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Sarawak, Malaysia 
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3 Department of Civil Engineering, The University of Hong Kong, Hong Kong, 
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ABSTRACT 

 

Post-installed reinforcement (PIR) helps facilitate retrofitting works, mitigate 

misplaced reinforcement problems, as well as support newly cast concrete members 

such as modular integrated construction. However, it has not been holistically 

addressed in major international reinforced concrete (RC) design codes. Nonetheless, 

based on established design philosophy and associated failure modes, the cast-in 

reinforcement design method in RC can be extended to design qualified PIR systems. 

The qualification of PIR system can be referenced to Acceptance Criteria (AC) 308 

(2016), European Assessment Document (EAD) 330087 (2018) and EAD 330499 

(2017) in the US and Europe, respectively. In Hong Kong, PIR is conservatively 

limited to shear connections. Its assumption of pinned connection is less justifiable for 

some deep sections of beams, which may induce hogging moments, causing tension at 

the top reinforcement of the supports. In some cases of cantilever slabs, moment 

connections are necessary to maintain equilibrium. Hence, this paper reviews an 

up-to-date design methodology and installation guide to complement the Hong Kong 

Code of Practice for Structural Use of Concrete (HKBD) by referring to the recently 

published international design codes and documents. The proposal is useful to 

promote economical, sustainable and technically sound use of PIR system. 

 

KEYWORDS  

Bonded anchor (BA); modular integrated construction; post-installed reinforcement 

(PIR); reinforcement anchorage (RA); strut-and-tie model (STM). 
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1. Introduction  

 

Post-installed reinforcement (PIR) system is different from post-installed anchor 

bolt system, where PIR is used for concrete-to-concrete connections and anchor bolts 

are used for steel-to-concrete connections. In the application of PIR, holes drill into 

one side of existing concrete and the reinforcements are inserted into the drilled holes 

together with adhesive. The protruding bars on the other side of the interface are cast 

into new concrete at a later stage. Hence, PIR often serves as starter-bars or lap 

splicing-bars in modern constructions method such as modular integrated construction 

and it can eliminate the problem of misplacement of reinforcements or defective 

couplers by allowing existing concrete structures to support newly cast components. 

PIR bars are versatile and can be applied in almost any location on concrete for 

rehabilitation and strengthening projects, such as horizontal, vertical and overhead 

applications. Some typical application examples of PIR are shown in Figure 1, which 

include (i) end connection of new beam/ slab into walls, (ii) lap splice of new slab to 

existing slab, (iii) connection of new column onto foundation, and (iv) new concrete 

overlays (e.g. for wall strengthening, column jacketing or slab thickening).  
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Figure 1. Typical PIR applications (a) end anchor of new beam/slab into walls; (b) lap splice 

of new slab to existing slab; (c) end anchor of new column onto foundation; and (d) new 

overlays. 

 

2. PIR installation guide  

 

Figure 2 shows the typical six-step installation procedures of PIR, where the first 

step is to detect existing reinforcements, followed by surface roughening, drilling, 

hole cleaning, adhesive injection, and finally, rebar insertion. Up-to-date PIR 

installation guides governed by the Hong Kong, European and American standards 

are briefly discussed in this paper on selected entities, i.e. materials, qualification of 

installers and guidance on surface roughening. Other details on reinforcements 

detection, hole drilling, hole cleaning, adhesive injection and rebar insertion should 

refer to the relevant Manufacturer’s Published Installation Instructions (MPII). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical installation sequential procedure of PIR. 
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2.1. Temperature effect on adhesive materials 

 

One of the important components in PIR is the adhesive material. An adhesive 

material with higher bond strength may result in shorter embedment depth design. 

Hence, understanding the requirement of the adhesive is crucial to ensure its bond 

performance. It is known that adhesives are sensitive to temperature in three stages 

(Gamache, 2017): 

(i) The storage temperature of the adhesive can influence the shelf life; 

(ii) Installation temperature of concrete and adhesive affects the gel, cure time and 

adhesive viscosity; and 

(iii) Service life temperature of the concrete structures, which when elevated can 

remarkably affect the bond strength of PIR. 

 

The suggested storage temperature of the adhesive before installation is provided 

in MPII. A non-universal but effective solution is to keep the temperature of adhesive 

at approximately 20°C before installation to allow an optimal injectability. The design 

of PIR including the selection of adhesives should cater to the service temperature in 

the base material. In general, a high base material temperature reduces the bond 

strength of the adhesives. On the contrary, low temperature has little negative impact 

on the bond strength, and this has been verified in freeze-thaw tests (Gamache, 2017). 

For PIR subject to high temperature or fire, specialist advice and data should be 

sought from the product manufacturer. The variation of adhesive bond strength with 

temperature obtained through tests (see European Organisation for Technical 

Assessment (EOTA) European Assessment Document (EAD) 330087, 2018 or other 

European National Approvals) should be provided by the product manufacturer. It is 

noted that the temperature at a depth within concrete will often be much lower than 

that at the concrete surface. Therefore, a longer embedment depth to compensate for 

the loss of bond strength close to the surface of the concrete appears to be beneficial 

in mitigating the effects of fire (Interim Advice Note (IAN) 104/15, 2015 and British 

Standard (BS) 8539, 2012). The choice of adhesive depends on the use, loading 

direction, environmental considerations, anchorage length, reinforcement diameter, 

drilling method and on-site conditions. It should be noted that some adhesives for 

anchor systems may not be used for PIR. Only those approved adhesives for PIR by 

EOTA EAD 330087, 2013 (replacing EOTA Technical Reports (TR) 023, 2006) or 

Acceptance Criteria (AC) 308, 2016 Table 3.8 are suitable. 
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2.2. Concrete base materials 

 

Several base materials are suitable to adopt the PIR system, for example, masonry, 

normal weight (cracked/uncracked), lightweight and prestressed concrete. In this 

paper, only the normal weight reinforced concrete (RC) structure is elaborated as it is 

commonly used in Hong Kong. PIR can be used in concrete grade ranging from 

C12/C15 to C50/C60 (characteristic cylinder/cube strength in MPa), conforming to 

EOTA EAD 330087, 2018 and AC 308, 2016. For higher grade concrete (> 70 MPa) 

as allowed in the Hong Kong Code of Practice for Structural Use of Concrete 

(HKBD), 2013, the bond strength of PIR is capped at the limit of C60, unless justified 

by special technical data from the manufacturer. The minimum thickness of the 

concrete members in which reinforcement will be installed should be greater or equal 

to the sum of the minimum anchorage length of the PIR and the minimum cover 

thickness.  

