 3¢ generation models are the most advanced models. Here the passengers will attempt to follow a
pre-planned route based on the published timetable. However, if this is not possible or the
passengers become more delayed than a certain threshold, the passengers will reconsider their
route choice from that point in time and space. This reconsideration will be done assuming full
knowledge of all (future) delays.

Table 1 below compares the different passenger delay calculation methods and models with respect to
their main characteristics.

1% to 3" generation passenger delay models require the same data and the same work effort to run but
since 3™ generation passenger delay models give the most realistic results (Landex 2008) it is
recommended that 3" generation models are used. 3™ generation models require more data than 0™
generation models but they are more precise and can be used to perform more kind of analyses. For
instance 3" generation models can include transfers in the calculations so that the total travel time from
the start station of the passengers to the end station can be examined. This means that the 3™ generation
passenger delay models can examine the entire network (see e.g. (Landex and Nielsen 2006a) and not only
the consequences of the passengers on a single railway line or a part of the network as the 0™ generation
models do (including the service frequency, travel time and combined approaches).
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Table 1: Comparison of methods to calculate passenger delays (Landex 2008).
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Passengers in the 1% to 3" generation passenger delay models can change their route choice in case they

become delayed more than a specified amount of time (Landex 2008; Landex, Nielsen 2006b). However, in
the 3" generation models the passengers are assumed to reconsider their route choice at the point in time
and space when the specified amount of delay occurs — and not already before the trip starts as in 1% to 2™
generation models (Landex 2008). Because passengers do not know the delays in advance, the passengers’
route choice in 3™ generation passenger delay models are fairly accurate. This makes it possible to estimate
the amount of passengers in trains, and thereby if the seating capacity is sufficient — both for the planned
and realized timetable, see example in Figure 6. Furthermore, capacity constrains can be incorporated in
the model so that it is possible to examine additional delays for passengers in case they cannot board a
completely full train and thereby experience reduced reliability of the railway operation.

Calculating passenger delays of the performed operation is of interest to evaluate the reliability of the
system and to identify aspects or routines that could be improved. However, by combining the passenger
delay model with a rail simulation model it is possible to predict or estimate the future passenger delays.
This can be used to evaluate changes in the infrastructure and/or in the timetables as early as in the
planning phase.
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Train route B from Hgje Taastrup to Holte, Train number 60126
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Figure 6: Seating capacity and amount of passengers for planed and realized timetable. Based on (Seest et al. 2005).

Calculation of passenger delays requires result data from the simulation of both the planned and all the
realized/simulated timetables for all arrivals and departures. These data can be derived from the railway
simulation software and used in the passenger delay model.

The workflow of calculating the passenger delays is shown in Figure 7. Here, the simulation of operation,
export to the passenger delay model, and calculation of passenger delays simulates the impacts from one
to several days of operation. To calibrate the model and to obtain a delay distribution, it is necessary to
repeat this step a number of times before the evaluation is done.
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Figure 7: Workflow of simulating disturbances and modelling expected train passenger delays. Based on (Landex, Nielsen 2006b).

(Landex, Nielsen 2006a) has shown the possibility of predicting the future passenger delays by simulation
for the entire Copenhagen suburban railway network. As expected, the results showed that the punctuality
of trains is higher than the punctuality of passengers, cf. Figure 8.
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Figure 8: Punctuality of trains and passengers at all stations for an average day. The figure shows the accumulated distribution of
arrivals, i.e. how many passengers arrive with less than x seconds of delays - e.g., 20% arrive before planned, 60% with less than
60 seconds of delay (including the 20% arriving before planned) in the 3rd generation model. Based on (Landex, Nielsen 2006a).

In comparison, the traditional way of calculating passenger punctuality (multiplying the delay of the train
with the expected number of passengers alighting the train) resulted, as expected, in higher passenger
punctuality than when calculated by the passenger delay model. However, train delays do not necessarily
cause passenger delays. For the simulated network the 1% and 3™ generation models calculate that about
20% of passengers arrive earlier than planned, cf. Figure 8.

From Figure 8 it is seen that the 1* generation benchmark model, as expected, results in better punctuality
than the more realistic 3™ generation model. However, the difference in the methods is (in this case) small.

A passenger delay model can also be used for evaluating (and ranking) infrastructure improvements. The
benefits for passengers in terms of travel time and delays can be estimated and compared with the
construction costs in, e.g., a cost-benefit analysis. Furthermore, different timetable alternatives can be
evaluated and compared in the process of developing the best possible timetable for passengers. In this
way, it can be said that calculation of passenger delays is of importance for the passengers, the train
operating company (e.g., as a tool to improve the timetables for the passengers and thereby attract more
passengers) and the infrastructure manager/planning authority to prioritize infrastructure/maintenance
projects.

