New Jersey Institute of Technology

Digital Commons @ NJIT

School of Applied Engineering and Technology Syllabi

NJIT Syllabi

Spring 1-1-2020

SET 404-452: Adjustment Computations II

Richard Carlson

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation

Carlson, Richard, "SET 404-452: Adjustment Computations II" (2020). *School of Applied Engineering and Technology Syllabi*. 80. https://digitalcommons.njit.edu/saet-syllabi/80

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

SET 404 – Adjustment Computations II Spring 2020 Syllabus

Online/Moodle (Section 452) Instructor: Richard W. Carlson Jr., PLS, 201.841.2918, <u>carlson@njit.edu</u>

Week	Date	Торіс	Readings	Assign (Week)
1	01/21	Introduction – Least Squares Method	3.3-3.4(Mikhail)	HW1, Lab1
2	01/27	Observation Equations	11.9-11.14	HW2, Lab2
3	02/03	Adj. of Level Networks	12 & 13	HW3, Lab3
4	02/10	Horizontal Networks	14,15&16	HW4, Lab4
5	02/17	cont. & GPS Networks	17.1-17.3,17.6-17.8	HW5/6, Lab 5/6
6	02/24	Star*Net, Coordinate Transformations	18	
7	03/02	Condition Equations		HW7, Lab7
8	03/09	Example of Adj. using Cond. Equations		
	03/15 - 03/22	Spring Break		
9	03/23	Midterm (will post test 03/16 – due 03/30)		
10	03/30	Combined (General) Adjustment	22	HW10, Lab10
11	04/06	Example of General Adjustment	22	HW11, Lab11
12	04/13	Intro to Stat. Analysis, Chi-Sq, t, F Distributions	4	HW12-14,L12-14
13	04/20	Conf. Int., Stat. Test, Error Ellipses, Blunder Det.	19, 21	
14	04/27	Review for Final		
15	05/04	Final Exam (will post test 05/02 - due 05/10)		

Description:

This course will introduce the student to the concepts of observations and models as well as providing a continuation of the theory of least squares and the mathematical weighting of observations. Also included is the statistical evaluation of the least squares results.

Textbook(s)/Material Required:

- 1. Adjustment Computations Spatial Data Analysis, Ghilani, Charles D. 5th Edition, John Wiley & Sons, Inc., 2010 ISBN 978-0-470-46491-5 (Required Text)
- 2. Supplemental Material (posted on Moodle) Analysis and Adjustments of Survey Measurements, Mikhail, Gracie, Van Nostrand Reinhold 1981.
- 3. Star*Net Evaluation/Demo Version (<u>link</u>), Word, Excel.

Grading:	Homework (10)	30%
	Lab/Weekly Report	10%
	Midterm	25%
	Final	35%

Policies: Homework will be assigned at the beginning of each week (Monday) and due at the end of the week (Sunday night). A penalty will be assessed on late assignments and no credit will be given after the solution is posted.

[&]quot;I______as a student of New Jersey Institute of Technology, I will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code [available on the NJIT web site]. I also understand that I must subscribe to the following pledge on major work [when required by the instructor] submitted for credits as described in the NJIT Academic Code: *On my honor, I pledge that I have not violated the provisions of the NJIT Academic Honor Code*.' I also understand that the faculty place high importance on ethics and honor and pledge to submit only work that has been performed by myself except in assignments and projects where teamwork is required."

COURSE NUMBER	SET 404
COURSE NAME	Adjustment Computations II
COURSE STRUCTURE	(3-0-4) (lecture hr/wk - lab hr/wk - course credits)
COURSE DESCRIPTION	This course will introduce the student to the concepts of observations and models as well as providing a continuation of the theory of least squares and the mathematical weighting of observations. Also included is the statistical evaluation of the least squares result.
OBJECTIVES	 To understand the concepts of adjustments of surveying observations by observation equations, condition equations and a combined method. To effectively apply adjustment concepts to real-world surveying problems. To understand the weighting of observations and the resultant statistical computations. To introduce the student to the error ellipse. To give the student a knowledge of statistical analysis of measurement.
COURSE LEARNING OUTCOMES (CLO)	The Course Learning Outcomes support the achievement of the following SET Student Outcomes and TAC of ABET Criterion 9 requirements Student Outcome a - an ability to select and apply the knowledge, techniques, skills, and modern tools of their disciplines to broadly-defined engineering technology activities CLO – 1, 2 Student Outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies CLO – 3, 4 Student Outcome k - A commitment to quality, timeliness, and continuous improvement CLO – 3, 5 Student Outcome l - an ability to utilize modern measurement technologies to acquire spatial data CLO – 1, 4 Student Outcome m - an ability to utilize industry- standard software to solve technical problems CLO – 4, 5 Student Outcome o – an ability to design and implement procedures, and analyze data for conformance with
MODIFICATION TO COURSE	precision and accuracy requirements CLO - 2, 3, 5 The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the
COURSE COORDINATED BY	Course Outline. Dr. L. Potts