 

2.3. Reinforcement materials 

 

Similar to concrete, reinforcement should conform to the HKBD, 2013, with the 

exception that plain steel reinforcement of grade 250 is forbidden to be applied in the 

PIR system. Deformed carbon steel reinforcement in grade 500B and 500C with 

surface geometry (i.e. rib parameters, relative rib areas, longitudinal and transverse 

ribs) complying with Construction Standard (CS) 2, 2012 shall be used. It is noted 

that these requirements for reinforcement in terms of geometry are the same as 

Eurocode (EN) 1992-1-1, 2004 Annex C. 

 

2.4. Installers and supervision 

 

PIR shall be handled by qualified installers in accordance with the construction 

documents and, where applicable, MPII (see Annex F.2(b) and (c) in EN 1992-4, 

2004 and American Concrete Institute (ACI) 318, 2014 Cl. 17.8.1). The 

manufacturer’s recommendations for the specified adhesive system should take 

precedence over all other guidance. Qualification of the installer should be acquired 

through certification programs. The commentary in ACI 318, 2014 Cl. R17.8.2.3 

states that “An equivalent certified installer program should test the installer’s 

knowledge and skill by an objectively fair and unbiased administration and grading of 

a written and performance exam. Programs should reflect the knowledge and skill 

required to install available commercial adhesive systems. The effectiveness of a 
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written exam should be verified through statistical analysis of the questions and 

answers. An equivalent program should provide a responsive and accurate mechanism 

to verify credentials, which are renewed on a periodic basis.” 

 

Making reference to BS 8539, 2012, the installer is required to be trained by a 

competent trainer including (i) on-site training on the installation of PIR for different 

adhesives; (ii) knowledge of PIR function, material safety data sheets and 

consequence of improper installation; and (iii) closer supervision should be provided 

for installer has limited experience. 

 

2.5. Roughening of concrete surface 

 

Roughening on existing concrete surfaces before the casting of adjoining fresh 

concrete can increase both the adhesion and joint friction. The carbonated layer 

should be removed in the areas that are to receive PIR. A rule of thumb is to remove 

the carbonated concrete over a circular area with a diameter (drough) given by bar 

diameter plus 60 mm (i.e., drough = ϕ + 60mm). The requirement of roughening in 

HKBD, 2013 and EN 1992-1-1, 2004 are briefly introduced. 

 

(i) Roughening according to HKBD 

Similar to construction joints, HKBD, 2013 Cl. 10.3.10 suggests that roughening can 

be done through fine spraying of water, stiff brushing, sandblasting or by scale 

hammer. The joint must be clean and free from loose particles. Roughening can be 

done by water spraying and/or brushing for approximately two to four hours after the 

concrete placing. Damage or dislodge the coarse aggregate particles should be 

avoided. 

 

(ii) Roughening to EN 1992-1-1 

Compared to the deemed-to-comply qualitative approach in HKBD, 2013, EN 

1992-1-1, 2004 Cl. 6.2.5 provides a quantifiable roughening calculation (shear friction) 

for PIR design. The demand of shear stress (τEdi = β VEd / (z bi)) at interface should be 

less than shear capacity (τRdi = c fctd + μ σn + ρ fyd (μ sin α + cos α) ≤ 0.5 ν fcd) with 

relevant parameters. β is the area ratio of longitudinal force in new concrete to total 

longitudinal force either in compression or tension zone; VEd is the transverse shear 

force; z is the lever arm of the section; bi is the interface width; c and μ are the factors 

which depend on the roughness of the interface; fctd is the concrete design tensile 
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capacity; σn is the stress caused by the minimum external normal force across the 

interface that can act simultaneously with shear force.  

If σn is in tension, c is equal to zero; ρ is the area ratio of reinforcement (As) crossing 

the interface, including ordinary shear reinforcement to the joint area (Ai); fyd is the 

value of the PIR design yield capacity; α is the inclination angle formed by the 

longitudinal axis of reinforcement with contact interface, and limited between 45° - 

90°; ν is the shear strength reduction factor for cracked concrete; fcd is the concrete 

design cylinder strength. A similar formulation with more detailed variance is given 

in the Model Code for Concrete Structures (fib), 2010 Cl. 7.3.3.6. An interaction 

coefficient (κ1) for tensile force activated in the dowel steel and interaction coefficient 

(κ2) for flexural resistance are introduced in this code. Engineers should be cautious 

with the use of the shear capacity equation listed above according to EN 1992-1-1, 

2004 Cl. 6.2.5, where reinforcements are assumed to yield. It is noted that in the PIR 

system, steel yielding failure mode can only be achieved with longer anchorage 

length. 

 

3. PIR design guides  

 

The starter bars of cast-in reinforcement (CIR) that use to provide connections are 

designed in accordance with EN 1992-1-1, 2004 and ACI 318, 2014 Chapter 25 in 

Europe and the US, respectively. However, PIR bars are addressed differently in these 

major design codes. Despite the popularity of using PIR all over the world, a holistic 

design provision is not explicitly documented in these codes. However, based on the 

associated failure modes, relevant design philosophies such as the design of 

anchorage length and lap splicing length can be rationally traced.  

 

3.1. International design standards for PIR 

 

Theoretically, PIR design can be divided into two major categories:  

(i) Anchorage 

Anchorage is the use of the conventional method of reinforcement anchorage (RA) 

design as equivalent to CIR (EN 1992-1-1, 2004 or ACI 318, 2014 Chapter 12) or 

more recently the bonded anchor (BA) design (EN 1992-4, 2018 or ACI 318, 2014 

Chapter 17). Detailed discussions can be referred to Charney et al., 2013, Morgan, 

2015 and Mahrenholtz et al., 2014-2015.   