Although passenger delays can be interesting to the infrastructure manager and the train operating
company, these delays might not be used in daily operation. This is because the infrastructure manager,
and possibly also the train operating company, may focus more on reducing the train delays than the
passenger delays. This is because train delays is an easier measurement to decide on and fewer train delays
reduces the risk of consecutive delays and requires less rescheduling of crew and rolling stock.
Furthermore, both the infrastructure manager and the train operating company may be measured on the
punctuality of trains, rather than that of passengers, and the companies might have contracts (e.g., with
the Ministry of Transport or with each other) resulting in a bonus if the train punctuality is above a certain
level.
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4 Reliability measures for high-frequent operation

For high frequent train services (like metro systems), with headway times of 1% to 5 minutes, reliability
methods based on train delays are not sufficient. This is because the passengers will not realize that the
trains are delayed if all trains are delayed the same amount of time. In fact, the punctuality for timetables
with a simple structure and high frequency (e.g. metro services), the punctuality is not so important (Weits
2000). Instead, passenger delays can be used, but this approach is comprehensive, and the approach only
measures the train operation indirectly. The reason for this is that it is possible that a passenger is punctual
or even ahead of time when using a previously delayed train instead of the originally scheduled one (Martin
2008). Therefore, different approaches to make up the reliability for high frequent operation are needed. In
this article, three approaches for high frequent operation are described. All methods can be based on
either realized operations data or simulated data.

4.1 Service frequency

The frequency of the operation is a quality criterion for public passenger transport (European Committee
for Standardization 2002). Therefore, one way of examining the reliability of the operation for high
frequent railway operation is to examine the service frequency (Kaas et al. 2008). This can be done by
examining the planned number of train departures and the realized (or simulated) amount of train
departures per time interval. If the amount of trains per time interval is stable, it indicates that the trains
arrive at the station in (more or less) the same time intervals, which indicates that the operation is stable.

The service frequency approach is a straightforward method to evaluate the frequency — and thereby
implicitly the reliability of the operation — of high frequency railway systems. However, if the examined
time intervals are too long there is a risk of overlooking variation in the frequency — and thereby the
reliability. Therefore, the time intervals as a minimum should be long enough to contain 3-4 trains (Landex
20009).

4.2 Travel time

The Service frequency approach only considers the headway times between the trains and not extended
travel times. The travel times between the stations can be longer than planned although the promised
service frequency is kept. This can be the case (for e.g. driverless metro systems) if the train operating
company operates more trains than needed to maintain the promised frequency. Furthermore, the travel
time is an important quality criterion for public passenger transport (European Committee for
Standardization 2002). Therefore, a measurement taking the travel time into account can be wanted.

To evaluate if the train operating company keeps the promised quality, the travel times between the
stations can be examined. For this it can be decided if there should be an accept criteria (or threshold) for
when a train is delayed. For timetables without supplements, the threshold is necessary since many trains
else would be registered as delayed. To take the passengers experience into account, the article suggests
that the accept criteria for timetables (with and without supplements) for high frequent operation should
be the published travel times.

The travel time measurement can either be examined between two successive stations or accumulated
travel times between a number of stations. Some delays may not be detected if it is the accumulated travel
times that are examined. However, since many passengers travel further than one station, passengers may
(due to the difference between the minimum and the published travel time) arrive on time although there
is a (smaller) delay.

The travel time approach reflects the experiences of the passengers regarding travel time delay in the
vehicle but not delays due to an uneven frequency, cancellations and no possibility to board a train due to
lack of capacity. Therefore, the travel time approach cannot calculate the total delay for passengers.
However, the approach is simple and only the realized timetable is needed for the analyses.
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4.3 Combination of the service frequency and travel time approaches

The service frequency approach and the travel time approach are both simple and straightforward but the
methods cover different criteria, cf. Table 2. Therefore, the two approaches can be combined to give a
more accurate picture of the operation quality.

Table 2: Combining the service frequency and travel time approaches (Based on (Landex 2009)).