(ii) Strut-and-tie model (STM)  



8 

 

STM can be designed based on the procedure in Kupfer et al., 2003, EN 1992-1-1, 

2004 Cl. 6.5 or ACI 318, 2014 Chapter 23.  

 

Extensive research carried out on static and seismic behaviour, showed that the 

load-slip performance of PIR installed with a qualified system can be similar or even 

more superior to that of CIR. Thus, the design provisions of end anchorage for CIR 

can be extended to PIR with qualified products. Specific guidelines are published to 

qualify PIR designed by using RA theory, for example, EAD 330087, 2018 and AC 

308, 2014. On the contrary, documents such as EOTA EAD 330499, 2017 and AC 

308, 2014 in Europe and the US, respectively, allow PIR to be designed to BA theory. 

Table 1(a) and Table 1(b) summarise the list of major international documents for 

qualification and the design of PIR with relevant documents on post-installed anchors, 

respectively.  

 

Table 1(a). List of major international documents for qualification of PIR. 

 

Qualification 

Document Organisation Roles and functions Remarks 

EOTA TR 023 

(2006) 
EOTA 

Qualification of PIR in 

Europe under static 

load. 

Withdrawn in 2018. 

EOTA EAD 

330087 (2018) 
EOTA 

Qualification of PIR in 

Europe under static 

load and fire exposure. 

Replacing EOTA TR 023, 

publication expected 2019. 

Design according to EN 1992-1-1 

and EN 1992-1-2  

EOTA EAD 

331522 

(endorsed draft 

2018) 

EOTA 
PIR with mortar under 

seismic action. 

Publication expected 2019. 

Design to EN 1998-1. 

AC 308 (2016) ICC-ES 

Qualification of PIR 

and adhesive anchors 

under static and 

seismic load. 

With test criterion to supplement 

ACI 355.4. 

Design according to ACI 318, PIR 

in Chapter 18 (for seismic) and 

Chapter 25, and anchors in Chapter 

17. 

ACI 355.4 ACI Qualification of Design according to ACI 318, Ch. 
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(2011)  post-installed adhesive 

anchors in under static 

and seismic load. 

17 

EOTA EAD 

330499 (2017) 
EOTA 

Qualification of 

post-installed anchors 

in Europe under static 

load. 

Design according to EN 1992-4 or 

CEN/TS 1992-4-5  

EOTA TR 049 

(2016) 
EOTA 

Qualification of 

post-installed anchors 

in Europe under 

seismic load. 

Design to EN 1992-4 or EOTA TR 

045  

 

 

Table 1(b). List of major international documents for design of PIR. 

 

DESIGN 

Document Organisation Roles and functions Remarks 

EN 1992-1-1 

(2004) 

 

CEN 
General RC design in 

Europe. 

Design provisions for 

anchorage and splice length 

in Chapter 8. 

ACI 318 

(2014) 
ACI 

General RC design in 

US. 

Design provisions for 

development length 

(reinforcement theory) in 

Chapter 25, and anchor 

theory in Chapter 17. 

EOTA TR 029 

(2007)   
EOTA 

Guideline for design of 

post-installed anchors 

for use in Europe. 

Superseded by EN 1992-4  

EOTA TR 045 

(2013)  
EOTA 

Guideline for design of 

post-installed anchors 

for use (seismic region) 

in Europe. 

Superseded by EN 1992-4  

EN 1992-4 

(2018) 
CEN 

Standard for design of 

post-installed anchor 

theory design in Europe. 
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BS 8539 

(2012) 

BSI (The 

British 

Standard 

Institutions) 

Selection and 

installation of 

post-installed anchors in 

UK. 

Recommendations for 

anchors without European 

Technical Approvals (ETAs) 

qualification. 

 

3.2. Hong Kong design guide on using PIR 

 

In Hong Kong, the Code of Practice for Structural Use of Concrete administrated 

by the Buildings Department, the HKSAR Government, 2013 is used for the design, 

construction and quality control of RC structures. As it is mainly referenced to the 

withdrawn British design code BS 8110 Part 1, 1997, the requirement on anchorage 

bond length is also based on the yield strength of reinforcement. These clauses can be 

found in HKBD, 2013 Cl. 8.4 and BS 8110, 1997 Cl. 3.12.8.3. There is no specific 

calculation provided for lap length in HKBD, 2013, but provisions are given based on 

some deemed-to-comply practices, commonly as a length of the multiple of bar size. 

Compared to either the requirement in EN 1992-1-1, 2004 (i.e., anchorage length in 

Cl. 8.4.4 and splicing length in Cl. 8.7.3) or the splicing development length 

calculation in ACI 318, 2014 Cl. 25.4.2.3, the anchorage or splicing length in the 

Hong Kong design has not accounted for various coefficients such as the shapes/sizes 

of reinforcement, minimum cover, confinement effects, casting position and types of 

adhesive grout used. Hence, the HKBD, 2013 may not be directly applicable to the 

design of PIR. Similar challenges were encountered in using generic RC design codes 

such as EN 1992-1-1, 2004 and ACI 318, 2014. However, with the recent publications 

of EOTA EAD 330087, 2018 for static loading (repealed EOTA TR 023, 2006), 

EOTA EAD 331522, 2018 for seismic actions and AC 308, 2014, the use of PIR is 

qualified in these documents and the design of PIR are permitted as per RA theory in 

EN-1992-1-1, 2004 and ACI 318, 2014. Hence, a similar reform is called for in order 

to incorporate the latest design formulation of PIR into the HKBD, 2013 which could 

benefit the Hong Kong construction industry. 

 

4. PIR Design Methodology  

 

Different PIR design methodologies are developed in Europe and the US. 

Reference was made to the withdrawn BS 8110, 1997 when compiling HKBD, 2013 

which is expected to be compatible with the Eurocode rather than the US. Hence, it is 

used as the support documents of a suitable design method for Hong Kong. The 

design of PIR connection requires engineers to determine the type, size, spacing, 
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quantity, anchorage length and splice length of the reinforcement. The key parameters 

of the existing structure, site constraints and the arrangements of the connection that 

would affect the connection design are summarised in Table 2. 

 

Table 2. Factors affecting PIR connection design. 

 

Pre-qualification 
(1) Adhesive assessment standard: RA theory: EOTA EAD 330087 or; BA 

theory: EOTA EAD 330499. 

Base materials 

and 

reinforcement 

(1) Strength grade of concrete; 

(2) Condition of concrete (cracked or uncracked, carbonated or 

non-carbonated, etc.); 

(3) Maximum chloride content in concrete; 

(4) Ultimate bond strength and design bond strength of adhesive; 

(5) Minimum thickness of base material. 

Job site 

constrains 

(1) The minimum and maximum concrete temperatures at time of installation 

and during the whole design life; 

(2) Access and geometrical constrains on job site; 

Installation 

(1) Requirements for preparation/roughening of existing concrete surface; 

(2) Requirements for hole drilling (hammer, core, or compressed air drill); 

(3) Hole diameter; 

(4) Orientation of connection (downward, horizontal, or overhead); 

(5) Environmental condition of concrete (dry, water-saturated, water filled or 

flooded); 

(6) Existing reinforcement layout and size as given in drawing and confirmed 

on site using detection equipment; 

(7) Requirements on training/certification of installers and supervisor as 

required. 

Design 

requirements 

(1) Design code (RA theory: EN 1992-1-1 and HKBD or BA theory: EN 

1992-4; 

(2) Design life; 

(3) Load type (sustained, static, quasi-static, seismic, shock, wind); 

(4) Fire requirements; 

(5) Corrosion resistance; 

(6) Creep; 

(7) Fatigue; 

(8) Seismic. 
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4.1 Design philosophy of PIR as anchorages 

 

PIR can be rationally designed as anchorages either by the RA theory (equivalent 

to CIR) or the BA theory (steel anchors), with the differences in the assumptions and 

limitations. For the qualification of PIR using the RA theory, the EOTA EAD 330087, 

2018 is used to determine the suitability of an adhesive system. Once this adhesive 

system is suitably qualified, PIR can be designed using the RA theory based on EN 

1992-1-1, 2004 Chapter 8. On the contrary, for the qualification of bonded anchors 

according to the BA theory, the EOTA EAD 330499, 2017 provides provisions to 

determine the suitability of mortars or adhesive for anchors. Once an adhesive system 

is suitably qualified, anchors can then be designed according to the newly released EN 

1992-4, 2018. Table 3 provides a general comparison of both design methods. In view 

of the complexity of the BA theory and the fact that engineers in Hong Kong are well 

versed with the RA theory, the design provisions for RA theory are highlighted in this 

paper. 

 

Table 3. Comparison of RA theory and BA theory as per relevant European Standards. 

 

Main difference RA theory BA theory 

Adhesive assessment 

qualification 

documents 

EOTA EAD 330087  EOTA EAD 330499  

Design standard Chapter 8, EN 1992-1-1 EN 1992-4 

Load direction Tension Tension, shear, combination of both 

Load transfer 

mechanism 

Equilibrium with local or global 

concrete struts, may require the 

supplement of transverse 

reinforcement in lapping splices. 

Utilisation of tensile concrete 

strength 

Failure modes 
Tension: steel failure, pull-out, 

splitting (near to the edge) 

Tension: steel failure, concrete 

breakout (cone failure), bond 

failure (pull-out failure), splitting 

(near to the edge);  

Shear: steel failure, concrete 

breakout and concrete pryout 

Provision to base 

material 
Uncracked concrete* Cracked and uncracked concrete 
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Safety factor Lower than bonded anchor theory 
Higher than RA theory (to preclude 

steel yielding) 

Basic design value 

of reinforcement 
Yield strength  

Ultimate strength for anchor and 

yield strength  

Basic design value 

of bond strength 

Deduced by calculation (associated 

with concrete tensile strength) 

Tested and approved (associated 

with bond strength) 

Design steps 

a) Calculation of required 

sectional of reinforcement; 

b) Calculation of required 

embedment length. 

a) Calculation of all characteristic 

capacities; 

b) Determination of min. capacity 

controlling failure anchorage. 

Design results Reinforcement length Strength capacity 

lb Allowable 

embedment length  

max {0.3 lb,rqd; 10ϕ; 100 mm} 

≤ lb ≤ 60ϕ 

6ϕ ≤ lb ≤ 20ϕ  

 

*The equivalence in terms of pullout resistance in cracked concrete between a PIR and CIR is 

checked in the qualification as per EOTA EAD 330087. 

 

Design provisions for RA theory in HKBD 

 

The anchorage detailing provisions for CIR in HKBD, 2013 adapting the RA theory 

may also be used for the design of PIR. Relevant clauses are discussed as follows.  

 

(i) Straight bar anchorage (Cl. 8.4) 

Equation (1) shows the derivation of the basic anchorage length (lb) with the 

assumption of force equilibrium. The derivation of Equation (1) can be proven by 

considering the resistance of anchorage bond (Fbond) is greater than the compressive or 

tensile force experiences in the reinforcement (Frebar), yields fbuAs,surface ≥ frebarAs 

and thusfbu(πϕ)l
b 
≥ frebar(πϕ2/4), where fbu is the factored bond stress capacity; 

As,surface  is the lateral surface area of reinforcement bonded with concrete; frebar is 

the stress and As is the reinforcement sectional area. According to HKBD, 2013 Cl. 
8.4.5, the reinforcement is assumed fully stressed to its design yield strength (0.87fyk) 

at the start of the anchorage length which incorporated with the material safety factor 

(γs = 1.15) for design as shown in Equation (2). The factored bond stress capacity (fbu) 

according to Cl. 8.4.4, is a function of the concrete characteristic cube strength (fcu,k). 

Equation (3) shows the bond stress estimation with the coefficient β which is 
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implicitly accountable for reinforcement type and force action. For common ribbed 

bars, β can be 0.50 and 0.63 for tensile and compressive action, respectively. This 

value includes a partial safety factor for bond stress (γm) of 1.4. 

                                                              lb ≥ 
frebar

fbu

ϕ

4
 ,         (1) 

 lb ≥ 
0.87fyk

fbu

ϕ

4
,         (2) 

fbu = β√fcu,k.             (3) 

  

(ii) Lapped splice (Cl. 8.7.3) 

There are situations where PIR is used with lapped splice. Equation (4) summarises 

the requirement for a minimum lap length ( lo,min ). There are some special 

requirements for splice lapping in tension, which location (top or bottom section) and 

concrete cover are to be considered, to decide on a factor of 1.4 or 2.0 times of the 

minimum lap length. For splice lapping in compression, the factor is 1.25 times of the 

minimum lap length. 