Service frequency Travel time Combined

Frequency Yes No Yes

In vehicle time No Yes Yes

Total travel time No No Rough estimate
Capacity restrictions No No No
Complexity Low Low Low
Required data Realized timetable Realized timetable Realized timetable
Regularity Yes No Yes

Table 2 shows that the combined approach covers the union of the service frequency and the travel time
approaches. In this way the combined approach covers frequency, reliability and in vehicle time in a
straight forward way based on the realized timetable. Furthermore, the combined approach can give a
guesstimate of the total travel time if the travel pattern of the passengers is known. To have a more precise
estimate of the total travel time and the delays of passengers — and to include capacity restrictions — more
advanced methods have to be used.

All approaches in Table 2 take the passengers experience into account but in different ways. The service
frequency approach evaluates the number of the departing trains at the stations in certain time intervals
but does not take the travel time into account. By combining the service frequency and travel time
approaches it is possible to evaluate both the frequency and the travel time in the trains. In this way it is
possible give a rough estimate of the total travel time of the passengers if the average travel length of the
passengers is known.

5 Improving future reliability

Knowing how to measure reliability and being able to simulate delays and passenger delays of future
timetables, it is possible to analyze the future reliability. This is because delays can be taken into account in
the planning process. Timetables can be simulated for expected delays — for both trains and passengers —
and the best possible timetable can be chosen. This approach can also be used when planning timetables
for contingency operation so the best timetable can be used in case of disturbed operation.

Analyzing different future scenarios, it is also possible to decide whether a train should wait for a delayed
connecting train. Not waiting will result in additional delays for the passengers in the delayed train
transferring to the other train resulting in reduced reliability for the transferring passengers. However, the
passengers in the train that does not wait will not become delayed, and hence experience improved
reliability. In case the train has sufficient time supplement — and therefore can catch up the delay — before
the next major station, most passengers in the waiting train will not experience reduced reliability although
the train waits. In such a case, it may improve the overall reliability of the railway system that the train
waits.

When simulating future timetables and analyzing delays for trains and passengers, it is possible to optimize
the transfer time based on the expected delay distributions. In this way, the transfer time can be adjusted
so that the risk of missing the corresponding train is reduced without having a too high transfer time. This
approach improves the reliability of the railway operation seen from the passengers’ perspective. In the
longer term, a decision support system can be used in the traffic control centre to decide if a corresponding
train should wait for a delayed train.
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If a timetable has a high amount of timetable supplement, it is easier to achieve high reliability in the
operation. However, in the case of no disturbances in the operation, the passengers will spend longer time
travelling than necessary: the passengers experience extended travel time. From the passengers’
viewpoint, an extended travel time is better than a delay as it is possible to plan in relation to a scheduled
delay. Therefore, socioeconomic calculations generally have a higher value for unplanned delays than for
the travel time (including scheduled delays) °.

Being able to simulate passenger delays of future timetables, and knowing the socioeconomic values of
time for scheduled and unscheduled delays, it is possible to estimate the best level of timetable
supplement in the timetable. Figure 9 shows the idealized socioeconomic utility (with a given set of
parameters) depending on the timetable supplement, and thereby implicitly the running time and
(expected) delayed time.

A

Socioeconomic optimum
of timetable supplement

Socioeconomic utility [€]

Timetable supplement [minutes]

Figure 9: Socioeconomic utility of a given timetable (for an idealized situation) depending on the amount of timetable
supplement (Landex 2008).

This method has been used for preliminary analyses of the Danish railway line from Ringsted to Nykgbing
Falster. Here, Thorhauge (2010) demonstrated that the optimum timetable supplements for different
timetable scenarios were 7-8% while the current timetable supplement was 12.6-12.7% on average.

6 Conclusions

This article defines reliability as the continuity of correct service that can be divided into the two closely
related concepts regularity and punctuality. This is followed by improved methods to measure reliability of
railway operation for both trains and passengers for conventional as well as high-frequent operation. These
improved methods are enabled by the development of simulation models and the possibility of combining
these simulation models with route choice models. To achieve the best results with the new more
sophisticated methods, more data and model calibration is required.

Using the measurements on realized as well as simulated railway operation can locate reliability problems
to be dealt with and thereby improve the service. This can be done both for normal and contingency
operation. The reliability can be improved by including more supplements in the timetable increasing the
travel time. However, there is a tradeoff between reliability and the travel time. Using simulation and the
presented reliability measures, the optimal timetable supplements can be found based on a socio-
economic analysis.

® In Denmark, an unplanned delay is valued twice as much as travel time (including scheduled delays) (Danish Ministry of Transport 2006).

Trafikdage pd Aalborg Universitet 2012 ISSN 1603-9696 13



7 References
Avizienis, A., Laprie, J. & Randell, B. 2001, “Fundamental Concepts of Dependability”, Computer and
Information Science, vol. 1145, pp. 7-12.