 

lo,min ≥ max{15ϕ, 300 mm}.     (4) 

 

(iii) Simplified rules for simply supported beam (Cl. 9.2.1.5 and Cl. 9.2.1.7) 

Reinforcement to resist at least 15% of maximum mid-span moment is to be 

provided as top bars for partial fixity of negative moment at support despite the 

assumption of simply support. 50% of the calculated mid-span bottom reinforcement 

is to be provided as bottom bars at the support of simply supported beams. Equation 

(5(a)) shows the detailing requirement of straight anchorage length for simply 

supported beams with effective depth d. Bend and hook are not addressed as it is 

irrelevant to PIR. 

 

(iv) Simplified rules for simply supported or end supports of a continuous solid 

slab (Cl. 9.3.1.3) 

A general detailing rule recommended for simply supported solid slabs stipulated 

in HKBD, 2013 is to provide 50% of the maximum mid-span moment and 50% of the 

calculated maximum span reinforcement, for the top and bottom bars, respectively. 

The reinforcement is to be anchored into the support conforming to Equations (2) and 

(5(b)). If the design ultimate shear stress at the face of support is less than half of the 
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appropriate value of concrete shear stress capacity (vc), HKBD, 2013 Cl. 6.1.2.5 

recommends a straight length of bar beyond the centreline of the support equal to 

either one-third of support width or 30 mm, whichever greater may be considered as 

the effective anchorage. An effective full tensile anchorage is assumed by providing 

the following simplified detailing rules where lspan is the slab span length: 

 

lbeam,sr = max{12 ϕ after support centreline, 12 ϕ + d/2 from support face}.  (5(a))  

   lslab,sr = max{0.15lspan, 45 ϕ }.                                             (5(b)) 

 

Design provisions for RA theory in EN 1992-1-1 

 

This section reviews the anchorage detailing provisions for CIR in EN 1992-1-1, 

2004 as per European Technical Assessment (ETA) which uses the RA theory for the 

design of PIR.  

 

(i) Straight bar anchorage (Cl. 8.4) 

EN 1992-1-1, 2004 uses the design stress (σsd) rather than the characteristic yield 

stress (fyk) with material safety factor (γs). In fact, the assumption of fully stressed to 

its yield strength is rarely the case, as good detailing principles put lapped splice at 

low-stress location and the provided area of steel is greater than the required area 

(Concrete Design Guide No. 5 (CDG-5, 2015). Design stress (σsd) can be rationally 

determined using the steel area ratio of required (As,rqd) to provided (As,prov), 

multiplied by the design yield strength (i.e., As,rqd/As,prov ∙ fyk/γs). Engineers should be 

cautioned that a shorter anchorage length may induce other failure mechanisms 

associated with anchors, i.e. concrete cone (breakout) or bond (pullout). The design 

bond stress (fbd) according to Cl. 8.4.2 (2), is a function of concrete design tensile 

strength (fctd) according to Cl. 3.1.6 (2). Equation (6) shows the bond stress estimation 

with coefficients η1 and η2 that are implicitly accountable for bond condition, position 

and diameter of reinforcement. To be consistent with HKBD, 2013, Equation (6(b)) 

shows the factored bond stress capacity (fbu) with the inclusion of material partial 

safety factor (γm). 

 

fbd 
= 2.25 η

1
η

2
fctd,       (6(a)) 

fbu = 2.25 η
1
η

2
fctk,0.05/γ

m.
       (6(b)) 
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Where η1 is t coefficient for bond condition and related to reinforcement position 

during concreting (1.0 for good and 0.7 for others); η2 is a coefficient for influence of 

diameter (1.0 for ϕ ≤ 32 mm and (132–ϕ)/100 for ϕ > 32 mm); fctd is taken as the 

characteristic tensile strength at 5% fractile (fctk,0.05) with consideration of a partial 

safety factor γm = 1.5 for concrete. Hence, the basic derivation in Equation (1) is 

analogical but the stress experienced by reinforcement is the design stress rather than 

the characteristic yield stress. Equation (7) shows the basic required anchorage length 

(lb,rqd). Interestingly, EN 1992-1-1, 2004 introduced further checking procedure on the 

design anchorage length (lbd) and imposed a minimum anchorage length (lb,min) which 

are not required in HKBD, 2013. Equations (8) and (12) are the expressions for the 

design and minimum anchorage length, respectively.  

lb,rqd ≥
σsd

 fbu

ϕ

4
,         (7) 

lbd = α
1
α

2
α

3
α

5
lb,rqd ≥ lmin.              (8) 

 

Whereα1 is a coefficient for the effect of the form of reinforcement, assuming 

adequate cover (for straight bars, α1 is 1.0) and α2 is a coefficient for the effect of 

concrete minimum cover to consider splitting failure and is stated in Equations (9(a)) 

and (9(b)) for straight bars. 

0.7 ≤ α
2
 = 1 - 

0.15(cd-ϕ)

ϕ
 ≤ 1.0 (Tension),     (9(a)) 

α
2 

= 1.0 (Compression).      (9(b)) 

 

Where cd = min {s/2, c1, c} for straight bars, s is the clear spacing of bars, c1 is 

the side cover and c is the top or bottom cover. Although the other coefficients 

present challenges to achieve for PIR system, they are nonetheless included for 

discussions. Coefficient α 3 in Equation (10) accounts for the effect of the 

confinement by transverse reinforcement and coefficient α5 in Equation (11) is the 

effect of the pressure transverse to the plane of splitting along the design anchorage 

length.  

 

0.7 ≤ α
3
 = 1 - Kλ ≤ 1.0 (Tension),     (10(a)) 
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α
3
 = 1.0 (Compression).              (10(b)) 

 

Where K is defined in Figure 3 and λ is the ratio of excess transverse 

reinforcement area to longitudinal reinforcement area, (ΣAst - ΣAst,min)/ As. 

 

0.7 ≤ α
5
 = 1 - 0.04p ≤ 1.0 (Tension).    (11) 

 

 

Where p is the transverse pressure (in MPa) at the ultimate limit state along lbd. 

As this paper concerns only with PIR, unrelated coefficient α1 and α4 are excluded. 

The minimum anchorage length can be calculated by using the Equations (12(a)) and 

(12(b)). 

 

lb,min  ≥ max 0.3lb,rqd, 10ϕ, 100 mm  (Tension),    (12(a)) 

lb,min ≥ max 0.6lb,rqd, 10ϕ, 100 mm  (Compression).   (12(b)) 

 

It should be noted that the minimum anchorage length (lmin) shall be multiplied 

by an amplification factor (αlb) to account for the difference of CIR and PIR in 

cracked concrete. In general, if there is no test carried out to PIR in cracked concrete 

in accordance with EOTA EAD 330087, 2018, αlb is taken as 1.5. 

 

(ii) Lapped splice (Cl. 8.7.3) 

Figure 3. Values of K for beams and slab in EN 1992-1-1. 

K = 1.0  K = 0.5  K = 0  
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The designed lap length for EN 1992-1-1, 2004 is shown in Equation (13) with 

𝛼1, 𝛼2, 𝛼3 and 𝛼5 are previously defined (Equations (9) to (11)). 𝛼6 is a coefficient of 

the percentage of the lapped bar (p1) relative to the total sectional area within 0.65lo 

from the centre of lap length (Equation (14)). The minimum lap length can be 

calculated by using Equation (15). Similar to the minimum anchorage length for PIR, 

the minimum lap length (lo,min) shall be multiplied by an amplification factor (𝛼lb) to 

account for the difference of CIR and PIR in cracked concrete. In general, if there is 

no test carried out to PIR in cracked concrete in accordance with EOTA EAD 330087, 

2018, 𝛼lb is taken as 1.5. 

 

lo = α
1
α

2
α

3
α

5
α

6
lb,rqd ≥ lo,min,   (13) 

1.0 ≤ α
6
= (ρ

1
/25)

0.5
 ≤ 1.5 ,     (14) 

lo,min ≥ max 0.3α
6 

l
b,rqd

, 15ϕ, 200 mm .    (15) 

 

(iii) Simplified rules for simply supported beams (Cl. 9.2.1.4) 

Value of 15% of maximum bending moment in the span and 25% (National 

Annex dependent, in contrast, it is 50% in HKBD, 2013) of the steel area provided in 

the span is recommended for the top and bottom bars, respectively, at the support of 

simply supported beams. Both top and bottom bars are to be anchored with lbd 

measured from the face of support. It is interesting to note that Cl. 9.2.1.4(2) allows a 

STM equivalent model to calculate the axial forces in reinforcement, which appears to 

be more suitable for the design stress (σsd) estimation in Equation (7). 

 

(iv) Simplified rules for simply supported solid slabs (Cl. 9.3.1.2) 

In simply supported slabs, 15% - 25% of maximum bending moment in the span 

and 50% of the calculated span reinforcement should be provided for the top and 

bottom bars at the support of solid slabs, respectively (as opposed to the 50% 

provision in HKBD, 2013). Both top and bottom bars are anchored with lbd measured 

from the face of support. Similar to the simply supported beams, Cl. 9.2.1.4(2) of 

STM is allowed. 

 

Comparisons of bond strength according to the RA theory are shown in Table 4. 

The case is assumed for a ribbed bar with ϕ ≤ 32 where the reinforcement is at a good 
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position during concreting. The material safety factors for bond stress (1.4 for HKBD, 

2013 and 1.5 for ETA) are excluded. In general, the HKBD, 2013 presents more 

conservative values (except for lower strength concrete with 20 MPa cube strength 

with α2 = 1.0) compared to the EN 1992-1-1, 2004 as per ETA. 

 

Table 4. Summary of bond strength in accordance with RA theory in HKBD and EN 

1992-1-1 as per ETA (exclude material safety factor for bond stress, i.e., 1.4 for HKBD and 

1.5 for EN 1992-1-1). 

 

Concrete 

characteristic 

cube strength, 

fcu,k (MPa) 

Concrete 

characteristic 

tensile strength 

at 5% fractile, 

fctk,0.05 (MPa) 

Bond strength (Tension) Bond strength 

(Compression) 

HKBD  

𝛽 = 0.5 

ETA 

normalised 

by 𝛼2 = 0.7* 

ETA 

normalised 

by 𝛼2 = 

0.85* 

ETA 

normalised 

by 𝛼2 = 1.0* 

HKBD  

𝛽 = 0.63 

ETA 

normalised by 

𝛼2 = 1.0* 

20 1.3 3.1 4.2 3.4 2.9 3.9 2.9 

30 1.8 3.8 5.8 4.8 4.1 4.8 4.1 

40 2.1 4.4 6.7 5.5 4.7 5.6 4.7 

50 2.5 4.9 8.0 6.6 5.6 6.2 5.6 

60 2.9 5.4 9.3 7.7 6.5 6.8 6.5 

* 𝛼2 is a coefficient for the effect of concrete min. cover to consider splitting failure and is 

stated in Equations (9(a)) and (9(b)) for straight bars. In this example, the limit boundary was 

taken as 0.7 and 1.0, where the case of α2 = 1.0 is more susceptible to splitting failure due to 

insufficient edge cover. It should be noted that the case of α2 = 1.0 corresponds to a concrete 

cover of 1ϕ, which present challenges in hole drilling. The minimum concrete cover to 

account for possible deviation in drilling is found in Table 5, with a minimum concrete cover 

of 2ϕ, corresponds to α2 = 0.85. 

 

Table 5. Minimum concrete cover (cmin) proposed in EOTA EAD 330087. 

  

Use of drilling aid Drilling method Bar diameter ϕ cmin 

No Hammer or 

diamond 

< 25 mm 30 mm + 0.06 lv ≥ 2ϕ 

≥ 25 mm 40 mm + 0.06 lv ≥ 2ϕ 

Compressed air  < 25 mm 50 mm + 0.08 lv  

≥ 25 mm 60 mm + 0.08 lv ≥ 2ϕ 
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Yes Hammer or 

diamond 

< 25 mm 30 mm + 0.02 lv ≥ 2ϕ 

≥ 25 mm 40 mm + 0.02 lv ≥ 2ϕ 

Compressed air  < 25 mm 50 mm + 0.02 lv  

≥ 25 mm 60 mm + 0.02 lv ≥ 2ϕ 

Where lv is setting anchorage depth of reinforcement (in unit mm). 