Barber, F., Abril, M., Salido, M.A., Ingolotti, L.P., Tormos, P. & Lova, A. 2007, Survey of automated Systems
for Railway Management, Department of Computer Systems and Computation, Technical University of
Valencia.

Berger, A., Hoffmann, R., Lorenz, U. & Stiller, S. 2011, Online railway delay management: Hardness,
simulation and computation, Simulation, 88(7), pp. 616-629.

Bush, R. 2007, “Does Every Trip Need to Be On Time? Multimodal Scheduling Performance Parameters with
an Application to Amtrak Service in North Carolina”, in Proceedings of 86™ Annual Meeting at Transport
Research Board, Transportation Research Board, Washington D.C., USA.

Daamen, W., Goverde, R.M.P. & Hansen, I.A. 2007, “Non-discriminatory Automatic and Distinct Registration
of Primary and Secondary Train Delays”, in Proceedings of the 2" International Seminar on Railway
Operations Modelling and Analysis, eds. I.A. Hansen, A. Radtke, J.P. Pachl & E. Wendler, International
Association of Railway Operations Research, Hannover, Germany.

Danish Ministry of Transport. 2006, Manual concerning socio-economic analysis — applied methodology in
the transport sector (Nggletalskatalog — til brug for samfundsgkonomiske analyser pa transportomradet),
4™ edn, Danish Ministry of Transport, Denmark. (in Danish)

D’Ariano, A. 2008, Improving Real-Tim Train Dispatching: Models, Algorithms and Applications, Delft
University of Technology.

European Committee for Standardization 2002, Transport — Logistics and services — Public passenger
transport — Service quality definition, targeting and measurement (EN 13816), Danish Standards
Association, Charlottenlund, Denmark.

de Fabris, S., Longo, G. & Medeossi, G. 2008, “Automated analysis of train event recorder data to improve
micro-simulation models”, in Proceedings of the 11™ International Conference on Computers in Railways,
eds. J. Allan, E. Arias, C.A. Brebbia, et al, WITpress, pp 575.

Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L.G., Maroti, G. & Nielsen, M.N. 2007,
Disruption Management in Passenger Railway Transportation, Informatics and Mathematical Modelling,
Technical University of Denmark.

Hoyle, D. 1994, ISO9000 Quality Systems Handbook, 2" edn, Butterworth-Heinemann Ltd, Oxford, Great
Britain.

Jacobs, J. 2008, “Rescheduling”, in Railway Timetable & Traffic, eds. I.A. Hansen & J. Pachl, 1** edn, Eurail
Press, pp 182-191.

Kaas, A.H. & Jacobsen, E.M. 2008, “Analysing the Metro Cityring in Copenhagen”, Proceedings of the 11"
International Conference on Computers in Railways, eds. J. Allan, E. Arias, C.A. Brebbia, et al, WITpress, pp.
45,

Kaas, A.H., Jacobsen, E.M. & Lund, K.H. 2008, “The Cityring - traffic analyses (Cityringen, trafikale analyser)”,
in Proceedings of the Annual Transport Conference at Aalborg University, in Danish.

Trafikdage pd Aalborg Universitet 2012 ISSN 1603-9696 14



Kaas, A.H. 2000, “Punctuality model for railways”, in Proceedings of the 7™ International Conference on
Computers in Railways, eds. J. Allan, R.J. Hill, C.A. Brebbia, G. Sciutto, S. Sone, WITpress, pp. 853.

Kaas, A.H. 1998, Methods to calculate capacity of railways (Metoder til beregning af jernbanekapacitet),
Technical University of Denmark, in Danish.

Koutsopoulos, H.N. & Wang, Z. 2007, “Simulation of Urban Rail Operations: Application Framework”,
Journal of the Transportation Research Board, vol. 2006, pp. 84-91.

Landex, A. 2009 “Examination of Operation Quality for High-frequent Railway Operation”, in Proceedings of
the 3" International Seminar on Railway Operations Research, IAROR, Switzerland.

Landex, A. 2008 Methods to estimate railway capacity and passenger delays, Technical University of
Denmark, Department of Transport.

Landex, A., Kaas, A.H. & Nielsen, O.A. 2007, “Punctuality of Railways (Opg@relse af regularitet pa
jernbaner)”, Proceedings of the Annual Transport Conference at Aalborg University, in Danish.

Landex, A. & Nielsen, O.A. 2006, "Modelling expected train passenger delays on large scale railway
networks", Proceedings of the 7" World Congress on Railway Research, UIC, Canada.