 

4.2 Design philosophy of PIR as STM (state-of-the-art moment connection) 

 

For moment connections designed with CIR, they require bent bars rather than 

straight bars that are not achievable on PIR. As a result, the compressive strut is 

anchored in the bonding area of straight reinforcement rather than in the bend area. If 

the anchorage depth is approaching 15ϕ, an STM is more suitable (Lee et. al., 2019). 

According to the BA theory, the concrete breakout will form at a horizontal angle of 

30o. However, among the moment connection cases, due to the beneficial effect 

offered by the compressive strut of STM, the forming of a cone crack will be hindered 

at a steeper angle. In lieu of propagation of cone cracking, one of the STM failure 

modes may occur e.g. compressive strut failure or splitting failure of concrete.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. STM of the moment connecting node (Lee et. al.). 

linst 

N2,V2,M2 

 

PIR PIR 

Existing slab structure 

N
ew

 r
et

ai
ni

ng
 w

al
l s

tr
uc

tu
re

 

zone 2 zone 3 zone 0   

zo
ne

 1
 

 

 z
 =

 z
2 
=

 z
3 N3,V3,M3 

 

z1/2 

Fs10 

Fs0 

N1,V1,M1 

D0 

S0 

z1r 

z1/2 

 

Fco 
lb1 

z0 lm 
 

cs 
Fs1 

V1 



21 

 

 

Furthering the pioneer STM work by Schlaich et al., 1987, a detailed STM used 

on PIR was proposed by Kuper, 2003 and Muenger et al., 2002, and validated by 

Hamad et al., 2006. STM complies to the RC theory and DIN 1045-1, 2008 in that the 

tensile forces cannot be transferred directly to the concrete. Take  a retaining wall 

structure as an example, the STM analysis can be divided into four zones (Figure 4). 

Zone 1 is the newly cast slab while the other slabs are on an existing wall. The 

connection of the PIR node is in Zone 0 which is between Zones 2 and 3. The 

state-of-the-art moment connection by STM design procedure is given as below: 

 

(1) Formulate the force equilibrium at node; 

(2) Check anchorage length; 

(3) Check tension in existing reinforcement; 

(4) Check concrete compressive strut; 

(5) Check splitting force in transition zone. 

  

Together with the horizontal angle θ and the required bond length subject to 

adhesive strength, the anchorage length is obtained. By maintaining the force 

equilibrium at the anchorage node, the STM theory and equations are formulated, 

(Lee et. al., 2019). 

 

(i) Anchorage check 

From the cracked pattern observation of moment connections, the slab effective 

inner lever arm (z1r) of the PIR may be reduced by a factor of k. to the distance 

between the top and bottom reinforcement of slab (z1) (Equation (16)). In the closing 

moment case, k is taken as 1.0. In opening moment case, k is ranging from 0.85 to 1.0 

(Kupfer, 2003). Alternatively, z1r can also be obtained by the typical flexural analysis 

from the effective depth d (HKBD, 2013 and EN 1992-1-1, 2004). The PIR tensile 

force Fs1 is obtained from applied moment M1, as shown in Equation (17). 

z1r = z1 . k ,        (16) 

Fs1 = M1/z1r.        (17) 

 

For Fs10 = Fs1, with bar perimeter (u), the anchorage bond length is: 

lb1 = 
Fs10

fbm. ∑ u
.           (18) 
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Where the fbm is taken as mean bond strength of the used adhesive system. This is 

justified only when there is sufficient large spacing of the PIR in the considered tests. 

In the case of closer spacing and/or small cover, splitting might become decisive and a 

reduced value of fbm should be used for design purposes. In the node, the lever arm of 

internal forces z0 is obtained from the subtraction of the installed anchorage depth (linst) 

by the concrete cover (cs) and half of the anchorage bond length (lb1)  (Equation 

(19(a))). However, if linst is much longer than required, a more realistic z0 shall be 

calculated according to Equation (19(b)) from the compressive strut inclination angle 

θ:  

z0 = linst - cs - lb1 /2,              (19(a)) 

z0 = z1r. tan θ,       (19(b)) 

30o < θ < 63o.       (20)  

 

However, this angle is limited by Equation (20). The position of the strut failure 

crack is t (= cs + z0). Re-arranging the basic anchorage length (lb) becomes: 

 

lb = t + lb1 /2        (21) 

                            

(ii) Wall Near Face reinforcement check 

The near face (NF) reinforcement force (Fs0) at the node is the sum of the 

moment force outside the node area with the internal forces lever arm (z0) and 

reinforcement lever arm (z). The reinforcement area required is As0,rqd = Fs0/( fyk /s).  

 

Fs0 = M1 . (1/z0 – 1/z).            (22)    

 

(iii) Wall Far Face reinforcement check 

Similarly, in closing moment case, the far face (FF) reinforcement tensile force 

Fs3 is given in Equation (23(a)). In fact, this formulation is the same as the bending 

check in the conventional RC design. In the open moment case, the reinforcement 

tensile force (Fs3) is obtained from the sum of tension in existing reinforcement 

outside node area (Fs2) and the tension in node due to reduced lever arm (Hs2) as 

shown in Equations (23(b)) to (25). The reinforcement area required is As3,rqd = 

Fs3/( fyk /s).   

 

Fs3 = M1/z,                (23(a)) 
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Fs3 = Fs2 + Hs2,               (23(b)) 

Fs2 = M1/z + N2/2,                (24) 

Hs2 = M1+(V2+V3)
z1

2
.

1

z0
-

1

z2
 + V1(

z1R

z0
-1) .     (25) 

 

(iv) Compressive strut check 

From Figure 4, in the nodal zone, the horizontal force (Fc0) is acting in the centre 

of effective anchorage length (lb). At the nodal zone, the compressive strut (D0) is 

anchored at the centre of effective anchorage length (lb) and is balanced by the nodal 

horizontal force (Fc0) (Equation (26)). According to EN 1992-1-1, 2004 section 6.5, in 

the compression-tension node, the maximum strength for a concrete strut is given in 

Equation (27). Based on Equations 7.3-82 (1992-1-1, 2004), a strut efficiency factor α 

= (0.75 . fc) must be used with fc = (30/fck)1/3 ≤ 1 to reduce concrete strength in the 

nodal zone. This is a hyperbolic rather than a linear reduction as per EN 1992-1-1, 

2004 (α = k2 . v’ with k2 = 0.85 and v’ = 1-fck/250)). Finally, the maximum concrete 

strut resistance (DR) must be larger than the internal compressive strut force i.e. DR ≥ 

D0 as given in Equation (28) where b is structural width and the strut width is lb1 . cos 

θ.  