Landex, A. & Nielsen, O.A. 2006, “Simulation of passenger delays in railway networks (Simulering af
passagerforsinkelser pa jernbaner)”, in Proceedings of the Annual Transport Conference at Aalborg
University, eds. L.G. Hansen, L.D. Nielsen, O.A. Nielsen & T. Hels, in Danish.

Martin, U. 2008, “Performance Evaluation” in Railway Timetable & Traffic, eds. I.A. Hansen & J. Pachl, 1*
edn, Eurail Press, pp. 192-208.

NEA 2003, BOB Railway Case - Benchmarking Passenger Transport in Railways, NEA Transport research and
training, Rijswijk, The Netherlands.

Nash, A. & Huerlimann, D. 2004, “Railroad simulation using OpenTrack”, in Proceedings of the 9"
International Conference on Computers in Railways, eds. J. Allan, C.A. Brebbia, R.J. Hill, G. Sciutto & S. Sone,
WITpress, pp 45.

Nederlanse Spoorwegen 2001, De Koppeling, nr. 1619, Nederlandse Spoorwegen, Utrecht, The
Netherlands, in Dutch.

Nie, L. & Hansen, I.A. 2005, “System analysis of train operations and track occupancy at railway stations”,
European Journal of Transport and Infrastructure Research, vol. 5, no. 1, pp. 31-54.

Olsson, N.O.E. & Haugland, H. 2004, “Influencing factors on train punctuality - results from some
Norwegian studies”, Transport Policy, vol. 11, no. 4, pp. 387-397.

Oort, N. van & Nes, R. van 2010, Impact of Rail Terminal Design on Transit Service Reliability, Journal of
Transportation Research Board, vol. 2146, pp. 109-118.

Oort, N. van & Nes, R. van. 2005, “Service Regularity Analysis for Urban Transit Network Design”, in
Proceedings of the 10" International Conference on Computer-Aided Scheduling of Public Transport.

Radtke, A. & Bendfeldt, J. 2001, “Handling of railway operation problems with RailSys”, in Proceedings of
the 5™ World Congress on Rail Research, Cologne, Germany

Trafikdage pd Aalborg Universitet 2012 ISSN 1603-9696 15



Seest, E., Nielsen, O.A. & Frederiksen, R.D. 2005, “Calculating passenger punctuality in the Copenhagen
suburban network (Opggrelse af passagerregularitet i S-tog)”, in Proceedings of the Annual Transport
Conference at Aalborg University, in Danish.

Siefer, T. 2008, “Simulation”, in Railway Timetable & Traffic, eds. I.A. Hansen & J. Pachl, 1* edn, Eurail Press,
Hamburg, Germany, pp. 155-169.

Siefer, T. & Radtke, A. 2005, “Railway-Simulation Key for Better Operation and Optimal Use of
Infrastructure”, in Proceedings of the 1* International Seminar on Railway Operations Modelling and
Analysis, eds. I.LA. Hansen, F.M. Dekking, R.M.P. Goverde, B. Hindergott & L.E. Meester, International
Association of Railway Operations Research, Delft, The Netherlands.

Thorhauge, M. 2010, “Optimization of timetable supplement from a passenger based socio-economic point
of view”, in Proceedings of the Annual Transport Conference at Aalborg University, Trafikdage, Aalborg,
Denmark.

Toledo, T., Koutsopoulos, H.N. 2004, “Statistical validation of traffic simulation models”, Journal of the
Transportation Research Board, vol. 1876, no. 29, pp. 142-150.

Tromp, J.P.M. 2004, “Validation of a train simulation model with train detection data”, in Proceedings of
the 9" International Conference on Computers in Railways, eds. J. Allan, C.A. Brebbia, R.J. Hill, G. Sciutto &

S. Sone, WITpress, pp. 583.

Vromans, M.J.C.M., Dekker, R. Kroon, L.G. 2006, “Reliability and heterogeneity of railway services”,
European Journal of Operational Research, vol. 172, no. 2, pp. 647-665.

Vromans, M.J.C.M. 2005, Reliability of Railway Systems, Netherlands TRAIL Research School.

Weits, E.A.G. 2000, “Railway Capacity and Timetable Complexity”, in Proceedings of the 7" International
Workshop on Project Management and Scheduling, Osnabriick, Germany.

Yuan, J. 2006, Stochastic Modelling of Train Delays and Delay Propagation in Stations, Netherlands TRAIL
Research School.

Trafikdage pd Aalborg Universitet 2012 ISSN 1603-9696 16