 

Fc0=
M1+(V2+V3). z/2

z0
,         (26) 

DR = αcc
. α . fcd,       (27) 

D0 = Fc0/cos θ,           (28(a)) 

DR = αcc
. 0.75 . (30/fck)1/3 . fck

 /ϒc . (b . lb1 . cos θ). (28(b)) 

 

(v) Splitting tensile stress in discontinuity zone 

In the B-region, the vertical components of struts are taken up by tensile stress 

within concrete causing splitting failure. The maximum splitting moment (Msp) is 

determined by the bursting transverse stress in anchorage zone. Having obtained the 

section modulus (Wsp), the splitting stress σsp (= Msp/Wsp ) is given by Equation (29). It 

checks against the concrete characteristic tensile strength at 5% fractile (fctk,0.05) by 

Equation (30) which can be determined by the experiment or the concrete 

compressive strength (fck) indirectly (EN 1992-1-1, 2004 3.1.6(2)). 

σ
sp

= Fc0. z0. 1-
 z0

z
. 1-

 lb1

2z
/

b. z2 

2.42
  ,    (29) 



24 

 

σsp ≤ fctk,0.05.          (30) 

 

4.2.1. Design provisions for STM in HKBD 

 

Similar to the RA theory in the HKBD, 2013, equations governing the RA design 

is also applied to STM. All the forces shall be factored to form designed forces and 

material safety factor shall be incorporated. The factored bond stress capacity (fbu) 

obtained from concrete characteristic cube strength as given in Equation (3) is still 

valid and replaces the use of adhesive mean bond strength (fbm). 

 

(i) Straight bar anchorage 

When determining the anchorage bond length (lb1), the equation shall be 

modified according to Equation (31). This must be shorter than the design anchorage 

length (lb) as obtained from the RA theory in Equation (2) with strut inclination 

horizontal angle being limited by Equation (20). 

 

lb1 = 
Fs10,d

fbu. ∑ u
          (31) 

 

For the reinforcement check, the design yield strength by using material safety 

factor (s) 1.15 needs to be introduced to Equations (22) and (23). For the concrete 

strut resistance (DR), the concrete material safety factor (c) 1.5 shall be used. The 

parameters for αcc and k2 may be taken as 1.0 and 0.85, respectively as referring to EN 

1992-1-1, 2004, 3.1.6(1) and 6.5.2(2).  

 

(ii) Lapped splice 

For lapped splice, the requirements for a minimum lap length (lo), Equation (4) 

and the relevant factors for tension and compression cases are still valid. 

 

4.2.2. Design Provisions for STM in EN 1992-1-1 as per EOTA 

 

For STM design, the calculation of anchorage bond length (lb1) can be obtained 

from the RA theory in accordance with EN 1992-1-1, 2004 section 8.4.4. Hence, the 

design bond stress (fbd) and the factored bond stress capacity (fbu) as given by 

Equation (6) are still valid in determining lb1. The basic required anchorage length 

(lb,rqd) is the maximum of the basic anchorage length (lb) from Equation (21) and 15 
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as proposed by Lee et al., 2019. Finally, the design anchorage length (lbd) can be taken 

as lb,rqd but subject to the minimum of the anchorage length (lb,min) (Equations (7) to 

(12)). Of course, it must also be checked against the maximum installed hole length 

(linst,max) from the drilled hole diameter (o) as per Equation (32). If the installed 

anchorage length (linst) is longer than required, the design anchorage length (lbd) will 

then be shorter and the STM equilibrium will no longer be formed near to the tip 

region of PIR. A simplified approach may be adopted by assuming the horizontal strut 

angle θ at 60o (Lee el. al. 2019). Hence, the basic anchorage length becomes the same 

as stated in Equation (33). Standard reinforcement and compressive strut check for 

STM are applied. For the checking of splitting tensile stress (σsp), the concrete 

characteristic tensile strength (fctk,0.05) can be obtained from EN 1992-1-1, 2004 Table 

3.1 or by Equation (34) with αct taken as 1.0 from EN 1992-1-1, 2004 3.1.6(2) and 

concrete material safety factor (γc) is 1.5. 

 

linst,max ≥ h-max 2o, 30 mm ,      (32) 

lb = cs - z1R . tan 60o + lb1 /2 ,          (33) 

 σsp ≤ fctk,0.05 = αct . 0.7 . (0.3 . fck
 2/3/γc).      (34) 

 

5. Summary, conclusion and outlook 

 

As technology advances, the design of PIR has to be updated from time to time. 

This paper reviewed the latest requirements of various international documents on the 

temperature effect of adhesive materials, strength of RC base material, roughening of 

concrete surface and qualification of installers. Relevant provisions in the HKBD, 

2013 have also been highlighted and referenced to the recent changes made in 

international standards (the European and American codes) specifically based on the 

RA theory. In view of the familiarity of Hong Kong engineers in using the HKBD, it 

is recommended that engineers may choose either the modified RA theory (from EN 

1992-1-1, 2004) or a state-of-the-art STM theory for the use of PIR to meet the design 

assumptions and site constraints.  

 

It should be noted that the performance of PIR system is highly affected by the 

product qualification, for example, qualification as per EOTA EAD 330087, 2018. 

Hence, a similar reform is called for to incorporate the latest design formulation of 

PIR into the HKBD, 2013 which will benefit the Hong Kong construction industry. 
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Detailed installation guide, design methodology and examples discussed in this paper 

will be recorded in a guidebook entitled “Guide for design, installation and 

assessment of post-installed reinforcement” which will be published by the Hong 

Kong University Press. Besides the requirement of qualification of PIR, engineers are 

recommended to refer to the Guide for details of the installation assessment under the 

qualified site supervision system in Hong Kong. This proposal is useful for the 

engineers to promote economical, sustainable and technically sound use of the PIR 

system especially to the hot topic of “modular integrated construction”. 
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